WorldWideScience

Sample records for model results electronic

  1. Our Electron Model vindicates Schr"odinger's Incomplete Results and Require Restatement of Heisenberg's Uncertainty Principle

    Science.gov (United States)

    McLeod, David; McLeod, Roger

    2008-04-01

    The electron model used in our other joint paper here requires revision of some foundational physics. That electron model followed from comparing the experimentally proved results of human vision models using spatial Fourier transformations, SFTs, of pincushion and Hermann grids. Visual systems detect ``negative'' electric field values for darker so-called ``illusory'' diagonals that are physical consequences of the lens SFT of the Hermann grid, distinguishing this from light ``illusory'' diagonals. This indicates that oppositely directed vectors of the separate illusions are discretely observable, constituting another foundational fault in quantum mechanics, QM. The SFT of human vision is merely the scaled SFT of QM. Reciprocal space results of wavelength and momentum mimic reciprocal relationships between space variable x and spatial frequency variable p, by the experiment mentioned. Nobel laureate physicist von B'ek'esey, physiology of hearing, 1961, performed pressure input Rect x inputs that the brain always reports as truncated Sinc p, showing again that the brain is an adjunct built by sight, preserves sign sense of EMF vectors, and is hard wired as an inverse SFT. These require vindication of Schr"odinger's actual, but incomplete, wave model of the electron as having physical extent over the wave, and question Heisenberg's uncertainty proposal.

  2. Electron density profiles for middle latitudes. Theoretical model results and its comparisons with observations for the bottomside F region

    International Nuclear Information System (INIS)

    Zhang, S.R.; Radicella, S.M.; Zhang, M.L.; Huang, X.Y.

    1996-01-01

    Results of the theoretical models for electron density profile in the F region are used in IRI (International Reference Ionosphere) to provide complementary data to the experimental database, for a better understanding of physical processes and characteristics involved. 8 refs, 6 figs

  3. Physics results with polarized electrons at SLAC

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1996-03-01

    Polarized electron beams can play an important role in the dynamics of interactions at high energies. Polarized electron beams at SLAC have been an important part of the physics program since 1970, when they were first proposed for use in testing the spin structure of the proton. Since 1992, the SLAC linear accelerator and the SLC have operated solely with polarized electrons, providing data for tests of QCD in studies of the spin structure of the nucleon and tests of the electroweak sector of the Standard Model. In the following sections, the performance of the source is summarized, and some of the recent results using the polarized beams are discussed

  4. Stationary Electron Atomic Model

    Science.gov (United States)

    Pressler, David E.

    1998-04-01

    I will present a novel theory concerning the position and nature of the electron inside the atom. This new concept is consistant with present experimental evidence and adheres strictly to the valence-shell electron-pair repulsion (VSEPR) model presently used in chemistry for predicting the shapes of molecules and ions. In addition, I will discuss the atomic model concept as being a true harmonic oscillator, periodic motion at resonant frequency which produces radiation at discrete frequencies or line spectra is possible because the electron is under the action of two restoring forces, electrostatic attraction and superconducting respulsion of the electron's magnetic field by the nucleus.

  5. Multibeam scanning electron microscope : Experimental results

    NARCIS (Netherlands)

    Mohammadi-Gheidari, A.; Hagen, C.W.; Kruit, P.

    2010-01-01

    The authors present the first results obtained with their multibeam scanning electron microscope. For the first time, they were able to image 196 (array of 14×14) focused beams of a multielectron beam source on a specimen using single beam scanning electron microscope (SEM) optics. The system

  6. Modeling Incoherent Electron Cloud Effects

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-01-01

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed

  7. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  8. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  9. Modeling of power electronic systems with EMTP

    Science.gov (United States)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  10. A deterministic model of electron transport for electron probe microanalysis

    Science.gov (United States)

    Bünger, J.; Richter, S.; Torrilhon, M.

    2018-01-01

    Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.

  11. Electron emission resulting from fast ion impact on thin metal foils: Implications of these data for development of track structure models

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, R.D.; Drexler, C.G.

    1993-04-01

    Experimental information useful in improving and testing theoretical models of energy deposition and redistribution in particle-condensed phase media is discussed. An overview of information available from previous, and ongoing, studies of the electron emission from thin foils is presented and the need for doubly differential electron energy and angular distribution data stressed. Existing data are used to demonstrate that precisely known, and controllable, surface and bulk conditions of the condensed-phase media are required for experimental studies of this type. Work in progress and improvements planned for future studies at the Pacific Northwest Laboratory are outlined.

  12. Boltzmann-Electron Model in Aleph.

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  13. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  14. Experimental results on neutrino-electron scattering

    International Nuclear Information System (INIS)

    Dorenbosch, J.; Udo, F.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Baubillier, M.; Bergsma, F.; Capone, A.; Flegel, W.; Grancagnolo, F.; Jonker, M.; Lanceri, L.; Metcalf, M.; Nieuwenhuis, C.; Panman, J.; Plunkett, R.; Santoni, C.; Winter, K.; Abt, I.; Buesser, F.W.; Daumann, H.; Gall, P.D; Hebbeker, T.; Niebergall, F.; Staehelin, P.; Baroncelli, A.; Barone, L.; Borgia, B.; Bosio, C.; Diemoz, M.; Dore, U.; Ferroni, F.; Longo, E.; Luminari, L.; Monacelli, P.; Morganti, S.; De Notaristefani, F.; Tortora, L.; Valente, V.

    1989-01-01

    A determination of sin 2 θ w based on measurements of elastic scattering of muon-neutrinos and muon-anti-neutrinos on atomic electrons is described. These purely leptonic processes were studied using the CHARM calorimeter exposed to neutrino and antineutrino wide-band beams at the CERN super proton synchrotron. A total of 83±16 neutrino-electron and 112±21 antineutrino-electron events have been detected. From the measurement of the ratio of muon-neutrino and muon-antineutrino cross-sections a value of sin 2 θ w =0.211±0.037 was obtained. (orig.)

  15. Model of electron capture in low-temperature glasses

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Swiatla, D.; Kroh, J.

    1983-01-01

    The new model of electron capture by a statistical variety of traps in glassy matrices is proposed. The electron capture is interpreted as the radiationless transition (assisted by multiphonon emission) of the mobile electron to the localized state in the trap. The conception of 'unfair' and 'fair' traps is introduced. The 'unfair' trap captures the mobile electron by the shallow excited state. In contrast, the 'fair' trap captures the electron by the ground state. The model calculations of the statistical distributions of the occupied electron traps are presented and discussed with respect to experimental results. (author)

  16. New experimental results on electron cooling at COSY-Juelich

    International Nuclear Information System (INIS)

    Dietrich, J.; Maier, R.; Prasuhn, D.; Stein, H.J.; Kobets, A.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2007-01-01

    Recent results of electron cooling of proton beams at COSY-Juelich are reported. Cooling at an electron energy of 70 keV has been studied for the first time. At the injection energy level of COSY, corresponding to 24.5 keV electron energy, the features of the cooled proton beam at extremely low intensities have been investigated in order to find out whether an ordering of the proton beam can be achieved. Such investigations are motivated by the results of a numerical simulation of the ordering process by the BETACOOL code. (author)

  17. The electronic-commerce-oriented virtual merchandise model

    Science.gov (United States)

    Fang, Xiaocui; Lu, Dongming

    2004-03-01

    Electronic commerce has been the trend of commerce activities. Providing with Virtual Reality interface, electronic commerce has better expressing capacity and interaction means. But most of the applications of virtual reality technology in EC, 3D model is only the appearance description of merchandises. There is almost no information concerned with commerce information and interaction information. This resulted in disjunction of virtual model and commerce information. So we present Electronic Commerce oriented Virtual Merchandise Model (ECVMM), which combined a model with commerce information, interaction information and figure information of virtual merchandise. ECVMM with abundant information provides better support to information obtainment and communication in electronic commerce.

  18. Results in electron therapy of tumors of various localizations

    International Nuclear Information System (INIS)

    Mardynskij, Yu.S.; Kudryavtseva, G.T.

    1986-01-01

    Immediate and late results of electron therapy are represented in 511 patients treated at a betatron B 5M-25 because of malignant tumors of skin, soft parts of the larynx, area of jaw and face, thyroid gland, mamma, as well as cutaneous melanoma. Total or considerable regression of the tumors was seen in 78% of the patients. The 3- and 5-years survival rate was 50.9 or 38.5% in electron therapy alone and 62 or 59% in combination with surgical methods. The radiation reactions were temporary and could be easily arrested by conventional therapy. The electron therapy with an energy of 5 to 20 MeV can be used in local tumors, lying superficially or in a maximum depth of 7 cm and is indicated especially for weakened patients. (author)

  19. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  20. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  1. New STS-1 Electronics: Development and Test Results

    Science.gov (United States)

    Uhrhammer, R. A.; Karavas, B.; Friday, J.; Vanzandt, T.; Hutt, C. R.; Wielandt, E.; Romanowicz, B.

    2007-12-01

    refinements, this generation of electronics was operated on two seismometers concurrently and successfully run through swept sine and step calibration functions on four seismometers. During this final phase, the Metrozet electronics included the ability to initiate and operate the calibrations via a network (Ethernet) connection. Most of the calibration testing was performed remotely from Metrozet's Southern California office over the BSL network. Metrozet was able to remotely log into the Berkeley network, establish a connection to the test bed in the Byerly seismic vault and initiate control of the seismometer including remote centering and calibration functions. Finally, after BSL tests were completed and the development appeared complete and satisfactory, the new electronics were tested at the Albuquerque Seismological Laboratory's seismic vault, which is located in a quieter environment than BKS. The new electronics package was also field tested at the BDSN broadband station HOPS. We present detailed results of the calibrations.

  2. Modeling ion sensing in molecular electronics

    Science.gov (United States)

    Chen, Caroline J.; Smeu, Manuel; Ratner, Mark A.

    2014-02-01

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H+), alkali metal cations (M+), calcium ions (Ca2+), and hydronium ions (H3O+) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C9H7NS2), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M+ + QDT species containing monovalent cations, where M+ = H+, Li+, Na+, or K+. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from -0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.

  3. Secondary emission of negative ions and electrons resulting from electronic sputtering of cesium salts

    International Nuclear Information System (INIS)

    Allali, H.; Nsouli, B.; Thomas, J.P.

    1993-04-01

    Secondary ion emission of negative ions and electrons from alkali salts bombarded with high energy (9 MeV) Ar +++ is discussed. Quite different features are observed according to the nature of the salt investigated (halide or oxygenated). In the case of cesium, the electron emission from halides is characterized by intense electron showers (several hundred electrons) with narrow distributions in intensity and orientation. Conversely, for oxygenated salts, these distributions are broader, much less intense (one order of magnitude), and the ion emission exhibits an dissymmetry, which has never been observed for inorganics. This last result is interpreted in terms of radiolysis of the oxygenated salt, a process well documented for gamma-ray irradiation, but not yet reported in secondary ion emission. (author) 17 refs.; 10 figs

  4. VEMAP 1: Selected Model Results

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) was a multi-institutional, international effort addressing the response of biogeography and...

  5. Multidisciplinary Modelling Tools for Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad

    package, e.g. power module, DFR approach meets trade-offs in electrical, thermal and mechanical design of the device. Today, virtual prototyping of power electronic circuits using advanced simulation tools is becoming attractive due to cost/time saving in building potential designs. With simulations......This thesis presents multidisciplinary modelling techniques in a Design For Reliability (DFR) approach for power electronic circuits. With increasing penetration of renewable energy systems, the demand for reliable power conversion systems is becoming critical. Since a large part of electricity...... is processed through power electronics, highly efficient, sustainable, reliable and cost-effective power electronic devices are needed. Reliability of a product is defined as the ability to perform within its predefined functions under given conditions in a specific time. Because power electronic devices...

  6. Electron-Ionic Model of Ball Lightening

    OpenAIRE

    Fedosin, Sergey G.; Kim, Anatolii S.

    2001-01-01

    The model of ball lightning is presented where outside electron envelope is kept by inside volume of positive charges. The moving of electron in outside envelope is a reason of strong magnetic field, which controls the state of hot ionized air inside of ball lightning. The conditions of origins of ball lightning are investigated and the values of parameters for ball lightning of maximum power are calculated.

  7. VEMAP 1: Selected Model Results

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) was a multi-institutional, international effort addressing the response of biogeography and...

  8. Teaching Chemistry with Electron Density Models

    Science.gov (United States)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  9. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  10. Electron arc irradiation of the postmastectomy chest wall: clinical results

    International Nuclear Information System (INIS)

    Gaffney, David K.; Prows, Janalyn; Leavitt, Dennis; Egger, Marlene J.; Morgan, John G.; Stewart, J. Robert

    1995-01-01

    Purpose/Objective: Since 1980 electron arc irradiation of the postmastectomy chest wall has been the preferred technique for patients with advanced breast cancer at the our institution. Here we report the results of this technique in 150 consecutive patients from 1980 to 1994. Materials and Methods: Thoracic computerized tomography was used to determine internal mammary lymph node depth and chest wall thickness, and for computerized dosimetry calculations in all patients. Total doses of 45-50 Gy in 5 to 5 (1(2)) weeks were delivered to the chest wall and internal mammary lymph nodes via electron arc and, in most cases, supraclavicular and axillary nodes were treated with a matching photon field. Patients were assessed for acute and late radiation changes, local and distant control of disease, and survival. The 10 most recently treated patients were censored for disease progression, survival, and late effects calculations, thus giving a mean follow up of 49 months and a median of 33 months. All patients had advanced disease: T stages 1, 2, 3, and 4 represented 21%, 39%, 21% and 19% of the study population, with a mean number of positive axillary lymph nodes of 6.5 (0-29). Analysis was performed according to adjuvant status (no residual disease, n = 90), residual disease (positive margin, n = 15, and primary radiation, n = 2), or recurrent disease (n = 33). Results: Acute radiation reactions were generally mild and self limiting. 27% of patients developed moist desquamation, and 32% had brisk erythema. Actuarial 5 year local control, freedom from distant failure and overall survival was 91%, 64%, and 67% in the adjuvant group; 84%, 50%, and 53% in the residual disease group; and 63%, 34%, and 30% in the recurrent disease group, respectively. In univariate cox regressions, the number of positive lymph nodes was predictive for local failure in the adjuvant group (p<0.037). Chronic complications were minimal with 10% of patients having arm edema, 15% hyperpigmentation

  11. Electron arc irradiation of the postmastectomy chest wall: clinical results

    International Nuclear Information System (INIS)

    Gaffney, David K.; Prows, Janalyn; Leavitt, Dennis D.; Egger, Marlene J.; Morgan, John G.; Stewart, J. Robert

    1997-01-01

    Background and purpose: Since 1980 electron arc irradiation of the postmastectomy chest wall has been the preferred technique for patients with advanced breast cancer at our institution. Here we report the results of this technique in 140 consecutive patients treated from 1980 to 1993. Materials and Methods: Thoracic computerized tomography was used to determine internal mammary lymph node depth and chest wall thickness, and for computerized dosimetry calculations. Total doses of 45-50 Gy in 5 to 5 (1(2)) weeks were delivered to the chest wall and internal mammary lymph nodes via electron arc and, in most cases, supraclavicular and axillary nodes were treated with a matching photon field. Patients were assessed for acute and late radiation changes, local and distant control of disease, and survival. Patients had a minimum follow-up of 1 year after completion of radiation treatment, and a mean follow up interval of 49 months and a median of 33 months. All patients had advanced disease: T stages 1, 2, 3, and 4 represented 21%, 39%, 21% and 19% of the study population, with a mean number of positive axillary lymph nodes of 6.5 (range, 0-29). Analysis was performed according to adjuvant status (no residual disease, n=90), residual disease (positive margin, n=15, and primary radiation, n=2), or recurrent disease (n=33). Results: Acute radiation reactions were generally mild and self limiting. A total of 26% of patients developed moist desquamation, and 32% had brisk erythema. Actuarial 5 year local-regional control, freedom from distant failure, and cause-specific survival was 91%, 64%, and 75% in the adjuvant group; 84%, 50%, and 53% in the residual disease group; and 63%, 34%, and 32% in the recurrent disease group, respectively. In univariate Cox regressions, the number of positive lymph nodes was predictive for local failure in the adjuvant group (P=0.037). Chronic complications were minimal with 11% of patients having arm edema, 17% hyperpigmentation, and 13

  12. A Unified Model of Secondary Electron Cascades in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Ziaja, B; London, R A; Hajdu, J

    2004-10-13

    In this paper we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of an X-ray photon. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1-10 keV. The present paper expands our earlier work by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free-electron gas as the system cools. The dissipation of the impact energy proceeds predominantly through the production of secondary electrons whose energies are comparable to the binding energies of the valence (40-50 eV) and of the core electrons (300 eV). The electron cloud generated by a 10 keV electron is strongly anisotropic in the early phases of the cascade (t {le} 1 fs). At later times, the sample is dominated by low energy electrons, and these are scattered more isotropically by atoms in the sample. Our results for the total late time number of secondary electrons agree with available experimental data, and show that the emission of secondary electrons approaches saturation within about 100 fs, following the primary impact.

  13. Two years results of electronic brachytherapy for basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Rosa Ballester-Sánchez

    2017-06-01

    Full Text Available Purpose: The use of radiation therapy (RT for non-melanoma skin cancer (NMSC has been changing throughout the last century. Over the last decades, the use of radiotherapy has surged with the development of new techniques, applicators, and devices. In recent years, electronic brachytherapy (eBT devices that use small x-ray sources have been introduced as alternative to radionuclide dependence. Nowadays, several devices have been incorporated, with a few series reported, and with a short follow-up, due to the recent introduction of these systems. The purpose of this work is to describe the clinical results of our series after two years follow-up with a specific eBT system. Material and methods: This is a prospective single-center, non-randomized pilot study, to assess clinical results of electronic brachytherapy in basal cell carcinoma using the Esteya® system. In 2014, 40 patients with 60 lesions were treated. Patient follow-up on a regular basis was performed for a period of two years. Results: Twenty-six patients with 44 lesions achieved two years follow-up. A complete response was documented in 95.5% of cases. Toxicity was mild (G1 or G2 in all cases, caused by erythema, erosion, or alopecia. Cosmesis was excellent in 88.6% of cases, and good in the rest. Change in pigmentation was the most frequent cosmetic alteration. Conclusions : This work is special, since the equipment’s treatment voltage was 69.5 kV, and this is the first prospective study with long term follow-up with Esteya®. These preliminary report show excellent results with less toxicity and excellent cosmesis. While surgery has been the treatment of choice, certain patients might benefit from eBT treatment. These are elderly patients with comorbidities or undergoing anticoagulant treatment as well as those who simply refuse surgery or might have other contraindications.

  14. Mathematical model I. Electron and quantum mechanics

    Directory of Open Access Journals (Sweden)

    Nitin Ramchandra Gadre

    2011-03-01

    Full Text Available The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is ‘difficult’ to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  15. Mathematical model I. Electron and quantum mechanics

    Science.gov (United States)

    Gadre, Nitin Ramchandra

    2011-03-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is `difficult' to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  16. Two years results of electronic brachytherapy for basal cell carcinoma.

    Science.gov (United States)

    Ballester-Sánchez, Rosa; Pons-Llanas, Olga; Candela-Juan, Cristian; de Unamuno-Bustos, Blanca; Celada-Alvarez, Francisco Javier; Tormo-Mico, Alejandro; Perez-Calatayud, Jose; Botella-Estrada, Rafael

    2017-06-01

    The use of radiation therapy (RT) for non-melanoma skin cancer (NMSC) has been changing throughout the last century. Over the last decades, the use of radiotherapy has surged with the development of new techniques, applicators, and devices. In recent years, electronic brachytherapy (eBT) devices that use small x-ray sources have been introduced as alternative to radionuclide dependence. Nowadays, several devices have been incorporated, with a few series reported, and with a short follow-up, due to the recent introduction of these systems. The purpose of this work is to describe the clinical results of our series after two years follow-up with a specific eBT system. This is a prospective single-center, non-randomized pilot study, to assess clinical results of electronic brachytherapy in basal cell carcinoma using the Esteya ® system. In 2014, 40 patients with 60 lesions were treated. Patient follow-up on a regular basis was performed for a period of two years. Twenty-six patients with 44 lesions achieved two years follow-up. A complete response was documented in 95.5% of cases. Toxicity was mild (G1 or G2) in all cases, caused by erythema, erosion, or alopecia. Cosmesis was excellent in 88.6% of cases, and good in the rest. Change in pigmentation was the most frequent cosmetic alteration. This work is special, since the equipment's treatment voltage was 69.5 kV, and this is the first prospective study with long term follow-up with Esteya ® . These preliminary report show excellent results with less toxicity and excellent cosmesis. While surgery has been the treatment of choice, certain patients might benefit from eBT treatment. These are elderly patients with comorbidities or undergoing anticoagulant treatment as well as those who simply refuse surgery or might have other contraindications.

  17. Experimental results on electron beam combination and bunch frequency multiplication

    Directory of Open Access Journals (Sweden)

    Roberto Corsini

    2004-04-01

    Full Text Available The aim of the CLIC Test Facility CTF3 at CERN is to demonstrate the feasibility of the key points of the two-beam acceleration based compact linear collider study. In particular, it addresses the efficient generation of a drive beam with the appropriate time structure of the electron bunches in order to produce high power rf pulses at a frequency of 30 GHz. This time structure requires a high bunch repetition frequency. It is obtained by successive injections of bunch trains into an isochronous ring using transversely deflecting rf structures. The major goal of the now completed first phase of the CTF3 was to achieve the bunch train combination at low charge. In this paper, we give a description of the project and summarize the experimental results, with a focus on the successful bunch frequency multiplication for various factors up to 5.

  18. Developing a model for application of electronic banking based on electronic trust

    Directory of Open Access Journals (Sweden)

    Amir Hooshang Nazarpoori

    2014-05-01

    Full Text Available This study develops a model for application of electronic banking based on electronic trust among costumers of Day bank in KhoramAbad city. A sample of 150 people was selected based on stratified random sampling. Questionnaires were used for the investigation. Results indicate that technology-based factors, user-based factors, and trust had negative relationships with perceived risk types including financial, functional, personal, and private. Moreover, trust including trust in system and trust in bank had a positive relationship with tendency to use and real application of electronic banking.

  19. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  20. Models of fast-electron penetration

    International Nuclear Information System (INIS)

    Perry, D.J.; Raisis, S.K.

    1994-01-01

    We introduce multiple scattering models of charged-particle penetration which are based on the previous analyses of Yang and Perry. Our development removes the main limitations of the Fermi-Eyges approach while retaining its considerable potential as a theory which is useful for applied work. We illustrate key predictions with sample calculations that are of particular interest in therapeutic applications, 5-20 MeV electrons incident on water. 8 refs., 5 figs

  1. MODEL OF ELECTRON CLOUD INSTABILITY IN FERMILAB RECYCLER

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A. [Chicago U.; Burov, A. [Fermilab; Nagaitsev, S. [Fermilab

    2016-10-04

    An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future intensity upgrades.

  2. A ballistic transport model for electronic excitation following particle impact

    Science.gov (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2018-01-01

    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  3. Ontological modeling of electronic health information exchange.

    Science.gov (United States)

    McMurray, J; Zhu, L; McKillop, I; Chen, H

    2015-08-01

    Investments of resources to purposively improve the movement of information between health system providers are currently made with imperfect information. No inventories of system-level electronic health information flows currently exist, nor do measures of inter-organizational electronic information exchange. Using Protégé 4, an open-source OWL Web ontology language editor and knowledge-based framework, we formalized a model that decomposes inter-organizational electronic health information flow into derivative concepts such as diversity, breadth, volume, structure, standardization and connectivity. The ontology was populated with data from a regional health system and the flows were measured. Individual instance's properties were inferred from their class associations as determined by their data and object property rules. It was also possible to visualize interoperability activity for regional analysis and planning purposes. A property called Impact was created from the total number of patients or clients that a health entity in the region served in a year, and the total number of health service providers or organizations with whom it exchanged information in support of clinical decision-making, diagnosis or treatment. Identifying providers with a high Impact but low Interoperability score could assist planners and policy-makers to optimize technology investments intended to electronically share patient information across the continuum of care. Finally, we demonstrated how linked ontologies were used to identify logical inconsistencies in self-reported data for the study. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Electronic Freight Management Case Studies : a Summary of Results

    Science.gov (United States)

    2012-04-01

    The Electronic Freight Management (EFM) initiative is a USDOT-sponsored project that applies Web technologies that improve data and message transmissions between supply chain partners. The EFM implementation case studies contained in this document ex...

  5. Ionospheric topside models compared with experimental electron density profiles

    Directory of Open Access Journals (Sweden)

    S. M. Radicella

    2005-06-01

    Full Text Available Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC.

  6. Analysis of operating model of electronic invoice colombian Colombian electronic billing analysis of the operational model

    Directory of Open Access Journals (Sweden)

    Sérgio Roberto da Silva

    2016-06-01

    Full Text Available Colombia has been one of the first countries to introduce electronic billing process on a voluntary basis, from a traditional to a digital version. In this context, the article analyzes the electronic billing process implemented in Colombia and the advantages. Methodological research is applied, qualitative, descriptive and documentary; where the regulatory framework and the conceptualization of the model is identified; the process of adoption of electronic billing is analyzed, and finally the advantages and disadvantages of its implementation is analyzed. The findings indicate that the model applied in Colombia to issue an electronic billing in sending and receiving process, is not complex, but it requires a small adequate infrastructure and trained personnel to reach all sectors, especially the micro and business which is the largest business network in the country.

  7. Model based design of electronic throttle control

    Science.gov (United States)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more

  8. Modeling Radiation Belt Electron Dynamics with the DREAM3D Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Weichao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cunningham, Gregory S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Michael G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Steven K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blake, Bernard J. [The Aerospace Corporation, El Segundo, CA (United States); Baker, Daniel N. [Lab. for Atmospheric and Space Physics, Boulder, CO (United States); Spence, Harlan [Univ. of New Hampshire, Durham, NH (United States)

    2014-02-14

    The simulation results from our 3D diffusion model on the CRRES era suggest; our model captures the general variations of radiation belt electrons, including the dropouts and the enhancements; the overestimations inside the plasmapause can be improved by increasing the PA diffusion from hiss waves; and that better DLL and wave models are required.

  9. Modelling and simulation of beam formation in electron guns

    International Nuclear Information System (INIS)

    Sabchevski, S.; Barbarich, I.

    1996-01-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.)

  10. Modelling and simulation of beam formation in electron guns

    Energy Technology Data Exchange (ETDEWEB)

    Sabchevski, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Mladenov, G. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Titov, A. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation); Barbarich, I. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation)

    1996-11-01

    This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.).

  11. Calibration Results and Anticipated Science Ops for the Parker Solar Probe's SWEAP/SPAN-Electron Analyzers

    Science.gov (United States)

    Whittlesey, P. L.; Larson, D. E.; Livi, R.; Abiad, R.; Parker, C.; Halekas, J. S.; Kasper, J. C.; Korreck, K. E.

    2017-12-01

    We present the SPAN-E calibration results and science operation plans this instrument on the Parker Solar Probe mission. SPAN-E is a pair of highly configurable ESA sensors, one on the RAM side of the spacecraft (SPAN-Ae) and one on anti-RAM (SPAN-B). Together, SPAN-E will jointly measure the full 3D thermal and suprathermal electron distribution function at cadences as fast as 4.58Hz. Joined with the SPAN-Ai and SPC instruments that are part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) suite, SPAN-E will measure the solar coronal plasma across a range of energies and densities with a FOV over >90% of the sky, returning data over a 7 year long PSP mission lifetime. The SPAN-E instruments have passed environmental testing at the instrument level, and the final instrument calibrations are complete. This presentation details the final instrument calibration results as performed at UCB/SSL after environmental testing, and details the planned configurations for PSP's first orbit. In addition, the PSP spacecraft's magnetic fields are expected to distort the measured electron VDFs at low energies, thus we present a novel computer vision method of measuring and modeling the spacecraft magnetic fields as seen during an observatory-level "swing" test. Ultimately, the model will feed into an algorithm for ground corrections to electron VDFs distorted by these stray spacecraft magnetic fields.

  12. Magnetization plateau as a result of the uniform and gradual electron doping in a coupled spin-electron double-tetrahedral chain

    Science.gov (United States)

    Gálisová, Lucia

    2017-11-01

    The double-tetrahedral chain in a longitudinal magnetic field, whose nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular plaquettes with the dynamics described by the Hubbard model, is rigorously investigated. It is demonstrated that the uniform change of electron concentration controlled by the chemical potential in a combination with the competition between model parameters and the external magnetic field leads to the formation of one chiral and seven nonchiral phases at the absolute zero temperature. Rational plateaux at one-third and one-half of the saturation magnetization can also be identified in the low-temperature magnetization curves. On the other hand, the gradual electron doping results in 11 different ground-state regions that distinguish from each other by the evolution of the electron distribution during this process. Several doping-dependent magnetization plateaux are observed in the magnetization process as a result of the continuous change of electron content in the model.

  13. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  14. FERMILAB SWITCHYARD RESONANT BEAM POSITION MONITOR ELECTRONICS UPGRADE RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, T. [Fermilab; Diamond, J. [Fermilab; Liu, N. [Fermilab; Prieto, P. S. [Fermilab; Slimmer, D. [Fermilab; Watts, A. [Fermilab

    2016-10-12

    The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuning of the SY beamline as well as enabling operators to monitor beam position through the spill.

  15. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...

  16. Modeling Electronic Properties of Complex Oxides

    Science.gov (United States)

    Krishnaswamy, Karthik

    Complex oxides are a class of materials that have recently emerged as potential candidates for electronic applications owing to their interesting electronic properties. The goal of this dissertation is to develop a fundamental understanding of these electronic properties using a combination of first-principles approaches based on density functional theory (DFT), and Schrodinger-Poisson (SP) simulation (Abstract shortened by ProQuest.

  17. First results of computerised tomographic angiography using electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, K.J.; Weisser, G.; Neff, K.W.; Mai, S.K.; Denk, S.; Georgi, M. [Inst. fuer Klinische Radiologie, Universitaetsklinikum Mannheim, Heidelberg (Germany)

    1999-05-01

    The aim of this study was to evaluate the suitability of electron beam tomography (EBT) with fast continuous volume scanning for CT angiography (CTA) in chest and abdomen. An Evolution XP EBT scanner with a new software version (12.34) was used. One hundred forty images per study can be acquired in 17 s using 3-mm collimation and overlapping image reconstruction. Study protocols for five different clinical applications of EBT CTA were established and evaluated. The EBT CTA technique was performed in 155 patients. High- and homogeneous density values were achieved along the whole course of the vessels; the mean density in the aorta was > 240 HU. Coeliac axis, superior and inferior mesenteric artery, renal and lumbar arteries were visualised in all cases. Maximum intensity projection and shaded surface display reconstruction demonstrated the relation between aneurysm and aortic branches very well due to an excellent resolution along the z-axis. In large scan volumes overlapping image reconstruction demonstrated better resolution along the z-axis than is available with helical CT. The EBT CTA technique proved to be very well suited excellent suitability for evaluation of pulmonary vessels. Compared with helical CT, EBT CTA offers a shorter scan time, which allows higher contrast enhancement in pulmonary vessels. The identification of intraluminal emboli and mural thrombi has improved. The EBT CTA technique is a very reliable tool for evaluation of aortic disease and pulmonary vessels. (orig.) With 3 figs., 9 refs.

  18. On the Computation of Secondary Electron Emission Models

    OpenAIRE

    Clerc, Sebastien; Dennison, JR; Hoffmann, Ryan; Abbott, Jonathon

    2006-01-01

    Secondary electron emission is a critical contributor to the charge particle current balance in spacecraft charging. Spacecraft charging simulation codes use a parameterized expression for the secondary electron (SE) yield delta(Eo) as a function of the incident electron energy Eo. Simple three-step physics models of the electron penetration, transport, and emission from a solid are typically expressed in terms of the incident electron penetration depth at normal incidence R(Eo) and the mean ...

  19. A Model for Teaching Electronic Commerce Students

    Directory of Open Access Journals (Sweden)

    Howard C. Woodard

    2002-10-01

    Full Text Available The teaching of information technology in an ever-changing world at universities presents a challenge. Are courses taught as concepts, while ignoring hands-on courses, leaving the hands-on classes to the technical colleges or trade schools? Does this produce the best employees for industry or give students the knowledge and skills necessary to function in a high-tech world? At GeorgiaCollege & StateUniversity (GC&SU a model was developed that combines both concepts and practical hands-on skill to meet this challenge. Using this model, a program was developed that consists of classroom lecture of concepts as well as practical hands-on exercises for mastering the knowledge and developing the skills necessary to succeed in the high-tech world of electronic commerce. The students become productive day one of a new job assignment. This solves the problem of students having the "book knowledge" but not knowing how to apply what has been learned.

  20. Magnetic Electron Filtering by Fluid Models for the PEGASES Thruster

    Science.gov (United States)

    Leray, Gary; Chabert, Pascal; Lichtenberg, Allan; Lieberman, Michael

    2009-10-01

    The PEGASES thruster produces thrust by creating positive and negative ions, which are then accelerated. To accelerate both type of ions, electrons need to be filtered, which is achieved by applying a static magnetic field strong enough to magnetize the electrons but not the ions. A 1D fluid model with three species (electrons, positive and negative ions) and an analytical model are proposed to understand this process for an oxygen plasma with p = 10 mTorr and B0 = 300 G [1]. The resulting ion-ion plasma formation in the transverse direction (perpendicular to the magnetic field) is demonstrated. It is shown that an additional electron/positive ion loss term is required. The solutions are evaluated for two main parameters: the ionizing fraction at the plasma center (x = 0), ne0/ng, and the electronegativity ratio at the center, α0=nn0/ne0. The effect of geometry and magnetic field amplitude are also discussed. [4pt] [1] Leray G, Chabert P, Lichtenberg A J and Lieberman M A, J. Phys. D: Appl. Phys., Plasma Modelling Cluster issue, to appear (2009)

  1. Modeling radiation belt electron dynamics during GEM challenge intervals with the DREAM3D diffusion model

    Science.gov (United States)

    Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.

    2013-10-01

    a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.

  2. Transverse Momentum Distributions of Electron in Simulated QED Model

    Science.gov (United States)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  3. Research on lightning stroke model and characteristics of electronic transformer

    Directory of Open Access Journals (Sweden)

    Li Mu

    2018-01-01

    Full Text Available In order to improve the reliability of power supply, a large number of electronic voltage and current transformers are used in digital substations. In this paper, the mathematical model of the electronic transformer is analyzed firstly, and its circuit model is given. According to the difference of working characteristics between voltage transformer and current transformer, the circuit model of voltage type electronic transformer and current type electronic transformer is given respectively. By analyzing their broadband transmission characteristics, the accuracy of the model is verified, and their lightning analysis models are obtained.

  4. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  5. New results on diamond pixel sensors using ATLAS frontend electronics

    CERN Document Server

    Keil, Markus; Berdermann, E; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  6. Cosmic-ray electrons in the closed-galaxy model

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Stephens, S.A.

    1976-01-01

    We have examined the consequences of the ''closed galaxy'' cosmic-ray confinement model of Rasmussen and Peters with regard to the electron component of cosmic rays. It is found that the predictions of this model are inconsistent with the observed intensity and charge composition of electrons. The model is also inconsistent with the galactic radio emission

  7. Results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.; Komine, Kuniaki; Matsumoto, Tomoyuki; Costello, J.F.

    1998-05-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed by the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed

  8. Experimental results on low alpha electron-storage rings

    International Nuclear Information System (INIS)

    Robin, D.; Hama, H.; Nadji, A.

    1995-09-01

    The authors report on experiments performed in two synchrotron light sources, UVSOR and Super-ACO, where the momentum compaction factor is reduced in order to reduce the bunch length. By controlling the second-order momentum compaction factor, UVSOR and Super-ACO have managed to reduce the first-order momentum compaction factor by 100. At low current the resulting bunch lengths are less than 10 ps, a factor of 10 smaller than normal. Measurements of current dependent bunch lengthening in UVSOR are presented and the cause of the bunch lengthening is determined to be potential-well distortion. The authors also show that by operating with a negative momentum compaction factor, SuperACO has achieved shorter bunch lengthening and higher peak currents than at positive momentum compaction

  9. Modeling and multidimensional optimization of a tapered free electron laser

    Directory of Open Access Journals (Sweden)

    Y. Jiao

    2012-05-01

    Full Text Available Energy extraction efficiency of a free electron laser (FEL can be greatly increased using a tapered undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead to saturation of the peak intensity and power. To better understand these effects, we develop a model extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction, optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the electron-radiation interaction along the tapered undulator and show that the decreasing of refractive guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the radiation power. With this understanding, we develop a multidimensional optimization scheme based on GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the dependence of the maximum extractable radiation power on various parameters of the initial electron beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that together strongly limit the overall energy extraction efficiency.

  10. Advanced electron crystallography through model-based imaging

    Science.gov (United States)

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T.; den Dekker, Arnold J.; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383

  11. Advanced electron crystallography through model-based imaging

    Directory of Open Access Journals (Sweden)

    Sandra Van Aert

    2016-01-01

    Full Text Available The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.

  12. Modeling of the atomic and electronic structures of interfaces

    International Nuclear Information System (INIS)

    Sutton, A.P.

    1988-01-01

    Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature

  13. Lessons on electronic decoherence in molecules from exact modeling

    Science.gov (United States)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  14. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  15. Microwave remediation of electronic circuitry waste and the resulting gaseous emissions

    Science.gov (United States)

    Schulz, Rebecca L.

    The global community has become increasingly dependent on computer and electronic technology. As a result, society is faced with an increasing amount of obsolete equipment and electronic circuitry waste. Electronic waste is generally disposed of in landfills. While convenient, this action causes a substantial loss of finite resources and poses an environmental threat as the circuit board components breakdown and are exposed to the elements. Hazardous compounds such as lead, mercury and cadmium may leach from the circuitry and find their way into the groundwater supply. For this dissertation, a microwave waste remediation system was developed. The system was designed to remove the organic components from a wide variety of electronic circuitry. Upon additional heating of the resulting ash material in an industrial microwave, a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. a glass and metal product can be recovered. Analysis of the metal reveals the presence of precious metals (gold, silver) that can be sold to provide a return on investment. Gaseous organic compounds that were generated as a result of organic removal were treated in a microwave off gas system that effectively reduced the concentration of the products emitted by several orders of magnitude, and in some cases completely destroying the waste gas. Upon further heating in an industrial microwave, a glass and metal product were recovered. In order to better understand the effects of processing parameters on the efficiency of the off-gas system, a parametric study was developed. The study tested the microwave system at 3 flow rates (10, 30, and 50 ft 3/min) and three temperatures (400, 700 and 1000°C. In order to test the effects of microwave energy, the experiments were repeated using a conventional furnace. While microwave energy is widely used, the mechanisms of interaction with

  16. Interpreting Results from the Multinomial Logit Model

    DEFF Research Database (Denmark)

    Wulff, Jesper

    2015-01-01

    This article provides guidelines and illustrates practical steps necessary for an analysis of results from the multinomial logit model (MLM). The MLM is a popular model in the strategy literature because it allows researchers to examine strategic choices with multiple outcomes. However, there seem...... to be systematic issues with regard to how researchers interpret their results when using the MLM. In this study, I present a set of guidelines critical to analyzing and interpreting results from the MLM. The procedure involves intuitive graphical representations of predicted probabilities and marginal effects...... suitable for both interpretation and communication of results. The pratical steps are illustrated through an application of the MLM to the choice of foreign market entry mode....

  17. VHDL Model of Electronic-Lock System

    Directory of Open Access Journals (Sweden)

    J. Noga

    2000-04-01

    Full Text Available The paper describes the design of an electronic-lock system which wascompleted as part of the Basic VHDL course in the Department of Controland Measurement Faculty of Electrical Engineering and Informatics,Technical University of Ostrava, Czech Republic in co-operation withthe Department if Electronic Engineering, University of Hull, GreatBritain in the frame of TEMPUS project no. S_JEP/09468-95.

  18. Model of charge-state distributions for electron cyclotron resonance ion source plasmas

    Directory of Open Access Journals (Sweden)

    D. H. Edgell

    1999-12-01

    Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.

  19. Use of mathematical modelling in electron beam processing: A guidebook

    International Nuclear Information System (INIS)

    2010-01-01

    The use of electron beam irradiation for industrial applications, like the sterilization of medical devices or cross-linking of polymers, has a long and successful track record and has proven itself to be a key technology. Emerging fields, including environmental applications of ionizing radiation, the sterilization of complex medical and pharmaceutical products or advanced material treatment, require the design and control of even more complex irradiators and irradiation processes. Mathematical models can aid the design process, for example by calculating absorbed dose distributions in a product, long before any prototype is built. They support process qualification through impact assessment of process variable uncertainties, and can be an indispensable teaching tool for technologists in training in the use of radiation processing. The IAEA, through various mechanisms, including its technical cooperation programme, coordinated research projects, technical meetings, guidelines and training materials, is promoting the use of radiation technologies to minimize the effects of harmful contaminants and develop value added products originating from low cost natural and human made raw materials. The need to publish a guidebook on the use of mathematical modelling for design processes in the electron beam treatment of materials was identified through the increased interest of radiation processing laboratories in Member States and as a result of recommendations from several IAEA expert meetings. In response, the IAEA has prepared this report using the services of an expert in the field. This publication should serve as both a guidebook and introductory tutorial for the use of mathematical modelling (using mostly Monte Carlo methods) in electron beam processing. The emphasis of this guide is on industrial irradiation methodologies with a strong reference to existing literature and applicable standards. Its target audience is readers who have a basic understanding of electron

  20. FTL Quantum Models of the Photon and the Electron

    International Nuclear Information System (INIS)

    Gauthier, Richard F.

    2007-01-01

    A photon is modeled by an uncharged superluminal quantum moving at 1.414c along an open 45-degree helical trajectory with radius R = λ/2π (where λ is the helical pitch or wavelength). A mostly superluminal spatial model of an electron is composed of a charged pointlike quantum circulating at an extremely high frequency ( 2.5 x 1020 hz) in a closed, double-looped hehcal trajectory whose helical pitch is one Compton wavelength h/mc. The quantum has energy and momentum but not rest mass, so its speed is not limited by c. sThe quantum's speed is superluminal 57% of the time and subluminal 43% of the time, passing through c twice in each trajectory cycle. The quantum's maximum speed in the electron's rest frame is 2.515c and its minimum speed is .707c. The electron model's helical trajectory parameters are selected to produce the electron's spin (ℎ/2π)/2 and approximate (without small QED corrections) magnetic moment e(ℎ/2π)/2m (the Bohr magneton μB) as well as its Dirac equation-related 'jittery motion' angular frequency 2mc2/(ℎ/2π), amplitude (ℎ/2π)/2mc and internal speed c. The two possible helicities of the electron model correspond to the electron and the positron. With these models, an electron is like a closed circulating photon. The electron's inertia is proposed to be related to the electron model's circulating internal Compton momentum mc. The internal superluminalily of the photon model, the internal superluminahty/subluminality of the electron model, and the proposed approach to the electron's inertia as ''momentum at rest'' within the electron, could be relevant to possible mechanisms of superluminal communication and transportation

  1. Modeling mini-orange electron spectrometers

    International Nuclear Information System (INIS)

    Canzian da Silva, Nelson; Dietzsch, Olacio

    1994-01-01

    A method for calculating the transmission of mini-orange electron spectrometers is presented. The method makes use of the analytical solution for the magnetic field of a plane magnet in the calculation of the spectrometer spatial field distribution by superimposing the fields of the several magnets that compose the system. Electron trajectories through the spectrometer are integrated numerically in a Monte Carlo calculation and the transmission of the spectrometer as a function of the electron energy is evaluated. A six-magnet mini-orange spectrometer was built and its transmission functions for several distances from source to detector were measured and compared to the calculations. The overall agreement is found to be good. The method is quite general and can be applied to the design of systems composed of plane magnets, predicting their performance before assembling them. ((orig.))

  2. Models for the transport of low energy electrons in water and the yield of hydrated electrons at early times

    International Nuclear Information System (INIS)

    Brenner, D.J.; Miller, J.H.; Ritchie, R.H.; Bichsel, H.

    1985-01-01

    An insulator model with four experimental energy bands was used to fit the optical properties of liquid water and to extend these data to non-zero momentum transfer. Inelastic mean free paths derived from this dielectric response function provided the basic information necessary to degrade high energy electrons to the subexcitation energy domain. Two approaches for the transport of subexcitation electrons were investigated. (i) Gas phase cross sections were used to degrade subexcitation electrons to thermal energy and the thermalization lengths were scaled to unit density. (ii) Thermalization lengths were estimated by age-diffusion theory with a stopping power deduced from the data on liquid water and transport cross sections derived from elastic scattering in water vapor. Theoretical ranges were compared to recent experimental results. A stochastic model was used to calculate the rapid diffusion and reaction of hydrated electrons with other radiolysis products. The sensitivity of the calculated yields to the model assumptions and comparison with experimental data are discussed

  3. The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data

    Science.gov (United States)

    Kushner, Mark J.

    2015-09-01

    Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.

  4. Improving high-altitude emp modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution

    Science.gov (United States)

    Pusateri, Elise Noel

    abruptly. The objective of the PhD research is to mitigate this effect by integrating a conduction electron model into CHAP-LA which can calculate the conduction current based on a non-equilibrium electron distribution. We propose to use an electron swarm model to monitor the time evolution of conduction electrons in the EMP environment which is characterized by electric field and pressure. Swarm theory uses various collision frequencies and reaction rates to study how the electron distribution and the resultant transport coefficients change with time, ultimately reaching an equilibrium distribution. Validation of the swarm model we develop is a necessary step for completion of the thesis work. After validation, the swarm model is integrated in the air chemistry model CHAP-LA employs for conduction electron simulations. We test high altitude EMP simulations with the swarm model option in the air chemistry model to show improvements in the computational capability of CHAP-LA. A swarm model has been developed that is based on a previous swarm model developed by Higgins, Longmire and O'Dell 1973, hereinafter HLO. The code used for the swarm model calculation solves a system of coupled differential equations for electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, including the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are recalculated and compared to the previously reported empirical results given by HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford 2005. BOLSIG+ utilizes updated electron scattering cross sections that are defined over an expanded energy range found in the atomic and molecular cross section database published by Phelps in the Phelps Database 2014 on the LXcat website created by Pancheshnyi et al. 2012. The swarm model is also updated from the original HLO model by including

  5. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  6. Orbital Models and Electronic Structure Theory

    DEFF Research Database (Denmark)

    Linderberg, Jan

    2012-01-01

    This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules w...

  7. Electronic Warfare in Army Models - A Survey.

    Science.gov (United States)

    1980-08-01

    CCM) PROVING GROUND TENIAS SAMJAM EIEM SPREAD SPECTRUM US ARMY ELECTRONIC FOREIGN SCIENCE & OFFICE OF MISSILE WARFARE LAB (EWL) TECHNOLOGY CENTER...IPAR MULTIRADAR SPREAD SPECTRUM ECMFUZ IRSS OTOALOC TAC ZINGERS EIEM ITF PATCOM TAM EOCM SIM FAC MGM-H4D RFSS TENIAS GTSF MG(-H4H ROLJAM ZAP I HMSM MSL...USAFAS TRASANA USAPAS TCF ASD WPAFU TENIAS ______ ___ ECAC _________ WAR EAGLE _________CATRADA WARRANT am________ 3DBDM ZAP 1 ____________ MEW EWL ZAP 2

  8. Reliability Modeling of Critical Electronic Devices.

    Science.gov (United States)

    1983-05-01

    Electronics, Vol. QE-15, No. 1, up January 1979, pp. 11-13. 15. Newman, D.H. and Ritchie, S., Degradation Pnenomena in Gallium Aluminium Arsenide Stripe...8217RESERVOIR COLD CATHODE TRAP FIGURE 7.2-1: HELIUM-CADMIUM LASER TUBE Principle design considerations relating to the lifetime of the device include (Ref 1): o...available in two basic design types. The contact design is either screw machined or stamped and formed. The screw machined contacts are close entry

  9. Mathematical model I. Electron and quantum mechanics

    OpenAIRE

    Nitin Ramchandra Gadre

    2011-01-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like...

  10. Electronic learning and constructivism: a model for nursing education.

    Science.gov (United States)

    Kala, Sasikarn; Isaramalai, Sang-Arun; Pohthong, Amnart

    2010-01-01

    Nurse educators are challenged to teach nursing students to become competent professionals, who have both in-depth knowledge and decision-making skills. The use of electronic learning methods has been found to facilitate the teaching-learning process in nursing education. Although learning theories are acknowledged as useful guides to design strategies and activities of learning, integration of these theories into technology-based courses appears limited. Constructivism is a theoretical paradigm that could prove to be effective in guiding the design of electronic learning experiences for the purpose of providing positive outcomes, such as the acquisition of knowledge and decision-making skills. Therefore, the purposes of this paper are to: describe electronic learning, present a brief overview of what is known about the outcomes of electronic learning, discuss constructivism theory, present a model for electronic learning using constructivism, and describe educators' roles emphasizing the utilization of the model in developing electronic learning experiences in nursing education.

  11. Power Electronic Packaging Design, Assembly Process, Reliability and Modeling

    CERN Document Server

    Liu, Yong

    2012-01-01

    Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...

  12. A Transport Model for Non-Local Heating of Electrons in ICP Reactors

    Science.gov (United States)

    Chang, C. H.; Bose, Deepak; Arnold, James O. (Technical Monitor)

    1998-01-01

    A new model has been developed for non-local heating of electrons in ICP reactors, based on a hydrodynamic approach. The model has been derived using the electron momentum conservation in azimuthal direction with electromagnetic and frictional forces respectively as driving force and damper of harmonic oscillatory motion of electrons. The resulting transport equations include the convection of azimuthal electron momentum in radial and axial directions, thereby accounting for the non-local effects. The azimuthal velocity of electrons and the resulting electrical current are coupled to the Maxwell's relations, thus forming a self-consistent model for non-local heating. This model is being implemented along with a set of Navier-Stokes equations for plasma dynamics and gas flow to simulate low-pressure (few mTorr's) ICP discharges. Characteristics of nitrogen plasma in a TCP 300mm etch reactor is being studied. The results will be compared against the available Langmuir probe measurements.

  13. The Danish national passenger modelModel specification and results

    DEFF Research Database (Denmark)

    Rich, Jeppe; Hansen, Christian Overgaard

    2016-01-01

    , the paper provides a description of a large-scale forecast model with a discussion of the linkage between population synthesis, demand and assignment. Secondly, the paper gives specific attention to model specification and in particular choice of functional form and cost-damping. Specifically we suggest...... a family of logarithmic spline functions and illustrate how it is applied in the model. Thirdly and finally, we evaluate model sensitivity and performance by evaluating the distance distribution and elasticities. In the paper we present results where the spline-function is compared with more traditional...... function types and it is indicated that the spline-function provides a better description of the data. Results are also provided in the form of a back-casting exercise where the model is tested in a back-casting scenario to 2002....

  14. Electron backscattering and secondary electron emission from carbon targets: comparison of experimental results with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Farhang, H.; Blott, B.H.; Napchan, E.

    1993-01-01

    Electron backscattering (EBS) and secondary electron emission (SEE) yield have been measured for bulk carbon with a density of 1.8 g cm -3 , for primary electron energies in the range from 100 to 500 eV and from 12 to 1000 ev respectively. The backscattering results were in agreement with an empirical formula to within 2%. The SEE yield value was 0.04 at lowest measured energy (12 eV) and reached a maximum value of 0.54 at about 300 eV. The backscattering coefficients and SEE yield have also been calculated using a Monte Carlo simulation for the energy range from 12 to 1000 eV. In the simulation, two different energy loss characteristics were used. The first was obtained from a set of optical data and gave good agreement with the experiment SEE yield but poor agreement with the backscattering data. The second was obtained from a modified Bethe energy loss function which fitted the backscattering data well. Using the Bethe loss function for each primary electron, the SEE yield was calculated for every path length between scattering events by dividing the primary electron energy lost per unit path length by the average energy required to create a secondary electron. The SEE data was fitted on the assumption that the average energy to create a secondary varied with primary electron energy according to a four parameter function. Comparison of the calculated SEE yield with the experimental SEE yield, as a function of incident angle of the primary beam, was good over the energy range from 100 to 500 eV. (Author)

  15. Modeling electron fractionalization with unconventional Fock spaces

    Science.gov (United States)

    Cobanera, Emilio

    2017-08-01

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality D=1,2,3,\\ldots of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  16. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  17. Electronic Business Development as a Sustainable Competitive Advantage Model

    Directory of Open Access Journals (Sweden)

    Narimantas Kazimieras Paliulis

    2012-07-01

    Full Text Available The paper examines the practical usefulness of information technologies in business reviewing electronic business concepts provided in science literature and also the newest tendencies of electronic business development. The paper offers a review of various authors works on e-strategies and IT influence on companies’ functionality. An analysis of disadvantages in various electronic business development models is provided. On the basis of analyses done on the theory of electronic business development and on disadvantages of e-business models, the main aspects of e-business development as sustainable competitive advantage are identified. A fully – formed model of electronic business development as sustainable competitive advantage is presented. Conclusions are provided.Article in Lithuanian

  18. New two-fluid (localized + band electron) model for manganites

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. New two-fluid (localized + band electron) model for manganites. ( With HR Krishnamurthy,GV Pai,SR Hassan,V Shenoy,. Key ideas: T Gupta ….) Two types of eg electronic states arise in doped manganites (due to strong JT coupling, strong U, filling conditions, …):.

  19. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    Science.gov (United States)

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  20. Problem Resolution through Electronic Mail: A Five-Step Model.

    Science.gov (United States)

    Grandgenett, Neal; Grandgenett, Don

    2001-01-01

    Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…

  1. 3D invariant embedding model for backscattering electrons applied to materials characterization

    International Nuclear Information System (INIS)

    Figueroa, C.; Nieva, N.; Heluani, S.P.

    2007-01-01

    In this work, the results of a 3D model used to describe the fraction of backscattered electrons, together with its energy and angular distributions, are reported. This 3D model is the result of improvements in the Invariant Embedding Approach to Microanalysis (IEAM). Comparisons with experiment show that the theoretical results follow the general trend of experimental data, when parameters (such as atomic number, energy of the impinging electrons and tilted angle) are changed

  2. Modelling of electron transport and of sawtooth activity in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C

    2001-10-01

    Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code

  3. Scale Model Thruster Acoustic Measurement Results

    Science.gov (United States)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  4. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  5. Final Report for 'Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators'

    International Nuclear Information System (INIS)

    Veitzer, Seth A.

    2009-01-01

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  6. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with focus on very low temperatures...

  7. Electronic field emission models beyond the Fowler-Nordheim one

    Science.gov (United States)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  8. Electron spin resonance dating of teeth from Western Brazilian megafauna - preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Angela, E-mail: angela.kinoshita@usc.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil); Universidade Sagrado Coracao, Rua Irma Arminda 10-50, 17011-160 Bauru - Sao Paulo (Brazil); Jose, Flavio A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil); Sundaram, Dharani; Paixao, Jesus da S.; Soares, Isabella R.M. [Universidade Federal de Mato Grosso, Departamento de Geologia Geral, 78090-000 Cuiaba-MT (Brazil); Figueiredo, Ana Maria [Instituto de Pesquisas Energeticas e Nucleares (IPEN), 05422-970 Sao Paulo-SP (Brazil); Baffa, Oswaldo [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto-SP (Brazil)

    2011-09-15

    Electron Spin Resonance (ESR) was applied to determine ages of Haplomastodon teeth from Western Brazilian Megafauna. The Equivalent Doses (D{sub e}) of (1.3 {+-} 0.2)kGy, (800 {+-} 100)Gy and (140 {+-} 20)Gy were found and the software ROSY ESR dating was employed to convert D{sub e} in age, using isotope concentrations determined by neutron activation analysis (NAA) and other information, resulting in (500 {+-} 100)ka, (320 {+-} 50) and (90 {+-} 10)ka considering the Combination Uptake (CU) model for Uranium uptake, set as an Early Uptake (EU) for dentine and Linear Uptake (LU) for enamel. There are scarce reports about Pleistocene Megafauna in this area. This paper presents the first dating of megafauna tooth and this study could contribute to improve the knowledge about the paleoclimate and paleoenvironment of this region and prompt more investigations in this area.

  9. Modelling and implementing electronic health records in Denmark

    DEFF Research Database (Denmark)

    Bernstein, Knut; Rasmussen, Morten Bruun; Vingtoft, Søren

    2003-01-01

    The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development.......The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development....

  10. Simulation and Analysis of Microwave Transmission through an Electron Cloud, a Comparison of Results

    International Nuclear Information System (INIS)

    Sonnad, Kiran; Sonnad, Kiran; Furman, Miguel; Veitzer, Seth; Stoltz, Peter; Cary, John

    2007-01-01

    Simulation studies for transmission of microwaves through electron clouds show good agreement with analytic results. The electron cloud produces a shift in phase of the microwave. Experimental observation of this phenomena would lead to a useful diagnostic tool for accessing the local density of electron clouds in an accelerator. These experiments are being carried out at the CERN SPS and the PEP-II LER at SLAC and is proposed to be done at the Fermilab main injector. In this study, a brief analysis of the phase shift is provided and the results are compared with that obtained from simulations

  11. Bonding and Molecular Geometry without Orbitals- The Electron Domain Model

    Science.gov (United States)

    Gillespie, Ronald J.; Spencer, James N.; Moog, Richard S.

    1996-07-01

    An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model. The electron domain model also emphasizes the importance of the Pauli principle in understanding the chemical bond and molecular geometry. A letter from Derek W. Smith in our April 2000 issue addresses the above.

  12. Revisiting Runoff Model Calibration: Airborne Snow Observatory Results Allow Improved Modeling Results

    Science.gov (United States)

    McGurk, B. J.; Painter, T. H.

    2014-12-01

    Deterministic snow accumulation and ablation simulation models are widely used by runoff managers throughout the world to predict runoff quantities and timing. Model fitting is typically based on matching modeled runoff volumes and timing with observed flow time series at a few points in the basin. In recent decades, sparse networks of point measurements of the mountain snowpacks have been available to compare with modeled snowpack, but the comparability of results from a snow sensor or course to model polygons of 5 to 50 sq. km is suspect. However, snowpack extent, depth, and derived snow water equivalent have been produced by the NASA/JPL Airborne Snow Observatory (ASO) mission for spring of 20013 and 2014 in the Tuolumne River basin above Hetch Hetchy Reservoir. These high-resolution snowpack data have exposed the weakness in a model calibration based on runoff alone. The U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) calibration that was based on 30-years of inflow to Hetch Hetchy produces reasonable inflow results, but modeled spatial snowpack location and water quantity diverged significantly from the weekly measurements made by ASO during the two ablation seasons. The reason is that the PRMS model has many flow paths, storages, and water transfer equations, and a calibrated outflow time series can be right for many wrong reasons. The addition of a detailed knowledge of snow extent and water content constrains the model so that it is a better representation of the actual watershed hydrology. The mechanics of recalibrating PRMS to the ASO measurements will be described, and comparisons in observed versus modeled flow for both a small subbasin and the entire Hetch Hetchy basin will be shown. The recalibrated model provided a bitter fit to the snowmelt recession, a key factor for water managers as they balance declining inflows with demand for power generation and ecosystem releases during the final months of snow melt runoff.

  13. Accounting of inter-electron correlations in the model of mobile electron shells

    International Nuclear Information System (INIS)

    Panov, Yu.D.; Moskvin, A.S.

    2000-01-01

    One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru

  14. A model for electron/ion recombination in ionization chambers

    International Nuclear Information System (INIS)

    Sailor, W.C.

    1988-05-01

    The recombination of free electrons and positive ions along charged particle tracks in gases has been modeled using electron tranport equations, which assume homogeneous distribution in the vicinity of the tracks. The equations include space charge terms, which have been negelected in previous models. A formula for the electron yield as a function of detector applied potential is obtained from a perturbation solution valid when the ratio of the Debye length to the charge column radius is larger then unity. When this ratio is very large, the formula reduces to that of previous models. Pulse height measurements in a 3 He ionization chamber indicate 2% to 30% losses to recombination which vary with applied field, particle type, and energy. Using reasonable values for the electron transport coefficients, the calculated loss of signal to recommendation is generally in agreement with experiment, but the variation with applied bias is stronger in the experiment

  15. Immersive visualization of dynamic CFD model results

    International Nuclear Information System (INIS)

    Comparato, J.R.; Ringel, K.L.; Heath, D.J.

    2004-01-01

    With immersive visualization the engineer has the means for vividly understanding problem causes and discovering opportunities to improve design. Software can generate an interactive world in which collaborators experience the results of complex mathematical simulations such as computational fluid dynamic (CFD) modeling. Such software, while providing unique benefits over traditional visualization techniques, presents special development challenges. The visualization of large quantities of data interactively requires both significant computational power and shrewd data management. On the computational front, commodity hardware is outperforming large workstations in graphical quality and frame rates. Also, 64-bit commodity computing shows promise in enabling interactive visualization of large datasets. Initial interactive transient visualization methods and examples are presented, as well as development trends in commodity hardware and clustering. Interactive, immersive visualization relies on relevant data being stored in active memory for fast response to user requests. For large or transient datasets, data management becomes a key issue. Techniques for dynamic data loading and data reduction are presented as means to increase visualization performance. (author)

  16. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    International Nuclear Information System (INIS)

    Chaudhry, Amit; Sangwan, S.; Roy, J. N.

    2011-01-01

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  17. A simple model for atomic layer doped field-effect transistor (ALD-FET) electronic states

    International Nuclear Information System (INIS)

    Mora R, M.E.; Gaggero S, L.M.

    1998-01-01

    We propose a simple potential model based on the Thomas-Fermi approximation to reproduce the main properties of the electronic structure of an atomic layer doped field effect transistor. Preliminary numerical results for a Si-based ALD-FET justify why bound electronic states are not observed in the experiment. (Author)

  18. Linkage of PRA models. Phase 1, Results

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.L.; Knudsen, J.K.; Kelly, D.L.

    1995-12-01

    The goal of the Phase I work of the ``Linkage of PRA Models`` project was to postulate methods of providing guidance for US Nuclear Regulator Commission (NRC) personnel on the selection and usage of probabilistic risk assessment (PRA) models that are best suited to the analysis they are performing. In particular, methods and associated features are provided for (a) the selection of an appropriate PRA model for a particular analysis, (b) complementary evaluation tools for the analysis, and (c) a PRA model cross-referencing method. As part of this work, three areas adjoining ``linking`` analyses to PRA models were investigated: (a) the PRA models that are currently available, (b) the various types of analyses that are performed within the NRC, and (c) the difficulty in trying to provide a ``generic`` classification scheme to groups plants based upon a particular plant attribute.

  19. Task Flow Modeling in Electronic Business Environments

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available In recent years, internet based commerce has developed as a new paradigm. Many factors such as "at home delivery", easy ordering, and usually lower prices contributed to the success of the e-commerce. However, more recently, companies realized that one of the major factors in having a successful internet based business is the design of a user interface that is in concordance with the users' expectations, which includes both functionality and user friendly features. The func-tionality feature of an e-business interface is one of the most important elements when discussing about a specific internet based business. In our paper, we present methods to model task flows for e-business interfaces. We strengthen our study with the design modeling of a practical scenario that may appear in an on-line commercial environment.

  20. A Model for an Electronic Information Marketplace

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2005-11-01

    Full Text Available As the information content on the Internet increases, the task of locating desired information and assessing its quality becomes increasingly difficult. This development causes users to be more willing to pay for information that is focused on specific issues, verifiable, and available upon request. Thus, the nature of the Internet opens up the opportunity for information trading. In this context, the Internet cannot only be used to close the transaction, but also to deliver the product - desired information - to the user. Early attempts to implement such business models have fallen short of expectations. In this paper, we discuss the limitations of such practices and present a modified business model for information trading, which uses a reverse auction approach together with a multiple-buyer price discovery process

  1. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  2. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  3. Modelling the main ionospheric trough using the Electron Density Assimilative Model (EDAM) with assimilated GPS TEC

    Science.gov (United States)

    Parker, James A. D.; Eleri Pryse, S.; Jackson-Booth, Natasha; Buckland, Rachel A.

    2018-01-01

    The main ionospheric trough is a large-scale spatial depletion in the electron density distribution at the interface between the high- and mid-latitude ionosphere. In western Europe it appears in early evening, progresses equatorward during the night, and retreats rapidly poleward at dawn. It exhibits substantial day-to-day variability and under conditions of increased geomagnetic activity it moves progressively to lower latitudes. Steep gradients on the trough-walls on either side of the trough minimum, and their variability, can cause problems for radio applications. Numerous studies have sought to characterize and quantify the trough behaviour. The Electron Density Assimilative Model (EDAM) models the ionosphere on a global scale. It assimilates observations into a background ionosphere, the International Reference Ionosphere 2007 (IRI2007), to provide a full 3-D representation of the ionospheric plasma distribution at specified times and days. This current investigation studied the capability of EDAM to model the ionosphere in the region of the main trough. Total electron content (TEC) measurements from 46 GPS stations in western Europe from September to December 2002 were assimilated into EDAM to provide a model of the ionosphere in the trough region. Vertical electron content profiles through the model revealed the trough and the detail of its structure. Statistical results are presented of the latitude of the trough minimum, TEC at the minimum and of other defined parameters that characterize the trough structure. The results are compared with previous observations made with the Navy Ionospheric Monitoring System (NIMS), and reveal the potential of EDAM to model the large-scale structure of the ionosphere.

  4. Modeling and Field Results from Seismic Stimulation

    International Nuclear Information System (INIS)

    Majer, E.; Pride, S.; Lo, W.; Daley, T.; Nakagawa, Seiji; Sposito, Garrison; Roberts, P.

    2006-01-01

    Modeling the effect of seismic stimulation employing Maxwell-Boltzmann theory shows that the important component of stimulation is mechanical rather than fluid pressure effects. Modeling using Biot theory (two phases) shows that the pressure effects diffuse too quickly to be of practical significance. Field data from actual stimulation will be shown to compare to theory

  5. Classical Antiferromagnetism in Kinetically Frustrated Electronic Models

    Science.gov (United States)

    Sposetti, C. N.; Bravo, B.; Trumper, A. E.; Gazza, C. J.; Manuel, L. O.

    2014-05-01

    We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which invalidate Nagaoka's theorem. We find that these kinetically frustrated models have antiferromagnetic ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the frustrating loops.

  6. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  7. Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices

    International Nuclear Information System (INIS)

    Chen Duan; Wei Guowei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano-scale. By optimization of the energy functional, we derive consistently coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano-transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano-electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  8. Theoretical model of fast electron emission from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, C.; Burgdoerfer, J. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Laboratory, TN (United States)

    1993-05-01

    Electron emission in glancing-angle ion-surface collisions has become a focus of ion-surface interactions. Electron spectra can provide detailed information on the above surface neutralization dynamics of multiply charged ions, the electronic structure of the surface (surface density of states), and the long-ranged image interactions near the surface. Recent experiments have found that the convoy peak, well known from ion-atom and ion-solid collisions, is dramatically altered. The peak is broadened and shifted in energy which has been attributed to dynamical image interactions. We present a microscopic model for the emission of fast electrons in glancing-angle surface collisions. A classical trajectory Monte Carlo approach is utilized to calculate the evolution of electrons in the presence of their self image, the projectile Coulomb field and the image potential induced by the projectile. The excitation of collective surface modes is also incorporated.

  9. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  10. Modeling the customer in electronic commerce.

    Science.gov (United States)

    Helander, M G; Khalid, H M

    2000-12-01

    This paper reviews interface design of web pages for e-commerce. Different tasks in e-commerce are contrasted. A systems model is used to illustrate the information flow between three subsystems in e-commerce: store environment, customer, and web technology. A customer makes several decisions: to enter the store, to navigate, to purchase, to pay, and to keep the merchandize. This artificial environment must be designed so that it can support customer decision-making. To retain customers it must be pleasing and fun, and create a task with natural flow. Customers have different needs, competence and motivation, which affect decision-making. It may therefore be important to customize the design of the e-store environment. Future ergonomics research will have to investigate perceptual aspects, such as presentation of merchandize, and cognitive issues, such as product search and navigation, as well as decision making while considering various economic parameters. Five theories on e-commerce research are presented.

  11. Novel extension of the trap model for electrons in liquid hydrocarbons

    International Nuclear Information System (INIS)

    Jamal, M.A.; Watt, D.E.

    1981-01-01

    A novel extension for the trap model of electron mobilities in liquid hydrocarbons is described. The new model assumes: (a) two main types of electron trap exist in liquid hydrocarbons, one is deep and the second is shallow; (b) these traps are the same in all liquid alkanes. The difference in electron mobilities in different alkanes is accounted for by the difference in the frequency of electron trapping in each state. The probability of trapping in each state has been evaluated from the known structures of the normal alkanes. Electron mobilities in normal alkanes (C 3 -C 10 ) show a very good correlation with the probability of trapping in deep traps, suggesting that the C-C bonds are the main energy sinks of the electron. A mathematical formula which expresses the electron mobility in terms of the probability of trapping in deep traps has been found from the Arrhenius relationship between electron mobilities and probability of trapping. The model has been extended for branched alkanes and the relatively high electron mobilities in globular alkanes has been explained by the fact that each branch provides some degree of screening to the skeleton structure of the molecule resulting in reduction of the probability of electron interaction with the molecular skeleton. (author)

  12. A New Perspective for Modeling Power Electronics Converters : Complementarity Framework

    NARCIS (Netherlands)

    Vasca, Francesco; Iannelli, Luigi; Camlibel, M. Kanat; Frasca, Roberto

    2009-01-01

    The switching behavior of power converters with "ideal" electronic devices (EDs) makes it difficult to define a switched model that describes the dynamics of the converter in all possible operating conditions, i.e., a "complete" model. Indeed, simplifying assumptions on the sequences of modes are

  13. Test of theoretical models for ultrafast heterogeneous electron ...

    Indian Academy of Sciences (India)

    Administrator

    with the predictions of different theoretical models for light-induced ultrafast heterogeneous electron transfer (HET). ... theory model based on molecular dynamics simulations for the vibrational modes were also considered. Based on the known vibrational .... Pseudo 3D map of a 2PPE measurement with. Pe' achored via the ...

  14. Modeling paraxial wave propagation in free-electron laser oscillators

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for

  15. Spin delocalization phase transition in a correlated electrons model

    International Nuclear Information System (INIS)

    Huerta, L.

    1990-11-01

    In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs

  16. Structure analysis of large argon clusters from gas-phase electron diffraction data: some recent results

    NARCIS (Netherlands)

    van de Waal, B.W.

    1999-01-01

    An up-to-date overview of recent developments in the structure elucidation of large ArN-clusters (103electron diffraction data, is given. Although a satisfactory model for N3000 had been found in 1996, the size range beyond N10,000 presents new and unexpected problems.

  17. Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems

    OpenAIRE

    Gonzalez-Garcia, Carlos; Pleite, Jorge

    2013-01-01

    The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means...

  18. Secondary Electron Emission from Solid Hydrogen and Deuterium Resulting from Incidence of keV Electrons and Hydrogen Ions

    DEFF Research Database (Denmark)

    Sørensen, H.

    1977-01-01

    The secondary electron emission (SEE) coefficient δ was measured for solid hydrogen and deuterium resulting from the normal incidence of 0.5–3‐keV electrons and 4–10‐keV H+, H2+, H3+, and D3+ ions. The SEE coefficients for solid hydrogen are 60–70% of those for solid deuterium, and the coefficients....... The losses to molecular states will be largest for hydrogen, so that the SEE coefficients are smallest for solid hydrogen, as was observed. For the incidence of ions, the values of δ for the different molecular ions agree when the number of secondary electrons per incident atom is plotted versus the velocity...... or the stopping power of the incident particles. Measurements were also made for oblique incidence of H+ ions on solid deuterium for angles of incidence up to 75°. A correction could be made for the emission of secondary ions by also measuring the current calorimetrically. At largest energies, the angular...

  19. Basic Conditions of Validity of Electronic Contracts in Iran and UNCITRAL Model Law

    Directory of Open Access Journals (Sweden)

    Abbas Karimi

    2017-02-01

    Full Text Available Diverse activities such as electronic exchange of goods and services, instant digital content delivery, electronic funds transfer, electronic stock exchange, electronic bill of lading, commercial projects, common engineering and design, sourcing, government purchase, direct marketing and post-sales services included in e-commerce field.  Due to the increasing spread of the electronic world in all aspects, electronic contracts, in turn, was of great importance and made significant contributions in business contracts. The present study aims to investigate the concept, fundamentals and history of electronic contracts referring to UNCITRAL Model Law on Electronic Commerce and Electronic Commerce Act (1996. The results indicate that in terms of the conclusion and obligations of the parties, contract in cyberspace in general is similar to the contract in the real world and in this respect, there is no major difference between these two contexts. Potential electronic contracts considered as written ones and Electronic signatures recognized as valid as the basis of the validity of the will in electronic trading.

  20. Modeling of the response under radiation of electronic dosemeters

    International Nuclear Information System (INIS)

    Menard, S.

    2003-01-01

    The simulation with with calculation codes the interactions and the transport of primary and secondary radiations in the detectors allows to reduce the number of developed prototypes and the number of experiments under radiation. The simulation makes possible the determination of the response of the instrument for exposure configurations more extended that these ones of references radiations produced in laboratories. The M.C.N.P.X. allows to transport, over the photons, electrons and neutrons, the charged particles heavier than the electrons and to simulate the radiation - matter interactions for a certain number of particles. The present paper aims to present the interest of the use of the M.C.N.P.X. code in the study, research and evaluation phases of the instrumentation necessary to the dosimetry monitoring. To do that the presentation gives the results of the modeling of a prototype of a equivalent tissue proportional counter (C.P.E.T.) and of the C.R.A.M.A.L. ( radiation protection apparatus marketed by the Eurisys Mesures society). (N.C.)

  1. A proposed model of e-trust for electronic banking

    Directory of Open Access Journals (Sweden)

    Neda Yousefi

    2015-11-01

    Full Text Available Customer’s trust is the most important and one of the key factors of success in e-commerce. However, trust is the essential aspects of e-banking adoption and the main element for building long-term relationships with the bank's customers. So the purpose of this research is to investigate the factors influencing on customer′s trust in e-banking services and prioritize them. Therefore, designed questionnaire was distributed among 177 electronic service customers in number of banks in the city of Karaj, Iran. Likert quintuplet scales were used to measure the variables. After collecting the questionnaires, the data were analyzed by structural equation modeling (by using LISREL 8.5. The results revealed that quality of electronic services such as ease of use, privacy and security, individual characteristics of customers such as disposition to trust and features of bank such as reputation, size and dependence on government, have had the greatest effect on customer′s trust in e-banking services.

  2. Coupled Michigan MHD - Rice Convection Model Results

    Science.gov (United States)

    de Zeeuw, D.; Sazykin, S.; Wolf, D.; Gombosi, T.; Powell, K.

    2002-12-01

    A new high performance Rice Convection Model (RCM) has been coupled to the adaptive-grid Michigan MHD model (BATSRUS). This fully coupled code allows us to self-consistently simulate the physics in the inner and middle magnetosphere. A study will be presented of the basic characteristics of the inner and middle magnetosphere in the context of a single coupled-code run for idealized storm inputs. The analysis will include region-2 currents, shielding of the inner magnetosphere, partial ring currents, pressure distribution, magnetic field inflation, and distribution of pV^gamma.

  3. Graphical interpretation of numerical model results

    International Nuclear Information System (INIS)

    Drewes, D.R.

    1979-01-01

    Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements

  4. Web-EEDF: open source software for modeling the electron dynamics

    International Nuclear Information System (INIS)

    Janda, M.; Machala, Z.; Morvova, M.; Francek, V.; Lukac, P.

    2005-01-01

    We present a free software for modeling the electron dynamics in the uniform electric field named Web-EEDF. It uses a Monte Carlo algorithm to calculate electron energy distribution functions (EEDFs) and other plasma parameters in various mixtures. Obtained results are in good agreement with literature. This software represents the first stage in a more complex modeling of plasma chemical processes leading to the decomposition of various air pollutants in electrical discharges at atmospheric pressure (Authors)

  5. MODELING OF QUALITY MANAGEMENT SYSTEM FOR ELECTRONIC LEARNING RESOURCES: THE INTEGRATED AND DIFFERENTIATED APPROACHES

    Directory of Open Access Journals (Sweden)

    H. M. Kravtsov

    2012-03-01

    Full Text Available Abstract. Results on modeling of quality management system of electronic information resources on the basis of the analysis of its elements functioning with use of the integrated and differentiated approaches are presented. Application of such model is illustrated on an example of calculation and optimization of parameters of a quality management system at the organization of the co-ordinated work of services of monitoring, an estimation of quality and support of electronic learning resources.

  6. First results with the yin-yang type electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Suominen, P.; Ropponen, T.; Koivisto, H.

    2007-01-01

    Highly charged heavy-ion beams are often produced with Electron Cyclotron Resonance Ion Sources (ECRIS). The so-called conventional minimum-B ECRIS design includes two solenoid magnets and a multipole magnet (usually a hexapole). A minimum-B configuration can also be formed with 'yin-yang' ('baseball') type coils. Such a magnetic field configuration has been extensively tested in magnetic fusion experiments but not for the production of highly charged heavy ions. The application of the afore-mentioned coil structure to the production of multiply charged ion beams was studied. In this paper we present a design of a yin-yang type ion source known as the ARC-ECRIS and some preliminary experimental results. As a result of this work it was found that the ARC-ECRIS plasma is stable and capable of producing multiply charged ions. Many compromises were made in order to keep the costs of the prototype low. As a consequence, significant improvement can be expected in performance if the plasma size is increased and magnetic confinement is improved. At the end of this article an evolution model of the ARC-ECRIS and some future prospects are presented

  7. Modeling Electronic Skin Response to Normal Distributed Force

    Directory of Open Access Journals (Sweden)

    Lucia Seminara

    2018-02-01

    Full Text Available The reference electronic skin is a sensor array based on PVDF (Polyvinylidene fluoride piezoelectric polymers, coupled to a rigid substrate and covered by an elastomer layer. It is first evaluated how a distributed normal force (Hertzian distribution is transmitted to an extended PVDF sensor through the elastomer layer. A simplified approach based on Boussinesq’s half-space assumption is used to get a qualitative picture and extensive FEM simulations allow determination of the quantitative response for the actual finite elastomer layer. The ultimate use of the present model is to estimate the electrical sensor output from a measure of a basic mechanical action at the skin surface. However this requires that the PVDF piezoelectric coefficient be known a-priori. This was not the case in the present investigation. However, the numerical model has been used to fit experimental data from a real skin prototype and to estimate the sensor piezoelectric coefficient. It turned out that this value depends on the preload and decreases as a result of PVDF aging and fatigue. This framework contains all the fundamental ingredients of a fully predictive model, suggesting a number of future developments potentially useful for skin design and validation of the fabrication technology.

  8. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  9. Enhancing patient safety with an electronic results checking system in a large HIV outpatient service.

    Science.gov (United States)

    Nugent, D B; Uthayakumar, N; Ferrand, R A; Edwards, S G; Miller, R; Benn, P

    2013-08-01

    To establish whether an automated electronic tracker system for reporting blood results would expedite clinician review of abnormal results in HIV-positive outpatients and to pilot the use of this system in routine clinical practice. An outpatient service in central London providing specialist HIV-related care to 3900 HIV positive patients. A comparison of the time taken from sampling to identification and clinician review of abnormal blood results for biochemical tests between the original paper-based checking system and an automated electronic system during a 3-week pilot. Of 513 patients undergoing one or more blood tests, 296 (57%) had one or more biochemical abnormalities identified by electronic checking system. Out of 371 biochemical abnormalities, 307 (82.7%) were identified simultaneously by the paper-based system. Of the 307, 33 (10.7%) were classified as urgent, 130 (42.3%) as non-urgent and 144 (46.9%) as not clinically significant. The median interval between sampling and receipt of results was 1 (interquartile range 1-2) vs 4 days ( interquartile range 3-5), P interquartile range 1-4) vs 3 days (interquartile range 3-6), Pinterquartile range 1-4) vs 10 days ( interquartile range 9-12), P=0.136, for electronic and paper-based systems respectively. Seven (11%) of the missing paper-based system results were classified as urgent. The electronic system missed three abnormalities as a result of a software processing error which was subsequently corrected. The electronic tracker system allows faster identification of biochemical abnormalities and allowed faster review of these results by clinicians. The pilot study allowed for a software error to be identified and corrected before full implementation. The system has since integrated successfully into routine clinical practice.

  10. Modeling clicks beyond the first result page

    NARCIS (Netherlands)

    Chuklin, A.; Serdyukov, P.; de Rijke, M.

    2013-01-01

    Most modern web search engines yield a list of documents of a fixed length (usually 10) in response to a user query. The next ten search results are usually available in one click. These documents either replace the current result page or are appended to the end. Hence, in order to examine more

  11. Non-Maxwellian electron velocity distribution as a result of electron-attachment collisions in ionized gases

    International Nuclear Information System (INIS)

    Schmidt, R.; Stiller, W.

    1981-01-01

    The effects of electron-attachment collisions on the velocity distribution of electrons is studied on the basis of Boltzmann kinetic equations governing the energetic balance of electrons (e), atoms of a carrier gas (c), and SF 6 -molecules (m) capturing electrons. Under the assumption that 1) the densities of the particles fulfill the conditions nsub(e) << nsub(c), nsub(m), nsub(m) << nsub(c), and that 2) only the electron-attachment process is in competition with the elastic collision process between electrons and the atoms of the carrier gas, the time behaviour of the energetic balance of the electrons is investigated. The calculations lead to non-Maxwellian forms of the electron velocity distribution changing the mean electron energy. (author)

  12. Regional 4-D modeling of the ionospheric electron density

    Science.gov (United States)

    Schmidt, M.; Bilitza, D.; Shum, C. K.; Zeilhofer, C.

    2008-08-01

    The knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying the ionosphere. During the last decade GNSS, in particular GPS, has become a promising tool for monitoring the total electron content (TEC), i.e., the integral of the electron density along the ray-path between the transmitting satellite and the receiver. Hence, geometry-free GNSS measurements provide informations on the electron density, which is basically a four-dimensional function depending on spatial position and time. In addition, these GNSS measurements can be combined with other available data including nadir, over-ocean TEC observations from dual-frequency radar altimetry (T/P, JASON, ENVISAT), and TECs from GPS-LEO occultation systems (e.g., FORMOSAT-3/COSMIC, CHAMP) with heterogeneous sampling and accuracy. In this paper, we present different multi-dimensional approaches for modeling spatio-temporal variations of the ionospheric electron density. To be more specific, we split the target function into a reference part, computed from the International Reference Ionosphere (IRI), and an unknown correction term. Due to the localizing feature of B-spline functions we apply tensor-product spline expansions to model the correction term in a certain multi-dimensional region either completely or partly. Furthermore, the multi-resolution representation derived from wavelet analysis allows monitoring the ionosphere at different resolutions levels. For demonstration we apply three approaches to electron density data over South America.

  13. Improved age-diffusion model for low-energy electron transport in solids. II. Application to secondary emission from aluminum

    International Nuclear Information System (INIS)

    Dubus, A.; Devooght, J.; Dehaes, J.C.

    1987-01-01

    The ''improved age-diffusion'' model for secondary-electron transport is applied to aluminum. Electron cross sections for inelastic collisions with the free-electron gas using the Lindhard dielectric function and for elastic collisions with the randomly distributed ionic cores are used in the calculations. The most important characteristics of backward secondary-electron emission induced by low-energy electrons on polycrystalline Al targets are calculated and compared to experimental results and to Monte Carlo calculations. The model appears to predict the electronic yield, the energy spectra, and the spatial dependence of secondary emission with reasonable accuracy

  14. Status of the Galileo interim radiation electron model

    Science.gov (United States)

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.

  15. Microplasticity of MMC. Experimental results and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Maire, E. (Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, INSA, 69 Villeurbanne (France)); Lormand, G. (Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, INSA, 69 Villeurbanne (France)); Gobin, P.F. (Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, INSA, 69 Villeurbanne (France)); Fougeres, R. (Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, INSA, 69 Villeurbanne (France))

    1993-11-01

    The microplastic behavior of several MMC is investigated by means of tension and compression tests. This behavior is assymetric : the proportional limit is higher in tension than in compression but the work hardening rate is higher in compression. These differences are analysed in terms of maxium of the Tresca's shear stress at the interface (proportional limit) and of the emission of dislocation loops during the cooling (work hardening rate). On another hand, a model is proposed to calculate the value of the yield stress, describing the composite as a material composed of three phases : inclusion, unaffected matrix and matrix surrounding the inclusion having a gradient in the density of the thermally induced dilocations. (orig.).

  16. MULTICRITERIA METHODS IN PERFORMING COMPANIES’ RESULTS USING ELECTRONIC RECRUITING, CORPORATE COMMUNICATION AND FINANCIAL RATIOS

    Directory of Open Access Journals (Sweden)

    Ivana Bilić

    2011-02-01

    Full Text Available Human resources represent one of the most important companies’ resources responsible in creation of companies’ competitive advantage. In search for the most valuable resources, companies use different methods. Lately, one of the growing methods is electronic recruiting, not only as a recruitment tool, but also as a mean of external communication. Additionally, in the process of corporate communication, companies nowadays use the electronic corporate communication as the easiest, the cheapest and the simplest form of business communication. The aim of this paper is to investigate relationship between three groups of different criteria; including main characteristics of performed electronic recruiting, corporate communication and selected financial performances. Selected companies were ranked separately by each group of criteria by usage of multicriteria decision making method PROMETHEE II. The main idea is to research whether companies which are the highest performers by certain group of criteria obtain the similar results regarding other group of criteria or performing results.

  17. System Testability Analysis for Complex Electronic Devices Based on Multisignal Model

    International Nuclear Information System (INIS)

    Long, B; Tian, S L; Huang, J G

    2006-01-01

    It is necessary to consider the system testability problems for electronic devices during their early design phase because modern electronic devices become smaller and more compositive while their function and structure are more complex. Multisignal model, combining advantage of structure model and dependency model, is used to describe the fault dependency relationship for the complex electronic devices, and the main testability indexes (including optimal test program, fault detection rate, fault isolation rate, etc.) to evaluate testability and corresponding algorithms are given. The system testability analysis process is illustrated for USB-GPIB interface circuit with TEAMS toolbox. The experiment results show that the modelling method is simple, the computation speed is rapid and this method has important significance to improve diagnostic capability for complex electronic devices

  18. Electron injector for high-voltage model of collective accelerator

    International Nuclear Information System (INIS)

    Belikov, V.V.; Zvyagintsev, A.V.; Lymar', A.G.; Martynenko, P.A.; Khizhnyak, N.A.

    1987-01-01

    The design and test results of an electron gun with the beam compression and axial hole aimed at collective acceleration are presented. The electron gun is tested at 150 kV, the pulse duration being 12 ms. The hallow beam has 10 mm in diameter, with 1 mm thick wall, that corresponds to the compression degree of 200. The beam microperveance is 4.5 mA/V 3/2

  19. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  20. Electron beam lithographic modeling assisted by artificial intelligence technology

    Science.gov (United States)

    Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi

    2017-07-01

    We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.

  1. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  2. Toward a generic model of trust for electronic commerce

    NARCIS (Netherlands)

    Tan, YH; Thoen, W

    2000-01-01

    The authors present a generic model of trust for electronic commerce consisting of two basic components, party trust and control trust, based on the concept that trust in a transaction with another party combines trust in the other parry and trust in the control mechanisms that ensure the successful

  3. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  4. Fuse Modeling for Reliability Study of Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large v...

  5. Classical model of the Dirac electron in curved space

    International Nuclear Information System (INIS)

    Barut, A.O.; Pavsic, M.

    1987-01-01

    The action for the classical model of the electron exhibiting Zitterbewegung is generalized to curved space by introducing a spin connection. The dynamical equations and the symplectic structure are given for several different choices of the variables. In particular, we obtain the equation of motion for spin and compare it with the Papapetrou equation. (author)

  6. BPM Electronics based on Compensated Diode Detectors – Results from development Systems

    CERN Document Server

    Gasior, M; Steinhagen, RJ

    2012-01-01

    High resolution beam position monitor (BPM) electronics based on diode peak detectors is being developed for processing signals from button BPMs embedded into future LHC collimators. Its prototypes were measured in a laboratory as well as with beam signals from the collimator BPM installed on the SPS and with LHC BPMs. Results from these measurements are presented and discussed.

  7. First principles results of structural and electronic properties of ZnS

    Indian Academy of Sciences (India)

    We present results of the study of ZnS (1 ≤ ≤ 9) clusters, using the density functional formalism and projector augmented wave method within the generalized gradient approximation. Along with the structural and electronic properties, nature of bonding and overall stability of clusters has been studied.

  8. Modeling of magnetic components for power electronic converters

    Science.gov (United States)

    Hranov, Tsveti; Hinov, Nikolay

    2017-12-01

    The paper presents the modelling of magnetic components, used in the power electronic devices. Non-linear inductor and transformer are presented. During the design stage are taken into account that the converters are operated with non-sinusoidal currents and voltages. The models are realized in the MATLAB environment and their verification is done using computer simulations. The advantages of these models against the existing models are that relations between the parameters are formalized and this way the computational procedure is significantly faster. This is important in the cases when the quasi-steady-state regime in devices comes significantly slower and the investigations are requiring long simulation times.

  9. Electron flux models for different energies at geostationary orbit

    Science.gov (United States)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-10-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

  10. Nonlinear excitation of electron cyclotron waves by a monochromatic strong microwave: computer simulation analysis of the MINIX results

    International Nuclear Information System (INIS)

    Matsumoto, H.; Kimura, T.

    1986-01-01

    Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures

  11. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  12. Band electron spectrum and thermodynamic properties of the pseudospin-electron model with tunneling splitting of levels

    Directory of Open Access Journals (Sweden)

    O.Ya.Farenyuk

    2006-01-01

    Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.

  13. Modeling and Control of a teletruck using electronic load sensing

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Iversen, Asger Malte; Jensen, Mads Schmidt

    2010-01-01

    components and the potential of increased dynamic performance and efficiency, this paper investigates how HLS can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The investigation is performed by taking a specific application, a teletruck, and replace the HLS control with ELS. To aid...... the controller design for the ELS system, a complete model of the teletruck’s articulated arm and fluid power system is developed. To show the feasibility, a preliminary control structure for the ELS system is developed. The controller is tested on the machine, validating that features such as pump pressure...

  14. Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems

    Directory of Open Access Journals (Sweden)

    Carlos Gonzalez-Garcia

    2013-01-01

    Full Text Available The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means of electrical parameters is presented. Its usability is demonstrated by an example where a power transformer is used as filter and voltage reducer in an AC-DC-AC converter.

  15. The Development Model Electronic Commerce of Regional Agriculture

    Science.gov (United States)

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  16. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  17. AMORPHOUS SILICON ELECTRONIC STRUCTURE MODELING AND BASIC ELECTRO-PHYSICAL PARAMETERS CALCULATION

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2014-01-01

    Full Text Available Summary. The amorphous semiconductor has any unique processing characteristics and it is perspective material for electronic engineering. However, we have not authentic information about they atomic structure and it is essential knot for execution calculation they electronic states and electro physical properties. The author's methods give to us decision such problem. This method allowed to calculation the amorphous silicon modeling cluster atomics Cartesian coordinates, determined spectrum and density its electronic states and calculation the basics electro physical properties of the modeling cluster. At that determined numerical means of the energy gap, energy Fermi, electron concentration inside valence and conduction band for modeling cluster. The find results provides real ability for purposeful control to type and amorphous semiconductor charge carriers concentration and else provides relation between atomic construction and other amorphous substance physical properties, for example, heat capacity, magnetic susceptibility and other thermodynamic sizes.

  18. The Study of Analytical Model of Library Electronic Resources Usage-A Case of Medical Electronic Resources

    Directory of Open Access Journals (Sweden)

    Chung-Yen Yu

    2014-10-01

    Full Text Available With the advents of internet, the importance of electronic resources is growing. Due to the increasing expensiveness of electronic resources, university libraries normally received budgets from parent institutions annually. They necessarily applied effective and systematic methods for decision making in electronic resources purchase or re-subscription. However, there are some difficulties in practices: First of all, libraries are unable to receive user records; second, the COUNTER statistics does not include details about users and their affiliation. As a result, one cannot conduct advanced user analysis based on the usage of users, institutions, and departments. To overcome the difficulties, this study presents a feasible model to analyze electronic resource usage effectively and flexibly. We set up a proxy server to collect actual usage raw data. By analyzing items in internet browsing records, associated with original library automatic system, this study aims at exploring how to use effective ways to analyze big data of website log data. We also propose the process of how original data to be transformed, cleared, integrated, and demonstrated. This study adopted a medical university library and its subscription of medical electronic resources as a case. Our data analysis includes (1 year of subscription,(2 title of journal, (3 affiliation, (4 subjects, and (5 specific journal requirements, etc. The findings of the study are contributed to obtain further understanding in policy making and user behavior analysis. The integrated data provides multiple applications in informatics research, information behavior, bibliomining, presenting diverse views and extended issues for further discussion.

  19. Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose

    Science.gov (United States)

    Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek

    2018-01-01

    The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.

  20. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  1. Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling

    Science.gov (United States)

    Gerzen, T.; Feltens, J.; Jakowski, N.; Galkin, I.; Reinisch, B.; Zandbergen, R.

    2016-09-01

    The electron density of the topside ionosphere and the plasmasphere contributes essentially to the overall Total Electron Content (TEC) budget affecting Global Navigation Satellite Systems (GNSS) signals. The plasmasphere can cause half or even more of the GNSS range error budget due to ionospheric propagation errors. This paper presents a comparative study of different plasmasphere and topside ionosphere data aiming at establishing an appropriate database for plasmasphere modelling. We analyze electron density profiles along the geomagnetic field lines derived from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite/Radio Plasma Imager (RPI) records of remote plasma sounding with radio waves. We compare these RPI profiles with 2D reconstructions of the topside ionosphere and plasmasphere electron density derived from GNSS based TEC measurements onboard the Challenging Minisatellite Payload (CHAMP) satellite. Most of the coincidences between IMAGE profiles and CHAMP reconstructions are detected in the region with L-shell between 2 and 5. In general the CHAMP reconstructed electron densities are below the IMAGE profile densities, with median of the CHAMP minus IMAGE residuals around -588 cm-3. Additionally, a comparison is made with electron densities derived from passive radio wave RPI measurements onboard the IMAGE satellite. Over the available 2001-2005 period of IMAGE measurements, the considered combined data from the active and passive RPI operations cover the region within a latitude range of ±60°N, all longitudes, and an L-shell ranging from 1.2 to 15. In the coincidence regions (mainly 2 ⩽ L ⩽ 4), we check the agreement between available active and passive RPI data. The comparison shows that the measurements are well correlated, with a median residual of ∼52 cm-3. The RMS and STD values of the relative residuals are around 22% and 21% respectively. In summary, the results encourage the application of IMAGE RPI data for

  2. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  3. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  4. Multi-dimensional Vlasov simulations and modeling of trapped-electron-driven filamentation of electron plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Berger, R. L., E-mail: berger5@llnl.gov; Cohen, B. I. [Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551 (United States); Brunner, S., E-mail: stephan.brunner@epfl.ch [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland); Banks, J. W. [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, AE 301, 110 8th Street, Troy, New York 12180 (United States); Winjum, B. J. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States)

    2015-05-15

    Kinetic simulations of two-dimensional finite-amplitude electron plasma waves are performed in a one-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and wavenumber k{sub y}, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are compared with numerical and analytical solutions to a two-dimensional nonlinear Schrödinger model [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)] and to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] generalized to two dimensions.

  5. Nonlinear simulation of magnetic reconnection with a drift kinetic electron model

    International Nuclear Information System (INIS)

    Zwingmann, W.; Ottaviani, M.

    2004-01-01

    The process of reconnection allows for a change of magnetic topology inside a plasma. It is an important process for eruptive phenomena in astrophysical plasma, and the sawtooth relaxation in laboratory plasma close to thermonuclear conditions. The sawtooth relaxation is associated with the collisionless electron tearing instability, caused by the electron inertia. A thorough treatment therefore requires a kinetic model for the electron dynamics. In this contribution, we report on the numerical simulation of the electron tearing instability by solving the Vlasov equation directly. The results confirm results of an early paper on the same subject, and extends them to smaller values of the collision skin depth d e = 0.25. Our results suggest a faster than exponential growth in the early nonlinear phase of the instability. We observe as well an asymmetry of the resulting fields. It seems, however, that the field structure becomes closer to the fluid case for small values of d e

  6. Power electronic converters modeling and control with case studies

    CERN Document Server

    Bacha, Seddik; Bratcu, Antoneta Iuliana

    2014-01-01

    Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: ·        switched and averaged models; ·        small/large-signal models; and ·        time/frequency models. The second focuses on three groups of control methods: ·        linear control approaches normally associated with power converters; ·        resonant controllers b...

  7. Electronic Model of a Ferroelectric Field Effect Transistor

    Science.gov (United States)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  8. Development strategy and process models for phased automation of design and digital manufacturing electronics

    Science.gov (United States)

    Korshunov, G. I.; Petrushevskaya, A. A.; Lipatnikov, V. A.; Smirnova, M. S.

    2018-03-01

    The strategy of quality of electronics insurance is represented as most important. To provide quality, the processes sequence is considered and modeled by Markov chain. The improvement is distinguished by simple database means of design for manufacturing for future step-by-step development. Phased automation of design and digital manufacturing electronics is supposed. The MatLab modelling results showed effectiveness increase. New tools and software should be more effective. The primary digital model is proposed to represent product in the processes sequence from several processes till the whole life circle.

  9. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  10. Modeling of Electronic Properties in Organic Semiconductor Device Structures

    Science.gov (United States)

    Chang, Hsiu-Chuang

    Organic semiconductors (OSCs) have recently become viable for a wide range of electronic devices, some of which have already been commercialized. With the mechanical flexibility of organic materials and promising performance of organic field effect transistors (OFETs) and organic bulk heterojunction devices, OSCs have been demonstrated in applications such as radio frequency identification tags, flexible displays, and photovoltaic cells. Transient phenomena play decisive roles in the performance of electronic devices and OFETs in particular. The dynamics of the establishment and depletion of the conducting channel in OFETs are investigated theoretically. The device structures explored resemble typical organic thin-film transistors with one of the channel contacts removed. By calculating the displacement current associated with charging and discharging of the channel in these capacitors, transient effects on the carrier transport in OSCs may be studied. In terms of the relevant models it is shown that the non-linearity of the process plays a key role. The non-linearity arises in the simplest case from the fact that channel resistance varies during the charging and discharging phases. Traps can be introduced into the models and their effects examined in some detail. When carriers are injected into the device, a conducting channel is established with traps that are initially empty. Gradual filling of the traps then modifies the transport characteristics of the injected charge carriers. In contrast, dc measurements as they are typically performed to characterize the transport properties of organic semiconductor channels investigate a steady state with traps partially filled. Numerical and approximate analytical models of the formation of the conducting channel and the resulting displacement currents are presented. For the process of transient carrier extraction, it is shown that if the channel capacitance is partially or completely discharged through the channel

  11. Tables or bar graphs? Presenting test results in electronic medical records.

    Science.gov (United States)

    Brewer, Noel T; Gilkey, Melissa B; Lillie, Sarah E; Hesse, Bradford W; Sheridan, Stacey L

    2012-01-01

    Electronic personal health records offer a promising way to communicate medical test results to patients. We compared the usability of tables and horizontal bar graphs for presenting medical test results electronically. We conducted experiments with a convenience sample of 106 community-dwelling adults. In the first experiment, participants viewed either table or bar graph formats (between subjects) that presented medical test results with normal and abnormal findings. In a second experiment, participants viewed table and bar graph formats (within subjects) that presented test results with normal, borderline, and abnormal findings. Participants required less viewing time when using bar graphs rather than tables. This overall difference was due to superior performance of bar graphs in vignettes with many test results. Bar graphs and tables performed equally well with regard to recall accuracy and understanding. In terms of ease of use, participants did not prefer bar graphs to tables when they viewed only one format. When participants viewed both formats, those with experience with bar graphs preferred bar graphs, and those with experience with tables found bar graphs equally easy to use. Preference for bar graphs was strongest when viewing tests with borderline results. Compared to horizontal bar graphs, tables required more time and experience to achieve the same results, suggesting that tables can be a more burdensome format to use. The current practice of presenting medical test results in a tabular format merits reconsideration.

  12. Understanding the management of electronic test result notifications in the outpatient setting

    Directory of Open Access Journals (Sweden)

    Singh Hardeep

    2011-04-01

    Full Text Available Abstract Background Notifying clinicians about abnormal test results through electronic health record (EHR -based "alert" notifications may not always lead to timely follow-up of patients. We sought to understand barriers, facilitators, and potential interventions for safe and effective management of abnormal test result delivery via electronic alerts. Methods We conducted a qualitative study consisting of six 6-8 member focus groups (N = 44 at two large, geographically dispersed Veterans Affairs facilities. Participants included full-time primary care providers, and personnel representing diagnostic services (radiology, laboratory and information technology. We asked participants to discuss barriers, facilitators, and suggestions for improving timely management and follow-up of abnormal test result notifications and encouraged them to consider technological issues, as well as broader, human-factor-related aspects of EHR use such as organizational, personnel, and workflow. Results Providers reported receiving a large number of alerts containing information unrelated to abnormal test results, many of which were believed to be unnecessary. Some providers also reported lacking proficiency in use of certain EHR features that would enable them to manage alerts more efficiently. Suggestions for improvement included improving display and tracking processes for critical alerts in the EHR, redesigning clinical workflow, and streamlining policies and procedures related to test result notification. Conclusion Providers perceive several challenges for fail-safe electronic communication and tracking of abnormal test results. A multi-dimensional approach that addresses technology as well as the many non-technological factors we elicited is essential to design interventions to reduce missed test results in EHRs.

  13. Quantum entanglement in two-electron atomic models

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, D; Plastino, A R; Dehesa, J S [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Granada E-18071 (Spain); Koga, T, E-mail: arplastino@ugr.e [Applied Chemistry Research Unit, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)

    2010-07-09

    We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.

  14. Putting structure into context: fitting of atomic models into electron microscopic and electron tomographic reconstructions.

    Science.gov (United States)

    Volkmann, Niels

    2012-02-01

    A complete understanding of complex dynamic cellular processes such as cell migration or cell adhesion requires the integration of atomic level structural information into the larger cellular context. While direct atomic-level information at the cellular level remains inaccessible, electron microscopy, electron tomography and their associated computational image processing approaches have now matured to a point where sub-cellular structures can be imaged in three dimensions at the nanometer scale. Atomic-resolution information obtained by other means can be combined with this data to obtain three-dimensional models of large macromolecular assemblies in their cellular context. This article summarizes some recent advances in this field. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach

    DEFF Research Database (Denmark)

    Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper

    2017-01-01

    We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... are in focus, we show that qualitative agreement between rotatory strength parameters calculated by full quantum mechanical calculations and the more efficient embedding calculations can be obtained. An important aspect in the computation of reliable absorption parameters is the need for conformational...

  16. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  17. Steepest entropy ascent quantum thermodynamic model of electron and phonon transport

    Science.gov (United States)

    Li, Guanchen; von Spakovsky, Michael R.; Hin, Celine

    2018-01-01

    An advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepest-entropy-ascent quantum thermodynamics framework. This framework, based on the principle of steepest entropy ascent (or the equivalent maximum entropy production principle), inherently satisfies the laws of thermodynamics and mechanics and is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically, the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The heat and mass transport at a temperature discontinuity across a homogeneous interface where the dispersion and coupling of electron and phonon transport are both considered are then modeled. Local nonequilibrium system evolution and nonquasiequilibrium interactions are predicted and the results discussed.

  18. Modelling and Simulation of a Synchronous Machine with Power Electronic Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper reports the modeling and simulation of a synchronous machine with a power electronic interface in direct phase model. The implementation of a direct phase model of synchronous machines in MATLAB/SIMULINK is presented .The power electronic system associated with the synchronous machine...... is modelled in SIMULINK as well. The resulting model can more accurately represent non-idea situations such as non-symmetrical parameters of the electrical machines and unbalance conditions. The model may be used for both steady state and large-signal dynamic analysis. This is particularly useful...... in the systems where a detailed study is needed in order to assess the overall system stability. Simulation studies are performed under various operation conditions. It is shown that the developed model could be used for studies of various applications of synchronous machines such as in renewable and DG...

  19. Computational electronics semiclassical and quantum device modeling and simulation

    CERN Document Server

    Vasileska, Dragica; Klimeck, Gerhard

    2010-01-01

    Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of

  20. Optimization of electronic enclosure design for thermal and moisture management using calibrated models of progressive complexity

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Staliulionis, Zygimantas; Shojaee Nasirabadi, Parizad

    2016-01-01

    The thermal and moisture management of electronic enclosures are fields of high interest in recent years. It is now generally accepted that the protection of electronic devices is dependent on avoiding critical levels of relative humidity (typically 60–90%) during operations. Leveraging...... focus the parameter-value space, before shifting to 3D CFD models for final evaluations and verification. The approach results in a system capable of predicting optimum design features for the thermal and moisture management of electronic enclosures in a time-efficient and practically implementable...... the development of rigorous calibrated CFD models as well as simple predictive numerical tools, the current paper tackles the optimization of critical features of a typical two-chamber electronic enclosure. The progressive optimization strategy begins the design parameter selection by initially using simpler...

  1. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    Science.gov (United States)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2017-05-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  2. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    Science.gov (United States)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2018-02-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  3. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas

    Directory of Open Access Journals (Sweden)

    T. Toncian

    2016-01-01

    Full Text Available The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities with plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the Glass Hybrid OPCPA Scaled Test-bed (GHOST laser system at University of Texas, Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying direct laser acceleration (DLA [1] as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, Maxwellian spectra observed in earlier experiments [2]. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.

  4. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation

    International Nuclear Information System (INIS)

    Yang, J; Li, J S; Qin, L; Xiong, W; Ma, C-M

    2004-01-01

    The purpose of this work is to model electron contamination in clinical photon beams and to commission the source model using measured data for Monte Carlo treatment planning. In this work, a planar source is used to represent the contaminant electrons at a plane above the upper jaws. The source size depends on the dimensions of the field size at the isocentre. The energy spectra of the contaminant electrons are predetermined using Monte Carlo simulations for photon beams from different clinical accelerators. A 'random creep' method is employed to derive the weight of the electron contamination source by matching Monte Carlo calculated monoenergetic photon and electron percent depth-dose (PDD) curves with measured PDD curves. We have integrated this electron contamination source into a previously developed multiple source model and validated the model for photon beams from Siemens PRIMUS accelerators. The EGS4 based Monte Carlo user code BEAM and MCSIM were used for linac head simulation and dose calculation. The Monte Carlo calculated dose distributions were compared with measured data. Our results showed good agreement (less than 2% or 2 mm) for 6, 10 and 18 MV photon beams

  5. Preliminary Analysis and Simulation Results of Microwave Transmission Through an Electron Cloud

    International Nuclear Information System (INIS)

    Sonnad, Kiran; Sonnad, Kiran; Furman, Miguel; Veitzer, Seth; Stoltz, Peter; Cary, John

    2007-01-01

    The electromagnetic particle-in-cell (PIC) code VORPAL is being used to simulate the interaction of microwave radiation through an electron cloud. The results so far show good agreement with theory for simple cases. The study has been motivated by previous experimental work on this problem at the CERN SPS [1], experiments at the PEP-II Low Energy Ring (LER) at SLAC [4], and proposed experiments at the Fermilab Main Injector (MI). With experimental observation of quantities such as amplitude, phase and spectrum of the output microwave radiation and with support from simulations for different cloud densities and applied magnetic fields, this technique can prove to be a useful probe for assessing the presence as well as the density of electron clouds

  6. Results of mixed photon-electron therapy in early glottic cancer

    International Nuclear Information System (INIS)

    Skolyszewski, J.; Reinfuss, M.; Rzepecki, W.

    1989-01-01

    The results of mixed photo-electron therapy in 85 patients with early glottic cancer are presented. 85% of the patients were in poor general condition. All patients received radiation to a single lateral laryngeal field of 6 X 6 to 8 X 8 cm 2 and the dose of 64 Gy to 70 Gy in 6 to 7 weeks. Half of the dose was delivered with a telecobalt unit and half with 15 MeV electrons. 78.8% patients (67/85) survived without evidence of malignancy for three years after the radiation therapy alone, and 5 patients survived after salvage surgery. The overall crude survival rate was 84.7% at three years. Three-year survival rates without evidence of malignancy were 91.5% in stage I and 69.2% in stage II

  7. UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions

    International Nuclear Information System (INIS)

    Siebert, Xavier; Navaza, Jorge

    2009-01-01

    UROX is software designed for the interactive fitting of atomic models into electron-microscopy reconstructions. The main features of the software are presented, along with a few examples. Electron microscopy of a macromolecular structure can lead to three-dimensional reconstructions with resolutions that are typically in the 30–10 Å range and sometimes even beyond 10 Å. Fitting atomic models of the individual components of the macromolecular structure (e.g. those obtained by X-ray crystallography or nuclear magnetic resonance) into an electron-microscopy map allows the interpretation of the latter at near-atomic resolution, providing insight into the interactions between the components. Graphical software is presented that was designed for the interactive fitting and refinement of atomic models into electron-microscopy reconstructions. Several characteristics enable it to be applied over a wide range of cases and resolutions. Firstly, calculations are performed in reciprocal space, which results in fast algorithms. This allows the entire reconstruction (or at least a sizeable portion of it) to be used by taking into account the symmetry of the reconstruction both in the calculations and in the graphical display. Secondly, atomic models can be placed graphically in the map while the correlation between the model-based electron density and the electron-microscopy reconstruction is computed and displayed in real time. The positions and orientations of the models are refined by a least-squares minimization. Thirdly, normal-mode calculations can be used to simulate conformational changes between the atomic model of an individual component and its corresponding density within a macromolecular complex determined by electron microscopy. These features are illustrated using three practical cases with different symmetries and resolutions. The software, together with examples and user instructions, is available free of charge at http://mem.ibs.fr/UROX/

  8. Spurious effects of electron emission from the grids of a retarding field analyser on secondary electron emission measurements. Results on a (111) copper single crystal

    International Nuclear Information System (INIS)

    Pillon, J.; Roptin, D.; Cailler, M.

    1976-01-01

    Spurious effects of a four grid retarding field analyzer were studied for low energy secondary electron measurements. Their behavior was investigated and two peaks in the energy spectrum were interpreted as resulting from tertiary electrons from the grids. It was shown that the true secondary electron peak has to be separated from these spurious peaks. The spectrum and the yields sigma and eta obtained for a Cu(111) crystal after a surface cleanness control by Auger spectroscopy are given

  9. Distribution of Problems, Medications and Lab Results in Electronic Health Records: The Pareto Principle at Work.

    Science.gov (United States)

    Wright, Adam; Bates, David W

    2010-01-01

    BACKGROUND: Many natural phenomena demonstrate power-law distributions, where very common items predominate. Problems, medications and lab results represent some of the most important data elements in medicine, but their overall distribution has not been reported. OBJECTIVE: Our objective is to determine whether problems, medications and lab results demonstrate a power law distribution. METHODS: Retrospective review of electronic medical record data for 100,000 randomly selected patients seen at least twice in 2006 and 2007 at the Brigham and Women's Hospital in Boston and its affiliated medical practices. RESULTS: All three data types exhibited a power law distribution. The 12.5% most frequently used problems account for 80% of all patient problems, the top 11.8% of medications account for 80% of all medication orders and the top 4.5% of lab result types account for all lab results. CONCLUSION: These three data elements exhibited power law distributions with a small number of common items representing a substantial proportion of all orders and observations, which has implications for electronic health record design.

  10. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  11. Finding electronic information for health policy advocacy: a guide to improving search results.

    Science.gov (United States)

    Olsan, Tobie H; Bianchi, Carolanne; White, Pamela; Glessner, Theresa; Mapstone, Pamela L

    2011-12-01

    The success of advanced practice registered nurses' (APRNs') health policy advocacy depends on staying well informed about key issues. Searching for high-quality health policy information, however, can be frustrating and time consuming. Busy clinicians need strategies and tips to reduce information overload and to access synthesized research for evidence-based health policy. This article therefore offers APRNs practical guidelines and resources for searching electronic health policy information. Scholarly databases and Internet sites. Electronic health policy information is generated by a wide variety of public and private organizations and disseminated in hundreds of journals and Web pages. Specialty search tools are needed to retrieve the unindexed gray literature, which includes government documents, agency reports, fact sheets, standards, and statistics not produced by commercial publishers. Further, Internet users need to examine search results with a critical eye for information quality. Expertise in searching electronic health policy information is a prerequisite for developing APRNs' leadership in political arenas to influence health policy and the delivery of healthcare services. ©2011 The Author(s) Journal compilation ©2011 American Academy of Nurse Practitioners.

  12. Electronic Commerce Success Model: A Search for Multiple Criteria

    Directory of Open Access Journals (Sweden)

    Didi Achjari

    2004-01-01

    Full Text Available The current study attempts to develop and examine framework of e-commerce success. In order to obtain comprehensive and robust measures, the framework accomodates key factors that are identified in the literature concerning the success of electronic commerce. The structural model comprises of four exogenous variables (Internal Driver, Internal Impediment, External Driver and Exgternal Impediment and one endogenous variable (Electornic Commerce Success eith 24 observed variables. The study that was administered within large Australian companies using questionaire survey concluded that benefits for both internal organization and external parties from the use of e-commerce were the main factor tro predict perceived and/or expected success of electronic commerce.

  13. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    Science.gov (United States)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  14. Secondary electron emission from rough metal surfaces: a multi-generation model

    International Nuclear Information System (INIS)

    Cao, Meng; Zhang, Na; Wang, Fang; Hu, Tian-Cun; Cui, Wan-Zhao

    2015-01-01

    We develop a multi-generation model to examine secondary electron emission (SEE) from a rough metal surface. In this model, the traces of both primary electrons (PEs) and secondary electrons (SEs) are tracked by combining the electron scattering in the material and the multi-interaction with the rough surface. The effective secondary electron emission yield (SEY) is then obtained from the final states of the multi-generation SEs. Using this model, the SEE properties of the surfaces with rectangular and triangular grooves have been examined. We find that a rectangular groove can be used for effective SEE suppression. For a triangular groove, the criterion of SEY enhancement/suppression has been achieved, indicating that a small groove angle is required for effective SEE suppression, especially for a high PE energy. Furthermore, the SEE properties for some random rough surfaces are examined and some preliminary results are presented. Accordingly, our model and results could provide a powerful tool to give a comprehensive insight into the SEE of rough metal surfaces. (paper)

  15. Electron reactions in model liquids and biological systems

    International Nuclear Information System (INIS)

    Bakale, G.; Gregg, E.C.

    1982-01-01

    Progress is reported in the following studies: (1) Field-dependent electron attachment; (2) Dependence of electron attachment rate on electron-acceptor dipole moment; (3) Electron attachment in i-octane/TMS mixtures; (4) Electron attachment/detachment equilibria; (5) Electron attachment to reversed micelles; (6) Electron attachment to chemical carcinogens; (7) Radiation-induced bacterial mutagenesis; and (8) Bacterial mutagenicity of nitrobenzene derivatives. 14 references

  16. A numerical model of the mirror electron cyclotron resonance MECR source

    International Nuclear Information System (INIS)

    Hellblom, G.

    1986-03-01

    Results from numerical modeling of a new type of ion source are presented. The plasma in this source is produced by electron cyclotron resonance in a strong conversion magnetic field. Experiments have shown that a well-defined plasma column, extended along the magnetic field (z-axis) can be produced. The electron temperature and the densities of the various plasma particles have been found to have a strong z-position dependence. With the numerical model, a simulation of the evolution of the composition of the plasma as a function of z is made. A qualitative agreement with experimental data can be obtained for certain parameter regimes. (author)

  17. Is the thermal-spike model consistent with experimentally determined electron temperature?

    International Nuclear Information System (INIS)

    Ajryan, Eh.A.; Fedorov, A.V.; Kostenko, B.F.

    2000-01-01

    Carbon K-Auger electron spectra from amorphous carbon foils induced by fast heavy ions are theoretically investigated. The high-energy tail of the Auger structure showing a clear projectile charge dependence is analyzed within the thermal-spike model framework as well as in the frame of another model taking into account some kinetic features of the process. A poor comparison results between theoretically and experimentally determined temperatures are suggested to be due to an improper account of double electron excitations or due to shake-up processes which leave the system in a more energetic initial state than a statically screened core hole

  18. Approaches to modelling irradiation-induced processes in transmission electron microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Lebedeva, Irina V; Popov, Andrey M; Bichoutskaia, Elena

    2013-08-07

    The recent progress in high-resolution transmission electron microscopy (HRTEM) has given rise to the possibility of in situ observations of nanostructure transformations and chemical reactions induced by electron irradiation. In this article we briefly summarise experimental observations and discuss in detail atomistic modelling of irradiation-induced processes in HRTEM, as well as mechanisms of such processes recognised due to modelling. Accurate molecular dynamics (MD) techniques based on first principles or tight-binding models are employed in the analysis of single irradiation-induced events, and classical MD simulations are combined with a kinetic Monte Carlo algorithm to simulate continuous irradiation of nanomaterials. It has been shown that sulphur-terminated graphene nanoribbons are formed inside carbon nanotubes as a result of an irradiation-selective chemical reaction. The process of fullerene formation in HRTEM during continuous electron irradiation of a small graphene flake has been simulated, and mechanisms driving this transformation analysed.

  19. Modeling Earth's Outer Radiation Belt Electron Dynamics---Radial Diffusion, Heating, and Loss

    Science.gov (United States)

    Tu, Weichao

    Earth's outer radiation belt is a relativistic electron environment that is hazardous to space systems. It is characterized by large variations in the electron flux, which are controlled by the competition between source, transport, and loss processes. One of the central questions in outer radiation belt research is to resolve the relative contribution of radial diffusion, wave heating, and loss to the enhancement and decay of the radiation belt electrons. This thesis studies them together and separately. Firstly, we develop an empirical Fokker-Planck model that includes radial diffusion, an internal source, and finite electron lifetimes parameterized as functions of geomagnetic indices. By simulating the observed electron variations, the model suggests that the required magnitudes of radial diffusion and internal heating for the enhancement of energetic electrons in the outer radiation belt vary from storm to storm, and generally internal heating contributes more to the enhancements of MeV energy electrons at L=4 (L is approximately the radial distance in Earth radii at the equator). However, since the source, transport, and loss terms in the model are empirical, the model results have uncertainties. To eliminate the uncertainty in the loss rate, both the precipitation and the adiabatic loss of radiation belt electrons are quantitatively studied. Based on the observations from Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), a Drift-Diffusion model is applied to quantify electron precipitation loss, which is the dominant non-adiabatic loss mechanism for electrons in the heart of the outer radiation belt. Model results for a small storm, a moderate storm, and an intense storm indicate that fast precipitation losses of relativistic electrons, on the time scale of hours, persistently occur in the storm main phases and with more efficient losses at higher energies over wide range of L regions. Additionally, calculations of adiabatic effects on radiation

  20. Application of a distorted wave model to electron capture in atomic collisions

    International Nuclear Information System (INIS)

    Deco, G.R.; Martinez, A.E.; Rivarola, R.D.

    1988-01-01

    In this work, it is presented the CDW-EIS approximation applied to the description of processes of electron capture in ion-atom collisions. Differential and total cross sections are compared to results obtained by other theoretical models, as well as, to experimental data. (A.C.A.S.) [pt

  1. Counterintuitive electron localisation from density-functional theory with polarisable solvent models

    International Nuclear Information System (INIS)

    Dale, Stephen G.; Johnson, Erin R.

    2015-01-01

    Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minima thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed

  2. Counterintuitive electron localisation from density-functional theory with polarisable solvent models

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Stephen G., E-mail: sdale@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-11-14

    Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minima thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.

  3. Electron/muon specific two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Kajiyama, Yuji, E-mail: kajiyama-yuuji@akita-pref.ed.jp [Akita Highschool, Tegata-Nakadai 1, Akita, 010-0851 (Japan); Okada, Hiroshi, E-mail: hokada@kias.re.kr [School of Physics, KIAS, Seoul 130-722 (Korea, Republic of); Yagyu, Kei, E-mail: keiyagyu@ncu.edu.tw [Department of Physics, National Central University, Chungli, 32001, Taiwan, ROC (China)

    2014-10-15

    We discuss two Higgs doublet models with a softly-broken discrete S{sub 3} symmetry, where the mass matrix for charged-leptons is predicted as the diagonal form in the weak eigenbasis of lepton fields. Similarly to an introduction of Z{sub 2} symmetry, the tree level flavor changing neutral current can be forbidden by imposing the S{sub 3} symmetry to the model. Under the S{sub 3} symmetry, there are four types of Yukawa interactions depending on the S{sub 3} charge assignment to right-handed fermions. We find that extra Higgs bosons can be muon and electron specific in one of four types of the Yukawa interaction. This property does not appear in any other two Higgs doublet models with a softly-broken Z{sub 2} symmetry. We discuss the phenomenology of the muon and electron specific Higgs bosons at the Large Hadron Collider; namely we evaluate allowed parameter regions from the current Higgs boson search data and discovery potential of such a Higgs boson at the 14 TeV run.

  4. Fatigue tests and characterization of resulting microstructure by transmission electron microscope on zircaloy 4

    International Nuclear Information System (INIS)

    Di Toma, S.; Bertolino, G.; Tolley, A.

    2012-01-01

    This work reports the results of load controlled tension-tension fatigue tests on Zircaloy 4 (Zy-4). The resulting microstructure, particularly the kind and density of dislocations was characterized using a Transmission Electron Microscope (TEM). Specimens were cut from a rolled plate, with tensile axis parallel and perpendicular to the rolling direction. The results show a significant anisotropy of the mechanical properties due to the strong texture developed during rolling. Mainly type dislocations were observed, only in a longitudinal tensile axis specimen, dislocations were observed with a much lower density. The Schmid factors corresponding to the different glide systems were determined for specific grains in both tensile directions (author)

  5. The electronic disability record: purpose, parameters, and model use case.

    Science.gov (United States)

    Tulu, Bengisu; Horan, Thomas A

    2009-01-01

    The active engagement of consumers is an important factor in achieving widespread success of health information systems. The disability community represents a major segment of the healthcare arena, with more than 50 million Americans experiencing some form of disability. In keeping with the "consumer-driven" approach to e-health systems, this paper considers the distinctive aspects of electronic and personal health record use by this segment of society. Drawing upon the information shared during two national policy forums on this topic, the authors present the concept of Electronic Disability Records (EDR). The authors outline the purpose and parameters of such records, with specific attention to its ability to organize health and financial data in a manner that can be used to expedite the disability determination process. In doing so, the authors discuss its interaction with Electronic Health Records (EHR) and Personal Health Records (PHR). The authors then draw upon these general parameters to outline a model use case for disability determination and discuss related implications for disability health management. The paper further reports on the subsequent considerations of these and related deliberations by the American Health Information Community (AHIC).

  6. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †

    KAUST Repository

    Beljonne, David

    2011-02-08

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational techniques used to assess the morphology of organic: organic heterojunctions; we highlight the compromises that are necessary to handle large systems and multiple time scales while preserving the atomistic details required for subsequent computations of the electronic and optical properties. We then review some recent theoretical advances in describing the ground-state electronic structure at heterojunctions between donor and acceptor materials and highlight the role played by charge-transfer and long-range polarization effects. Finally, we discuss the modeling of the excited-state electronic structure at organic:organic interfaces, which is a key aspect in the understanding of the dynamics of photoinduced electron-transfer processes. © 2010 American Chemical Society.

  7. A novel, flat, electronically-steered phased array transducer for tissue ablation: preliminary results

    International Nuclear Information System (INIS)

    Ellens, Nicholas P K; Lucht, Benjamin B C; Gunaseelan, Samuel T; Hudson, John M; Hynynen, Kullervo H

    2015-01-01

    Flat, λ/2-spaced phased arrays for therapeutic ultrasound were examined in silico and in vitro. All arrays were made by combining modules made of 64 square elements with 1.5 mm inter-element spacing along both major axes. The arrays were designed to accommodate integrated, co-aligned diagnostic transducers for targeting and monitoring. Six arrays of 1024 elements (16 modules) and four arrays of 6144 elements (96 modules) were modelled and compared according to metrics such as peak pressure amplitude, focal size, ability to be electronically-steered far off-axis and grating lobe amplitude. Two 1024 element prototypes were built and measured in vitro, producing over 100 W of acoustic power. In both cases, the simulation model of the pressure amplitude field was in good agreement with values measured by hydrophone. Using one of the arrays, it was shown that the peak pressure amplitude dropped by only 24% and 25% of the on-axis peak pressure amplitude when steered to the edge of the array (40 mm) at depths of 30 mm and 50 mm. For the 6144 element arrays studied in in silico only, similarly high steerability was found: even when steered 100 mm off-axis, the pressure amplitude decrease at the focus was less than 20%, while the maximum pressure grating lobe was only 20%. Thermal simulations indicate that the modules produce more than enough acoustic power to perform rapid ablations at physiologically relevant depths and steering angles. Arrays such as proposed and tested in this study have enormous potential: their high electronic steerability suggests that they will be able to perform ablations of large volumes without the need for any mechanical translation. (paper)

  8. Modeling the electron transport chain of purple non-sulfur bacteria.

    Science.gov (United States)

    Klamt, Steffen; Grammel, Hartmut; Straube, Ronny; Ghosh, Robin; Gilles, Ernst Dieter

    2008-01-01

    Purple non-sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady-state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary-modes analysis of a stoichiometric ETC model reveals nine operational modes. Most of them represent well-known functional states, however, two modes constitute reverse electron flow under respiratory conditions, which has been barely considered so far. We further present and analyze a kinetic model of the ETC in which rate laws of electron transfer steps are based on redox potential differences. Our model reproduces well-known phenomena of respiratory and photosynthetic operation of the ETC and also provides non-intuitive predictions. As one key result, model simulations demonstrate a stronger reduction of ubiquinone when switching from high-light to low-light conditions. This result is parameter insensitive and supports the hypothesis that the redox state of ubiquinone is a suitable signal for controlling photosynthetic gene expression.

  9. A graphical vector autoregressive modelling approach to the analysis of electronic diary data

    Directory of Open Access Journals (Sweden)

    Zipfel Stephan

    2010-04-01

    Full Text Available Abstract Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED. The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research.

  10. Modeling electron competition among nitrogen oxides reduction and N2 O accumulation in hydrogenotrophic denitrification.

    Science.gov (United States)

    Liu, Yiwen; Ngo, Huu H; Guo, Wenshan; Peng, Lai; Chen, Xueming; Wang, Dongbo; Pan, Yuting; Ni, Bing-Jie

    2018-04-01

    Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen removal, which utilizes hydrogen as electron donor, and carbon dioxide as carbon source. Recent studies have shown that nitrous oxide (N 2 O), a highly undesirable intermediate and potent greenhouse gas, can accumulate during this process. In this work, a new mathematical model is developed to describe nitrogen oxides dynamics, especially N 2 O, during hydrogenotrophic denitrification for the first time. The model describes electron competition among the four steps of hydrogenotrophic denitrification through decoupling hydrogen oxidation and nitrogen reduction processes using electron carriers, in contrast to the existing models that couple these two processes and also do not consider N 2 O accumulation. The developed model satisfactorily describes experimental data on nitrogen oxides dynamics obtained from two independent hydrogenotrophic denitrifying cultures under various hydrogen and nitrogen oxides supplying conditions, suggesting the validity and applicability of the model. The results indicated that N 2 O accumulation would not be intensified under hydrogen limiting conditions, due to the higher electron competition capacity of N 2 O reduction in comparison to nitrate and nitrite reduction during hydrogenotrophic denitrification. The model is expected to enhance our understanding of the process during hydrogenotrophic denitrification and the ability to predict N 2 O accumulation. © 2017 Wiley Periodicals, Inc.

  11. DFT-based Green's function pathways model for prediction of bridge-mediated electronic coupling.

    Science.gov (United States)

    Berstis, Laura; Baldridge, Kim K

    2015-12-14

    A density functional theory-based Green's function pathway model is developed enabling further advancements towards the long-standing challenge of accurate yet inexpensive prediction of electron transfer rate. Electronic coupling predictions are demonstrated to within 0.1 eV of experiment for organic and biological systems of moderately large size, with modest computational expense. Benchmarking and comparisons are made across density functional type, basis set extent, and orbital localization scheme. The resulting framework is shown to be flexible and to offer quantitative prediction of both electronic coupling and tunneling pathways in covalently bound non-adiabatic donor-bridge-acceptor (D-B-A) systems. A new localized molecular orbital Green's function pathway method (LMO-GFM) adaptation enables intuitive understanding of electron tunneling in terms of through-bond and through-space interactions.

  12. Results and analysis of free-electron-laser oscillation in a high-energy storage ring

    International Nuclear Information System (INIS)

    Couprie, M.E.; Velghe, M.; Prazeres, R.; Jaroszynski, D.; Billardon, M.

    1991-01-01

    A storage-ring free-electron laser at Orsay has been operating since 1989 in the visible wavelength range. In contrast with previous experiments, it operates with positrons and at higher energies (600--800 MeV), with the storage ring Super-ACO (ACO denotes Anneau de Collisions d'Orsay). The optical gain, the laser power, the transverse profile, and the macrotemporal structure of the laser are analyzed. In particular, we show that the gain matrix possesses many off-diagonal elements, which results in lasing on a combination of noncylindrical Gaussian modes. The eigenmode of the laser oscillation is a combination of one or two main Gaussian modes and several higher-order modes, which results in most of the power being extracted in these modes

  13. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  14. Model-based Adjustment of Droplet Characteristic for 3D Electronic Printing

    Directory of Open Access Journals (Sweden)

    Lin Na

    2017-01-01

    Full Text Available The major challenge in 3D electronic printing is the print resolution and accuracy. In this paper, a typical mode - lumped element modeling method (LEM - is adopted to simulate the droplet jetting characteristic. This modeling method can quickly get the droplet velocity and volume with a high accuracy. Experimental results show that LEM has a simpler structure with the sufficient simulation and prediction accuracy.

  15. Analysis about the development of mobile electronic commerce: An application of production possibility frontier model

    OpenAIRE

    Uesugi, Shiro; Okada, Hitoshi

    2012-01-01

    This study aims to further develop our previous research on production possibility frontier model (PPFM). An application of model to provide analysis on the mobile commerce survey for which data was collected in Japan und Thailand is presented. PPFM looks into the consumer behaviors as the results form the perception on the relationship between Convenience and Privacy Concerns of certain electronic commerce services. From the data of consumer surveys, PPFM is expected to provide practical sol...

  16. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    International Nuclear Information System (INIS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-01-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections

  17. On one peculiarity of the model describing the interaction of the electron beam with the semiconductor surface

    Science.gov (United States)

    Stepovich, M. A.; Amrastanov, A. N.; Seregina, E. V.; Filippov, M. N.

    2018-01-01

    The problem of heat distribution in semiconductor materials irradiated with sharply focused electron beams in the absence of heat exchange between the target and the external medium is considered by mathematical modeling methods. For a quantitative description of energy losses by probe electrons a model based on a separate description of the contributions of absorbed in the target and backscattered electrons and applicable to a wide class of solids and a range of primary electron energies is used. Using the features of this approach, the nonmonotonic dependence of the temperature of the maximum heating in the target on the energy of the primary electrons is explained. Some modeling results are illustrated for semiconductor materials of electronic engineering.

  18. Localized Electron Trap Modification as a Result of Space Weather Exposure in Highly Disordered Insulating Materials

    Science.gov (United States)

    2017-03-06

    of Figures and Tables Approved for public release; distribution is unlimited. ii Figure 21 Absorbance spectra of pristine and electron radiation...then the photon may be absorbed . The electron may be an ion-core electron or a free electron in the solid. If the energy of the incoming photon does...color, and, most importantly for these studies, the radiation-induced defects in a material. Fourier transform infrared ( FTIR ) spectroscopy probes

  19. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications

    Science.gov (United States)

    Vassiliev, Oleg N.; Kry, Stephen F.; Grosshans, David R.; Mohan, Radhe

    2018-03-01

    This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to  ∼1 MeV.

  20. Reliable modeling of the electronic spectra of realistic uranium complexes

    Science.gov (United States)

    Tecmer, Paweł; Govind, Niranjan; Kowalski, Karol; de Jong, Wibe A.; Visscher, Lucas

    2013-07-01

    We present an EOMCCSD (equation of motion coupled cluster with singles and doubles) study of excited states of the small [UO2]2+ and [UO2]+ model systems as well as the larger UVIO2(saldien) complex. In addition, the triples contribution within the EOMCCSDT and CR-EOMCCSD(T) (completely renormalized EOMCCSD with non-iterative triples) approaches for the [UO2]2+ and [UO2]+ systems as well as the active-space variant of the CR-EOMCCSD(T) method—CR-EOMCCSd(t)—for the UVIO2(saldien) molecule are investigated. The coupled cluster data were employed as benchmark to choose the "best" appropriate exchange-correlation functional for subsequent time-dependent density functional (TD-DFT) studies on the transition energies for closed-shell species. Furthermore, the influence of the saldien ligands on the electronic structure and excitation energies of the [UO2]+ molecule is discussed. The electronic excitations as well as their oscillator dipole strengths modeled with TD-DFT approach using the CAM-B3LYP exchange-correlation functional for the [UVO2(saldien)]- with explicit inclusion of two dimethyl sulfoxide molecules are in good agreement with the experimental data of Takao et al. [Inorg. Chem. 49, 2349 (2010), 10.1021/ic902225f].

  1. In Silico Modeling of Indigo and Tyrian Purple Single-Electron Nano-Transistors Using Density Functional Theory Approach

    Science.gov (United States)

    Shityakov, Sergey; Roewer, Norbert; Förster, Carola; Broscheit, Jens-Albert

    2017-07-01

    The purpose of this study was to develop and implement an in silico model of indigoid-based single-electron transistor (SET) nanodevices, which consist of indigoid molecules from natural dye weakly coupled to gold electrodes that function in a Coulomb blockade regime. The electronic properties of the indigoid molecules were investigated using the optimized density-functional theory (DFT) with a continuum model. Higher electron transport characteristics were determined for Tyrian purple, consistent with experimentally derived data. Overall, these results can be used to correctly predict and emphasize the electron transport functions of organic SETs, demonstrating their potential for sustainable nanoelectronics comprising the biodegradable and biocompatible materials.

  2. UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions.

    Science.gov (United States)

    Siebert, Xavier; Navaza, Jorge

    2009-07-01

    Electron microscopy of a macromolecular structure can lead to three-dimensional reconstructions with resolutions that are typically in the 30-10 A range and sometimes even beyond 10 A. Fitting atomic models of the individual components of the macromolecular structure (e.g. those obtained by X-ray crystallography or nuclear magnetic resonance) into an electron-microscopy map allows the interpretation of the latter at near-atomic resolution, providing insight into the interactions between the components. Graphical software is presented that was designed for the interactive fitting and refinement of atomic models into electron-microscopy reconstructions. Several characteristics enable it to be applied over a wide range of cases and resolutions. Firstly, calculations are performed in reciprocal space, which results in fast algorithms. This allows the entire reconstruction (or at least a sizeable portion of it) to be used by taking into account the symmetry of the reconstruction both in the calculations and in the graphical display. Secondly, atomic models can be placed graphically in the map while the correlation between the model-based electron density and the electron-microscopy reconstruction is computed and displayed in real time. The positions and orientations of the models are refined by a least-squares minimization. Thirdly, normal-mode calculations can be used to simulate conformational changes between the atomic model of an individual component and its corresponding density within a macromolecular complex determined by electron microscopy. These features are illustrated using three practical cases with different symmetries and resolutions. The software, together with examples and user instructions, is available free of charge at http://mem.ibs.fr/UROX/.

  3. Modeling Blazar Spectra by Solving an Electron Transport Equation

    Science.gov (United States)

    Lewis, Tiffany; Finke, Justin; Becker, Peter A.

    2018-01-01

    Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.

  4. A Landau fluid model for dissipative trapped electron modes

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths

  5. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    International Nuclear Information System (INIS)

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed

  6. SAMI2 model results for the quiet time low latitude ionosphere over India

    Science.gov (United States)

    Rao, S. S.; Sharma, Shweta; Pandey, R.

    2018-04-01

    Efficacy of SAMI2 model for the Indian low latitude region around 75°E longitudes has been tested for different levels of solar flux. With a slight modification of the plasma drift velocity the SAMI2 model has been successful in reproducing quiet time ionospheric low latitude features like Equatorial Ionization Anomaly. We have also showed the formation of electron hole in the topside equatorial ionosphere in the Indian sector. Simulation results show the formation of electron hole in the altitude range 800-2500 km over the magnetic equator. Indian zone results reveal marked differences with regard to the time of occurrence, seasonal appearances and strength of the electron hole vis-a-vis those reported for the American equatorial region.

  7. Electrons in crossed laser and magnetic fields: an exactly soluble model in QED

    International Nuclear Information System (INIS)

    Davidovich, L.; Rochlin, H.

    1983-06-01

    The interaction of an electron with a static and uniform magnetic field B sup(→), in the presence of the quantized electromagnetic field, is studied by means of an exactly soluble model, which allows the study of the line shape of the scattered radiation in the resonance region, with spontaneous emission effects taken into account. The model also allows an exact renormalization procedure, after which the calculated spectrum remains finite, in the point-electron limit. In particular it is found, in this limit finite expressions for the linewidth and the energy shift of the scattered radiation, as functions of B. Explicit expressions for the electron and field operators are also found, and the correspondence of these results with classical solutions is discussed. (Author) [pt

  8. Some results regarding the comparison of the Earth's atmospheric models

    Directory of Open Access Journals (Sweden)

    Šegan S.

    2005-01-01

    Full Text Available In this paper we examine air densities derived from our realization of aeronomic atmosphere models based on accelerometer measurements from satellites in a low Earth's orbit (LEO. Using the adapted algorithms we derive comparison parameters. The first results concerning the adjustment of the aeronomic models to the total-density model are given.

  9. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    . Through this method, the required computation time and CPU memory can be reduced, where this faster simulation can be an advantage of a large network simulation. Besides, the achieved results show the same results as the non-linear time-domain simulation. Furthermore, the HSS modeling can describe how...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  10. First results of the University of Maryland electron beam transport experiment

    International Nuclear Information System (INIS)

    Namkung, W.; Loschialpo, P.; Reiser, M.; Suter, J.; Lawson, J.D.

    1981-01-01

    A study is made of emittance growth in periodically focused intense beams. For initial studies, the electron gun consists of a 1-cm diam., dispenser-type cathode and an anode covered with a wire mesh. To avoid neutralization, 5 /mu/s, 60 Hz pulses are used and the current is 230 mA at 5 kV. By varying the voltage from 10 kV to 500 volts the space charge depression, /omega/sub //omega/sub //o, of the particle oscillation frequencies in the focusing channel can be changed from approximately 0.04 to approximately 0.2. Further increase of /omega/sub //omega/sub //o should be possible with modified guns and the use of emittance control grids. Four prototype solenoids have been built, and the results of experiments with the first two are presented. 8 refs

  11. Commissioning and First Results of the Electron Beam Profiler in the Main Injector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R. [Fermilab; Alvarez, M. [Fermilab; Fitzgerald, J. [Fermilab; Lundberg, C. [Fermilab; Prieto, P. [Fermilab; Zagel, J. [Fermilab; Blokland, W. [Oak Ridge

    2017-08-01

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and a similar device has been installed in the Main Injector at Fermilab. Commissioning of the device is in progress with the goal of having it operational by the end of the year. The status of the commissioning and initial results will be presented

  12. Modeling skin collimation using the electron pencil beam redefinition algorithm.

    Science.gov (United States)

    Chi, Pai-Chun M; Hogstrom, Kenneth R; Starkschall, George; Antolak, John A; Boyd, Robert A

    2005-11-01

    Skin collimation is an important tool for electron beam therapy that is used to minimize the penumbra when treating near critical structures, at extended treatment distances, with bolus, or using arc therapy. It is usually made of lead or lead alloy material that conforms to and is placed on patient surface. Presently, commercially available treatment-planning systems lack the ability to model skin collimation and to accurately calculate dose in its presence. The purpose of the present work was to evaluate the use of the pencil beam redefinition algorithm (PBRA) in calculating dose in the presence of skin collimation. Skin collimation was incorporated into the PBRA by terminating the transport of electrons once they enter the skin collimator. Both fixed- and arced-beam dose calculations for arced-beam geometries were evaluated by comparing them with measured dose distributions for 10- and 15-MeV beams. Fixed-beam dose distributions were measured in water at 88-cm source-to-surface distance with an air gap of 32 cm. The 6 x 20-cm2 field (dimensions projected to isocenter) had a 10-mm thick lead collimator placed on the surface of the water with its edge 5 cm inside the field's edge located at +10 cm. Arced-beam dose distributions were measured in a 13.5-cm radius polystyrene circular phantom. The beam was arced 90 degrees (-45 degrees to +45 degrees), and 10-mm thick lead collimation was placed at +/- 30 degrees. For the fixed beam at 10 MeV, the PBRA- calculated dose agreed with measured dose to within 2.0-mm distance to agreement (DTA) in the regions of high-dose gradient and 2.0% in regions of low dose gradient. At 15 MeV, the PBRA agreed to within a 2.0-mm DTA in the regions of high-dose gradient; however, the PBRA underestimated the dose by as much as 5.3% over small regions at depths less than 2 cm because it did not model electrons scattered from the edge of the skin collimation. For arced beams at 10 MeV, the agreement was 1-mm DTA in the high-dose gradient

  13. Verification of aseismic design model by using experimental results

    International Nuclear Information System (INIS)

    Mizuno, N.; Sugiyama, N.; Suzuki, T.; Shibata, Y.; Miura, K.; Miyagawa, N.

    1985-01-01

    A lattice model is applied as an analysis model for an aseismic design of the Hamaoka nuclear reactor building. With object to verify an availability of this design model, two reinforced concrete blocks are constructed on the ground and the forced vibration tests are carried out. The test results are well followed by simulation analysis using the lattice model. Damping value of the ground obtained from the test is more conservative than the design value. (orig.)

  14. Structural damage at the Si/SiO2 interface resulting from electron injection in metal-oxide-semiconductor devices

    Science.gov (United States)

    Mikawa, R. E.; Lenahan, P. M.

    1985-03-01

    With electron spin resonance, we have observed structural changes in metal-oxide-semiconductor structures resulting from the photoemisson of electrons from the silicon into the oxide. A trivalent silicon defect at the Si/SiO2 interface, termed Pb, is shown to be responsible for the interface states induced by electron injection. We find that these Pb centers are amphoteric interface state defects.

  15. A Model of Electron-Positron Pair Formation

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2008-01-01

    Full Text Available The elementary electron-positron pair formation process is consideredin terms of a revised quantum electrodynamic theory, with specialattention to the conservation of energy, spin, and electric charge.The theory leads to a wave-packet photon model of narrow line widthand needle-radiation properties, not being available from conventionalquantum electrodynamics which is based on Maxwell's equations. Themodel appears to be consistent with the observed pair productionprocess, in which the created electron and positron form two raysthat start within a very small region and have original directionsalong the path of the incoming photon. Conservation of angular momentum requires the photon to possess a spin, as given by the present theory but not by the conventional one. The nonzero electric field divergence further gives rise to a local intrinsic electric charge density within the photon body, whereas there is a vanishing total charge of the latter. This may explain the observed fact that the photon decays on account of the impact from an external electric field. Such a behaviour should not become possible for a photon having zero local electric charge density.

  16. Electron beam irradiations of polypropylene syringe barrels and the resulting physical and chemical property changes

    Science.gov (United States)

    Abraham, Ann C.; Czayka, M. A.; Fisch, M. R.

    2010-01-01

    Mechanical, thermal, chemical decomposition and electron spin resonance (ESR) methods were used to study electron beam irradiated polypropylene syringe barrels that were irradiated to a total fractionated dose of 0, 20, 40, 60, and 80 kGy (in steps of 20 kGy). Dose mapping was conducted to determine dose to and through the syringe barrel. Analysis of these data indicated that degradation of the polypropylene syringes increased with an increase in electron beam irradiation.

  17. EFFICENCY OF PHOTOACTIVATED DISINFECTION ON EXPERIMENTAL BIOFILM - SCANING ELECTRON MICROSCOPY RESULTS

    Directory of Open Access Journals (Sweden)

    Ivan Filipov

    2013-10-01

    Full Text Available Photoactivated disinfection is a new antimicrobial method for root canal disinfection, based on photodynamic therapy.Purpose: The goal of this study is to investigate the antimicrobial effect of photoactivated disinfection on experimental biofilm from Enterococcus faecalis and Candida albicans, through scanning electron microscopy.Material and Methods: Freshly extracted, one root teeth were prepared with a sequence of rotary nickel-titanium files (ProTaper ; Dentsply ; Mailefer , irrigated, the external root canal surfaces isolated with nail polish and autoclaved. After the incubation with the experimental biofilm, the root canals were filled with photosensitizer - Toluidine Blue – 0,01% and irradiated with Foto San(CMS Dental, 630 nm, 2000mW/cm2 for 30 seconds.SEM was performed on the coronal, middle and apical third of the root canal, for evaluation of the results.Results and discussion: In the range of 600 to 8000, SEM showed significant reduction of microorganisms from the canal system. A large increase in microorganisms was observed, showing a disturbance in the cell membrane, as effect from the activation of chromophore with the laser and the penetration of the photosensitizer in dental tubules. In the apical third single microorganisms were observed. This may due to decreased penetration of the photosensitizer, incomplete pervasion of MB in the biofilm or insufficient oxygenation.Conclusion: FAD has the potential to be a good alternative and addition to the conventional root canal disinfection methods.SEM is a precise method for endodontic treatment result evaluation.

  18. Model of electronic energy relaxation in the test-particle Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Roblin, P.; Rosengard, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement; Nguyen, T.T. [Compagnie Internationale de Services en Informatique (CISI) - Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1994-12-31

    We previously presented a new test-particle Monte Carlo method (1) (which we call PTMC), an iterative method for solving the Boltzmann equation, and now improved and very well-suited to the collisional steady gas flows. Here, we apply a statistical method, described by Anderson (2), to treat electronic translational energy transfer by a collisional process, to atomic uranium vapor. For our study, only three levels of its multiple energy states are considered: 0,620 cm{sup -1} and an average level grouping upper levels. After presenting two-dimensional results, we apply this model to the evaporation of uranium by electron bombardment and show that the PTMC results, for given initial electronic temperatures, are in good agreement with experimental radial velocity measurements. (author). 12 refs., 1 fig.

  19. Electronic Raman spectra in iron-based superconductors with two-orbital model

    International Nuclear Information System (INIS)

    Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng

    2011-01-01

    Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.

  20. Steel Containment Vessel Model Test: Results and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Costello, J.F.; Hashimote, T.; Hessheimer, M.F.; Luk, V.K.

    1999-03-01

    A high pressure test of the steel containment vessel (SCV) model was conducted on December 11-12, 1996 at Sandia National Laboratories, Albuquerque, NM, USA. The test model is a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of an improved Mark II boiling water reactor (BWR) containment. A concentric steel contact structure (CS), installed over the SCV model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. The SCV model and contact structure were instrumented with strain gages and displacement transducers to record the deformation behavior of the SCV model during the high pressure test. This paper summarizes the conduct and the results of the high pressure test and discusses the posttest metallurgical evaluation results on specimens removed from the SCV model.

  1. The Dismantling of the Japanese Model in Consumer Electronics

    DEFF Research Database (Denmark)

    Frøslev Christensen, Jens; Holm Olesen, Michael; Kjær, Jonas

    -based innovation, the current transformation ofsound amplification from conventional to digital amplifiers. We study the early formation of thisnew technology as especially reflected in the particularly dynamic cluster of innovation inDenmark and extend the analysis to the global strategizing around this new......This paper addresses an issue of great importance for the future organization of the consumerelectronics industry: the "battle" of control over component-based digitization. We are now witnessing the dismantling of the Japanese Model that has prevailed in consumer electronicsover the past 30 years....... Specialized and large-scale component suppliers have taken the lead inmost component-based innovations and have obtained increasingly powerful positions in thevalue chain of consumer electronics. This paper provides an in-depth study of the strategic andstructural ramifications of one such component...

  2. Nonlinear electromagnetic gyrokinetic particle simulations with the electron hybrid model

    Science.gov (United States)

    Nishimura, Y.; Lin, Z.; Chen, L.; Hahm, T.; Wang, W.; Lee, W.

    2006-10-01

    The electromagnetic model with fluid electrons is successfully implemented into the global gyrokinetic code GTC. In the ideal MHD limit, shear Alfven wave oscillation and continuum damping is demonstrated. Nonlinear electromagnetic simulation is further pursued in the presence of finite ηi. Turbulence transport in the AITG unstable β regime is studied. This work is supported by Department of Energy (DOE) Grant DE-FG02-03ER54724, Cooperative Agreement No. DE-FC02-04ER54796 (UCI), DOE Contract No. DE-AC02-76CH03073 (PPPL), and in part by SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. Z. Lin, et al., Science 281, 1835 (1998). F. Zonca and L. Chen, Plasma Phys. Controlled Fusion 30, 2240 (1998); G. Zhao and L. Chen, Phys. Plasmas 9, 861 (2002).

  3. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self-losses......The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent...

  4. Comprehensive Power Losses Model for Electronic Power Transformer

    DEFF Research Database (Denmark)

    Yue, Quanyou; Li, Canbing; Cao, Yijia

    2018-01-01

    The electronic power transformer (EPT) has highe rpower losses than the conventional transformer. However, the EPT can correct the power factor, compensate the unbalanced current and reduce the line power losses in the distribution network.Therefore, the higher losses of the EPT and the consequent......-losses and considering the impact of the non-unity power factor and the three-phase unbalanced current, the overall power losses in the distribution network when using the EPT to replace the conventional transformer is analyzed, and the conditions in which the application of the EPT can cause less power losses...... reduced power losses in the distribution network require a comprehensive consideration when comparing the power losses of theEPT and conventional transformer. In this paper, a comprehensive power losses analysis model for the EPT in distribution networks is proposed. By analyzing the EPT self...

  5. Finite Element Models for Electron Beam Freeform Fabrication Process

    Science.gov (United States)

    Chandra, Umesh

    2012-01-01

    Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the

  6. Identifiability Results for Several Classes of Linear Compartment Models.

    Science.gov (United States)

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

  7. Electronic Detection of Delayed Test Result Follow-Up in Patients with Hypothyroidism.

    Science.gov (United States)

    Meyer, Ashley N D; Murphy, Daniel R; Al-Mutairi, Aymer; Sittig, Dean F; Wei, Li; Russo, Elise; Singh, Hardeep

    2017-07-01

    Delays in following up abnormal test results are a common problem in outpatient settings. Surveillance systems that use trigger tools to identify delayed follow-up can help reduce missed opportunities in care. To develop and test an electronic health record (EHR)-based trigger algorithm to identify instances of delayed follow-up of abnormal thyroid-stimulating hormone (TSH) results in patients being treated for hypothyroidism. We developed an algorithm using structured EHR data to identify patients with hypothyroidism who had delayed follow-up (>60 days) after an abnormal TSH. We then retrospectively applied the algorithm to a large EHR data warehouse within the Department of Veterans Affairs (VA), on patient records from two large VA networks for the period from January 1, 2011, to December 31, 2011. Identified records were reviewed to confirm the presence of delays in follow-up. During the study period, 645,555 patients were seen in the outpatient setting within the two networks. Of 293,554 patients with at least one TSH test result, the trigger identified 1250 patients on treatment for hypothyroidism with elevated TSH. Of these patients, 271 were flagged as potentially having delayed follow-up of their test result. Chart reviews confirmed delays in 163 of the 271 flagged patients (PPV = 60.1%). An automated trigger algorithm applied to records in a large EHR data warehouse identified patients with hypothyroidism with potential delays in thyroid function test results follow-up. Future prospective application of the TSH trigger algorithm can be used by clinical teams as a surveillance and quality improvement technique to monitor and improve follow-up.

  8. Interpretable Predictive Models for Knowledge Discovery from Home-Care Electronic Health Records

    Directory of Open Access Journals (Sweden)

    Bonnie L. Westra

    2011-01-01

    Full Text Available The purpose of this methodological study was to compare methods of developing predictive rules that are parsimonious and clinically interpretable from electronic health record (EHR home visit data, contrasting logistic regression with three data mining classification models. We address three problems commonly encountered in EHRs: the value of including clinically important variables with little variance, handling imbalanced datasets, and ease of interpretation of the resulting predictive models. Logistic regression and three classification models using Ripper, decision trees, and Support Vector Machines were applied to a case study for one outcome of improvement in oral medication management. Predictive rules for logistic regression, Ripper, and decision trees are reported and results compared using F-measures for data mining models and area under the receiver-operating characteristic curve for all models. The rules generated by the three classification models provide potentially novel insights into mining EHRs beyond those provided by standard logistic regression, and suggest steps for further study.

  9. Account of nonlocal ionization by fast electrons in the fluid models of a direct current glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rafatov, I. [Physics Department, Middle East Technical University, Ankara (Turkey); Bogdanov, E. A.; Kudryavtsev, A. A. [Saint Petersburg State University, St. Petersburg (Russian Federation)

    2012-09-15

    We developed and tested a simple hybrid model for a glow discharge, which incorporates nonlocal ionization by fast electrons into the 'simple' and 'extended' fluid frameworks. Calculations have been performed for an argon gas. Comparison with the experimental data as well as with the hybrid (particle) and fluid modelling results demonstated good applicability of the proposed model.

  10. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    Directory of Open Access Journals (Sweden)

    F. Pattyn

    2012-05-01

    Full Text Available Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing. Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.

  11. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties.

    Science.gov (United States)

    Han, Cheol-Min; Lee, Eun-Jung; Kim, Hyoun-Ee; Koh, Young-Hag; Kim, Keung N; Ha, Yoon; Kuh, Sung-Uk

    2010-05-01

    The surface of polyetheretherketone (PEEK) was coated with a pure titanium (Ti) layer using an electron beam (e-beam) deposition method in order to enhance its biocompatibility and adhesion to bone tissue. The e-beam deposition method was a low-temperature coating process that formed a dense, uniform and well crystallized Ti layer without deteriorating the characteristics of the PEEK implant. The Ti coating layer strongly adhered to the substrate and remarkably enhanced its wettability. The Ti-coated samples were evaluated in terms of their in vitro cellular behaviors and in vivo osteointegration, and the results were compared to a pure PEEK substrate. The level of proliferation of the cells (MC3T3-E1) was measured using a methoxyphenyl tetrazolium salt (MTS) assay and more than doubled after the Ti coating. The differentiation level of cells was measured using the alkaline phosphatase (ALP) assay and also doubled. Furthermore, the in vivo animal tests showed that the Ti-coated PEEK implants had a much higher bone-in-contact (BIC) ratio than the pure PEEK implants. These in vitro and in vivo results suggested that the e-beam deposited Ti coating significantly improved the potential of PEEK for hard tissue applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Results on the symmetries of integrable fermionic models on chains

    International Nuclear Information System (INIS)

    Dolcini, F.; Montorsi, A.

    2001-01-01

    We investigate integrable fermionic models within the scheme of the graded quantum inverse scattering method, and prove that any symmetry imposed on the solution of the Yang-Baxter equation reflects on the constants of motion of the model; generalizations with respect to known results are discussed. This theorem is shown to be very effective when combined with the polynomial R-matrix technique (PRT): we apply both of them to the study of the extended Hubbard models, for which we find all the subcases enjoying several kinds of (super)symmetries. In particular, we derive a geometrical construction expressing any gl(2,1)-invariant model as a linear combination of EKS and U-supersymmetric models. Further, we use the PRT to obtain 32 integrable so(4)-invariant models. By joint use of the Sutherland's species technique and η-pairs construction we propose a general method to derive their physical features, and we provide some explicit results

  13. 3-D Parallel Simulation Model of Continuous Beam-Electron Cloud Interactions

    CERN Document Server

    Ghalam, Ali F; Decyk, Viktor K; Huang Cheng Kun; Katsouleas, Thomas C; Mori, Warren; Rumolo, Giovanni; Zimmermann, Frank

    2005-01-01

    A 3D Particle-In-Cell model for continuous modeling of beam and electron cloud interaction in a circular accelerator is presented. A simple model for lattice structure, mainly the Quadruple and dipole magnets and chromaticity have been added to a plasma PIC code, QuickPIC, used extensively to model plasma wakefield acceleration concept. The code utilizes parallel processing techniques with domain decomposition in both longitudinal and transverse domains to overcome the massive computational costs of continuously modeling the beam-cloud interaction. Through parallel modeling, we have been able to simulate long-term beam propagation in the presence of electron cloud in many existing and future circular machines around the world. The exact dipole lattice structure has been added to the code and the simulation results for CERN-SPS and LHC with the new lattice structure have been studied. Also the simulation results are compared to the results from the two macro-particle modeling for strong head-tail instability. ...

  14. Recent results for electron scattering from biomolecules and molecules formed due to plasma treatment of biomass

    Science.gov (United States)

    Brunger, Michael

    2016-09-01

    We have been concentrating our recent experimental studies, for determining absolute cross sections, on both biomolecules (e.g. pyrimidine and benzoquinone) and molecules that result when biomass undergoes treatment by plasmas (e.g. phenol and furfural). All this work was supported and informed by computations from the Brazilian SMC groups and the Madrid IAM-SCAR group. A major rationale for these investigations was to provide cross section data for relevant modelling studies, and in this talk I will also present some results from those modelling studies. Possible further investigations will be canvassed in this presentation. Work done in conjunction with: D. B. Jones, L. Campbell, R. D. White, S. J. Buckman, M. A. P. Lima, M. C. A. Lopes, M. H. F. Bettega, M. T. do N. Varella, R. F. da Costa, G. García, P. Limão-Vieira, D. H. Madison, O. Ingólfsson and many other friends and colleagues.

  15. Recent results in electron-positron and lepton-hadron interactions

    International Nuclear Information System (INIS)

    Wiik, B.H.; Mess, K.H.

    1982-03-01

    These lectures will start with a few remarks on detectors and beams used to study e + e - annihilation and deep inelastic lepton-nucleon interactions. The main part of the lectures will discuss recent results obtained from a study of these processes including a discussion on the result of recent particle searches. The picture which emerges from these data is consistant with what has become known as the standard model. However, it is important to bear in mind that the experiments so far have only investigated masses which are small compared to 100 GeV/c 2 , the characteristic mass of the weak interaction. The new generation of e + e - and ep collider will allow us to extend these measurements into a mass range above 100 GeV/c 2 , and thus provide answers to many of the questions confronting the standard model. (orig./HSI)

  16. Electronic pairing mechanism due to band modification in a two-band model: Tc evaluation

    International Nuclear Information System (INIS)

    Mizia, J.; Gorski, G.; Traa, M.R.M.J.

    1997-01-01

    Following the electronic model developed by us previously (Mizia and Romanowski, Mizia) we estimate the superconducting transition temperature in a simple electronic two-band model for materials characterized by a broad superconducting band and a narrow level within the same energy range. A large electron deformation coupling constant and large electron correlation effects are assumed. It is shown that high-temperature superconductivity is entirely possible within a range of reasonable electronic parameters. This model does not assume any artificial interactions to obtain a negative pairing potential. Instead, the negative part of the electronic interaction potential comes from the modification of the electron dispersion relation with growing number of superconducting pairs. Such a modification is possible in soft electronic systems, i.e. in systems partial to band modification due to large internal stresses, strong electronic correlation effects and broad band narrow level charge transfer during the superconducting transition. (orig.)

  17. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited).

    Science.gov (United States)

    Vondrasek, R; Levand, A; Pardo, R; Savard, G; Scott, R

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  18. Energy deposition model for low-energy electrons (10-10 000 eV) in air

    International Nuclear Information System (INIS)

    Roldan, A.; Perez, J.M.; Williart, A.; Blanco, F.; Garcia, G.

    2004-01-01

    An energy deposition model for electrons in air that can be useful in microdosimetric applications is presented in this study. The model is based on a Monte Carlo simulation of the single electron scattering processes that can take place with the molecular constituents of the air in the energy range 10-10 000 eV. The input parameters for this procedure have been the electron scattering cross sections, both differential and integral. These parameters were calculated using a model potential method which describes the electron scattering with the molecular constituent of air. The reliability of the calculated integral cross section values has been evaluated by comparison with direct total electron scattering cross-section measurements performed by us in a transmission beam experiment. Experimental energy loss spectra for electrons in air have been used as probability distribution functions to define the electron energy loss in single collision events. The resulting model has been applied to simulate the electron transport through a gas cell containing air at different pressures and the results have been compared with those observed in the experiments. Finally, as an example of its applicability to dosimetric issues, the energy deposition of 10 000 eV by means of successive collisions in a free air chamber has been simulated

  19. 3D Modeling Activity for Novel High Power Electron Guns at SLAC

    CERN Document Server

    Krasnykh, Anatoly K

    2003-01-01

    The next generation of powerful electronic devices requires new approaches to overcome the known limitations of existing tube technology. Multi-beam and sheet beam approaches are novel concepts for the high power microwave devices. Direct and indirect modeling methods are being developed at SLAC to meet the new requirements in the 3D modeling. The direct method of solving of Poisson's equations for the multi-beam and sheet beam guns is employed in the TOPAZ 3D tool. The combination of TOPAZ 2D and EGUN (in the beginning) with MAFIA 3D and MAGIC 3D (at the end) is used in an indirect method to model the high power electron guns. Both methods complement each other to get reliable representation of the beam trajectories. Several gun ideas are under consideration at the present time. The collected results of these simulations are discussed.

  20. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  1. A Massless-Point-Charge Model for the Electron

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2010-04-01

    Full Text Available "It is rather remarkable that the modern concept of electrodynamics is not quite 100 years old and yet still does not rest firmly upon uniformly accepted theoretical foundations. Maxwell's theory of the electromagnetic field is firmly ensconced in modern physics, to be sure, but the details of how charged particles are to be coupled to this field remain somewhat uncertain, despite the enormous advances in quantum electrodynamics over the past 45 years. Our theories remain mathematically ill-posed and mired in conceptual ambiguities which quantum mechanics has only moved to another arena rather than resolve. Fundamentally, we still do not understand just what is a charged particle" (Grandy W.T. Jr. Relativistic quantum mechanics of leptons and fields. Kluwer Academic Publishers, Dordrecht-London, 1991, p.367. As a partial answer to the preceeding quote, this paper presents a new model for the electron that combines the seminal work of Puthoff with the theory of the Planck vacuum (PV, the basic idea for the model following from Puthoff with the PV theory adding some important details.

  2. Evaluating the performance of the Electron Density Assimilative Model (EDAM) in the Western European sector using modified Taylor diagrams

    Science.gov (United States)

    Jackson-Booth, N.; Parker, J.; Pryse, S. E.; Buckland, R.

    2017-12-01

    The Electron Density Assimilative Model (EDAM) is an ionospheric model that assimilates data sources into a background model, currently provided by IRI2007, to generate a global, or regional, 3D representation of the ionospheric electron density. In this study, slant total electron content (sTEC) between GPS satellites and 43 ground receivers in Europe were assimilated into EDAM to model the ionospheric electron density over western Europe. For the evaluation of the model an additional ground receiver (the truth station) was considered, which was not used in the assimilation process. Slant total electron contents for this station were calculated through the EDAM model along satellite-to-receiver paths corresponding to those of the observations made by the receiver. The modelled and observed sTEC were compared for each satellite and every day, between September 2002 and August 2003. For the comparison standard deviations of the modelled and observed sTEC were determined. These were used in modified Taylor Diagrams to display the mean-removed rms difference between the model and observations, the correlation between the two data sets and the bias of the modelled data. Taylor diagrams were obtained for the entire year, and each season and month. Results of the comparisons are presented and discussed, with a specific interest in times that show increased rms differences and decreased correlations between the data sets. The effect of the satellite calibration biases on the results are also considered.

  3. Chronic pain among patients with opioid use disorder: Results from electronic health records data.

    Science.gov (United States)

    Hser, Yih-Ing; Mooney, Larissa J; Saxon, Andrew J; Miotto, Karen; Bell, Douglas S; Huang, David

    2017-06-01

    To examine the prevalence of comorbid chronic pain among patients with opioid use disorder (OUD) and to compare other comorbidities (substance use disorder (SUD), mental health disorders, health/disease conditions) among patients in four categories: no chronic pain (No Pain), OUD prior to pain (OUD First), OUD and pain at the same time (Same Time), or pain condition prior to OUD (Pain First). Using an electronic health record (EHR) database from 2006-2015, the study assessed 5307 adult patients with OUD in a large healthcare system; 35.6% were No Pain, 9.7% were OUD First, 14.9% were Same Time, and 39.8% were Pain First. Most OUD patients (64.4%) had chronic pain conditions, and among them 61.8% had chronic pain before their first OUD diagnosis. Other SUDs occurred more frequently among OUD First patients than among other groups in terms of alcohol (33.4% vs. 25.4% for No Pain, 20.7% for Same Time, and 20.3% for Pain First), cocaine (19.0%, vs. 13.8%, 9.4%, 7.1%), and alcohol or drug-induced disorders. OUD First patients also had the highest rates of HIV (4.7%) and hepatitis C virus (HCV; 28.2%) among the four groups. Pain First patients had the highest rates of mental disorder (81.7%), heart disease (72.0%), respiratory disease (68.4%), sleep disorder (41.8%), cancer (23.4%), and diabetes (19.3%). The alarming high rates of chronic pain conditions occurring before OUD and the associated severe mental health and physical health conditions require better models of assessment and coordinated care plans to address these complex medical conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    Science.gov (United States)

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.

  5. Characteristics of wastes from electric and electronic equipment in Greece: results of a field survey.

    Science.gov (United States)

    Karagiannidis, Avraam; Perkoulidis, George; Papadopoulos, Agis; Moussiopoulos, Nicolas; Tsatsarelis, Thomas

    2005-08-01

    The lifespan of electric and electronic equipment is becoming shorter and the amount of related waste is increasing. This study aimed to contribute to the knowledge about qualitative and quantitative characteristics of such wastes in Greece. Specifically, results are presented from a field survey, which took place in the city of Thessaloniki, Greece, during the year 2002. The survey was conducted with suitable questionnaires in department stores and in households of various municipalities. Household appliances were grouped as follows: (A) large (refrigerator, freezer, washing machine, clothes dryer, electric cooker, microwave oven, electric heater), (B) small (vacuum cleaner, electric iron, hair dryer), (C) information technology and telecommunication equipment (PC, laptop, printer, phone) and (D) consumer equipment (radio, TV, video, DVD, console). The analysis indicated that the lifespan of all new goods is gradually reducing (apart from refrigerators, for which the lifespan was surprisingly found to be increasing) and provided linearized functions for predicting the lifespan, according to the year of manufacture, for certain large appliances.

  6. Current and future delivery of diagnostic electron microscopy in the UK: results of a national survey.

    Science.gov (United States)

    de Haro, Tracey; Furness, Peter

    2012-04-01

    Electron microscopy (EM) remains essential to delivering several specialist areas of diagnosis, especially the interpretation of native renal biopsies. However, there is anecdotal evidence of EM units struggling to survive, for a variety of reasons. The authors sought to obtain objective evidence of the extent and the causes of this problem. An online survey was undertaken of Fellows of the Royal College of Pathologists who use EM in diagnosis. A significant number of EM units anticipate having to close and hence outsource their EM work in the coming years. Yet most existing units are working to full capacity and would be unable to take on the substantial amounts of extra work implied by other units outsourcing their needs. Equipment and staffing are identified by most EM units as the major barriers to growth and are also the main reasons cited for units facing potential closure. In the current financial climate it seems unlikely that units will be willing to make the large investment in equipment and staff needed to take on extra work, unless they can be reasonably confident of an acceptable financial return as a result of increased external referral rates. The case is thus made for a degree of national coordination of the future provision of this specialist service, possibly through the National Commissioning Group or the new National Commissioning Board. Without this, the future of diagnostic EM services in the UK is uncertain. Its failure would pose a threat to good patient care.

  7. The Multipole Plasma Trap-PIC Modeling Results

    Science.gov (United States)

    Hicks, Nathaniel; Bowman, Amanda; Godden, Katarina

    2017-10-01

    A radio-frequency (RF) multipole structure is studied via particle-in-cell computer modeling, to assess the response of quasi-neutral plasma to the imposed RF fields. Several regimes, such as pair plasma, antimatter plasma, and conventional (ion-electron) plasma are considered. In the case of equal charge-to-mass ratio of plasma species, the effects of the multipole field are symmetric between positive and negative particles. In the case of a charge-to-mass disparity, the multipole RF parameters (frequency, voltage, structure size) may be chosen such that the light species (e.g. electrons) is strongly confined, while the heavy species (e.g. positive ions) does not respond to the RF field. In this case, the trapped negative space charge creates a potential well that then traps the positive species. 2D and 3D particle-in-cell simulations of this concept are presented, to assess plasma response and trapping dependences on multipole order, consequences of the formation of an RF plasma sheath, and the effects of an axial magnetic field. The scalings of trapped plasma parameters are explored in each of the mentioned regimes, to guide the design of prospective experiments investigating each. Supported by U.S. NSF/DOE Partnership in Basic Plasma Science and Engineering Grant PHY-1619615.

  8. A new electron density model of the plasmasphere for operational applications and services

    Science.gov (United States)

    Jakowski, Norbert; Hoque, Mohammed Mainul

    2018-03-01

    The Earth's plasmasphere contributes essentially to total electron content (TEC) measurements from ground or satellite platforms. Furthermore, as an integral part of space weather, associated plasmaspheric phenomena must be addressed in conjunction with ionosphere weather monitoring by operational space weather services. For supporting space weather services and mitigation of propagation errors in Global Navigation Satellite Systems (GNSS) applications we have developed the empirical Neustrelitz plasmasphere model (NPSM). The model consists of an upper L shell dependent part and a lower altitude dependent part, both described by specific exponential decays. Here the McIllwain parameter L defines the geomagnetic field lines in a centered dipole model for the geomagnetic field. The coefficients of the developed approaches are successfully fitted to numerous electron density data derived from dual frequency GPS measurements on-board the CHAMP satellite mission from 2000 to 2005. The data are utilized for fitting up to the L shell L = 3 because a previous validation has shown a good agreement with IMAGE/RPI measurements up to this value. Using the solar radio flux index F10.7 as the only external parameter, the operation of the model is robust, with 40 coefficients fast and sufficiently accurate to be used as a background model for estimating TEC or electron density profiles in near real time GNSS applications and services. In addition to this, the model approach is sensitive to ionospheric coupling resulting in anomalies such as the Nighttime Winter Anomaly and the related Mid-Summer Nighttime Anomaly and even shows a slight plasmasphere compression of the dayside plasmasphere due to solar wind pressure. Modelled electron density and TEC values agree with estimates reported in the literature in similar cases.

  9. Modeling High Altitude EMP using a Non-Equilibrium Electron Swarm Model to Monitor Conduction Electron Evolution (LA-UR-15-26151)

    Science.gov (United States)

    Pusateri, E. N.; Morris, H. E.; Nelson, E.; Ji, W.

    2015-12-01

    Electromagnetic pulse (EMP) events in the atmosphere are important physical phenomena that occur through both man-made and natural processes, such as lightning, and can be disruptive to surrounding electrical systems. Due to the disruptive nature of EMP, it is important to accurately predict EMP evolution and propagation with computational models. In EMP, low-energy conduction electrons are produced from Compton electron or photoelectron ionizations with air. These conduction electrons continue to interact with the surrounding air and alter the EMP waveform. Many EMP simulation codes use an equilibrium ohmic model for computing the conduction current. The equilibrium model works well when the equilibration time is short compared to the rise time or duration of the EMP. However, at high altitude, the conduction electron equilibration time can be comparable to or longer than the rise time or duration of the EMP. This matters, for example, when calculating the EMP propagating upward toward a satellite. In these scenarios, the equilibrium ionization rate becomes very large for even a modest electric field. The ohmic model produces an unphysically large number of conduction electrons that prematurely and abruptly short the EMP in the simulation code. An electron swarm model, which simulates the time evolution of conduction electrons, can be used to overcome the limitations exhibited by the equilibrium ohmic model. We have developed and validated an electron swarm model in an environment characterized by electric field and pressure previously in Pusateri et al. (2015). This swarm model has been integrated into CHAP-LA, a state-of-the-art EMP code developed by researchers at Los Alamos National Laboratory, which previously calculated conduction current using an ohmic model. We demonstrate the EMP damping behavior caused by the ohmic model at high altitudes and show improvements on high altitude EMP modeling obtained by employing the swarm model.

  10. Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    OBryan, Martha V.; Seidleck, Christina M.; Carts, Martin A.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Cox, Stephen R.; Kniffin, Scott D.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  11. Modeling Spin Creation and Mass Generation in the Electron Motivated by an Angle Doubler Mechanism

    Science.gov (United States)

    2017-11-01

    moment for each loop can now be calculated from µ = I*area = 4.45 x 10-24 amp -m2. This result is about ½ that of the actual measured magnetic...moment of the electron, 9.28 x 10-24 amp -m2. The fact that this simple model predicts a value not exceedingly different from the measured value is

  12. Modeling of possible localized electron flux in cosmic rays with Alpha Magnetic Spectrometer measurements

    Science.gov (United States)

    Kwang-Hua, Chu Rainer

    2017-10-01

    Discrete quantum Boltzmann model together with the introduction of an external-field-tuned orientation parameter as well as the acoustic analog are adopted to study the possible localization of electron (fermion) flux in cosmic rays considering the precision measurement with the Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS). Our approximate results match qualitatively with those data measured with the AMS on the ISS.

  13. Can electronic search engines optimize screening of search results in systematic reviews: an empirical study

    Directory of Open Access Journals (Sweden)

    Clifford Tammy J

    2006-02-01

    Full Text Available Abstract Background Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG® and Ovid™. Our objective is to test the ability of an Ultraseek® search engine to rank MEDLINE® records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. Methods Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS, provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000–6000 records when the MEDLINE search strategy was replicated. Results Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. Conclusion The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of

  14. Analytical thermal modelling of multilayered active embedded chips into high density electronic board

    Directory of Open Access Journals (Sweden)

    Monier-Vinard Eric

    2013-01-01

    Full Text Available The recent Printed Wiring Board embedding technology is an attractive packaging alternative that allows a very high degree of miniaturization by stacking multiple layers of embedded chips. This disruptive technology will further increase the thermal management challenges by concentrating heat dissipation at the heart of the organic substrate structure. In order to allow the electronic designer to early analyze the limits of the power dissipation, depending on the embedded chip location inside the board, as well as the thermal interactions with other buried chips or surface mounted electronic components, an analytical thermal modelling approach was established. The presented work describes the comparison of the analytical model results with the numerical models of various embedded chips configurations. The thermal behaviour predictions of the analytical model, found to be within ±10% of relative error, demonstrate its relevance for modelling high density electronic board. Besides the approach promotes a practical solution to study the potential gain to conduct a part of heat flow from the components towards a set of localized cooled board pads.

  15. First principles based multiparadigm modeling of electronic structures and dynamics

    Science.gov (United States)

    Xiao, Hai

    enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly. A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions. Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with

  16. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  17. Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources

    Science.gov (United States)

    Dai, Fa Foster

    Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the

  18. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    Science.gov (United States)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  19. Results from the magnetic electron ion spectrometer (MagEIS) instruments aboard the Van Allen Probes spacecraft

    Science.gov (United States)

    Fennell, Joseph; O'Brien, Paul; Roeder, James; Reeves, Geoffrey; Claudepierre, Seth; Clemmons, James; Spence, Harlan; Blake, Bernard

    The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes Spacecraft (formerly RBSP) measure electrons and ions in the Earth's inner and outer radiation belts. The MagEIS instruments are part of the Energetic Particle, Composition, and Thermal Plasma Suite (ECT), which also includes the Relativistic Electron Proton Telescope (REPT) and the Helium Oxygen Proton Electron (HOPE) analyzer. MagEIS consists of four magnetic electron spectrometers aboard each of the two Van Allen Probes spacecraft that measure the differential fluxes, energies, and angular distributions of electrons from 20 keV to 4 MeV. The MagEIS suite also contains a silicon-detector telescope that measures the differential fluxes, energies, and angular distributions of protons from 60 keV to 20 MeV, and helium and oxygen ions above a hundred keV/AMU. We briefly describe the instrument design and measurement technique and present a set of results from the MagEIS observations, including ultra-low frequency (ULF) modulations of energetic electron flux, and observations of electron flux enhancements associated with the recent BARREL x-ray observations.

  20. Initial Results from the Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Van Allen Probes Spacecraft

    Science.gov (United States)

    Claudepierre, S. G.; Blake, J. B.; Fennell, J. F.; Clemmons, J. H.; Roeder, J. L.; Spence, H. E.; Reeves, G. D.; Van Allen Probes ECT Team

    2013-05-01

    The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes Spacecraft (formerly RBSP) measure electrons and ions in the Earth's inner and outer radiation belts. The MagEIS instruments are part of the Energetic Particle, Composition, and Thermal Plasma Suite (ECT), which also includes the Relativistic Electron Proton Telescope (REPT) and the Helium Oxygen Proton Electron (HOPE) analyzer. MagEIS consists of four magnetic electron spectrometers aboard each of the two Van Allen Probes spacecraft that measure the differential fluxes, energies, and angular distributions of electrons from 20 keV to 4 MeV. The MagEIS suite also contains a silicon-detector telescope that measures the differential fluxes, energies, and angular distributions of protons from 60 keV to 20 MeV, and helium and oxygen ions above a hundred keV/AMU. We briefly describe the instrument design and measurement technique and present a set of initial results from the MagEIS observations, including ultra-low frequency (ULF) modulations of energetic electron flux, and observations of electron flux enhancements associated with the recent BARREL x-ray observations.

  1. A stochastic study of electron transfer kinetics in nano-particulate photocatalysis: a comparison of the quasi-equilibrium approximation with a random walking model.

    Science.gov (United States)

    Liu, Baoshun; Zhao, Xiujian; Yu, Jiaguo; Fujishima, Akira; Nakata, Kazuya

    2016-11-23

    In the photocatalysis of porous nano-crystalline materials, the transfer of electrons to O 2 plays an important role, which includes the electron transport to photocatalytic active centers and successive interfacial transfer to O 2 . The slowest of them will determine the overall speed of electron transfer in the photocatalysis reaction. Considering the photocatalysis of porous nano-crystalline TiO 2 as an example, although some experimental results have shown that the electron kinetics are limited by the interfacial transfer, we still lack the depth of understanding the microscopic mechanism from a theoretical viewpoint. In the present research, a stochastic quasi-equilibrium (QE) theoretical model and a stochastic random walking (RW) model were established to discuss the electron transport and electron interfacial transfer by taking the electron multi-trapping transport and electron interfacial transfer from the photocatalytic active centers to O 2 into consideration. By carefully investigating the effect of the electron Fermi level (E F ) and the photocatalytic center number on electron transport, we showed that the time taken for an electron to transport to a photocatalytic center predicated by the stochastic RW model was much lower than that predicted by the stochastic QE model, indicating that the electrons cannot reach a QE state during their transport to photocatalytic centers. The stochastic QE model predicted that the electron kinetics of a real photocatalysis for porous nano-crystalline TiO 2 should be limited by electron transport, whereas the stochastic RW model showed that the electron kinetics of a real photocatalysis can be limited by the interfacial transfer. Our simulation results show that the stochastic RW model was more in line with the real electron kinetics that have been observed in experiments, therefore it is concluded that the photoinduced electrons cannot reach a QE state before transferring to O 2 .

  2. Can electronic search engines optimize screening of search results in systematic reviews: an empirical study.

    Science.gov (United States)

    Sampson, Margaret; Barrowman, Nicholas J; Moher, David; Clifford, Tammy J; Platt, Robert W; Morrison, Andra; Klassen, Terry P; Zhang, Li

    2006-02-24

    Most electronic search efforts directed at identifying primary studies for inclusion in systematic reviews rely on the optimal Boolean search features of search interfaces such as DIALOG and Ovid. Our objective is to test the ability of an Ultraseek search engine to rank MEDLINE records of the included studies of Cochrane reviews within the top half of all the records retrieved by the Boolean MEDLINE search used by the reviewers. Collections were created using the MEDLINE bibliographic records of included and excluded studies listed in the review and all records retrieved by the MEDLINE search. Records were converted to individual HTML files. Collections of records were indexed and searched through a statistical search engine, Ultraseek, using review-specific search terms. Our data sources, systematic reviews published in the Cochrane library, were included if they reported using at least one phase of the Cochrane Highly Sensitive Search Strategy (HSSS), provided citations for both included and excluded studies and conducted a meta-analysis using a binary outcome measure. Reviews were selected if they yielded between 1000-6000 records when the MEDLINE search strategy was replicated. Nine Cochrane reviews were included. Included studies within the Cochrane reviews were found within the first 500 retrieved studies more often than would be expected by chance. Across all reviews, recall of included studies into the top 500 was 0.70. There was no statistically significant difference in ranking when comparing included studies with just the subset of excluded studies listed as excluded in the published review. The relevance ranking provided by the search engine was better than expected by chance and shows promise for the preliminary evaluation of large results from Boolean searches. A statistical search engine does not appear to be able to make fine discriminations concerning the relevance of bibliographic records that have been pre-screened by systematic reviewers.

  3. Results of remote follow-up and monitoring in young patients with cardiac implantable electronic devices.

    Science.gov (United States)

    Silvetti, Massimo S; Saputo, Fabio A; Palmieri, Rosalinda; Placidi, Silvia; Santucci, Lorenzo; Di Mambro, Corrado; Righi, Daniela; Drago, Fabrizio

    2016-01-01

    Remote monitoring is increasingly used in the follow-up of patients with cardiac implantable electronic devices. Data on paediatric populations are still lacking. The aim of our study was to follow-up young patients both in-hospital and remotely to enhance device surveillance. This is an observational registry collecting data on consecutive patients followed-up with the CareLink system. Inclusion criteria were a Medtronic device implanted and patient's willingness to receive CareLink. Patients were stratified according to age and presence of congenital/structural heart defects (CHD). A total of 221 patients with a device - 200 pacemakers, 19 implantable cardioverter defibrillators, and two loop recorders--were enrolled (median age of 17 years, range 1-40); 58% of patients were younger than 18 years of age and 73% had CHD. During a follow-up of 12 months (range 4-18), 1361 transmissions (8.9% unscheduled) were reviewed by technicians. Time for review was 6 ± 2 minutes (mean ± standard deviation). Missed transmissions were 10.1%. Events were documented in 45% of transmissions, with 2.7% yellow alerts and 0.6% red alerts sent by wireless devices. No significant differences were found in transmission results according to age or presence of CHD. Physicians reviewed 6.3% of transmissions, 29 patients were contacted by phone, and 12 patients underwent unscheduled in-hospital visits. The event recognition with remote monitoring occurred 76 days (range 16-150) earlier than the next scheduled in-office follow-up. Remote follow-up/monitoring with the CareLink system is useful to enhance device surveillance in young patients. The majority of events were not clinically relevant, and the remaining led to timely management of problems.

  4. Model of nanodegradation processes in electronic equipment of NPP Kozloduy

    International Nuclear Information System (INIS)

    J. Boucher Blvd, 1164 Sofia, BG (Bulgaria))" data-affiliation=" (Sofia University, Faculty of Physics, 5 J. Boucher Blvd, 1164 Sofia, BG (Bulgaria))" >Popov, A

    2014-01-01

    From the complex studies it was proof that the main degradation processes in the three groups of elements for the extended period of time are slow; do not lead to a hopping change in basic parameters and to catastrophic failures. This gives grounds to suggest a common diffusion model, which is limited to the following: -in electronic components containing a p-n junction, is performed diffusion of residual cooper atoms, that are accumulated in the area of a spatial charge under the influence of the electric field and the local temperature, creating micro-shunt regions; -in the contactor systems whose contact surfaces are made of metal alloys under the influence of increased temperature starts decomposition of a homogeneous alloy. Conditions are created for diffusion of individual atoms to the surface, micro-phases of homogeneous atoms are formed and modify the contact resistances; -in the course of time in the insulating materials are changed the mechanisms of polarization, double bonds and dipoles are disrupting, leading to the release of carbon atoms. The latter diffuse at elevated temperatures and form conductive cords, which amend the dielectric losses and the specific resistance of the materials

  5. Model of nanodegradation processes in electronic equipment of NPP Kozloduy

    Science.gov (United States)

    Popov, A.

    2014-12-01

    From the complex studies it was proof that the main degradation processes in the three groups of elements for the extended period of time are slow; do not lead to a hopping change in basic parameters and to catastrophic failures. This gives grounds to suggest a common diffusion model, which is limited to the following: -in electronic components containing a p-n junction, is performed diffusion of residual cooper atoms, that are accumulated in the area of a spatial charge under the influence of the electric field and the local temperature, creating micro-shunt regions; -in the contactor systems whose contact surfaces are made of metal alloys under the influence of increased temperature starts decomposition of a homogeneous alloy. Conditions are created for diffusion of individual atoms to the surface, micro-phases of homogeneous atoms are formed and modify the contact resistances; -in the course of time in the insulating materials are changed the mechanisms of polarization, double bonds and dipoles are disrupting, leading to the release of carbon atoms. The latter diffuse at elevated temperatures and form conductive cords, which amend the dielectric losses and the specific resistance of the materials.

  6. Convergence models for cylindrical caverns and the resulting ground subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Haupt, W.; Sroka, A.; Schober, F.

    1983-02-01

    The authors studied the effects of different convergence characteristics on surface soil response for the case of narrow, cylindrical caverns. Maximum ground subsidence - a parameter of major importance in this type of cavern - was calculated for different convergence models. The models were established without considering the laws of rock mechanics and rheology. As a result, two limiting convergence models were obtained that describe an interval of expectation into which all other models fit. This means that ground movements over cylindrical caverns can be calculated ''on the safe side'', correlating the trough resulting on the surface with the convergence characterisitcs of the cavern. Among other applications, the method thus permits monitoring of caverns.

  7. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    . However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties......The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario...... of the meteorological model results. These uncertainties stem from e.g. limits in meteorological obser-vations used to initialise meteorological forecast series. By perturbing the initial state of an NWP model run in agreement with the available observa-tional data, an ensemble of meteorological forecasts is produced...

  8. Meteorological Uncertainty of atmospheric Dispersion model results (MUD)

    DEFF Research Database (Denmark)

    Havskov Sørensen, Jens; Amstrup, Bjarne; Feddersen, Henrik

    ’ dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent......The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the ‘most likely...... uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble...

  9. The 2013 European Seismic Hazard Model: key components and results

    OpenAIRE

    Jochen Woessner; Danciu Laurentiu; Domenico Giardini; Helen Crowley; Fabrice Cotton; G. Grünthal; Gianluca Valensise; Ronald Arvidsson; Roberto Basili; Mine Betül Demircioglu; Stefan Hiemer; Carlo Meletti; Roger W. Musson; Andrea N. Rovida; Karin Sesetyan

    2015-01-01

    The 2013 European Seismic Hazard Model (ESHM13) results from a community-based probabilistic seismic hazard assessment supported by the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE, 2009–2013). The ESHM13 is a consistent seismic hazard model for Europe and Turkey which overcomes the limitation of national borders and includes a through quantification of the uncertainties. It is the first completed regional effort contributing to the “Global Earthquake Model” initiative. It m...

  10. Magy: Time dependent, multifrequency, self-consistent code for modeling electron beam devices

    International Nuclear Information System (INIS)

    Botton, M.; Antonsen, T.M.; Levush, B.

    1997-01-01

    A new MAGY code is being developed for three dimensional modeling of electron beam devices. The code includes a time dependent multifrequency description of the electromagnetic fields and a self consistent analysis of the electrons. The equations of motion are solved with the electromagnetic fields as driving forces and the resulting trajectories are used as current sources for the fields. The calculations of the electromagnetic fields are based on the waveguide modal representation, which allows the solution of relatively small number of coupled one dimensional partial differential equations for the amplitudes of the modes, instead of the full solution of Maxwell close-quote s equations. Moreover, the basic time scale for updating the electromagnetic fields is the cavity fill time and not the high frequency of the fields. In MAGY, the coupling among the various modes is determined by the waveguide non-uniformity, finite conductivity of the walls, and the sources due to the electron beam. The equations of motion of the electrons are solved assuming that all the electrons traverse the cavity in less than the cavity fill time. Therefore, at each time step, a set of trajectories are calculated with the high frequency and other external fields as the driving forces. The code includes a verity of diagnostics for both electromagnetic fields and particles trajectories. It is simple to operate and requires modest computing resources, thus expected to serve as a design tool. copyright 1997 American Institute of Physics

  11. Results of the first tests of the SIDRA satellite-borne instrument breadboard model

    International Nuclear Information System (INIS)

    Dudnik, O.V.; Kurbatov, E.V.; Avilov, A.M.; Titov, K.G.; Prieto, M; Sanchez, S.; Spassky, A.V.; Sylwester, J.; Gburek, S.; Podgorski, P.

    2013-01-01

    In this work, the results of the calibration of the solid-state detectors and electronic channels of the SIDRA satellite borne energetic charged particle spectrometer-telescope breadboard model are presented. The block schemes and experimental equipment used to conduct the thermal vacuum and electromagnetic compatibility tests of the assemblies and modules of the compact satellite equipment are described. The results of the measured thermal conditions of operation of the signal analog and digital processing critical modules of the SIDRA instrument prototype are discussed. Finally, the levels of conducted interference generated by the instrument model in the primary vehicle-borne power circuits are presented.

  12. Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Singh, Seema; Ojha, Bharti; Shrivastava, R.G.

    1996-01-01

    A theoretical study is made on the mobile interstitial and mobile electron models of mechano-induced luminescence in coloured alkali halide crystals. Equations derived indicate that the mechanoluminescence intensity should depend on several factors like strain rate, applied stress, temperature, density of F-centres and volume of crystal. The equations also involve the efficiency and decay time of mechanoluminescence. Results of mobile interstitial and mobile electron models are compared with the experimental observations, which indicated that the latter is more suitable as compared to the former. From the temperature dependence of ML, the energy gaps between the dislocation band and ground state of F-centre is calculated which are 0.08, 0.072 and 0.09 eV for KCl, KBr and NaCl crystals, respectively. The theory predicts that the decay of ML intensity is related to the process of stress relaxation in crystals. (author). 33 refs., 5 figs., 1 tab

  13. Results of adjustment of electron source for the LIU-30 accelerator

    International Nuclear Information System (INIS)

    Androsov, A.V.; Kladnitskij, V.S.; Platonov, S.L.; Shvets, V.A.

    1988-01-01

    A new design of an electron source (electron gun) for the LIU-30 accelerator is described. Unlike the earlier used ones it has been made as a separate unit connected via a special adapter with increasing pulsed 300 kW transformer constructed on the base of an accelerating section. Ferromagnetic screen of a special shape and antisolenoid placed behind the cathode in a hollow of an oil-filled insulator and switched on antiparallely to the main focusing solenoid permit to diminish the gun emittance by 10-15%due to zero magnetic field in the cathode region. Various electron-optical systems were tested and that one based on the Pierse gun in which the anode orifice was covered with a wire gauze with 2.5 mm cell was chosen. 3 refs.; 1 fig

  14. Hydroclimatology of the Nile: results from a regional climate model

    Directory of Open Access Journals (Sweden)

    Y. A. Mohamed

    2005-01-01

    Full Text Available This paper presents the result of the regional coupled climatic and hydrologic model of the Nile Basin. For the first time the interaction between the climatic processes and the hydrological processes on the land surface have been fully coupled. The hydrological model is driven by the rainfall and the energy available for evaporation generated in the climate model, and the runoff generated in the catchment is again routed over the wetlands of the Nile to supply moisture for atmospheric feedback. The results obtained are quite satisfactory given the extremely low runoff coefficients in the catchment. The paper presents the validation results over the sub-basins: Blue Nile, White Nile, Atbara river, the Sudd swamps, and the Main Nile for the period 1995 to 2000. Observational datasets were used to evaluate the model results including radiation, precipitation, runoff and evaporation data. The evaporation data were derived from satellite images over a major part of the Upper Nile. Limitations in both the observational data and the model are discussed. It is concluded that the model provides a sound representation of the regional water cycle over the Nile. The sources of atmospheric moisture to the basin, and location of convergence/divergence fields could be accurately illustrated. The model is used to describe the regional water cycle in the Nile basin in terms of atmospheric fluxes, land surface fluxes and land surface-climate feedbacks. The monthly moisture recycling ratio (i.e. locally generated/total precipitation over the Nile varies between 8 and 14%, with an annual mean of 11%, which implies that 89% of the Nile water resources originates from outside the basin physical boundaries. The monthly precipitation efficiency varies between 12 and 53%, and the annual mean is 28%. The mean annual result of the Nile regional water cycle is compared to that of the Amazon and the Mississippi basins.

  15. Results of a model for premixed combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M.C.; Richards, G.A.

    1996-09-01

    Combustion oscillations are receiving renewed research interest due to increasing use of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described in this paper. The model was developed to help explain specific experimental observations and to provide guidance for development of active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor which are analogous to current LPM turbine combustors. Conservation equations for the fuel nozzle and combustor are developed from simple control volume analysis, providing a set of ordinary differential equations that can be solved on a personal computer. Combustion is modeled as a stirred reactor, with a bimolecular reaction rate between fuel and air. A variety of numerical results and comparisons to experimental data are presented to demonstrate the utility of the model. Model results are used to understand the fundamental mechanisms which drive combustion oscillations, effects of inlet air temperature and nozzle geometry on instability, and effectiveness of open loop control schemes.

  16. Summary of FY15 results of benchmark modeling activities

    Energy Technology Data Exchange (ETDEWEB)

    Arguello, J. Guadalupe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Sandia is participating in the third phase of an is a contributing partner to a U.S.-German "Joint Project" entitled "Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermo-mechanical behavior and healing of rock salt." The first goal of the project is to check the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure storage of radioactive wastes in rock salt, thereby enhancing the acceptance of the results. These results may ultimately be used to make various assertions regarding both the stability analysis of an underground repository in salt, during the operating phase, and the long-term integrity of the geological barrier against the release of harmful substances into the biosphere, in the post-operating phase.

  17. Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    Veliko Donchev

    2013-10-01

    Full Text Available Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials.

  18. Electron spectra resulting from autoionization in low-energy Li+ + He collisions

    International Nuclear Information System (INIS)

    Yagishita, A.; Wakiya, K.; Takayanagi, T.; Suzuki, H.; Koike, F.

    1979-09-01

    Spectra of electrons ejected from doubly excited states of helium have been extensively measured at several observation angles fro impact with lithium ions at energies lower than 5 KeV. ''Molecular-autoionization'' spectra have been found at forward observation angles, and analyzed in terms of the Gerber-Niehaus theory with modification. The spectral shapes of atomic-autoionization peaks have been discussed in relation to both the Barker-Berry effect and the Doppler effect. Excitation cross sections of autoionizing states have been determined by a new method that uses simultaneous impact of ions and electrons. (author)

  19. Test of theoretical models for ultrafast heterogeneous electron ...

    Indian Academy of Sciences (India)

    Administrator

    (UHV) chambers, each equipped with a load-lock port, were employed for preparing and characteriz- ing the samples. A mobile UHV chamber served as the shuttle ..... there is no automatic transition to adiabatic electron transfer for high electronic coupling strength and the excitation of high energy vibrational modes can not.

  20. Developing Argumentation Strategies in Electronic Dialogs: Is Modeling Effective?

    Science.gov (United States)

    Mayweg-Paus, Elisabeth; Macagno, Fabrizio; Kuhn, Deanna

    2016-01-01

    The study presented here examines how interacting with a more capable interlocutor influences use of argumentation strategies in electronic discourse. To address this question, 54 young adolescents participating in an intervention centered on electronic peer dialogs were randomly assigned to either an experimental or control condition. In both…

  1. Electron kinetics modeling in a weakly ionized gas

    International Nuclear Information System (INIS)

    Boeuf, Jean-Pierre

    1985-01-01

    This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr

  2. Presheath/sheath model with secondary electron emission from two parallel walls

    International Nuclear Information System (INIS)

    Ahedo, E.

    2002-01-01

    A macroscopic model of the interaction of a plasma with two parallel, electron-emitting walls is presented. Zero Debye-length and total thermalization of the secondary electron emission (SEE) are assumed. The SEE is treated as a free beam within each thin, collisionless sheath, but as part of a single electron population within the presheath. Plasma models with three and two species result in sheath and presheath, respectively. The ion flow at the presheath/sheath transition is sonic, and the sound speed there determines the relation between the temperature of the confined electron populations in sheath and presheath. For the general case of a plasma flowing axially between two annular walls the complete dimensionless solution depends on five parameters. Potential drops in the presheath can be larger than in the sheaths, mainly when charge-saturation is reached in the sheath or for a large effective ion friction in the presheath. The losses of plasma current to the walls are determined totally by the presheath problem, whereas the sheath problem and wall material determine the energy lost by impacting particle. Energy losses change drastically from zero SEE to a SEE yield about 100% when the charge-saturated regime is reached

  3. The improved DGR analytical model of electron density height profile and total electron content in the ionosphere

    OpenAIRE

    Radicella, S. M.; Zhang, M. L.

    1995-01-01

    Tests of the analytical model of the electron density profile originally proposed by G, Di Giovanni and S.M. Radicella (DGR model) have shown the need to introduce improvements in order to obtain a model able to reproduce the ionosphere in a larger spectrum of geophysical and time conditions. The present paper reviews the steps toward such progress and presents the final formulation of the model. It gives also a brief re- view of tests of the improved model done by different authors.

  4. Experimental results of an activated carbon-HFC 134a adsorption cooling system for thermal management of electronics

    International Nuclear Information System (INIS)

    Banker, N.D.; Prasad, M.; Dutta, P.; Srinivasan, K.

    2011-01-01

    Results of performance measurement of a small cooling capacity laboratory model of an adsorption refrigeration system for thermal management of electronics are compiled. This adsorption cooler was built with activated carbon as the adsorbent and HFC 134a as the refrigerant to produce a cooling capacity under 5 W using waste heat up to 90 o C. The thermal compression process is obtained from an ensemble of four solid sorption compressors. Parametric study was conducted with cycle times of 16 and 20 min, heat source temperatures from 73 to 87 o C and cooling loads from 3 to 4.9 W. Overall system performance is analyzed using two indicators, namely, cooling effectiveness and normalized exergetic efficiency. - Highlights: → Performance test results of an activated carbon + HFC 134a adsorption cooler. → Even four adsorbers result in fluctuating flow but with little effect on load management. → Definition of a cooling index that evaluates how well the cooling system has performed. → Performance assessment with the product of exergetic efficiency and the cooling index.

  5. A probabilistic model of the electron transport in films of nanocrystals arranged in a cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Ilka [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova (Italy); Scotognella, Francesco, E-mail: francesco.scotognella@polimi.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milan (Italy)

    2016-08-01

    The fabrication of nanocrystal (NC) films, starting from colloidal dispersion, is a very attractive topic in condensed matter physics community. NC films can be employed for transistors, light emitting diodes, lasers, and solar cells. For this reason the understanding of the film conductivity is of major importance. In this paper we describe a probabilistic model that allows the prediction of the conductivity of NC films, in this case of a cubic lattice of Lead Selenide or Cadmium Selenide NCs. The model is based on the hopping probability between NCs. The results are compared to experimental data reported in literature. - Highlights: • Colloidal nanocrystal (NC) film conductivity is a topic of major importance. • We present a probabilistic model to predict the electron conductivity in NC films. • The model is based on the hopping probability between NCs. • We found a good agreement between the model and data reported in literature.

  6. Susceptibility and Phase Transitions in the Pseudospin-Electron Model at Weak Coupling

    International Nuclear Information System (INIS)

    Stasyuk, I.V.; Mysakovych, T.S.

    2003-01-01

    The pseudospin-electron model (PEM) is considered in the case of the weak pseudospin-electron coupling. It is shown that the transition to uniform and chess-board phases occurs when the chemical potential is situated near the electron band edges and near the band centre, respectively. The incommensurate phase is realized at the intermediate values of the chemical potential. (author)

  7. Dissertation Genre Change as a Result of Electronic Theses and Dissertation Programs

    Science.gov (United States)

    Pantelides, Kate

    2015-01-01

    The increasing prevalence of mandatory Electronic Theses and Dissertations (ETDs) policies has ushered in rather dramatic dissertation genre change. The affordances of the medium offer expanded access and audience, availability of new compositional tools, and alternate formats, the implications of which are just beginning to appear in…

  8. First principles results of structural and electronic properties of ZnS ...

    Indian Academy of Sciences (India)

    and electronic properties, nature of bonding and overall stability of clusters has been studied. Keywords. Projector augmented wave .... of each molecular orbital (MO) to the total charge density. It can be used to discuss the nature of ..... η, the global hardness parameter, and is found to be high- est for Zn3S3. The second ...

  9. Does electronic clinical microbiology results reporting influence medical decision making: a pre- and post-interview study of medical specialists

    Directory of Open Access Journals (Sweden)

    Bloembergen Peter

    2011-03-01

    Full Text Available Abstract Background Clinicians view the accuracy of test results and the turnaround time as the two most important service aspects of the clinical microbiology laboratory. Because of the time needed for the culturing of infectious agents, final hardcopy culture results will often be available too late to have a significant impact on early antimicrobial therapy decisions, vital in infectious disease management. The clinical microbiologist therefore reports to the clinician clinically relevant preliminary results at any moment during the diagnostic process, mostly by telephone. Telephone reporting is error prone, however. Electronic reporting of culture results instead of reporting on paper may shorten the turnaround time and may ensure correct communication of results. The purpose of this study was to assess the impact of the implementation of electronic reporting of final microbiology results on medical decision making. Methods In a pre- and post-interview study using a semi-structured design we asked medical specialists in our hospital about their use and appreciation of clinical microbiology results reporting before and after the implementation of an electronic reporting system. Results Electronic reporting was highly appreciated by all interviewed clinicians. Major advantages were reduction of hardcopy handling and the possibility to review results in relation to other patient data. Use and meaning of microbiology reports differ significantly between medical specialties. Most clinicians need preliminary results for therapy decisions quickly. Therefore, after the implementation of electronic reporting, telephone consultation between clinician and microbiologist remained the key means of communication. Conclusions Overall, electronic reporting increased the workflow efficiency of the medical specialists, but did not have an impact on their decision-making.

  10. Slow electron energy balance for hybrid models of direct-current glow discharges

    Science.gov (United States)

    Eliseev, S. I.; Bogdanov, E. A.; Kudryavtsev, A. A.

    2017-09-01

    In this paper, we present the formulation of slow electron energy balance for hybrid models of direct current (DC) glow discharge. Electrons originating from non-local ionization (secondary) contribute significantly to the energy balance of slow electrons. An approach towards calculating effective energy brought by a secondary electron to the group of slow electrons by means of Coulomb collisions is suggested. The value of effective energy shows a considerable dependence on external parameters of a discharge, such as gas pressure, type, and geometric parameters. The slow electron energy balance was implemented into a simple hybrid model that uses analytical formulation for the description of non-local ionization by fast electrons. Simulations of short (without positive column) DC glow discharge in argon are carried out for a range of gas pressures. Comparison with experimental data showed generally good agreement in terms of current-voltage characteristics, electron density, and electron temperature. Simulations also capture the trend of increasing electron density with decreasing pressure observed in the experiment. Analysis shows that for considered conditions, the product of maximum electron density ne and electron temperature Te in negative glow is independent of gas pressure and depends on the gas type, cathode material, and discharge current. Decreasing gas pressure reduces the heating rate of slow electrons during Coulomb collisions with secondary electrons, which leads to lower values of Te and, in turn, higher maximum ne.

  11. Relationship Marketing results: proposition of a cognitive mapping model

    Directory of Open Access Journals (Sweden)

    Iná Futino Barreto

    2015-12-01

    Full Text Available Objective - This research sought to develop a cognitive model that expresses how marketing professionals understand the relationship between the constructs that define relationship marketing (RM. It also tried to understand, using the obtained model, how objectives in this field are achieved. Design/methodology/approach – Through cognitive mapping, we traced 35 individual mental maps, highlighting how each respondent understands the interactions between RM elements. Based on the views of these individuals, we established an aggregate mental map. Theoretical foundation – The topic is based on a literature review that explores the RM concept and its main elements. Based on this review, we listed eleven main constructs. Findings – We established an aggregate mental map that represents the RM structural model. Model analysis identified that CLV is understood as the final result of RM. We also observed that the impact of most of the RM elements on CLV is brokered by loyalty. Personalization and quality, on the other hand, proved to be process input elements, and are the ones that most strongly impact others. Finally, we highlight that elements that punish customers are much less effective than elements that benefit them. Contributions - The model was able to insert core elements of RM, but absent from most formal models: CLV and customization. The analysis allowed us to understand the interactions between the RM elements and how the end result of RM (CLV is formed. This understanding improves knowledge on the subject and helps guide, assess and correct actions.

  12. Does electronic clinical microbiology results reporting influence medical decision making: a pre- and post-interview study of medical specialists.

    Science.gov (United States)

    Bruins, Marjan J; Ruijs, Gijs J H M; Wolfhagen, Maurice J H M; Bloembergen, Peter; Aarts, Jos E C M

    2011-03-30

    Clinicians view the accuracy of test results and the turnaround time as the two most important service aspects of the clinical microbiology laboratory. Because of the time needed for the culturing of infectious agents, final hardcopy culture results will often be available too late to have a significant impact on early antimicrobial therapy decisions, vital in infectious disease management. The clinical microbiologist therefore reports to the clinician clinically relevant preliminary results at any moment during the diagnostic process, mostly by telephone. Telephone reporting is error prone, however. Electronic reporting of culture results instead of reporting on paper may shorten the turnaround time and may ensure correct communication of results. The purpose of this study was to assess the impact of the implementation of electronic reporting of final microbiology results on medical decision making. In a pre- and post-interview study using a semi-structured design we asked medical specialists in our hospital about their use and appreciation of clinical microbiology results reporting before and after the implementation of an electronic reporting system. Electronic reporting was highly appreciated by all interviewed clinicians. Major advantages were reduction of hardcopy handling and the possibility to review results in relation to other patient data. Use and meaning of microbiology reports differ significantly between medical specialties. Most clinicians need preliminary results for therapy decisions quickly. Therefore, after the implementation of electronic reporting, telephone consultation between clinician and microbiologist remained the key means of communication. Overall, electronic reporting increased the workflow efficiency of the medical specialists, but did not have an impact on their decision-making. © 2011 Bruins et al; licensee BioMed Central Ltd.

  13. Marginal production in the Gulf of Mexico - II. Model results

    International Nuclear Information System (INIS)

    Kaiser, Mark J.; Yu, Yunke

    2010-01-01

    In the second part of this two-part article on marginal production in the Gulf of Mexico, we estimate the number of committed assets in water depth less than 1000 ft that are expected to be marginal over a 60-year time horizon. We compute the expected quantity and value of the production and gross revenue streams of the gulf's committed asset inventory circa. January 2007 using a probabilistic model framework. Cumulative hydrocarbon production from the producing inventory is estimated to be 1056 MMbbl oil and 13.3 Tcf gas. Marginal production from the committed asset inventory is expected to contribute 4.1% of total oil production and 5.4% of gas production. A meta-evaluation procedure is adapted to present the results of sensitivity analysis. Model results are discussed along with a description of the model framework and limitations of the analysis. (author)

  14. Marginal production in the Gulf of Mexico - II. Model results

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Mark J.; Yu, Yunke [Center for Energy Studies, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2010-08-15

    In the second part of this two-part article on marginal production in the Gulf of Mexico, we estimate the number of committed assets in water depth less than 1000 ft that are expected to be marginal over a 60-year time horizon. We compute the expected quantity and value of the production and gross revenue streams of the gulf's committed asset inventory circa. January 2007 using a probabilistic model framework. Cumulative hydrocarbon production from the producing inventory is estimated to be 1056 MMbbl oil and 13.3 Tcf gas. Marginal production from the committed asset inventory is expected to contribute 4.1% of total oil production and 5.4% of gas production. A meta-evaluation procedure is adapted to present the results of sensitivity analysis. Model results are discussed along with a description of the model framework and limitations of the analysis. (author)

  15. Challenges of 4D(ata Model for Electronic Government

    Directory of Open Access Journals (Sweden)

    Bogdan GHILIC-MICU

    2015-01-01

    Full Text Available Social evolution pyramid, built on the foundation of the ‘90s capitalist society, lead to the emergence of the informational society – years 1990 to 2005 – and knowledge society – years 2005 to 2020. The literature starts using a new concept, a new form of association – artificial intelligence society – foreseen to be established in the next time frame. All these developments of human society and translations or leaps (most of the times apparently timeless were, are and will be possible only due to the advancing information and communications technologies. The leap to Democracy 3.0, based on information and communication technologies prompts to a radical change in the majority of the classical concepts targeting society structure and the way it is guided and controlled. Thus, concepts become electronic concepts (or e-concepts through the use of new technologies. E-concepts keep the essence of the classical principles of liberty and democracy, adding a major aspect of the new way of communication and spreading ideas between people. The main problem is to quantify, analyze and foresee the way technological changes will influence not only the economic system, but also the daily life of the individual and the society. Unfortunately (or maybe fortunately, depending on the point of view, all these evolutions and technological and social developments are as many challenges for the governments of the world. In this paper we will highlight only four of the challenges facing the governments, grouped in a structured model with the following specific concepts: Big Data, Social Data, Linked Data and Mobile Data. This is an emerging paradigm of the information and communication technology supporting national and global eGovernment projects.

  16. A new theoretical model for scattering of electrons by molecules. 1

    International Nuclear Information System (INIS)

    Peixoto, E.M.A.; Mu-tao, L.; Nogueira, J.C.

    1975-01-01

    A new theoretical model for electron-molecule scattering is suggested. The e-H 2 scattering is studied and the superiority of the new model over the commonly used Independent Atom Model (IAM) is demonstrated. Comparing theoretical and experimental data for 40keV electrons scattered by H 2 utilizing the new model, its validity is proved, while Partial Wave and First Born calculations, employing the Independent Atom Model, strongly deviated from the experiment [pt

  17. EDUCATIONAL COMPLEX ON ELECTRICAL ENGINEERING AND ELECTRONICS BASED ON MODELING IN PROGRAM TINA

    Directory of Open Access Journals (Sweden)

    Vladimir A. Alekhin

    2014-01-01

    Full Text Available The educational complex on the electrical engineering and electronics has been developed. It contains a course of lectures and lecture notes in the electronic form, a new computer laboratory practical work and practical training. All electronic manuals are based on modeling of electric and electronic circuits in the new effective program TINA. The educational complex is being successfully used in educational process on internal and distant learning. 

  18. Quantum fluid model of coherent stimulated radiation by a dense relativistic cold electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, L. F.; Serbeto, A.; Tsui, K. H. [Instituto de Física, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, RJ 24210-346 (Brazil); Mendonça, J. T.; Galvão, R. M. O. [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil)

    2013-07-15

    Using a quantum fluid model, the linear dispersion relation for FEL pumped by a short wavelength laser wiggler is deduced. Subsequently, a new quantum corrected resonance condition is obtained. It is shown that, in the limit of low energy electron beam and low frequency pump, the quantum recoil effect can be neglected, recovering the classical FEL resonance condition, k{sub s}=4k{sub w}γ{sup 2}. On the other hand, for short wavelength and high energy electron beam, the quantum recoil effect becomes strong and the resonance condition turns into k{sub s}=2√(k{sub w}/λ{sub c})γ{sup 3/2}, with λ{sub c} being the reduced Compton wavelength. As a result, a set of nonlinear coupled equations, which describes the quantum FEL dynamics as a three-wave interaction, is obtained. Neglecting wave propagation effects, this set of equations is solved numerically and results are presented.

  19. Ab Initio Model for Vibrational Excitation of Polar Molecules by Low-Energy Electrons

    Science.gov (United States)

    Vanroose, W. I.; Rescigno, T. N.; McCurdy, C. W.

    2003-05-01

    Vibrational excitation of the hydrogen halides by electron impact has been a subject of continued interest ever since the first observations of pronounced threshold peaks in the cross sections by Rohr and Linder twenty five years ago. Two semi-empirical models have been developed to explain these features, one a virtual state model by Gauyacq and Herzenberg based on effective-range theory, the other by Domcke and co-workers based on a non-local Feshbach resonance model. We will show that a non-empirical model can be formulated which captures the essential features of the observed cross sections. The only parameters needed to implement the calculations are the potential energy curve of the negative ion in the region where it is bound, the potential curve of the neutral target and its R-dependent dipole moment. We use an effective range theory for the nuclear dynamics, which can be implemented without an expansion in target vibrational states, instead of non-local equations derived from Feshbach partitioning. Another new element is the use of a dipole coupled partial-wave model to predict the analytic continuation of the negative ion potential curve into the continuum. We will illustrate the new model with results for electron-HCl scattering.

  20. Ultraviolet and soft X-ray free-electron lasers introduction to physical principles, experimental results, technological challenges

    CERN Document Server

    Schmüser, Peter; Rossbach, Jörg; Fujimori, A; Kühn, J; Müller, T; Steiner, F; Trümper, J; Varma, C; Wölfle, P

    2008-01-01

    In the introduction accelerator-based light sources are considered and a comparison is made between free-electron lasers and conventional quantum lasers. The motion and radiation of relativistic electrons in undulator magnets is discussed. The principle of a low-gain free-electron laser is explained and the pendulum equations are introduced that characterize the electron dynamics in the field of a light wave. The differential equations of the high-gain FEL are derived from the Maxwell equations of electrodynamics. Analytical and numerical solutions of the FEL equations are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. A detailed numerical study of the all-important microbunching process is presented. The mechanism of Self Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Three-dimensional effects such as betatron oscillations and optical diffraction are addressed and their impact on the F...

  1. Electronic Modeling and Design for Extreme Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  2. Electronic Modeling and Design for Extreme Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  3. New two-fluid (localized + band electron) model for manganites

    Indian Academy of Sciences (India)

    Two types of eg electronic states arise in doped manganites (due to strong JT coupling, strong U, filling conditions, …): Localized, with JT distortion, do not hop; Without distortion, hop and form a band ...

  4. Modelling pencil-beam divergence with the electron pencil-beam redefinition algorithm

    Science.gov (United States)

    Boyd, Robert A.; Hogstrom, Kenneth R.; White, R. Allen; Starkschall, George

    2001-11-01

    The electron pencil-beam redefinition algorithm (PBRA), which is used to calculate electron beam dose distributions, assumes that the virtual source of each pencil beam is identical to that of the broad beam incident on the patient. In the present work, a virtual source specific for each pencil beam is modelled by including the source distance as a pencil-beam parameter to be redefined with depth. To incorporate a variable pencil-beam source distance parameter, the transport equation was reformulated to explicitly model divergence resulting in the algorithm divPBRA. Allowing the virtual source position to vary with individual pencil beams is expected to better model the effects of heterogeneities on local electron fluence divergence (or convergence). Selected experiments from a measured data set developed at The University of Texas M D Anderson Cancer Center were used to evaluate the accuracy of the dose calculated using divPBRA. Results of the calculation showed that the theory accurately predicted the virtual source position in regions of side-scatter equilibrium and predicted reasonable virtual source positions in regions lacking side-scatter equilibrium (i.e. penumbra and in the vicinity and shadow of internal heterogeneities). Results of the evaluation showed the dose accuracy of divPBRA to be marginally better to that of PBRA, except in regions of extremely sharp dose perturbations, where the divPBRA calculations were significantly greater than the measured data. Dose calculations using divPBRA took 45% longer than those using PBRA. Therefore, we concluded that divPBRA offers no significant advantage over PBRA for the purposes of clinical treatment planning. However, the results were promising and divPBRA might prove useful if further modelling were to include large-angle scattering, low-energy delta rays and brehmsstrahlung.

  5. Modelling pencil-beam divergence with the electron pencil-beam redefinition algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Robert A.; Hogstrom, Kenneth R.; Starkschall, George [Department of Radiation Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); White, R. Allen [Department of Biomathematics, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2001-11-01

    The electron pencil-beam redefinition algorithm (PBRA), which is used to calculate electron beam dose distributions, assumes that the virtual source of each pencil beam is identical to that of the broad beam incident on the patient. In the present work, a virtual source specific for each pencil beam is modelled by including the source distance as a pencil-beam parameter to be redefined with depth. To incorporate a variable pencil-beam source distance parameter, the transport equation was reformulated to explicitly model divergence resulting in the algorithm divPBRA. Allowing the virtual source position to vary with individual pencil beams is expected to better model the effects of heterogeneities on local electron fluence divergence (or convergence). Selected experiments from a measured data set developed at The University of Texas M D Anderson Cancer Center were used to evaluate the accuracy of the dose calculated using divPBRA. Results of the calculation showed that the theory accurately predicted the virtual source position in regions of side-scatter equilibrium and predicted reasonable virtual source positions in regions lacking side-scatter equilibrium (i.e. penumbra and in the vicinity and shadow of internal heterogeneities). Results of the evaluation showed the dose accuracy of divPBRA to be marginally better to that of PBRA, except in regions of extremely sharp dose perturbations, where the divPBRA calculations were significantly greater than the measured data. Dose calculations using divPBRA took 45% longer than those using PBRA. Therefore, we concluded that divPBRA offers no significant advantage over PBRA for the purposes of clinical treatment planning. However, the results were promising and divPBRA might prove useful if further modelling were to include large-angle scattering, low-energy delta rays and brehmsstrahlung. (author)

  6. Modelling pencil-beam divergence with the electron pencil-beam redefinition algorithm.

    Science.gov (United States)

    Boyd, R A; Hogstrom, K R; White, R A; Starkschall, G

    2001-11-01

    The electron pencil-beam redefinition algorithm (PBRA), which is used to calculate electron beam dose distributions, assumes that the virtual source of each pencil beam is identical to that of the broad beam incident on the patient. In the present work, a virtual source specific for each pencil beam is modelled by including the source distance as a pencil-beam parameter to be redefined with depth. To incorporate a variable pencil-beam source distance parameter, the transport equation was reformulated to explicitly model divergence resulting in the algorithm divPBRA. Allowing the virtual source position to vary with individual pencil beams is expected to better model the effects of heterogeneities on local electron fluence divergence (or convergence). Selected experiments from a measured data set developed at The University of Texas M D Anderson Cancer Center were used to evaluate the accuracy of the dose calculated using divPBRA. Results of the calculation showed that the theory accurately predicted the virtual source position in regions of side-scatter equilibrium and predicted reasonable virtual source positions in regions lacking side-scatter equilibrium (i.e. penumbra and in the vicinity and shadow of internal heterogeneities). Results of the evaluation showed the dose accuracy of divPBRA to be marginally better to that of PBRA, except in regions of extremely sharp dose perturbations, where the divPBRA calculations were significantly greater than the measured data. Dose calculations using divPBRA took 45% longer than those using PBRA. Therefore, we concluded that divPBRA offers no significant advantage over PBRA for the purposes of clinical treatment planning. However, the results were promising and divPBRA might prove useful if further modelling were to include large-angle scattering, low-energy delta rays and brehmsstrahlung.

  7. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    Science.gov (United States)

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.

  8. First results from electron-photon damage equivalence studies on a generic ethylene-propylene rubber

    International Nuclear Information System (INIS)

    Buckalew, W.H.

    1986-04-01

    As part of a simulator adequacy assessment program, the relative effectiveness of electrons and photons to produce damage in a generic ethylene propylene rubber (EPR) has been investigated. The investigation was limited in extent in that a single EPR material, in three thickness, was exposed to Cobalt-60 photons and three electron beam energies. Basing material damage on changes in the EPR mechanical properties elongation and tensile strength, we observed that EPR damage was a smoothly varying function of absorbed energy and independent of irradiating particle type. EPR damage tracked equally well as a function of both incident particle energy and material front surface dose. Based on these preliminary data, we tentatively concluded that a correlation between particle, particle energy, and material damage (as measured by changes in material elongation and/or tensile strength) has been demonstrated. 14 figs

  9. Electrons on the HDice target: Results and analysis of test runs at JLab in 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Michael; Bass, Christopher; D' Angelo, Annalisa; Deur, Alexandre; Hanretty, Charles; Ho, Dao; Kageya, Tsuneo; Laine, Vivien; Peng, Peng; Sandorfi, Andrew; Wei, Xiangdong; Whisnant, Charles

    2014-06-01

    During the Jefferson Labaratory E06-101 (g14) experiment \\cite{g14} utilizing photons on solid HD and performed in Hall B, two opportunities arose for targets to be subjected to multi-GeV electron beams in week-long campaigns of dose accumulation and NMR polarization measurements. This was in preparation for conditionally approved electron experiments after the 12 GeV JLab upgrade\\cite{trans}. Besides the important thermal effects, evidence consistent with screening of the NMR and with decay of the target polarization was observed during bombardment and for a time afterwards. The solid hydrogens have been the subject of previous radiation damage studies, both for possible polarized DT fusion\\cite{Forrest97} and for production of dynamically polarized nuclear targets\\cite{Radtke04}. We synthesize all this information into an overall picture that can guide on-going development of the HDice target system for future use.

  10. Front end electronics and first results of the ALICE V0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Zoccarato, Y., E-mail: y.zoccarato@ipnl.in2p3.f [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (IPNL), 69622 Villeurbanne (France); Tromeur, W. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (IPNL), 69622 Villeurbanne (France); Aguilar, S.; Alfaro, R.; Almaraz Avina, E.; Anzo, A.; Belmont, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica Ciudad Universitaria, C.P. 04510, Mexico, D.F. (Mexico); Cheshkov, C.; Cheynis, B.; Combaret, C. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (IPNL), 69622 Villeurbanne (France); Contreras, G. [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Av. Instituto Politecnico Nacional 2508 Col. San Pedro Zacatenco, C.P. 07360, Mexico, D.F. (Mexico); Cuautle, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan, C.P. 04510, Mexico, D.F. (Mexico); Ducroux, L. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (IPNL), 69622 Villeurbanne (France); Gonzalez Trueba, L.; Grabski, V. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica Ciudad Universitaria, C.P. 04510, Mexico, D.F. (Mexico); Grossiord, J.-Y. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (IPNL), 69622 Villeurbanne (France); Herrera Corral, G. [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Av. Instituto Politecnico Nacional 2508 Col. San Pedro Zacatenco, C.P. 07360, Mexico, D.F. (Mexico); Martinez, A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica Ciudad Universitaria, C.P. 04510, Mexico, D.F. (Mexico)

    2011-01-21

    This paper gives a detailed description of the acquisition and trigger electronics especially designed for the V0 detector of ALICE at LHC. A short presentation of the detector itself is given before the description of the Front End Electronics (FEE) system, which is completely embedded within the LHC environment as far as acquisition (DAQ), trigger (CTP), and detector control (DCS) are concerned. It is able to detect on-line coincident events and to achieve charge (with a precision of 0.6 pC) and time measurements (with a precision of 100 ps). It deploys quite a simple architecture. It is however totally programmable and fully non-standard in discriminating events coming from Beam-Beam interaction and Beam-Gas background. Finally, raw data collected from the first LHC colliding beams illustrate the performance of the system.

  11. Beam test results for the upgraded LHCb RICH opto-electronic readout system

    CERN Multimedia

    Carniti, Paolo

    2016-01-01

    The LHCb experiment is devoted to high-precision measurements of CP violation and search for New Physics by studying the decays of beauty and charmed hadrons produced at the Large Hadron Collider (LHC). Two RICH detectors are currently installed and operating successfully, providing a crucial role in the particle identification system of the LHCb experiment. Starting from 2019, the LHCb experiment will be upgraded to operate at higher luminosity, extending its potential for discovery and study of new phenomena. Both the RICH detectors will be upgraded and the entire opto-electronic system has been redesigned in order to cope with the new specifications, namely higher readout rates, and increased occupancies. The new photodetectors, readout electronics, mechanical assembly and cooling system have reached the final phase of development and their performance was thoroughly and successfully validated during several beam test sessions in 2014 and 2015 at the SPS facility at CERN. Details of the test setup and perf...

  12. First Results from the GPS Compact Total Electron Content Sensor (CTECS) on the PSSC2 Nanosat

    Science.gov (United States)

    Bishop, R. L.; Straus, P. R.; Hinkley, D.; Brubaker, T. R.

    2011-12-01

    The Compact Total Electron Content Sensor (CTECS) is a GPS radio occultation instrument designed for cubesat platforms that utilizes a COTS receiver, modified firmware, and a custom designed antenna. CTECS was placed on the Pico Satellite Solar Cell Testbed 2 (PSSC2) nanosat that was installed on the Space Shuttle Atlantis (STS-135). PSSC2 was successfully released from the shuttle on 20 July 2011. After approximately 2-4 weeks of spacecraft checkout and attitude adjustments, CTECS will be powered on and begin its mission to obtain ionospheric measurements of the total electron content and scintillation. This presentation describes the CTECS instrument, presents ground test data, initial on-orbit data, as well as future flight opportunities.

  13. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, John M. [University of Wisconsin, Madison, WI (United States); Zhang, Dongsheng [University of Wisconsin, Madison, WI (United States)

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  14. Fuel assembly bow: analytical modeling and resulting design improvements

    International Nuclear Information System (INIS)

    Stabel, J.; Huebsch, H.P.

    1995-01-01

    The bowing of fuel assemblies may result in a contact between neighbouring fuel assemblies and in connection with a vibration to a resulting wear or even perforation at the corners of the spacer grids of neighbouring assemblies. Such events allowed reinsertion of a few fuel assemblies in Germany only after spacer repair. In order to identify the most sensitive parameters causing the observed bowing of fuel assemblies a new computer model was develop which takes into a account the highly nonlinear behaviour of the interaction between fuel rods and spacers. As a result of the studies performed with this model, design improvements such as a more rigid connection between guide thimbles and spacer grids, could be defined. First experiences with this improved design show significantly better fuel behaviour. (author). 5 figs., 1 tabs

  15. First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM

    Directory of Open Access Journals (Sweden)

    M. J. Angling

    2008-02-01

    Full Text Available Ground based measurements of slant total electron content (TEC can be assimilated into ionospheric models to produce 3-D representations of ionospheric electron density. The Electron Density Assimilative Model (EDAM has been developed for this purpose. Previous tests using EDAM and ground based data have demonstrated that the information on the vertical structure of the ionosphere is limited in this type of data. The launch of the COSMIC satellite constellation provides the opportunity to use radio occultation data which has more vertical information. EDAM assimilations have been run for three time periods representing quiet, moderate and disturbed geomagnetic conditions. For each run, three data sets have been ingested – only ground based data, only COSMIC data and both ground based and COSMIC data. The results from this preliminary study show that both ground and space based data are capable of improving the representation of the vertical structure of the ionosphere. However, the analysis is limited by the incomplete deployment of the COSMIC constellation and the use of auto-scaled ionosonde data. The first of these can be addressed by repeating this type of study once full deployment has been achieved. The latter requires the manual scaling of ionosonde data; ideally an agreed data set would be scaled and made available to the community to facilitate comparative testing of assimilative models.

  16. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    Science.gov (United States)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  17. Modeling vertical loads in pools resulting from fluid injection. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W.; McCauley, E.W.

    1978-06-15

    Table-top model experiments were performed to investigate pressure suppression pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peachbottom Mark I boiling water reactor containment system. The results guided subsequent conduct of experiments in the /sup 1///sub 5/-scale facility and provided new insight into the vertical load function (VLF). Model experiments show an oscillatory VLF with the download typically double-spiked followed by a more gradual sinusoidal upload. The load function contains a high frequency oscillation superimposed on a low frequency one; evidence from measurements indicates that the oscillations are initiated by fluid dynamics phenomena.

  18. Modeling vertical loads in pools resulting from fluid injection

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1978-01-01

    Table-top model experiments were performed to investigate pressure suppression pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peachbottom Mark I boiling water reactor containment system. The results guided subsequent conduct of experiments in the 1 / 5 -scale facility and provided new insight into the vertical load function (VLF). Model experiments show an oscillatory VLF with the download typically double-spiked followed by a more gradual sinusoidal upload. The load function contains a high frequency oscillation superimposed on a low frequency one; evidence from measurements indicates that the oscillations are initiated by fluid dynamics phenomena

  19. Some results on the dynamics generated by the Bazykin model

    Directory of Open Access Journals (Sweden)

    Georgescu, R M

    2006-07-01

    Full Text Available A predator-prey model formerly proposed by A. Bazykin et al. [Bifurcation diagrams of planar dynamical systems (1985] is analyzed in the case when two of the four parameters are kept fixed. Dynamics and bifurcation results are deduced by using the methods developed by D. K. Arrowsmith and C. M. Place [Ordinary differential equations (1982], S.-N. Chow et al. [Normal forms and bifurcation of planar fields (1994], Y. A. Kuznetsov [Elements of applied bifurcation theory (1998], and A. Georgescu [Dynamic bifurcation diagrams for some models in economics and biology (2004]. The global dynamic bifurcation diagram is constructed and graphically represented. The biological interpretation is presented, too.

  20. Data description and quality assessment of ionospheric electron density profiles for ARPA modeling project. Technical report

    International Nuclear Information System (INIS)

    Conkright, R.O.

    1977-03-01

    This report presents a description of the automated method used to produce electron density (N(h)) profiles from ionograms recorded on 35mm film and an assessment of the resulting data base. A large data base of about 30,000 profiles was required for an ionospheric modeling project. This motivated a search for an automated method of producing profiles. The automated method used is fully described, the resulting data are given a quality grade, and the noon and midnight profiles are presented. Selected portions of this data base are compared with profiles produced by the standard profiling method in use by the Environmental Data Service at Boulder, Colorado

  1. Results of the eruptive column model inter-comparison study

    Science.gov (United States)

    Costa, Antonio; Suzuki, Yujiro; Cerminara, M.; Devenish, Ben J.; Esposti Ongaro, T.; Herzog, Michael; Van Eaton, Alexa; Denby, L.C.; Bursik, Marcus; de' Michieli Vitturi, Mattia; Engwell, S.; Neri, Augusto; Barsotti, Sara; Folch, Arnau; Macedonio, Giovanni; Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.; Mastin, Larry G.; Woodhouse, Mark J.; Phillips, Jeremy C.; Hogg, Andrew J.; Degruyter, Wim; Bonadonna, Costanza

    2016-01-01

    This study compares and evaluates one-dimensional (1D) and three-dimensional (3D) numerical models of volcanic eruption columns in a set of different inter-comparison exercises. The exercises were designed as a blind test in which a set of common input parameters was given for two reference eruptions, representing a strong and a weak eruption column under different meteorological conditions. Comparing the results of the different models allows us to evaluate their capabilities and target areas for future improvement. Despite their different formulations, the 1D and 3D models provide reasonably consistent predictions of some of the key global descriptors of the volcanic plumes. Variability in plume height, estimated from the standard deviation of model predictions, is within ~ 20% for the weak plume and ~ 10% for the strong plume. Predictions of neutral buoyancy level are also in reasonably good agreement among the different models, with a standard deviation ranging from 9 to 19% (the latter for the weak plume in a windy atmosphere). Overall, these discrepancies are in the range of observational uncertainty of column height. However, there are important differences amongst models in terms of local properties along the plume axis, particularly for the strong plume. Our analysis suggests that the simplified treatment of entrainment in 1D models is adequate to resolve the general behaviour of the weak plume. However, it is inadequate to capture complex features of the strong plume, such as large vortices, partial column collapse, or gravitational fountaining that strongly enhance entrainment in the lower atmosphere. We conclude that there is a need to more accurately quantify entrainment rates, improve the representation of plume radius, and incorporate the effects of column instability in future versions of 1D volcanic plume models.

  2. The distribution of infered energetic electron loss with respect to plasmapause location: BARREL results.

    Science.gov (United States)

    Halford, A. J.; Malaspina, D.; Sibeck, D. G.

    2017-12-01

    One of the long outstanding challenges of understanding the inner magnetosphere is accurately describing radiation belt dynamics. This enterprise can seem daunting as many have stated: "if you've seen one storm you've seen one storm". And although much progress has been made over the last half century since the discovery of the radiation belts, there is still ongoing debate about the relative importance of different loss and source mechanisms. Here we will consider one part of radiation belt dynamics, the loss of electrons ( 30 keV to MeV) to the upper atmosphere and endeavor to identify the relative importance of the different loss mechanisms. As demonstrated in often used cartoon diagrams, and previous studies, many radiation belt loss mechanisms such as chorus, hiss, and EMIC waves are thought to have specific MLT and L dependencies as well as dependence on geomagnetic conditions. Many of these loss mechanisms are identifiable through the energies and time scales in which they precipitate electrons. Thus we expect that the observed electron precipiation should follow similar MLT and L patterns as what caused the loss and not show something completely unexpected such as Atlantis rising out of the Columbia River. Here we will examine the location and geomagnetic conditions under which the Balloon Array for Relativistic Radiation Belt Electron Loss (BARREL) inferred radiation belt electron precipitation. The BARREL mission consisted of 4 campaigns, two in Antarctica and 2 in Sweden, for a total of 55 launches. The flights conducted in Antarctica took advantage of the circumpolar winds allowing for the payloads to cross a range of L-values from L > 2.5 onto open field lines, while the Swedish campaigns were held during turn around where the balloons stayed near L = 5.8. We will present the distribution of precipitation with respect to L and MLT as well as with respect to the boundary of the plasmapause as new work has shown that this boundary clearly separates

  3. Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure

    Science.gov (United States)

    Purser, Gordon H.

    1999-07-01

    This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure. The "best" Lewis structures are those that, when combined with the VSEPR model, allow the accurate prediction of molecular properties, such as polarity, bond length, bond angle, and bond strength. These structures are achieved by minimizing formal charges within the molecule, even if it requires an expanded octet on atoms beyond the second period. Lewis structures that show an expanded octet do not imply full d-orbital involvement in the bonding. They suggest that the presence of low-lying d-orbitals is important in producing observed molecular structures. Based on this work, the presence of electron density, not a large separation in charge, is responsible for the short bond lengths and large angles in species containing nonmetal atoms from beyond the second period. This result contradicts results obtained from natural population analysis, a method that attempts to derive Lewis structures from molecular orbital calculations.

  4. Investigation of tribocharges and their migration in layered model toners by electron holography

    Science.gov (United States)

    Seok Jeong, Jong; Murakami, Yasukazu; Shindo, Daisuke; Kawase, Hiromitsu

    2011-06-01

    The distribution of tribocharges in toner samples is studied by electron holography, a powerful tool for direct observations of the electric field. We carry out both in situ and ex situ observations on triboelectricity using model toner specimens, which are laminated with thin films, and a transmission electron microscopy specimen holder with two piezo-driving microprobes. We investigate specimens with stacking layer-patterns of "minus and weak minus" and "plus and minus." The observed equipotential lines show a simple semi-ellipsoidal shape, regardless of the combination of toner films having different charging characteristics. Computer simulations for quantitative analyses of the electron hologram results with a modulated reference wave by a long-range electric field from the tribocharges are performed. Both the experimental results and the simulations indicate that the tribocharges are not localized at the positions where they are formed; rather they migrate to achieve a gradient charge density in the specimen. The charge quantity of the model toner is also evaluated by the simulation.

  5. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  6. Using a matter wave model to study the structure of the electron inside an atom

    Science.gov (United States)

    Chang, Donald

    In Bohr's atomic model, the atom was conceptually modeled as a miniature solar system. With the development of the Schrödinger equation, the wave function of the electron inside an atom becomes much better known. But the electron is still regarded as a pointed object; according to the Copenhagen Interpretation, the wave function is thought to describe only the probability of finding the electron. Such an interpretation, however, has raised some conceptual questions. For example, how can a point-like electron form a chemical bond between neighboring atoms? In an attempt to overcome this difficulty, we use a matter wave theory to model the structure of an electron inside the atom. This model is inspired by noticing the similarity between a free electron and a photon; both particles behave like a corpuscular object as well as a physical wave. Thus, we hypothesize that, like the photon, an electron is an excitation wave of a real physical field. Based on this hypothesis, we have derived a basic wave equation for the free electron. We show that, in the presence of an electrical potential, this basic wave equation can lead to the Schrödinger equation. This work implies that the solution of the Schrödinger equation actually represents the physical waves of the electron. Thus, the electron inside the atom should behave more like a topologically distributive wave than a pointed object. In this presentation, we will discuss the advantages and limitations of this model.

  7. Electronic and Optical Properties and Modeling of Intercalated Graphite.

    Science.gov (United States)

    1980-09-30

    compounds with the indicated ray data). A quantitative fit of the model to the structures. For each figure the results are experimental data now emerging ...Peu * s -. ~~~~ r*.~**~~ K H- L >Stage 5 vAAJ’f.A\\Lf\\ ~1.61 , FeCI3 Srtje 7 : ~FERMI " t ENERGY ACCEPTOR 0. t0 0. 0.3.e , Gro7rot tIV 0.33 eVLI ., Rb

  8. New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kimberly L.; Rapp-Giles, Barbara J.; Semkiw, Elizabeth S.; Porat, Iris; Brown, Steven D.; Wall, Judy D.

    2014-02-01

    To understand the energy conversion activities of the anaerobic sulfate-reducing bacteria, it is necessary to identify the components involved in electron flow. The importance of the abundant type I tetraheme cytochrome c3 (TpIc3) as an electron carrier during sulfate respiration was questioned by the previous isolation of a null mutation in the gene encoding TpIc3, cycA, in Desulfovibrio alaskensis G20. Whereas respiratory growth of the CycA mutant with lactate and sulfate was little affected, growth with pyruvate and sulfate was significantly impaired. We have explored the phenotype of the CycA mutant through physiological tests and transcriptomic and proteomic analyses. Data reported here show that electrons from pyruvate oxidation do not reach adenylyl sulfate reductase, the enzyme catalyzing the first redox reaction during sulfate reduction, in the absence of either CycA or the type I cytochrome c3:menaquinone oxidoreductase transmembrane complex, QrcABCD. In contrast to the wild type, the CycA and QrcA mutants did not grow with H2 or formate and sulfate as the electron acceptor. Transcriptomic and proteomic analyses of the CycA mutant showed that transcripts and enzymes for the pathway from pyruvate to succinate were strongly decreased in the CycA mutant regardless of the growth mode. Neither the CycA nor the QrcA mutant grew on fumarate alone, consistent with the omics results and a redox regulation of gene expression. We conclude that TpIc3 and the Qrc complex are D. alaskensis components essential for the transfer of electrons released in the periplasm to reach the cytoplasmic adenylyl sulfate reductase and present a model that may explain the CycA phenotype through confurcation of electrons.

  9. New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20

    Energy Technology Data Exchange (ETDEWEB)

    Rapp-Giles, Barbara J [University of Missouri, Columbia; Keller, Kimberly L [University of Missouri, Columbia; Porat, Iris [ORNL; Brown, Steven D [ORNL; Semkiw, Elizabeth M. [University of Missouri; Wall, Judy D. [University of Missouri

    2014-01-01

    To understand the energy conversion activities of the anaerobic sulfate-reducing bacteria, it is necessary to identify the components involved in electron flow. The importance of the abundant type I tetraheme cytochrome c3 (TpIc3) as an electron carrier during sulfate respiration was questioned by the previous isolation of a null mutation in the gene encoding TpIc3, cycA, in Desulfovibrio alaskensis G20. Whereas respiratory growth of the CycA mutant with lactate and sulfate was little affected, growth with pyruvate and sulfate was significantly impaired. We have explored the phenotype of the CycA mutant through physiological tests and transcriptomic and proteomic analyses. Data reported here show that electrons from pyruvate oxidation do not reach adenylyl sulfate reductase, the enzyme catalyzing the first redox reaction during sulfate reduction, in the absence of either CycA or the type I cytochrome c3:menaquinone oxidoreductase transmembrane complex, QrcABCD. In contrast to the wild type, the CycA and QrcA mutants did not grow with H2 or formate and sulfate as the electron acceptor. Transcriptomic and proteomic analyses of the CycA mutant showed that transcripts and enzymes for the pathway from pyruvate to succinate were strongly decreased in the CycA mutant regardless of the growth mode. Neither the CycA nor the QrcA mutant grew on fumarate alone, consistent with the omics results and a redox regulation of gene expression. We conclude that TpIc3 and the Qrc complex are D. alaskensis components essential for the transfer of electrons released in the periplasm to reach the cytoplasmic adenylyl sulfate reductase and present a model that may explain the CycA phenotype through confurcation of electrons.

  10. Initial CGE Model Results Summary Exogenous and Endogenous Variables Tests

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    The following discussion presents initial results of tests of the most recent version of the National Infrastructure Simulation and Analysis Center Dynamic Computable General Equilibrium (CGE) model developed by Los Alamos National Laboratory (LANL). The intent of this is to test and assess the model’s behavioral properties. The test evaluated whether the predicted impacts are reasonable from a qualitative perspective. This issue is whether the predicted change, be it an increase or decrease in other model variables, is consistent with prior economic intuition and expectations about the predicted change. One of the purposes of this effort is to determine whether model changes are needed in order to improve its behavior qualitatively and quantitatively.

  11. Simplified model for fast optimization of a free-electron laser oscillator

    Directory of Open Access Journals (Sweden)

    Kai Li

    2017-03-01

    Full Text Available A simplified one-dimensional theoretical model for free-electron laser oscillator (FELO calculation which reserves the main physics is proposed. Instead of using traditional macroparticles sampling method, the theoretical model takes advantage of low gain theory to calculate the optical power single-pass gain in the undulator analytically, and some reasonable approximations are made to simplify the calculation of power growth in the cavity. The theoretical analysis of single-pass gain, power growth, time-dependent laser profile evolution and cavity desynchronism are accomplished more efficiently. We present the results of infrared wavelength FELO and X-ray FELO with the new model. The results are validated by simulation with GENESIS and OPC.

  12. Electron Paramagnetic Resonance Spectroscopy of Photosynthetic Systems and Inorganic Model Complexes.

    Science.gov (United States)

    Dexheimer, Susan Lynne

    1990-01-01

    This thesis discusses the application of parallel polarization electron paramagnetic resonance (EPR) spectroscopy, a technique sensitive to formally forbidden transitions in high spin states, to the study of the electronic structure of photosynthetic electron transfer centers and related inorganic model complexes. The theoretical basis for the origin of the parallel polarization transitions and the interpretation of the resulting spectra is presented, and experimental aspects of the detection of parallel polarization transitions are discussed. Parallel polarization EPR was used to study inorganic complexes of trivalent manganese that serve as models for the spectroscopic properties of biological electron transfer centers. X-band EPR spectra were detected from non-Kramers spin states of these complexes. EPR spectra of the S = 2 ground states of the mononuclear complexes Mn(III) tris -acetylacetonate and Mn(III) tris-picolinate and a low-lying excited state of the weakly antiferromagnetically coupled binuclear complex Mn_2(III,III) O(O_2CCH_3) _2 (HB(pz)_3) _2 (HB(pz)_3 = hydrotris(1-pyrazolyl)borate) are discussed. The spectra are interpreted using numerical simulations. Application of parallel polarization EPR to photosyntheic systems led to the detection of a new paramagnetic intermediate associated with photosynthetic water oxidation. The parallel polarization EPR signal is assigned to an S = 1 spin state of an exchange-coupled manganese center in the resting (S_1) state of the photosynthetic oxygen-evolving complex. The properties of the S _1 state parallel polarization EPR signal indicate that it corresponds to the reduced form of the species that gives rise to the previously established multiline conventional EPR signal in the light-induced S _2 state, and the behavior of the signal upon advancement to the S_2 state demonstrates the presence of two separate redox-active centers in the oxygen-evolving complex. The implications for the electronic structure of

  13. Real-Time Robust Adaptive Modeling and Scheduling for an Electronic Commerce Server

    Science.gov (United States)

    Du, Bing; Ruan, Chun

    With the increasing importance and pervasiveness of Internet services, it is becoming a challenge for the proliferation of electronic commerce services to provide performance guarantees under extreme overload. This paper describes a real-time optimization modeling and scheduling approach for performance guarantee of electronic commerce servers. We show that an electronic commerce server may be simulated as a multi-tank system. A robust adaptive server model is subject to unknown additive load disturbances and uncertain model matching. Overload control techniques are based on adaptive admission control to achieve timing guarantees. We evaluate the performance of the model using a complex simulation that is subjected to varying model parameters and massive overload.

  14. A simple model of hose instabilities in rotating electron beams

    International Nuclear Information System (INIS)

    Brandenburg, J.E.

    1983-01-01

    A simple foilless diode with a properly designed transmission line feed can generate an intense, wellcollimated annular electron beam. As part of the AID project at Los Alamos, a 3-MeV annular beam is routinely generated with a radius of 1 cm, a thickness of about 100 μ, a current density of about 1 MA/cm 2 , and a scattering angle of about 30 mrad. The particle-in-cell code CEMIT has been used previously to investigate the properties of foilless diodes. It is found that the beam quality can vary significantly during this transition. The best quality beam is achieved by a configuration that is not foilless or foil, but a combination. Microwave generation within the diode and zero-frequency cyclotron wave growth appear to be the major source of energy spread and angular scatter on the beam. Changes in the cathode shape that do not alter the current density profile greatly can change change the energy spread significantly due to microwave generation. Simulations have typically been carried out using a short rise time on the voltage pulse and then holding the voltage constant to obtain a steady state result. When driven by a real source, however, the voltage is continually changing on a time scale that is slow compared with the transit time of the speed of light across the diode. Simulations in which the voltage changes continually have been carried out for both inner and outer conductor foilless diodes. It is found that energy spread dominates the beam at low voltage while angular scatter dominates at higher voltage. Based upon these simulations, a more complete time history of this class of diode is possible

  15. Interaction between subducting plates: results from numerical and analogue modeling

    Science.gov (United States)

    Kiraly, Agnes; Capitanio, Fabio A.; Funiciello, Francesca; Faccenna, Claudio

    2016-04-01

    The tectonic setting of the Alpine-Mediterranean area is achieved during the late Cenozoic subduction, collision and suturing of several oceanic fragments and continental blocks. In this stage, processes such as interactions among subducting slabs, slab migrations and related mantle flow played a relevant role on the resulting tectonics. Here, we use numerical models to first address the mantle flow characteristic in 3D. During the subduction of a single plate the strength of the return flow strongly depends on the slab pull force, that is on the plate's buoyancy, however the physical properties of the slab, such as density, viscosity or width, do not affect largely the morphology of the toroidal cell. Instead, dramatic effects on the geometry and the dynamics of the toroidal cell result in models where the thickness of the mantle is varied. The vertical component of the vorticity vector is used to define the characteristic size of the toroidal cell, which is ~1.2-1.3 times the mantle depth. This latter defines the range of viscous stress propagation through the mantle and consequent interactions with other slabs. We thus further investigate on this setup where two separate lithospheric plates subduct in opposite sense, developing opposite polarities and convergent slab retreat, and model different initial sideways distance between the plates. The stress profiles in time illustrate that the plates interacts when slabs are at the characteristic distance and the two slabs toroidal cells merge. Increased stress and delayed slab migrations are the results. Analogue models of double-sided subduction show similar maximum distance and allow testing the additional role of stress propagated through the plates. We use a silicon plate subducting on its two opposite margins, which is either homogeneous or comprises oceanic and continental lithospheres, differing in buoyancy. The modeling results show that the double-sided subduction is strongly affected by changes in plate

  16. Overscreening-underscreening transition in the two-channel Kondo model induced by electron-electron repulsion

    International Nuclear Information System (INIS)

    Zhang Yumei; Chen Hong.

    1995-09-01

    The effects of the repulsion between the electrons on the two-channel Kondo problem are studied by use of the bosonization technique. Following Emery and Kivelson, we define a special case in the spin density wave sector, in which the impurity spin is actually detached from the dynamics of the electrons. The model is thus mapped to a local Sine-Gordon system. For weak repulsion, the basic features of the overscreening picture are maintained. However, at sufficient strong repulsion the system is driven into the weak coupling regime, hence an overscreening-underscreening transition emerges. (author). 22 refs

  17. On the applicability of nearly free electron model for resistivity calculations in liquid metals

    International Nuclear Information System (INIS)

    Gorecki, J.; Popielawski, J.

    1982-09-01

    The calculations of resistivity based on the nearly free electron model are presented for many noble and transition liquid metals. The triple ion correlation is included in resistivity formula according to SCQCA approximation. Two different methods for describing the conduction band are used. The problem of applicability of the nearly free electron model for different metals is discussed. (author)

  18. First experiments results about the engineering model of Rapsodie

    International Nuclear Information System (INIS)

    Chalot, A.; Ginier, R.; Sauvage, M.

    1964-01-01

    This report deals with the first series of experiments carried out on the engineering model of Rapsodie and on an associated sodium facility set in a laboratory hall of Cadarache. It conveys more precisely: 1/ - The difficulties encountered during the erection and assembly of the engineering model and a compilation of the results of the first series of experiments and tests carried out on this installation (loading of the subassemblies preheating, thermal chocks...). 2/ - The experiments and tests carried out on the two prototypes control rod drive mechanisms which brought to the choice for the design of the definitive drive mechanism. As a whole, the results proved the validity of the general design principles adopted for Rapsodie. (authors) [fr

  19. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  20. Workshop to transfer VELMA watershed model results to ...

    Science.gov (United States)

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on streamflow, stream temperature, and other habitat characteristics affecting threatened salmon populations in the 100 square mile Tolt River watershed in Washington state. To date, the WED group has fully calibrated the watershed model to simulate Tolt River flows with a high degree of accuracy under current and historical conditions and practices, and is in the process of simulating long-term responses to specific watershed restoration practices conducted by the Snoqualmie Tribe and partners. On July 20-21 WED Researchers Bob McKane, Allen Brookes and ORISE Fellow Jonathan Halama will be attending a workshop at the Tolt River site in Carnation, WA, to present and discuss modeling results with the Snoqualmie Tribe and other Tolt River watershed stakeholders and land managers, including the Washington Departments of Ecology and Natural Resources, U.S. Forest Service, City of Seattle, King County, and representatives of the Northwest Indian Fisheries Commission. The workshop is being co-organized by the Snoqualmie Tribe, EPA Region 10 and WED. The purpose of this 2-day workshop is two-fold. First, on Day 1, the modeling team will perform its second site visit to the watershed, this time focus

  1. Meteorological uncertainty of atmospheric dispersion model results (MUD)

    International Nuclear Information System (INIS)

    Havskov Soerensen, J.; Amstrup, B.; Feddersen, H.

    2013-08-01

    The MUD project addresses assessment of uncertainties of atmospheric dispersion model predictions, as well as possibilities for optimum presentation to decision makers. Previously, it has not been possible to estimate such uncertainties quantitatively, but merely to calculate the 'most likely' dispersion scenario. However, recent developments in numerical weather prediction (NWP) include probabilistic forecasting techniques, which can be utilised also for long-range atmospheric dispersion models. The ensemble statistical methods developed and applied to NWP models aim at describing the inherent uncertainties of the meteorological model results. These uncertainties stem from e.g. limits in meteorological observations used to initialise meteorological forecast series. By perturbing e.g. the initial state of an NWP model run in agreement with the available observational data, an ensemble of meteorological forecasts is produced from which uncertainties in the various meteorological parameters are estimated, e.g. probabilities for rain. Corresponding ensembles of atmospheric dispersion can now be computed from which uncertainties of predicted radionuclide concentration and deposition patterns can be derived. (Author)

  2. Some results on hyperscaling in the 3D Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.A. Jr. [Los Alamos National Lab., NM (United States). Theoretical Div.; Kawashima, Naoki [Univ. of Tokyo (Japan). Dept. of Physics

    1995-09-01

    The authors review exact studies on finite-sized 2 dimensional Ising models and show that the point for an infinite-sized model at the critical temperature is a point of nonuniform approach in the temperature-size plane. They also illuminate some strong effects of finite-size on quantities which do not diverge at the critical point. They then review Monte Carlo studies for 3 dimensional Ising models of various sizes (L = 2--100) at various temperatures. From these results they find that the data for the renormalized coupling constant collapses nicely when plotted against the correlation length, determined in a system of edge length L, divided by L. They also find that {zeta}{sub L}/L {ge} 0.26 is definitely too large for reliable studies of the critical value, g*, of the renormalized coupling constant. They have reasonable evidence that {zeta}{sub L}/L {approx} 0.1 is adequate for results that are within one percent of those for the infinite system size. On this basis, they have conducted a series of Monte Carlo calculations with this condition imposed. These calculations were made practical by the development of improved estimators for use in the Swendsen-Wang cluster method. The authors found from these results, coupled with a reversed limit computation (size increases with the temperature fixed at the critical temperature), that g* > 0, although there may well be a sharp downward drop in g as the critical temperature is approached in accord with the predictions of series analysis. The results support the validity of hyperscaling in the 3 dimensional Ising model.

  3. Presenting results of software model checker via debugging interface

    OpenAIRE

    Kohan, Tomáš

    2012-01-01

    Title: Presenting results of software model checker via debugging interface Author: Tomáš Kohan Department: Department of Software Engineering Supervisor of the master thesis: RNDr. Ondřej Šerý, Ph.D., Department of Distributed and Dependable Systems Abstract: This thesis is devoted to design and implementation of the new debugging interface of the Java PathFinder application. As a suitable inte- face container was selected the Eclipse development environment. The created interface should vis...

  4. Leveraging electronic health records for predictive modeling of post-surgical complications.

    Science.gov (United States)

    Weller, Grant B; Lovely, Jenna; Larson, David W; Earnshaw, Berton A; Huebner, Marianne

    2017-01-01

    Hospital-specific electronic health record systems are used to inform clinical practice about best practices and quality improvements. Many surgical centers have developed deterministic clinical decision rules to discover adverse events (e.g. postoperative complications) using electronic health record data. However, these data provide opportunities to use probabilistic methods for early prediction of adverse health events, which may be more informative than deterministic algorithms. Electronic health record data from a set of 9598 colorectal surgery cases from 2010 to 2014 were used to predict the occurrence of selected complications including surgical site infection, ileus, and bleeding. Consistent with previous studies, we find a high rate of missing values for both covariates and complication information (4-90%). Several machine learning classification methods are trained on an 80% random sample of cases and tested on a remaining holdout set. Predictive performance varies by complication, although an area under the receiver operating characteristic curve as high as 0.86 on testing data was achieved for bleeding complications, and accuracy for all complications compares favorably to existing clinical decision rules. Our results confirm that electronic health records provide opportunities for improved risk prediction of surgical complications; however, consideration of data quality and consistency standards is an important step in predictive modeling with such data.

  5. A general theoretical model for electron transfer reactions in complex systems.

    Science.gov (United States)

    Amadei, Andrea; Daidone, Isabella; Aschi, Massimiliano

    2012-01-28

    In this paper we present a general theoretical-computational model for treating electron transfer reactions in complex atomic-molecular systems. The underlying idea of the approach, based on unbiased first-principles calculations at the atomistic level, utilizes the definition and the construction of the Diabatic Perturbed states of the involved reactive partners (i.e. the quantum centres in our perturbation approach) as provided by the interaction with their environment, including their mutual interaction. In this way we reconstruct the true Adiabatic states of the reactive partners characterizing the electron transfer process as the fluctuation of the electronic density due to the fluctuating perturbation. Results obtained by using a combination of Molecular Dynamics simulation and the Perturbed Matrix Method on a prototypical intramolecular electron transfer (from 2-(9,9'-dimethyl)fluorene to the 2-naphthalene group separated by a steroidal 5-α-androstane skeleton) well illustrate the accuracy of the method in reproducing both the thermodynamics and the kinetics of the process.

  6. Review of Current Standard Model Results in ATLAS

    CERN Document Server

    Brandt, Gerhard; The ATLAS collaboration

    2018-01-01

    This talk highlights results selected from the Standard Model research programme of the ATLAS Collaboration at the Large Hadron Collider. Results using data from $p-p$ collisions at $\\sqrt{s}=7,8$~TeV in LHC Run-1 as well as results using data at $\\sqrt{s}=13$~TeV in LHC Run-2 are covered. The status of cross section measurements from soft QCD processes and jet production as well as photon production are presented. The presentation extends to vector boson production with associated jets. Precision measurements of the production of $W$ and $Z$ bosons, including a first measurement of the mass of the $W$ bosons, $m_W$, are discussed. The programme to measure electroweak processes with di-boson and tri-boson final states is outlined. All presented measurements are compatible with Standard Model descriptions and allow to further constrain it. In addition they allow to probe new physics which would manifest through extra gauge couplings, or Standard Model gauge couplings deviating from their predicted value.

  7. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.

    Science.gov (United States)

    Bordage, M C; Bordes, J; Edel, S; Terrissol, M; Franceries, X; Bardiès, M; Lampe, N; Incerti, S

    2016-12-01

    A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  9. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Science.gov (United States)

    Nenov, Artur; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco

    2015-06-01

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040-1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  10. Accelerated life-test methods and results for implantable electronic devices with adhesive encapsulation.

    Science.gov (United States)

    Huang, Xuechen; Denprasert, Petcharat May; Zhou, Li; Vest, Adriana Nicholson; Kohan, Sam; Loeb, Gerald E

    2017-09-01

    We have developed and applied new methods to estimate the functional life of miniature, implantable, wireless electronic devices that rely on non-hermetic, adhesive encapsulants such as epoxy. A comb pattern board with a high density of interdigitated electrodes (IDE) could be used to detect incipient failure from water vapor condensation. Inductive coupling of an RF magnetic field was used to provide DC bias and to detect deterioration of an encapsulated comb pattern. Diodes in the implant converted part of the received energy into DC bias on the comb pattern. The capacitance of the comb pattern forms a resonant circuit with the inductor by which the implant receives power. Any moisture affects both the resonant frequency and the Q-factor of the resonance of the circuitry, which was detected wirelessly by its effects on the coupling between two orthogonal RF coils placed around the device. Various defects were introduced into the comb pattern devices to demonstrate sensitivity to failures and to correlate these signals with visual inspection of failures. Optimized encapsulation procedures were validated in accelerated life tests of both comb patterns and a functional neuromuscular stimulator under development. Strong adhesive bonding between epoxy and electronic circuitry proved to be necessary and sufficient to predict 1 year packaging reliability of 99.97% for the neuromuscular stimulator.

  11. Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Daniel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Scott J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, a technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.

  12. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  13. Model of the electron spin in stochastic physics

    Science.gov (United States)

    Spavieri, Gianfranco

    1990-01-01

    The electron is conceived here as a complex structure composed of a subparticle that is bound to a nearly circular motion. Although in quantum mechanics the spin is not representable, in classical stochastic physics this corresponds to the angular momentum of the subparticle. In fact, assuming Schrödinger-type hydrodynamic equations of motion for the subparticle, the spin-1/2 representation in configuration space and the corresponding Pauli matrices for the electron are obtained. The Hamiltonian of Pauli's theory as the nonrelativistic limit of Dirac's equation is also derived.

  14. Electronic implementation of associative memory based on neural network models

    Science.gov (United States)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  15. Electronic reporting of all reference laboratory results: An important step toward a truly all-encompassing, integrated health record.

    Science.gov (United States)

    Kratz, Alexander

    2016-09-01

    Results from reference laboratories are often not easily available in electronic health records. This article describes a multi-pronged, long-term approach that includes bringing send-out tests in-house, upgrading the laboratory information system, interfacing more send-out tests and more reference laboratories, utilizing the "miscellaneous assay" option offered by some reference laboratories, and scanning all remaining paper reports from reference laboratories for display in the electronic health record. This allowed all laboratory results obtained in association with a patient visit, whether performed in-house or at a reference laboratory, to be available in the integrated electronic health record. This was achieved without manual data entry of reference laboratory results, thereby avoiding the risk of transcription errors. A fully integrated electronic health record that contains all laboratory results can be achieved by maximizing the number of interfaced reference laboratory assays and making all non-interfaced results available as scanned documents. © The Author(s) 2015.

  16. Challenges in validating model results for first year ice

    Science.gov (United States)

    Melsom, Arne; Eastwood, Steinar; Xie, Jiping; Aaboe, Signe; Bertino, Laurent

    2017-04-01

    In order to assess the quality of model results for the distribution of first year ice, a comparison with a product based on observations from satellite-borne instruments has been performed. Such a comparison is not straightforward due to the contrasting algorithms that are used in the model product and the remote sensing product. The implementation of the validation is discussed in light of the differences between this set of products, and validation results are presented. The model product is the daily updated 10-day forecast from the Arctic Monitoring and Forecasting Centre in CMEMS. The forecasts are produced with the assimilative ocean prediction system TOPAZ. Presently, observations of sea ice concentration and sea ice drift are introduced in the assimilation step, but data for sea ice thickness and ice age (or roughness) are not included. The model computes the age of the ice by recording and updating the time passed after ice formation as sea ice grows and deteriorates as it is advected inside the model domain. Ice that is younger than 365 days is classified as first year ice. The fraction of first-year ice is recorded as a tracer in each grid cell. The Ocean and Sea Ice Thematic Assembly Centre in CMEMS redistributes a daily product from the EUMETSAT OSI SAF of gridded sea ice conditions which include "ice type", a representation of the separation of regions between those infested by first year ice, and those infested by multi-year ice. The ice type is parameterized based on data for the gradient ratio GR(19,37) from SSMIS observations, and from the ASCAT backscatter parameter. This product also includes information on ambiguity in the processing of the remote sensing data, and the product's confidence level, which have a strong seasonal dependency.

  17. Classical and quantum theories of the polarization bremsstrahlung in the local electron density model

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.

    2000-01-01

    Classical and quantum theories of polarization bremsstrahlung in a statistical (Thomas-Fermi) potential of complex atoms and ions are developed. The basic assumptions of the theories correspond to the approximations employed earlier in classical and quantum calculations of ordinary bremsstrahlung in a static potential. This makes it possible to study on a unified basis the contribution of both channels in the radiation taking account of their interference. The classical model makes it possible to obtain simple universal formulas for the spectral characteristics of the radiation. The theory is applied to electrons with moderate energies, which are characteristic for plasma applications, specifically, radiation from electrons on the argon-like ion KII at frequencies close to its ionization potential. The computational results show the importance of taking account of the polarization channel of the radiation for plasma with heavy ions

  18. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    Science.gov (United States)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  19. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    International Nuclear Information System (INIS)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley; Rajon, Didier; Jokisch, Derek

    2010-01-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  20. Thermal-Chemical Model Of Subduction: Results And Tests

    Science.gov (United States)

    Gorczyk, W.; Gerya, T. V.; Connolly, J. A.; Yuen, D. A.; Rudolph, M.

    2005-12-01

    Seismic structures with strong positive and negative velocity anomalies in the mantle wedge above subduction zones have been interpreted as thermally and/or chemically induced phenomena. We have developed a thermal-chemical model of subduction, which constrains the dynamics of seismic velocity structure beneath volcanic arcs. Our simulations have been calculated over a finite-difference grid with (201×101) to (201×401) regularly spaced Eulerian points, using 0.5 million to 10 billion markers. The model couples numerical thermo-mechanical solution with Gibbs energy minimization to investigate the dynamic behavior of partially molten upwellings from slabs (cold plumes) and structures associated with their development. The model demonstrates two chemically distinct types of plumes (mixed and unmixed), and various rigid body rotation phenomena in the wedge (subduction wheel, fore-arc spin, wedge pin-ball). These thermal-chemical features strongly perturb seismic structure. Their occurrence is dependent on the age of subducting slab and the rate of subduction.The model has been validated through a series of test cases and its results are consistent with a variety of geological and geophysical data. In contrast to models that attribute a purely thermal origin for mantle wedge seismic anomalies, the thermal-chemical model is able to simulate the strong variations of seismic velocity existing beneath volcanic arcs which are associated with development of cold plumes. In particular, molten regions that form beneath volcanic arcs as a consequence of vigorous cold wet plumes are manifest by > 20% variations in the local Poisson ratio, as compared to variations of ~ 2% expected as a consequence of temperature variation within the mantle wedge.

  1. Variational cellular model of the molecular and crystal electronic structure

    International Nuclear Information System (INIS)

    Ferreira, L.G.; Leite, J.R.

    1977-12-01

    A variational version of the cellular method is developed to calculate the electronic structure of molecules and crystals. Due to the simplicity of the secular equation, the method is easy to be implemented. Preliminary calculations on the hydrogen molecular ion suggest that it is also accurate and of fast convergence [pt

  2. Embedded Cluster Models for Reactivity of the Hydrated Electron

    Czech Academy of Sciences Publication Activity Database

    Uhlig, Frank; Jungwirth, Pavel

    2013-01-01

    Roč. 227, č. 11 (2013), s. 1583-1593 ISSN 0942-9352 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : hydrated electron * clusters * reactivity * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.178, year: 2013

  3. A binary logistic regression model for the adoption of electronic ...

    African Journals Online (AJOL)

    Information and Communication Technology (ICT) is fast changing the face and tempo of the banking industry in Nigeria due to the adoption of electronic banking (e-banking). Consequently, most banks, in recent years have committed substantial investment into the development of ICT. This study examined the adoption of ...

  4. Measurement model choice influenced randomized controlled trial results.

    Science.gov (United States)

    Gorter, Rosalie; Fox, Jean-Paul; Apeldoorn, Adri; Twisk, Jos

    2016-11-01

    In randomized controlled trials (RCTs), outcome variables are often patient-reported outcomes measured with questionnaires. Ideally, all available item information is used for score construction, which requires an item response theory (IRT) measurement model. However, in practice, the classical test theory measurement model (sum scores) is mostly used, and differences between response patterns leading to the same sum score are ignored. The enhanced differentiation between scores with IRT enables more precise estimation of individual trajectories over time and group effects. The objective of this study was to show the advantages of using IRT scores instead of sum scores when analyzing RCTs. Two studies are presented, a real-life RCT, and a simulation study. Both IRT and sum scores are used to measure the construct and are subsequently used as outcomes for effect calculation. The bias in RCT results is conditional on the measurement model that was used to construct the scores. A bias in estimated trend of around one standard deviation was found when sum scores were used, where IRT showed negligible bias. Accurate statistical inferences are made from an RCT study when using IRT to estimate construct measurements. The use of sum scores leads to incorrect RCT results. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Tunneling of electrons via rotor–stator molecular interfaces: Combined ab initio and model study

    Energy Technology Data Exchange (ETDEWEB)

    Petreska, Irina, E-mail: irina.petreska@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Ohanesjan, Vladimir [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Pejov, Ljupčo [Institute of Chemistry, Department of Physical Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Kocarev, Ljupčo [Macedonian Academy of Sciences and Arts, Krste Misirkov 2, PO Box 428, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of)

    2016-07-01

    Tunneling of electrons through rotor–stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons’ formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green’s Function Formalism.

  6. The INTERBALL-Tail ELECTRON experiment: initial results on the low-latitude boundary layer of the dawn magnetosphere

    Directory of Open Access Journals (Sweden)

    J.-A. Sauvaud

    Full Text Available The Toulouse electron spectrometer flown on the Russian project INTERBALL-Tail performs electron measurements from 10 to 26 000 eV over a 4 solid angle in a satellite rotation period. The INTERBALL-Tail probe was launched on 3 August 1995 together with a subsatellite into a 65° inclination orbit with an apogee of about 30 RE. The INTERBALL mission also includes a polar spacecraft launched in August 1996 for correlated studies of the outer magnetosphere and of the auroral regions. We present new observations concerning the low-latitude boundary layers (LLBL of the magnetosphere obtained near the dawn magnetic meridian. LLBL are encountered at the interface between two plasma regimes, the magnetosheath and the dayside extension of the plasma sheet. Unexpectedly, the radial extent of the region where LLBL electrons can be sporadically detected as plasma clouds can reach up to 5 RE inside the magnetopause. The LLBL core electrons have an average energy of the order of 100 eV and are systematically field-aligned and counterstreaming. As a trend, the temperature of the LLBL electrons increases with decreasing distance to Earth. Along the satellite orbit, the apparent time of occurrence of LLBL electrons can vary from about 5 to 20 min from one pass to another. An initial first comparison between electron- and magnetic-field measurements indicates that the LLBL clouds coincide with a strong increase in the magnetic field (by up to a factor of 2. The resulting strong magnetic field gradient can explain why the plasma-sheet electron flux in the keV range is strongly depressed in LLBL occurrence regions (up to a factor of sim10. We also show that LLBL electron encounters are related to field-aligned current structures and that wide LLBL correspond to northward interplanetary magnetic field. Evidence for LLBL/plasma-sheet electron leakage into the magnetosheath during southward IMF is also presented.

  7. Electron density study of urea using TDS-corrected X-ray diffraction data: quantitative comparison of experimental theoretical results

    NARCIS (Netherlands)

    Zavodnik, Valery; Stash, Adam; Tsirelson, Vladimir; Feil, D.; de Vries, R.Y.; Feil, Dirk

    1999-01-01

    The electron-density distribution in urea, CO(NH2)2, was studied by high-precision single-crystal X-ray diffraction analysis at 148 (1) K. An experimental correction for TDS was applied to the X-ray intensities. Rmerge(F2) = 0.015. The displacement parameters agree quite well with results from

  8. Self-focusing of electromagnetic waves as a result of relativistic electron-mass variation

    International Nuclear Information System (INIS)

    Spatschek, K.H.

    1977-01-01

    Relativistic electron-mass variations due to the presence of intense electromagnetic radiation in the plasma cause a nonlinear refractive index. Using a variational principle the latter is obtained up to fourth order in the electric field amplitude and it is shown that nonlinear effects of the second order lead to self-focusing of a beam of radiation. By nonlinear optics considerations, the self-focusing length of an axially symmetric beam is obtained. Including higher-order dispersive effects it is shown that within the thin-beam approximation the complex electric field envelope obeys a cubic nonlinear Schroedinger equation with an attractive self-consistent potential. The cylindrically symmetric nonlinear Schroedinger equation predicts collapse of the radiation at the self-focusing distance. The nature of the self-focusing singularity is analysed and it is shown that higher-order nonlinearities saturate the amplitude. Then oscillations of the beam radius along the axial direction occur. (author)

  9. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@nc-toyama.ac.jp [National Institute of Technology, Toyama College, 13 Hongo, Toyama 939-8630 (Japan); Nakamura, T.; Furuse, M. [National Institute of Technology, Oshima College, 1091-1 Komatsu, Suouoshima, Oshima, Yamaguchi 742-2193 (Japan); Hitobo, T. [Tateyama Machine Co., Ltd., 30 Shimonoban, Toyama 930-1305 (Japan); Uchida, T. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Muramatsu, M. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2016-02-15

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5–6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating.

  10. Electromagnetic fields from pulsed electron beam experiments in space - Spacelab-2 results

    Science.gov (United States)

    Bush, R. I.; Reeves, G. D.; Banks, P. M.; Neubert, T.; Williamson, P. R.

    1987-01-01

    During the Spacelab-2 mission a small satellite carrying various plasma diagnostic instruments was released from the Shuttle to coorbit at distances up to 300 m. During a magnetic conjunction of the Shuttle and the satellite an electron beam modulated at 1.22 kHz was emitted from the Shuttle during a 7 min period. The spatial structure of the electromagnetic fields generated by the beam was observed from the satellite out to a distance of 153 m perpendicular to the beam. The magnetic field amplitude of the strongest harmonics were comparable to the amplitude of simultaneously observed whistlers, while the electric field amplitudes were estimated to 1-10 mV/m.

  11. Conjunctival lymphoma: Results and treatment with a single anterior electron field. A lens sparing approach

    International Nuclear Information System (INIS)

    Dunbar, S.F.; Linggood, R.M.; Doppke, K.P.; Duby, A.; Wang, C.C.

    1990-01-01

    Lymphoma of the conjunctiva is rare. It presents in older patients as a mass lesion and usually remains localized. Surgery is limited to biopsy, and radiation therapy is the definitive treatment of choice. The entire conjunctiva is treated. Relatively high doses (approximately 30 Gy) are required for local control, which may lead to cataract formation. Twelve patients with conjunctival lymphoma were treated at the Massachusetts General Hospital between 1979 and 1988. Ten of 12 patients presented with a unilateral lesion; 2 of 12 with bilateral lesions. Two of 12 patients were found to have systemic disease at the time of presentation. One patient developed conjunctival lymphoma 5 years after the diagnosis of generalized disease. Using electron beam, all patients were treated with a single anterior circular field to total doses ranging from 24 Gy to 30 Gy delivered in 8 to 16 fractions over 9 to 20 days. In all cases, the lens was shielded by a specially designed plastic contact lens bearing a 12 mm diameter lead shield. The lens dose was determined at varying depths beneath the shield for 6 MeV and 9 MeV electron beams and ranged from a minimum of 5% to an absolute maximum of 18% of the total dose delivered to the tumor. Local control was maintained in all patients with follow-up to 9 1/2 years. One patient relapsed distantly 3 years after treatment. One of 12 patients died of systemic disease 4 years after treatment of the ocular lesion. Two patients developed cataracts 4 and 5 years after treatment; one had bilateral cataract, although only one eye had been treated. Both patients were over 75 years old. In both cases, the cataracts were felt to be senile cataracts which are ophthalmologically and radiographically distinguishable from radiation induced lesions

  12. Model unspecific search in CMS. Results at 8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Andreas; Duchardt, Deborah; Hebbeker, Thomas; Knutzen, Simon; Lieb, Jonas; Meyer, Arnd; Pook, Tobias; Roemer, Jonas [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    In the year 2012, CMS collected a total data set of approximately 20 fb{sup -1} in proton-proton collisions at √(s)=8 TeV. Dedicated searches for physics beyond the standard model are commonly designed with the signatures of a given theoretical model in mind. While this approach allows for an optimised sensitivity to the sought-after signal, it may cause unexpected phenomena to be overlooked. In a complementary approach, the Model Unspecific Search in CMS (MUSiC) analyses CMS data in a general way. Depending on the reconstructed final state objects (e.g. electrons), collision events are sorted into classes. In each of the classes, the distributions of selected kinematic variables are compared to standard model simulation. An automated statistical analysis is performed to quantify the agreement between data and prediction. In this talk, the analysis concept is introduced and selected results of the analysis of the 2012 CMS data set are presented.

  13. Loss of spent fuel pool cooling PRA: Model and results

    Energy Technology Data Exchange (ETDEWEB)

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

  14. SR-Site groundwater flow modelling methodology, setup and results

    Energy Technology Data Exchange (ETDEWEB)

    Selroos, Jan-Olof (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken three groundwater flow modelling studies. These are performed within the SR-Site project and represent time periods with different climate conditions. The simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. Three time periods are addressed; the Excavation and operational phases, the Initial period of temperate climate after closure, and the Remaining part of the reference glacial cycle. The present report is a synthesis of the background reports describing the modelling methodology, setup, and results. It is the primary reference for the conclusions drawn in a SR-Site specific context concerning groundwater flow during the three climate periods. These conclusions are not necessarily provided explicitly in the background reports, but are based on the results provided in these reports. The main results and comparisons presented in the present report are summarised in the SR-Site Main report.

  15. Loss of spent fuel pool cooling PRA: Model and results

    International Nuclear Information System (INIS)

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 x 10 -5 and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 x 10 -3 . Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible

  16. Angular distributions of neutrino and antineutrino scatterings by electrons and gauge models

    International Nuclear Information System (INIS)

    Dass, G.V.

    1976-01-01

    Assuming a nonderivative point interaction, and Born approximation, the complete angular distributions for the scatterings of neutrinos and antineutrinos by electrons are obtained from only simple general considerations, without explicit calculation; generalisation to parton targets is noted. Two pairs of simple constraints on the angular distributions can be violated only if the interaction has a helicity-flipping component; this can serve to disfavour the large class of models which are purely helicity-conserving. Comparison is made with some explicit calculations done for some special cases of some of the results. (author)

  17. Electronic design automation of analog ICs combining gradient models with multi-objective evolutionary algorithms

    CERN Document Server

    Rocha, Frederico AE; Lourenço, Nuno CC; Horta, Nuno CG

    2013-01-01

    This book applies to the scientific area of electronic design automation (EDA) and addresses the automatic sizing of analog integrated circuits (ICs). Particularly, this book presents an approach to enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), by embedding statistical knowledge from an automatically generated gradient model into the multi-objective multi-constraint optimization kernel based on the NSGA-II algorithm. The results showed allow the designer to explore the different trade-offs of the solution space, both through the achieved device sizes, or the resp

  18. The detrimental effect of spontaneous emission in quantum free electron lasers: A discrete Wigner model

    Science.gov (United States)

    Fares, H.; Piovella, N.; Robb, G. R. M.

    2018-01-01

    We study the spontaneous emission in high-gain free-electron lasers operating in the quantum regime and its detrimental effect on coherent emission. A quantum model describing the coherent and spontaneous emission in free electron lasers has been recently proposed and investigated [G. R. M. Robb and R. Bonifacio, Phys. Plasmas 19, 073101 (2012)]. The model is based on a Wigner distribution describing the electron beam dynamics, coupled to Maxwell equations for the emitted radiation field. Here, we rephrase the model in a more rigorous way, considering a discrete Wigner distribution defined for a periodic space coordinate for which the electron momentum is discrete. From its numerical solution, we find good agreement with the approximate continuous model. In the quantum regime of the free-electron laser, we obtain a simple density matrix equation for two momentum states, where the role of the spontaneous emission has a clear interpretation in terms of coherence decay and population transfer.

  19. The use of an extra-focal electron source to model collimator-scattered electrons using the pencil-beam redefinition algorithm.

    Science.gov (United States)

    Boyd, Robert A; Hogstrom, Kenneth R; White, R Allen; Antolak, John A

    2002-11-01

    . At 9 MeV, FA3% changed from 11% to 1% at 100 cm SSD and from 10% to 12% at 110 cm SSD. At 20 MeV, FA3% decreased from 12% to 8% at 100 cm SSD and from 14% to 5% at 110 cm SSD. Results demonstrate that use of a dual-source beam model can provide significantly improved accuracy in the PBRA-calculated dose distribution that was not achievable with a single-source beam model when modeling the Varian Clinac 1800 electron beams. Time of PBRA dose calculation was approximately doubled; however, dual-source beam modeling of newer accelerators (e.g., the Varian Clinac 2100) may not be necessary because of less impact of collimator-scattered electrons on dosimetry.

  20. A simple analytical model for electronic conductance in a one dimensional atomic chain across a defect

    International Nuclear Information System (INIS)

    Khater, Antoine; Szczesniak, Dominik

    2011-01-01

    An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.

  1. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  2. A simple analytical model for electronic conductance in a one dimensional atomic chain across a defect

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Antoine; Szczesniak, Dominik [Laboratoire de Physique de l' Etat Condense UMR 6087, Universite du Maine, 72085 Le Mans (France)

    2011-04-01

    An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.

  3. Multi-timescale modelling for the loading behaviours of power electronics converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2015-01-01

    -seconds to years, thereby the complete loading conditions of power device are still challenge to be predicted by the existing models, which normally have to be restricted at certain time ranges. As a result, a more advanced modelling concept is proposed in this paper, which separates the converter system......The thermal dynamics of power device, referred as “thermal cycling”, are closely related to the reliability as well as the cost of the power electronics converter. However, the device loading is disturbed by many factors of the converter system which present at various times-constants from micro......-timescales modelling concept and approaches, more complete loading information of power device can be mapped based on the mission profiles of converter, thus it is very helpful for better prediction of converter lifetime and more cost-effective design of the cooling system....

  4. Results of the benchmark for blade structural models, part A

    DEFF Research Database (Denmark)

    Lekou, D.J.; Chortis, D.; Belen Fariñas, A.

    2013-01-01

    Task 2.2 of the InnWind.Eu project. The benchmark is based on the reference wind turbine and the reference blade provided by DTU [1]. "Structural Concept developers/modelers" of WP2 were provided with the necessary input for a comparison numerical simulation run, upon definition of the reference blade......A benchmark on structural design methods for blades was performed within the InnWind.Eu project under WP2 “Lightweight Rotor” Task 2.2 “Lightweight structural design”. The present document is describes the results of the comparison simulation runs that were performed by the partners involved within...

  5. Preliminary results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Matsumoto, T.; Komine, K.; Arai, S.

    1997-01-01

    A high pressure test of a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of a steel containment vessel (SCV), representing an improved boiling water reactor (BWR) Mark II containment, was conducted on December 11-12, 1996 at Sandia National Laboratories. This paper describes the preliminary results of the high pressure test. In addition, the preliminary post-test measurement data and the preliminary comparison of test data with pretest analysis predictions are also presented

  6. Multi-scale modelling and numerical simulation of electronic kinetic transport

    International Nuclear Information System (INIS)

    Duclous, R.

    2009-11-01

    This research thesis which is at the interface between numerical analysis, plasma physics and applied mathematics, deals with the kinetic modelling and numerical simulations of the electron energy transport and deposition in laser-produced plasmas, having in view the processes of fuel assembly to temperature and density conditions necessary to ignite fusion reactions. After a brief review of the processes at play in the collisional kinetic theory of plasmas, with a focus on basic models and methods to implement, couple and validate them, the author focuses on the collective aspect related to the free-streaming electron transport equation in the non-relativistic limit as well as in the relativistic regime. He discusses the numerical development and analysis of the scheme for the Vlasov-Maxwell system, and the selection of a validation procedure and numerical tests. Then, he investigates more specific aspects of the collective transport: the multi-specie transport, submitted to phase-space discontinuities. Dealing with the multi-scale physics of electron transport with collision source terms, he validates the accuracy of a fast Monte Carlo multi-grid solver for the Fokker-Planck-Landau electron-electron collision operator. He reports realistic simulations for the kinetic electron transport in the frame of the shock ignition scheme, the development and validation of a reduced electron transport angular model. He finally explores the relative importance of the processes involving electron-electron collisions at high energy by means a multi-scale reduced model with relativistic Boltzmann terms

  7. Quantitative three-dimensional modeling of zeotile through discrete electron tomography.

    Science.gov (United States)

    Bals, Sara; Batenburg, K Joost; Liang, Duoduo; Lebedev, Oleg; Van Tendeloo, Gustaaf; Aerts, Alexander; Martens, Johan A; Kirschhock, Christine E A

    2009-04-08

    Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120 degrees, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.

  8. Kinetic modelling of runaway electron avalanches in tokamak plasmas.

    Czech Academy of Sciences Publication Activity Database

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos

    2015-01-01

    Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  9. Blocking layer modeling for temperature analysis of electron transfer ...

    African Journals Online (AJOL)

    In this article, we simulate thermal effects on the electron transfer rate from three quantum dots CdSe, CdS and CdTe to three metal oxides TiO2, SnO2 and ZnO2 in the presence of four blocking layers ZnS, ZnO, TiO2 and Al2O3, in a porous quantum dot sensitized solar cell (QDSSC) structure, using Marcus theory.

  10. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  11. Modeling the interaction of high power ion or electron beams with solid target materials

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam

  12. Computational modelling of the Li effects on the electronic structure of porous silicon

    Science.gov (United States)

    Gomez-Herrera, María Lucero; Miranda Durán, Álvaro; Trejo Baños, Alejandro; Cruz Irisson, Miguel

    This work analyses the effects of Li impurities on the electronic structure of pSi by means of the density functional theory with the generalized gradient approximation and the supercell scheme. The porous structures were modeled by removing atoms in the [001] direction of an otherwise perfect Si crystal. All surface dangling bonds were saturated with H atoms. To model the Li impurities some H atoms are replaced with Li atoms at the surface. Results show additional bands around the Fermi level with the insertion of a single Li atom on the pore surface, which suggests a trap-like state of localized charge. With increasing concentration of surface Li the band gap gradually decreases approaching to a metallic behavior. This results could be important to the application of pSi in Li-ion batteries This work was partially supported by CONACYT infrastructure project 252749.

  13. Impact Flash Physics: Modeling and Comparisons With Experimental Results

    Science.gov (United States)

    Rainey, E.; Stickle, A. M.; Ernst, C. M.; Schultz, P. H.; Mehta, N. L.; Brown, R. C.; Swaminathan, P. K.; Michaelis, C. H.; Erlandson, R. E.

    2015-12-01

    horizontal. High-speed radiometer measurements were made of the time-dependent impact flash at wavelengths of 350-1100 nm. We will present comparisons between these measurements and the output of APL's model. The results of this validation allow us to determine basic relationships between observed optical signatures and impact conditions.

  14. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Xu, Yao; Srivastava, Ashok; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  15. Computational Model of D-Region Ion Production Caused by Energetic Electron Precipitations Based on General Monte Carlo Transport Calculations

    Science.gov (United States)

    Kouznetsov, A.; Cully, C. M.

    2017-12-01

    During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.

  16. Relativistic electron influence on sanitary-model microorganisms and antibiotics in model samples

    International Nuclear Information System (INIS)

    Antipov, V.S.; Berezhna, I.V.; Kovpik, O.F.; Babych, E.M.; Voliansky, Yu.L.; Sklar, N.I.

    2004-01-01

    A series of the investigations of the electron beam influence on sanitary-model test cultures and antibiotics in model solutions has been carried out. For each of the test objects, the authors have found the boundary doses of the absorbed radiation. The higher doses cause the sharp increase in the bactericidal influence, which becomes complete. The sanitary-bactericidal indices of the water samples remain sable during 6 days. The samples of antibiotics in various concentrations (from 100 UA) have been irradiated. It is proved that the substratum processing by the beam (in the regimes 30 kGy) causes diminution and complete neutralization of the antibacterial activity in all probes of the samples

  17. The practical model of electron emission in the radioisotope battery by fast ions

    International Nuclear Information System (INIS)

    Erokhine, N.S.; Balebanov, V.M.

    2003-01-01

    Under the theoretical analysis of secondary-emission radioisotope source of current the estimate of energy spectrum F(E) of secondary electrons with energy E emitted from films is the important problem. This characteristic knowledge allows, in particular, studying the volt-ampere function, the dependence of electric power deposited in the load on the system parameters and so on. Since the rigorous calculations of energy spectrum F(E) are the complicated enough and labour-intensive there is necessity to elaborate the practical model which allows by the simple computer routine on the basis of generalized data (both experimental measurements and theoretical calculations) on the stopping powers and mean free path of suprathermal electrons to perform reliable express-estimates of the energy spectrum F(E) and the volt-ampere function I(V) for the concrete materials of battery emitter films. This paper devoted to description of of the practical model to calculate electron emission characteristics under the passage of fast ion fluxes from the radioisotope source through the battery emitter. The analytical approximations for the stopping power of emitter materials, the electron inelastic mean free path, the ion production of fast electrons and the probability for them to arrive the film surface are taken into account. In the cases of copper and gold films, the secondary electron escaping depth, the position of energy spectrum peak are considered in the dependence on surface potential barrier magnitude U. According to our calculations the energy spectrum peak shifted to higher electron energy under the U growth. The model described may be used for express estimates and computer simulations of fast alpha-particles and suprathermal electrons interactions with the solid state plasma of battery emitter films, to study the electron emission layer characteristics including the secondary electron escaping depth, to find the optimum conditions for excitation of nonequilibrium

  18. New Lewis Structures through the application of the Hypertorus Electron Model

    OpenAIRE

    Omar Yepez

    2010-01-01

    The hypertorus electron model is applied to the chemical bond. As a consequence, the bond topology can be determined. A linear correlation is found between the normalized bond area and the bond energy. The normalization number is a whole number. This number is interpreted as the Lewis's electron pair. A new electron distribution in the molecule follows. This discovery prompts to review the chemical bond, as it is understood in chemistry and physics.

  19. Direct fluorination of graphene: A theoretical and computational study of its formation and of the resulting magnetic and electronic properties

    Science.gov (United States)

    Aditya, Piali Mitil

    The adsorption of fluorine changes the electronic, mechanical, and magnetic properties of graphene. While graphene is an excellent conductor and a semimetal, fully fluorinated graphene is an insulating wide bandgap semiconductor. The electronic properties of graphene can be modified by controlling the adsorbate concentration to produce conducting, semiconducting or insulating components for nanoscale electronic devices. The high electronegativity of fluorine makes it very reactive to the graphene sheet resulting in structures that are stable under ambient conditions. Moreover, recent reports of spin 1/2 paramagnetism in graphene has invigorated research efforts in this field due the possibility of spin transport devices. While there is a lot of speculation about the origin of the spin, no clear theoretical explanation exists in the literature. Semi local DFT functionals predict that the fluorine adatom is non-magnetic, whereas calculations with hybrid functionals indicate a local moment of 1muB. However, neither approaches can explain the trends in the experimentally observed spin concentration as a function of fluorination percentage. After an introduction in Chapter 1 and an overview of our methods in Chapter 2, in Chapter 3, using density functional theory (DFT) we show that in highly fluorinated graphene, small regions of unfluorinated carbon atoms produce localized magnetic states at the fermi-level. We study the shape and size dependence of these regions on the net spin and find that most odd clusters have a net spin of 1/2 while most even clusters have zero spin. We construct a minimal tight binding model that captures the low energy response of DFT and describes the localized magnetic states produced by the unfluorinated carbon atoms. This model is then solved exactly to include the effect of excited states in the magnetic response and go beyond the mean field predictions of DFT. The model for magnetic carbon regions, when combined with large scale

  20. Empirical models of Total Electron Content based on functional fitting over Taiwan during geomagnetic quiet condition

    Directory of Open Access Journals (Sweden)

    Y. Kakinami

    2009-08-01

    Full Text Available Empirical models of Total Electron Content (TEC based on functional fitting over Taiwan (120° E, 24° N have been constructed using data of the Global Positioning System (GPS from 1998 to 2007 during geomagnetically quiet condition (Dst>−30 nT. The models provide TEC as functions of local time (LT, day of year (DOY and the solar activity (F, which are represented by 1–162 days mean of F10.7 and EUV. Other models based on median values have been also constructed and compared with the models based on the functional fitting. Under same values of F parameter, the models based on the functional fitting show better accuracy than those based on the median values in all cases. The functional fitting model using daily EUV is the most accurate with 9.2 TECu of root mean square error (RMS than the 15-days running median with 10.4 TECu RMS and the model of International Reference Ionosphere 2007 (IRI2007 with 14.7 TECu RMS. IRI2007 overestimates TEC when the solar activity is low, and underestimates TEC when the solar activity is high. Though average of 81 days centered running mean of F10.7 and daily F10.7 is often used as indicator of EUV, our result suggests that average of F10.7 mean from 1 to 54 day prior and current day is better than the average of 81 days centered running mean for reproduction of TEC. This paper is for the first time comparing the median based model with the functional fitting model. Results indicate the functional fitting model yielding a better performance than the median based one. Meanwhile we find that the EUV radiation is essential to derive an optimal TEC.

  1. Combined convective and diffusive modeling of the ring current and radiation belt electron dynamics using the VERB-4D code

    Science.gov (United States)

    Aseev, N.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Wang, D.

    2017-12-01

    Ring current and radiation belts are key elements in the global dynamics of the Earth's magnetosphere. Comprehensive mathematical models are useful tools that allow us to understand the multiscale dynamics of these charged particle populations. In this work, we present results of simulations of combined ring current - radiation belt electron dynamics using the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. The VERB-4D code solves the modified Fokker-Planck equation including convective terms and models simultaneously ring current (1 - 100 keV) and radiation belt (100 keV - several MeV) electron dynamics. We apply the code to the number of geomagnetic storms that occurred in the past, compare the results with different satellite observations, and show how low-energy particles can affect the high-energy populations. Particularly, we use data from Polar Operational Environmental Satellite (POES) mission that provides a very good MLT coverage with 1.5-hour time resolution. The POES data allow us to validate the approach of the VERB-4D code for modeling MLT-dependent processes such as electron drift, wave-particle interactions, and magnetopause shadowing. We also show how different simulation parameters and empirical models can affect the results, making a particular emphasis on the electric and magnetic field models. This work will help us reveal advantages and disadvantages of the approach behind the code and determine its prediction efficiency.

  2. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    International Nuclear Information System (INIS)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-01-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  3. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com [National Research Tomsk State University, 634050, Tomsk, Lenin Avenue, 36 (Russian Federation)

    2015-11-17

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  4. Improving follow-up of abnormal cancer screens using electronic health records: trust but verify test result communication

    Directory of Open Access Journals (Sweden)

    Reis Brian

    2009-12-01

    Full Text Available Abstract Background Early detection of colorectal cancer through timely follow-up of positive Fecal Occult Blood Tests (FOBTs remains a challenge. In our previous work, we found 40% of positive FOBT results eligible for colonoscopy had no documented response by a treating clinician at two weeks despite procedures for electronic result notification. We determined if technical and/or workflow-related aspects of automated communication in the electronic health record could lead to the lack of response. Methods Using both qualitative and quantitative methods, we evaluated positive FOBT communication in the electronic health record of a large, urban facility between May 2008 and March 2009. We identified the source of test result communication breakdown, and developed an intervention to fix the problem. Explicit medical record reviews measured timely follow-up (defined as response within 30 days of positive FOBT pre- and post-intervention. Results Data from 11 interviews and tracking information from 490 FOBT alerts revealed that the software intended to alert primary care practitioners (PCPs of positive FOBT results was not configured correctly and over a third of positive FOBTs were not transmitted to PCPs. Upon correction of the technical problem, lack of timely follow-up decreased immediately from 29.9% to 5.4% (p Conclusion Electronic communication of positive FOBT results should be monitored to avoid limiting colorectal cancer screening benefits. Robust quality assurance and oversight systems are needed to achieve this. Our methods may be useful for others seeking to improve follow-up of FOBTs in their systems.

  5. Nickel-induced transformation of diamond into graphite and carbon nanotubes and the electron field emission properties of resulting composite films

    Science.gov (United States)

    Jiang, Yunlu; Deng, Zejun; Zhou, Bo; Wei, Qiuping; Long, Hangyu; Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Ma, Li; Lin, Cheng-Te; Yu, Zhiming; Zhou, Kechao

    2018-01-01

    The metal-induced transformation of diamond into graphite and carbon nanotubes (CNTs) was achieved by catalytic deposition with nickel as the catalyst. The quality of catalytic products was assessed by scanning electron microscopy, Raman spectroscopy and transmission electron microscopy. Results showed that the catalytic process could be controlled by adjusting the carbonaceous concentration in the deposition atmosphere, and new information concerning the diamond/Ni/graphite multi-phase mixed interface between diamond and carbon nanotube has been analyzed. A model was put forward to elucidate the mechanism of catalytic etching and growth on the diamond surface. In addition, the resulting diamond/CNTs composite film (10% CH4) was found to exhibit the lowest turn-on field of 6.9 V/μm as well as good current emission stability compared to the other composite films.

  6. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  7. Modelling of Ionospheric Irregularities and Total Electron Content.

    Science.gov (United States)

    1983-12-01

    Total electron content changes 559, 1980. associated with equatorial irregularity plumes, Yeh, K.C., H. Soicher, C.H. Liu, and E. Bonelli , Paper...and GONZALES V. H. 1960 J. geophys. Res. 65, 3209. .,*’_*, YEn K. C., SOICHER H., Liu C. H. 1979a Geophys. Res. Lett. 6, 473. and BONELLI E.1,*,E Y K...and J. Aarons (1980), Studies of equatorial ir- Yeh. K. C., H. Soicher. C. H. Liu, and E. Bonelli (1979b). lono- regularity patches using SIRIO VHF

  8. Modeling and Design of GaN High Electron Mobility Transistors and Hot Electron Transistors through Monte Carlo Particle-based Device Simulations

    Science.gov (United States)

    Soligo, Riccardo

    In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the

  9. Position-sensitive transition edge sensor modeling and results

    Energy Technology Data Exchange (ETDEWEB)

    Hammock, Christina E-mail: chammock@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, Enectali; Apodaca, Emmanuel; Bandler, Simon; Boyce, Kevin; Chervenak, Jay; Finkbeiner, Fred; Kelley, Richard; Lindeman, Mark; Porter, Scott; Saab, Tarek; Stahle, Caroline

    2004-03-11

    We report the latest design and experimental results for a Position-Sensitive Transition-Edge Sensor (PoST). The PoST is motivated by the desire to achieve a larger field-of-view without increasing the number of readout channels. A PoST consists of a one-dimensional array of X-ray absorbers connected on each end to a Transition Edge Sensor (TES). Position differentiation is achieved through a comparison of pulses between the two TESs and X-ray energy is inferred from a sum of the two signals. Optimizing such a device involves studying the available parameter space which includes device properties such as heat capacity and thermal conductivity as well as TES read-out circuitry parameters. We present results for different regimes of operation and the effects on energy resolution, throughput, and position differentiation. Results and implications from a non-linear model developed to study the saturation effects unique to PoSTs are also presented.

  10. Comparison of blade-strike modeling results with empirical data

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-03-01

    This study is the initial stage of further investigation into the dynamics of injury to fish during passage through a turbine runner. As part of the study, Pacific Northwest National Laboratory (PNNL) estimated the probability of blade strike, and associated injury, as a function of fish length and turbine operating geometry at two adjacent turbines in Powerhouse 1 of Bonneville Dam. Units 5 and 6 had identical intakes, stay vanes, wicket gates, and draft tubes, but Unit 6 had a new runner and curved discharge ring to minimize gaps between the runner hub and blades and between the blade tips and discharge ring. We used a mathematical model to predict blade strike associated with two Kaplan turbines and compared results with empirical data from biological tests conducted in 1999 and 2000. Blade-strike models take into consideration the geometry of the turbine blades and discharges as well as fish length, orientation, and distribution along the runner. The first phase of this study included a sensitivity analysis to consider the effects of difference in geometry and operations between families of turbines on the strike probability response surface. The analysis revealed that the orientation of fish relative to the leading edge of a runner blade and the location that fish pass along the blade between the hub and blade tip are critical uncertainties in blade-strike models. Over a range of discharges, the average prediction of injury from blade strike was two to five times higher than average empirical estimates of visible injury from shear and mechanical devices. Empirical estimates of mortality may be better metrics for comparison to predicted injury rates than other injury measures for fish passing at mid-blade and blade-tip locations.

  11. Three-dimensional model of small signal free-electron lasers

    Directory of Open Access Journals (Sweden)

    Stephen Webb

    2011-05-01

    Full Text Available Coherent electron cooling is an ultrahigh-bandwidth form of stochastic cooling which utilizes the charge perturbation from Debye screening as a seed for a free-electron laser. The amplified and frequency-modulated signal that results from the free-electron laser process is then used to give an energy-dependent kick on the hadrons in a bunch. In this paper, we present a theoretical description of a high-gain free-electron laser with applications to a complete theoretical description of coherent electron cooling.

  12. Recent results of full-spatial scale modeling of fast ignition and shock ignition

    Science.gov (United States)

    Tonge, J.; May, J.; Mori, W. B.; Fiuza, F.; Marti, M.; Fonseca, R. A.; Davies, J. R.; Silva, L. O.

    2010-11-01

    We show recent results of full-spatial scale modeling of fast ignition and shock ignition, from both full-PIC and the recently developed hybrid-PIC capability of OSIRIS 2.0. Our results show full-scale modeling of fast ignition over full density and time scales, where laser absorption, electron beam divergence, and energy deposition in the compressed core will be addressed in a self-consistent manner. Full-PIC and hybrid-PIC simulations of isolated targets will be presented, illustrating the importance of this type of modeling in order to accurately infer the beam divergence and transport properties. We will also demonstrate the possibility of performing full-scale simulations of shock ignition with the new hybrid-PIC capability, using compressed target profiles from hydrodynamic simulations, and studying the self-consistent laser absorption, electron transport, and energy deposition that can lead to the generation of the shock required for ignition. Work supported by DOE under DE-FC02-04-ER54789 and DE-FG52-09NA29552, and NSF under NSF-Phy-0904039, FCT (Portugal), and the HiPER project. Simulations performed on Hoffman at UCLA, Thresher at SDSC, and Intrepid at ANL supported by Incite grant FastIgnitionPIC.

  13. Application of models for exchange of electronic documents in complex administrative services

    Science.gov (United States)

    Glavev, Victor

    2015-11-01

    The report presents application of models for exchange of electronic documents between different administrations in government and business sectors. It shows the benefits of implementing electronic exchange of documents between different local offices of one administration in government sector such as a municipality and the way it is useful for implementing complex administrative services.

  14. A new model of dependence of secondary electron emission yield on primary electron energy for application to polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, J [LASSI/UTAP, Faculte des Sciences, BP1039, 51687 Reims Cedex 2 (France)

    2005-07-21

    A new analytical model for the secondary electron (SE) emission yield, {delta}, is applied to polymers. It involves a parameter k, k = z{sub C}/R, between the most probable energy dissipation depth, z{sub C}, of primary electrons (PE) and their range R, where k ranges from 0.5 and 0.45 for low-density, low atomic-weight materials. Reduced yield curves (RYC), {delta}/{delta}{sub (max)} versus E{sup 0}/E{sup 0}{sub (max)}, and normal yield curves, {delta} versus E{sup 0}, obtained from published experimental data on a wide variety of polymers (polystyrene, PET, polyimide; Kapton; PTFE; Teflon, PMMA, nylon, polyurethane) are compared with the calculated change of {delta} with PE energy, E{sup 0}. In contrast to the use of the conventional constant loss model where the best fit requires an empirical change in the exponent 'n' in the power law expression of the PE range, R versus E{sup 0}, the present approach is based on the usual choice for n, n = 1.35, and on a choice for k governed by physical arguments. This physical basis then enables one to predict the RYC of other polymers. Finally, values of the SE escape probability and SE attenuation length are estimated for the polymers of interest and a new mechanism is suggested for the contrast reversal in scanning electron microscopy.

  15. A new model of dependence of secondary electron emission yield on primary electron energy for application to polymers

    International Nuclear Information System (INIS)

    Cazaux, J

    2005-01-01

    A new analytical model for the secondary electron (SE) emission yield, δ, is applied to polymers. It involves a parameter k, k = z C /R, between the most probable energy dissipation depth, z C , of primary electrons (PE) and their range R, where k ranges from 0.5 and 0.45 for low-density, low atomic-weight materials. Reduced yield curves (RYC), δ/δ (max) versus E 0 /E 0 (max) , and normal yield curves, δ versus E 0 , obtained from published experimental data on a wide variety of polymers (polystyrene, PET, polyimide; Kapton; PTFE; Teflon, PMMA, nylon, polyurethane) are compared with the calculated change of δ with PE energy, E 0 . In contrast to the use of the conventional constant loss model where the best fit requires an empirical change in the exponent 'n' in the power law expression of the PE range, R versus E 0 , the present approach is based on the usual choice for n, n = 1.35, and on a choice for k governed by physical arguments. This physical basis then enables one to predict the RYC of other polymers. Finally, values of the SE escape probability and SE attenuation length are estimated for the polymers of interest and a new mechanism is suggested for the contrast reversal in scanning electron microscopy

  16. Dual Electron Spectrometer for Magnetospheric Multiscale Mission: Results of the Comprehensive Tests of the Engineering Test Unit

    Science.gov (United States)

    Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.; hide

    2011-01-01

    The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.

  17. Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application.

    Science.gov (United States)

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  18. Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application

    Directory of Open Access Journals (Sweden)

    Junbao Zheng

    2012-03-01

    Full Text Available Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor as well as its parallel channels (inner factor. The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  19. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Panitzsch, Lauri

    2013-02-08

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet ({approx}45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to

  20. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    International Nuclear Information System (INIS)

    Panitzsch, Lauri

    2013-01-01

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet (∼45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to other

  1. Heat Pinches in Electron-Heated Tokamak Plasmas: Theoretical Turbulence Models versus Experiments

    Science.gov (United States)

    Mantica, P.; Thyagaraja, A.; Weiland, J.; Hogeweij, G. M. D.; Knight, P. J.

    2005-10-01

    Two fluid turbulence models, the drift wave based quasilinear 1.5D Weiland model and the electromagnetic global 3D nonlinear model cutie, have been used to account for heat pinch evidence in off-axis modulated electron cyclotron heating experiments in the Rijnhuizen Tokamak Project. Both models reproduce the main features indicating inward heat convection in mildly off-axis cases. In far-off-axis cases with hollow electron temperature profiles, the existence of outward convection was reproduced only by cutie. Turbulence mechanisms driving heat convection in the two models are discussed.

  2. Modeling electron transport in the presence of electric and magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David

    2013-09-01

    This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.

  3. Vibrational excitation resulting from electron capture in LUMO of F2 ...

    Indian Academy of Sciences (India)

    resonance anionic Hamiltonian HAB- (AB=F2/HCl) is effected using Lanczos reduction technique followed by fast Fourier transform and the target (AB) vibrational eigenfunctions φνi (R) and φν f (R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curve of the neutral target. The result-.

  4. Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.; Hoxie, V. C.; Li, X.

    2018-01-01

    An empirical model of the proton radiation belt is constructed from data taken during 2013-2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18-600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functions are computed by Monte Carlo integration, using simulated proton paths through a simplified structural model, to account for energy loss in shielding material for protons outside the nominal field of view. Overlap of energy channels, their wide angular response, and changing satellite orientation require the model dependencies on all three independent variables be determined simultaneously. This is done by least squares minimization with a customized steepest descent algorithm. Model uncertainty accounts for statistical data error and systematic error in the simulated instrument response. A proton energy spectrum is also computed from data taken during the 8 January 2014 solar event, to illustrate methods for the simpler case of an isotropic and homogeneous model distribution. Radiation belt and solar proton results are compared to intensities computed with a simplified, on-axis response that can provide a good approximation under limited circumstances.

  5. Molecular modeling of interactions in electronic nose sensors for environmental monitoring

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Yen, S. -P. S.; Zhou, H.; Manatt, K.

    2002-01-01

    We report a study aimed at understanding analyte interactions with sensors made from polymer-carbon black composite films. The sensors are used in an Electronic Nose (ENose) which is used for monitoring the breathing air quality in human habitats. The model mimics the experimental conditions of the composite film deposition and formation and was developed using molecular modeling and simulation tools. The Dreiding 2.21 Force Field was used for the polymer and analyte molecules while graphite parameters were assigned to the carbon black atoms. The polymer considered for this work is methyl vinyl ether / maleic acid copolymer. The target analytes include both inorganic (NH3) and organic (methanol) types of compound. Results indicate different composite-analyte interaction behavior.

  6. Kinetic simulations and reduced modeling of longitudinal sideband instabilities in non-linear electron plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S., E-mail: stephan.brunner@epfl.ch; Hausammann, L. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland); Berger, R. L., E-mail: berger5@llnl.gov; Cohen, B. I. [Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551 (United States); Valeo, E. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2014-10-15

    Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPI accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.

  7. Relationship between use of electronic health record features and health care quality: results of a statewide survey.

    Science.gov (United States)

    Poon, Eric G; Wright, Adam; Simon, Steven R; Jenter, Chelsea A; Kaushal, Rainu; Volk, Lynn A; Cleary, Paul D; Singer, Janice A; Tumolo, Alexis Z; Bates, David W

    2010-03-01

    Electronic health records (EHRs) are widely viewed as useful tools for supporting the provision of high quality healthcare. However, evidence regarding their effectiveness for this purpose is mixed, and existing studies have generally considered EHR usage a binary factor and have not considered the availability and use of specific EHR features. To assess the relationship between the use of an EHR and the use of specific EHR features with quality of care. A statewide mail survey of physicians in Massachusetts conducted in 2005. The results of the survey were linked with Healthcare Effectiveness Data and Information Set (HEDIS) quality measures, and generalized linear regression models were estimated to examine the associations between the use of EHRs and specific EHR features with quality measures, adjusting for physician practice characteristics. A stratified random sample of 1884 licensed physicians in Massachusetts, 1345 of whom responded. Of these, 507 had HEDIS measures available and were included in the analysis (measures are only available for primary care providers). Performance on HEDIS quality measures. The survey had a response rate of 71%. There was no statistically significant association between use of an EHR as a binary factor and performance on any of the HEDIS measure groups. However, there were statistically significant associations between the use of many, but not all, specific EHR features and HEDIS measure group scores. The associations were strongest for the problem list, visit note and radiology test result EHR features and for quality measures relating to women's health, colon cancer screening, and cancer prevention. For example, users of problem list functionality performed better on women's health, depression, colon cancer screening, and cancer prevention measures, with problem list users outperforming nonusers by 3.3% to 9.6% points on HEDIS measure group scores (all significant at the P universal. Consistent with past studies, there was

  8. Electronics Modeling and Design for Cryogenic and Radiation Hard Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and...

  9. Electronics Modeling and Design for Cryogenic and Radiation Hard Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and...

  10. Exact symplectic structures and a classical model for the Dirac electron

    International Nuclear Information System (INIS)

    Rawnsley, J.

    1992-01-01

    We show how the classical model for the Dirac electron of Barut and coworkers can be obtained as a Hamiltonian theory by constructing an exact symplectic form on the total space of the spin bundle over spacetime. (orig.)

  11. Muon-Electron Conversion in a Family Gauge Boson Model

    OpenAIRE

    Koide, Yoshio; Yamanaka, Masato

    2016-01-01

    We study the $\\mu$-$e$ conversion in muonic atoms via an exchange of family gauge boson (FGB) $A_{2}^{\\ 1}$ in a $U(3)$ FGB model. Within the class of FGB model, we consider three types of family-number assignments for quarks. We evaluate the $\\mu$-$e$ conversion rate for various target nuclei, and find that next generation $\\mu$-$e$ conversion search experiments can cover entire energy scale of the model for all of types of the quark family-number assignments. We show that the conversion rat...

  12. Non-LTE modeling with non-thermal electrons

    Science.gov (United States)

    Le, Hai; Scott, Howard

    2017-10-01

    We present a computational tool to simulate self-consistently the time evolution of the non-LTE kinetics and the electron energy distribution function (EEDF). The standard collisional-radiative rate equations for the atomic states are solved together with a Boltzmann-Fokker-Planck (BFP) equation for the EEDF. Both elastic and inelastic processes as well as radiative transitions are included. The EEDF is discretized on a non-uniform grid in energy space, and the numerical solution of the BFP equation is based on a set of recently developed algorithms. Several numerical examples are presented to demonstrate the capability of the code. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  13. Mathematical Modeling in Tobacco Control Research: Initial Results From a Systematic Review.

    Science.gov (United States)

    Feirman, Shari P; Donaldson, Elisabeth; Glasser, Allison M; Pearson, Jennifer L; Niaura, Ray; Rose, Shyanika W; Abrams, David B; Villanti, Andrea C

    2016-03-01

    The US Food and Drug Administration has expressed interest in using mathematical models to evaluate potential tobacco policies. The goal of this systematic review was to synthesize data from tobacco control studies that employ mathematical models. We searched five electronic databases on July 1, 2013 to identify published studies that used a mathematical model to project a tobacco-related outcome and developed a data extraction form based on the ISPOR-SMDM Modeling Good Research Practices. We developed an organizational framework to categorize these studies and identify models employed across multiple papers. We synthesized results qualitatively, providing a descriptive synthesis of included studies. The 263 studies in this review were heterogeneous with regard to their methodologies and aims. We used the organizational framework to categorize each study according to its objective and map the objective to a model outcome. We identified two types of study objectives (trend and policy/intervention) and three types of model outcomes (change in tobacco use behavior, change in tobacco-related morbidity or mortality, and economic impact). Eighteen models were used across 118 studies. This paper extends conventional systematic review methods to characterize a body of literature on mathematical modeling in tobacco control. The findings of this synthesis can inform the development of new models and the improvement of existing models, strengthening the ability of researchers to accurately project future tobacco-related trends and evaluate potential tobacco control policies and interventions. These findings can also help decision-makers to identify and become oriented with models relevant to their work. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Results of EPRI/ANL DCH investigations and model development

    International Nuclear Information System (INIS)

    Spencer, B.W.; Sienicki, J.J.; Sehgal, B.R.; Merilo, M.

    1988-01-01

    The results of a series of five experiments are described addressing the severity and mitigation of direct containment heating. The tests were performed in a 1:30 linear scale mockup of the Zion PWR containment system using a reactor-material corium melt consisting of 60% UO 2 , 16% ZrO 2 , 24% SSt at nominally 2800C initial temperature. A ''worst-case'' type test involving unimpeded corium dispersal through an air atmosphere in a closed vessel produced an atmosphere heatup of 323K, equivalent to a DCH efficiency of 62%. With the addition of structural features which impeded the corium dispersal, representative of dispersal pathway features at Zion, the DCH efficiency was reduced to 1--5%. (This important result is scale dependent and requires larger scale tests such as the SURTSEY program at SNL plus mechanistic modeling for application to the reactor system.) With the addition of water in the cavity region, there was no measurable heatup of the atmosphere. This was attributable to the vigorous codispersal of water with corium which prevented the temperature of the atmosphere from significantly exceeding T/sub sat/. In this case the DCH load was replaced by the more benign ''steam spike'' from corium quench. Significant oxidation of the corium constituents occurred in the tests, adding chemical energy to the system and producing hydrogen. Overall, the results suggest that with consideration of realistic, plant specific, mitigating features, DCH may be no worse and possibly far less severe than the previously examined steam spike. Implications for accident management are addressed. 17 refs., 7 figs., 4 tabs

  15. A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and μ-beamforming electronics models.

    Science.gov (United States)

    Matrone, Giulia; Savoia, Alessandro S; Terenzi, Marco; Caliano, Giosuè; Quaglia, Fabio; Magenes, Giovanni

    2014-05-01

    In modern ultrasound imaging devices, two-dimensional probes and electronic scanning allow volumetric imaging of anatomical structures. When dealing with the design of such complex 3-D ultrasound (US) systems, as the number of transducers and channels dramatically increases, new challenges concerning the integration of electronics and the implementation of smart micro-beamforming strategies arise. Hence, the possibility to predict the behavior of the whole system is mandatory. In this paper, we propose and describe an advanced simulation tool for ultrasound system modeling and simulation, which conjugates the US propagation and scattering, signal transduction, electronic signal conditioning, and beamforming in a single environment. In particular, we present the architecture and model of an existing 16-channel integrated receiver, which includes an amplification and micro-beamforming stage, and validate it by comparison with circuit simulations. The developed model is then used in conjunction with the transducer and US field models to perform a system simulation, aimed at estimating the performance of an example 3-D US imaging system that uses a capacitive micromachined ultrasonic transducer (CMUT) 2-D phased-array coupled to the modeled reception front-end. Results of point spread function (PSF) calculations, as well as synthetic imaging of a virtual phantom, show that this tool is actually able to model the complete US image reconstruction process, and that it could be used to quickly provide valuable system-level feedback for an optimized tuning of electronic design parameters.

  16. Complications after Surgical Procedures in Patients with Cardiac Implantable Electronic Devices: Results of a Prospective Registry.

    Science.gov (United States)

    Silva, Katia Regina da; Albertini, Caio Marcos de Moraes; Crevelari, Elizabeth Sartori; Carvalho, Eduardo Infante Januzzi de; Fiorelli, Alfredo Inácio; Martinelli, Martino; Costa, Roberto

    2016-09-01

    Complications after surgical procedures in patients with cardiac implantable electronic devices (CIED) are an emerging problem due to an increasing number of such procedures and aging of the population, which consequently increases the frequency of comorbidities. To identify the rates of postoperative complications, mortality, and hospital readmissions, and evaluate the risk factors for the occurrence of these events. Prospective and unicentric study that included all individuals undergoing CIED surgical procedures from February to August 2011. The patients were distributed by type of procedure into the following groups: initial implantations (cohort 1), generator exchange (cohort 2), and lead-related procedures (cohort 3). The outcomes were evaluated by an independent committee. Univariate and multivariate analyses assessed the risk factors, and the Kaplan-Meier method was used for survival analysis. A total of 713 patients were included in the study and distributed as follows: 333 in cohort 1, 304 in cohort 2, and 76 in cohort 3. Postoperative complications were detected in 7.5%, 1.6%, and 11.8% of the patients in cohorts 1, 2, and 3, respectively (p = 0.014). During a 6-month follow-up, there were 58 (8.1%) deaths and 75 (10.5%) hospital readmissions. Predictors of hospital readmission included the use of implantable cardioverter-defibrillators (odds ratio [OR] = 4.2), functional class III--IV (OR = 1.8), and warfarin administration (OR = 1.9). Predictors of mortality included age over 80 years (OR = 2.4), ventricular dysfunction (OR = 2.2), functional class III-IV (OR = 3.3), and warfarin administration (OR = 2.3). Postoperative complications, hospital readmissions, and deaths occurred frequently and were strongly related to the type of procedure performed, type of CIED, and severity of the patient's underlying heart disease. Complicações após procedimentos cirúrgicos em portadores de dispositivos cardíacos eletrônicos implantáveis (DCEI) são um

  17. A theory involving a two electron group model for radio frequency ionization of helium with turbulent flow

    International Nuclear Information System (INIS)

    Talaat, M.E.

    1986-01-01

    A two electron group model (bulk and tail electrons) is used to devise a theory for predicting current-voltage characteristic curves of RF discharges in helium with flow, which would agree with the experimental results of an 11 MHz RF axial discharge tests with helium flow inside a quartz tube, having an ID of 2.2 cms, at flow velocities up to μ = 485 m/s, (at reduced pressures p/sub o/ from 217 to 362 torrs). The theory assumes that the bulk electrons are Maxwellian, at a temperature T/sub b/, and have kinetic energies (1/2 mv/sup 2/ = eV) between o and eV/sub l/ (V/sub l/ = the helium metastable potential). The electrons of the depressed tail of the distribution function are also Maxwellian, at another temperature T/sub t/, and have eV > eV/sub l/

  18. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

  19. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    International Nuclear Information System (INIS)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed

  20. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  1. Thermodynamically consistent description of criticality in models of correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Kauch, Anna; Pokorný, Vladislav

    2017-01-01

    Roč. 95, č. 4 (2017), s. 1-14, č. článku 045108. ISSN 2469-9950 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : conserving approximations * Anderson model * Hubbard model * parquet equations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  2. Tree-level equivalence between a Lorentz-violating extension of QED and its dual model in electron-electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Toniolo, Giuliano R.; Fargnoli, H.G.; Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Caixa Postal 3037, Lavras, Minas Gerais (Brazil); Scarpelli, A.P.B. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Sao Paulo (Brazil)

    2017-02-15

    S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter. (orig.)

  3. Fast three-material modeling with triple arch projection for electronic cleansing in CTC.

    Science.gov (United States)

    Lee, Hyunna; Lee, Jeongjin; Kim, Bohyoung; Kim, Se Hyung; Shin, Yeong-Gil

    2014-07-01

    In this paper, we propose a fast three-material modeling for electronic cleansing (EC) in computed tomographic colonography. Using a triple arch projection, our three-material modeling provides a very quick estimate of the three-material fractions to remove ridge-shaped artifacts at the T-junctions where air, soft-tissue (ST), and tagged residues (TRs) meet simultaneously. In our approach, colonic components including air, TR, the layer between air and TR, the layer between ST and TR (L(ST/TR)), and the T-junction are first segmented. Subsequently, the material fraction of ST for each voxel in L(ST/TR) and the T-junction is determined. Two-material fractions of the voxels in L(ST/TR) are derived based on a two-material transition model. On the other hand, three-material fractions of the voxels in the T-junction are estimated based on our fast three-material modeling with triple arch projection. Finally, the CT density value of each voxel is updated based on our fold-preserving reconstruction model. Experimental results using ten clinical datasets demonstrate that the proposed three-material modeling successfully removed the T-junction artifacts and clearly reconstructed the whole colon surface while preserving the submerged folds well. Furthermore, compared with the previous three-material transition model, the proposed three-material modeling resulted in about a five-fold increase in speed with the better preservation of submerged folds and the similar level of cleansing quality in T-junction regions.

  4. A Duality Result for the Generalized Erlang Risk Model

    Directory of Open Access Journals (Sweden)

    Lanpeng Ji

    2014-11-01

    Full Text Available In this article, we consider the generalized Erlang risk model and its dual model. By using a conditional measure-preserving correspondence between the two models, we derive an identity for two interesting conditional probabilities. Applications to the discounted joint density of the surplus prior to ruin and the deficit at ruin are also discussed.

  5. Results of a search for double positron decay and electron-positron conversion of 78Kr

    International Nuclear Information System (INIS)

    Garcia, E.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Ortiz de Solorzano, A.; Puimedon, J.; Saenz, C.; Salinas, A.; Sarsa, M.; Villar, J.; Klimenko, A.A.; Kuzminov, V.V.; Metlinsky, N.A.; Novikov, V.M.; Pomansky, A.A.; Protychenko, B.V.

    1993-01-01

    The preliminary results of a search for the 2β + and Kβ + in a coincidence experiment using a high pressure ionization chamber of enriched 78 Kr inside a NaI scintillator are presented in this paper. After 4434 hours of counting time, the half-time limits obtained are T 1/2 (Kβ + ) 0ν ≥5.8*10 21 y and T 1/2 (2β + ) 0ν+2ν ≥2.0*10 21 y at 68% C.L. These are the best world limits for the 2β + and Kβ + decay modes. (authors). 6 refs., 3 figs

  6. Results of a search for double positron decay and electron-positron conversion of 78Kr

    International Nuclear Information System (INIS)

    Saenz, C.; Cerezo, E.; Garcia, E.; Morales, A.; Morales, J.; Nunez-Lagos, R.; Ortiz de Solorzano, A.; Puimedon, J.; Salinas, A.; Sarsa, M.L.; Villar, J.A.; Klimenko, A.; Kuzminov, V.; Metlinsky, N.; Novikov, V.; Pomansky, A.; Pritychenko, B.

    1994-01-01

    The results of a search for the 2β + and Kβ + decay modes of 78 Kr, in a coincidence experiment using a high pressure ionization chamber of enriched 78 Kr inside an array of sodium iodine scintillators, are presented. After 4434 h of counting time, the half-life lower limits obtained are T 1/2 (Kβ + ) 0ν ≥5.1x10 21 yr and T 1/2 (2β + ) 0ν+2ν ≥2.0x10 21 yr at 68% C.L

  7. Experimental model of the electron temperature profile in the ionosphere at middle latitudes, (1)

    International Nuclear Information System (INIS)

    Hirao, K.; Oyama, K.

    1980-01-01

    The measurement of the electron temperature profile has been successively carried out at the Kagoshima Space Center by using identical radio frequency rectification probes onboard rockets launched during about half a solar activity cycle. By using about 30 profiles, an experimental model of the electron temperature profile and its solar activity dependency are proposed. Some particular characteristic points, bottom, 170 km, 220 km and topside, are examined in relation to local time and solar activity. The high electron temperature layer which appears at around 11 o'clock local time in winter is pointed out. The differences between the observed electron temperature and the model atmospheric neutral temperature at the characteristic points in particular are examined in relation to solar activity. The relation obtained at topside can be roughly explained by the variation of energy loss of electrons with solar activity. (author)

  8. Fokker-Planck modeling of current penetration during electron cyclotron current drive

    International Nuclear Information System (INIS)

    Merkulov, A.; Westerhof, E.; Schueller, F. C.

    2007-01-01

    The current penetration during electron cyclotron current drive (ECCD) on the resistive time scale is studied with a Fokker-Planck simulation, which includes a model for the magnetic diffusion that determines the parallel electric field evolution. The existence of the synergy between the inductive electric field and EC driven current complicates the process of the current penetration and invalidates the standard method of calculation in which Ohm's law is simply approximated by j-j cd =σE. Here it is proposed to obtain at every time step a self-consistent approximation to the plasma resistivity from the Fokker-Planck code, which is then used in a concurrent calculation of the magnetic diffusion equation in order to obtain the inductive electric field at the next time step. A series of Fokker-Planck calculations including a self-consistent evolution of the inductive electric field has been performed. Both the ECCD power and the electron density have been varied, thus varying the well known nonlinearity parameter for ECCD P rf [MW/m -3 ]/n e 2 [10 19 m -3 ] [R. W. Harvey et al., Phys. Rev. Lett 62, 426 (1989)]. This parameter turns out also to be a good predictor of the synergetic effects. The results are then compared with the standard method of calculations of the current penetration using a transport code. At low values of the Harvey parameter, the standard method is in quantitative agreement with Fokker-Planck calculations. However, at high values of the Harvey parameter, synergy between ECCD and E parallel is found. In the case of cocurrent drive, this synergy leads to the generation of large amounts of nonthermal electrons and a concomitant increase of the electrical conductivity and current penetration time. In the case of countercurrent drive, the ECCD efficiency is suppressed by the synergy with E parallel while only a small amount of nonthermal electrons is produced

  9. Model of spur processes in aqueous radiation chemistry including spur overlap and a novel initial hydrated electron distribution

    International Nuclear Information System (INIS)

    Short, D.R.

    1980-01-01

    Results are presented from computer calculations based upon an improved diffusion-kinetic model of the spur which includes a novel initial distribution for the hydrated electron and an approximate mathematical treatment of the overlap of spurs in three dimensions. Experimental data for the decay of the hydrated electron and hydroxyl radical before one in electron-pulse-irradated, solute-free and air-free water are fit wihtin experimental uncertainty by adjustment of the initial spatial distributions of spur intermediates and the average energy deposited in the spur. Using the same values of these parameters, the hydrated electron decay is computed for times from 1 ps 10 μs after the radiatio pulse. The results of such calcuations for various conditions of pulse dose and concentrations of scavengers of individual primary chemical species in the spur are compared with corresponding experimental data obtained predominantly from water and aqueous solutions irradiated with 10 to 15 MeV electron pulses. Very good agreement between calculated and experimental hydrated electron decay in pure water is observed for the entire time range studied when a pulse dose of approximately 7900 rads is modeled, but the calcuated and experimental curves are observed to deviate for times greater than 10 ns nanoseconds when low pulse doses and low scavenger concentrations are considered. It is shown that this deviation is experimental and calculated hydrated electron decay cannot be explained by assuming the presence of a hydrated electron scavenging impurity nor by employing a distribution of nearest neighbor interspur distances to refine the overlap approximation

  10. Electronic resource management practical perspectives in a new technical services model

    CERN Document Server

    Elguindi, Anne

    2012-01-01

    A significant shift is taking place in libraries, with the purchase of e-resources accounting for the bulk of materials spending. Electronic Resource Management makes the case that technical services workflows need to make a corresponding shift toward e-centric models and highlights the increasing variety of e-formats that are forcing new developments in the field.Six chapters cover key topics, including: technical services models, both past and emerging; staffing and workflow in electronic resource management; implementation and transformation of electronic resource management systems; the ro

  11. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1994-01-01

    Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  12. Argonne Fuel Cycle Facility ventilation system -- modeling and results

    International Nuclear Information System (INIS)

    Mohr, D.; Feldman, E.E.; Danielson, W.F.

    1995-01-01

    This paper describes an integrated study of the Argonne-West Fuel Cycle Facility (FCF) interconnected ventilation systems during various operations. Analyses and test results include first a nominal condition reflecting balanced pressures and flows followed by several infrequent and off-normal scenarios. This effort is the first study of the FCF ventilation systems as an integrated network wherein the hydraulic effects of all major air systems have been analyzed and tested. The FCF building consists of many interconnected regions in which nuclear fuel is handled, transported and reprocessed. The ventilation systems comprise a large number of ducts, fans, dampers, and filters which together must provide clean, properly conditioned air to the worker occupied spaces of the facility while preventing the spread of airborne radioactive materials to clean am-as or the atmosphere. This objective is achieved by keeping the FCF building at a partial vacuum in which the contaminated areas are kept at lower pressures than the other worker occupied spaces. The ventilation systems of FCF and the EBR-II reactor are analyzed as an integrated totality, as demonstrated. We then developed the network model shown in Fig. 2 for the TORAC code. The scope of this study was to assess the measured results from the acceptance/flow balancing testing and to predict the effects of power failures, hatch and door openings, single-failure faulted conditions, EBR-II isolation, and other infrequent operations. The studies show that the FCF ventilation systems am very controllable and remain stable following off-normal events. In addition, the FCF ventilation system complex is essentially immune to reverse flows and spread of contamination to clean areas during normal and off-normal operation

  13. ExEP yield modeling tool and validation test results

    Science.gov (United States)

    Morgan, Rhonda; Turmon, Michael; Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Liu, Xiang Cate; Nunez, Paul

    2017-09-01

    EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR.

  14. Suprathermal electron studies in Tokamak plasmas by means of diagnostic measurements and modeling

    International Nuclear Information System (INIS)

    Kamleitner, J.

    2015-01-01

    Configuration Variable (TCV) data were refurbished and a detailed benchmarking of these two codes was performed. The theory-predicted toroidal and poloidal emission asymmetries could be verified by experiment and modelling. The effects of supra-thermal electron diffusion and radio frequency (RF) wave scattering, both resulting in a radial broadening of the HXR emission, were separated by a poloidal deposition location angle scan. Previous results on anomalous diffusion and CD efficiency were reproduced with increased confidence arising from enhanced diagnostic specifications. The plasma response to electron cyclotron (EC) absorption and the role of quasi-linear effects were investigated. Several MHD instabilities can occur in the plasma centre and better understanding of these modes and events is indispensable for their mitigation in order to prevent their negative effects on confinement and stability. Sawtooth crashes are a major instability and localized at the q = 1 surface. They can be described as the evolution of an internal m = 1 kink mode leading to magnetic reconnection and consequently enhanced transport. Additionally, the crashes can trigger secondary deleterious instabilities. The electron acceleration in the magnetic reconnection process was studied as well as the impact on the supra-thermal tail. While acceleration was not observed, the efficient ejection of supra-thermal electrons due to sawtooth crashes could be quantified. In low density discharges this rapid transport leads to bursts of energetic HXR thick-target Bremsstrahlung from the limiter. An m/n = 1/1 internal kink mode coupled to an m/n = 2/1 component and closely related to sawtooth crashes is observed in the presence of ECRH/CD close to the q = 1 surface. It occurs in bursts, alternating with phases of one or more sawtooth crashes. The dynamics of this bursty mode turn out to be connected to supra-thermal electrons that are efficiently reheated after the preceding sawtooth crash and then dragged by

  15. Suprathermal electron studies in Tokamak plasmas by means of diagnostic measurements and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kamleitner, J.

    2015-07-01

    Configuration Variable (TCV) data were refurbished and a detailed benchmarking of these two codes was performed. The theory-predicted toroidal and poloidal emission asymmetries could be verified by experiment and modelling. The effects of supra-thermal electron diffusion and radio frequency (RF) wave scattering, both resulting in a radial broadening of the HXR emission, were separated by a poloidal deposition location angle scan. Previous results on anomalous diffusion and CD efficiency were reproduced with increased confidence arising from enhanced diagnostic specifications. The plasma response to electron cyclotron (EC) absorption and the role of quasi-linear effects were investigated. Several MHD instabilities can occur in the plasma centre and better understanding of these modes and events is indispensable for their mitigation in order to prevent their negative effects on confinement and stability. Sawtooth crashes are a major instability and localized at the q = 1 surface. They can be described as the evolution of an internal m = 1 kink mode leading to magnetic reconnection and consequently enhanced transport. Additionally, the crashes can trigger secondary deleterious instabilities. The electron acceleration in the magnetic reconnection process was studied as well as the impact on the supra-thermal tail. While acceleration was not observed, the efficient ejection of supra-thermal electrons due to sawtooth crashes could be quantified. In low density discharges this rapid transport leads to bursts of energetic HXR thick-target Bremsstrahlung from the limiter. An m/n = 1/1 internal kink mode coupled to an m/n = 2/1 component and closely related to sawtooth crashes is observed in the presence of ECRH/CD close to the q = 1 surface. It occurs in bursts, alternating with phases of one or more sawtooth crashes. The dynamics of this bursty mode turn out to be connected to supra-thermal electrons that are efficiently reheated after the preceding sawtooth crash and then dragged by

  16. Modeling and the analysis of control logic for a digital PWM controller based on a nano electronic single electron transistor

    Directory of Open Access Journals (Sweden)

    Rathnakannan Kailasam

    2008-01-01

    Full Text Available This paper describes the modelling and the analysis of control logic for a Nano-Device- based PWM controller. A comprehensive simple SPICE schematic model for Single Electron transistor has been proposed. The operation of basic Single Electron Transistor logic gates and SET flip flops were successfully designed and their performances analyzed. The proposed design for realizing the logic gates and flip-flops is used in constructing the PWM controller utilized for switching the buck converter circuit. The output of the converter circuit is compared with reference voltage, and when the error voltage and the reference are matched the latch is reset so as to generate the PWM signal. Due to the simplicity and accuracy of the compact model, the simulation time and speed are much faster, which makes it potentially applicable in large-scale circuit simulation. This study confirms that the SET-based PWM controller is small in size, consumes ultra low power and operates at high speeds without compromising any performance. In addition these devices are capable of measuring charges of extremely high sensitivity.

  17. Thermodynamic Justification for the Parabolic Model for Reactivity Indicators with Respect to Electron Number and a Rigorous Definition for the Electrophilicity: The Essential Role Played by the Electronic Entropy.

    Science.gov (United States)

    Franco-Pérez, Marco; Gázquez, José L; Ayers, Paul W; Vela, Alberto

    2018-02-13

    The temperature-dependence of the Helmholtz free energy with respect to the number of electrons is analyzed within the framework of the Grand Canonical Ensemble. At the zero-temperature limit, the Helmholtz free energy behaves as a Heaviside function of the number of electrons; however, as the temperature increases, the profile smoothens and exhibits a minimum value at noninteger positive values of the fractional electronic charge. We show that the exact average electronic energy as a function of the number of electrons does not display this feature at any temperature, since this behavior is solely due to the electronic entropy. Our mathematical analysis thus indicates that the widely used parabolic interpolation model should not be viewed as an approximation for the average electronic energy, but for the dependence of the Helmholtz free energy upon the number of electrons, and this analysis is corroborated by numerical results. Finally, an electrophilicity index is defined for the Helmholtz free energy showing that, for a given chemical species, there exists a temperature value for which this quantity is equivalent to the electrophilicity index defined within the parabolic interpolation of the electronic energy as a function of the number of electrons. Our formulation suggests that the convexity property of the energy versus the number of electrons together with the entropic contribution does not allow for an analogous nucleophilicity index to be defined.

  18. Final model independent result of DAMA/LIBRA-phase1

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R.; D' Angelo, S.; Di Marco, A. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Belli, P. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Cappella, F.; D' Angelo, A.; Prosperi, D. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, sez. Roma, Rome (Italy); Caracciolo, V.; Castellano, S.; Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy, IHEP, Beijing (China); Incicchitti, A. [INFN, sez. Roma, Rome (Italy); Montecchia, F. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); Ye, Z.P. [Chinese Academy, IHEP, Beijing (China); University of Jing Gangshan, Jiangxi (China)

    2013-12-15

    The results obtained with the total exposure of 1.04 ton x yr collected by DAMA/LIBRA-phase1 deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. during 7 annual cycles (i.e. adding a further 0.17 ton x yr exposure) are presented. The DAMA/LIBRA-phase1 data give evidence for the presence of Dark Matter (DM) particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl) target, at 7.5{sigma} C.L. Including also the first generation DAMA/NaI experiment (cumulative exposure 1.33 ton x yr, corresponding to 14 annual cycles), the C.L. is 9.3{sigma} and the modulation amplitude of the single-hit events in the (2-6) keV energy interval is: (0.0112{+-}0.0012) cpd/kg/keV; the measured phase is (144{+-}7) days and the measured period is (0.998{+-}0.002) yr, values well in agreement with those expected for DM particles. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade. (orig.)

  19. Innovation ecosystem model for commercialization of research results

    Directory of Open Access Journals (Sweden)

    Vlăduţ Gabriel

    2017-07-01

    Full Text Available Innovation means Creativity and Added value recognise by the market. The first step in creating a sustainable commercialization of research results, Technological Transfer – TT mechanism, on one hand is to define the “technology” which will be transferred and on other hand to define the context in which the TT mechanism work, the ecosystem. The focus must be set on technology as an entity, not as a science or a study of the practical industrial arts and certainly not any specific applied science. The transfer object, the technology, must rely on a subjectively determined but specifiable set of processes and products. Focusing on the product is not sufficient to the transfer and diffusion of technology. It is not merely the product that is transferred but also knowledge of its use and application. The innovation ecosystem model brings together new companies, experienced business leaders, researchers, government officials, established technology companies, and investors. This environment provides those new companies with a wealth of technical expertise, business experience, and access to capital that supports innovation in the early stages of growth.

  20. A model for hypermedia learning environments based on electronic books

    Directory of Open Access Journals (Sweden)

    Ignacio Aedo

    1997-12-01

    Full Text Available Current hypermedia learning environments do not have a common development basis. Their designers have often used ad-hoc solutions to solve the learning problems they have encountered. However, hypermedia technology can take advantage of employing a theoretical scheme - a model - which takes into account various kinds of learning activities, and solves some of the problems associated with its use in the learning process. The model can provide designers with the tools for creating a hypermedia learning system, by allowing the elements and functions involved in the definition of a specific application to be formally represented.