WorldWideScience

Sample records for model rocket developing

  1. Current status of rocket developments in universities -development of a small hybrid rocket with a swirling oxidizer flow type engine

    OpenAIRE

    Yuasa, Saburo; Kitagawa, Koki

    2005-01-01

    To develop an experimental small hybrid rocket with a swirling gaseous oxygen flow type engine, we made a flight model engine. Burning tests of the engine showed that a maximum thrust of 692 N and a specific impulse of 263 s (at sea level) were achieved. We designed a small hybrid rocket with this engine. The rocket measured 1.8 m in length and 15.4 kg in mass. To confirm the flight stability of the rocket, wind tunnel tests using a 112-scale model of the rocket and simulations of the flight ...

  2. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  3. The Chameleon Solid Rocket Propulsion Model

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  4. Hybrid rocket engine, theoretical model and experiment

    Science.gov (United States)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  5. Microcomputers, Model Rockets, and Race Cars.

    Science.gov (United States)

    Mirus, Edward A., Jr.

    1985-01-01

    The industrial education orientation program at Wisconsin School for the Deaf (WSD) presents problem-solving situations to all seventh- and eighth-grade hearing-impaired students. WSD developed user-friendly microcomputer software to guide students individually through complex computations involving model race cars and rockets while freeing…

  6. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  7. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  8. Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen

    Data.gov (United States)

    National Aeronautics and Space Administration — A dynamical model describing the multi-stage process of rocket propellant loading has been developed. It accounts for both the nominal and faulty regimes of...

  9. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos

  10. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    Science.gov (United States)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  11. Simple-1: Development stage of the data transmission system for a solid propellant mid-power rocket model

    Science.gov (United States)

    Yarce, Andrés; Sebastián Rodríguez, Juan; Galvez, Julián; Gómez, Alejandro; García, Manuel J.

    2017-06-01

    This paper presents the development stage of a communication module for a solid propellant mid-power rocket model. The communication module was named. Simple-1 and this work considers its design, construction and testing. A rocket model Estes Ventris Series Pro II® was modified to introduce, on the top of the payload, several sensors in a CanSat form factor. The Printed Circuit Board (PCB) was designed and fabricated from Commercial Off The Shelf (COTS) components and assembled in a cylindrical rack structure similar to this small format satellite concept. The sensors data was processed using one Arduino Mini and transmitted using a radio module to a Software Defined Radio (SDR) HackRF based platform on the ground station. The Simple-1 was tested using a drone in successive releases, reaching altitudes from 200 to 300 meters. Different kind of data, in terms of altitude, position, atmospheric pressure and vehicle temperature were successfully measured, making possible the progress to a next stage of launching and analysis.

  12. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  13. Development of CFD model for augmented core tripropellant rocket engine

    Science.gov (United States)

    Jones, Kenneth M.

    1994-10-01

    The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.

  14. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  15. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  16. MODELING A ROCKET ELASTIC STRUCTURE AS A BECK’S COLUMN UNDER FOLLOWER FORCE

    OpenAIRE

    Brejão, Leandro Forne; Brasil, Reyolando M. L. R. F.

    2017-01-01

    It is intended, in this paper, to develop a mathematical model of an elastic space rocket structure as a Beck’s column excited by a follower (or circulatory) force. This force represents the rocket motor thrust that should be always in the direction of the tangent to the structure deformed axis at the base of the vehicle. We present a simplified two degree of freedom rigid bars discrete model. Its system of two second order nonlinear ordinary differential equations of motion are derived via L...

  17. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience

    Science.gov (United States)

    Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.

    2005-01-01

    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  18. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    International Nuclear Information System (INIS)

    Rialland, V; Perez, P; Roblin, A; Guy, A; Gueyffier, D; Smithson, T

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm -1 with a step of 5 cm -1 . The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed. (paper)

  19. Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code

    International Nuclear Information System (INIS)

    Hall, M.L.; Rider, W.J.; Cappiello, M.W.

    1992-01-01

    The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper

  20. Development of a new generation solid rocket motor ignition computer code

    Science.gov (United States)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  1. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    Science.gov (United States)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  2. Rocket science

    International Nuclear Information System (INIS)

    Upson Sandra

    2011-01-01

    Expanding across the Solar System will require more than a simple blast off, a range of promising new propulsion technologies are being investigated by ex- NASA shuttle astronaut Chang Diaz. He is developing an alternative to chemical rockets, called VASIMR -Variable Specific Impulse Magnetoplasm Rocket. In 2012 Ad Astra plans to test a prototype, using solar power rather than nuclear, on the International Space Station. Development of this rocket for human space travel is discussed. The nuclear reactor's heat would be converted into electricity in an electric rocket such as VASIMR, and at the peak of nuclear rocket research thrust levels of almost one million newtons were reached.

  3. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    OpenAIRE

    David R. Greatrix

    2009-01-01

    In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predi...

  4. History of the development of rocket technology and astronautics in Poland

    Science.gov (United States)

    Geisler, W.

    1977-01-01

    The development of rocket technology in Poland is outlined. The history cites 13th century use of war rockets in combating Tartars as well as 20th century studies of the future and reality of space flights.

  5. Five-Segment Solid Rocket Motor Development Status

    Science.gov (United States)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  6. Development of the Hawk/Nike Hawk sounding rocket vehicles

    Science.gov (United States)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  7. A Model for the Sounding Rocket Measurement on an Ionospheric E-F Valley at the Hainan Low Latitude Station

    International Nuclear Information System (INIS)

    Wang Zheng; Shi Jiankui; Guan Yibing; Liu Chao; Zhu Guangwu; Torkar Klaus; Fredrich Martin

    2014-01-01

    To understand the physics of an ionospheric E-F valley, a new overlapping three-Chapman-layer model is developed to interpret the sounding rocket measurement in the morning (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, respectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid development of the photochemical process in the ionosphere should be the underlying reason. (astrophysics and space plasma)

  8. This Is Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  9. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  10. Development of Displacement Gages Exposed to Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Bolton, D. E.; Cook, D. J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) has three non-vented segment-to-segment case field joints. These joints use an interference fit J-joint that is bonded at assembly with a Pressure Sensitive Adhesive (PSA) inboard of redundant O-ring seals. Full-scale motor and sub-scale test article experience has shown that the ability to preclude gas leakage past the J-joint is a function of PSA type, joint moisture from pre-assembly humidity exposure, and the magnitude of joint displacement during motor operation. To more accurately determine the axial displacements at the J-joints, two thermally durable displacement gages (one mechanical and one electrical) were designed and developed. The mechanical displacement gage concept was generated first as a non-electrical, self-contained gage to capture the maximum magnitude of the J-joint motion. When it became feasible, the electrical displacement gage concept was generated second as a real-time linear displacement gage. Both of these gages were refined in development testing that included hot internal solid rocket motor environments and simulated vibration environments. As a result of this gage development effort, joint motions have been measured in static fired RSRM J-joints where intentional venting was produced (Flight Support Motor #8, FSM-8) and nominal non-vented behavior occurred (FSM-9 and FSM-10). This data gives new insight into the nominal characteristics of the three case J-joint positions (forward, center and aft) and characteristics of some case J-joints that became vented during motor operation. The data supports previous structural model predictions. These gages will also be useful in evaluating J-joint motion differences in a five-segment Space Shuttle solid rocket motor.

  11. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    Science.gov (United States)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  12. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    Science.gov (United States)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and

  13. Micro-Rockets for the Classroom.

    Science.gov (United States)

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  14. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii

    2015-01-01

    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  15. Development of nuclear rocket engine technology

    International Nuclear Information System (INIS)

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs

  16. Rocket Ozone Data Recovery for Digital Archival

    Science.gov (United States)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  17. Computer model for the recombination zone of a microwave-plasma electrothermal rocket

    Energy Technology Data Exchange (ETDEWEB)

    Filpus, J.W.; Hawley, M.C.

    1987-01-01

    As part of a study of the microwave-plasma electrothermal rocket, a computer model of the flow regime below the plasma has been developed. A second-order model, including axial dispersion of energy and material and boundary conditions at infinite length, was developed to partially reproduce the absence of mass-flow rate dependence that was seen in experimental temperature profiles. To solve the equations of the model, a search technique was developed to find the initial derivatives. On integrating with a trial set of initial derivatives, the values and their derivatives were checked to judge whether the values were likely to attain values outside the practical regime, and hence, the boundary conditions at infinity were likely to be violated. Results are presented and directions for further development are suggested. 17 references.

  18. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    Science.gov (United States)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous

  19. Nuclear rockets

    Energy Technology Data Exchange (ETDEWEB)

    Sarram, M [Teheran Univ. (Iran). Inst. of Nuclear Science and Technology

    1972-02-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine called NERVA by heating liquid hydrogen in a nuclear reactor. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight.

  20. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  1. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs

  2. Nuclear rockets

    International Nuclear Information System (INIS)

    Sarram, M.

    1972-01-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine call NERVA by heating liquid hydrogen, in a nuclear reactor, from 420F to 4000 0 F. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight

  3. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  4. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  5. This "Is" Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  6. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  7. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  8. Development of the Astrobee F sounding rocket system.

    Science.gov (United States)

    Jenkins, R. B.; Taylor, J. P.; Honecker, H. J., Jr.

    1973-01-01

    The development of the Astrobee F sounding rocket vehicle through the first flight test at NASA-Wallops Station is described. Design and development of a 15 in. diameter, dual thrust, solid propellant motor demonstrating several new technology features provided the basis for the flight vehicle. The 'F' motor test program described demonstrated the following advanced propulsion technology: tandem dual grain configuration, low burning rate HTPB case-bonded propellant, and molded plastic nozzle. The resultant motor integrated into a flight vehicle was successfully flown with extensive diagnostic instrumentation.-

  9. History of the Development of NERVA Nuclear Rocket Engine Technology

    International Nuclear Information System (INIS)

    David L., Black

    2000-01-01

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably

  10. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  11. Rocketing into the future the history and technology of rocket planes

    CERN Document Server

    van Pelt, Michel

    2012-01-01

    Rocketing into the Future journeys into the exciting world of rocket planes, examining the exotic concepts and actual flying vehicles that have been devised over the last one hundred years. Lavishly illustrated with over 150 photographs, it recounts the history of rocket planes from the early pioneers who attached simple rockets on to their wooden glider airplanes to the modern world of high-tech research vehicles. The book then looks at the possibilities for the future. The technological and economic challenges of the Space Shuttle proved insurmountable, and thus the program was unable to fulfill its promise of low-cost access to space. However, the burgeoning market of suborbital space tourism may yet give the necessary boost to the development of a truly reusable spaceplane.

  12. The development of an erosive burning model for solid rocket motors using direct numerical simulation

    Science.gov (United States)

    McDonald, Brian A.

    A method for developing an erosive burning model for use in solid propellant design-and-analysis interior ballistics codes is described and evaluated. Using Direct Numerical Simulation, the primary mechanisms controlling erosive burning (turbulent heat transfer, and finite rate reactions) have been studied independently through the development of models using finite rate chemistry, and infinite rate chemistry. Both approaches are calibrated to strand burn rate data by modeling the propellant burning in an environment with no cross-flow, and adjusting thermophysical properties until the predicted regression rate matches test data. Subsequent runs are conducted where the cross-flow is increased from M = 0.0 up to M = 0.8. The resulting relationship of burn rate increase versus Mach Number is used in an interior ballistics analysis to compute the chamber pressure of an existing solid rocket motor. The resulting predictions are compared to static test data. Both the infinite rate model and the finite rate model show good agreement when compared to test data. The propellant considered is an AP/HTPB with an average AP particle size of 37 microns. The finite rate model shows that as the cross-flow increases, near wall vorticity increases due to the lifting of the boundary caused by the side injection of gases from the burning propellant surface. The point of maximum vorticity corresponds to the outer edge of the APd-binder flame. As the cross-flow increases, the APd-binder flame thickness becomes thinner; however, the point of highest reaction rate moves only slightly closer to the propellant surface. As such, the net increase of heat transfer to the propellant surface due to finite rate chemistry affects is small. This leads to the conclusion that augmentation of thermal transport properties and the resulting heat transfer increase due to turbulence dominates over combustion chemistry in the erosive burning problem. This conclusion is advantageous in the development of

  13. The comparative analysis of the forecasts of development of rocket propulsion in past and now

    Science.gov (United States)

    Nedaivoda, A.; Prisniakov, V.

    2001-03-01

    Consideration is being given to use the known long and short forecasts of development of rocket engines in past - at the beginning of development of a missile engineering (K. Tsiolkovsky etc. pioneers of rocket propulsion); on the eve of launching of the artificial satellite of Earth (A. Blagonravov); after manned flight of Yu. Gagarin (V. Gluchko); after manned flight on Moon (" The Forecasts on 2001 " on materials of readings R. Goddard in USA); in middle of 70-s' years (D. Sevruk, V. Prisniakov) and at the end of 20 centure. Last years under the initiative R. Beichel and M. Pouliquen IAA. Advanced Propulsion Working Group carries out large researches on definition of the tendencies of development of rocket propulsion for the next forty years, the outcomes which one will be used in the report. The comparison of development of rocket propulsion expected to the end of 20 century and real-life is given. The report analyses the errors of the forecasts of the past - the absence reliable prognostic procedure; the euphoria of the maiden successes of conquest of space; dominance of military and political- propaganda motives of implementation of the space programs before economical; to keep developments secret; competition of two super-powers USSR and USA etc.

  14. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This

  15. Development and analysis of startup strategies for particle bed nuclear rocket engine

    Science.gov (United States)

    Suzuki, David E.

    1993-06-01

    The particle bed reactor (PBR) nuclear thermal propulsion rocket engine concept is the focus of the Air Force's Space Nuclear Thermal Propulsion program. While much progress has been made in developing the concept, several technical issues remain. Perhaps foremost among these concerns is the issue of flow stability through the porous, heated bed of fuel particles. There are two complementary technical issues associated with this concern: the identification of the flow stability boundary and the design of the engine controller to maintain stable operation. This thesis examines a portion of the latter issue which has yet to be addressed in detail. Specifically, it develops and analyzes general engine system startup strategies which maintain stable flow through the PBR fuel elements while reaching the design conditions as quickly as possible. The PBR engine studies are conducted using a computer model of a representative particle bed reactor and engine system. The computer program utilized is an augmented version of SAFSIM, an existing nuclear thermal propulsion modeling code; the augmentation, dubbed SAFSIM+, was developed by the author and provides a more complete engine system modeling tool.

  16. Effect of Six Missile-Bay Baffle Configurations and a Rocket End Plate on Ejection Releases of an MB-1 Rocket from a 0.05 Scale Model of the Convair F-106A Airplane

    Science.gov (United States)

    Hinson, William F.; Lee, John B.

    1959-01-01

    As a continuation of an investigation of the release characteristics of an MB-1 rocket carried internally by the Convair F-106A airplane, six missile-bay baffle configurations and a rocket end plate have been investigated in the 27- by 27-inch preflight jet of the NASA Wallops Station. The MB-1 rocket used had retractable fins and was ejected from a missile bay modified by the addition of six different baffle configurations. For some tests a rocket end plate was added to the model. Dynamically scaled models (0.04956 scale) were tested at a simulated altitude of 22,450 feet and Mach numbers of 0.86, 1.59, and 1.98, and at a simulated altitude of 29,450 feet and a Mach number of 1.98. The results of this investigation indicate that the missile-bay baffle configurations and the rocket end plate may be used to reduce the positive pitch amplitude of the MB-1 rocket after release. The initial negative pitching velocity applied to the MB-1 rocket might then be reduced in order to maintain a near-level-flight attitude after release. As the fuselage angle of attack is increased, the negative pitch amplitude of the rocket is decreased.

  17. Development Testing of 1-Newton ADN-Based Rocket Engines

    Science.gov (United States)

    Anflo, K.; Gronland, T.-A.; Bergman, G.; Nedar, R.; Thormählen, P.

    2004-10-01

    With the objective to reduce operational hazards and improve specific and density impulse as compared with hydrazine, the Research and Development (R&D) of a new monopropellant for space applications based on AmmoniumDiNitramide (ADN), was first proposed in 1997. This pioneering work has been described in previous papers1,2,3,4 . From the discussion above, it is clear that cost savings as well as risk reduction are the main drivers to develop a new generation of reduced hazard propellants. However, this alone is not enough to convince a spacecraft builder to choose a new technology. Cost, risk and schedule reduction are good incentives, but a spacecraft supplier will ask for evidence that this new propulsion system meets a number of requirements within the following areas: This paper describes the ongoing effort to develop a storable liquid monopropellant blend, based on AND, and its specific rocket engines. After building and testing more than 20 experimental rocket engines, the first Engineering Model (EM-1) has now accumulated more than 1 hour of firing-time. The results from test firings have validated the design. Specific impulse, combustion stability, blow-down capability and short pulse capability are amongst the requirements that have been demonstrated. The LMP-103x propellant candidate has been stored for more than 1 year and initial material compatibility screening and testing has started. 1. Performance &life 2. Impact on spacecraft design &operation 3. Flight heritage Hereafter, the essential requirements for some of these areas are outlined. These issues are discussed in detail in a previous paper1 . The use of "Commercial Of The Shelf" (COTS) propulsion system components as much as possible is essential to minimize the overall cost, risk and schedule. This leads to the conclusion that the Technology Readiness Level (TRL) 5 has been reached for the thruster and propellant. Furthermore, that the concept of ADN-based propulsion is feasible.

  18. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  19. Solid rocket motor cost model

    Science.gov (United States)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  20. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    International Nuclear Information System (INIS)

    O'Brien, Robert C.

    2001-01-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  1. The Development of Rocketry Capability in New Zealand—World Record Rocket and First of Its Kind Rocketry Course

    Directory of Open Access Journals (Sweden)

    George Buchanan

    2015-02-01

    Full Text Available The University of Canterbury has developed a rocket research group, UC Rocketry, which recently broke the world altitude record for an I-class motor (impulse of 320–640 Ns and has run a rocketry course for the first time in New Zealand. This paper discusses the development and results of the world record rocket “Milly” and details all the fundamental elements of the rocketry final year engineering course, including the manufacturing processes, wind tunnel testing, avionics, control and the final rocket launch of “Smokey”. The rockets Milly and Smokey are an example of the design, implementation and testing methodologies that have significantly contributed to research and graduates for New Zealand’s space program.

  2. Nuclear Thermal Rocket Simulation in NPSS

    Science.gov (United States)

    Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.

    2013-01-01

    Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.

  3. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  4. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  5. The Isinglass Auroral Sounding Rocket Campaign: data synthesis incorporating remote sensing, in situ observations, and modelling

    Science.gov (United States)

    Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.

    2017-12-01

    The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.

  6. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    Science.gov (United States)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  7. Design considerations for a pressure-driven multi-stage rocket

    Science.gov (United States)

    Sauerwein, Steven Craig

    2002-01-01

    The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.

  8. LOX/Methane Regeneratively-Cooled Rocket Engine Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to advance the technologies required to build a subcritical regeneratively cooled liquid oxygen/methane rocket combustion chamber for...

  9. A multilayer model to simulate rocket exhaust clouds

    Directory of Open Access Journals (Sweden)

    Davidson Martins Moreira

    2011-01-01

    Full Text Available This paper presents the MSDEF (Modelo Simulador da Dispersão de Efluentes de Foguetes, in Portuguese model, which represents the solution for time-dependent advection-diffusion equation applying the Laplace transform considering the Atmospheric Boundary Layer as a multilayer system. This solution allows a time evolution description of the concentration field emitted from a source during a release lasting time tr , and it takes into account deposition velocity, first-order chemical reaction, gravitational settling, precipitation scavenging, and plume rise effect. This solution is suitable for describing critical events relative to accidental release of toxic, flammable, or explosive substances. A qualitative evaluation of the model to simulate rocket exhaust clouds is showed.

  10. Developing safety culture-rocket science or common sense?

    International Nuclear Information System (INIS)

    Mahn, J.A.

    1998-01-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science

  11. Developing safety culture-rocket science or common sense?

    Energy Technology Data Exchange (ETDEWEB)

    Mahn, J.A.

    1998-08-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science.

  12. Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets

    Science.gov (United States)

    Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.

    2016-01-01

    In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.

  13. Assessment of exposure-response functions for rocket-emission toxicants

    National Research Council Canada - National Science Library

    Subcommittee on Rocket-Emission Toxicants, National Research Council

    ... aborted launch that results in a rocket being destroyed near the ground. Assessment of Exposure-Response Functions for Rocket-Emmission Toxicants evaluates the model and the data used for three rocket emission toxicants...

  14. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  15. Flow-Structural Interaction in Solid Rocket Motors

    National Research Council Canada - National Science Library

    Murdock, John

    2004-01-01

    .... The static test failure of the Titan solid rocket motor upgrade (SRMU) that occurred on 1 April, 1991, demonstrated the importance of flow-structural modeling in the design of large, solid rocket motors...

  16. Air-Powered Rockets.

    Science.gov (United States)

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  17. Theoretical Tools and Software for Modeling, Simulation and Control Design of Rocket Test Facilities

    Science.gov (United States)

    Richter, Hanz

    2004-01-01

    A rocket test stand and associated subsystems are complex devices whose operation requires that certain preparatory calculations be carried out before a test. In addition, real-time control calculations must be performed during the test, and further calculations are carried out after a test is completed. The latter may be required in order to evaluate if a particular test conformed to specifications. These calculations are used to set valve positions, pressure setpoints, control gains and other operating parameters so that a desired system behavior is obtained and the test can be successfully carried out. Currently, calculations are made in an ad-hoc fashion and involve trial-and-error procedures that may involve activating the system with the sole purpose of finding the correct parameter settings. The goals of this project are to develop mathematical models, control methodologies and associated simulation environments to provide a systematic and comprehensive prediction and real-time control capability. The models and controller designs are expected to be useful in two respects: 1) As a design tool, a model is the only way to determine the effects of design choices without building a prototype, which is, in the context of rocket test stands, impracticable; 2) As a prediction and tuning tool, a good model allows to set system parameters off-line, so that the expected system response conforms to specifications. This includes the setting of physical parameters, such as valve positions, and the configuration and tuning of any feedback controllers in the loop.

  18. NASA Sounding Rocket Program Educational Outreach

    Science.gov (United States)

    Rosanova, G.

    2013-01-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NSRP engages in a variety of educator training workshops and student flight projects that provide unique and exciting hands-on rocketry and space flight experiences. Specifically, the Wallops Rocket Academy for Teachers and Students (WRATS) is a one-week tutorial laboratory experience for high school teachers to learn the basics of rocketry, as well as build an instrumented model rocket for launch and data processing. The teachers are thus armed with the knowledge and experience to subsequently inspire the students at their home institution. Additionally, the NSRP has partnered with the Colorado Space Grant Consortium (COSGC) to provide a "pipeline" of space flight opportunities to university students and professors. Participants begin by enrolling in the RockOn! Workshop, which guides fledgling rocketeers through the construction and functional testing of an instrumentation kit. This is then integrated into a sealed canister and flown on a sounding rocket payload, which is recovered for the students to retrieve and process their data post flight. The next step in the "pipeline" involves unique, user-defined RockSat-C experiments in a sealed canister that allow participants more independence in developing, constructing, and testing spaceflight hardware. These experiments are flown and recovered on the same payload as the RockOn! Workshop kits. Ultimately, the "pipeline" culminates in the development of an advanced, user-defined RockSat-X experiment that is flown on a payload which provides full exposure to the space environment (not in a sealed canister), and includes telemetry and attitude control capability. The RockOn! and Rock

  19. Pegasus Rocket Model

    Science.gov (United States)

    1996-01-01

    A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable

  20. Simulation and experimental research on line throwing rocket with flight

    Directory of Open Access Journals (Sweden)

    Wen-bin Gu

    2014-06-01

    Full Text Available The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  1. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  2. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Institute of Scientific and Technical Information of China (English)

    Qiang WEI; Guozhu LIANG

    2017-01-01

    To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray,the conventional uncoupled spray model for impinging injectors is extended by considering the couplingof the jet impingement process and the ambient gas field.The new coupled model consists of the plain-orifice sub-model,the jet-jet impingement sub-model and the droplet collision sub-model.The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions.The overall model is benchmarked under various impingement angles,jet momentum and offcenter ratios.Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics,such as the mass flux and mixture ratio distributions in quiescent air.Besides,impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions.First,a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile.The minimum average droplet diameter is achieved when the orifices work in cavitation state,and is about 30% smaller than the steady single phase state.Second,the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°.The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  3. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    Science.gov (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  4. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  5. The History of Rockets.

    Science.gov (United States)

    Newby, J. C.

    1988-01-01

    Discusses the origins and development of rockets mainly from the perspective of warfare. Includes some early enthusiasts, such as Congreve, Tsiolkovosky, Goddard, and Oberth. Describes developments from World War II, and during satellite development. (YP)

  6. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    Science.gov (United States)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  7. Tools for advanced simulations to nuclear propulsion systems in rockets

    International Nuclear Information System (INIS)

    Torres Sepulveda, A.; Perez Vara, R.

    2004-01-01

    While chemical propulsion rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drive, and other principles besides chemical reactions, have been considered from the earliest days of the field. The goal of most of these advanced rocket propulsion schemes is improved efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry, though generally at the expense of high thrust. Nuclear propulsion seems to be the most promising short term technology to plan realistic interplanetary missions. The development of a nuclear electric propulsion spacecraft shall require the development of models to analyse the mission and to understand the interaction between the related subsystems (nuclear reactor, electrical converter, power management and distribution, and electric propulsion) during the different phases of the mission. This paper explores the modelling of a nuclear electric propulsion (NEP) spacecraft type using EcosimPro simulation software. This software is a multi-disciplinary simulation tool with a powerful object-oriented simulation language and state-of-the-art solvers. EcosimPro is the recommended ESA simulation tool for environmental Control and Life Support Systems (ECLSS) and has been used successfully within the framework of the European activities of the International Space Station programme. Furthermore, propulsion libraries for chemical and electrical propulsion are currently being developed under ESA contracts to set this tool as standard usage in the propulsion community. At present, there is not any workable NEP spacecraft, but a standardized-modular, multi-purpose interplanetary spacecraft for post-2000 missions, called ISC-2000, has been proposed in reference. The simulation model presented on this paper is based on the preliminary designs for this spacecraft. (Author)

  8. How High? How Fast? How Long? Modeling Water Rocket Flight with Calculus

    Science.gov (United States)

    Ashline, George; Ellis-Monaghan, Joanna

    2006-01-01

    We describe an easy and fun project using water rockets to demonstrate applications of single variable calculus concepts. We provide procedures and a supplies list for launching and videotaping a water rocket flight to provide the experimental data. Because of factors such as fuel expulsion and wind effects, the water rocket does not follow the…

  9. Large Liquid Rocket Testing: Strategies and Challenges

    Science.gov (United States)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or

  10. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  11. China's space development history: A comparison of the rocket and satellite sectors

    Science.gov (United States)

    Erickson, Andrew S.

    2014-10-01

    China is the most recent great power to emerge in aerospace. It has become the first developing nation to achieve some measure of aerospace production capability across the board. Outside the developed aerospace powers, only China has demonstrated competence concerning all aspects of a world-class aerospace industry: production of advanced rockets, satellites, and aircraft and of their supporting engineering, materials, and systems. As an emerging great power during the Cold War, China was still limited in resources, technology access, and capabilities. It thereby faced difficult choices and constraints. Yet it achieved increasing, though uneven, technological levels in different aerospace sub-sectors. Explaining this variance can elucidate challenges and opportunities confronting developing nations sharing limitations that previously constrained China. Rockets (missiles and space launch vehicles/SLVs) and satellites (military and civilian) were two areas of early achievement for China, and represent this article's two in-depth case studies. Initial import of American and Soviet knowledge and technology, coupled with national resources focused under centralized leadership, enabled China to master missiles and satellites ahead of other systems. Early in the Cold War, great power status hinged on atomic development. China devoted much of its limited technical resources to producing nuclear weapons in order to “prevent nuclear blackmail,” “break the superpowers' monopoly,” and thereby secure great power status. Beijing's second strategic priority was to develop reliable ballistic missiles to credibly deliver warheads, thereby supporting nuclear deterrence. Under Chairman Mao Zedong's direction and the guidance of the American-educated Dr. Qian Xuesen (H.S. Tsien), missile development became China's top aerospace priority. Satellites were also prioritized for military-strategic reasons and because they could not be purchased from abroad following the Sino

  12. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2009-03-01

    Full Text Available In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predicting negative and positive erosive burning, and transient, frequency-dependent combustion response, in conjunction with pressure-dependent and acceleration-dependent burning, is applied to the investigation of instability-related behaviour in a small cylindrical-grain motor. Pertinent key factors, like the initial pressure disturbance magnitude and the propellant's net surface heat release, are evaluated with respect to their influence on the production of instability symptoms. Two traditional suppression techniques, axial transitions in grain geometry and inert particle loading, are in turn evaluated with respect to suppressing these axial instability symptoms.

  13. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  14. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  15. Experimental investigation of solid rocket motors for small sounding rockets

    Science.gov (United States)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  16. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  17. Modeling and validation of Ku-band signal attenuation through rocket plumes

    NARCIS (Netherlands)

    Veek, van der B.J.; Chintalapati, S.; Kirk, D.R.; Gutierrez, H.; Bun, R.F.

    2013-01-01

    Communications to and from a launch vehicle during ascent are of critical importance to the success of rocket-launch operations. During ascent, the rocket's exhaust plume causes significant interference in the radio communications between the vehicle and ground station. This paper presents an

  18. Modeling Rocket Flight in the Low-Friction Approximation

    Directory of Open Access Journals (Sweden)

    Logan White

    2014-09-01

    Full Text Available In a realistic model for rocket dynamics, in the presence of atmospheric drag and altitude-dependent gravity, the exact kinematic equation cannot be integrated in closed form; even when neglecting friction, the exact solution is a combination of elliptic functions of Jacobi type, which are not easy to use in a computational sense. This project provides a precise analysis of the various terms in the full equation (such as gravity, drag, and exhaust momentum, and the numerical ranges for which various approximations are accurate to within 1%. The analysis leads to optimal approximations expressed through elementary functions, which can be implemented for efficient flight prediction on simple computational devices, such as smartphone applications.

  19. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics

    Directory of Open Access Journals (Sweden)

    Hoani Bryson

    2016-03-01

    Full Text Available A customized vertical wind tunnel has been built by the University of Canterbury Rocketry group (UC Rocketry. This wind tunnel has been critical for the success of UC Rocketry as it allows the optimization of avionics and control systems before flight. This paper outlines the construction of the wind tunnel and includes an analysis of flow quality including swirl. A minimal modelling methodology for roll dynamics is developed that can extrapolate wind tunnel behavior at low wind speeds to much higher velocities encountered during flight. The models were shown to capture the roll flight dynamics in two rocket launches with mean roll angle errors varying from 0.26° to 1.5° across the flight data. The identified model parameters showed consistent and predictable variations over both wind tunnel tests and flight, including canard–fin interaction behavior. These results demonstrate that the vertical wind tunnel is an important tool for the modelling and control of sounding rockets.

  20. The Guggenheim Aeronautics Laboratory at Caltech and the creation of the modern rocket motor (1936-1946): How the dynamics of rocket theory became reality

    Science.gov (United States)

    Zibit, Benjamin Seth

    creation of the jet Propulsion Laboratory, the founding of the Aerojet Corporation, and emphasizes the issue of JPL's close relation to military development of the rocket becomes a core subject of this thesis. Cooperation between engineers in an academic setting and the military was not merely inevitable in the 1940s---it was actively fostered and proved quite profitable to all concerned. The deep relationship between the Guggenheim Aeronautics Laboratory and the Army Air Force was one model of the evolution of a permanent institutional edifice, weaving academic research and military end-use together. The dissertation concludes that what began as a modest effort to understand rocket theory in greater depth led within ten years to both research and development tracks which have profoundly altered the technological and military definition of modern history.

  1. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  2. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  3. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  4. Rocket observations

    Science.gov (United States)

    1984-05-01

    The Institute of Space and Astronautical Science (ISAS) sounding rocket experiments were carried out during the periods of August to September, 1982, January to February and August to September, 1983 and January to February, 1984 with sounding rockets. Among 9 rockets, 3 were K-9M, 1 was S-210, 3 were S-310 and 2 were S-520. Two scientific satellites were launched on February 20, 1983 for solar physics and on February 14, 1984 for X-ray astronomy. These satellites were named as TENMA and OHZORA and designated as 1983-011A and 1984-015A, respectively. Their initial orbital elements are also described. A payload recovery was successfully carried out by S-520-6 rocket as a part of MINIX (Microwave Ionosphere Non-linear Interaction Experiment) which is a scientific study of nonlinear plasma phenomena in conjunction with the environmental assessment study for the future SPS project. Near IR observation of the background sky shows a more intense flux than expected possibly coming from some extragalactic origin and this may be related to the evolution of the universe. US-Japan cooperative program of Tether Experiment was done on board US rocket.

  5. Von Braun Rocket Team at Fort Bliss, Texas

    Science.gov (United States)

    1940-01-01

    The German Rocket Team, also known as the Von Braun Rocket Team, poses for a group photograph at Fort Bliss, Texas. After World War II ended in 1945, Dr. Wernher von Braun led some 120 of his Peenemuende Colleagues, who developed the V-2 rocket for the German military during the War, to the United Sttes under a contract to the U.S. Army Corps as part of Operation Paperclip. During the following five years the team worked on high altitude firings of the captured V-2 rockets at the White Sands Missile Range in New Mexico, and a guided missile development unit at Fort Bliss, Texas. In April 1950, the group was transferred to the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal in Huntsville, Alabama, and continued to work on the development of the guided missiles for the U.S. Army until transferring to a newly established field center of the National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC).

  6. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  7. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  8. Yes--This is Rocket Science: MMCs for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    The Air Force's Integrated High-Payoff Rocket Propulsion Technologies (IHPRPT) Program has established aggressive goals for both improved performance and reduced cost of rocket engines and components...

  9. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    OpenAIRE

    Christe, Steven; Zeiger, Ben; Pfaff, Rob; Garcia, Michael

    2016-01-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most impor...

  10. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  11. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  12. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  13. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    NTR engines have continued as a main stream based on the mature technology. The typical core design of the NERVA derived engines uses hexagonal shaped fuel elements with circular cooling channels and structural tie-tube elements for supporting the fuel elements, housing moderator and regeneratively cooling the moderator. The state-of-the-art NTR designs mostly use a fast or epithermal neutron spectrum core utilizing a HEU fuel to make a high power reactor with small and simple core geometry. Nuclear propulsion is the most promising and viable option to achieve challenging deep space missions. Particularly, the attractions of a NTR include excellent thrust and propellant efficiency, bimodal capability, proven technology, and safe and reliable performance. The KANUTER-HEU and -LEU are the innovative and futuristic NTR engines to reduce the reactor size and to implement a LEU fuel in the reactor by using thermal neutron spectrum. The KANUTERs have some features in the reactor design such as the integrated fuel element and the regeneratively cooling channels to increase room for moderator and heat transfer in the core, and ensuing rocket performance. To study feasible design points in terms of thermo-hydraulics and to estimate rocket performance of the KANUTERs, the NSES is under development. The model of the NSES currently focuses on thermo-hydraulic analysis of the peculiar and complex EHTGR design during the propulsion mode in steady-state. The results indicate comparable performance for future applications, even though it uses the heavier LEU fuel. In future, the NSES will be modified to obtain temperature distribution of the entire reactor components and then more extensive design analysis of neutronics, thermohydraulics and their coupling will be conducted to validate design feasibility and to optimize the reactor design enhancing the rocket performance.

  14. Field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.

    2006-01-01

    It was developed a physical model, which allowed calculating a field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket. For space launching site Baikonur it is shown that the nearest horizontal distance from launching site of rocket up to which arrive infrasound waves, produced by supersonic flight of a rocket, is 56 km. Amplitude of acoustic impulse decreases in 5 times on distance of 600 km. Duration of acoustic impulse increases from 1.5 to 3 s on the same distance. Values of acoustic field parameters on the earth surface, practically, do not depend from season of launching of rocket. (author)

  15. Ceremony celebrates 50 years of rocket launches

    Science.gov (United States)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  16. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    Science.gov (United States)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  17. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  18. Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes

    Science.gov (United States)

    2008-01-01

    In preparation for the Apollo program, Leonard Roberts of the NASA Langley Research Center developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts assumed that the erosion rate was determined by the excess shear stress in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumes a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. Roberts calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumed that only one particle size existed in the soil. He assumed that particle ejection angles were determined entirely by the shape of the terrain, which acts like a ballistic ramp, with the particle aerodynamics being negligible. The predicted erosion rate and the upper limit of particle size appeared to be within an order of magnitude of small-scale terrestrial experiments but could not be tested more quantitatively at the time. The lower limit of particle size and the predictions of ejection angle were not tested. We observed in the Apollo landing videos that the ejection angles of particles streaming out from individual craters were time-varying and correlated to the Lunar Module thrust, thus implying that particle aerodynamics dominate. We modified Roberts theory in two ways. First, we used ad hoc the ejection angles measured in the Apollo landing videos, in lieu of developing a more sophisticated method. Second, we integrated Roberts equations over the lunar-particle size distribution and obtained a compact expression that could be implemented in a numerical code. We also added a material damage model that predicts the number and size of divots which the impinging particles will cause in hardware surrounding the landing

  19. Modal Survey of ETM-3, A 5-Segment Derivative of the Space Shuttle Solid Rocket Booster

    Science.gov (United States)

    Nielsen, D.; Townsend, J.; Kappus, K.; Driskill, T.; Torres, I.; Parks, R.

    2005-01-01

    The complex interactions between internal motor generated pressure oscillations and motor structural vibration modes associated with the static test configuration of a Reusable Solid Rocket Motor have potential to generate significant dynamic thrust loads in the 5-segment configuration (Engineering Test Motor 3). Finite element model load predictions for worst-case conditions were generated based on extrapolation of a previously correlated 4-segment motor model. A modal survey was performed on the largest rocket motor to date, Engineering Test Motor #3 (ETM-3), to provide data for finite element model correlation and validation of model generated design loads. The modal survey preparation included pretest analyses to determine an efficient analysis set selection using the Effective Independence Method and test simulations to assure critical test stand component loads did not exceed design limits. Historical Reusable Solid Rocket Motor modal testing, ETM-3 test analysis model development and pre-test loads analyses, as well as test execution, and a comparison of results to pre-test predictions are discussed.

  20. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  1. Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket

    Science.gov (United States)

    Albarran, R. M.; Zettergren, M. D.

    2017-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  2. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  3. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  4. Integral performance optimum design for multistage solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongtao (Shaanxi Power Machinery Institute (China))

    1989-04-01

    A mathematical model for integral performance optimization of multistage solid propellant rocket motors is presented. A calculation on a three-stage, volume-fixed, solid propellant rocket motor is used as an example. It is shown that the velocity at burnout of intermediate-range or long-range ballistic missile calculated using this model is four percent greater than that using the usual empirical method.

  5. Two-Rockets Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    Let n>=2 be identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1, v2, ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. Let's focus on two arbitrary rockets Ri and Rjfrom the previous n rockets. Let's suppose, without loss of generality, that their speeds verify virocket Rj is contracted with the factor C(vj -vi) , i.e. Lj =Lj' C(vj -vi) .(2) But in the reference frame of the astronaut in Rjit is like rocket Rjis stationary andRi moves with the speed vj -vi in opposite direction. Therefore, similarly, the non-proper time interval as measured by the astronaut inRj with respect to the event inRi is dilated with the same factor D(vj -vi) , i.e. Δtj . i = Δt' D(vj -vi) , and rocketRi is contracted with the factor C(vj -vi) , i.e. Li =Li' C(vj -vi) .But it is a contradiction to have time dilations in both rockets. (3) Varying i, j in {1, 2, ..., n} in this Thought Experiment we get again other multiple contradictions about time dilations. Similarly about length contractions, because we get for a rocket Rj, n-2 different length contraction factors: C(vj -v1) , C(vj -v2) , ..., C(vj -vj - 1) , C(vj -vj + 1) , ..., C(vj -vn) simultaneously! Which is abnormal.

  6. Two-dimensional motions of rockets

    International Nuclear Information System (INIS)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights

  7. Development and Characterization of Fast Burning Solid Fuels/Propellants for Hybrid Rocket Motors with High Volumetric Efficiency

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed work is to develop several fast burning solid fuels/fuel-rich solid propellants for hybrid rocket motor applications. In the...

  8. Mean Flow Augmented Acoustics in Rocket Systems

    Science.gov (United States)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  9. Performance of a RBCC Engine in Rocket-Operation

    Science.gov (United States)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  10. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  11. Modeling of Mutiscale Electromagnetic Magnetosphere-Ionosphere Interactions near Discrete Auroral Arcs Observed by the MICA Sounding Rocket

    Science.gov (United States)

    Streltsov, A. V.; Lynch, K. A.; Fernandes, P. A.; Miceli, R.; Hampton, D. L.; Michell, R. G.; Samara, M.

    2012-12-01

    The MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket was launched from Poker Flat on February 19, 2012. The rocket was aimed into the system of discrete auroral arcs and during its flight it detected small-scale electromagnetic disturbances with characteristic features of dispersive Alfvén waves. We report results from numerical modeling of these observations. Our simulations are based on a two-fluid MHD model describing multi-scale interactions between magnetic field-aligned currents carried by shear Alfven waves and the ionosphere. The results from our simulations suggest that the small-scale electromagnetic structures measured by MICA indeed can be interpreted as dispersive Alfvén waves generated by the active ionospheric response (ionopspheric feedback instability) inside the large-scale downward magnetic field-aligned current interacting with the ionosphere.

  12. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  13. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  14. South Pole rockets, (1)

    International Nuclear Information System (INIS)

    Kimura, Iwane

    1977-01-01

    Wave-particle interaction was observed, using three rockets, S-210 JA-20, -21 and S-310 JA-2, launched from the South Pole into aurora. Electron density and temperature were measured with these rockets. Simultaneous observations of waves were also made from a satellite (ISIS-II) and at two ground bases (Showa base and Mizuho base). Observed data are presented in this paper. These include electron density and temperature in relation to altitude; variation of electron (60 - 80 keV) count rate with altitude; VLF spectra measured by the PWL of S-210 JA-20 and -21 rockets and the corresponding VLF spectra at the ground bases; low-energy (<10 keV) electron flux measured by S-310 JA-2 rocket; and VLF spectrum measured with S-310 JA-2 rocket. Scheduled measurements for the next project are also briefly described. (Aoki, K.)

  15. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    Science.gov (United States)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  16. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  17. Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its coarse grained connection to side loading and rocket response

    Energy Technology Data Exchange (ETDEWEB)

    Keanini, R.G.; Srivastava, N.; Tkacik, P.T. [Department of Mechanical Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Weggel, D.C. [Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Knight, P.D. [Mitchell Aerospace and Engineering, Statesville, North Carolina 28677 (United States)

    2011-06-15

    A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in-nozzle boundary layers. In this paper, stochastic evolution of the in-nozzle boundary layer separation line, an essential feature underlying side load generation, is connected to random, altitude-dependent rotational and translational rocket response via a set of simple analytical models. Separation line motion, extant on a fast boundary layer time scale, is modeled as an Ornstein-Uhlenbeck process. Pitch and yaw responses, taking place on a long, rocket dynamics time scale, are shown to likewise evolve as OU processes. Stochastic, altitude-dependent rocket translational motion follows from linear, asymptotic versions of the full nonlinear equations of motion; the model is valid in the practical limit where random pitch, yaw, and roll rates all remain small. Computed altitude-dependent rotational and translational velocity and displacement statistics are compared against those obtained using recently reported high fidelity simulations [Srivastava, Tkacik, and Keanini, J. Appl. Phys. 108, 044911 (2010)]; in every case, reasonable agreement is observed. As an important prelude, evidence indicating the physical consistency of the model introduced in the above article is first presented: it is shown that the study's separation line model allows direct derivation of experimentally observed side load amplitude and direction densities. Finally, it is found that the analytical models proposed in this paper allow straightforward identification of practical approaches for: (i) reducing pitch/yaw response to side loads, and (ii) enhancing pitch/yaw damping once side loads cease. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Modeling of "Stripe" Wave Phenomena Seen by the CHARM II and ACES Sounding Rockets

    Science.gov (United States)

    Dombrowski, M. P.; Labelle, J. W.

    2010-12-01

    Two recent sounding-rocket missions—CHARM II and ACES—have been launched from Poker Flat Research Range, carrying the Dartmouth High-Frequency Experiment (HFE) among their primary instruments. The HFE is a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz. The CHARM II sounding rocket was launched 9:49 UT on 15 February 2010 into a substorm, while the ACES mission consisted of two rockets, launched into quiet aurora at 9:49 and 9:50 UT on 29 January 2009. At approximately 350 km on CHARM II and the ACES High-Flyer, the HFE detected short (~2s) bursts of broadband (200-500 kHz) noise with a 'stripe' pattern of nulls imposed on it. These nulls have 10 to 20 kHz width and spacing, and many show a regular, non-linear frequency-time relation. These events are different from the 'stripes' discussed by Samara and LaBelle [2006] and Colpitts et al. [2010], because of the density of the stripes, the non-linearity, and the appearance of being an absorptive rather than emissive phenomenon. These events are similar to 'stripe' features reported by Brittain et al. [1983] in the VLF range, explained as an interference pattern between a downward-traveling whistler-mode wave and its reflection off the bottom of the ionosphere. Following their analysis method, we modeled our stripes as higher-frequency interfering whistlers reflecting off of a density gradient. This model predicts the near-hyperbolic frequency-time curves and high density of the nulls, and therefore shows promise at explaining the new observations.

  19. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    Science.gov (United States)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  20. Simulation and experimental research on line throwing rocket with flight

    OpenAIRE

    Wen-bin Gu; Ming Lu; Jian-qing Liu; Qin-xing Dong; Zhen-xiong Wang; Jiang-hai Chen

    2014-01-01

    The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basicall...

  1. Liquid Rocket Engine Testing

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  2. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Science.gov (United States)

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  3. Numerical investigations of hybrid rocket engines

    Science.gov (United States)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  4. Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator

    OpenAIRE

    Eerland, Willem J.; Box, Simon; Sóbester, András

    2017-01-01

    The Cambridge Rocketry Simulator can be used to simulate the flight of unguided rockets for both design and operational applications. The software consists of three parts: The first part is a GUI that enables the user to design a rocket. The second part is a verified and peer-reviewed physics model that simulates the rocket flight. This includes a Monte Carlo wrapper to model the uncertainty in the rocket’s dynamics and the atmospheric conditions. The third part generates visualizations of th...

  5. Technology for low cost solid rocket boosters.

    Science.gov (United States)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  6. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  7. Aerodynamic study of sounding rocket flows using Chimera and patched multiblock meshes

    Directory of Open Access Journals (Sweden)

    João Alves de Oliveira Neto

    2011-01-01

    Full Text Available Aerodynamic flow simulations over a typical sounding rocket are presented in this paper. The work is inserted in the effort of developing computational tools necessary to simulate aerodynamic flows over configurations of interest for Instituto de Aeronáutica e Espaço of Departamento de Ciência e Tecnologia Aeroespacial. Sounding rocket configurations usually require fairly large fins and, quite frequently, have more than one set of fins. In order to be able to handle such configurations, the present paper presents a novel methodology which combines both Chimera and patched multiblock grids in the discretization of the computational domain. The flows of interest are modeled using the 3-D Euler equations and the work describes the details of discretization procedure, which uses a finite difference approach for structure, body-conforming, multiblock grids. The method is used to calculate the aerodynamics of a sounding rocket vehicle. The results indicate that the present approach can be a powerful aerodynamic analysis and design tool.

  8. The model of beam-plasma discharge in the rocket environment during an electron beam injection in the ionosphere

    International Nuclear Information System (INIS)

    Mishin, E.V.; Ruzhin, Yu.Ya.

    1980-01-01

    The model of beam-plasma discharge in the rocket environment during electron beam injection in the ionosphere is constructed. The discharge plasma density dependence on the neutral gas concentration and the beam parameters is found

  9. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  10. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  11. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    Science.gov (United States)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  12. Multi-Rocket Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    We consider n>=2 identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1 ,v2 , ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. (1) If we consider the observer on earth and the first rocket R1, then the non-proper time Δt of the observer on earth is dilated with the factor D(v1) : or Δt = Δt' D(v1) (1) But if we consider the observer on earth and the second rocket R2 , then the non-proper time Δt of the observer on earth is dilated with a different factor D(v2) : or Δt = Δt' D(v2) And so on. Therefore simultaneously Δt is dilated with different factors D(v1) , D(v2), ..., D(vn) , which is a multiple contradiction.

  13. The Alfred Nobel rocket camera. An early aerial photography attempt

    Science.gov (United States)

    Ingemar Skoog, A.

    2010-02-01

    Alfred Nobel (1833-1896), mainly known for his invention of dynamite and the creation of the Nobel Prices, was an engineer and inventor active in many fields of science and engineering, e.g. chemistry, medicine, mechanics, metallurgy, optics, armoury and rocketry. Amongst his inventions in rocketry was the smokeless solid propellant ballistite (i.e. cordite) patented for the first time in 1887. As a very wealthy person he actively supported many Swedish inventors in their work. One of them was W.T. Unge, who was devoted to the development of rockets and their applications. Nobel and Unge had several rocket patents together and also jointly worked on various rocket applications. In mid-1896 Nobel applied for patents in England and France for "An Improved Mode of Obtaining Photographic Maps and Earth or Ground Measurements" using a photographic camera carried by a "…balloon, rocket or missile…". During the remaining of 1896 the mechanical design of the camera mechanism was pursued and cameras manufactured. In April 1897 (after the death of Alfred Nobel) the first aerial photos were taken by these cameras. These photos might be the first documented aerial photos taken by a rocket borne camera. Cameras and photos from 1897 have been preserved. Nobel did not only develop the rocket borne camera but also proposed methods on how to use the photographs taken for ground measurements and preparing maps.

  14. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  15. Nuclear rockets: High-performance propulsion for Mars

    International Nuclear Information System (INIS)

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development

  16. Two phase flow combustion modelling of a ducted rocket

    NARCIS (Netherlands)

    Stowe, R.A.; Dubois, C.; Harris, P.G.; Mayer, A.E.H.J.; Champlain, A. de; Ringuette, S.

    2001-01-01

    Under a co-operative program, the Defence Research Establishment Valcartier and Université Laval in Canada and the TNO Prins Maurits Laboratory in the Netherlands have studied the use of a ducted rocket for missile propulsion. Hot-flow direct-connect combustion experiments using both simulated and

  17. Real-Time Rocket/Vehicle System Integrated Health Management Laboratory For Development and Testing of Health Monitoring/Management Systems

    Science.gov (United States)

    Aguilar, R.

    2006-01-01

    Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.

  18. Development of an advanced rocket propellant handler's suit

    Science.gov (United States)

    Doerr, D. F.

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (rights reserved.

  19. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    Science.gov (United States)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  20. Russian Meteorological and Geophysical Rockets of New Generation

    Science.gov (United States)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  1. Infrasound from the 2009 and 2017 DPRK rocket launches

    Science.gov (United States)

    Evers, L. G.; Assink, J. D.; Smets, P. SM

    2018-06-01

    Supersonic rockets generate low-frequency acoustic waves, that is, infrasound, during the launch and re-entry. Infrasound is routinely observed at infrasound arrays from the International Monitoring System, in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty. Association and source identification are key elements of the verification system. The moving nature of a rocket is a defining criterion in order to distinguish it from an isolated explosion. Here, it is shown how infrasound recordings can be associated, which leads to identification of the rocket. Propagation modelling is included to further constrain the source identification. Four rocket launches by the Democratic People's Republic of Korea in 2009 and 2017 are analysed in which multiple arrays detected the infrasound. Source identification in this region is important for verification purposes. It is concluded that with a passive monitoring technique such as infrasound, characteristics can be remotely obtained on sources of interest, that is, infrasonic intelligence, over 4500+ km.

  2. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  3. Major accomplishments of America's nuclear rocket program (ROVER)

    International Nuclear Information System (INIS)

    Finseth, J.L.

    1991-01-01

    The United States embarked on a program to develop nuclear rocket engines in 1955. This program was known as project Rover. Initially nuclear rockets were considered as a potential backup for intercontinental ballistic missile propulsion but later proposed applications included both a lunar second stage as well as use in manned-Mars flights. Under the Rover program, 19 different reactors were built and tested during the period of 1959-1969. Additionally, several cold flow (non-fuelled) reactors were tested as well as a nuclear fuels test cell. The Rover program was terminated in 1973, due to budget constraints and an evolving political climate. The Rover program would have led to the development of a flight engine had the program continued through a logical continuation. The Rover program was responsible for a number of technological achievements. The successful operation of nuclear rocket engines on a system level represents the pinnacle of accomplishment. This paper will discuss the engine test program as well as several subsystems

  4. JANNAF "Test and Evaluation Guidelines for Liquid Rocket Engines": Status and Application

    Science.gov (United States)

    Parkinson, Douglas; VanLerberghe, Wayne M.; Rahman, Shamim A.

    2017-01-01

    For many decades, the U.S. rocket propulsion industrial base has performed remarkably in developing complex liquid rocket engines that can propel critical payloads into service for the nation, as well as transport people and hardware for missions that open the frontiers of space exploration for humanity. This has been possible only at considerable expense given the lack of detailed guidance that captures the essence of successful practices and knowledge accumulated over five decades of liquid rocket engine development. In an effort to provide benchmarks and guidance for the next generation of rocket engineers, the Joint Army Navy NASA Air Force (JANNAF) Interagency Propulsion Committee published a liquid rocket engine (LRE) test and evaluation (T&E) guideline document in 2012 focusing on the development challenges and test verification considerations for liquid rocket engine systems. This document has been well received and applied by many current LRE developers as a benchmark and guidance tool, both for government-driven applications as well as for fully commercial ventures. The USAF Space and Missile Systems Center (SMC) has taken an additional near-term step and is directing activity to adapt and augment the content from the JANNAF LRE T&E guideline into a standard for potential application to future USAF requests for proposals for LRE development initiatives and launch vehicles for national security missions. A draft of this standard was already sent out for review and comment, and is intended to be formally approved and released towards the end of 2017. The acceptance and use of the LRE T&E guideline is possible through broad government and industry participation in the JANNAF liquid propulsion committee and associated panels. The sponsoring JANNAF community is expanding upon this initial baseline version and delving into further critical development aspects of liquid rocket propulsion testing at the integrated stage level as well as engine component level, in

  5. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  6. Star-grain rocket motor - nonsteady internal ballistics

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, S.; Greatrix, D.R.; Fawaz, Z. [Ryerson University, Dept. of Aerospace Engineering, Toronto (Canada)

    2004-01-01

    The nonsteady internal ballistics of a star-grain solid-propellant rocket motor are investigated through a numerical simulation model that incorporates both the internal flow and surrounding structure. The effects of structural vibration on burning rate augmentation and wave development in nonsteady operation are demonstrated. The amount of damping plays a role in influencing the predicted axial combustion instability symptoms of the motor. The variation in oscillation frequencies about a given star grain section periphery, and along the grain with different levels of burn-back, also influences the means by which the local acceleration drives the combustion and flow behaviour. (authors)

  7. A summary of results from solar monitoring rocket flights

    Science.gov (United States)

    Duncan, C. H.

    1981-01-01

    Three rocket flights to measure the solar constant and provide calibration data for sensors aboard Nimbus 6, 7, and Solar Maximum Mission (SMM) spacecraft were accomplished. The values obtained by the rocket instruments for the solar constant in SI units are: 1367 w/sq m on 29 June 1976; 1372 w/sq m on 16 November 1978; and 1374 w/sq m on 22 May 1980. The uncertainty of the rocket measurements is + or - 0.5%. The values obtained by the Hickey-Frieden sensor on Nimbus 7 during the second and third flights was 1376 w/sq m. The value obtained by the Active Cavity Radiometer Model IV (ACR IV) on SMM during the flight was 1368 w/sq m.

  8. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  9. 16 CFR 1507.10 - Rockets with sticks.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Rockets with sticks. 1507.10 Section 1507.10... FIREWORKS DEVICES § 1507.10 Rockets with sticks. Rockets with sticks (including skyrockets and bottle rockets) shall utilize a straight and rigid stick to provide a direct and stable flight. Such sticks shall...

  10. Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2015-01-01

    Full Text Available Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE is solved by the finite volume method (FVM in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG model, and those of the Al2O3 particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3 particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3 particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.

  11. Modeling Transients and Designing a Passive Safety System for a Nuclear Thermal Rocket Using Relap5

    Science.gov (United States)

    Khatry, Jivan

    Long-term high payload missions necessitate the need for nuclear space propulsion. Several nuclear reactor types were investigated by the Nuclear Engine for Rocket Vehicle Application (NERVA) program of National Aeronautics and Space Administration (NASA). Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. A NERVA design known as the Pewee I was selected for this purpose. The following transients were run: (i) modeling of corrosion-induced blockages on the peripheral fuel element coolant channels and their impact on radiation heat transfer in the core, and (ii) modeling of loss-of-flow-accidents (LOFAs) and their impact on radiation heat transfer in the core. For part (i), the radiation heat transfer rate of blocked channels increases while their neighbors' decreases. For part (ii), the core radiation heat transfer rate increases while the flow rate through the rocket system is decreased. However, the radiation heat transfer decreased while there was a complete LOFA. In this situation, the peripheral fuel element coolant channels handle the majority of the radiation heat transfer. Recognizing the LOFA as the most severe design basis accident, a passive safety system was designed in order to respond to such a transient. This design utilizes the already existing tie rod tubes and connects them to a radiator in a closed loop. Hence, this is basically a secondary loop. The size of the core is unchanged. During normal steady-state operation, this secondary loop keeps the moderator cool. Results show that the safety system is able to remove the decay heat and prevent the fuel elements from melting, in response to a LOFA and subsequent SCRAM.

  12. System Engineering and Technical Challenges Overcome in the J-2X Rocket Engine Development Project

    Science.gov (United States)

    Ballard, Richard O.

    2012-01-01

    Beginning in 2006, NASA initiated the J-2X engine development effort to develop an upper stage propulsion system to enable the achievement of the primary objectives of the Constellation program (CxP): provide continued access to the International Space Station following the retirement of the Space Station and return humans to the moon. The J-2X system requirements identified to accomplish this were very challenging and the time expended over the five years following the beginning of the J- 2X effort have been noteworthy in the development of innovations in both the fields for liquid rocket propulsion and system engineering.

  13. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  14. Effects of Inlet Modification and Rocket-Rack Extension on the Longitudinal Trim and Low-Lift Drag of the Douglas F5D-1 Airplane as Obtained with a 0.125-Scale Rocket-Boosted Model between Mach Numbers of 0.81 and 1.64, TED No. NACA AD 399

    Science.gov (United States)

    Hastings, Earl C., Jr.; Dickens, Waldo L.

    1957-01-01

    A flight investigation was conducted to determine the effects of an inlet modification and rocket-rack extension on the longitudinal trim and low-lift drag of the Douglas F5D-1 airplane. The investigation was conducted with a 0.125-scale rocket-boosted model which was flight tested at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. Results indicate that the combined effects of the modified inlet and fully extended rocket racks on the trim lift coefficient and trim angle of attack were small between Mach numbers of 0.94 and 1.57. Between Mach numbers of 1.10 and 1.57 there was an average increase in drag coefficient of about o,005 for the model with modified inlet and extended rocket racks. The change in drag coefficient due to the inlet modification alone is small between Mach numbers of 1.59 and 1.64

  15. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  16. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  17. Electron-beam rocket acceleration of hydrogen pellets

    International Nuclear Information System (INIS)

    Tsai, C.C.; Foster, C.A.; Milora, S.L.; Schechter, D.E.; Whealton, J.H.

    1992-01-01

    A proof-of-principle device for characterizing electron-beam rocket pellet acceleration has been developed and operated during the last few years. Experimental data have been collected for thousands of accelerated hydrogen pellets under a variety of beam conditions. One intact hydrogen pellet was accelerated to a speed of 578 m/s by an electron beam of 10 kV, 0.8 A, and I ms. The collected data reveal the significant finding that the measured bum velocity of bare hydrogen pellets increases with the square of the beam voltage in a way that is qualitatively consistent with the theoretical prediction based on the neutral gas shielding (NGS) model. The measured bum velocity increases with the beam current or power and then saturates at values two to three times greater than that predicted by the NGS model. The discrepancy may result from low pellet strength and large beam-pellet interaction areas. Moreover, this feature may be the cause of the low measured exhaust velocity, which often exceeds the sonic velocity of the ablated gas. Consistent with the NGS model, the measured exhaust velocity increases in direct proportion to the beam current and in inverse proportion to the beam voltage. To alleviate the pellet strength problem, experiments have been performed with the hydrogen ice contained in a lightweight rocket casing or shell. Pellets in such sabots have the potential to withstand higher beam powers and achieve higher thrust-coupling efficiency. Some experimental results are reported and ways of accelerating pellets to higher velocity are discussed

  18. PLUMEX II: A second set of coincident radar and rocket observations of equatorial spread-F

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Tsunoda, R.T.; Narcisi, R.; Holmes, J.C.

    1981-01-01

    PLUMEX II, the second rocket in a two-rocket operation that successfully executed coincident rocket and radar measurements of backscatter plumes and plasma depletions, was launched into the mid-phase of well-developed equatorial spread-F. In contrast with the first operation, the PLUMEX II results show large scale F-region irregularities only on the bottomside gradient with smaller scale irregularities (i.e., small scale structure imbedded in larger scale features) less intense than corresponding observations in PLUMEX I. The latter result could support current interpretations of east-west plume asymmetry which suggests that during initial upwelling the western wall of a plume (the PLUMEX I case) is more unstable than its eastern counterpart (the PLUMEX II case). In addition, ion mass spectrometer results are found to provide further support for an ion transport model which ''captures'' bottomside ions in an upwelling bubble and transports them to high altitudes

  19. Three Dimensional Numerical Simulation of Rocket-based Combined-cycle Engine Response During Mode Transition Events

    Science.gov (United States)

    Edwards, Jack R.; McRae, D. Scott; Bond, Ryan B.; Steffan, Christopher (Technical Monitor)

    2003-01-01

    The GTX program at NASA Glenn Research Center is designed to develop a launch vehicle concept based on rocket-based combined-cycle (RBCC) propulsion. Experimental testing, cycle analysis, and computational fluid dynamics modeling have all demonstrated the viability of the GTX concept, yet significant technical issues and challenges still remain. Our research effort develops a unique capability for dynamic CFD simulation of complete high-speed propulsion devices and focuses this technology toward analysis of the GTX response during critical mode transition events. Our principal attention is focused on Mode 1/Mode 2 operation, in which initial rocket propulsion is transitioned into thermal-throat ramjet propulsion. A critical element of the GTX concept is the use of an Independent Ramjet Stream (IRS) cycle to provide propulsion at Mach numbers less than 3. In the IRS cycle, rocket thrust is initially used for primary power, and the hot rocket plume is used as a flame-holding mechanism for hydrogen fuel injected into the secondary air stream. A critical aspect is the establishment of a thermal throat in the secondary stream through the combination of area reduction effects and combustion-induced heat release. This is a necessity to enable the power-down of the rocket and the eventual shift to ramjet mode. Our focus in this first year of the grant has been in three areas, each progressing directly toward the key initial goal of simulating thermal throat formation during the IRS cycle: CFD algorithm development; simulation of Mode 1 experiments conducted at Glenn's Rig 1 facility; and IRS cycle simulations. The remainder of this report discusses each of these efforts in detail and presents a plan of work for the next year.

  20. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  1. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  2. The Swedish sounding rocket programme

    International Nuclear Information System (INIS)

    Bostroem, R.

    1980-01-01

    Within the Swedish Sounding Rocket Program the scientific groups perform experimental studies of magnetospheric and ionospheric physics, upper atmosphere physics, astrophysics, and material sciences in zero g. New projects are planned for studies of auroral electrodynamics using high altitude rockets, investigations of noctilucent clouds, and active release experiments. These will require increased technical capabilities with respect to payload design, rocket performance and ground support as compared with the current program. Coordination with EISCAT and the planned Viking satellite is essential for the future projects. (Auth.)

  3. Acoustic field generated by flight of rocket at the Earth surface

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Maslov, A.N.

    2006-01-01

    In this paper we present a model, which describes the propagation of acoustic impulses produced by explosion of carrier rocket at the active part of trajectory, down through the atmosphere. Calculations of acoustic field parameters on the earth surface were made for altitudes of rocket flight from 2.8 to 92.3 km and yield of explosions from 0.001 to 0.5 t tnt. It was shown the infrasound accompaniment of rocket flight with the goal to register the explosion it is possible only for an altitude about 70 km. For this case, test set should be situated at the distance not exceeding 120 km from the starting place. (author)

  4. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  5. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    Science.gov (United States)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  6. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  7. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  8. An Analysis of Rocket Propulsion Testing Costs

    Science.gov (United States)

    Ramirez, Carmen; Rahman, Shamim

    2010-01-01

    The primary mission at NASA Stennis Space Center (SSC) is rocket propulsion testing. Such testing is commonly characterized as one of two types: production testing for certification and acceptance of engine hardware, and developmental testing for prototype evaluation or research and development (R&D) purposes. For programmatic reasons there is a continuing need to assess and evaluate the test costs for the various types of test campaigns that involve liquid rocket propellant test articles. Presently, in fact, there is a critical need to provide guidance on what represents a best value for testing and provide some key economic insights for decision-makers within NASA and the test customers outside the Agency. Hence, selected rocket propulsion test databases and references have been evaluated and analyzed with the intent to discover correlations of technical information and test costs that could help produce more reliable and accurate cost projections in the future. The process of searching, collecting, and validating propulsion test cost information presented some unique obstacles which then led to a set of recommendations for improvement in order to facilitate future cost information gathering and analysis. In summary, this historical account and evaluation of rocket propulsion test cost information will enhance understanding of the various kinds of project cost information; identify certain trends of interest to the aerospace testing community.

  9. Photometric observations of local rocket-atmosphere interactions

    Science.gov (United States)

    Greer, R. G. H.; Murtagh, D. P.; Witt, G.; Stegman, J.

    1983-06-01

    Photometric measurements from rocket flights which recorded a strong foreign luminance in the altitude region between 90 and 130 km are reported. From one Nike-Orion rocket the luminance appeared on both up-leg and down-leg; from a series of Petrel rockets the luminance was apparent only on the down-leg. The data suggest that the luminance may be distributed mainly in the wake region along the rocket trajectory. The luminance is believed to be due to a local interaction between the rocket and the atmosphere although the precise nature of the interaction is unknown. It was measured at wavelengths ranging from 275 nm to 1.61 microns and may be caused by a combination of reactions.

  10. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    Science.gov (United States)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  11. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  12. Observed and modelled effects of auroral precipitation on the thermal ionospheric plasma: comparing the MICA and Cascades2 sounding rocket events

    Science.gov (United States)

    Lynch, K. A.; Gayetsky, L.; Fernandes, P. A.; Zettergren, M. D.; Lessard, M.; Cohen, I. J.; Hampton, D. L.; Ahrns, J.; Hysell, D. L.; Powell, S.; Miceli, R. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    Auroral precipitation can modify the ionospheric thermal plasma through a variety of processes. We examine and compare the events seen by two recent auroral sounding rockets carrying in situ thermal plasma instrumentation. The Cascades2 sounding rocket (March 2009, Poker Flat Research Range) traversed a pre-midnight poleward boundary intensification (PBI) event distinguished by a stationary Alfvenic curtain of field-aligned precipitation. The MICA sounding rocket (February 2012, Poker Flat Research Range) traveled through irregular precipitation following the passage of a strong westward-travelling surge. Previous modelling of the ionospheric effects of auroral precipitation used a one-dimensional model, TRANSCAR, which had a simplified treatment of electric fields and did not have the benefit of in situ thermal plasma data. This new study uses a new two-dimensional model which self-consistently calculates electric fields to explore both spatial and temporal effects, and compares to thermal plasma observations. A rigorous understanding of the ambient thermal plasma parameters and their effects on the local spacecraft sheath and charging, is required for quantitative interpretation of in situ thermal plasma observations. To complement this TRANSCAR analysis we therefore require a reliable means of interpreting in situ thermal plasma observation. This interpretation depends upon a rigorous plasma sheath model since the ambient ion energy is on the order of the spacecraft's sheath energy. A self-consistent PIC model is used to model the spacecraft sheath, and a test-particle approach then predicts the detector response for a given plasma environment. The model parameters are then modified until agreement is found with the in situ data. We find that for some situations, the thermal plasma parameters are strongly driven by the precipitation at the observation time. For other situations, the previous history of the precipitation at that position can have a stronger

  13. Manufacturing Advanced Channel Wall Rocket Liners, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will adapt and demonstrate a low cost flexible method of manufacturing channel wall liquid rocket nozzles and combustors, while providing developers a...

  14. Advanced Vortex Hybrid Rocket Engine (AVHRE), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  15. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  16. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    International Nuclear Information System (INIS)

    Robbins, W.H.; Finger, H.B.

    1991-07-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments

  17. Preliminary design study for a carbide LEU-nuclear thermal rocket

    International Nuclear Information System (INIS)

    Venneri, P.F.; Kim, Y.

    2014-01-01

    Nuclear space propulsion is a requirement for the successful exploration of the solar system. It offers the possibility of having both a high specific impulse and a relatively high thrust, allowing rapid transit times with a minimum usage of fuel. This paper proposes a nuclear thermal rocket design based on heritage NERVA rockets that makes use of Low Enriched Uranium (LEU) fuel. The Carbide LEU Nuclear Thermal Rocket (C-LEU-NTR) is designed to fulfill the rocket requirements as set forth in the NASA 2009 Mars Mission Design Reference Architecture 5.0, that is provide 25,000 lbf of thrust, operate at full power condition for at least two hours, and have a specific impulse close to 900 s. The neutronics analysis was done using MCNP5 with the ENDF/B-VII.1 neutron library. The thermal hydraulic calculations and size optimization were completed with a finite difference code being developed at the Center for Space Nuclear Research. (authors)

  18. Rhenium Rocket Manufacturing Technology

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  19. Design Methodology and Performance Evaluation of New Generation Sounding Rockets

    Directory of Open Access Journals (Sweden)

    Marco Pallone

    2018-01-01

    Full Text Available Sounding rockets are currently deployed for the purpose of providing experimental data of the upper atmosphere, as well as for microgravity experiments. This work provides a methodology in order to design, model, and evaluate the performance of new sounding rockets. A general configuration composed of a rocket with four canards and four tail wings is sized and optimized, assuming different payload masses and microgravity durations. The aerodynamic forces are modeled with high fidelity using the interpolation of available data. Three different guidance algorithms are used for the trajectory integration: constant attitude, near radial, and sun-pointing. The sun-pointing guidance is used to obtain the best microgravity performance while maintaining a specified attitude with respect to the sun, allowing for experiments which are temperature sensitive. Near radial guidance has instead the main purpose of reaching high altitudes, thus maximizing the microgravity duration. The results prove that the methodology at hand is straightforward to implement and capable of providing satisfactory performance in term of microgravity duration.

  20. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  1. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  2. Aluminum Agglomeration and Trajectory in Solid Rocket Motors

    National Research Council Canada - National Science Library

    Coats, Douglas; Hylin, E. C; Babbitt, Deborah; Tullos, James A; Beckstead, Merrill; Webb, Michael; Davis, I. L; Dang, Anthony

    2007-01-01

    Report developed under STTR contract for Topic AF06-T012. The demand for higher performance rocket motors at a reduced cost requires continuous improvements in understanding and controlling propellant combustion...

  3. Computational study of variable area ejector rocket flowfields

    Science.gov (United States)

    Etele, Jason

    Access to space has always been a scientific priority for countries which can afford the prohibitive costs associated with launch. However, the large scale exploitation of space by the business community will require the cost of placing payloads into orbit be dramatically reduced for space to become a truly profitable commodity. To this end, this work focuses on a next generation propulsive technology called the Rocket Based Combined Cycle (RBCC) engine in which rocket, ejector, ramjet, and scramjet cycles operate within the same engine environment. Using an in house numerical code solving the axisymmetric version of the Favre averaged Navier Stokes equations (including the Wilcox ko turbulence model with dilatational dissipation) a systematic study of various ejector designs within an RBCC engine is undertaken. It is shown that by using a central rocket placed along the axisymmetric axis in combination with an annular rocket placed along the outer wall of the ejector, one can obtain compression ratios of approximately 2.5 for the case where both the entrained air and rocket exhaust mass flows are equal. Further, it is shown that constricting the exit area, and the manner in which this constriction is performed, has a significant positive impact on the compression ratio. For a decrease in area of 25% a purely conical ejector can increase the compression ratio by an additional 23% compared to an equal length unconstricted ejector. The use of a more sharply angled conical section followed by a cylindrical section to maintain equivalent ejector lengths can further increase the compression ratio by 5--7% for a total increase of approximately 30%.

  4. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F.S. E-mail: frederick.s.porter@gsfc.nasa.gov; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T

    2000-04-07

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  5. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    International Nuclear Information System (INIS)

    Porter, F.S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T.

    2000-01-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight

  6. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    Science.gov (United States)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  7. THE STERN PROJECT–HANDS ON ROCKETS SCIENCE FOR UNIVERSITY STUDENT

    OpenAIRE

    Schüttauf, Katharina; Stamminger, Andreas; Lappöhn, Karsten

    2017-01-01

    In April 2012, the German Aerospace Center DLR initiated a sponsorship program for university students to develop, build and launch their own rockets over a period of three years. The program designation STERN was abbreviated from the German “STudentische Experimental-RaketeN”, which translates to Student- Experimental-Rockets. The primary goal of the STERN program is to inspire students in the subject of space transportation through hands-on activities within a pro...

  8. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Liou, J.-C.

    2012-01-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources.

  9. Performances Study of a Hybrid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Adrian-Nicolae BUTURACHE

    2018-06-01

    Full Text Available This paper presents a study which analyses the functioning and performances optimization of a hybrid rocket engine based on gaseous oxygen and polybutadiene polymer (HTPB. Calculations were performed with NASA CEA software in order to obtain the parameters resulted following the combustion process. Using these parameters, the main parameters of the hybrid rocket engine were optimized. Using the calculus previously stated, an experimental rocket engine producing 100 N of thrust was pre-dimensioned, followed by an optimization of the rocket engine as a function of several parameters. Having the geometry and the main parameters of the hybrid rocket engine combustion process, numerical simulations were performed in the CFX – ANSYS commercial software, which allowed visualizing the flow field and the jet expansion. Finally, the analytical calculus was validated through numerical simulations.

  10. From A-4 to Explorer 1. [U.S. rocket and missile technology historical review

    Science.gov (United States)

    Debus, K. H.

    1973-01-01

    Historical review of the development of rocket and missile technology in the United States over the period from 1945 to 1958. Attention is given to the organization of activities, the launch facilities, and the scope of test rocket firings at the White Sands Proving Ground area during the initial phase of research with captured German V2 rockets. The development of the Redstone missiles is outlined by discussing aspects of military involvement, cooperation with industrial suppliers, details of ground support equipment, and results of initial test firings. Subsequent development of the Jupiter missiles is examined in a similar manner, and attention is given to activities involved in the launching of the Explorer 1 satellite.

  11. Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor

    Science.gov (United States)

    Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)

    2001-01-01

    Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.

  12. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  13. Potential climate impact of black carbon emitted by rockets

    Science.gov (United States)

    Ross, Martin; Mills, Michael; Toohey, Darin

    2010-12-01

    A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.

  14. Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application

    Science.gov (United States)

    DeBonis, J. R.; Yungster, S.

    1996-01-01

    A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.

  15. Scale Effects on Solid Rocket Combustion Instability Behaviour

    OpenAIRE

    David R. Greatrix

    2011-01-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combusti...

  16. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  17. Magnesium Based Rockets for Martian Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop Mg rockets for Martian ascent vehicle applications. The propellant can be acquired in-situ from MgO in the Martian regolith (5.1% Mg by mass)...

  18. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    Science.gov (United States)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  19. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  20. Effects of Inlet Modification and Rocket-Rack Extension on the Longitudinal Trim and Low-Lift Drag of the Douglas F5D-1 Airplane as Obtained with a 0.125-Scale Rocket-Boosted Model Between Mach Numbers of 0.81 and 1.64: TED No. NACA AD 399

    Science.gov (United States)

    Hastings, Earl C., Jr.; Dickens, Waldo L.

    1957-01-01

    A flight investigation was conducted to determine the effects of inlet modification and rocket-rack extension on the longitudinal trim and low-lift drag of the Douglas F5D-1 airplane. The investigation was conducted with a 0.125-scale rocket-boosted model between Mach Numbers of 0.81 and 1.64. This paper presents the changes in trim angle of attack, trim lift coefficient, and low-lift drag caused by the modified inlets alone over a small part of the test Mach number range and by a combination of the modified inlets and extended rocket racks throughout the remainder of the test.

  1. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  2. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  3. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  4. An X-ray Experiment with Two-Stage Korean Sounding Rocket

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    1998-12-01

    Full Text Available The test result of the X-ray observation system is presented which have been developed at Korea Astronomy Observatory for 3 years (1995-1997. The instrument, which is composed of detector and signal processing parts, is designed for the future observations of compact X-ray sources. The performance of the instrument was tested by mounting on the two-stage Korean Sounding Rocket, which was launched from Taean rocket flight center on June 11 at 10:00 KST 1998. Telemetry data were received from individual parts of the instrument for 32 and 55.7 sec, respectively, since the launch of the rocket. In this paper, the result of the data analysis based on the telemetry data and discussion about the performance of the instrument is reported.

  5. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  6. DEVELOPMENT OF A NINE INCH DIAMETER, MACH 5.5, MONORAIL, ROCKET SLED.

    Science.gov (United States)

    A nine inch diameter monorail rocket sled was designed, fabricated and tested at Holloman Air Force Base. The vehicle was designed to allow easy...replacement of appendages which were subject to severe aerodynamic heating and/or high wear rates. The monorail vehicle as described was shown to be

  7. Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines

    Science.gov (United States)

    Candelaria, Jonathan

    Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic

  8. The Spanish national programme of balloons and sounding rockets

    International Nuclear Information System (INIS)

    Casas, J.; Pueyo, L.

    1978-01-01

    The main points of the Spanish scientific programme are briefly described: CONIE/NASA cooperative project on meteorological sounding rocket launchings; ozonospheric programme; CONIE/NASA/CNES cooperative ionospheric sounding rocket project; D-layer research; rocket infrared dayglow measurements; ultraviolet astronomy research; cosmic ray research. The schedule of sounding rocket launchings at El Arenosillo station during 1977 is given

  9. Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation

    Science.gov (United States)

    Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas

    2018-04-01

    The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.

  10. Terrier Black Brant VC design characteristics and program status. [rocket development

    Science.gov (United States)

    Payne, B. R.; Mayo, E. E.

    1979-01-01

    In the present paper, the design analysis of the Terrier-Black Brant VC, representing the latest addition to the Black Brant rocket family, is discussed, including the aerodynamic, structural, thermal, and operational aspects. An appreciable increase in apogee, as compared to the BBVC and Nike/BBVC, is achieved without any modifications to the well-proven BBV motor or degradation of the thermal or dynamic flight environment.

  11. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  12. Reusable rocket engine preventive maintenance scheduling using genetic algorithm

    International Nuclear Information System (INIS)

    Chen, Tao; Li, Jiawen; Jin, Ping; Cai, Guobiao

    2013-01-01

    This paper deals with the preventive maintenance (PM) scheduling problem of reusable rocket engine (RRE), which is different from the ordinary repairable systems, by genetic algorithm. Three types of PM activities for RRE are considered and modeled by introducing the concept of effective age. The impacts of PM on all subsystems' aging processes are evaluated based on improvement factor model. Then the reliability of engine is formulated by considering the accumulated time effect. After that, optimization model subjected to reliability constraint is developed for RRE PM scheduling at fixed interval. The optimal PM combination is obtained by minimizing the total cost in the whole life cycle for a supposed engine. Numerical investigations indicate that the subsystem's intrinsic reliability characteristic and the improvement factor of maintain operations are the most important parameters in RRE's PM scheduling management

  13. RX LAPAN Rocket data Program With Dbase III Plus

    International Nuclear Information System (INIS)

    Sauman

    2001-01-01

    The components data rocket RX LAPAN are taken from workshop product and assembling rocket RX. In this application software, the test data are organized into two data files, i.e. test file and rocket file. Besides [providing facilities to add, edit and delete data, this software provides also data manipulation facility to support analysis and identification of rocket RX failures and success

  14. Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator

    Directory of Open Access Journals (Sweden)

    Willem J. Eerland

    2017-02-01

    Full Text Available The Cambridge Rocketry Simulator can be used to simulate the flight of unguided rockets for both design and operational applications. The software consists of three parts: The first part is a GUI that enables the user to design a rocket. The second part is a verified and peer-reviewed physics model that simulates the rocket flight. This includes a Monte Carlo wrapper to model the uncertainty in the rocket’s dynamics and the atmospheric conditions. The third part generates visualizations of the resulting trajectories, including nominal performance and uncertainty analysis, e.g. a splash-down region with confidence bounds. The project is available on SourceForge, and is written in Java (GUI, C++ (simulation core, and Python (visualization. While all parts can be executed from the GUI, the three components share information via XML, accommodating modifications, and re-use of individual components.

  15. Working-cycle processes in solid-propellant rocket engines (Handbook). Rabochie protsessy v raketnykh dvigateliakh tverdogo topliva /Spravochnik/

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, A.A.; Panin, S.D.; Rumiantsev, B.V.

    1989-01-01

    Physical and mathematical models of processes taking place in solid-propellant rocket engines and gas generators are presented in a systematic manner. The discussion covers the main types of solid propellants, the general design and principal components of solid-propellant rocket engines, the combustion of a solid-propellant charge, thermodynamic calculation of combustion and outflow processes, and analysis of gasdynamic processes in solid-propellant rocket engines. 40 refs.

  16. The Norwegian sounding rocket programme 1978-81

    International Nuclear Information System (INIS)

    Landmark, B.

    1978-01-01

    The Norwegian sounding rocket programme is reasonably well defined up to and including the winter of 1981/82. All the projects have been planned and will be carried out in international cooperation. Norwegian scientists so far plan to participate in a number of 24 rocket payloads over the period. Out of these 18 will be launched from the Andoya rocket range, 3 from Esrange and 3 from the siple station in the antarctic. (author)

  17. Using PDV to Understand Damage in Rocket Motor Propellants

    Science.gov (United States)

    Tear, Gareth; Chapman, David; Ottley, Phillip; Proud, William; Gould, Peter; Cullis, Ian

    2017-06-01

    There is a continuing requirement to design and manufacture insensitive munition (IM) rocket motors for in-service use under a wide range of conditions, particularly due to shock initiation and detonation of damaged propellant spalled across the central bore of the rocket motor (XDT). High speed photography has been crucial in determining this behaviour, however attempts to model the dynamic behaviour are limited by the lack of precision particle and wave velocity data with which to validate against. In this work Photonic Doppler Velocimetery (PDV) has been combined with high speed video to give accurate point velocity and timing measurements of the rear surface of a propellant block impacted by a fragment travelling upto 1.4 km s-1. By combining traditional high speed video with PDV through a dichroic mirror, the point of velocity measurement within the debris cloud has been determined. This demonstrates a new capability to characterise the damage behaviour of a double base rocket motor propellant and hence validate the damage and fragmentation algorithms used in the numerical simulations.

  18. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  19. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    Science.gov (United States)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  20. Research on Ground Motion Metal Target Based on Rocket Projectile by Using Millimeter Wave Radiometer Technology

    Directory of Open Access Journals (Sweden)

    Zhang Dongyang

    2014-06-01

    Full Text Available How to detect the ground motion metal target effectively is an important guarantee for precision strike in the process of Rocket Projectile flight. Accordingly and in view of the millimeter- wave radiation characteristic of the ground motion metal target, a mathematical model was established based on Rocket Projectile about millimeter-wave detection to the ground motion metal target. Through changing various parameters in the process of Rocket Projectile flight, the detection model was studied by simulation. The parameters variation and effective range of millimeter wave radiometer were obtained in the process of rotation and horizontal flight. So a certain theoretical basis was formed for the precision strike to the ground motion metal target.

  1. Code Validation of CFD Heat Transfer Models for Liquid Rocket Engine Combustion Devices

    National Research Council Canada - National Science Library

    Coy, E. B

    2007-01-01

    .... The design of the rig and its capabilities are described. A second objective of the test rig is to provide CFD validation data under conditions relevant to liquid rocket engine thrust chambers...

  2. Easier Analysis With Rocket Science

    Science.gov (United States)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  3. Straw Rockets Are out of This World

    Science.gov (United States)

    Gillman, Joan

    2013-01-01

    To capture students' excitement and engage their interest in rocketships and visiting planets in the solar system, the author designed lessons that give students the opportunity to experience the joys and challenges of developing straw rockets, and then observing which design can travel the longest distance. The lessons are appropriate for…

  4. Affordable Development and Demonstration of a Small Nuclear Thermal Rocket (NTR) Engine and Stage: How Small Is Big Enough?

    Science.gov (United States)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.

    2016-01-01

    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 specific impulse - a 100 percent increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's Advanced Exploration Systems (AES) program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the Lead Fuel option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During fiscal year (FY) 2014, a preliminary Design Development Test and Evaluation (DDT&E) plan and schedule for NTP development was outlined by the NASA Glenn Research Center (GRC), Department of Energy (DOE) and industry that involved significant system-level demonstration projects that included Ground Technology Demonstration (GTD) tests at the Nevada National Security Site (NNSS), followed by a Flight Technology Demonstration (FTD) mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 kilopound-force thrust class, were considered. Both engine options used GC fuel and a common fuel element (FE) design. The small approximately 7.5 kilopound-force criticality-limited engine produces approximately157 thermal megawatts and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 kilopound-force Small Nuclear Rocket Engine (SNRE), developed by Los Alamos National Laboratory (LANL) at the end of the Rover program, produces approximately 367 thermal megawatts and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35-inch (approximately

  5. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  6. Rocket measurements of electron density irregularities during MAC/SINE

    Science.gov (United States)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  7. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  8. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  9. Stage separation study of Nike-Black Brant V Sounding Rocket System

    Science.gov (United States)

    Ferragut, N. J.

    1976-01-01

    A new Sounding Rocket System has been developed. It consists of a Nike Booster and a Black Brant V Sustainer with slanted fins which extend beyond its nozzle exit plane. A cursory look was taken at different factors which must be considered when studying a passive separation system. That is, one separation system without mechanical constraints in the axial direction and which will allow separation due to drag differential accelerations between the Booster and the Sustainer. The equations of motion were derived for rigid body motions and exact solutions were obtained. The analysis developed could be applied to any other staging problem of a Sounding Rocket System.

  10. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    Science.gov (United States)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  11. Analysis of rocket flight stability based on optical image measurement

    Science.gov (United States)

    Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun

    2018-02-01

    Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.

  12. A reliability as an independent variable (RAIV) methodology for optimizing test planning for liquid rocket engines

    Science.gov (United States)

    Strunz, Richard; Herrmann, Jeffrey W.

    2011-12-01

    The hot fire test strategy for liquid rocket engines has always been a concern of space industry and agency alike because no recognized standard exists. Previous hot fire test plans focused on the verification of performance requirements but did not explicitly include reliability as a dimensioning variable. The stakeholders are, however, concerned about a hot fire test strategy that balances reliability, schedule, and affordability. A multiple criteria test planning model is presented that provides a framework to optimize the hot fire test strategy with respect to stakeholder concerns. The Staged Combustion Rocket Engine Demonstrator, a program of the European Space Agency, is used as example to provide the quantitative answer to the claim that a reduced thrust scale demonstrator is cost beneficial for a subsequent flight engine development. Scalability aspects of major subsystems are considered in the prior information definition inside the Bayesian framework. The model is also applied to assess the impact of an increase of the demonstrated reliability level on schedule and affordability.

  13. U.S./CIS eye joint nuclear rocket venture

    Science.gov (United States)

    Clark, John S.; Mcilwain, Melvin C.; Smetanikov, Vladimir; D'Yakov, Evgenij K.; Pavshuk, Vladimir A.

    1993-01-01

    An account is given of the significance for U.S. spacecraft development of a nuclear thermal rocket (NTR) reactor concept that has been developed in the (formerly Soviet) Commonwealth of Independent States (CIS). The CIS NTR reactor employs a hydrogen-cooled zirconium hydride moderator and ternary carbide fuels; the comparatively cool operating temperatures associated with this design promise overall robustness.

  14. Review of the particle scattering theory in rocket technique application

    International Nuclear Information System (INIS)

    Wang Fuheng; Ma Fang

    1990-01-01

    Three calculation methods of scattering cross section have been discussed. Particle scattering theory and its concrete calculation, existing problems and further development have been also studied. The developement of theoretical aspects of particles scattering in rocket exhaust plume was concerned in this paper

  15. Ultra-fast Escape of a Octopus-inspired Rocket

    Science.gov (United States)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  16. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Kimura, I.; Hirasawa, T.

    1979-01-01

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  17. Lessons from half a century experience of Japanese solid rocketry since Pencil rocket

    Science.gov (United States)

    Matogawa, Yasunori

    2007-12-01

    50 years have passed since a tiny rocket "Pencil" was launched horizontally at Kokubunji near Tokyo in 1955. Though there existed high level of rocket technology in Japan before the end of the second World War, it was not succeeded by the country after the War. Pencil therefore was the substantial start of Japanese rocketry that opened the way to the present stage. In the meantime, a rocket group of the University of Tokyo contributed to the International Geophysical Year in 1957-1958 by developing bigger rockets, and in 1970, the group succeeded in injecting first Japanese satellite OHSUMI into earth orbit. It was just before the launch of OHSUMI that Japan had built up the double feature system of science and applications in space efforts. The former has been pursued by ISAS (the Institute of Space and Astronautical Science) of the University of Tokyo, and the latter by NASDA (National Space Development Agency). This unique system worked quite efficiently because space activities in scientific and applicational areas could develop rather independently without affecting each other. Thus Japan's space science ran up rapidly to the international stage under the support of solid propellant rocket technology, and, after a 20 year technological introduction period from the US, a big liquid propellant launch vehicle, H-II, at last was developed on the basis of Japan's own technology in the early 1990's. On October 1, 2003, as a part of Governmental Reform, three Japanese space agencies were consolidated into a single agency, JAXA (Japan Aerospace Exploration Agency), and Japan's space efforts began to walk toward the future in a globally coordinated fashion, including aeronautics, astronautics, space science, satellite technology, etc., at the same time. This paper surveys the history of Japanese rocketry briefly, and draws out the lessons from it to make a new history of Japan's space efforts more meaningful.

  18. Computational and Experimental Investigation of Liquid Propellant Rocket Combustion Instability

    Data.gov (United States)

    National Aeronautics and Space Administration — Combustion instability has been a problem faced by rocket engine developers since the 1940s. The complicated phenomena has been highly unpredictable, causing engine...

  19. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    Science.gov (United States)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  20. Design of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket

    Science.gov (United States)

    Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.

    2012-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company (Webster, TX), is a unique propulsion system that could change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduces the propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station (ISS). The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster core generates 27 kW of waste heat during its 15 minute firing time. The rocket core will be maintained between 283 and 573 K by a pumped thermal control loop. The design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient-based radiator design. The paper will describe the radiator design option selected for the VASIMR thermal control system for use on ISS, and how the system relates to future exploration vehicles.

  1. The electromagnetic rocket gun impact fusion driver

    International Nuclear Information System (INIS)

    Winterberg, F.

    1984-01-01

    A macroparticle accelerator to be used as an impact fusion driver is discussed and which can accelerate a small projectile to --200 km/sec over a distance of a few 100 meters. The driver which we have named electromagnetic rocket gun, accelerates a small rocket-like projectile by a travelling magnetic wave. The rocket propellant not only serves as a sink to absorb the heat produced in the projectile by resistive energy losses, but at the same time is also the source of additional thrust through the heating of the propellant to high temperatures by the travelling magnetic wave. The total thrust on the projectile is the sum of the magnetic and recoil forces. In comparison to a rocket, the efficiency is here much larger, with the momentum transferred to the gun barrel of the gun rather than to a tenuous jet. (author)

  2. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  3. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

  4. Maneuver of Spinning Rocket in Flight

    OpenAIRE

    HAYAKAWA, Satio; ITO, Koji; MATSUI, Yutaka; NOGUCHI, Kunio; UESUGI, Kuninori; YAMASHITA, Kojun

    1980-01-01

    A Yo-despin device successfully functioned to change in flight the precession axis of a sounding rocket for astronomical observation. The rocket attitudes before and after yodespin were measured with a UV star sensor, an infrared horizon sensor and an infrared telescope. Instrumentation and performance of these devices as well as the attitude data during flight are described.

  5. Design methods in solid rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    A compilation of lectures summarizing the current state-of-the-art in designing solid rocket motors and and their components is presented. The experience of several countries in the use of new technologies and methods is represented. Specific sessions address propellant grains, cases, nozzles, internal thermal insulation, and the general optimization of solid rocket motor designs.

  6. Development of an advanced rocket propellant handler's suit

    Science.gov (United States)

    Doerr, DonaldF.

    2001-08-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability, and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit.

  7. The Alabama Space and Rocket Center: The Second Decade.

    Science.gov (United States)

    Buckbee, Edward O.

    1983-01-01

    The Alabama Space and Rocket Center in Huntsville, the world's largest rocket and space museum, includes displays illustrating American rocket history, exhibits and demonstrations on rocketry principles and experiences, and simulations of space travel. A new project includes an integrated recreational-educational complex, described in the three…

  8. Computing Analysis of Bearing Elements of Launch Complex Aggregates for Space Rocket "Soyuz-2.1v"

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2014-01-01

    Full Text Available The research is devoted to the computational analysis of bearing structures of launch system aggregates, which are designed for the prelaunch preparation and launch security of space rocket (SR "SOYUZ-2" of 1B stage. The bearing structures taken under consideration are the following: supporting trusses (ST, bearing arms (BA, the upper cable girder (UCG, the umbilical mast (UM. The SR “SOYUZ-2" of 1B stage has the characteristics of the propulsion unit (PU thrust, different from those of the "Soyuz" family space rockets exploited before.The paper presents basic modeling principles to calculate units and their operating loadings. The body self-weight and the influence of a gas-dynamic jet of "SOYUZ-2.1B" propulsion unit have been considered as a load of units. Parameters of this influence are determined on the basis of impulse stream fields and of deceleration temperatures calculated for various SR positions according to the specified path of its ascent and demolition.Physical models of the aggregates and calculations are based on the finite elements method and super-elements method using “SADAS” software package developed at the chair SM8 of Bauman Moscow State Technical University.Fields of nodal temperatures distribution in the ST, BA, UCG, UM models, and fields of tension in finite elements as well represent the calculation results.Obtained results revealed the most vulnerable of considered starting system aggregates, namely UM, which was taken for local durability calculation. As an example, this research considers calculation of local durability in the truss branches junction of UM rotary part, for which the constructive strengthening has been offered. For this node a detailed finite-element model built in the model of UM rotary part has been created. Calculation results of local durability testify that the strengthened node meets durability conditions.SR developers used calculation results of launch system aggregates for the space

  9. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and velocity...

  10. Scientific Experiences Using Argentinean Sounding Rockets in Antarctica

    Science.gov (United States)

    Sánchez-Peña, Miguel

    2000-07-01

    Argentina in the sixties and seventies, had experience for developing and for using sounding rockets and payloads to perform scientific space experiments. Besides they have several bases in Antarctica with adequate premises and installations, also duly equipped aircrafts and trained crews to flight to the white continent. In February 1965, scientists and technical people from the "Instituto de Investigacion Aeronáutica y Espacial" (I.I.A.E.) with the cooperation of the Air Force and the Tucuman University, conducted the "Matienzo Operation" to measure X radiation and temperature in the upper atmosphere, using the Gamma Centauro rocket and also using big balloons. The people involved in the experience, the launcher, other material and equipment flew from the south tip of Argentina to the Matienzo base in Antarctica, in a C-47 aircraft equipped with skies an additional jet engine Marbore 2-C. Other experience was performed in 1975 in the "Marambio" Antartic Base, using the two stages solid propellent sounding rocket Castor, developed in Argentina. The payload was developed in cooperation with the Max Planck Institute of Germany. It consist of a special mixture including a shape charge to form a ionized cloud producing a jet of electrons travelling from Marambio base to the conjugate point in the Northern hemisphere. The cloud was observed by several ground stations in Argentina and also by a NASA aircraft with TV cameras, flying at East of New York. The objective of this experience was to study the electric and magnetic fields in altitude, the neutral points, the temperature and electrons profile. The objectives of both experiments were accomplished satisfactorily.

  11. The NASA Sounding Rocket Program and space sciences

    Science.gov (United States)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  12. Sounding rocket study of auroral electron precipitation

    International Nuclear Information System (INIS)

    McFadden, J.P.

    1985-01-01

    Measurement of energetic electrons in the auroral zone have proved to be one of the most useful tools in investigating the phenomena of auroral arc formation. This dissertation presents a detailed analysis of the electron data from two sounding rocket campaigns and interprets the measurements in terms of existing auroral models. The Polar Cusp campaign consisted of a single rocket launched from Cape Parry, Canada into the afternoon auroral zone at 1:31:13 UT on January 21, 1982. The results include the measurement of a narrow, magnetic field aligned electron flux at the edge of an arc. This electron precipitation was found to have a remarkably constant 1.2 eV temperature perpendicular to the magnetic field over a 200 to 900 eV energy range. The payload also made simultaneous measurements of both energetic electrons and 3-MHz plasma waves in an auroral arc. Analysis has shown that the waves are propagating in the upper hybrid band and should be generated by a positive slope in the parallel electron distribution. A correlation was found between the 3-MHz waves and small positive slopes in the parallel electron distribution but experimental uncertainties in the electron measurement were large enough to influence the analysis. The BIDARCA campaign consisted of two sounding rockets launched from Poker Flat and Fort Yukon, Alaska at 9:09:00 UT and 9:10:40 UT on February 7, 1984

  13. Unsteady response of flow system around balance piston in a rocket pump

    Science.gov (United States)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  14. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  15. Demand-type gas supply system for rocket borne thin-window proportional counters

    Science.gov (United States)

    Acton, L. W.; Caravalho, R.; Catura, R. C.; Joki, E. G.

    1977-01-01

    A simple closed loop control system has been developed to maintain the gas pressure in thin-window proportional counters during rocket flights. This system permits convenient external control of detector pressure and system flushing rate. The control system is activated at launch with the sealing of a reference volume at the existing system pressure. Inflight control to plus or minus 2 torr at a working pressure of 760 torr has been achieved on six rocket flights.

  16. A new sounding rocket payload for solar plasma studies

    Science.gov (United States)

    Bruner, Marilyn E.; Brown, William A.; Appert, Kevin L.

    1989-01-01

    A sounding rocket payload developed for studies of high-temperature plasmas associated with solar active regions and flares is described. The payload instruments will record both spectra and images in the UV, EUV, and soft X-ray regions of the spectrum. The instruments, including the Dual Range Spectrograph, the Flat Field Soft X-ray Spectrograph, the Normal Incidence Soft X-ray Imager, the UV Filtergraph, and the H-alpha Imaging system, are described. Attention is also given to the new structural system of the payload, based on a large optical table suspended within the payload cavity, which will support the optical elements in their correct positions and orientations and will maintain these alignments throughout the rocket launch environment.

  17. On the hydrodynamics of rocket propellant engine inducers and turbopumps

    International Nuclear Information System (INIS)

    D'Agostino, L

    2013-01-01

    The lecture presents an overview of some recent results of the work carried out at Alta on the hydrodynamic design and rotordynamic fluid forces of cavitating turbopumps for liquid propellant feed systems of modern rocket engines. The reduced order models recently developed for preliminary geometric definition and noncavitating performance prediction of tapered-hub axial inducers and centrifugal turbopumps are illustrated. The experimental characterization of the rotordynamic forces acting on a whirling four-bladed, tapered-hub, variable-pitch high-head inducer, under different load and cavitation conditions is presented. Future perspectives of the work to be carried out at Alta in this area of research are briefly illustrated

  18. Transient simulation of chamber flowfield in a rod-and-tube configuration solid rocket motor

    International Nuclear Information System (INIS)

    Weaver, J.T.; Stowe, R.A.

    2004-01-01

    Currently, DRDC Valcartier of the Canadian Department of National Defence is designing a prototype rod-and-tube configuration solid propellant rocket motor that will propel a hypersonic velocity missile. This configuration will incorporate a very low port-to-throat area ratio, which in turn results in very high velocity propellant gas traveling across burning propellant surfaces, particularly near the nozzle end of the rocket. This causes an augmentation in the propellant burning rate. While numerical and lumped parameter models are available to design and analyze solid propellant rocket motors and nozzles, many of them provide solutions based on the assumption of quasi-steady flow. Due to the high pressure, high velocity and highly transient nature of the flows expected in the motor under design, it is believed that a CFD simulation will better model the time-dependent phenomena that occur during the functioning of a motor of this type. This simulation couples the fluid dynamics and heat transfer of the gas flowfield within the rocket port to the nozzle and the regression rate of the propellant. By incorporating the regression of the propellant surfaces into the model, the information provided by the resulting time-accurate solution will enable a much improved understanding of the flow phenomena within this rod-and-tube grain motor and a better prediction of the internal ballistics of the motor, which in turn will help in the design of both the motor and the nozzle. (author)

  19. Transient simulation of chamber flowfield in a rod-and-tube configuration solid rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J.T. [Carleton Univ., Ottawa, Ontario (Canada)]. E-mail: jrweaver@storm.ca; Stowe, R.A. [Defence R and D Canada - Valcartier, Val-Belair, Quebec (Canada)

    2004-07-01

    Currently, DRDC Valcartier of the Canadian Department of National Defence is designing a prototype rod-and-tube configuration solid propellant rocket motor that will propel a hypersonic velocity missile. This configuration will incorporate a very low port-to-throat area ratio, which in turn results in very high velocity propellant gas traveling across burning propellant surfaces, particularly near the nozzle end of the rocket. This causes an augmentation in the propellant burning rate. While numerical and lumped parameter models are available to design and analyze solid propellant rocket motors and nozzles, many of them provide solutions based on the assumption of quasi-steady flow. Due to the high pressure, high velocity and highly transient nature of the flows expected in the motor under design, it is believed that a CFD simulation will better model the time-dependent phenomena that occur during the functioning of a motor of this type. This simulation couples the fluid dynamics and heat transfer of the gas flowfield within the rocket port to the nozzle and the regression rate of the propellant. By incorporating the regression of the propellant surfaces into the model, the information provided by the resulting time-accurate solution will enable a much improved understanding of the flow phenomena within this rod-and-tube grain motor and a better prediction of the internal ballistics of the motor, which in turn will help in the design of both the motor and the nozzle. (author)

  20. Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures

    Directory of Open Access Journals (Sweden)

    Novi Andria

    2013-03-01

    Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.

  1. Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, Dennis R.; Phelps, Willie J.

    2011-01-01

    The Reusable Solid Rocket Motor represents the largest solid rocket motor ever flown and the only human rated solid motor. Each Reusable Solid Rocket Motor (RSRM) provides approximately 3-million lb of thrust to lift the integrated Space Shuttle vehicle from the launch pad. The motors burn out approximately 2 minutes later, separate from the vehicle and are recovered and refurbished. The size of the motor and the need for high reliability were challenges. Thrust shaping, via shaping of the propellant grain, was needed to limit structural loads during ascent. The motor design evolved through several block upgrades to increase performance and to increase safety and reliability. A major redesign occurred after STS-51L with the Redesigned Solid Rocket Motor. Significant improvements in the joint sealing systems were added. Design improvements continued throughout the Program via block changes with a number of innovations including development of low temperature o-ring materials and incorporation of a unique carbon fiber rope thermal barrier material. Recovery of the motors and post flight inspection improved understanding of hardware performance, and led to key design improvements. Because of the multidecade program duration material obsolescence was addressed, and requalification of materials and vendors was sometimes needed. Thermal protection systems and ablatives were used to protect the motor cases and nozzle structures. Significant understanding of design and manufacturing features of the ablatives was developed during the program resulting in optimization of design features and processing parameters. The project advanced technology in eliminating ozone-depleting materials in manufacturing processes and the development of an asbestos-free case insulation. Manufacturing processes for the large motor components were unique and safety in the manufacturing environment was a special concern. Transportation and handling approaches were also needed for the large

  2. Closure Letter Report for Corrective Action Unit 496: Buried Rocket Site - Antelope Lake (TTR)

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    former TTR range manager recalled a lost rocket that possibly contained a depleted uranium ballast in an inert warhead. The interviewee confirmed that the last tracking coordinate for the rocket indicated it was lost in an area south of Area 9 near the l T R range coordinates X = 6,614.57 feet (ft) and Y = -20,508.79 ft. These coordinates correspond to a location approximately 2,295 ft northeast of the Mid Target, on Mid Lake. CAS TA-55-008-TAAL was removed from CAU 496 before the SAFER investigation could be completed, and before the new information could be evaluated and the conceptual site model assumptions confirmed

  3. Remote control video cameras on a suborbital rocket

    International Nuclear Information System (INIS)

    Wessling, Francis C.

    1997-01-01

    Three video cameras were controlled in real time from the ground to a sub-orbital rocket during a fifteen minute flight from White Sands Missile Range in New Mexico. Telemetry communications with the rocket allowed the control of the cameras. The pan, tilt, zoom, focus, and iris of two of the camera lenses, the power and record functions of the three cameras, and also the analog video signal that would be sent to the ground was controlled by separate microprocessors. A microprocessor was used to record data from three miniature accelerometers, temperature sensors and a differential pressure sensor. In addition to the selected video signal sent to the ground and recorded there, the video signals from the three cameras also were recorded on board the rocket. These recorders were mounted inside the pressurized segment of the rocket payload. The lenses, lens control mechanisms, and the three small television cameras were located in a portion of the rocket payload that was exposed to the vacuum of space. The accelerometers were also exposed to the vacuum of space

  4. Color and textural quality of packaged wild rocket measured by multispectral imaging

    DEFF Research Database (Denmark)

    Løkke, Mette Marie; Seefeldt, Helene Fast; Skov, Thomas

    2013-01-01

    Green color and texture are important attributes for the perception of freshness of wild rocket. Packaging of green leafy vegetables can postpone senescence and yellowing, but a drawback is the risk of anaerobic respiration leading to loss of tissue integrity and development of an olive-brown color....... The hypothesis underlying this paper is that color and textural quality of packaged wild rocket leaves can be predicted by multispectral imaging for faster evaluation of visual quality of leafy green vegetables in scientific experiments. Multispectral imaging was correlated to sensory evaluation of packaged wild...... rocket quality. CIELAB values derived from the multispectral images and from a spectrophotometer changed during storage, but the data were insufficient to describe variation in sensory perceived color and texture. CIELAB values from the multispectral images allowed for a more detailed determination...

  5. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  6. Research on shock wave characteristics in the isolator of central strut rocket-based combined cycle engine under Ma5.5

    Science.gov (United States)

    Wei, Xianggeng; Xue, Rui; Qin, Fei; Hu, Chunbo; He, Guoqiang

    2017-11-01

    A numerical calculation of shock wave characteristics in the isolator of central strut rocket-based combined cycle (RBCC) engine fueled by kerosene was carried out in this paper. A 3D numerical model was established by the DES method. The kerosene chemical kinetic model used the 9-component and 12-step simplified mechanism model. Effects of fuel equivalence ratio, inflow total temperature and central strut rocket on-off on shock wave characteristics were studied under Ma5.5. Results demonstrated that with the increase of equivalence ratio, the leading shock wave moves toward upstream, accompanied with higher possibility of the inlet unstart. However, the leading shock wave moves toward downstream as the inflow total temperature rises. After the central strut rocket is closed, the leading shock wave moves toward downstream, which can reduce risks of the inlet unstart. State of the shear layer formed by the strut rocket jet flow and inflow can influence the shock train structure significantly.

  7. Lymphocytes on sounding rocket flights.

    Science.gov (United States)

    Cogoli-Greuter, M; Pippia, P; Sciola, L; Cogoli, A

    1994-05-01

    Cell-cell interactions and the formation of cell aggregates are important events in the mitogen-induced lymphocyte activation. The fact that the formation of cell aggregates is only slightly reduced in microgravity suggests that cells are moving and interacting also in space, but direct evidence was still lacking. Here we report on two experiments carried out on a flight of the sounding rocket MAXUS 1B, launched in November 1992 from the base of Esrange in Sweden. The rocket reached the altitude of 716 km and provided 12.5 min of microgravity conditions.

  8. Analysis of supercritical methane in rocket engine cooling channels

    NARCIS (Netherlands)

    Denies, L.; Zandbergen, B.T.C.; Natale, P.; Ricci, D.; Invigorito, M.

    2016-01-01

    Methane is a promising propellant for liquid rocket engines. As a regenerative coolant, it would be close to its critical point, complicating cooling analysis. This study encompasses the development and validation of a new, open-source computational fluid dynamics (CFD) method for analysis of

  9. Measuring the Internal Environment of Solid Rocket Motors During Ignition

    Science.gov (United States)

    Weisenberg, Brent; Smith, Doug; Speas, Kyle; Corliss, Adam

    2003-01-01

    A new instrumentation system has been developed to measure the internal environment of solid rocket test motors during motor ignition. The system leverages conventional, analog gages with custom designed, electronics modules to provide safe, accurate, high speed data acquisition capability. To date, the instrumentation system has been demonstrated in a laboratory environment and on subscale static fire test motors ranging in size from 5-inches to 24-inches in diameter. Ultimately, this system is intended to be installed on a full-scale Reusable Solid Rocket Motor. This paper explains the need for the data, the components and capabilities of the system, and the test results.

  10. Development and application of theoretical models for Rotating Detonation Engine flowfields

    Science.gov (United States)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new

  11. The 4D-var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere

    Science.gov (United States)

    Ssessanga, Nicholas; Kim, Yong Ha; Choi, Byungyu; Chung, Jong-Kyun

    2018-03-01

    We have developed a four-dimensional variation data assimilation technique (4D-var) and utilized it to reconstruct three-dimensional images of the ionospheric hole created during Kwangmyongsong-4 rocket launch. Kwangmyongsong-4 was launched southward from North Korea Sohae space center (124.7°E, 39.6°N) at 00:30 UT on 7 February 2016. The data assimilated were Global Positioning System total electron content from the South Korean Global Positioning System-receiver network. Due to lack of publicized information about Kwangmyongsong-4, the rocket was assumed to inherit its technology from previous launches (Taepodong-2). The created ionospheric hole was assumed to be made by neutral molecules, water (H2O) and hydrogen (H2), deposited in exhaust plumes. The dispersion model was developed based on advection and diffusion equation, and a simple asymmetric diffusion model assumed. From the analysis, using the adjoint technique, we estimated an ionospheric hole with the largest depletion existing around 6-7 min after launch and gradually recovering within 30 min. These results are in agreement with temporal total electron content analyses of the same event from previous studies. Furthermore, Kwangmyongsong-4 second stage exhaust emissions were estimated as 1.9 × 1026 s-1 of which 40% was H2 and the rest H2O.

  12. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    International Nuclear Information System (INIS)

    Michael R. Kruzic

    2007-01-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D and D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D and D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D and D strategy is now being employed on the larger ''sister'' facility, Test Cell C

  13. A stochastic six-degree-of-freedom flight simulator for passively controlled high power rockets

    OpenAIRE

    Box, Simon; Bishop, Christopher M.; Hunt, Hugh

    2011-01-01

    This paper presents a method for simulating the flight of a passively controlled rocket in six degrees of freedom, and the descent under parachute in three degrees of freedom, Also presented is a method for modelling the uncertainty in both the rocket dynamics and the atmospheric conditions using stochastic parameters and the Monte-Carlo method. Included within this we present a method for quantifying the uncertainty in the atmospheric conditions using historical atmospheric data. The core si...

  14. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  15. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  16. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  17. Use of Soft Computing Technologies For Rocket Engine Control

    Science.gov (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  18. A new sounding rocket payload for solar plasma studies

    International Nuclear Information System (INIS)

    Bruner, M.E.; Brown, W.A.; Appert, K.L.

    1989-01-01

    A sounding rocket payload developed for studies of high-temperature plasmas associated with solar active regions and flares is described. The payload instruments will record both spectra and images in the UV, EUV, and soft X-ray regions of the spectrum. The instruments, including the Dual Range Spectrograph, the Flat Field Soft X-ray Spectrograph, the Normal Incidence Soft X-ray Imager, the UV Filtergraph, and the H-alpha Imaging system, are described. Attention is also given to the new structural system of the payload, based on a large optical table suspended within the payload cavity, which will support the optical elements in their correct positions and orientations and will maintain these alignments throughout the rocket launch environment. 8 refs

  19. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  20. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision

    Science.gov (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.

    1998-01-01

    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  1. Technology for Transient Simulation of Vibration during Combustion Process in Rocket Thruster

    Science.gov (United States)

    Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.

    2018-01-01

    The article describes the technology for simulation of transient combustion processes in the rocket thruster for determination of vibration frequency occurs during combustion. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. The way to generate the Flamelet library with CFX-RIF was described. A technique for modeling transient combustion processes in the rocket thruster was proposed based on the Flamelet library. A cyclic irregularity of the temperature field like vortex core precession was detected in the chamber. Frequency of flame precession was obtained with the proposed simulation technique.

  2. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  3. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    Science.gov (United States)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  4. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    Science.gov (United States)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  5. An Analysis of Ionospheric Thermal Ions Using a SIMION-based Forward Instrument Model: In Situ Observations of Vertical Thermal Ion Flows as Measured by the MICA Sounding Rocket

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2013-12-01

    The MICA sounding rocket launched on 19 Feb. 2012 into several discrete, localized arcs in the wake of a westward traveling surge. In situ and ground-based observations provide a measured response of the ionosphere to preflight and localized auroral drivers. In this presentation we focus on in situ measurements of the thermal ion distribution. We observe thermal ions flowing both up and down the auroral field line, with upflows concentrated in Alfvénic and downward current regions. The in situ data are compared with recent ionospheric modeling efforts (Zettergren et al., this session) which show structured patterns of ion upflow and downflow consistent with these observations. In the low-energy thermal plasma regime, instrument response to the measured thermal ion population is very sensitive to the presence of the instrument. The plasma is shifted and accelerated in the frame of the instrument due to flows, ram, and acceleration through the payload sheath. The energies associated with these processes are large compared to the thermal energy. Rigorous quantitative analysis of the instrument response is necessary to extract the plasma properties which describe the full 3D distribution function at the instrument aperture. We introduce an instrument model, developed in the commercial software package SIMION, to characterize instrument response at low energies. The instrument model provides important insight into how we would modify our instrument for future missions, including fine-tuning parameters such as the analyzer sweep curve, the geometry factor, and the aperture size. We use the results from the instrument model to develop a forward model, from which we can extract anisotropic ion temperatures, flows, and density of the thermal plasma at the aperture. Because this plasma has transited a sheath to reach the aperture, we must account for the acceleration due to the sheath. Modeling of this complex sheath is being conducted by co-author Fisher, using a PIC code

  6. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  7. Review of research and development on the microwave-plasma electrothermal rocket

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.C.; Asmussen, J.; Filpus, J.W.; Frasch, L.L.; Whitehair, S.

    1987-01-01

    The microwave-plasma electrothermal rocket (MWPETR) shows promise for spacecraft propulsion and maneuvering, without some of the drawbacks of competitive electric propulsion systems. In the MWPETR, the electric power is first converted to microwave-frequency radiation. In a specially-designed microwave cavity system, the electromagnetic energy of the radiation is transferred to the electrons in a plasma sustained in the working fluid. The resulting high-energy electrons transfer their energy to the atoms and molecules of the working fluid by collisions. The working fluid, thus heated, expands through a nozzle to generate thrust. In the MWPETR, no electrodes are in contact with the working fluid, the energy is transferred into the working fluid by nonthermal mechanisms, and the main requirement for the materials of construction is that the walls of the plasma chamber be insulating and transparent to microwave radiation at operating conditions. In this survey of work on the MWPETR, several experimental configurations are described and compared. Diagnostic methods used in the study are described and compared, including titration, spectroscopy, calorimetry, electric field measurements, gas-dynamic methods, and thrust measurements. Measured and estimated performance efficiencies are reported. Results of computer modeling of the plasma and of the gas flowing from the plasma are summarized. 32 references.

  8. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  9. Charging and the cross-field discharge during electron accelerator operation on a rocket

    International Nuclear Information System (INIS)

    Kellogg, P.J.; Monson, S.J.

    1988-01-01

    We present some limited results obtained from the flight of SCEX II, from Poker Flat, Alaska, on January 31, 1987. Some of the experiments were aimed at understanding neutralization processes around an electron beam emitting rocket. It was expected that electrons drifting in the strong electric fields around the charged rocket would acquire sufficient energy to ionize neutrals, and that the resulting ions would be hurled outward at energies up to the rocket potential. Three hemispherical retarding potential analyzers were ejected from the main payload to measure these ions. This experiment was successful, in spite of arcs which developed around the batteries for the electron guns, which degraded the emitted electron beam to unusable levels except for about 8 sec of the flight. Ions were observed at energies up to 175 eV, the limit of the analyzers. The main payload carried, in addition to the electron accelerator, two arms with conducting elements to act as Langmuir probes, and to measure floating potentials. These measurements show that fields sufficient to accelerate electrons to ionizing energies were present around the rocket. (author)

  10. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  11. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket

    Science.gov (United States)

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    The Centaur is one of the most powerful rockets in the world. As an upper-stage rocket for the Atlas and Titan boosters it has been a reliable workhorse for NASA for over forty years and has played an essential role in many of NASA's adventures into space. In this CD-ROM you will be able to explore the Centaur's history in various rooms to this virtual museum. Visit the "Movie Theater" to enjoy several video documentaries on the Centaur. Enter the "Interview Booth" to hear and read interviews with scientists and engineers closely responsible for building and operating the rocket. Go to the "Photo Gallery" to look at numerous photos of the rocket throughout its history. Wander into the "Centaur Library" to read various primary documents of the Centaur program. Finally, stop by the "Observation Deck" to watch a virtual Centaur in flight.

  12. Design Analysis of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket (VASIMR)

    Science.gov (United States)

    Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.; Cassady, Leonard D.

    2011-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company, is a unique propulsion system that can potentially change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduce propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station. The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster unit has a unique heat rejection requirement of about 27 kW over a firing time of 15 minutes. In order to control rocket core temperatures, peak operating temperatures of about 300 C are expected within the thermal control loop. Design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient based radiator design. The paper will describe radiator design options for the VASIMR thermal control system for use on ISS as well as future exploration vehicles.

  13. Unguided Rocket Employment: Why We Must Update Marine Corps Rotary Wing Attack Training

    Science.gov (United States)

    2008-03-01

    establish the link between missions assigned to a unit, the skill sets required in order to accomplish them, and the syllabus developed to train...detection ana. adjustment; to work to’Nards. ·eff;:,-;;t on target ’.vhile, adhering toalt range, reguLatiom. as 2.n Captive Pffi.,1 SOAS-2150 PedO ...least (7) 2.75" rockets in order for the IP to demonstrate correct rocket profiles to link what he saw during the simulator to the actual aircraft

  14. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  15. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  16. Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants

    Science.gov (United States)

    Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.

    1992-01-01

    Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.

  17. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  18. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    Science.gov (United States)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  19. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    Science.gov (United States)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  20. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    International Nuclear Information System (INIS)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between the two

  1. Laser-fusion rocket for interplanetary propulsion

    International Nuclear Information System (INIS)

    Hyde, R.A.

    1983-01-01

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm -1 , which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs

  2. Calculation programs as a didactic generator of the discipline “Fundamentals of rocket and space techniques”

    Directory of Open Access Journals (Sweden)

    Konstantin P. Baslyk

    2018-01-01

    Full Text Available A new method of teaching the subject “Fundamentals of rocket and space techniques” was suggested in the paper. This method is using the specialized calculation programs as a didactic tool for forming the educational material not only for practical training, but for the theoretical course too. A brief review of the educational literature on rocket and space techniques, published over the past decades was made. Organizational and methodological problems, associated with the teaching discipline are indicated: to define the educational material volume and content, the need to establish interdisciplinary connections, the search of tasks, which have numerical initial data and solution.The overview of pedagogical technologies and the requirements for modern didactic tools is made. On the basis of this analysis the principles of developing a new didactic tool are formulated. The educational technology with the educational process formation on the ahead basis is used. The knowledge is represented in a collapsed form. The combination of procedures for modeling and analysis of the knowledge is realized. The visualization of knowledge is achieved by considering of numerical illustration. The inductive synthesis and deductive analysis are used as psychological and pedagogical methods, as well as the formation of problematic situations.Three specialized calculation programs are used in the implementation of this didactic tool. The programs are: TERRA (B.Trusov – the calculation of chemical and phase equilibrium of multicomponent systems; RK1 (N.Generalov – the calculation of flight characteristics and geometrical parameters of the single-stage ballistic missile with liquid rocket engine; TRIJ1 (N.Generalov – the calculation of trajectory for leading out the payload of the single-stage ballistic missile. The study of the subject begins with the programs interfaces studying and tests performing. After that, the content of programs TERRA, RK1 and TRIJ1

  3. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    International Nuclear Information System (INIS)

    Emrich, William J. Jr.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts

  4. High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure

    Science.gov (United States)

    Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.

    2005-01-01

    Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.

  5. Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion

    Science.gov (United States)

    Angelin, Marcus; Rahm, Martin; Gabrielsson, Erik; Gumaelius, Lena

    2012-01-01

    This laboratory experiment introduces rocket science from a chemistry perspective. The focus is set on chemical propulsion, including its environmental impact and future development. By combining lecture-based teaching with practical, theoretical, and computational exercises, the students get to evaluate different propellant alternatives. To…

  6. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  7. Engineering aspect of the microwave ionosphere nonlinear interaction experiment (MINIX) with a sounding rocket

    Science.gov (United States)

    Nagatomo, Makoto; Kaya, Nobuyuki; Matsumoto, Hiroshi

    The Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) is a sounding rocket experiment to study possible effects of strong microwave fields in case it is used for energy transmission from the Solar Power Satellite (SPS) upon the Earth's atmosphere. Its secondary objective is to develop high power microwave technology for space use. Two rocket-borne magnetrons were used to emit 2.45 GHz microwave in order to make a simulated condition of power transmission from an SPS to a ground station. Sounding of the environment radiated by microwave was conducted by the diagnostic package onboard the daughter unit which was separated slowly from the mother unit. The main design drivers of this experiment were to build such high power equipments in a standard type of sounding rocket, to keep the cost within the budget and to perform a series of experiments without complete loss of the mission. The key technology for this experiment is a rocket-borne magnetron and high voltage converter. Location of position of the daughter unit relative to the mother unit was a difficult requirement for a spin-stabilized rocket. These problems were solved by application of such a low cost commercial products as a magnetron for microwave oven and a video tape recorder and camera.

  8. Summary of Low-Lift Drag and Directional Stability Data from Rocket Models of the Douglas XF4D-1 Airplane with and without External Stores and Rocket Packets at Mach Numbers from 0.8 to 1.38 TED No. NACA DE-349

    Science.gov (United States)

    Mitcham, Grady L.; Blanchard, Willard S.; Hastings, Earl C., Jr.

    1952-01-01

    At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.

  9. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets

    Science.gov (United States)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide

    2017-01-01

    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  10. Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket

    Science.gov (United States)

    Mulyana, A.; Faiz, L. A. A.

    2018-02-01

    The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.

  11. Low-Lift Drag of the Grumman F9F-9 Airplane as Obtained by a 1/7.5-Scale Rocket-Boosted Model and by Three 1/45.85-Scale Equivalent-Body Models between Mach Numbers of 0.8 and 1.3, TED No. NACA DE 391

    Science.gov (United States)

    Stevens, Joseph E.

    1955-01-01

    Low-lift drag data are presented herein for one 1/7.5-scale rocket-boosted model and three 1/45.85-scale equivalent-body models of the Grumman F9F-9 airplane, The data were obtained over a Reynolds number range of about 5 x 10(exp 6) to 10 x 10(exp 6) based on wing mean aerodynamic chord for the rocket model and total body length for the equivalent-body models. The rocket-boosted model showed a drag rise of about 0,037 (based on included wing area) between the subsonic level and the peak supersonic drag coefficient at the maximum Mach number of this test. The base drag coefficient measured on this model varied from a value of -0,0015 in the subsonic range to a maximum of about 0.0020 at a Mach number of 1.28, Drag coefficients for the equivalent-body models varied from about 0.125 (based on body maximum area) in the subsonic range to about 0.300 at a Mach number of 1.25. Increasing the total fineness ratio by a small amount raised the drag-rise Mach number slightly.

  12. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU

    2010-12-01

    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  13. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  14. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  15. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  16. Preliminary results of rocket attitude and auroral green line emission rate in the DELTA campaign

    Science.gov (United States)

    Iwagami, Naomoto; Komada, Sayaka; Takahashi, Takao

    2006-09-01

    The attitude of a sounding rocket launched in the DELTA (Dynamics and Energetics of the Lower Thermosphere in Aurora) campaign was determined with IR horizon sensors and geomagnetic sensors. Since the payload was separated into two portions, two sets of attitude sensors were needed. A new IR sensor was developed for the present experiment, and found the zenith-angle of the spin-axis of the rocket with an accuracy of 2°. By combining information obtained by both type of sensors, the absolute attitudes were determined. The auroral green line emission rate was measured by a photometer on board the same rocket launched under active auroral conditions, and the energy flux of the auroral particle precipitation was estimated.

  17. Optimization of the rocket mode trajectory in a rocket based combined cycle (RBCC) engine powered SSTO vehicle

    Science.gov (United States)

    Foster, Richard W.

    1989-07-01

    The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.

  18. Software for Collaborative Engineering of Launch Rockets

    Science.gov (United States)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  19. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    Science.gov (United States)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  20. EISCAT observation on plasma drifts connected with the Aureld-VIP rocket and the Viking satellite

    International Nuclear Information System (INIS)

    Pellinen-Wannberg, A.; Sandahl, I.; Wannberg, G.; Opgenoorth, H.; Soeraas, F.; Murphree, J.S.

    1990-01-01

    Coordinated simultaneous measurements with the EISCAT incoherent scatter radar, Aureld-VIP sounding rocket, and Viking satellite are described. Background measurements from EISCAT provide us with the development of global plasma convection during the rocket night. The observed convection pattern is very distorted, with the eveningside reversal occurring at unusually low latitudes. On the morningside it withdraws back poleward from the measurement area. Viking particle measurements over the oval indicate a very complicated auroral topology with two sectors of boundary plasma sheet (BPS) and central plasma sheet (CPS) particles. The situation is interpreted as an intrusion of the evening side BPS into the morningside, which is also consistent with the convection pattern measured by EISCAT. Local measurements with the sounding rocket and radar indicate that the rocket flew in the northern part of the evening BPS area, approaching the inner transition region from BPS to CPS in its northward motion, thus confirming the existence of such a boundary

  1. Analytical Description of Ascending Motion of Rockets in the Atmosphere

    Science.gov (United States)

    Rodrigues, H.; de Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In continuation of a previous work, we present an analytic study of ascending vertical motion of a rocket subjected to a quadratic drag for the case where the mass-variation law is a linear function of time. We discuss the detailed analytical solution of the model differential equations in closed form. Examples of application are presented and…

  2. Paraffin-based hybrid rocket engines applications: A review and a market perspective

    Science.gov (United States)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano

    2016-09-01

    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development

  3. Rocket-Powered Parachutes Rescue Entire Planes

    Science.gov (United States)

    2010-01-01

    Small Business Innovation Research (SBIR) contracts with Langley Research Center helped BRS Aerospace, of Saint Paul, Minnesota, to develop technology that has saved 246 lives to date. The company s whole aircraft parachute systems deploy in less than 1 second thanks to solid rocket motors and are capable of arresting the descent of a small aircraft, lowering it safely to the ground. BRS has sold more than 30,000 systems worldwide, and the technology is now standard equipment on many of the world s top-selling aircraft. Parachutes for larger airplanes are in the works.

  4. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed

  5. Internal Flow Analysis of Large L/D Solid Rocket Motors

    Science.gov (United States)

    Laubacher, Brian A.

    2000-01-01

    Traditionally, Solid Rocket Motor (SRM) internal ballistic performance has been analyzed and predicted with either zero-dimensional (volume filling) codes or one-dimensional ballistics codes. One dimensional simulation of SRM performance is only necessary for ignition modeling, or for motors that have large length to port diameter ratios which exhibit an axial "pressure drop" during the early burn times. This type of prediction works quite well for many types of motors, however, when motor aspect ratios get large, and port to throat ratios get closer to one, two dimensional effects can become significant. The initial propellant grain configuration for the Space Shuttle Reusable Solid Rocket Motor (RSRM) was analyzed with 2-D, steady, axi-symmetric computational fluid dynamics (CFD). The results of the CFD analysis show that the steady-state performance prediction at the initial burn geometry, in general, agrees well with 1-D transient prediction results at an early time, however, significant features of the 2-D flow are captured with the CFD results that would otherwise go unnoticed. Capturing these subtle differences gives a greater confidence to modeling accuracy, and additional insight with which to model secondary internal flow effects like erosive burning. Detailed analysis of the 2-D flowfield has led to the discovery of its hidden 1-D isentropic behavior, and provided the means for a thorough and simplified understanding of internal solid rocket motor flow. Performance parameters such as nozzle stagnation pressure, static pressure drop, characteristic velocity, thrust and specific impulse are discussed in detail and compared for different modeling and prediction methods. The predicted performance using both the 1-D codes and the CFD results are compared with measured data obtained from static tests of the RSRM. The differences and limitations of predictions using ID and 2-D flow fields are discussed and some suggestions for the design of large L/D motors and

  6. Hypothetical Dark Matter/axion Rockets:. Dark Matter in Terms of Space Physics Propulsion

    Science.gov (United States)

    Beckwith, A.

    2010-12-01

    Current proposed photon rocket designs include the Nuclear Photonic Rocket and the Antimatter Photonic Rocket (proposed by Eugen Sanger in the 1950s, as reported by Ref. 1). This paper examines the feasibility of improving the thrust of photon-driven ramjet propulsion by using DM rocket propulsion. The open question is: would a heavy WIMP, if converted to photons, upgrade the power (thrust) of a photon rocket drive, to make interstellar travel a feasible proposition?

  7. Extension of a simplified computer program for analysis of solid-propellant rocket motors

    Science.gov (United States)

    Sforzini, R. H.

    1973-01-01

    A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.

  8. Gas core nuclear thermal rocket engine research and development in the former USSR

    International Nuclear Information System (INIS)

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept

  9. E region neutral winds in the postmidnight diffuse aurora during the atmospheric response in aurora 1 rocket campaign

    International Nuclear Information System (INIS)

    Brinkman, D.G.; Walterscheid, R.L.; Lyons, L.R.

    1995-01-01

    Measured E region neutral winds from the Atmospheric Response in Aurora (ARIA 1) rocket campaign are compared with winds predicted by a high-resolution nonhydrostatic dynamical thermosphere model. The ARIA 1 rockets were launched into the postmidnight diffuse aurora during the recovery phase of a substorm. Simulations have shown that electrodynamical coupling between the auroral ionosphere and the thermosphere was expected to be strong during active diffuse auroral conditions. This is the first time that simulations using the time history of detailed specifications of the magnitude and latitudinal variation of the auroral forcing based on measurements have been compared to simultaneous wind measurements. Model inputs included electron densities derived from ground-based airglow measurements, precipitating electron fluxes measured by the rocket, electron densities measured on the rocket, electric fields derived from magnetometer and satellite ion drift measurements, and large-scale background winds from a thermospheric general circulation model. Our model predicted a strong jet of eastward winds at E region heights. A comparison between model predicted and observed winds showed modest agreement. Above 135 km the model predicted zonal winds with the correct sense, the correct profile shape, and the correct altitude of the peak wind. However, it overpredicted the magnitude of the eastward winds by more than a factor or 2. For the meridional winds the model predicted the general sense of the winds but was unable to predict the structure or strength of the winds seen in the observations. Uncertainties in the magnitude and latitudinal structure of the electric field and in the magnitude of the background winds are the most likely sources of error contributing to the differences between model and observed winds. Between 110 and 135 km the agreement between the model and observations was poor because of a large unmodeled jetlike feature in the observed winds

  10. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)

    1995-10-01

    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  11. Cooperative Threat Reduction: Solid Rocket Motor Disposition Facility Project (D-2003-131)

    National Research Council Canada - National Science Library

    2003-01-01

    .... DoD contracted with Lockheed Martin Advanced Environmental Systems for $52.4 million to design, develop, fabricate, and test a closed burn, solid rocket motor disposition facility for the Russian Federation in April 1997...

  12. Trade-off analysis of high-aspect-ratio-cooling-channels for rocket engines

    International Nuclear Information System (INIS)

    Pizzarelli, Marco; Nasuti, Francesco; Onofri, Marcello

    2013-01-01

    Highlights: • Aspect ratio has a significant effect on cooling efficiency and hydraulic losses. • Minimizing power loss is of paramount importance in liquid rocket engine cooling. • A suitable quasi-2D model is used to get fast cooling system analysis. • Trade-off with assigned weight, temperature, and channel height or wall thickness. • Aspect ratio is found that minimizes power loss in the cooling circuit. -- Abstract: High performance liquid rocket engines are often characterized by rectangular cooling channels with high aspect ratio (channel height-to-width ratio) because of their proven superior cooling efficiency with respect to a conventional design. However, the identification of the optimum aspect ratio is not a trivial task. In the present study a trade-off analysis is performed on a cooling channel system that can be of interest for rocket engines. This analysis requires multiple cooling channel flow calculations and thus cannot be efficiently performed by CFD solvers. Therefore, a proper numerical approach, referred to as quasi-2D model, is used to have fast and accurate predictions of cooling system properties. This approach relies on its capability of describing the thermal stratification that occurs in the coolant and in the wall structure, as well as the coolant warming and pressure drop along the channel length. Validation of the model is carried out by comparison with solutions obtained with a validated CFD solver. Results of the analysis show the existence of an optimum channel aspect ratio that minimizes the requested pump power needed to overcome losses in the cooling circuit

  13. The Norwegian sounding rocket programme 1980-83

    International Nuclear Information System (INIS)

    Egeland, A.; Gundersen, A.

    1980-01-01

    As illustrated by the rocket program presented and discussed in this paper, exploration of the polar ionosphere still plays a central part in the Norwegian research program in science. A cornerstone in the Norwegian space program is the Andoeya Rocket Range. It will be shown that advanced radio installations in northern Scandinavia together with the new optical site at Svalbard will stimulate towards further in situ measurements and theoretical work of the polar ionosphere. (Auth.)

  14. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  15. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  16. Rocket Science: The Shuttle's Main Engines, though Old, Are not Forgotten in the New Exploration Initiative

    Science.gov (United States)

    Covault, Craig

    2005-01-01

    The Space Shuttle Main Engine (SSME), developed 30 years ago, remains a strong candidate for use in the new Exploration Initiative as part of a shuttle-derived heavy-lift expendable booster. This is because the Boeing-Rocket- dyne man-rated SSME remains the most highly efficient liquid rocket engine ever developed. There are only enough parts for 12-15 existing SSMEs, however, so one NASA option is to reinitiate SSME production to use it as a throw-away, as opposed to a reusable, powerplant for NASA s new heavy-lift booster.

  17. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    not accustomed to Chinese food, he ran off directly to the home of the Mayor of Beijing and requested two Western cuisine cooks from a hotel. At the...played out by our Chinese sons and daughters of ancient times. The famous Han dynasty general Li Guang was quickly cured of disease and led an army...Union) of China. This place was about to become the birthplace of the Chinese people’s first rocket baby. Section One In this eternal wasteland called

  18. Improving of Hybrid Rocket Engine on the Basis of Optimizing Design Fuel Grain

    Science.gov (United States)

    Oriekov, K. M.; Ushkin, M. P.

    2015-09-01

    This article examines the processes intrachamber in hybrid rocket engine (HRE) and the comparative assessment of the use of solid rocket motors (SRM) and HRE for meteorological rockets with a mass of payload of the 364 kg. Results of the research showed the possibility of a significant increase in the ballistic effectiveness of meteorological rocket.

  19. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    Science.gov (United States)

    Elliott, T. S.; Majdalani, J.

    2014-11-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.

  20. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    International Nuclear Information System (INIS)

    Elliott, T S; Majdalani, J

    2014-01-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion

  1. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  2. Using Virtual Reality in K-12 Education: A Simulation of Shooting Bottle Rockets for Distance

    Directory of Open Access Journals (Sweden)

    Charles Nippert

    2012-10-01

    Full Text Available Typically, it is often more challenging to shoot bottle rockets for distance instead of shooting them straight up and measuring altitude, as is often done.Using a device made from pipe and wood to launch bottle rockets and control the launch angle creates a much more interesting problem for students who are attempting to optimize launch conditions.Plans are presented for a launcher that allow students to adjust the launch angle. To help embellish the exercise, we supplement the bottle rocket with a model using virtual reality and a photorealistic simulation of the launch that allows the students to appreciate the optimization problems associated with water and air pressure and launch angle. Our usage data indicates that students easily adapt to the virtual reality simulation and use our simulation for intuitive experiments on their own to optimize launch conditions.

  3. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  4. Nuclear Thermal Rocket (NTR) Development Risk Communication

    Science.gov (United States)

    Kim, Tony

    2014-01-01

    There are clear advantages of development of a Nuclear Thermal Rocket (NTR) for a crewed mission to Mars. NTR for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse (approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration. However, "NUCLEAR" is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. Communication of nuclear safety will be critical to the success of the development of the NTR. Why is there a fear of nuclear? A bomb that can level a city is a scary weapon. The first and only times the Nuclear Bomb was used in a war was on Hiroshima and Nagasaki during World War 2. The "Little Boy" atomic bomb was dropped on Hiroshima on August 6, 1945 and the "Fat Man" on Nagasaki 3 days later on August 9th. Within the first 4 months of bombings, 90- 166 thousand people died in Hiroshima and 60-80 thousand died in Nagasaki. It is important to note for comparison that over 500 thousand people died and 5 million made homeless due to strategic bombing (approximately 150 thousand tons) of Japanese cities and war assets with conventional non-nuclear weapons between 1942- 1945. A major bombing campaign of "firebombing" of Tokyo called "Operation Meetinghouse" on March 9 and 10 consisting of 334 B-29's dropped approximately1,700 tons of bombs around 16 square mile area and over 100 thousand people have been estimated to have died. The declaration of death is very

  5. Study of solid rocket motor for space shuttle booster, volume 2, book 1

    Science.gov (United States)

    1972-01-01

    The technical requirements for the solid propellant rocket engine to be used with the space shuttle orbiter are presented. The subjects discussed are: (1) propulsion system definition, (2) solid rocket engine stage design, (3) solid rocket engine stage recovery, (4) environmental effects, (5) manrating of the solid rocket engine stage, (6) system safety analysis, and (7) ground support equipment.

  6. Vibration Disturbance Damping System Design to Protect Payload of the Rocket

    Directory of Open Access Journals (Sweden)

    Sutisno Sutisno

    2012-12-01

    Full Text Available Rocket motor generates vibrations acting on whole rocket body including its contents. Part of the body which is sensitive to disturbance is the rocket payload. The payload consists of various electronic instruments including: transmitter, various sensors, accelerometer, gyro, the embedded controller system, and others. This paper presents research on rocket vibration influence to the payload and the method to avoid disturbance. Avoiding influence of vibration disturbance can be done using silicone gel material whose typical damping factors are relatively high. The rocket vibration was simulated using electromagnetic motor, and the vibrations were measured using an accelerometer sensor. The measurement results were displayed in the form of curve, indicating the vibration level on some parts of the tested material. Some measurement results can be applied to determine the good material to attenuate vibration disturbance on the instruments of the payload.

  7. Study of Liquid Breakup Process in Solid Rocket Motor Nozzle

    Science.gov (United States)

    2016-02-16

    Laboratory, Edwards, CA Abstract In a solid rocket motor (SRM), when the aluminum based propellant combusts, the fuel is oxidized into alumina (Al2O3...34Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid - Propellant Rocket Motors," J. Propulsion and Power, Vol. 25, no.1,, 2009. [4] E. Y. Wong...34 Solid Rocket Nozzle Design Summary," in 4th AIAA Propulsion Joint Specialist Conference, Cleveland, OH, 1968. [5] Nayfeh, A. H.; Saric, W. S

  8. Parametric Study of Design Options aecting Solid Rocket Motor Start-up and Onset of Pressure Oscillations

    OpenAIRE

    Di Giacinto, M.; Cavallini, E.; Favini, B.; Steelant, Johan

    2014-01-01

    The start-up represents a very critical phase during the whole operational life of solid rocket motors. This paper provides a detailed study of the eects on the ignition transient of the main design parameters of solid propellant motors. The analysis is made with the use of a Q1D unsteady model of solid rocket ignition transient, extensively validated in the frame of the VEGA program, for ignition transient predictions and reconstructions, during the last ten years. Two baseline soli...

  9. Rocket observation of electron density irregularities in the lower E region

    International Nuclear Information System (INIS)

    Watanabe, Yuzo; Nakamura, Yoshiharu; Amemiya, Hiroshi.

    1990-01-01

    Local ionospheric electron density irregularities in the scale size of 3 m to 300 m have been measured on the ascending path from 74 km to 93 km by a fix biased Langmuir probe on board the S-310-16 sounding rocket. The rocket was launched at 22:40:00 on February 1, 1986 from Kagoshima Space Center in Japan. It is found from frequency analysis of the data that the spectral index of the irregularities is 0.9 to 1.8 and the irregularity amplitude is 1 to 15 %. The altitude where the amplitude reaches its maximum is 88 km. The generation mechanism of these irregularities is explained by the neutral turbulence theory, which indicates that the spectral index is 5/3 and has been confirmed by a chemical release experiment using rockets over India to be valid up to about 110 km. From frequency analysis of the data observed during the descent in the lower E region, we have found that the rocket-wake effect becomes larger when the probe is situated near the edge of the rocket-wake, and that this is also the case even when the rocket-wake effect does not clearly appear in the DC current signal which approximately changes in proportion to the electron density, where the probe is completely situated inside the rocket-wake region. (author)

  10. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    Science.gov (United States)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  11. Prospective application of laser plasma propulsion in rocket technology

    International Nuclear Information System (INIS)

    Lu Xin; Zhang Jie; Li Yingjun

    2002-01-01

    Interest in laser plasma propulsion is growing intensively. The interaction of high intensity short laser pulses with materials can produce plasma expansion with a velocity of hundreds of km/s. The specific impulse of ablative laser propulsion can be many tens of times greater than that of chemical rockets. The development and potential application of laser plasma propulsion are discussed

  12. INVESTIGATION OF MARKETING TECHNOLOGIES IN THE INNOVATION PROCESS OF ROCKET AND SPACE INDUSTRY

    Directory of Open Access Journals (Sweden)

    K. B. Dobrova

    2016-01-01

    Full Text Available In this article we have studied the use of marketing technologies in the innovation process of enterprises of rocket and space industry. The present study specifies the relevance of chosen research topic, as well as the essence of marketing innovations at the enterprises of rocket and space industry, the structuring of marketing and management processes in the innovation process. There are provided the most common analytical instruments in the marketing and there is marked the importance of use of a global strategy for the enterprises of rocket and space industry. The article also specifies a clear example of application of marketing technologies in the innovation process of the Federal State Unitary Enterprise "State Space Research and Production Center named after Khrunichev M.V'.'. At the beginning the role and place of innovation management and innovation process in the strategic management of the FSUE "SSRPC named after Khrunichev M.V." are shown. Then there are described the basic marketing methods of program-oriented management of the innovation process in the FSUE "SSRPC named after Khrunichev M.V"" and there is highlighted the innovation marketing strategy of the FSUE "SSRPC named after Khrunichev M.V.". There are presented the distinctive features of the competitive strategy of the company of the rocket and space industry and the features of formation (development of the innovative enterprise development strategy based on marketing innovation in the FSUE "SSRPC named after Khrunichev M.V.". The conclusion includes the main findings of the study conducted.

  13. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  14. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    Science.gov (United States)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  15. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    Science.gov (United States)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  16. Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis

    Science.gov (United States)

    Amendt, Peter; Shestakov, A. I.; Landen, O. L.; Bradley, D. K.; Pollaine, S. M.; Suter, L. J.; Turner, R. E.

    2001-06-01

    Several techniques for inferring the degree of flux symmetry in indirectly driven cylindrical hohlraums have been developed over the past several years for eventual application to the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. These methods use various ignition capsule surrogates, including non-cryogenic imploded capsules [Hauer et al., Phys. Plasmas 2, 2488 (1995)], backlit aerogel foamballs [Amendt et al., Rev. Sci. Instrum. 66, 785 (1995)], reemission balls [Delamater, Magelssen, and Hauer, Phys. Rev. E 53, 5240 (1996)], and backlit thinshells [Pollaine et al., Phys. Plasmas 8, 2357 (2001)]. Recent attention has focussed on the backlit thinshells as a promising means for detecting higher-order Legendre flux asymmetries, e.g., P6 and P8, which are predicted to be important sources of target performance degradation on the NIF for levels greater than 1% [Haan et al., Phys. Plasmas 2, 2490 (1995)]. A key property of backlit thinshells is the strong amplification of modal flux asymmetry imprinting with shell convergence. A simple single-parameter analytic description based on a rocket model is presented which explores the degree of linearity of the shell response to an imposed flux asymmetry. Convergence and mass ablation effects introduce a modest level of nonlinearity in the shell response. The effect of target fabrication irregularities on shell distortion is assessed with the rocket model and particular sensitivity to shell thickness variations is shown. The model can be used to relate an observed or simulated backlit implosion trajectory to an ablation pressure asymmetry history. Ascertaining this history is an important element for readily establishing the degree of surrogacy of a symmetry target for a NIF ignition capsule.

  17. Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis

    International Nuclear Information System (INIS)

    Amendt, Peter; Shestakov, A.I.; Landen, O.L.; Bradley, D.K.; Pollaine, S.M.; Suter, L.J.; Turner, R.E.

    2001-01-01

    Several techniques for inferring the degree of flux symmetry in indirectly driven cylindrical hohlraums have been developed over the past several years for eventual application to the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. These methods use various ignition capsule surrogates, including non-cryogenic imploded capsules [Hauer et al., Phys. Plasmas 2, 2488 (1995)], backlit aerogel foamballs [Amendt et al., Rev. Sci. Instrum. 66, 785 (1995)], reemission balls [Delamater, Magelssen, and Hauer, Phys. Rev. E 53, 5240 (1996)], and backlit thinshells [Pollaine et al., Phys. Plasmas 8, 2357 (2001)]. Recent attention has focussed on the backlit thinshells as a promising means for detecting higher-order Legendre flux asymmetries, e.g., P6 and P8, which are predicted to be important sources of target performance degradation on the NIF for levels greater than 1% [Haan et al., Phys. Plasmas 2, 2490 (1995)]. A key property of backlit thinshells is the strong amplification of modal flux asymmetry imprinting with shell convergence. A simple single-parameter analytic description based on a rocket model is presented which explores the degree of linearity of the shell response to an imposed flux asymmetry. Convergence and mass ablation effects introduce a modest level of nonlinearity in the shell response. The effect of target fabrication irregularities on shell distortion is assessed with the rocket model and particular sensitivity to shell thickness variations is shown. The model can be used to relate an observed or simulated backlit implosion trajectory to an ablation pressure asymmetry history. Ascertaining this history is an important element for readily establishing the degree of surrogacy of a symmetry target for a NIF ignition capsule

  18. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  19. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph

    2000-01-01

    The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.

  20. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.

    Science.gov (United States)

    Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J

    2016-08-01

    Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intense auroral field-aligned currents and electrojets detected by rocket-borne fluxgate magnetometer

    International Nuclear Information System (INIS)

    Tohyama, Fumio; Fukunishi, Hiroshi; Takahashi, Takao; Kokubun, Susumu; Fujii, Ryoichi; Yamagishi, Hisao.

    1988-01-01

    The S-310JA-11 and S-310JA-12 rockets, having a vector magnetometer with high sensitivity (1.8 nT) and high sampling frequency (100 Hz), were launched into the aurora on May 29 and July 12, 1985, from Syowa Station, Antarctica. The S-310JA-11 rocket penetrated twice quiet arcs, while the S-310JA-12 rocket traversed across intense and active auroral arcs during a large magnetic substorm. In the S-310JA-12 rocket experiment, intense field-aligned currents of 400 - 600 nT were observed when the rocket penetrated an active arc during the descending flight. The magnetometer on board the S-310JA-12 rocket also detected intense electrojet currents with a center at 110 km on the upward leg and at 108 km on the downward leg. The magnetometer data of the S-310JA-11 rocket showed no distinguished magnetic field variation due to field-aligned current and electrojet. (author)

  2. Propulsion and launching analysis of variable-mass rockets by analytical methods

    Directory of Open Access Journals (Sweden)

    D.D. Ganji

    2013-09-01

    Full Text Available In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM, homotopy perturbation method (HPM and least square method (LSM were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a parametric study is performed here which includes the effect of exhaust velocity (Ce, burn rate (BR of fuel and diameter of cylindrical rocket (d on the motion of a sample rocket, and contours for showing the sensitivity of these parameters are plotted. The main results indicate that the rocket velocity and altitude are increased with increasing the Ce and BR and decreased with increasing the rocket diameter and drag coefficient.

  3. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration

    Science.gov (United States)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue

    2017-03-01

    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for

  4. MEMS-Based Solid Propellant Rocket Array Thruster

    Science.gov (United States)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  5. A Plasma Diagnostic Set for the Study of a Variable Specific Impulse Magnetoplasma Rocket

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Bengtson Bussell, R., Jr.; Jacobson, V. T.; Wootton, A. J.; Bering, E. A.; Jack, T.; Rabeau, A.

    1997-11-01

    The Advanced Space Propulsion Laboratory (ASPL) is developing a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) using an RF heated magnetic mirror operated asymmetrically. We will describe the initial set of plasma diagnostics and data acquisition system being developed and installed on the VASIMR experiment. A U.T. Austin team is installing two fast reciprocating probes: a quadruple Langmuir and a Mach probe. These measure electron density and temperature profiles, electrostatic plasma fluctuations, and plasma flow profiles. The University of Houston is developing an array of 20 highly directional Retarding Potential Analyzers (RPA) for measuring ion energy distribution function profiles in the rocket plume, giving a measurement of total thrust. We have also developed a CAMAC based data acquisition system using LabView running on a Power Macintosh communicating through a 2 MB/s serial highway. We will present data from initial plasma operations and discuss future diagnostic development.

  6. Design and Fabrication of a 200N Thrust Rocket Motor Based on NH4ClO4+Al+HTPB as Solid Propellant

    Science.gov (United States)

    Wahid, Mastura Ab; Ali, Wan Khairuddin Wan

    2010-06-01

    The development of rocket motor using potassium nitrate, carbon and sulphur mixture has successfully been developed by researchers and students from UTM and recently a new combination for solid propellant is being created. The new solid propellant will combine a composition of Ammonium perchlorate, NH4ClO4 with aluminium, Al and Hydroxyl Terminated Polybutadiene, HTPB as the binder. It is the aim of this research to design and fabricate a new rocket motor that will produce a thrust of 200N by using this new solid propellant. A static test is done to obtain the thrust produced by the rocket motor and analyses by observation and also calculation will be done. The experiment for the rocket motor is successful but the thrust did not achieve its required thrust.

  7. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    Science.gov (United States)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  8. NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station

    Science.gov (United States)

    Arrighi, Robert S.

    2016-01-01

    "There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best

  9. Influence of atomization quality modulation on flame dynamics in a hypergolic rocket engine

    Directory of Open Access Journals (Sweden)

    Moritz Schulze

    2016-09-01

    Full Text Available For the numerical evaluation of the thermoacoustic stability of rocket engines often hybrid methods are applied, which separate the computation of wave propagation in the combustor from the analysis of the flame response to acoustic perturbations. Closure requires a thermoacoustic feedback model which provides the heat release fluctuation in the source term of the employed wave transport equations. The influence of the acoustic fluctuations in the combustion chamber on the heat release fluctuations from the modulation of the atomization of the propellants in a hypergolic upper stage rocket engine is studied. Numerical modeling of a single injector provides the time mean reacting flow field. A network of transfer functions representing all aspects relevant for the feedback model is presented. Analytical models for the injector admittances and for the atomization transfer functions are provided. The dynamics of evaporation and combustion are studied numerically and the numerical results are analyzed. An analytical approximation of the computed flame transfer function is combined with the analytical models for the injector and the atomization quality to derive the feedback model for the wave propagation code. The evaluation of this model on the basis of the Rayleigh index reveals the thermoacoustic driving potential originating from the fluctuating spray quality.

  10. Molecular beam sampling from a rocket-motor combustion chamber

    International Nuclear Information System (INIS)

    Houseman, John; Young, W.S.

    1974-01-01

    A molecular-beam mass-spectrometer sampling apparatus has been developed to study the reactive species concentrations as a function of position in a rocket-motor combustion chamber. Unique design features of the sampling system include (a) the use of a multiple-nozzle end plate for preserving the nonuniform properties of the flow field inside the combustion chamber, (b) the use of a water-injection heat shield, and (c) the use of a 300 CFM mechanical pump for the first vacuum stage (eliminating the use of a huge conventional oil booster pump). Preliminary rocket-motor tests have been performed using the highly reactive propellants nitrogen tetroxide/hydrazine (N 2 O 4 /N 2 H 4 ) at an oxidizer/fuel ratio of 1.2 by weight. The combustion-chamber pressure is approximately 60psig. Qualitative results on unreacted oxidizer/fuel ratio, relative abundance of oxidizer and fuel fragments, and HN 3 distribution across the chamber are presented

  11. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  12. A two-channel wave analyser for sounding rockets and satellites

    International Nuclear Information System (INIS)

    Brondz, E.

    1989-04-01

    Studies of low frequency electromagnetic waves, produced originally by lightning discharges penetrating the ionosphere, provide an important source of valuable information about the earth's surrounding plasma. Use of rockets and satellites supported by ground-based observations implies, unique opportunity for measuring in situ a number of parameters simultaneously in order to correlate data from various measurements. However, every rocket experiment has to be designed bearing in mind telemetry limitations and/or short flight duration. Typical flight duration for Norwegian rockets launched from Andoeya Rocket Range is 500 to 600 s. Therefore, the most desired way to use a rocket or satellite is to carry out data analyses on board in real time. Recent achievements in Digital Signal Processing (DSP) technology have made it possible to undertake very complex on board data manipulation. As a part of rocket instrumentation, a DSP based unit able to carry out on board analyses of low frequency electromagnetic waves in the ionosphere has been designed. The unit can be seen as a general purpose computer built on the basis of a fixed-point 16 bit signal processor. The unit is supplied with a program code in order to perform wave analyses on two independent channels simultaneously. The analyser is able to perform 256 point complex fast fourier transformations, and it produce a spectral power desity estimate on both channels every 85 ms. The design and construction of the DSP based unit is described and results from the tests are presented

  13. Model of analyzing and forecasting the dynamics of industrial production and space sector of the Russian Federation

    Directory of Open Access Journals (Sweden)

    Dmitriy Yu. Ivanov

    2016-01-01

    Full Text Available Objective to carry out a comparative analysis of the dynamics of industrial production and the rocket and space industry of Russia. Methods an asynchronous method of harmonic analysis comparative method. Results the forecasts of the development of rocket and space industry for 2015 and 2016 are obtained which are compared with the data of the Ministry of Economic Development and the World Bank of Development. The comparison of the results showed that the analysis and forecast data of the Ministry of Economic Development and the World Bank of Development coincide only partially. The tendency to increase the volumes in rocket and space industry is shown. Scientific novelty the mathematical models are presented for the dynamics of industrial production and the rocket and space industry of the Russian Federation built on the basis of the asynchronous harmonic analysis. The retrospective of the rocketspace complex development is considered. Practical significance using the proposed mathematical models of the dynamics of industrial production and the rocket and space industry of the Russian Federation based on the economy cycles the more accurate forecasts of economic development can be made. nbsp

  14. Experimental Performance Evaluation of a Supersonic Turbine for Rocket Engine Applications

    Science.gov (United States)

    Snellgrove, Lauren M.; Griffin, Lisa W.; Sieja, James P.; Huber, Frank W.

    2003-01-01

    In order to mitigate the risk of rocket propulsion development, efficient, accurate, detailed fluid dynamics analysis and testing of the turbomachinery is necessary. To support this requirement, a task was developed at NASA Marshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. These tools were applied to optimize a supersonic turbine design suitable for a reusable launch vehicle (RLV). The hot gas path and blading were redesigned-to obtain an increased efficiency. The goal of the demonstration was to increase the total-to- static efficiency of the turbine by eight points over the baseline design. A sub-scale, cold flow test article modeling the final optimized turbine was designed, manufactured, and tested in air at MSFC s Turbine Airflow Facility. Extensive on- and off- design point performance data, steady-state data, and unsteady blade loading data were collected during testing.

  15. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  16. Design and Evaluation of a Turbojet Exhaust Simulator, Utilizing a Solid-Propellant Rocket Motor, for use in Free-Flight Aerodynamic Research Models

    Science.gov (United States)

    deMoraes, Carlos A.; Hagginbothom, William K., Jr.; Falanga, Ralph A.

    1954-01-01

    A method has been developed for modifying a rocket motor so that its exhaust characteristics simulate those of a turbojet engine. The analysis necessary to the design is presented along with tests from which the designs are evaluated. Simulation was found to be best if the exhaust characteristics to be duplicated were those of a turbojet engine at high altitudes and with the afterburner operative.

  17. High speed diagnostics for characterization of oxygen / hydrogen rocket injector flowfields

    Science.gov (United States)

    Locke, Justin M.

    location. The time-averaged results are consistent with previous spatially-resolved Raman spectroscopy measurements made in a similar rocket combustor under similar flow conditions. The primary atomization and combustion characteristics of a liquid oxygen (LOX) / gaseous hydrogen (GH2) shear coaxial injector element were also experimentally investigated. High speed movies using a shadowgraph imaging technique to visualize the LOX core were recorded for both hot-fire (LOX/GH 2) and cold-flow (LOX/gaseous oxygen (GO2)) conditions with the same injector and chamber. Flow conditions were set to approximate realistic rocket conditions. For the hot-fire tests (LOX/GH2), chamber pressures were 600, 730, and 920 psia, with momentum flux ratios (annulus flow/post flow) of 2.7, 2.0 and 1.6 respectively. The rocket assembly utilized a preburner to provide a background flow (M≈0.1) of hot gaseous nitrogen (GN2 )/GH2/water (H2O) gas with 25% volumetric concentration of hydrogen. For the cold-flow tests (LOX/GO2 with GO2 background flow), chamber pressures were 650 and 830 psia, thus above and below the critical pressure of oxygen (731.6 psia), with momentum flux ratios (annulus flow/post flow) of 2.2 and 1.8 respectively. The high speed visualizations under hot-fire conditions show a long sinuous LOX core region that breaks into large dense-oxygen structures, which are then quickly consumed. These results do not agree with the classical phenomenological breakup model that suggests a liquid core that is rapidly sheared into a drop cloud. Rather, a large-scale fragmentation model may be better suited to describe the primary atomization behavior in combusting flow from a LOX/GH2 shear coaxial injector element at realistic rocket conditions. Unlike the hot-fire case, cold-flow LOX visualization movies show a clear difference between the two chamber pressures, with the higher pressure (supercritical) case resembling behavior indicative of gaseous mixing compared to the typically two phase

  18. Project Stratos; reaching space with a student-built rocket

    NARCIS (Netherlands)

    Haneveer, M.

    2013-01-01

    In the spring of 2009 a team of 15 TU Delft students travelled to Kiruna, Sweden with only one goal: to launch the rocket Stratos I they had been working on for 2 years to an altitude of over 12km, thereby claiming the European Amateur Rocket Altitude record. These students were part of Delft

  19. In-flight calibration of mesospheric rocket plasma probes

    International Nuclear Information System (INIS)

    Havnes, Ove; Hartquist, Thomas W.; Kassa, Meseret; Morfill, Gregor E.

    2011-01-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  20. In-flight calibration of mesospheric rocket plasma probes

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, Ove [Institute for Physics and Technology, University of Tromsoe, N-9037 Tromsoe (Norway); University Studies Svalbard (UNIS), N-9170 Longyearbyen, Svalbard (Norway); Hartquist, Thomas W. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Kassa, Meseret [Institute for Physics and Technology, University of Tromsoe, N-9037 Tromsoe (Norway); Morfill, Gregor E. [Max-Planck-Institute fuer extraterrestrische Physik, D-85741Garching (Germany)

    2011-07-15

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  1. In-flight calibration of mesospheric rocket plasma probes.

    Science.gov (United States)

    Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E

    2011-07-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  2. Pocket rocket: An electrothermal plasma micro-thruster

    Science.gov (United States)

    Greig, Amelia Diane

    Recently, an increase in use of micro-satellites constructed from commercial off the shelf (COTS) components has developed, to address the large costs associated with designing, testing and launching satellites. One particular type of micro-satellite of interest are CubeSats, which are modular 10 cm cubic satellites with total weight less than 1.33 kg. To assist with orbit boosting and attitude control of CubeSats, micro-propulsion systems are required, but are currently limited. A potential electrothermal plasma micro-thruster for use with CubeSats or other micro-satellites is under development at The Australian National University and forms the basis for this work. The thruster, known as ‘Pocket Rocket’, utilises neutral gas heating from ion-neutral collisions within a weakly ionised asymmetric plasma discharge, increasing the exhaust thermal velocity of the propellant gas, thereby producing higher thrust than if the propellant was emitted cold. In this work, neutral gas temperature of the Pocket Rocket discharge is studied in depth using rovibrational spectroscopy of the nitrogen (N2) second positive system (C3Πu → B3Πg), using both pure N2 and argon/N2 mixtures as the operating gas. Volume averaged steady state gas temperatures are measured for a range of operating conditions, with an analytical collisional model developed to verify experimental results. Results show that neutral gas heating is occurring with volume averaged steady state temperatures reaching 430 K in N2 and 1060 K for argon with 1% N2 at standard operating conditions of 1.5 Torr pressure and 10 W power input, demonstrating proof of concept for the Pocket Rocket thruster. Spatiotemporal profiles of gas temperature identify that the dominant heating mechanisms are ion-neutral collisions within the discharge and wall heating from ion bombardment of the thruster walls. To complement the experimental results, computational fluid dynamics (CFD) simulations using the commercial CFD

  3. Review on film cooling of liquid rocket engines

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2018-03-01

    Full Text Available Film cooling in combination with regenerative cooling is presently considered as an efficient method to guarantee safe operation of liquid rocket engines having higher heat flux densities for long duration. This paper aims to bring all the research carried out in the field of liquid rocket engine film cooling since 1950. The analytical and numerical procedure followed, experimental facilities and measurements made and major inferences drawn are reviewed in detail, and compared where ever possible. Review has been made through a discussion of the analyses methodologies and the factors that influence film cooling performance. An effort has also been made to determine the status of the research, pointing out critical gaps, which are still to be explained and addressed by future generations. Keywords: Heat transfer, Liquid rocket thrust chamber, Film cooling, Cooling effectiveness

  4. Free-Spinning-Tunnel Investigation to Determine the Effect of Spin-Recovery Rockets and Thrust Simulation on the Recovery Characteristics of a 1/21-Scale Model of the Chance Vought F7U-3 Airplane, TED No. NACA AD 3103

    Science.gov (United States)

    Burk, Sanger H., Jr.; Healy, Frederick M.

    1955-01-01

    An investigation of a l/21-scale model of the Chance Vought F7U-3 airplane in the co&at-load- condition has been conducted in the Langley 20-foot free-spinning tunnel, The recovery characteristics of the model were determined by use of spin-recovery rockets for the erect and inverted spinning condition. The rockets were so placed as to provide either a yawing or rolling moment about the model center of gravity. Also included in the investigation were tests to determine the effect of simulated engine thrust on the recovery characteristics of the model. On the basis of model tests, recoveries from erect and inverted spins were satisfactory when a yawing moment of 22,200 foot-pounds (full scale) was provided against the spin by rockets attached to the wing tips; the anti-spin yawing moment was applied for approximately 9 seconds, (full scale). Satisfactory recoveries were obtained from erect spins when a rolling moment of 22,200 foot-pounds (full scale) was provided with the spin (rolls right wing down in right spin). Although the inverted spin was satisfactorily terminated when a rolling moment of equal magnitude was provided, a roll rocket was not considered to be an optimum spin-recovery device to effect recoveries from inverted spins for this airplane because of resulting gyrations during spin recovery. Simulation of engine thrust had no apparent effect on the spin recovery characteristics.

  5. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  6. Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael

    2009-08-01

    This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.

  7. Analytical description of ascending motion of rockets in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, H; Pinho, M O de; Portes, D Jr [Centro Federal de Educacao Tecnologica do Rio de Janeiro, 20271-110, Rio de Janeiro, RJ (Brazil); Santiago, A [Instituto de Fisica, Universidade Estadual do Rio de Janeiro, 20559-900, Rio de Janeiro, RJ (Brazil)], E-mail: harg@cbpf.br, E-mail: ajsant@uerj.br

    2009-01-15

    In continuation of a previous work, we present an analytic study of ascending vertical motion of a rocket subjected to a quadratic drag for the case where the mass-variation law is a linear function of time. We discuss the detailed analytical solution of the model differential equations in closed form. Examples of application are presented and discussed. This paper is intended for undergraduate physics teachers and for graduate students.

  8. Analytical concepts for health management systems of liquid rocket engines

    Science.gov (United States)

    Williams, Richard; Tulpule, Sharayu; Hawman, Michael

    1990-01-01

    Substantial improvement in health management systems performance can be realized by implementing advanced analytical methods of processing existing liquid rocket engine sensor data. In this paper, such techniques ranging from time series analysis to multisensor pattern recognition to expert systems to fault isolation models are examined and contrasted. The performance of several of these methods is evaluated using data from test firings of the Space Shuttle main engines.

  9. A technique for rocket-borne detection of electron bunching at megahertz frequencies

    International Nuclear Information System (INIS)

    Gough, M.P.

    1980-01-01

    Energetic electrons precipitating in the auroral ionosphere may be bunched at frequencies up to several megahertz as a result of local wave-particle interactions. A technique is described whereby this megahertz bunching can be observed using conventional rocket-borne energetic electron detectors counting at rates below 10 5 cps. Electron arrival time information is pre-processed on board the rocket and any bunching present can be realized by subsequent computer processing on the ground using only a modest data transmission rate from the rocket. Results of a pilot rocket experiment prove the value of the technique and lead on to formulating the design of a future experiment where the maximum amount of data processing is performed on the rocket. The technique should perform an important diagnostic role, helping us to understand the complex wave-particle interactions occurring in the auroral ionosphere. (orig.)

  10. Regarding the perturbed operating process of DB propellant rocket motor at extreme initial grain temperatures

    Directory of Open Access Journals (Sweden)

    Ioan ION

    2012-03-01

    Full Text Available Despite many decades of study, the combustion instability of several DB propellants is still of particular concern, especially at extreme grain temperature conditions of rocket motor operating. The purpose of the first part of the paper is to give an overview of our main experimental results on combustion instabilities and pressure oscillations in DB propellant segmented grain rocket motors (SPRM-01, large L/D ratio, working at extreme initial grain temperatures. Thus, we recorded some particular pressure-time traces with significant perturbed pressure signal that was FFT analysed. An updated mathematical model incorporating transient frequency-dependent combustion response, in conjunction with pressure-dependent burning, is applied to investigate and predict the DB propellant combustion instability phenomenon. The susceptibility of the tested motor SPRM-01 with DB propellant to get a perturbed working and to go unstable with pressure was evidenced and this risk has to be evaluated. In the last part of our paper we evaluated the influence of recorded perturbed thrust on the rocket behaviour on the trajectory. The study revealed that at firing-table initial conditions, this kind of perturbed motor operating may not lead to an unstable rocket flight, but the ballistic parameters would be influenced in an unacceptable manner.

  11. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains

    International Nuclear Information System (INIS)

    Marimuthu, R.; Nageswara Rao, B.

    2013-01-01

    Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads

  12. Theodore von Karman - Rocket Scientist

    Indian Academy of Sciences (India)

    seminal contributions to several areas of fluid and solid mechanics, as the first head of ... nent position in Aeronautics research, as a pioneer of rocket science in America ... toral work, however, was on the theory of buckling of large structures.

  13. High light bio-fortification stimulatesde novosynthesis ofresveratrol inDiplotaxis tenuifolia(wild rocket micro-greens

    Directory of Open Access Journals (Sweden)

    Bianke Loedolff

    2017-11-01

    Full Text Available Background: Brassica vegetables and leafy greens are consumed globally due to their health promoting phytochemicals. Diplotaxis tenuifolia (wild rocket or arugula is a popular Brassica leafy green, with a diverse range of phytochemicals (in mature plants. Immature plants (micro-greens, 2-4 true leaves accumulate phytochemicals up to 10 times more than plants grown to maturity. Although plants accumulate phytochemicals ubiquitously, environmental stimuli can further enhance this phenomenon of accumulation, which is part of a global stress mechanism in plants. In this study, we describe a simple method toward the bio-fortification of a wild rocket micro-green system, via environmental manipulation (using high light. Objective: To establish a high light-induced bio-fortification strategy to augment the accumulation of bio-active compounds in Brassica micro-greens (wild rocket, with the purpose of developing a ‘designer’ micro-green melange (functional food product containing a diverse range of bio-active (disease preventative compounds. Results: High light stimulated wild rocket micro-greens to achieve a significant increase of known phytochemicals (documented in relevant Brassica leafy greens. Furthermore, undocumented phytochemicals (resveratrol, catechin, epicatechin, and kaempferol, among others also accumulated to adequate concentrations. Plant extracts from bio-fortified micro-greens displayed increased anti-oxidant capacity (up to 3-fold, when compared to control, a key component in future cancer cell research. Conclusion: The use of high light resulted in successful bio-fortification of wild rocket micro-greens, evidenced by the accumulation of previously undocumented polyphenols (such as resveratrol, catechin and epicatechin and improved anti-oxidant capacity.

  14. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  15. Estimates of the radiation environment for a nuclear rocket engine

    International Nuclear Information System (INIS)

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-01-01

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments

  16. Rocket investigations of electron precipitation and VLF waves in the Antarctic upper atmosphere

    International Nuclear Information System (INIS)

    Sheldon, W.R.; Benbrook, J.R.; Bering, E.A.

    1988-01-01

    The results of two Antarctic rocket campaigns, primarily initiated to investigate electron precipitation stimulated by signals from the Siple-Station ground-based VLF transmitter, are presented. While the primary objective of the campaigns was not achieved, the Siple VLF transmitter facilitated a study of the wave environment in the ionosphere. Standing wave patterns in the ionosphere were observed for the first time by detectors flown aboard the Nike-Tomahawk rockets; the same detectors monitored a continuous signal from the transmitter through the neutral atmosphere and into the ionosphere, providing unique data for comparison with theoretical studies of wave propagation. The measurements of penetrating electron precipitation were interpreted in terms of a model of energetic electron precipitation from the trapped radiational belts. 52 references

  17. Thrust Vector Control of an Upper-Stage Rocket with Multiple Propellant Slosh Modes

    Directory of Open Access Journals (Sweden)

    Jaime Rubio Hervas

    2012-01-01

    Full Text Available The thrust vector control problem for an upper-stage rocket with propellant slosh dynamics is considered. The control inputs are defined by the gimbal deflection angle of a main engine and a pitching moment about the center of mass of the spacecraft. The rocket acceleration due to the main engine thrust is assumed to be large enough so that surface tension forces do not significantly affect the propellant motion during main engine burns. A multi-mass-spring model of the sloshing fuel is introduced to represent the prominent sloshing modes. A nonlinear feedback controller is designed to control the translational velocity vector and the attitude of the spacecraft, while suppressing the sloshing modes. The effectiveness of the controller is illustrated through a simulation example.

  18. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3

    Science.gov (United States)

    Cui, Peng; Xu, WanWu; Li, Qinglian

    2018-01-01

    Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.

  19. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    Science.gov (United States)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  20. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    Science.gov (United States)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  1. ROCKETS: Soar to Success

    Science.gov (United States)

    Brett, Christine E. W.; O'Merle, Mary Jane; White, Gene

    2017-01-01

    This article describes ROCKETS, an after-school program for at-risk youth, and how the university students became involved in this service-learning project. The article discusses the steps that were taken to start the program, what is being done to continue the program, and the challenges that faculty have faced. This program is an authentic…

  2. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain

    Science.gov (United States)

    Zhang, Shuai; Hu, Fan; Zhang, Weihua

    2016-10-01

    Although hybrid rocket motor is prospected to have distinct advantages over liquid and solid rocket motor, low regression rate and insufficient efficiency are two major disadvantages which have prevented it from being commercially viable. In recent years, complex fuel grain configurations are attractive in overcoming the disadvantages with the help of Rapid Prototyping technology. In this work, an attempt has been made to numerically investigate the flow field characteristics and local regression rate distribution inside the hybrid rocket motor with complex star swirl grain. A propellant combination with GOX and HTPB has been chosen. The numerical model is established based on the three dimensional Navier-Stokes equations with turbulence, combustion, and coupled gas/solid phase formulations. The calculated fuel regression rate is compared with the experimental data to validate the accuracy of numerical model. The results indicate that, comparing the star swirl grain with the tube grain under the conditions of the same port area and the same grain length, the burning surface area rises about 200%, the spatially averaged regression rate rises as high as about 60%, and the oxidizer can combust sufficiently due to the big vortex around the axis in the aft-mixing chamber. The combustion efficiency of star swirl grain is better and more stable than that of tube grain.

  3. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  4. Nuclear thermal rocket workshop reference system Rover/NERVA

    International Nuclear Information System (INIS)

    Borowski, S.K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed

  5. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    Science.gov (United States)

    Evans, Brian

    Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant

  6. National Institute for Rocket Propulsion Systems 2012 Annual Report: A Year of Progress and Challenge

    Science.gov (United States)

    Thomas, L. Dale; Doreswamy, Rajiv; Fry, Emma Kiele

    2013-01-01

    The National Institute for Rocket Propulsion Systems (NIRPS) maintains and advances U.S. leadership in all aspects of rocket propulsion for defense, civil, and commercial uses. The Institute's creation is in response to widely acknowledged concerns about the U.S. rocket propulsion base dating back more than a decade. U.S. leadership in rocket and missile propulsion is threatened by long-term industry downsizing, a shortage of new solid and liquid propulsion programs, limited ability to attract and retain fresh talent, and discretionary federal budget pressures. Numerous trade and independent studies cite erosion of this capability as a threat to national security and the U.S. economy resulting in a loss of global competitiveness for the U.S. propulsion industry. This report covers the period between May 2011 and December 2012, which includes the creation and transition to operations of NIRPS. All subsequent reports will be annual. The year 2012 has been an eventful one for NIRPS. In its first full year, the new team overcame many obstacles and explored opportunities to ensure the institute has a firm foundation for the future. NIRPS is now an active organization making contributions to the development, sustainment, and strategy of the rocket propulsion industry in the United States. This report describes the actions taken by the NIRPS team to determine the strategy, organizational structure, and goals of the Institute. It also highlights key accomplishments, collaborations with other organizations, and the strategic framework for the Institute.

  7. Rocket motors incorporating basalt fiber and nanoclay compositions and methods of insulating a rocket motor with the same

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor)

    2011-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  8. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  9. Mechanical Slosh Models for Rocket-Propelled Spacecraft

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abram; Yang, Lee; Powers. Joseph; Hall, Charles

    2013-01-01

    Several analytical mechanical slosh models for a cylindrical tank with flat bottom are reviewed. Even though spacecrafts use cylinder shaped tanks, most of those tanks usually have elliptical domes. To extend the application of the analytical models for a cylindrical tank with elliptical domes, the modified slosh parameter models are proposed in this report by mapping an elliptical dome cylindrical tank to a flat top/bottom cylindrical tank while maintaining the equivalent liquid volume. For the low Bond number case, the low-g slosh models were also studied. Those low-g models can be used for Bond number > 10. The current low-g slosh models were also modified to extend their applications for the case that liquid height is smaller than the tank radius. All modified slosh models are implemented in MATLAB m-functions and are collected in the developed MST (Mechanical Slosh Toolbox).

  10. Alternate Propellant Thermal Rocket, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  11. Space Shuttle Redesigned Solid Rocket Motor nozzle natural frequency variations with burn time

    Science.gov (United States)

    Lui, C. Y.; Mason, D. R.

    1991-01-01

    The effects of erosion and thermal degradation on the Space Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle's structural dynamic characteristics were analytically evaluated. Also considered was stiffening of the structure due to internal pressurization. A detailed NASTRAN finite element model of the nozzle was developed and used to evaluate the influence of these effects at several discrete times during motor burn. Methods were developed for treating erosion and thermal degradation, and a procedure was developed to account for internal pressure stiffening using differential stiffness matrix techniques. Results were verified using static firing test accelerometer data. Fast Fourier Transform and Maximum Entropy Method techniques were applied to the data to generate waterfall plots which track modal frequencies with burn time. Results indicate that the lower frequency nozzle 'vectoring' modes are only slightly affected by erosion, thermal effects and internal pressurization. The higher frequency shell modes of the nozzle are, however, significantly reduced.

  12. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    Science.gov (United States)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  13. A spacecraft charging study on the SCEX 3 rocket

    International Nuclear Information System (INIS)

    Mullen, E.G.; Gussenhoven, M.S.; Hardy, D.A.; Murphy, G.P.; Lloyd, J.W.F.; Slutter, W.; Malcolm, P.; Kellogg, P.J.; Monson, S.

    1991-01-01

    Instruments on the SCEX 3 rocket payload flown from the Poker Flats Rocket Range in February 1990 were used to study charging during electron beam emissions. This paper reports that the data show that electrostatic analyzers can be used to measure vehicle charging and direct beam return currents in dense plasma conditions. The data also show return current dependencies on pitch angle, beam current and beam energy

  14. Nuclear thermal rocket plume interactions with spacecraft. Final report

    International Nuclear Information System (INIS)

    Mauk, B.H.; Gatsonis, N.A.; Buzby, J.; Yin, X.

    1997-01-01

    This is the first study that has treated the Nuclear Thermal Rocket (NTR) effluent problem in its entirety, beginning with the reactor core, through the nozzle flow, to the plume backflow. The summary of major accomplishments is given below: (1) Determined the NTR effluents that include neutral, ionized and radioactive species, under typical NTR chamber conditions. Applied an NTR chamber chemistry model that includes conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (2) Performed NTR nozzle flow simulations using a Navier-Stokes solver. We assumed frozen chemistry at the chamber conditions and used nozzle geometries and chamber conditions typical of NTR configurations. (3) Performed plume simulations using a Direct Simulation Monte Carlo (DSMC) code with chemistry. In order to account for radioactive trace species that may be important for contamination purposes we developed a multi-weighted DSMC methodology. The domain in our simulations included large regions downstream and upstream of the exit. Inputs were taken from the Navier-Stokes solutions

  15. The seven secrets of how to think like a rocket scientist

    CERN Document Server

    Longuski, James

    2007-01-01

    This book explains the methods that rocket scientists use - expressed in a way that could be applied in everyday life. It's short and snappy and written by a rocket scientist. It is intended for general "armchair" scientists.

  16. Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems

    Science.gov (United States)

    Ryzhkov, V.; Lapshin, E.

    2018-01-01

    The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.

  17. Results from a tethered rocket experiment (Charge-2)

    Science.gov (United States)

    Kawashima, N.; Sasaki, S.; Oyama, K. I.; Hirao, K.; Obayashi, T.; Raitt, W. J.; White, A. B.; Williamson, P. R.; Banks, P. M.; Sharp, W. F.

    A tethered payload experiment (Charge-2) was carried out as an international program between Japan and the USA using a NASA sounding rocket at White Sands Missile Range. The objective of the experiment was to perform a new type of active experiment in space by injecting an electron beam from a mother-daughter rocket system connected with a long tether wire. The electron beam with voltage and current up to 1 kV and 80 mA (nominal) was injected from the mother payload. An insulated conductive wire of 426 m length connected the two payloads, the longest tether system flown so far. The electron gun system and diagnostic instruments (plasma, optical, particle and wave) functioned correctly throughout the flight. The potential rise of the mother payload during the electron beam emission was measured with respect to the daughter payload. The beam trajectory was detected by a camera onboard the mother rocket. Wave generation and current induction in the wire during the beam emission were also studied.

  18. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  19. Gas core nuclear rocket feasibility project

    International Nuclear Information System (INIS)

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed

  20. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    Science.gov (United States)

    Liu, Chung-Chiun

    1994-01-01

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  1. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    Science.gov (United States)

    Liu, Chung-Chiun

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  2. 78 FR 40196 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2013-07-03

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... Sounding Rockets Program (SRP) at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... government agencies, and educational institutions have conducted suborbital rocket launches from the PFRR...

  3. Innovative nuclear thermal rocket concept utilizing LEU fuel for space application

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Venneri, Paolo; Choi, Jae Young; Jeong, Yong Hoon; Chang, Soon Heung

    2015-01-01

    Space is one of the best places for humanity to turn to keep learning and exploiting. A Nuclear Thermal Rocket (NTR) is a viable and more efficient option for human space exploration than the existing Chemical Rockets (CRs) which are highly inefficient for long-term manned missions such as to Mars and its satellites. NERVA derived NTR engines have been studied for the human missions as a mainstream in the United States of America (USA). Actually, the NERVA technology has already been developed and successfully tested since 1950s. The state-of-the-art technology is based on a Hydrogen gas (H_2) cooled high temperature reactor with solid core utilizing High-Enriched Uranium (HEU) fuel to reduce heavy metal mass and to use fast or epithermal neutron spectrums enabling simple core designs. However, even though the NTR designs utilizing HEU is the best option in terms of rocket performance, they inevitably provoke nuclear proliferation obstacles on all Research and Development (R and D) activities by civilians and non-nuclear weapon states, and its eventual commercialization. To surmount the security issue to use HEU fuel for a NTR, a concept of the innovative NTR engine, Korea Advanced NUclear Thermal Engine Rocket utilizing Low-Enriched Uranium fuel (KANUTER-LEU) is presented in this paper. The design goal of KANUTER-LEU is to make use of a LEU fuel for its compact reactor, but does not sacrifice the rocket performance relative to the traditional NTRs utilizing HEU. KANUTER-LEU mainly consists of a fission reactor utilizing H_2 propellant, a propulsion system and an optional Electricity Generation System as a bimodal engine. To implement LEU fuel for the reactor, the innovative engine adopts W-UO_2 CERMET fuel to drastically increase uranium density and thermal neutron spectrum to improve neutron economy in the core. The moderator and structural material selections also consider neutronic and thermo-physical characteristics to reduce non-fission neutron loss and

  4. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  5. Sounding rocket experiments during the IMS period at Syowa Station, Antarctica

    International Nuclear Information System (INIS)

    Hirasawa, T.; Nagata, T.

    1979-01-01

    During IMS Period, 19 sounding rockets were launched into auroras at various stages of polar substorms from Syowa Station (Geomag. lat. = -69.6 0 , Geomag. log. = 77.1 0 ), Antarctica. Through the successful rocket flights, the significant physical quantities in auroras were obtained: 19 profiles of electron density and temperature, 11 energy spectra of precipitating electrons, 15 frequency spectra of VLF and HF plasma waves and 4 vertical profiles of electric and magnetic fields. These rocket data have been analyzed and compared with the coordinated ground-based observation data for studies of polar substorms. (author)

  6. Night Airglow Observations from Orbiting Spacecraft Compared with Measurements from Rockets.

    Science.gov (United States)

    Koomen, M J; Gulledge, I S; Packer, D M; Tousey, R

    1963-06-07

    A luminous band around the night-time horizon, observed from orbiting capsules by J. H. Glenn and M. S. Carpenter, and identified as the horizon enhancement of the night airglow, is detected regularly in rocket-borne studies of night airglow. Values of luminance and dip angle of this band derived from Carpenter's observations agree remarkably well with values obtained from rocket data. The rocket results, however, do not support Carpenter's observation that the emission which he saw was largely the atomic oxygen line at 5577 A, but assign the principal luminosity to the green continuum.

  7. Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight

    Directory of Open Access Journals (Sweden)

    Zhu Hao

    2015-06-01

    Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.

  8. SSTO rockets. A practical possibility

    Science.gov (United States)

    Bekey, Ivan

    1994-07-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  9. The efficient future of deep-space travel - electric rockets; Das Zeitalter der Elektrischen Raketen

    Energy Technology Data Exchange (ETDEWEB)

    Choueiri, Edgar Y. [Princeton Univ., NJ (United States). Electric Propulsion and Plasma Dynamics Lab.

    2010-01-15

    Conventional rockets generate thrust by burning chemical fuel. Electric rockets propel space vehicles by applying electric or electromagnetic fields to clouds of charged particles, or plasmas, to accelerate them. Although electric rockets offer much lower thrust levels than their chemical cousins, they can eventually enable spacecraft to reach greater speeds for the same amount of propellant. Electric rockets' high-speed capabilities and their efficient use of propellant make them valuable for deep-space missions. (orig.)

  10. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  11. The electromagnetic rocket gun - a means to reach ultrahigh velocities

    International Nuclear Information System (INIS)

    Winterberg, F.

    1983-01-01

    A novel kind of electromagnetic launcher for the acceleration of multigram-size macroparticles, up to velocities required for impact fusion, is proposed. The novel launcher concept combines the efficiency of a gun with the much higher velocities attainable by a rocket. In the proposed concept a rocket-like projectile is launched inside a gun barrel, drawing its energy from a travelling magnetic wave. The travelling magnetic wave heats and ionizes the exhaust jet of the rocket. As a result, the projectile i propelled both by the recoil from the jet and the magnetic pressure of the travelling magnetic wave. In comparison to magnetic linear accelerators, accelerating either superconducting or ferromagnetic projectiles, the proposed concept has several important advantages. First, the exhaust jet is much longer than the rocket-like projectile and which permits a much longer switching time to turn on the travelling magnetic wave. Second, the proposed concept does not require superconducting projectiles, or projectiles made from expensive ferromagnetic material. Third, unlike in railgun accelerators, the projectile can be kept away from the wall, and thereby can reach much larger velocities. (orig.)

  12. 76 FR 20715 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2011-04-13

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... continuing sounding rocket operations at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... information about NASA's Sounding Rocket Program (SRP) and the University of Alaska-Fairbanks' PFRR may be...

  13. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, S. H.; Suh, K. Y. [Seoul National University, Seoul (Korea, Republic of); Kang, S. G. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of)

    2008-10-15

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H{sub 2}) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I{sub sp}) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H{sub 2}/O{sub 2} rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance.

  14. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    International Nuclear Information System (INIS)

    Nam, S. H.; Suh, K. Y.; Kang, S. G.

    2008-01-01

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H 2 ) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I sp ) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H 2 /O 2 rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance

  15. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    Science.gov (United States)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required

  16. Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor

    Science.gov (United States)

    Colbaugh, Lauren

    In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect

  17. Convection and dendrite crystallization. [during coasting phase of sounding rocket flight

    Science.gov (United States)

    Grodzka, P. G.; Johnston, M. H.; Griner, C. S.

    1977-01-01

    The convection and thermal conditions in aqueous and metallic liquid systems under conditions of the Dendrite Remelting Rocket Experiment were assessed to help establish the relevance of the rocket experiment to the metals casting phenomena. The results of the study indicate that aqueous or metallic convection velocities in the cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the rocket experiment, therefore, may be indicative of how metals will solidify in low-g. The influence of possibly differing thermal fields, however, remains to be assessed. The rocket experiment may also be relevant to how metals solidify on the ground at temperature differences and in cell configurations such that the flow velocities are not high enough to break or bend delicate dendrite arms. Again, however, the influence of the thermal fields must be assessed.

  18. Fertilization and development of eggs of the South African clawed toad, Xenopus laevis, on sounding rockets in space.

    Science.gov (United States)

    Ubbels, G A; Berendsen, W; Kerkvliet, S; Narraway, J

    1992-01-01

    Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.

  19. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency

    Science.gov (United States)

    2018-01-01

    The objective of this study was to evaluate the influence of the spacing of lettuce rows on the production of a lettuce-rocket intercropping system over two growing seasons (11 August to 25 September 2011 and 12 January to 24 February 2012) in Jaboticabal, São Paulo, Brazil. We evaluated 11 treatments in each season: lettuce-rocket intercrops with five row spacings for the lettuce (0.20, 0.25, 0.30, 0.35 and 0.40 m) and the rocket planted midway between the lettuce rows, sole crops of lettuce at the same five row spacings and a sole crop of rocket. Fresh and dry masses of the lettuce and rocket and number of lettuce leaves per plant were highest with a lettuce row spacing of 0.40 m, but the productivities of the lettuce and rocket were higher with a lettuce row spacing of 0.20 m. The productivities and fresh and dry weights of the lettuce and rocket and the number of lettuce leaves per plant were highest in the sole crops, but the fresh and dry weights of the rocket were higher with intercropping. The land equivalent ratios were >1.0 in both seasons in all intercrops and were highest for the densest crop (1.41). Intercropping was therefore 41% more efficient than sole cropping for the production of lettuce and rocket. PMID:29698401

  20. Injection and swirl driven flowfields in solid and liquid rocket motors

    Science.gov (United States)

    Vyas, Anand B.

    In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.

  1. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    Science.gov (United States)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  2. The German scientific balloon and sounding rocket programme

    International Nuclear Information System (INIS)

    Dahl, A.F.

    1980-01-01

    This report contains information on sounding rocket projects in the scientific field of astronomy, aeronomy, magnetosphere, and material science under microgravity. The scientific balloon projects are performed with emphasis on astronomical research. By means of tables it is attempted to give a survey, as complete as possible, of the projects the time since the last symposium in Ajaccio, Corsica, and of preparations and plans for the future until 1983. The scientific balloon and sounding rocket projects form a small successful part of the German space research programme. (Auth.)

  3. Correlation of ground-based on topside photometric observations with auroral electron spectra measurements at rocket altitudes

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Lewis, P.B. Jr.

    1977-01-01

    Spectroscopic measurements of the auroral lines 5577, 4278, and 6300 A made at Fort Yukon, Alaska, are used in the model computations of Rees and Luckey (1974) to predict the energy influx and the characteristic energy of an assumed Maxwellian primary electron spectrum for two auroral displays. Simultaneous with the ground observations, electron detectors aboard a sounding rocket directly measured the primary electron spectrum and energy flux on the field lines which contained the auroral light in the E region observed by the ground photometers (magnetically conjugate in the local sense). For the two auroras studied, the in situ particle measurements show that the model (1) correctly predicts changes in spectral parameters. (2) predicts a precipitated energy flux in good agreement with measured values, and (3) assumes a spectral shape (Maxwellian) not typical of the peaked spectra measured above discrete auroras.One of the rocket flights also carried photometers sensitive to 5577 and 3914 A. Every 0.2 s the photometers sampled the auroral light from the E region magnetically conjugate to the rocket, and they have reaffirmed the very close correlation between emission at 3914 A and that at 5577 A. Finally, by using the measured electron precipitation and current ionospheric models the emissions at 3914, 4278, and 5577 A are calculated. The model computations closely predict the measured light at 3914 and 4278 A. However, the 5577-A emission calculated from dissociative recombination of O 2 + and direct excitation of atomic oxygen using a measured secondary spectrum accounts for only about one third of the observed emission

  4. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    OpenAIRE

    Abdelaziz Almostafa; Guozhu Liang; Elsayed Anwer

    2018-01-01

    Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning), erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameter...

  5. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites

    OpenAIRE

    Koehler, Frederick; Langhenry, Mark; Summers, Matt; Villarreal, James; Villarreal, Thomas

    2017-01-01

    Raytheon Missile Systems has developed and tested true on/off/restart solid propellant thrusters which are controlled only by electrical current. This new patented class of energetic rocket propellant is safe, controllable and simple. The range of applications for this game changing technology includes attitude control systems and a safe alternative to higher impulse space satellite thrusters. Described herein are descriptions and performance data for several small electric propellant solid r...

  6. Tidal analysis of Met rocket wind data

    Science.gov (United States)

    Bedinger, J. F.; Constantinides, E.

    1976-01-01

    A method of analyzing Met Rocket wind data is described. Modern tidal theory and specialized analytical techniques were used to resolve specific tidal modes and prevailing components in observed wind data. A representation of the wind which is continuous in both space and time was formulated. Such a representation allows direct comparison with theory, allows the derivation of other quantities such as temperature and pressure which in turn may be compared with observed values, and allows the formation of a wind model which extends over a broader range of space and time. Significant diurnal tidal modes with wavelengths of 10 and 7 km were present in the data and were resolved by the analytical technique.

  7. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Ballard, Richard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  8. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    Science.gov (United States)

    Ballard, RIchard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  9. Multi-Parameter Wireless Monitoring and Telecommand of a Rocket Payload: Design and Implementation

    Science.gov (United States)

    Pamungkas, Arga C.; Putra, Alma A.; Puspitaningayu, Pradini; Fransisca, Yulia; Widodo, Arif

    2018-04-01

    A rocket system generally consists of two parts, the rocket motor and the payload. The payload system is built of several sensors such as accelerometer, gyroscope, magnetometer, and also a surveillance camera. These sensors are used to monitor the rocket in a three-dimensional axis which determine its attitude. Additionally, the payload must be able to perform image capturing in a certain distance using telecommand. This article is intended to describe the design and also the implementation of a rocket payload which has attitude monitoring and telecommand ability from the ground control station using a long-range wireless module Digi XBee Pro 900 HP.

  10. Modeling Propellant Tank Dynamics

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...

  11. Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander

    Science.gov (United States)

    Lopez, Israel

    Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.

  12. AJ26 rocket engine testing news briefing

    Science.gov (United States)

    2010-01-01

    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  13. Theoretical and Experimental Analysis of the Physics of Water Rockets

    Science.gov (United States)

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Fernandez-Francos, J.; Galdo-Vega, M.

    2010-01-01

    A simple rocket can be made using a plastic bottle filled with a volume of water and pressurized air. When opened, the air pressure pushes the water out of the bottle. This causes an increase in the bottle momentum so that it can be propelled to fairly long distances or heights. Water rockets are widely used as an educational activity, and several…

  14. Data Analysis of the TK-1G Sounding Rocket Installed with a Satellite Navigation System

    Directory of Open Access Journals (Sweden)

    Lesong Zhou

    2017-10-01

    Full Text Available This article gives an in-depth analysis of the experimental data of the TK-1G sounding rocket installed with the satellite navigation system. It turns out that the data acquisition rate of the rocket sonde is high, making the collection of complete trajectory and meteorological data possible. By comparing the rocket sonde measurements with those obtained by virtue of other methods, we find that the rocket sonde can be relatively precise in measuring atmospheric parameters within the scope of 20–60 km above the ground. This establishes the fact that the TK-1G sounding rocket system is effective in detecting near-space atmospheric environment.

  15. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    Science.gov (United States)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  16. Electromechanical Dynamics Simulations of Superconducting LSM Rocket Launcher System in Attractive-Mode

    Science.gov (United States)

    Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi

    1996-01-01

    Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.

  17. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    OpenAIRE

    Abbas, Laith K.; Chen, Dongyang; Rui, Xiaoting

    2014-01-01

    The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which ver...

  18. Construction and design of solid-propellant rocket engines. Konstruktsiia i proektirovanie raketnykh dvigatelei tverdogo topliva

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrutdinov, I.K.; Kotel' nikov, A.V.

    1987-01-01

    Methods for assessing the durability of different components of solid-propellant rocket engines are presented. The following aspects of engine development are discussed: task formulation, parameter calculation, construction scheme selection, materials, and durability assessment. 45 references.

  19. Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles

    Directory of Open Access Journals (Sweden)

    Xiaodong He

    2017-04-01

    Full Text Available In the process of composite prepreg tape winding, the compaction force could influence the quality of winding products. According to the analysis and experiments, during the winding process of a rocket motor nozzle aft exit cone with a winding angle, there would be an error between the deposition speed of tape layers and the feeding speed of the compaction roller, which could influence the compaction force. Both a lack of compaction and overcompaction related to the feeding of the compaction roller could result in defects of winding nozzles. Thus, a flexible winding system has been developed for rocket motor nozzle winding. In the system, feeding of the compaction roller could be adjusted in real time to achieve an invariable compaction force. According to experiments, the force deformation model of the winding tape is a time-varying system. Thus, a forgetting factor recursive least square based parameter estimation proportional-integral-differential (PID controller has been developed, which could estimate the time-varying parameter and control the compaction force by adjusting the feeding of the compaction roller during the winding process. According to the experimental results, a winding nozzle with fewer voids and a smooth surface could be wounded by the invariable compaction force in the flexible winding system.

  20. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  1. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    International Nuclear Information System (INIS)

    Labib, Satira; King, Jeffrey

    2015-01-01

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort

  2. The German scientific balloon and sounding rocket projects

    International Nuclear Information System (INIS)

    Dalh, A.F.

    1978-01-01

    This report contains information on the sounding rocket projects: experiment preparation for spacelab (astronomy), aeronomy, magnetosphere, and material science. Except for material science the scientific balloon projects are performed in the some scientific fields, but with a strong emphasis on astronomical research. It is tried to provide by means of tables a survey as complete as possible of the projects for the time since the last symposium in Elmau and of the plans for the future until 1981. The scientific balloon and sounding rocket projects form a small succesful part of the German space research programme. (author)

  3. Development and Hotfire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    Science.gov (United States)

    Gradl, Paul R.; Greene, Sandy; Protz, Chris

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  4. A six degree-of-freedom thrust sensor for a labscale hybrid rocket

    Science.gov (United States)

    Wright, Ann M.; Wright, Andrew B.; Born, Traig; Strickland, Ryan

    2013-12-01

    A six degree-of-freedom thrust sensor was designed, constructed, calibrated, and tested using the labscale hybrid rocket at the University of Arkansas at Little Rock. The system consisted of six independent legs: one parallel to the axis of symmetry of the rocket for main thrust measurement, two vertical legs near the nozzle end of the rocket, one vertical leg near the oxygen input end of the rocket, and two separated horizontal legs near the nozzle end. Each leg was composed of a rotational bearing, a load cell, and a universal joint above and below the load cell. The leg was designed to create point contact along only one direction and minimize the non-axial forces applied to the load cell. With this system, force in each direction and moments for roll, pitch, and yaw can be measured. The system was calibrated and tested using a labscale hybrid rocket using gaseous oxygen and hydroxyl-terminated polybutadiene solid fuel. The thrust stand proved to be stable during calibration tests. Thrust force vector components and roll, pitch, and yaw moments were calculated for test firings with an oxygen mass flow rate range of 0.0174-0.0348 kg s-1.

  5. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    Science.gov (United States)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  6. Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    Science.gov (United States)

    Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  7. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  8. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    K. I. Denisova

    2016-01-01

    Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

  9. Modification of Roberts' Theory for Rocket Exhaust Plumes Eroding Lunar Soil

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.; Immer, Christopher D.

    2008-01-01

    Roberts' model of lunar soil erosion beneath a landing rocket has been updated in several ways to predict the effects of future lunar landings. The model predicts, among other things, the number of divots that would result on surrounding hardware due to the impact of high velocity particulates, the amount and depth of surface material removed, the volume of ejected soil, its velocity, and the distance the particles travel on the Moon. The results are compared against measured results from the Apollo program and predictions are made for mitigating the spray around a future lunar outpost.

  10. Study of organic ablative thermal-protection coating for solid rocket motor

    Science.gov (United States)

    Hua, Zenggong

    1992-06-01

    A study is conducted to find a new interior thermal-protection material that possesses good thermal-protection performance and simple manufacturing possibilities. Quartz powder and Cr2O3 are investigated using epoxy resin as a binder and Al2O3 as the burning inhibitor. Results indicate that the developed thermal-protection coating is suitable as ablative insulation material for solid rocket motors.

  11. An introduction to the water recovery x-ray rocket

    Science.gov (United States)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  12. Launch Excitement with Water Rockets

    Science.gov (United States)

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  13. IR radiation characteristics of rocket exhaust plumes under varying motor operating conditions

    Directory of Open Access Journals (Sweden)

    Qinglin NIU

    2017-06-01

    Full Text Available The infrared (IR irradiance signature from rocket motor exhaust plumes is closely related to motor type, propellant composition, burn time, rocket geometry, chamber parameters and flight conditions. In this paper, an infrared signature analysis tool (IRSAT was developed to understand the spectral characteristics of exhaust plumes in detail. Through a finite volume technique, flow field properties were obtained through the solution of axisymmetric Navier-Stokes equations with the Reynolds-averaged approach. A refined 13-species, 30-reaction chemistry scheme was used for combustion effects and a k-ε-Rt turbulence model for entrainment effects. Using flowfield properties as input data, the spectrum was integrated with a line of sight (LOS method based on a single line group (SLG model with Curtis-Godson approximation. The model correctly predicted spectral distribution in the wavelengths of 1.50–5.50 μm and had good agreement for its location with imaging spectrometer data. The IRSAT was then applied to discuss the effects of three operating conditions on IR signatures: (a afterburning; (b chamber pressure from ignition to cutoff; and (c minor changes in the ratio of hydroxyl-terminated polybutadiene (HTPB binder to ammonium perchlorate (AP oxidizer in propellant. Results show that afterburning effects can increase the size and shape of radiance images with enhancement of radiation intensity up to 40%. Also, the total IR irradiance in different bands can be characterized by a non-dimensional chamber pressure trace in which the maximum discrepancy is less than 13% during ignition and engine cutoff. An increase of chamber pressure can lead to more distinct diamonds, whose distance intervals are extended, and the position of the first diamond moving backwards. In addition, an increase in HTPB/AP causes a significant jump in spectral intensity. The incremental rates of radiance intensity integrated in each band are linear with the increase of HTPB

  14. Structure of plasma blobs injected into the ionosphere from a rocket

    International Nuclear Information System (INIS)

    Aleksandrov, V.A.; Loevskii, A.S.; Popov, G.A.; Romanovskii, Iu.A.; Sobol, A.G.

    1981-01-01

    Plasma structure and dynamics have been studied by injecting plasma blobs (PB) into the ionosphere using two MR-12 rockets launched from Volgograd in 1978-1979. The mother-daughter system was used, and the daughter payload, which contained the plasma gun, was stabilized by rotation and separated at an altitude of 110 km at a speed of 2-3 m/s. The pulsed plasma was ejected to an altitude of from 110 to 145 km along and transverse to the rocket, which corresponded to pitch-angle ranges of 0-40 degrees and 70-110 degrees. The diagnostic equipment included an ion probe, a photometer, and electric and magnetic field detectors. A model of the PB processes was constructed, and it was confirmed by the experimental results: e.g., (1) the longitudinal size of the PB's reached several hundreds of meters, and the PB plasma density was found to be about 10 to the 7th to 10 to the 8th per cu cm and (2) the magnetic field had completely diffused into the PB

  15. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    Science.gov (United States)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  16. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Science.gov (United States)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  17. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2016-06-01

    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  18. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    Science.gov (United States)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  19. Space Power Experiments Aboard Rockets SPEAR-3

    National Research Council Canada - National Science Library

    Raitt, W. J

    1997-01-01

    The SPEAR-3 program was a sounding rocket payload designed to study the interaction of a charged body with the Earth's upper atmosphere with particular reference to the discharging ability of selected...

  20. Scale effects on solid rocket combustion instability behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Ryerson University, Department of Aerospace Engineering, Toronto, Ontario (Canada)

    2011-07-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter) on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor's size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise. (author)