WorldWideScience

Sample records for model results consistently

  1. First results of GERDA Phase II and consistency with background models

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode1, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2017-01-01

    The GERDA (GERmanium Detector Array) is an experiment for the search of neutrinoless double beta decay (0νββ) in 76Ge, located at Laboratori Nazionali del Gran Sasso of INFN (Italy). GERDA operates bare high purity germanium detectors submersed in liquid Argon (LAr). Phase II of data-taking started in Dec 2015 and is currently ongoing. In Phase II 35 kg of germanium detectors enriched in 76Ge including thirty newly produced Broad Energy Germanium (BEGe) detectors is operating to reach an exposure of 100 kg·yr within about 3 years data taking. The design goal of Phase II is to reduce the background by one order of magnitude to get the sensitivity for T1/20ν = O≤ft( {{{10}26}} \\right){{ yr}}. To achieve the necessary background reduction, the setup was complemented with LAr veto. Analysis of the background spectrum of Phase II demonstrates consistency with the background models. Furthermore 226Ra and 232Th contamination levels consistent with screening results. In the first Phase II data release we found no hint for a 0νββ decay signal and place a limit of this process T1/20ν > 5.3 \\cdot {1025} yr (90% C.L., sensitivity 4.0·1025 yr). First results of GERDA Phase II will be presented.

  2. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  3. Process of Integrating Screening and Detailed Risk-based Modeling Analyses to Ensure Consistent and Scientifically Defensible Results

    International Nuclear Information System (INIS)

    Buck, John W.; McDonald, John P.; Taira, Randal Y.

    2002-01-01

    To support cleanup and closure of these tanks, modeling is performed to understand and predict potential impacts to human health and the environment. Pacific Northwest National Laboratory developed a screening tool for the United States Department of Energy, Office of River Protection that estimates the long-term human health risk, from a strategic planning perspective, posed by potential tank releases to the environment. This tool is being conditioned to more detailed model analyses to ensure consistency between studies and to provide scientific defensibility. Once the conditioning is complete, the system will be used to screen alternative cleanup and closure strategies. The integration of screening and detailed models provides consistent analyses, efficiencies in resources, and positive feedback between the various modeling groups. This approach of conditioning a screening methodology to more detailed analyses provides decision-makers with timely and defensible information and increases confidence in the results on the part of clients, regulators, and stakeholders

  4. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  5. Does the high–tech industry consistently reduce CO{sub 2} emissions? Results from nonparametric additive regression model

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bin [School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013 (China); Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013 (China); Lin, Boqiang, E-mail: bqlin@xmu.edu.cn [Collaborative Innovation Center for Energy Economics and Energy Policy, China Institute for Studies in Energy Policy, Xiamen University, Xiamen, Fujian 361005 (China)

    2017-03-15

    China is currently the world's largest carbon dioxide (CO{sub 2}) emitter. Moreover, total energy consumption and CO{sub 2} emissions in China will continue to increase due to the rapid growth of industrialization and urbanization. Therefore, vigorously developing the high–tech industry becomes an inevitable choice to reduce CO{sub 2} emissions at the moment or in the future. However, ignoring the existing nonlinear links between economic variables, most scholars use traditional linear models to explore the impact of the high–tech industry on CO{sub 2} emissions from an aggregate perspective. Few studies have focused on nonlinear relationships and regional differences in China. Based on panel data of 1998–2014, this study uses the nonparametric additive regression model to explore the nonlinear effect of the high–tech industry from a regional perspective. The estimated results show that the residual sum of squares (SSR) of the nonparametric additive regression model in the eastern, central and western regions are 0.693, 0.054 and 0.085 respectively, which are much less those that of the traditional linear regression model (3.158, 4.227 and 7.196). This verifies that the nonparametric additive regression model has a better fitting effect. Specifically, the high–tech industry produces an inverted “U–shaped” nonlinear impact on CO{sub 2} emissions in the eastern region, but a positive “U–shaped” nonlinear effect in the central and western regions. Therefore, the nonlinear impact of the high–tech industry on CO{sub 2} emissions in the three regions should be given adequate attention in developing effective abatement policies. - Highlights: • The nonlinear effect of the high–tech industry on CO{sub 2} emissions was investigated. • The high–tech industry yields an inverted “U–shaped” effect in the eastern region. • The high–tech industry has a positive “U–shaped” nonlinear effect in other regions. • The linear impact

  6. Consistent ranking of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2006-01-01

    We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...... variance in out-of-sample evaluations rather than the squared return. We derive the theoretical results in a general framework that is not specific to the comparison of volatility models. Similar problems can arise in comparisons of forecasting models whenever the predicted variable is a latent variable....

  7. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models: Results for the January, March, and April 2015 LAW glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Riley, W. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Best, D. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-03

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the January, March, and April 2015 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  8. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Best, D. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  9. Self-consistent asset pricing models

    Science.gov (United States)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  10. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models. Results for the third set of high alumina outer layer matrix glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-12-01

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glasses fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NCB values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.

  11. Consistent biokinetic models for the actinide elements

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2001-01-01

    The biokinetic models for Th, Np, Pu, Am and Cm currently recommended by the International Commission on Radiological Protection (ICRP) were developed within a generic framework that depicts gradual burial of skeletal activity in bone volume, depicts recycling of activity released to blood and links excretion to retention and translocation of activity. For other actinide elements such as Ac, Pa, Bk, Cf and Es, the ICRP still uses simplistic retention models that assign all skeletal activity to bone surface and depicts one-directional flow of activity from blood to long-term depositories to excreta. This mixture of updated and older models in ICRP documents has led to inconsistencies in dose estimates and interpretation of bioassay for radionuclides with reasonably similar biokinetics. This paper proposes new biokinetic models for Ac, Pa, Bk, Cf and Es that are consistent with the updated models for Th, Np, Pu, Am and Cm. The proposed models are developed within the ICRP's generic model framework for bone-surface-seeking radionuclides, and an effort has been made to develop parameter values that are consistent with results of comparative biokinetic data on the different actinide elements. (author)

  12. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  13. Modeling and Testing Legacy Data Consistency Requirements

    DEFF Research Database (Denmark)

    Nytun, J. P.; Jensen, Christian Søndergaard

    2003-01-01

    An increasing number of data sources are available on the Internet, many of which offer semantically overlapping data, but based on different schemas, or models. While it is often of interest to integrate such data sources, the lack of consistency among them makes this integration difficult....... This paper addresses the need for new techniques that enable the modeling and consistency checking for legacy data sources. Specifically, the paper contributes to the development of a framework that enables consistency testing of data coming from different types of data sources. The vehicle is UML and its...... accompanying XMI. The paper presents techniques for modeling consistency requirements using OCL and other UML modeling elements: it studies how models that describe the required consistencies among instances of legacy models can be designed in standard UML tools that support XMI. The paper also considers...

  14. Consistency of the MLE under mixture models

    OpenAIRE

    Chen, Jiahua

    2016-01-01

    The large-sample properties of likelihood-based statistical inference under mixture models have received much attention from statisticians. Although the consistency of the nonparametric MLE is regarded as a standard conclusion, many researchers ignore the precise conditions required on the mixture model. An incorrect claim of consistency can lead to false conclusions even if the mixture model under investigation seems well behaved. Under a finite normal mixture model, for instance, the consis...

  15. Consistent spectroscopy for a extended gauge model

    International Nuclear Information System (INIS)

    Oliveira Neto, G. de.

    1990-11-01

    The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)

  16. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  17. Consistent Estimation of Partition Markov Models

    Directory of Open Access Journals (Sweden)

    Jesús E. García

    2017-04-01

    Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.

  18. Two Impossibility Results on the Converse Consistency Principle in Bargaining

    OpenAIRE

    Youngsub Chun

    1999-01-01

    We present two impossibility results on the converse consistency principle in the context of bargaining. First, we show that there is no solution satis-fying Pareto optimality, contraction independence, and converse consistency. Next, we show that there is no solution satisfying Pareto optimality, strong individual rationality, individual monotonicity, and converse consistency.

  19. Financial model calibration using consistency hints.

    Science.gov (United States)

    Abu-Mostafa, Y S

    2001-01-01

    We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leibler distance. We introduce an efficient EM-type optimization algorithm tailored to this technique. We also introduce other consistency hints, and balance their weights using canonical errors. We calibrate the correlated multifactor Vasicek model of interest rates, and apply it successfully to Japanese Yen swaps market and US dollar yield market.

  20. Toward a consistent model for glass dissolution

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Bourcier, W.L.

    1994-01-01

    Understanding the process of glass dissolution in aqueous media has advanced significantly over the last 10 years through the efforts of many scientists around the world. Mathematical models describing the glass dissolution process have also advanced from simple empirical functions to structured models based on fundamental principles of physics, chemistry, and thermodynamics. Although borosilicate glass has been selected as the waste form for disposal of high-level wastes in at least 5 countries, there is no international consensus on the fundamental methodology for modeling glass dissolution that could be used in assessing the long term performance of waste glasses in a geologic repository setting. Each repository program is developing their own model and supporting experimental data. In this paper, we critically evaluate a selected set of these structured models and show that a consistent methodology for modeling glass dissolution processes is available. We also propose a strategy for a future coordinated effort to obtain the model input parameters that are needed for long-term performance assessments of glass in a geologic repository. (author) 4 figs., tabs., 75 refs

  1. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  2. Developing consistent pronunciation models for phonemic variants

    CSIR Research Space (South Africa)

    Davel, M

    2006-09-01

    Full Text Available Pronunciation lexicons often contain pronunciation variants. This can create two problems: It can be difficult to define these variants in an internally consistent way and it can also be difficult to extract generalised grapheme-to-phoneme rule sets...

  3. Planck 2013 results. XXXI. Consistency of the Planck data

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Arnaud, M.; Ashdown, M.

    2014-01-01

    The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70 GHz (amplifier) and 100 GHz (bolometer) channels. Based on dierent instrument technologies, with feeds...... in the HFI channels would result in shifts in the posterior distributions of parameters of less than 0.3σ except for As, the amplitude of the primordial curvature perturbations at 0.05 Mpc-1, which changes by about 1.We extend these comparisons to include the sky maps from the complete nine-year mission...... located dierently in the focal plane, analysed independently by dierent teams using dierent software, and near∫ the minimum of diuse foreground emission, these channels are in eect two dierent experiments. The 143 GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved...

  4. Consistent Alignment of World Embedding Models

    Science.gov (United States)

    2017-03-02

    propose a solution that aligns variations of the same model (or different models) in a joint low-dimensional la- tent space leveraging carefully...representations of linguistic enti- ties, most often referred to as embeddings. This includes techniques that rely on matrix factoriza- tion (Levy & Goldberg ...higher, the variation is much higher as well. As we increase the size of the neighborhood, or improve the quality of our sample by only picking the most

  5. Self-consistent modelling of ICRH

    International Nuclear Information System (INIS)

    Hellsten, T.; Hedin, J.; Johnson, T.; Laxaaback, M.; Tennfors, E.

    2001-01-01

    The performance of ICRH is often sensitive to the shape of the high energy part of the distribution functions of the resonating species. This requires self-consistent calculations of the distribution functions and the wave-field. In addition to the wave-particle interactions and Coulomb collisions the effects of the finite orbit width and the RF-induced spatial transport are found to be important. The inward drift dominates in general even for a symmetric toroidal wave spectrum in the centre of the plasma. An inward drift does not necessarily produce a more peaked heating profile. On the contrary, for low concentrations of hydrogen minority in deuterium plasmas it can even give rise to broader profiles. (author)

  6. String consistency for unified model building

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Chung, S.W.; Hockney, G.; Lykken, J.

    1995-01-01

    We explore the use of real fermionization as a test case for understanding how specific features of phenomenological interest in the low-energy effective superpotential are realized in exact solutions to heterotic superstring theory. We present pedagogic examples of models which realize SO(10) as a level two current algebra on the world-sheet, and discuss in general how higher level current algebras can be realized in the tensor product of simple constituent conformal field theories. We describe formal developments necessary to compute couplings in models built using real fermionization. This allows us to isolate cases of spin structures where the standard prescription for real fermionization may break down. (orig.)

  7. Risk aversion vs. the Omega ratio : Consistency results

    NARCIS (Netherlands)

    Balder, Sven; Schweizer, Nikolaus

    This paper clarifies when the Omega ratio and related performance measures are consistent with second order stochastic dominance and when they are not. To avoid consistency problems, the threshold parameter in the ratio should be chosen as the expected return of some benchmark – as is commonly done

  8. REPFLO model evaluation, physical and numerical consistency

    International Nuclear Information System (INIS)

    Wilson, R.N.; Holland, D.H.

    1978-11-01

    This report contains a description of some suggested changes and an evaluation of the REPFLO computer code, which models ground-water flow and nuclear-waste migration in and about a nuclear-waste repository. The discussion contained in the main body of the report is supplemented by a flow chart, presented in the Appendix of this report. The suggested changes are of four kinds: (1) technical changes to make the code compatible with a wider variety of digital computer systems; (2) changes to fill gaps in the computer code, due to missing proprietary subroutines; (3) changes to (a) correct programming errors, (b) correct logical flaws, and (c) remove unnecessary complexity; and (4) changes in the computer code logical structure to make REPFLO a more viable model from the physical point of view

  9. High-performance speech recognition using consistency modeling

    Science.gov (United States)

    Digalakis, Vassilios; Murveit, Hy; Monaco, Peter; Neumeyer, Leo; Sankar, Ananth

    1994-12-01

    The goal of SRI's consistency modeling project is to improve the raw acoustic modeling component of SRI's DECIPHER speech recognition system and develop consistency modeling technology. Consistency modeling aims to reduce the number of improper independence assumptions used in traditional speech recognition algorithms so that the resulting speech recognition hypotheses are more self-consistent and, therefore, more accurate. At the initial stages of this effort, SRI focused on developing the appropriate base technologies for consistency modeling. We first developed the Progressive Search technology that allowed us to perform large-vocabulary continuous speech recognition (LVCSR) experiments. Since its conception and development at SRI, this technique has been adopted by most laboratories, including other ARPA contracting sites, doing research on LVSR. Another goal of the consistency modeling project is to attack difficult modeling problems, when there is a mismatch between the training and testing phases. Such mismatches may include outlier speakers, different microphones and additive noise. We were able to either develop new, or transfer and evaluate existing, technologies that adapted our baseline genonic HMM recognizer to such difficult conditions.

  10. Consistency test of the standard model

    International Nuclear Information System (INIS)

    Pawlowski, M.; Raczka, R.

    1997-01-01

    If the 'Higgs mass' is not the physical mass of a real particle but rather an effective ultraviolet cutoff then a process energy dependence of this cutoff must be admitted. Precision data from at least two energy scale experimental points are necessary to test this hypothesis. The first set of precision data is provided by the Z-boson peak experiments. We argue that the second set can be given by 10-20 GeV e + e - colliders. We pay attention to the special role of tau polarization experiments that can be sensitive to the 'Higgs mass' for a sample of ∼ 10 8 produced tau pairs. We argue that such a study may be regarded as a negative selfconsistency test of the Standard Model and of most of its extensions

  11. Planck 2013 results. XXXI. Consistency of the Planck data

    CERN Document Server

    Ade, P A R; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A.J; Barreiro, R.B; Battaner, E; Benabed, K; Benoit-Levy, A; Bernard, J.P; Bersanelli, M; Bielewicz, P; Bond, J.R; Borrill, J; Bouchet, F.R; Burigana, C; Cardoso, J.F; Catalano, A; Challinor, A; Chamballu, A; Chiang, H.C; Christensen, P.R; Clements, D.L; Colombi, S; Colombo, L.P.L; Couchot, F; Coulais, A; Crill, B.P; Curto, A; Cuttaia, F; Danese, L; Davies, R.D; Davis, R.J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Desert, F.X; Dickinson, C; Diego, J.M; Dole, H; Donzelli, S; Dore, O; Douspis, M; Dupac, X; Ensslin, T.A; Eriksen, H.K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Gonzalez-Nuevo, J; Gorski, K.M.; Gratton, S.; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F.K; Hanson, D; Harrison, D; Henrot-Versille, S; Herranz, D; Hildebrandt, S.R; Hivon, E; Hobson, M; Holmes, W.A.; Hornstrup, A; Hovest, W.; Huffenberger, K.M; Jaffe, T.R; Jaffe, A.H; Jones, W.C; Keihanen, E; Keskitalo, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lahteenmaki, A; Lamarre, J.M; Lasenby, A; Lawrence, C.R; Leonardi, R; Leon-Tavares, J; Lesgourgues, J; Liguori, M; Lilje, P.B; Linden-Vornle, M; Lopez-Caniego, M; Lubin, P.M; Macias-Perez, J.F; Maino, D; Mandolesi, N; Maris, M; Martin, P.G; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; Meinhold, P.R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschenes, M.A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Norgaard-Nielsen, H.U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C.A; Pagano, L; Pajot, F; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, D; Pearson, T.J; Perdereau, O; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Pratt, G.W; Prunet, S; Puget, J.L; Rachen, J.P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S.; Ristorcelli, I; Rocha, G.; Roudier, G; Rubino-Martin, J.A; Rusholme, B; Sandri, M; Scott, D; Stolyarov, V; Sudiwala, R; Sutton, D; Suur-Uski, A.S; Sygnet, J.F; Tauber, J.A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L.A; Wandelt, B.D; Wehus, I K; White, S D M; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70 GHz (amplifier) and 100 GHz (bolometer) channels. Based on different instrument technologies, with feeds located differently in the focal plane, analysed independently by different teams using different software, and near the minimum of diffuse foreground emission, these channels are in effect two different experiments. The 143 GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved foreground emission. In this paper, we analyse the level of consistency achieved in the 2013 Planck data. We concentrate on comparisons between the 70, 100, and 143 GHz channel maps and power spectra, particularly over the angular scales of the first and second acoustic peaks, on maps masked for diffuse Galactic emission and for strong unresolved sources. Difference maps covering angular scales from 8°...

  12. Diagnosing a Strong-Fault Model by Conflict and Consistency.

    Science.gov (United States)

    Zhang, Wenfeng; Zhao, Qi; Zhao, Hongbo; Zhou, Gan; Feng, Wenquan

    2018-03-29

    The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model's prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain-the heat control unit of a spacecraft-where the proposed methods are significantly better than best first and conflict directly with A* search methods.

  13. Consistent Partial Least Squares Path Modeling via Regularization.

    Science.gov (United States)

    Jung, Sunho; Park, JaeHong

    2018-01-01

    Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.

  14. Consistent Conformal Extensions of the Standard Model arXiv

    CERN Document Server

    Loebbert, Florian; Plefka, Jan

    The question of whether classically conformal modifications of the standard model are consistent with experimental obervations has recently been subject to renewed interest. The method of Gildener and Weinberg provides a natural framework for the study of the effective potential of the resulting multi-scalar standard model extensions. This approach relies on the assumption of the ordinary loop hierarchy $\\lambda_\\text{s} \\sim g^2_\\text{g}$ of scalar and gauge couplings. On the other hand, Andreassen, Frost and Schwartz recently argued that in the (single-scalar) standard model, gauge invariant results require the consistent scaling $\\lambda_\\text{s} \\sim g^4_\\text{g}$. In the present paper we contrast these two hierarchy assumptions and illustrate the differences in the phenomenological predictions of minimal conformal extensions of the standard model.

  15. Diagnosing a Strong-Fault Model by Conflict and Consistency

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2018-03-01

    Full Text Available The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model’s prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF. Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain—the heat control unit of a spacecraft—where the proposed methods are significantly better than best first and conflict directly with A* search methods.

  16. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

    Science.gov (United States)

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2013-04-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

  17. Consistent partnership formation: application to a sexually transmitted disease model.

    Science.gov (United States)

    Artzrouni, Marc; Deuchert, Eva

    2012-02-01

    We apply a consistent sexual partnership formation model which hinges on the assumption that one gender's choices drives the process (male or female dominant model). The other gender's behavior is imputed. The model is fitted to UK sexual behavior data and applied to a simple incidence model of HSV-2. With a male dominant model (which assumes accurate male reports on numbers of partners) the modeled incidences of HSV-2 are 77% higher for men and 50% higher for women than with a female dominant model (which assumes accurate female reports). Although highly stylized, our simple incidence model sheds light on the inconsistent results one can obtain with misreported data on sexual activity and age preferences. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Search for the Standard Model Higgs boson through the decay of H→ZZ*→4l with the ATLAS experiment at LHC resulting to the observation of a new particle consistent with the Higgs boson

    International Nuclear Information System (INIS)

    Mountricha, E.

    2012-01-01

    The subject of this thesis is the search for the Standard Model Higgs boson through its decay into four leptons with the ATLAS experiment at CERN. The theory postulating the Higgs boson is presented and the constraints of the theory and direct and indirect searches are quoted. The ATLAS experiment and its components are described and the Detector Control System for the operation and monitoring of the power supplies of the Monitored Drift Tubes is detailed. The electron and muon reconstruction and identification are summarized. Studies on the muon fake rates, on the effect of pileup on the isolation of the muons, and on muon efficiencies of the isolation and impact parameter requirements are presented. The analysis of the Higgs decay to four leptons is detailed with emphasis on the background estimation, the methods employed and the control regions used. The results of the search using the 2011 νs= 7 TeV data are presented which have led to hints for the observation of the Higgs boson. The optimization performed for the search of a low mass Higgs boson is described and the effect on the 2011 data are shown. The analysis is performed for the 2011 νs = 8 TeV data collected up to July and the results are presented, including the combination with the 2011 data. These latest results have led to the observation of a new particle consistent with the Standard Model Higgs. (author) [fr

  19. Detection and quantification of flow consistency in business process models.

    Science.gov (United States)

    Burattin, Andrea; Bernstein, Vered; Neurauter, Manuel; Soffer, Pnina; Weber, Barbara

    2018-01-01

    Business process models abstract complex business processes by representing them as graphical models. Their layout, as determined by the modeler, may have an effect when these models are used. However, this effect is currently not fully understood. In order to systematically study this effect, a basic set of measurable key visual features is proposed, depicting the layout properties that are meaningful to the human user. The aim of this research is thus twofold: first, to empirically identify key visual features of business process models which are perceived as meaningful to the user and second, to show how such features can be quantified into computational metrics, which are applicable to business process models. We focus on one particular feature, consistency of flow direction, and show the challenges that arise when transforming it into a precise metric. We propose three different metrics addressing these challenges, each following a different view of flow consistency. We then report the results of an empirical evaluation, which indicates which metric is more effective in predicting the human perception of this feature. Moreover, two other automatic evaluations describing the performance and the computational capabilities of our metrics are reported as well.

  20. Modeling self-consistent multi-class dynamic traffic flow

    Science.gov (United States)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  1. Consistent Partial Least Squares Path Modeling via Regularization

    Directory of Open Access Journals (Sweden)

    Sunho Jung

    2018-02-01

    Full Text Available Partial least squares (PLS path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc, designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.

  2. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    Science.gov (United States)

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  3. A model for cytoplasmic rheology consistent with magnetic twisting cytometry.

    Science.gov (United States)

    Butler, J P; Kelly, S M

    1998-01-01

    Magnetic twisting cytometry is gaining wide applicability as a tool for the investigation of the rheological properties of cells and the mechanical properties of receptor-cytoskeletal interactions. Current technology involves the application and release of magnetically induced torques on small magnetic particles bound to or inside cells, with measurements of the resulting angular rotation of the particles. The properties of purely elastic or purely viscous materials can be determined by the angular strain and strain rate, respectively. However, the cytoskeleton and its linkage to cell surface receptors display elastic, viscous, and even plastic deformation, and the simultaneous characterization of these properties using only elastic or viscous models is internally inconsistent. Data interpretation is complicated by the fact that in current technology, the applied torques are not constant in time, but decrease as the particles rotate. This paper describes an internally consistent model consisting of a parallel viscoelastic element in series with a parallel viscoelastic element, and one approach to quantitative parameter evaluation. The unified model reproduces all essential features seen in data obtained from a wide variety of cell populations, and contains the pure elastic, viscoelastic, and viscous cases as subsets.

  4. Large scale Bayesian nuclear data evaluation with consistent model defects

    International Nuclear Information System (INIS)

    Schnabel, G

    2015-01-01

    The aim of nuclear data evaluation is the reliable determination of cross sections and related quantities of the atomic nuclei. To this end, evaluation methods are applied which combine the information of experiments with the results of model calculations. The evaluated observables with their associated uncertainties and correlations are assembled into data sets, which are required for the development of novel nuclear facilities, such as fusion reactors for energy supply, and accelerator driven systems for nuclear waste incineration. The efficiency and safety of such future facilities is dependent on the quality of these data sets and thus also on the reliability of the applied evaluation methods. This work investigated the performance of the majority of available evaluation methods in two scenarios. The study indicated the importance of an essential component in these methods, which is the frequently ignored deficiency of nuclear models. Usually, nuclear models are based on approximations and thus their predictions may deviate from reliable experimental data. As demonstrated in this thesis, the neglect of this possibility in evaluation methods can lead to estimates of observables which are inconsistent with experimental data. Due to this finding, an extension of Bayesian evaluation methods is proposed to take into account the deficiency of the nuclear models. The deficiency is modeled as a random function in terms of a Gaussian process and combined with the model prediction. This novel formulation conserves sum rules and allows to explicitly estimate the magnitude of model deficiency. Both features are missing in available evaluation methods so far. Furthermore, two improvements of existing methods have been developed in the course of this thesis. The first improvement concerns methods relying on Monte Carlo sampling. A Metropolis-Hastings scheme with a specific proposal distribution is suggested, which proved to be more efficient in the studied scenarios than the

  5. Self-consistent modeling of electron cyclotron resonance ion sources

    International Nuclear Information System (INIS)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.

    2004-01-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally

  6. Self-consistent modeling of electron cyclotron resonance ion sources

    Science.gov (United States)

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  7. Posterior consistency for Bayesian inverse problems through stability and regression results

    International Nuclear Information System (INIS)

    Vollmer, Sebastian J

    2013-01-01

    In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes’ formula, giving rise to the posterior distribution on the unknown input. In this setting we prove posterior consistency for nonlinear inverse problems: a sequence of data is considered, with diminishing fluctuations around a single truth and it is then of interest to show that the resulting sequence of posterior measures arising from this sequence of data concentrates around the truth used to generate the data. Posterior consistency justifies the use of the Bayesian approach very much in the same way as error bounds and convergence results for regularization techniques do. As a guiding example, we consider the inverse problem of reconstructing the diffusion coefficient from noisy observations of the solution to an elliptic PDE in divergence form. This problem is approached by splitting the forward operator into the underlying continuum model and a simpler observation operator based on the output of the model. In general, these splittings allow us to conclude posterior consistency provided a deterministic stability result for the underlying inverse problem and a posterior consistency result for the Bayesian regression problem with the push-forward prior. Moreover, we prove posterior consistency for the Bayesian regression problem based on the regularity, the tail behaviour and the small ball probabilities of the prior. (paper)

  8. Self-Consistent Dynamical Model of the Broad Line Region

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, Bozena [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Sredzinska, Justyna; Hryniewicz, Krzysztof [Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Panda, Swayam [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Wildy, Conor [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Karas, Vladimir, E-mail: bcz@cft.edu.pl [Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic)

    2017-06-22

    We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency) and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  9. Self-Consistent Dynamical Model of the Broad Line Region

    Directory of Open Access Journals (Sweden)

    Bozena Czerny

    2017-06-01

    Full Text Available We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  10. A self-consistent upward leader propagation model

    International Nuclear Information System (INIS)

    Becerra, Marley; Cooray, Vernon

    2006-01-01

    The knowledge of the initiation and propagation of an upward moving connecting leader in the presence of a downward moving lightning stepped leader is a must in the determination of the lateral attraction distance of a lightning flash by any grounded structure. Even though different models that simulate this phenomenon are available in the literature, they do not take into account the latest developments in the physics of leader discharges. The leader model proposed here simulates the advancement of positive upward leaders by appealing to the presently understood physics of that process. The model properly simulates the upward continuous progression of the positive connecting leaders from its inception to the final connection with the downward stepped leader (final jump). Thus, the main physical properties of upward leaders, namely the charge per unit length, the injected current, the channel gradient and the leader velocity are self-consistently obtained. The obtained results are compared with an altitude triggered lightning experiment and there is good agreement between the model predictions and the measured leader current and the experimentally inferred spatial and temporal location of the final jump. It is also found that the usual assumption of constant charge per unit length, based on laboratory experiments, is not valid for lightning upward connecting leaders

  11. Creation of Consistent Burn Wounds: A Rat Model

    Directory of Open Access Journals (Sweden)

    Elijah Zhengyang Cai

    2014-07-01

    Full Text Available Background Burn infliction techniques are poorly described in rat models. An accurate study can only be achieved with wounds that are uniform in size and depth. We describe a simple reproducible method for creating consistent burn wounds in rats. Methods Ten male Sprague-Dawley rats were anesthetized and dorsum shaved. A 100 g cylindrical stainless-steel rod (1 cm diameter was heated to 100℃ in boiling water. Temperature was monitored using a thermocouple. We performed two consecutive toe-pinch tests on different limbs to assess the depth of sedation. Burn infliction was limited to the loin. The skin was pulled upwards, away from the underlying viscera, creating a flat surface. The rod rested on its own weight for 5, 10, and 20 seconds at three different sites on each rat. Wounds were evaluated for size, morphology and depth. Results Average wound size was 0.9957 cm2 (standard deviation [SD] 0.1845 (n=30. Wounds created with duration of 5 seconds were pale, with an indistinct margin of erythema. Wounds of 10 and 20 seconds were well-defined, uniformly brown with a rim of erythema. Average depths of tissue damage were 1.30 mm (SD 0.424, 2.35 mm (SD 0.071, and 2.60 mm (SD 0.283 for duration of 5, 10, 20 seconds respectively. Burn duration of 5 seconds resulted in full-thickness damage. Burn duration of 10 seconds and 20 seconds resulted in full-thickness damage, involving subjacent skeletal muscle. Conclusions This is a simple reproducible method for creating burn wounds consistent in size and depth in a rat burn model.

  12. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  13. Consistency and Reconciliation Model In Regional Development Planning

    Directory of Open Access Journals (Sweden)

    Dina Suryawati

    2016-10-01

    Full Text Available The aim of this study was to identify the problems and determine the conceptual model of regional development planning. Regional development planning is a systemic, complex and unstructured process. Therefore, this study used soft systems methodology to outline unstructured issues with a structured approach. The conceptual models that were successfully constructed in this study are a model of consistency and a model of reconciliation. Regional development planning is a process that is well-integrated with central planning and inter-regional planning documents. Integration and consistency of regional planning documents are very important in order to achieve the development goals that have been set. On the other hand, the process of development planning in the region involves technocratic system, that is, both top-down and bottom-up system of participation. Both must be balanced, do not overlap and do not dominate each other. regional, development, planning, consistency, reconciliation

  14. Modeling a Consistent Behavior of PLC-Sensors

    Directory of Open Access Journals (Sweden)

    E. V. Kuzmin

    2014-01-01

    Full Text Available The article extends the cycle of papers dedicated to programming and verificatoin of PLC-programs by LTL-specification. This approach provides the availability of correctness analysis of PLC-programs by the model checking method.The model checking method needs to construct a finite model of a PLC program. For successful verification of required properties it is important to take into consideration that not all combinations of input signals from the sensors can occur while PLC works with a control object. This fact requires more advertence to the construction of the PLC-program model.In this paper we propose to describe a consistent behavior of sensors by three groups of LTL-formulas. They will affect the program model, approximating it to the actual behavior of the PLC program. The idea of LTL-requirements is shown by an example.A PLC program is a description of reactions on input signals from sensors, switches and buttons. In constructing a PLC-program model, the approach to modeling a consistent behavior of PLC sensors allows to focus on modeling precisely these reactions without an extension of the program model by additional structures for realization of a realistic behavior of sensors. The consistent behavior of sensors is taken into account only at the stage of checking a conformity of the programming model to required properties, i. e. a property satisfaction proof for the constructed model occurs with the condition that the model contains only such executions of the program that comply with the consistent behavior of sensors.

  15. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  16. Consistent three-equation model for thin films

    Science.gov (United States)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  17. Self-consistent mean-field models for nuclear structure

    International Nuclear Information System (INIS)

    Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard

    2003-01-01

    The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications

  18. Detection and quantification of flow consistency in business process models

    DEFF Research Database (Denmark)

    Burattin, Andrea; Bernstein, Vered; Neurauter, Manuel

    2017-01-01

    , to show how such features can be quantified into computational metrics, which are applicable to business process models. We focus on one particular feature, consistency of flow direction, and show the challenges that arise when transforming it into a precise metric. We propose three different metrics......Business process models abstract complex business processes by representing them as graphical models. Their layout, as determined by the modeler, may have an effect when these models are used. However, this effect is currently not fully understood. In order to systematically study this effect......, a basic set of measurable key visual features is proposed, depicting the layout properties that are meaningful to the human user. The aim of this research is thus twofold: first, to empirically identify key visual features of business process models which are perceived as meaningful to the user and second...

  19. A consistent transported PDF model for treating differential molecular diffusion

    Science.gov (United States)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  20. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  1. Simplified models for dark matter face their consistent completions

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    2017-03-01

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.

  2. Consistency of the tachyon warm inflationary universe models

    International Nuclear Information System (INIS)

    Zhang, Xiao-Min; Zhu, Jian-Yang

    2014-01-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ 0 and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε H , and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ 0 ) is usually not a suitable assumption for a warm inflationary model

  3. Consistency Across Standards or Standards in a New Business Model

    Science.gov (United States)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  4. Self-consistent approach for neutral community models with speciation

    Science.gov (United States)

    Haegeman, Bart; Etienne, Rampal S.

    2010-03-01

    Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abundances surprisingly well. More realistic speciation models have been proposed such as the random-fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here, we present a self-consistent approximation method for neutral community models with various speciation modes, including random fission. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. We expect that our approximation method will be useful to study other speciation processes in neutral community models as well.

  5. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  6. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    2013-01-01

    to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  7. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    observed properties of variance swap dynamics and allows for jumps in volatility and returns. An affine specification using L´evy processes as building blocks leads to analytically tractable pricing formulas for options on variance swaps as well as efficient numerical methods for pricing of European......We propose and study a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index, allowing options on forward variance swaps and options on the underlying index to be priced consistently. Our model reproduces various empirically...... options on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options...

  8. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    Science.gov (United States)

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  9. Development of a Consistent and Reproducible Porcine Scald Burn Model

    Science.gov (United States)

    Kempf, Margit; Kimble, Roy; Cuttle, Leila

    2016-01-01

    There are very few porcine burn models that replicate scald injuries similar to those encountered by children. We have developed a robust porcine burn model capable of creating reproducible scald burns for a wide range of burn conditions. The study was conducted with juvenile Large White pigs, creating replicates of burn combinations; 50°C for 1, 2, 5 and 10 minutes and 60°C, 70°C, 80°C and 90°C for 5 seconds. Visual wound examination, biopsies and Laser Doppler Imaging were performed at 1, 24 hours and at 3 and 7 days post-burn. A consistent water temperature was maintained within the scald device for long durations (49.8 ± 0.1°C when set at 50°C). The macroscopic and histologic appearance was consistent between replicates of burn conditions. For 50°C water, 10 minute duration burns showed significantly deeper tissue injury than all shorter durations at 24 hours post-burn (p ≤ 0.0001), with damage seen to increase until day 3 post-burn. For 5 second duration burns, by day 7 post-burn the 80°C and 90°C scalds had damage detected significantly deeper in the tissue than the 70°C scalds (p ≤ 0.001). A reliable and safe model of porcine scald burn injury has been successfully developed. The novel apparatus with continually refreshed water improves consistency of scald creation for long exposure times. This model allows the pathophysiology of scald burn wound creation and progression to be examined. PMID:27612153

  10. Thermodynamically consistent model of brittle oil shales under overpressure

    Science.gov (United States)

    Izvekov, Oleg

    2016-04-01

    The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.

  11. A self-consistent model of an isothermal tokamak

    Science.gov (United States)

    McNamara, Steven; Lilley, Matthew

    2014-10-01

    Continued progress in liquid lithium coating technologies have made the development of a beam driven tokamak with minimal edge recycling a feasibly possibility. Such devices are characterised by improved confinement due to their inherent stability and the suppression of thermal conduction. Particle and energy confinement become intrinsically linked and the plasma thermal energy content is governed by the injected beam. A self-consistent model of a purely beam fuelled isothermal tokamak is presented, including calculations of the density profile, bulk species temperature ratios and the fusion output. Stability considerations constrain the operating parameters and regions of stable operation are identified and their suitability to potential reactor applications discussed.

  12. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  13. Self-consistent Modeling of Elastic Anisotropy in Shale

    Science.gov (United States)

    Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.

    2012-12-01

    Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.

  14. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Manchon, Aurelien; Praetorius, Dirk; Suess, Dieter

    2016-01-01

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  15. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  16. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas

    2016-12-17

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  17. Classical and Quantum Consistency of the DGP Model

    CERN Document Server

    Nicolis, A; Nicolis, Alberto; Rattazzi, Riccardo

    2004-01-01

    We study the Dvali-Gabadadze-Porrati model by the method of the boundary effective action. The truncation of this action to the bending mode \\pi consistently describes physics in a wide range of regimes both at the classical and at the quantum level. The Vainshtein effect, which restores agreement with precise tests of general relativity, follows straightforwardly. We give a simple and general proof of stability, i.e. absence of ghosts in the fluctuations, valid for most of the relevant cases, like for instance the spherical source in asymptotically flat space. However we confirm that around certain interesting self-accelerating cosmological solutions there is a ghost. We consider the issue of quantum corrections. Around flat space \\pi becomes strongly coupled below a macroscopic length of 1000 km, thus impairing the predictivity of the model. Indeed the tower of higher dimensional operators which is expected by a generic UV completion of the model limits predictivity at even larger length scales. We outline ...

  18. Consistent constraints on the Standard Model Effective Field Theory

    International Nuclear Information System (INIS)

    Berthier, Laure; Trott, Michael

    2016-01-01

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.

  19. Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš

    2013-01-01

    Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf

  20. Aggregated wind power plant models consisting of IEC wind turbine models

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Hansen, Anca Daniela

    2015-01-01

    The common practice regarding the modelling of large generation components has been to make use of models representing the performance of the individual components with a required level of accuracy and details. Owing to the rapid increase of wind power plants comprising large number of wind...... turbines, parameters and models to represent each individual wind turbine in detail makes it necessary to develop aggregated wind power plant models considering the simulation time for power system stability studies. In this paper, aggregated wind power plant models consisting of the IEC 61400-27 variable...... speed wind turbine models (type 3 and type 4) with a power plant controller is presented. The performance of the detailed benchmark wind power plant model and the aggregated model are compared by means of simulations for the specified test cases. Consequently, the results are summarized and discussed...

  1. Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description

    KAUST Repository

    Moreno Chaparro, Nicolas; Nunes, Suzana Pereira; Calo, Victor M.

    2015-01-01

    considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling

  2. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  3. Flood damage: a model for consistent, complete and multipurpose scenarios

    Science.gov (United States)

    Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia

    2016-12-01

    Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  4. Behavioral Consistency of C and Verilog Programs Using Bounded Model Checking

    National Research Council Canada - National Science Library

    Clarke, Edmund; Kroening, Daniel; Yorav, Karen

    2003-01-01

    .... We describe experimental results on various reactive present an algorithm that checks behavioral consistency between an ANSI-C program and a circuit given in Verilog using Bounded Model Checking...

  5. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....

  6. Self-consistent approach for neutral community models with speciation

    NARCIS (Netherlands)

    Haegeman, Bart; Etienne, Rampal S.

    Hubbell's neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is

  7. Exotic nuclei in self-consistent mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.

    1999-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics

  8. Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models

    Science.gov (United States)

    Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.

    2011-09-01

    We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.

  9. Is the island universe model consistent with observations?

    OpenAIRE

    Piao, Yun-Song

    2005-01-01

    We study the island universe model, in which initially the universe is in a cosmological constant sea, then the local quantum fluctuations violating the null energy condition create the islands of matter, some of which might corresponds to our observable universe. We examine the possibility that the island universe model is regarded as an alternative scenario of the origin of observable universe.

  10. Reconstruction of scalar field theories realizing inflation consistent with the Planck and BICEP2 results

    Directory of Open Access Journals (Sweden)

    Kazuharu Bamba

    2014-10-01

    Full Text Available We reconstruct scalar field theories to realize inflation compatible with the BICEP2 result as well as the Planck. In particular, we examine the chaotic inflation model, natural (or axion inflation model, and an inflationary model with a hyperbolic inflaton potential. We perform an explicit approach to find out a scalar field model of inflation in which any observations can be explained in principle.

  11. Thermodynamically consistent description of criticality in models of correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Kauch, Anna; Pokorný, Vladislav

    2017-01-01

    Roč. 95, č. 4 (2017), s. 1-14, č. článku 045108. ISSN 2469-9950 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : conserving approximations * Anderson model * Hubbard model * parquet equations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  12. Consistent Evolution of Software Artifacts and Non-Functional Models

    Science.gov (United States)

    2014-11-14

    induce bad software performance)? 15. SUBJECT TERMS EOARD, Nano particles, Photo-Acoustic Sensors, Model-Driven Engineering ( MDE ), Software Performance...Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy Email: vittorio.cortellessa@univaq.it Web : http: // www. di. univaq. it/ cortelle/ Phone...Model-Driven Engineering ( MDE ), Software Performance Engineering (SPE), Change Propagation, Performance Antipatterns. For sake of readability of the

  13. Phase models of galaxies consisting of disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1987-01-01

    A method of finding the phase density of a two-component model of mass distribution is developed. The equipotential surfaces and the potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, which provides the existence of an imbedded thin disk in halo. The equidensity surfaces of the halo coincide with the equipotentials. Phase models for the halo and the disk are constructed separately on the basis of spatial and surface mass densities by solving the corresponding integral equations. In particular the models for the halo with finite dimensions can be constructed. The even part of the phase density in respect to velocities is only found. For the halo it depends on the energy integral as a single argument

  14. Phase models of galaxies consisting of a disk and halo

    International Nuclear Information System (INIS)

    Osipkov, L.P.; Kutuzov, S.A.

    1988-01-01

    A method is developed for finding the phase density of a two-component model of a distribution of masses. The equipotential surfaces and potential law are given. The equipotentials are lenslike surfaces with a sharp edge in the equatorial plane, this ensuring the existence of a vanishingly thin embedded disk. The equidensity surfaces of the halo coincide with the equipotentials. Phase models are constructed separately for the halo and for the disk on the basis of the spatial and surface mass densities by the solution of the corresponding integral equations. In particular, models with a halo having finite dimensions can be constructed. For both components, the part of the phase density even with respect to the velocities is found. For the halo, it depends only on the energy integral. Two examples, for which exact solutions are found, are considered

  15. A thermodynamically consistent model of shape-memory alloys

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora

    2011-01-01

    Roč. 11, č. 1 (2011), s. 355-356 ISSN 1617-7061 R&D Projects: GA ČR GAP201/10/0357 Institutional research plan: CEZ:AV0Z20760514 Keywords : slape memory alloys * model based on relaxation * thermomechanic coupling Subject RIV: BA - General Mathematics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201110169/abstract

  16. Calibration and consistency of results of an ionization-chamber secondary standard measuring system for activity

    International Nuclear Information System (INIS)

    Schrader, Heinrich

    2000-01-01

    Calibration in terms of activity of the ionization-chamber secondary standard measuring systems at the PTB is described. The measurement results of a Centronic IG12/A20, a Vinten ISOCAL IV and a radionuclide calibrator chamber for nuclear medicine applications are discussed, their energy-dependent efficiency curves established and the consistency checked using recently evaluated radionuclide decay data. Criteria for evaluating and transferring calibration factors (or efficiencies) are given

  17. Self-consistent assessment of Englert-Schwinger model on atomic properties

    Science.gov (United States)

    Lehtomäki, Jouko; Lopez-Acevedo, Olga

    2017-12-01

    Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-1/5 vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.

  18. Spectrally-consistent regularization modeling of turbulent natural convection flows

    International Nuclear Information System (INIS)

    Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel

    2012-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.

  19. On the internal consistency of holographic dark energy models

    International Nuclear Information System (INIS)

    Horvat, R

    2008-01-01

    Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT

  20. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V

    2014-09-27

    Background Models based on the Helmholtz `slip\\' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint-based numerical tools for adaptive mesh refinement and parameter sensitivity analysis. Methods We show that the direct formulation of the `slip\\' model is adjoint inconsistent, and leads to an ill-posed adjoint problem. We propose a modified formulation of the coupled `slip\\' model, which is shown to be well-posed, and therefore automatically adjoint-consistent. Results Numerical examples are presented to illustrate the computation and use of the adjoint solution in two-dimensional microfluidics problems. Conclusions An adjoint-consistent formulation for Helmholtz `slip\\' models of electroosmotic flows has been proposed. This formulation provides adjoint solutions that can be reliably used for mesh refinement and sensitivity analysis.

  1. Requirements for UML and OWL Integration Tool for User Data Consistency Modeling and Testing

    DEFF Research Database (Denmark)

    Nytun, J. P.; Jensen, Christian Søndergaard; Oleshchuk, V. A.

    2003-01-01

    The amount of data available on the Internet is continuously increasing, consequentially there is a growing need for tools that help to analyse the data. Testing of consistency among data received from different sources is made difficult by the number of different languages and schemas being used....... In this paper we analyze requirements for a tool that support integration of UML models and ontologies written in languages like the W3C Web Ontology Language (OWL). The tool can be used in the following way: after loading two legacy models into the tool, the tool user connects them by inserting modeling......, an important part of this technique is attaching of OCL expressions to special boolean class attributes that we call consistency attributes. The resulting integration model can be used for automatic consistency testing of two instances of the legacy models by automatically instantiate the whole integration...

  2. Self-consistent imbedding and the ellipsoidal model model for porous rocks

    International Nuclear Information System (INIS)

    Korringa, J.; Brown, R.J.S.; Thompson, D.D.; Runge, R.J.

    1979-01-01

    Equations are obtained for the effective elastic moduli for a model of an isotropic, heterogeneous, porous medium. The mathematical model used for computation is abstract in that it is not simply a rigorous computation for a composite medium of some idealized geometry, although the computation contains individual steps which are just that. Both the solid part and pore space are represented by ellipsoidal or spherical 'grains' or 'pores' of various sizes and shapes. The strain of each grain, caused by external forces applied to the medium, is calculated in a self-consistent imbedding (SCI) approximation, which replaces the true surrounding of any given grain or pore by an isotropic medium defined by the effective moduli to be computed. The ellipsoidal nature of the shapes allows us to use Eshelby's theoretical treatment of a single ellipsoidal inclusion in an infiinte homogeneous medium. Results are compared with the literature, and discrepancies are found with all published accounts of this problem. Deviations from the work of Wu, of Walsh, and of O'Connell and Budiansky are attributed to a substitution made by these authors which though an identity for the exact quantities involved, is only approximate in the SCI calculation. This reduces the validity of the equations to first-order effects only. Differences with the results of Kuster and Toksoez are attributed to the fact that the computation of these authors is not self-consistent in the sense used here. A result seems to be the stiffening of the medium as if the pores are held apart. For spherical grains and pores, their calculated moduli are those given by the Hashin-Shtrikman upper bounds. Our calculation reproduces, in the case of spheres, an early result of Budiansky. An additional feature of our work is that the algebra is simpler than in earlier work. We also incorporate into the theory the possibility that fluid-filled pores are interconnected

  3. Towards an Information Model of Consistency Maintenance in Distributed Interactive Applications

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2008-01-01

    Full Text Available A novel framework to model and explore predictive contract mechanisms in distributed interactive applications (DIAs using information theory is proposed. In our model, the entity state update scheme is modelled as an information generation, encoding, and reconstruction process. Such a perspective facilitates a quantitative measurement of state fidelity loss as a result of the distribution protocol. Results from an experimental study on a first-person shooter game are used to illustrate the utility of this measurement process. We contend that our proposed model is a starting point to reframe and analyse consistency maintenance in DIAs as a problem in distributed interactive media compression.

  4. A non-parametric consistency test of the ΛCDM model with Planck CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Aghamousa, Amir; Shafieloo, Arman [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Hamann, Jan, E-mail: amir@aghamousa.com, E-mail: jan.hamann@unsw.edu.au, E-mail: shafieloo@kasi.re.kr [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2017-09-01

    Non-parametric reconstruction methods, such as Gaussian process (GP) regression, provide a model-independent way of estimating an underlying function and its uncertainty from noisy data. We demonstrate how GP-reconstruction can be used as a consistency test between a given data set and a specific model by looking for structures in the residuals of the data with respect to the model's best-fit. Applying this formalism to the Planck temperature and polarisation power spectrum measurements, we test their global consistency with the predictions of the base ΛCDM model. Our results do not show any serious inconsistencies, lending further support to the interpretation of the base ΛCDM model as cosmology's gold standard.

  5. Consistency in Estimation and Model Selection of Dynamic Panel Data Models with Fixed Effects

    Directory of Open Access Journals (Sweden)

    Guangjie Li

    2015-07-01

    Full Text Available We examine the relationship between consistent parameter estimation and model selection for autoregressive panel data models with fixed effects. We find that the transformation of fixed effects proposed by Lancaster (2002 does not necessarily lead to consistent estimation of common parameters when some true exogenous regressors are excluded. We propose a data dependent way to specify the prior of the autoregressive coefficient and argue for comparing different model specifications before parameter estimation. Model selection properties of Bayes factors and Bayesian information criterion (BIC are investigated. When model uncertainty is substantial, we recommend the use of Bayesian Model Averaging to obtain point estimators with lower root mean squared errors (RMSE. We also study the implications of different levels of inclusion probabilities by simulations.

  6. Development of a Model for Dynamic Recrystallization Consistent with the Second Derivative Criterion

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2017-11-01

    Full Text Available Dynamic recrystallization (DRX processes are widely used in industrial hot working operations, not only to keep the forming forces low but also to control the microstructure and final properties of the workpiece. According to the second derivative criterion (SDC by Poliak and Jonas, the onset of DRX can be detected from an inflection point in the strain-hardening rate as a function of flow stress. Various models are available that can predict the evolution of flow stress from incipient plastic flow up to steady-state deformation in the presence of DRX. Some of these models have been implemented into finite element codes and are widely used for the design of metal forming processes, but their consistency with the SDC has not been investigated. This work identifies three sources of inconsistencies that models for DRX may exhibit. For a consistent modeling of the DRX kinetics, a new strain-hardening model for the hardening stages III to IV is proposed and combined with consistent recrystallization kinetics. The model is devised in the Kocks-Mecking space based on characteristic transition in the strain-hardening rate. A linear variation of the transition and inflection points is observed for alloy 800H at all tested temperatures and strain rates. The comparison of experimental and model results shows that the model is able to follow the course of the strain-hardening rate very precisely, such that highly accurate flow stress predictions are obtained.

  7. Precommitted Investment Strategy versus Time-Consistent Investment Strategy for a Dual Risk Model

    Directory of Open Access Journals (Sweden)

    Lidong Zhang

    2014-01-01

    Full Text Available We are concerned with optimal investment strategy for a dual risk model. We assume that the company can invest into a risk-free asset and a risky asset. Short-selling and borrowing money are allowed. Due to lack of iterated-expectation property, the Bellman Optimization Principle does not hold. Thus we investigate the precommitted strategy and time-consistent strategy, respectively. We take three steps to derive the precommitted investment strategy. Furthermore, the time-consistent investment strategy is also obtained by solving the extended Hamilton-Jacobi-Bellman equations. We compare the precommitted strategy with time-consistent strategy and find that these different strategies have different advantages: the former can make value function maximized at the original time t=0 and the latter strategy is time-consistent for the whole time horizon. Finally, numerical analysis is presented for our results.

  8. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  9. A consistency assessment of coupled cohesive zone models for mixed-mode debonding problems

    Directory of Open Access Journals (Sweden)

    R. Dimitri

    2014-07-01

    Full Text Available Due to their simplicity, cohesive zone models (CZMs are very attractive to describe mixed-mode failure and debonding processes of materials and interfaces. Although a large number of coupled CZMs have been proposed, and despite the extensive related literature, little attention has been devoted to ensuring the consistency of these models for mixed-mode conditions, primarily in a thermodynamical sense. A lack of consistency may affect the local or global response of a mechanical system. This contribution deals with the consistency check for some widely used exponential and bilinear mixed-mode CZMs. The coupling effect on stresses and energy dissipation is first investigated and the path-dependance of the mixed-mode debonding work of separation is analitically evaluated. Analytical predictions are also compared with results from numerical implementations, where the interface is described with zero-thickness contact elements. A node-to-segment strategy is here adopted, which incorporates decohesion and contact within a unified framework. A new thermodynamically consistent mixed-mode CZ model based on a reformulation of the Xu-Needleman model as modified by van den Bosch et al. is finally proposed and derived by applying the Coleman and Noll procedure in accordance with the second law of thermodynamics. The model holds monolithically for loading and unloading processes, as well as for decohesion and contact, and its performance is demonstrated through suitable examples.

  10. Iterative reconstruction for quantitative computed tomography analysis of emphysema: consistent results using different tube currents

    Directory of Open Access Journals (Sweden)

    Yamashiro T

    2015-02-01

    Full Text Available Tsuneo Yamashiro,1 Tetsuhiro Miyara,1 Osamu Honda,2 Noriyuki Tomiyama,2 Yoshiharu Ohno,3 Satoshi Noma,4 Sadayuki Murayama1 On behalf of the ACTIve Study Group 1Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan; 2Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; 3Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; 4Department of Radiology, Tenri Hospital, Tenri, Nara, Japan Purpose: To assess the advantages of iterative reconstruction for quantitative computed tomography (CT analysis of pulmonary emphysema. Materials and methods: Twenty-two patients with pulmonary emphysema underwent chest CT imaging using identical scanners with three different tube currents: 240, 120, and 60 mA. Scan data were converted to CT images using Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D and a conventional filtered-back projection mode. Thus, six scans with and without AIDR3D were generated per patient. All other scanning and reconstruction settings were fixed. The percent low attenuation area (LAA%; < -950 Hounsfield units and the lung density 15th percentile were automatically measured using a commercial workstation. Comparisons of LAA% and 15th percentile results between scans with and without using AIDR3D were made by Wilcoxon signed-rank tests. Associations between body weight and measurement errors among these scans were evaluated by Spearman rank correlation analysis. Results: Overall, scan series without AIDR3D had higher LAA% and lower 15th percentile values than those with AIDR3D at each tube current (P<0.0001. For scan series without AIDR3D, lower tube currents resulted in higher LAA% values and lower 15th percentiles. The extent of emphysema was significantly different between each pair among scans when not using AIDR3D (LAA%, P<0.0001; 15th percentile, P<0.01, but was not

  11. Self-consistency in the phonon space of the particle-phonon coupling model

    Science.gov (United States)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2018-04-01

    In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.

  12. Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-06-30

    We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e., ≥200≥200 beads per chain) with a significant reduction in the number of particles required (i.e., ≥20≥20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.

  13. A new k-epsilon model consistent with Monin-Obukhov similarity theory

    DEFF Research Database (Denmark)

    van der Laan, Paul; Kelly, Mark C.; Sørensen, Niels N.

    2017-01-01

    A new k-" model is introduced that is consistent with Monin–Obukhov similarity theory (MOST). The proposed k-" model is compared with another k-" model that was developed in an attempt to maintain inlet profiles compatible with MOST. It is shown that the previous k-" model is not consistent with ...

  14. New Results on a Stochastic Duel Game with Each Force Consisting of Heterogeneous Units

    Science.gov (United States)

    2013-02-01

    study of duel models dates back to the 1910s, when Lanchester (1916) proposed differential equations that govern the strength of each force through time...which gave rise to what later became known as Lanchester models. A stream of works extended the Lanchester models—which are deterministic in nature...869. Kress, M. and Talmor, I. (1999). A new look at the 3:1 rule of combat through markov stochastic lanchester models. The Journal of the Operational

  15. Self-consistent electronic structure of a model stage-1 graphite acceptor intercalate

    International Nuclear Information System (INIS)

    Campagnoli, G.; Tosatti, E.

    1981-04-01

    A simple but self-consistent LCAO scheme is used to study the π-electronic structure of an idealized stage-1 ordered graphite acceptor intercalate, modeled approximately on C 8 AsF 5 . The resulting non-uniform charge population within the carbon plane, band structure, optical and energy loss properties are discussed and compared with available spectroscopic evidence. The calculated total energy is used to estimate migration energy barriers, and the intercalate vibration mode frequency. (author)

  16. Consistent deformations of dual formulations of linearized gravity: A no-go result

    International Nuclear Information System (INIS)

    Bekaert, Xavier; Boulanger, Nicolas; Henneaux, Marc

    2003-01-01

    The consistent, local, smooth deformations of the dual formulation of linearized gravity involving a tensor field in the exotic representation of the Lorentz group with Young symmetry type (D-3,1) (one column of length D-3 and one column of length 1) are systematically investigated. The rigidity of the Abelian gauge algebra is first established. We next prove a no-go theorem for interactions involving at most two derivatives of the fields

  17. A thermodynamically consistent model for granular-fluid mixtures considering pore pressure evolution and hypoplastic behavior

    Science.gov (United States)

    Hess, Julian; Wang, Yongqi

    2016-11-01

    A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.

  18. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  19. Consistent robustness analysis (CRA) identifies biologically relevant properties of regulatory network models.

    Science.gov (United States)

    Saithong, Treenut; Painter, Kevin J; Millar, Andrew J

    2010-12-16

    A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model.

  20. Possible world based consistency learning model for clustering and classifying uncertain data.

    Science.gov (United States)

    Liu, Han; Zhang, Xianchao; Zhang, Xiaotong

    2018-06-01

    Possible world has shown to be effective for handling various types of data uncertainty in uncertain data management. However, few uncertain data clustering and classification algorithms are proposed based on possible world. Moreover, existing possible world based algorithms suffer from the following issues: (1) they deal with each possible world independently and ignore the consistency principle across different possible worlds; (2) they require the extra post-processing procedure to obtain the final result, which causes that the effectiveness highly relies on the post-processing method and the efficiency is also not very good. In this paper, we propose a novel possible world based consistency learning model for uncertain data, which can be extended both for clustering and classifying uncertain data. This model utilizes the consistency principle to learn a consensus affinity matrix for uncertain data, which can make full use of the information across different possible worlds and then improve the clustering and classification performance. Meanwhile, this model imposes a new rank constraint on the Laplacian matrix of the consensus affinity matrix, thereby ensuring that the number of connected components in the consensus affinity matrix is exactly equal to the number of classes. This also means that the clustering and classification results can be directly obtained without any post-processing procedure. Furthermore, for the clustering and classification tasks, we respectively derive the efficient optimization methods to solve the proposed model. Experimental results on real benchmark datasets and real world uncertain datasets show that the proposed model outperforms the state-of-the-art uncertain data clustering and classification algorithms in effectiveness and performs competitively in efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Traffic Multiresolution Modeling and Consistency Analysis of Urban Expressway Based on Asynchronous Integration Strategy

    Directory of Open Access Journals (Sweden)

    Liyan Zhang

    2017-01-01

    Full Text Available The paper studies multiresolution traffic flow simulation model of urban expressway. Firstly, compared with two-level hybrid model, three-level multiresolution hybrid model has been chosen. Then, multiresolution simulation framework and integration strategies are introduced. Thirdly, the paper proposes an urban expressway multiresolution traffic simulation model by asynchronous integration strategy based on Set Theory, which includes three submodels: macromodel, mesomodel, and micromodel. After that, the applicable conditions and derivation process of the three submodels are discussed in detail. In addition, in order to simulate and evaluate the multiresolution model, “simple simulation scenario” of North-South Elevated Expressway in Shanghai has been established. The simulation results showed the following. (1 Volume-density relationships of three submodels are unanimous with detector data. (2 When traffic density is high, macromodel has a high precision and smaller error and the dispersion of results is smaller. Compared with macromodel, simulation accuracies of micromodel and mesomodel are lower but errors are bigger. (3 Multiresolution model can simulate characteristics of traffic flow, capture traffic wave, and keep the consistency of traffic state transition. Finally, the results showed that the novel multiresolution model can have higher simulation accuracy and it is feasible and effective in the real traffic simulation scenario.

  2. A consistent modelling methodology for secondary settling tanks in wastewater treatment.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Nopens, Ingmar

    2011-03-01

    The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the biological reactor yielding an ODE solver, and then to the solid-liquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Detecting consistent patterns of directional adaptation using differential selection codon models.

    Science.gov (United States)

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  4. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    Science.gov (United States)

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  5. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  6. ICFD modeling of final settlers - developing consistent and effective simulation model structures

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Guyonvarch, Estelle; Ramin, Elham

    CFD concept. The case of secondary settling tanks (SSTs) is used to demonstrate the methodological steps using the validated CFD model with the hindered-transientcompression settling velocity model by (10). Factor screening and latin hypercube sampling (LSH) are used to degenerate a 2-D axi-symmetrical CFD...... of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii) assessment of modelling the onset of transient and compression settling. Results suggest that the iCFD model developed...... the feed-layer. These scenarios were inspired by literature (1; 2; 9). As for the D0--iCFD model, values of SSRE obtained are below 1 with an average SSRE=0.206. The simulation model thus can predict the solids distribution inside the tank with a satisfactory accuracy. Averaged relative errors of 8.1 %, 3...

  7. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V; Prudhomme, Serge; van der Zee, Kris G; Carey, Graham F

    2014-01-01

    Models based on the Helmholtz `slip' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint

  8. Consistent phase-change modeling for CO2-based heat mining operation

    DEFF Research Database (Denmark)

    Singh, Ashok Kumar; Veje, Christian

    2017-01-01

    The accuracy of mathematical modeling of phase-change phenomena is limited if a simple, less accurate equation of state completes the governing partial differential equation. However, fluid properties (such as density, dynamic viscosity and compressibility) and saturation state are calculated using...... a highly accurate, complex equation of state. This leads to unstable and inaccurate simulation as the equation of state and governing partial differential equations are mutually inconsistent. In this study, the volume-translated Peng–Robinson equation of state was used with emphasis to model the liquid......–gas phase transition with more accuracy and consistency. Calculation of fluid properties and saturation state were based on the volume translated Peng–Robinson equation of state and results verified. The present model has been applied to a scenario to simulate a CO2-based heat mining process. In this paper...

  9. Dynamic consistency of leader/fringe models of exhaustible resource markets

    International Nuclear Information System (INIS)

    Pelot, R.P.

    1990-01-01

    A dynamic feedback pricing model is developed for a leader/fringe supply market of exhaustible resources. The discrete game optimization model includes marginal costs which may be quadratic functions of cumulative production, a linear demand curve and variable length periods. The multiperiod formulation is based on the nesting of later periods' Kuhn-Tucker conditions into earlier periods' optimizations. This procedure leads to dynamically consistent solutions where the leader's strategy is credible as he has no incentive to alter his original plan at some later stage. A static leader-fringe model may yield multiple local optima. This can result in the leader forcing the fringe to produce at their capacity constraint, which would otherwise be non-binding if it is greater than the fringe's unconstrained optimal production rate. Conditions are developed where the optimal solution occurs at a corner where constraints meet, of which limit pricing is a special case. The 2-period leader/fringe feedback model is compared to the computationally simpler open-loop model. Under certain conditions, the open-loop model yields the same result as the feedback model. A multiperiod feedback model of the world oil market with OPEC as price-leader and the remaining world oil suppliers comprising the fringe is compared with the open-loop solution. The optimal profits and prices are very similar, but large differences in production rates may occur. The exhaustion date predicted by the open-loop model may also differ from the feedback outcome. Some numerical tests result in non-contiguous production periods for a player or limit pricing phases. 85 refs., 60 figs., 30 tabs

  10. Nonparametric test of consistency between cosmological models and multiband CMB measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aghamousa, Amir [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Shafieloo, Arman, E-mail: amir@apctp.org, E-mail: shafieloo@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-06-01

    We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare between the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit ΛCDM model at 95% (∼ 2σ) confidence distance from the center of the nonparametric confidence set while repeating the analysis excluding the Planck 217 × 217 GHz spectrum data, the best fit ΛCDM model shifts to 70% (∼ 1σ) confidence distance. The most prominent features in the data deviating from the best fit ΛCDM model seems to be at low multipoles  18 < ℓ < 26 at greater than 2σ, ℓ ∼ 750 at ∼1 to 2σ and ℓ ∼ 1800 at greater than 2σ level. Excluding the 217×217 GHz spectrum the feature at ℓ ∼ 1800 becomes substantially less significance at ∼1 to 2σ confidence level. Results of our analysis based on the new approach we propose in this work are in agreement with other analysis done using alternative methods.

  11. A self-consistent model for thermodynamics of multicomponent solid solutions

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2016-01-01

    The self-consistent concept recently published in this journal (108, 27–30, 2015) is extended from a binary to a multicomponent system. This is possible by exploiting the trapping concept as basis for including the interaction of atoms in terms of pairs (e.g. A–A, B–B, C–C…) and couples (e.g. A–B, B–C, …) in a multicomponent system with A as solvent and B, C, … as dilute solutes. The model results in a formulation of Gibbs-energy, which can be minimized. Examples show that the couple and pair formation may influence the equilibrium Gibbs energy markedly.

  12. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge

    International Nuclear Information System (INIS)

    Chabert, P.; Raimbault, J.L.; Rax, J.M.; Lieberman, M.A.

    2004-01-01

    It has been shown previously [Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)], using a non-self-consistent model based on solutions of Maxwell's equations, that several electromagnetic effects may compromise capacitive discharge uniformity. Among these, the standing wave effect dominates at low and moderate electron densities when the driving frequency is significantly greater than the usual 13.56 MHz. In the present work, two different global discharge models have been coupled to a transmission line model and used to obtain the self-consistent characteristics of the standing wave effect. An analytical solution for the wavelength λ was derived for the lossless case and compared to the numerical results. For typical plasma etching conditions (pressure 10-100 mTorr), a good approximation of the wavelength is λ/λ 0 ≅40 V 0 1/10 l -1/2 f -2/5 , where λ 0 is the wavelength in vacuum, V 0 is the rf voltage magnitude in volts at the discharge center, l is the electrode spacing in meters, and f the driving frequency in hertz

  13. Self-consistent model for pulsed direct-current N2 glow discharge

    International Nuclear Information System (INIS)

    Liu Chengsen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N 2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment. (authors)

  14. A self-consistent model for polycrystal deformation. Description and implementation

    International Nuclear Information System (INIS)

    Clausen, B.; Lorentzen, T.

    1997-04-01

    This report is a manual for the ANSI C implementation of an incremental elastic-plastic rate-insensitive self-consistent polycrystal deformation model based on (Hutchinson 1970). The model is furthermore described in the Ph.D. thesis by Clausen (Clausen 1997). The structure of the main program, sc m odel.c, and its subroutines are described with flow-charts. Likewise the pre-processor, sc i ni.c, is described with a flowchart. Default values of all the input parameters are given in the pre-processor, but the user is able to select from other pre-defined values or enter new values. A sample calculation is made and the results are presented as plots and examples of the output files are shown. (au) 4 tabs., 28 ills., 17 refs

  15. A self-consistent model for polycrystal deformation. Description and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lorentzen, T.

    1997-04-01

    This report is a manual for the ANSI C implementation of an incremental elastic-plastic rate-insensitive self-consistent polycrystal deformation model based on (Hutchinson 1970). The model is furthermore described in the Ph.D. thesis by Clausen (Clausen 1997). The structure of the main program, sc{sub m}odel.c, and its subroutines are described with flow-charts. Likewise the pre-processor, sc{sub i}ni.c, is described with a flowchart. Default values of all the input parameters are given in the pre-processor, but the user is able to select from other pre-defined values or enter new values. A sample calculation is made and the results are presented as plots and examples of the output files are shown. (au) 4 tabs., 28 ills., 17 refs.

  16. Modification of Operating Procedure for EZ-Retriever (Trademark) Microwave to Produce Consistent and Reproducible Immunohistochemical Results

    National Research Council Canada - National Science Library

    Tompkins, Christina P; Fath, Denise M; Hamilton, Tracey A; Kan, Robert K

    2006-01-01

    The present study was conducted to optimize the operating procedure for the EZ- Retriever" microwave oven to produce consistent and reproducible staining results with microtubule-associated protein 2 (MAP-2...

  17. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    Science.gov (United States)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  18. A self-consistent model of the three-phase interstellar medium in disk galaxies

    International Nuclear Information System (INIS)

    Wang, Z.

    1989-01-01

    In the present study the author analyzes a number of physical processes concerning velocity and spatial distributions, ionization structure, pressure variation, mass and energy balance, and equation of state of the diffuse interstellar gas in a three phase model. He also considers the effects of this model on the formation of molecular clouds and the evolution of disk galaxies. The primary purpose is to incorporate self-consistently the interstellar conditions in a typical late-type galaxy, and to relate these to various observed large-scale phenomena. He models idealized situations both analytically and numerically, and compares the results with observational data of the Milky Way Galaxy and other nearby disk galaxies. Several main conclusions of this study are: (1) the highly ionized gas found in the lower Galactic halo is shown to be consistent with a model in which the gas is photoionized by the diffuse ultraviolet radiation; (2) in a quasi-static and self-regulatory configuration, the photoelectric effects of interstellar grains are primarily responsible for heating the cold (T ≅ 100K) gas; the warm (T ≅ 8,000K) gas may be heated by supernova remnants and other mechanisms; (3) the large-scale atomic and molecular gas distributions in a sample of 15 disk galaxies can be well explained if molecular cloud formation and star formation follow a modified Schmidt Law; a scaling law for the radial gas profiles is proposed based on this model, and it is shown to be applicable to the nearby late-type galaxies where radio mapping data is available; for disk galaxies of earlier type, the effect of their massive central bulges may have to be taken into account

  19. Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models

    KAUST Repository

    Vignal, Philippe

    2016-01-01

    of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure

  20. A CVAR scenario for a standard monetary model using theory-consistent expectations

    DEFF Research Database (Denmark)

    Juselius, Katarina

    2017-01-01

    A theory-consistent CVAR scenario describes a set of testable regularities capturing basic assumptions of the theoretical model. Using this concept, the paper considers a standard model for exchange rate determination and shows that all assumptions about the model's shock structure and steady...

  1. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  2. Development of a 3D consistent 1D neutronics model for reactor core simulation

    International Nuclear Information System (INIS)

    Lee, Ki Bog; Joo, Han Gyu; Cho, Byung Oh; Zee, Sung Quun

    2001-02-01

    In this report a 3D consistent 1D model based on nonlinear analytic nodal method is developed to reproduce the 3D results. During the derivation, the current conservation factor (CCF) is introduced which guarantees the same axial neutron currents obtained from the 1D equation as the 3D reference values. Furthermore in order to properly use 1D group constants, a new 1D group constants representation scheme employing tables for the fuel temperature, moderator density and boron concentration is developed and functionalized for the control rod tip position. To test the 1D kinetics model with CCF, several steady state and transient calculations were performed and compared with 3D reference values. The errors of K-eff values were reduced about one tenth when using CCF without significant computational overhead. And the errors of power distribution were decreased to the range of one fifth or tenth at steady state calculation. The 1D kinetics model with CCF and the 1D group constant functionalization employing tables as a function of control rod tip position can provide preciser results at the steady state and transient calculation. Thus it is expected that the 1D kinetics model derived in this report can be used in the safety analysis, reactor real time simulation coupled with system analysis code, operator support system etc.

  3. A Self-Consistent Fault Slip Model for the 2011 Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Yamazaki, Yoshiki; Cheung, Kwok Fai; Lay, Thorne

    2018-02-01

    The unprecedented geophysical and hydrographic data sets from the 2011 Tohoku earthquake and tsunami have facilitated numerous modeling and inversion analyses for a wide range of dislocation models. Significant uncertainties remain in the slip distribution as well as the possible contribution of tsunami excitation from submarine slumping or anelastic wedge deformation. We seek a self-consistent model for the primary teleseismic and tsunami observations through an iterative approach that begins with downsampling of a finite fault model inverted from global seismic records. Direct adjustment of the fault displacement guided by high-resolution forward modeling of near-field tsunami waveform and runup measurements improves the features that are not satisfactorily accounted for by the seismic wave inversion. The results show acute sensitivity of the runup to impulsive tsunami waves generated by near-trench slip. The adjusted finite fault model is able to reproduce the DART records across the Pacific Ocean in forward modeling of the far-field tsunami as well as the global seismic records through a finer-scale subfault moment- and rake-constrained inversion, thereby validating its ability to account for the tsunami and teleseismic observations without requiring an exotic source. The upsampled final model gives reasonably good fits to onshore and offshore geodetic observations albeit early after-slip effects and wedge faulting that cannot be reliably accounted for. The large predicted slip of over 20 m at shallow depth extending northward to 39.7°N indicates extensive rerupture and reduced seismic hazard of the 1896 tsunami earthquake zone, as inferred to varying extents by several recent joint and tsunami-only inversions.

  4. Consistency, Verification, and Validation of Turbulence Models for Reynolds-Averaged Navier-Stokes Applications

    Science.gov (United States)

    Rumsey, Christopher L.

    2009-01-01

    In current practice, it is often difficult to draw firm conclusions about turbulence model accuracy when performing multi-code CFD studies ostensibly using the same model because of inconsistencies in model formulation or implementation in different codes. This paper describes an effort to improve the consistency, verification, and validation of turbulence models within the aerospace community through a website database of verification and validation cases. Some of the variants of two widely-used turbulence models are described, and two independent computer codes (one structured and one unstructured) are used in conjunction with two specific versions of these models to demonstrate consistency with grid refinement for several representative problems. Naming conventions, implementation consistency, and thorough grid resolution studies are key factors necessary for success.

  5. Self-consistent one-gluon exchange in soliton bag models

    International Nuclear Information System (INIS)

    Dodd, L.R.; Adelaide Univ.; Williams, A.G.

    1988-01-01

    The treatment of soliton bag models as two-point boundary value problems is extended to include self-consistent one-gluon exchange interactions. The colour-magnetic contribution to the nucleon-delta mass splitting is calculated self-consistently in the mean-field, one-gluon-exchange approximation for the Friedberg-Lee and Nielsen-Patkos models. Small glueball mass parameters (m GB ∝ 500 MeV) are favoured. Comparisons with previous calculations are made. (orig.)

  6. Self-consistent modeling of plasma response to impurity spreading from intense localized source

    International Nuclear Information System (INIS)

    Koltunov, Mikhail

    2012-07-01

    Non-hydrogen impurities unavoidably exist in hot plasmas of present fusion devices. They enter it intrinsically, due to plasma interaction with the wall of vacuum vessel, as well as are seeded for various purposes deliberately. Normally, the spots where injected particles enter the plasma are much smaller than its total surface. Under such conditions one has to expect a significant modification of local plasma parameters through various physical mechanisms, which, in turn, affect the impurity spreading. Self-consistent modeling of interaction between impurity and plasma is, therefore, not possible with linear approaches. A model based on the fluid description of electrons, main and impurity ions, and taking into account the plasma quasi-neutrality, Coulomb collisions of background and impurity charged particles, radiation losses, particle transport to bounding surfaces, is elaborated in this work. To describe the impurity spreading and the plasma response self-consistently, fluid equations for the particle, momentum and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solution in principal details: the magnitudes of plasma density and plasma temperatures in the regions of impurity localization and the spatial scales of these regions. The results of calculations for plasma conditions typical in tokamak experiments with impurity injection are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures is proposed.

  7. Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite

    International Nuclear Information System (INIS)

    Gustafsson, Jon Petter; Daessman, Ellinor; Baeckstroem, Mattias

    2009-01-01

    Uranium(VI), which is often elevated in granitoidic groundwaters, is known to adsorb strongly to Fe (hydr)oxides under certain conditions. This process can be used in water treatment to remove U(VI). To develop a consistent geochemical model for U(VI) adsorption to ferrihydrite, batch experiments were performed and previous data sets reviewed to optimize a set of surface complexation constants using the 3-plane CD-MUSIC model. To consider the effect of dissolved organic matter (DOM) on U(VI) speciation, new parameters for the Stockholm Humic Model (SHM) were optimized using previously published data. The model, which was constrained from available X-ray absorption fine structure (EXAFS) spectroscopy evidence, fitted the data well when the surface sites were divided into low- and high-affinity binding sites. Application of the model concept to other published data sets revealed differences in the reactivity of different ferrihydrites towards U(VI). Use of the optimized SHM parameters for U(VI)-DOM complexation showed that this process is important for U(VI) speciation at low pH. However in neutral to alkaline waters with substantial carbonate present, Ca-U-CO 3 complexes predominate. The calibrated geochemical model was used to simulate U(VI) adsorption to ferrihydrite for a hypothetical groundwater in the presence of several competitive ions. The results showed that U(VI) adsorption was strong between pH 5 and 8. Also near the calcite saturation limit, where U(VI) adsorption was weakest according to the model, the adsorption percentage was predicted to be >80%. Hence U(VI) adsorption to ferrihydrite-containing sorbents may be used as a method to bring down U(VI) concentrations to acceptable levels in groundwater

  8. Consistency of climate change projections from multiple global and regional model intercomparison projects

    Science.gov (United States)

    Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.

    2018-03-01

    We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.

  9. Physically-consistent wall boundary conditions for the k-ω turbulence model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Dixen, Martin; Jacobsen, Niels Gjøl

    2010-01-01

    A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components of the fluc......A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components...... of the fluctuating velocity signal. Both conventional k = 0 and dk/dy = 0 wall boundary conditions are considered. Results indicate that either condition can provide accurate solutions, for the bulk of the flow, over both smooth and rough beds. It is argued that the zero-gradient condition is more consistent...... with the near wall physics, however, as it allows direct integration through a viscous sublayer near smooth walls, while avoiding a viscous sublayer near rough walls. This is in contrast to the conventional k = 0 wall boundary condition, which forces resolution of a viscous sublayer in all circumstances...

  10. A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints

    Directory of Open Access Journals (Sweden)

    L. Kantha

    2016-01-01

    Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.

  11. A paradigm shift toward a consistent modeling framework to assess climate impacts

    Science.gov (United States)

    Monier, E.; Paltsev, S.; Sokolov, A. P.; Fant, C.; Chen, H.; Gao, X.; Schlosser, C. A.; Scott, J. R.; Dutkiewicz, S.; Ejaz, Q.; Couzo, E. A.; Prinn, R. G.; Haigh, M.

    2017-12-01

    Estimates of physical and economic impacts of future climate change are subject to substantial challenges. To enrich the currently popular approaches of assessing climate impacts by evaluating a damage function or by multi-model comparisons based on the Representative Concentration Pathways (RCPs), we focus here on integrating impacts into a self-consistent coupled human and Earth system modeling framework that includes modules that represent multiple physical impacts. In a sample application we show that this framework is capable of investigating the physical impacts of climate change and socio-economic stressors. The projected climate impacts vary dramatically across the globe in a set of scenarios with global mean warming ranging between 2.4°C and 3.6°C above pre-industrial by 2100. Unabated emissions lead to substantial sea level rise, acidification that impacts the base of the oceanic food chain, air pollution that exceeds health standards by tenfold, water stress that impacts an additional 1 to 2 billion people globally and agricultural productivity that decreases substantially in many parts of the world. We compare the outcomes from these forward-looking scenarios against the common goal described by the target-driven scenario of 2°C, which results in much smaller impacts. It is challenging for large internationally coordinated exercises to respond quickly to new policy targets. We propose that a paradigm shift toward a self-consistent modeling framework to assess climate impacts is needed to produce information relevant to evolving global climate policy and mitigation strategies in a timely way.

  12. Estimating long-term volatility parameters for market-consistent models

    African Journals Online (AJOL)

    Contemporary actuarial and accounting practices (APN 110 in the South African context) require the use of market-consistent models for the valuation of embedded investment derivatives. These models have to be calibrated with accurate and up-to-date market data. Arguably, the most important variable in the valuation of ...

  13. Hydrologic consistency as a basis for assessing complexity of monthly water balance models for the continental United States

    Science.gov (United States)

    Martinez, Guillermo F.; Gupta, Hoshin V.

    2011-12-01

    Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.

  14. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    Science.gov (United States)

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Self-consistent model calculations of the ordered S-matrix and the cylinder correction

    International Nuclear Information System (INIS)

    Millan, J.

    1977-11-01

    The multiperipheral ordered bootstrap of Rosenzweig and Veneziano is studied by using dual triple Regge couplings exhibiting the required threshold behavior. In the interval -0.5 less than or equal to t less than or equal to 0.8 GeV 2 self-consistent reggeon couplings and propagators are obtained for values of Regge slopes and intercepts consistent with the physical values for the leading natural-parity Regge trajectories. Cylinder effects on planar pole positions and couplings are calculated. By use of an unsymmetrical planar π--rho reggeon loop model, self-consistent solutions are obtained for the unnatural-parity mesons in the interval -0.5 less than or equal to t less than or equal to 0.6 GeV 2 . The effects of other Regge poles being neglected, the model gives a value of the π--eta splitting consistent with experiment. 24 figures, 1 table, 25 references

  16. Precommitted Investment Strategy versus Time-Consistent Investment Strategy for a General Risk Model with Diffusion

    Directory of Open Access Journals (Sweden)

    Lidong Zhang

    2014-01-01

    Full Text Available We mainly study a general risk model and investigate the precommitted strategy and the time-consistent strategy under mean-variance criterion, respectively. A lagrange method is proposed to derive the precommitted investment strategy. Meanwhile from the game theoretical perspective, we find the time-consistent investment strategy by solving the extended Hamilton-Jacobi-Bellman equations. By comparing the precommitted strategy with the time-consistent strategy, we find that the company under the time-consistent strategy has to give up the better current utility in order to keep a consistent satisfaction over the whole time horizon. Furthermore, we theoretically and numerically provide the effect of the parameters on these two optimal strategies and the corresponding value functions.

  17. Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study

    NARCIS (Netherlands)

    A. Mairesse; H. Goosse; P. Mathiot; H. Wanner; S. Dubinkina (Svetlana)

    2013-01-01

    htmlabstractThe mid-Holocene (6 kyr BP; thousand years before present) is a key period to study the consistency between model results and proxy-based reconstruction data as it corresponds to a standard test for models and a reasonable number of proxy-based records is available. Taking advantage of

  18. Height-Diameter Models for Mixed-Species Forests Consisting of Spruce, Fir, and Beech

    Directory of Open Access Journals (Sweden)

    Petráš Rudolf

    2014-06-01

    Full Text Available Height-diameter models define the general relationship between the tree height and diameter at each growth stage of the forest stand. This paper presents generalized height-diameter models for mixed-species forest stands consisting of Norway spruce (Picea abies Karst., Silver fir (Abies alba L., and European beech (Fagus sylvatica L. from Slovakia. The models were derived using two growth functions from the exponential family: the two-parameter Michailoff and three-parameter Korf functions. Generalized height-diameter functions must normally be constrained to pass through the mean stand diameter and height, and then the final growth model has only one or two parameters to be estimated. These “free” parameters are then expressed over the quadratic mean diameter, height and stand age and the final mathematical form of the model is obtained. The study material included 50 long-term experimental plots located in the Western Carpathians. The plots were established 40-50 years ago and have been repeatedly measured at 5 to 10-year intervals. The dataset includes 7,950 height measurements of spruce, 21,661 of fir and 5,794 of beech. As many as 9 regression models were derived for each species. Although the “goodness of fit” of all models showed that they were generally well suited for the data, the best results were obtained for silver fir. The coefficient of determination ranged from 0.946 to 0.948, RMSE (m was in the interval 1.94-1.97 and the bias (m was -0.031 to 0.063. Although slightly imprecise parameter estimation was established for spruce, the estimations of the regression parameters obtained for beech were quite less precise. The coefficient of determination for beech was 0.854-0.860, RMSE (m 2.67-2.72, and the bias (m ranged from -0.144 to -0.056. The majority of models using Korf’s formula produced slightly better estimations than Michailoff’s, and it proved immaterial which estimated parameter was fixed and which parameters

  19. A consistent model for the equilibrium thermodynamic functions of partially ionized flibe plasma with Coulomb corrections

    International Nuclear Information System (INIS)

    Zaghloul, Mofreh R.

    2003-01-01

    Flibe (2LiF-BeF2) is a molten salt that has been chosen as the coolant and breeding material in many design studies of the inertial confinement fusion (ICF) chamber. Flibe plasmas are to be generated in the ICF chamber in a wide range of temperatures and densities. These plasmas are more complex than the plasma of any single chemical species. Nevertheless, the composition and thermodynamic properties of the resulting flibe plasmas are needed for the gas dynamics calculations and the determination of other design parameters in the ICF chamber. In this paper, a simple consistent model for determining the detailed plasma composition and thermodynamic functions of high-temperature, fully dissociated and partially ionized flibe gas is presented and used to calculate different thermodynamic properties of interest to fusion applications. The computed properties include the average ionization state; kinetic pressure; internal energy; specific heats; adiabatic exponent, as well as the sound speed. The presented results are computed under the assumptions of local thermodynamic equilibrium (LTE) and electro-neutrality. A criterion for the validity of the LTE assumption is presented and applied to the computed results. Other attempts in the literature are assessed with their implied inaccuracies pointed out and discussed

  20. Self consistent solution of the tJ model in the overdoped regime

    Science.gov (United States)

    Shastry, B. Sriram; Hansen, Daniel

    2013-03-01

    Detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied to the t-J model in two dimensions, are presented. The theory is to second order in a parameter λ, and is valid in the overdoped regime of the tJ model. The solution reported here is from Ref, where relevant equations given in Ref are self consistently solved for the square lattice. Thermodynamic variables and the resistivity are displayed at various densities and T for two sets of band parameters. The momentum distribution function and the renormalized electronic dispersion, its width and asymmetry are reported along principal directions of the zone. The optical conductivity is calculated. The electronic spectral function A (k , ω) probed in ARPES, is detailed with different elastic scattering parameters to account for the distinction between LASER and synchrotron ARPES. A high (binding) energy waterfall feature, sensitively dependent on the band hopping parameter t' is noted. This work was supported by DOE under Grant No. FG02-06ER46319.

  1. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    Science.gov (United States)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  2. Modeling of LH current drive in self-consistent elongated tokamak MHD equilibria

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Devoto, R.S.; Fenstermacher, M.E.; Bonoli, P.T.; Porkolab, M.; Yugo, J.

    1989-01-01

    Calculations of non-inductive current drive typically have been used with model MHD equilibria which are independently generated from an assumed toroidal current profile or from a fit to an experiment. Such a method can lead to serious errors since the driven current can dramatically alter the equilibrium and changes in the equilibrium B-fields can dramatically alter the current drive. The latter effect is quite pronounced in LH current drive where the ray trajectories are sensitive to the local values of the magnetic shear and the density gradient. In order to overcome these problems, we have modified a LH simulation code to accommodate elongated plasmas with numerically generated equilibria. The new LH module has been added to the ACCOME code which solves for current drive by neutral beams, electric fields, and bootstrap effects in a self-consistent 2-D equilibrium. We briefly describe the model in the next section and then present results of a study of LH current drive in ITER. 2 refs., 6 figs., 2 tabs

  3. Self consistent MHD modeling of the solar wind from polar coronal holes

    International Nuclear Information System (INIS)

    Stewart, G. A.; Bravo, S.

    1996-01-01

    We have developed a 2D self consistent MHD model for solar wind flow from antisymmetric magnetic geometries. We present results in the case of a photospheric magnetic field which has a dipolar configuration, in order to investigate some of the general characteristics of the wind at solar minimum. As in previous studies, we find that the magnetic configuration is that of a closed field region (a coronal helmet belt) around the solar equator, extending up to about 1.6 R · , and two large open field regions centred over the poles (polar coronal holes), whose magnetic and plasma fluxes expand to fill both hemispheres in interplanetary space. In addition, we find that the different geometries of the magnetic field lines across each hole (from the almost radial central polar lines to the highly curved border equatorial lines) cause the solar wind to have greatly different properties depending on which region it flows from. We find that, even though our simplified model cannot produce realistic wind values, we can obtain a polar wind that is faster, less dense and hotter than equatorial wind, and found that, close to the Sun, there exists a sharp transition between the two wind types. As these characteristics coincide with observations we conclude that both fast and slow solar wind can originate from coronal holes, fast wind from the centre, slow wind from the border

  4. "A Simplified 'Benchmark” Stock-flow Consistent (SFC) Post-Keynesian Growth Model"

    OpenAIRE

    Claudio H. Dos Santos; Gennaro Zezza

    2007-01-01

    Despite being arguably one of the most active areas of research in heterodox macroeconomics, the study of the dynamic properties of stock-flow consistent (SFC) growth models of financially sophisticated economies is still in its early stages. This paper attempts to offer a contribution to this line of research by presenting a simplified Post-Keynesian SFC growth model with well-defined dynamic properties, and using it to shed light on the merits and limitations of the current heterodox SFC li...

  5. Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries

    Science.gov (United States)

    Stewart, G. A.; Bravo, S.

    1995-01-01

    Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.

  6. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  7. Self-consistent approximation for muffin-tin models of random substitutional alloys with environmental disorder

    International Nuclear Information System (INIS)

    Kaplan, T.; Gray, L.J.

    1984-01-01

    The self-consistent approximation of Kaplan, Leath, Gray, and Diehl is applied to models for substitutional random alloys with muffin-tin potentials. The particular advantage of this approximation is that, in addition to including cluster scattering, the muffin-tin potentials in the alloy can depend on the occupation of the surrounding sites (i.e., environmental disorder is included)

  8. A new self-consistent model for thermodynamics of binary solutions

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Shan, Y. V.; Fischer, F. D.

    2015-01-01

    Roč. 108, NOV (2015), s. 27-30 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Thermodynamics * Analytical methods * CALPHAD * Phase diagram * Self-consistent model Subject RIV: BJ - Thermodynamics Impact factor: 3.305, year: 2015

  9. Comment on self-consistent model of black hole formation and evaporation

    International Nuclear Information System (INIS)

    Ho, Pei-Ming

    2015-01-01

    In an earlier work, Kawai et al. proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  10. Topologically Consistent Models for Efficient Big Geo-Spatio Data Distribution

    Science.gov (United States)

    Jahn, M. W.; Bradley, P. E.; Doori, M. Al; Breunig, M.

    2017-10-01

    Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.

  11. Self-consistent tight-binding model of B and N doping in graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Jesper Goor

    2013-01-01

    . The impurity potential depends sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using the impurity Green's function and determine the self-consistent local density of states at the impurity site and, thereby, identify acceptor and donor energy resonances.......Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...

  12. Self-consistent model of the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Phan, T.D.; Sonnerup, B.U.Oe.; Lotko, W.

    1989-01-01

    A simple two-dimensional, steady state, viscous model of the dawnside and duskside low-latitude boundary layer (LLBL) has been developed. It incorporates coupling to the ionosphere via field-aligned currents and associated field-aligned potential drops, governed by a simple conductance law, and it describes boundary layer currents, magnetic fields, and plasma flow in a self-consistent manner. The magnetic field induced by these currents leads to two effects: (1) a diamagnetic depression of the magnetic field in the equatorial region and (2) bending of the field lines into parabolas in the xz plane with their vertices in the equatorial plane, at z = 0, and pointing in the flow direction, i.e., tailward. Both effects are strongest at the magnetopause edge of the boundary layer and vanish at the magnetospheric edge. The diamagnetic depression corresponds to an excess of plasma pressure in the equatorial boundary layer near the magnetopause. The boundary layer structure is governed by a fourth-order, nonlinear, ordinary differential equation in which one nondimensional parameter, the Hartmann number M, appears. A second parameter, introduced via the boundary conditions, is a nondimensional flow velocity v 0 * at the magnetopause. Numerical results from the model are presented and the possible use of observations to determine the model parameters is discussed. The main new contribution of the study is to provide a better description of the field and plasma configuration in the LLBL itself and to clarify in quantitative terms the circumstances in which induced magnetic fields become important

  13. Electron beam charging of insulators: A self-consistent flight-drift model

    International Nuclear Information System (INIS)

    Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.; Juve, D.; Treheux, D.; Fitting, H.-J.

    2006-01-01

    Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges ρ(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate σ(t) and the surface potential V 0 (t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and σ=1. Especially for low electron beam energies E 0 G of a vacuum grid in front of the target surface. For high beam energies E 0 =10, 20, and 30 keV high negative surface potentials V 0 =-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected

  14. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  15. Self-consistent modeling of radio-frequency plasma generation in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Moiseenko, V. E., E-mail: moiseenk@ipp.kharkov.ua; Stadnik, Yu. S., E-mail: stadnikys@kipt.kharkov.ua [National Academy of Sciences of Ukraine, National Science Center Kharkov Institute of Physics and Technology (Ukraine); Lysoivan, A. I., E-mail: a.lyssoivan@fz-juelich.de [Royal Military Academy, EURATOM-Belgian State Association, Laboratory for Plasma Physics (Belgium); Korovin, V. B. [National Academy of Sciences of Ukraine, National Science Center Kharkov Institute of Physics and Technology (Ukraine)

    2013-11-15

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell’s equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell’s equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell’s equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell’s equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  16. Consistency maintenance for constraint in role-based access control model

    Institute of Scientific and Technical Information of China (English)

    韩伟力; 陈刚; 尹建伟; 董金祥

    2002-01-01

    Constraint is an important aspect of role-based access control and is sometimes argued to be the principal motivation for role-based access control (RBAC). But so far few authors have discussed consistency maintenance for constraint in RBAC model. Based on researches of constraints among roles and types of inconsistency among constraints, this paper introduces corresponding formal rules, rule-based reasoning and corresponding methods to detect, avoid and resolve these inconsistencies. Finally, the paper introduces briefly the application of consistency maintenance in ZD-PDM, an enterprise-oriented product data management (PDM) system.

  17. Consistency maintenance for constraint in role-based access control model

    Institute of Scientific and Technical Information of China (English)

    韩伟力; 陈刚; 尹建伟; 董金祥

    2002-01-01

    Constraint is an important aspect of role-based access control and is sometimes argued to be the principal motivation for role-based access control (RBAC). But so far'few authors have discussed consistency maintenance for constraint in RBAC model. Based on researches of constraints among roles and types of inconsistency among constraints, this paper introduces correaponding formal rules, rulebased reasoning and corresponding methods to detect, avoid and resolve these inconsistencies. Finally,the paper introduces briefly the application of consistency maintenance in ZD-PDM, an enterprise-ori-ented product data management (PDM) system.

  18. Improving predictions for collider observables by consistently combining fixed order calculations with resummed results in perturbation theory

    International Nuclear Information System (INIS)

    Schoenherr, Marek

    2011-01-01

    With the constantly increasing precision of experimental data acquired at the current collider experiments Tevatron and LHC the theoretical uncertainty on the prediction of multiparticle final states has to decrease accordingly in order to have meaningful tests of the underlying theories such as the Standard Model. A pure leading order calculation, defined in the perturbative expansion of said theory in the interaction constant, represents the classical limit to such a quantum field theory and was already found to be insufficient at past collider experiments, e.g. LEP or HERA. Such a leading order calculation can be systematically improved in various limits. If the typical scales of a process are large and the respective coupling constants are small, the inclusion of fixed-order higher-order corrections then yields quickly converging predictions with much reduced uncertainties. In certain regions of the phase space, still well within the perturbative regime of the underlying theory, a clear hierarchy of the inherent scales, however, leads to large logarithms occurring at every order in perturbation theory. In many cases these logarithms are universal and can be resummed to all orders leading to precise predictions in these limits. Multiparticle final states now exhibit both small and large scales, necessitating a description using both resummed and fixed-order results. This thesis presents the consistent combination of two such resummation schemes with fixed-order results. The main objective therefor is to identify and properly treat terms that are present in both formulations in a process and observable independent manner. In the first part the resummation scheme introduced by Yennie, Frautschi and Suura (YFS), resumming large logarithms associated with the emission of soft photons in massive QED, is combined with fixed-order next-to-leading matrix elements. The implementation of a universal algorithm is detailed and results are studied for various precision

  19. Reproducibility and consistency of proteomic experiments on natural populations of a non-model aquatic insect.

    Science.gov (United States)

    Hidalgo-Galiana, Amparo; Monge, Marta; Biron, David G; Canals, Francesc; Ribera, Ignacio; Cieslak, Alexandra

    2014-01-01

    Population proteomics has a great potential to address evolutionary and ecological questions, but its use in wild populations of non-model organisms is hampered by uncontrolled sources of variation. Here we compare the response to temperature extremes of two geographically distant populations of a diving beetle species (Agabus ramblae) using 2-D DIGE. After one week of acclimation in the laboratory under standard conditions, a third of the specimens of each population were placed at either 4 or 27°C for 12 h, with another third left as a control. We then compared the protein expression level of three replicated samples of 2-3 specimens for each treatment. Within each population, variation between replicated samples of the same treatment was always lower than variation between treatments, except for some control samples that retained a wider range of expression levels. The two populations had a similar response, without significant differences in the number of protein spots over- or under-expressed in the pairwise comparisons between treatments. We identified exemplary proteins among those differently expressed between treatments, which proved to be proteins known to be related to thermal response or stress. Overall, our results indicate that specimens collected in the wild are suitable for proteomic analyses, as the additional sources of variation were not enough to mask the consistency and reproducibility of the response to the temperature treatments.

  20. Comprehensive and fully self-consistent modeling of modern semiconductor lasers

    International Nuclear Information System (INIS)

    Nakwaski, W.; Sarzał, R. P.

    2016-01-01

    The fully self-consistent model of modern semiconductor lasers used to design their advanced structures and to understand more deeply their properties is given in the present paper. Operation of semiconductor lasers depends not only on many optical, electrical, thermal, recombination, and sometimes mechanical phenomena taking place within their volumes but also on numerous mutual interactions between these phenomena. Their experimental investigation is quite complex, mostly because of miniature device sizes. Therefore, the most convenient and exact method to analyze expected laser operation and to determine laser optimal structures for various applications is to examine the details of their performance with the aid of a simulation of laser operation in various considered conditions. Such a simulation of an operation of semiconductor lasers is presented in this paper in a full complexity of all mutual interactions between the above individual physical processes. In particular, the hole-burning effect has been discussed. The impacts on laser performance introduced by oxide apertures (their sizes and localization) have been analyzed in detail. Also, some important details concerning the operation of various types of semiconductor lasers are discussed. The results of some applications of semiconductor lasers are shown for successive laser structures. (paper)

  1. The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus

    Science.gov (United States)

    Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.

    2017-12-01

    The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.

  2. Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States

    Science.gov (United States)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.

    2017-01-01

    This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.

  3. Toward a consistent modeling framework to assess multi-sectoral climate impacts.

    Science.gov (United States)

    Monier, Erwan; Paltsev, Sergey; Sokolov, Andrei; Chen, Y-H Henry; Gao, Xiang; Ejaz, Qudsia; Couzo, Evan; Schlosser, C Adam; Dutkiewicz, Stephanie; Fant, Charles; Scott, Jeffery; Kicklighter, David; Morris, Jennifer; Jacoby, Henry; Prinn, Ronald; Haigh, Martin

    2018-02-13

    Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis-which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios-we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.

  4. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  5. A semi-nonparametric mixture model for selecting functionally consistent proteins.

    Science.gov (United States)

    Yu, Lianbo; Doerge, Rw

    2010-09-28

    High-throughput technologies have led to a new era of proteomics. Although protein microarray experiments are becoming more common place there are a variety of experimental and statistical issues that have yet to be addressed, and that will carry over to new high-throughput technologies unless they are investigated. One of the largest of these challenges is the selection of functionally consistent proteins. We present a novel semi-nonparametric mixture model for classifying proteins as consistent or inconsistent while controlling the false discovery rate and the false non-discovery rate. The performance of the proposed approach is compared to current methods via simulation under a variety of experimental conditions. We provide a statistical method for selecting functionally consistent proteins in the context of protein microarray experiments, but the proposed semi-nonparametric mixture model method can certainly be generalized to solve other mixture data problems. The main advantage of this approach is that it provides the posterior probability of consistency for each protein.

  6. Model Consistent Pseudo-Observations of Precipitation and Their Use for Bias Correcting Regional Climate Models

    Directory of Open Access Journals (Sweden)

    Peter Berg

    2015-01-01

    Full Text Available Lack of suitable observational data makes bias correction of high space and time resolution regional climate models (RCM problematic. We present a method to construct pseudo-observational precipitation data bymerging a large scale constrained RCMreanalysis downscaling simulation with coarse time and space resolution observations. The large scale constraint synchronizes the inner domain solution to the driving reanalysis model, such that the simulated weather is similar to observations on a monthly time scale. Monthly biases for each single month are corrected to the corresponding month of the observational data, and applied to the finer temporal resolution of the RCM. A low-pass filter is applied to the correction factors to retain the small spatial scale information of the RCM. The method is applied to a 12.5 km RCM simulation and proven successful in producing a reliable pseudo-observational data set. Furthermore, the constructed data set is applied as reference in a quantile mapping bias correction, and is proven skillful in retaining small scale information of the RCM, while still correcting the large scale spatial bias. The proposed method allows bias correction of high resolution model simulations without changing the fine scale spatial features, i.e., retaining the very information required by many impact models.

  7. Implicit implementation and consistent tangent modulus of a viscoplastic model for polymers

    OpenAIRE

    ACHOUR, Nadia; CHATZIGEORGIOU, George; MERAGHNI, Fodil; CHEMISKY, Yves; FITOUSSI, Joseph

    2015-01-01

    In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework, following an implicit formulation. The computational methodology is based on the radial return mapping algorithm. This implicit formulation leads to the definition of the consistent tangent modulus which permits the implementation in incremental micromechanical scale transition analysis. The extende...

  8. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W., E-mail: n.bell@unimelb.edu.au, E-mail: giorgio.busoni@unimelb.edu.au, E-mail: isanderson@student.unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010 (Australia)

    2017-03-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  9. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    International Nuclear Information System (INIS)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W.

    2017-01-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  10. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    Science.gov (United States)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  11. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  12. Self-consistent nonlinearly polarizable shell-model dynamics for ferroelectric materials

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S.E.; Kofane, T.C.; Ngabireng, C.M.

    2002-11-01

    We investigate the dynamical properties of the polarizable shellmodel with a symmetric double Morse-type electron-ion interaction in one ionic species. A variational calculation based on the Self-Consistent Einstein Model (SCEM) shows that a theoretical ferroelectric (FE) transition temperature can be derive which demonstrates the presence of a first-order phase transition for the potassium selenate (K 2 SeO 4 ) crystal around Tc 91.5 K. Comparison of the model calculation with the experimental critical temperature yields satisfactory agreement. (author)

  13. Development of a self-consistent lightning NOx simulation in large-scale 3-D models

    Science.gov (United States)

    Luo, Chao; Wang, Yuhang; Koshak, William J.

    2017-03-01

    We seek to develop a self-consistent representation of lightning NOx (LNOx) simulation in a large-scale 3-D model. Lightning flash rates are parameterized functions of meteorological variables related to convection. We examine a suite of such variables and find that convective available potential energy and cloud top height give the best estimates compared to July 2010 observations from ground-based lightning observation networks. Previous models often use lightning NOx vertical profiles derived from cloud-resolving model simulations. An implicit assumption of such an approach is that the postconvection lightning NOx vertical distribution is the same for all deep convection, regardless of geographic location, time of year, or meteorological environment. Detailed observations of the lightning channel segment altitude distribution derived from the NASA Lightning Nitrogen Oxides Model can be used to obtain the LNOx emission profile. Coupling such a profile with model convective transport leads to a more self-consistent lightning distribution compared to using prescribed postconvection profiles. We find that convective redistribution appears to be a more important factor than preconvection LNOx profile selection, providing another reason for linking the strength of convective transport to LNOx distribution.

  14. A consistent modelling methodology for secondary settling tanks: a reliable numerical method.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Farås, Sebastian; Nopens, Ingmar; Torfs, Elena

    2013-01-01

    The consistent modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE) of nonlinear convection-diffusion type as a one-dimensional model for the solids concentration as a function of depth and time. This PDE includes a flux that depends discontinuously on spatial position modelling hindered settling and bulk flows, a singular source term describing the feed mechanism, a degenerating term accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solution itself is discontinuous. A consistent, reliable and robust numerical method that properly handles these difficulties is presented. Many constitutive relations for hindered settling, compression and dispersion can be used within the model, allowing the user to switch on and off effects of interest depending on the modelling goal as well as investigate the suitability of certain constitutive expressions. Simulations show the effect of the dispersion term on effluent suspended solids and total sludge mass in the SST. The focus is on correct implementation whereas calibration and validation are not pursued.

  15. Overlap function and Regge cut in a self-consistent multi-Regge model

    International Nuclear Information System (INIS)

    Banerjee, H.; Mallik, S.

    1977-01-01

    A self-consistent multi-Regge model with unit intercept for the input trajectory is presented. Violation of unitarity is avoided in the model by assuming the vanishing of the pomeron-pomeron-hadron vertex, as the mass of either pomeron tends to zero. The model yields an output Regge pole in the inelastic overlap function which for t>0 lies on the r.h.s. of the moving branch point in the complex J-plane, but for t<0 moves to unphysical sheets. The leading Regge-cut contribution to the forward diffraction amplitude can be negative, so that the total cross section predicted by the model attains a limiting value from below

  16. Overlap function and Regge cut in a self-consistent multi-Regge model

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, H [Saha Inst. of Nuclear Physics, Calcutta (India); Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1977-04-21

    A self-consistent multi-Regge model with unit intercept for the input trajectory is presented. Violation of unitarity is avoided in the model by assuming the vanishing of the pomeron-pomeron-hadron vertex, as the mass of either pomeron tends to zero. The model yields an output Regge pole in the inelastic overlap function which for t>0 lies on the r.h.s. of the moving branch point in the complex J-plane, but for t<0 moves to unphysical sheets. The leading Regge-cut contribution to the forward diffraction amplitude can be negative, so that the total cross section predicted by the model attains a limiting value from below.

  17. An Ice Model That is Consistent with Composite Rheology in GIA Modelling

    Science.gov (United States)

    Huang, P.; Patrick, W.

    2017-12-01

    There are several popular approaches in constructing ice history models. One of them is mainly based on thermo-mechanical ice models with forcing or boundary conditions inferred from paleoclimate data. The second one is mainly based on the observed response of the Earth to glacial loading and unloading, a process called Glacial Isostatic Adjustment or GIA. The third approach is a hybrid version of the first and second approaches. In this presentation, we will follow the second approach which also uses geological data such as ice flow, terminal moraine data and simple ice dynamic for the ice sheet re-construction (Peltier & Andrew 1976). The global ice model ICE-6G (Peltier et al. 2015) and all its predecessors (Tushingham & Peltier 1991, Peltier 1994, 1996, 2004, Lambeck et al. 2014) are constructed this way with the assumption that mantle rheology is linear. However, high temperature creep experiments on mantle rocks show that non-linear creep laws can also operate in the mantle. Since both linear (e.g. diffusion creep) and non-linear (e.g. dislocation) creep laws can operate simultaneously in the mantle, mantle rheology is likely composite, where the total creep is the sum of both linear and onlinear creep. Preliminary GIA studies found that composite rheology can fit regional RSL observations better than that from linear rheology(e.g. van der Wal et al. 2010). The aim of this paper is to construct ice models in Laurentia and Fennoscandia using this second approach, but with composite rheology, so that its predictions can fit GIA observations such as global RSL data, land uplift rate and g-dot simultaneously in addition to geological data and simple ice dynamics. The g-dot or gravity-rate-of-change data is from the GRACE gravity mission but with the effects of hydrology removed. Our GIA model is based on the Coupled Laplace-Finite Element method as described in Wu(2004) and van der Wal et al.(2010). It is found that composite rheology generally supports a thicker

  18. Thermodynamic properties of xanthone: Heat capacities, phase-transition properties, and thermodynamic-consistency analyses using computational results

    International Nuclear Information System (INIS)

    Chirico, Robert D.; Kazakov, Andrei F.

    2015-01-01

    Highlights: • Heat capacities were measured for the temperature range (5 to 520) K. • The enthalpy of combustion was measured and the enthalpy of formation was derived. • Thermodynamic-consistency analysis resolved inconsistencies in literature enthalpies of sublimation. • An inconsistency in literature enthalpies of combustion was resolved. • Application of computational chemistry in consistency analysis was demonstrated successfully. - Abstract: Heat capacities and phase-transition properties for xanthone (IUPAC name 9H-xanthen-9-one and Chemical Abstracts registry number [90-47-1]) are reported for the temperature range 5 < T/K < 524. Statistical calculations were performed and thermodynamic properties for the ideal gas were derived based on molecular geometry optimization and vibrational frequencies calculated at the B3LYP/6-31+G(d,p) level of theory. These results are combined with sublimation pressures from the literature to allow critical evaluation of inconsistent enthalpies of sublimation for xanthone, also reported in the literature. Literature values for the enthalpy of combustion of xanthone are re-assessed, a revision is recommended for one result, and a new value for the enthalpy of formation of the ideal gas is derived. Comparisons with thermophysical properties reported in the literature are made for all other reported and derived properties, where possible

  19. A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2017-01-01

    Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...... of parameters was performed in order to get a good model fit to the data. However, not all parameters are identifiable with the given data set and model structure. Sensitivity, identifiability, and uncertainty analysis were completed and a relevant identifiable subset of parameters was determined for a new...

  20. Simulation of recrystallization textures in FCC materials based on a self consistent model

    International Nuclear Information System (INIS)

    Bolmaro, R.E; Roatta, A; Fourty, A.L; Signorelli, J.W; Bertinetti, M.A

    2004-01-01

    The development of re-crystallization textures in FCC polycrystalline materials has been a long lasting scientific problem. The appearance of the so-called cubic component in high stack fault energy laminated FCC materials is not an entirely understood phenomenon. This work approaches the problem using a self- consistent simulation technique of homogenization. The information on first preferential neighbors is used in the model to consider grain boundary energies and intra granular misorientations and to treat the growth of grains and the mobility of the grain boundary. The energies accumulated by deformations are taken as conducting energies of the nucleation and the later growth is statistically governed by the grain boundary energies. The model shows the correct trend for re-crystallization textures obtained from previously simulated deformation textures for high and low stack fault energy FCC materials. The model's topological representation is discussed (CW)

  1. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    Energy Technology Data Exchange (ETDEWEB)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M., E-mail: Frans.leermakers@wur.nl [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6307 HB Wageningen (Netherlands)

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k{sub c} and k{sup ¯} and the preferred monolayer curvature J{sub 0}{sup m}, and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k{sub c} and the area compression modulus k{sub A} are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k{sup ¯} and J{sub 0}{sup m} can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k{sup ¯} and J{sub 0}{sup m} change sign with relevant parameter changes. Although typically k{sup ¯}<0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J{sub 0}{sup m}≫0, especially at low ionic

  2. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    Science.gov (United States)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are

  3. Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

    International Nuclear Information System (INIS)

    Schmidt, J.R.; Roberts, S.T.; Loparo, J.J.; Tokmakoff, A.; Fayer, M.D.; Skinner, J.L.

    2007-01-01

    Vibrational spectroscopy can provide important information about structure and dynamics in liquids. In the case of liquid water, this is particularly true for isotopically dilute HOD/D 2 O and HOD/H 2 O systems. Infrared and Raman line shapes for these systems were measured some time ago. Very recently, ultrafast three-pulse vibrational echo experiments have been performed on these systems, which provide new, exciting, and important dynamical benchmarks for liquid water. There has been tremendous theoretical effort expended on the development of classical simulation models for liquid water. These models have been parameterized from experimental structural and thermodynamic measurements. The goal of this paper is to determine if representative simulation models are consistent with steady-state, and especially with these new ultrafast, experiments. Such a comparison provides information about the accuracy of the dynamics of these simulation models. We perform this comparison using theoretical methods developed in previous papers, and calculate the experimental observables directly, without making the Condon and cumulant approximations, and taking into account molecular rotation, vibrational relaxation, and finite excitation pulses. On the whole, the simulation models do remarkably well; perhaps the best overall agreement with experiment comes from the SPC/E model

  4. Group Membership, Group Change, and Intergroup Attitudes: A Recategorization Model Based on Cognitive Consistency Principles

    Science.gov (United States)

    Roth, Jenny; Steffens, Melanie C.; Vignoles, Vivian L.

    2018-01-01

    The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility) as associative connections. The model builds on two cognitive principles, balance–congruity and imbalance–dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification) depends in part on the (in)compatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (in)compatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias. PMID:29681878

  5. Group Membership, Group Change, and Intergroup Attitudes: A Recategorization Model Based on Cognitive Consistency Principles

    Directory of Open Access Journals (Sweden)

    Jenny Roth

    2018-04-01

    Full Text Available The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility as associative connections. The model builds on two cognitive principles, balance–congruity and imbalance–dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification depends in part on the (incompatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (incompatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias.

  6. Group Membership, Group Change, and Intergroup Attitudes: A Recategorization Model Based on Cognitive Consistency Principles.

    Science.gov (United States)

    Roth, Jenny; Steffens, Melanie C; Vignoles, Vivian L

    2018-01-01

    The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility) as associative connections. The model builds on two cognitive principles, balance-congruity and imbalance-dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification) depends in part on the (in)compatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (in)compatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias.

  7. A Time consistent model for monetary value of man-sievert

    International Nuclear Information System (INIS)

    Na, S.H.; Kim, Sun G.

    2008-01-01

    Full text: Performing a cost-benefit analysis to establish optimum levels of radiation protection under the ALARA principle, we introduce a discrete stepwise model to evaluate man-sievert monetary value of Korea. The model formula, which is unique and country-specific, is composed of GDP, the nominal risk coefficient for cancer and hereditary effects, the aversion factor against radiation exposure, and the average life expectancy. Unlike previous researches on alpha-value assessment, we showed different alpha values optimized with respect to various ranges of individual dose, which would be more realistic and applicable to the radiation protection area. Employing economically constant term of GDP we showed the real values of man-sievert by year, which should be consistent in time series comparison even under price level fluctuation. GDP deflators of an economy have to be applied to measure one's own consistent value of radiation protection by year. In addition, we recommend that the concept of purchasing power parity should be adopted if it needs international comparison of alpha values in real terms. Finally, we explain the way that this stepwise model can be generalized simply to other countries without normalizing any country-specific factors. (author)

  8. Validity test and its consistency in the construction of patient loyalty model

    Science.gov (United States)

    Yanuar, Ferra

    2016-04-01

    The main objective of this present study is to demonstrate the estimation of validity values and its consistency based on structural equation model. The method of estimation was then implemented to an empirical data in case of the construction the patient loyalty model. In the hypothesis model, service quality, patient satisfaction and patient loyalty were determined simultaneously, each factor were measured by any indicator variables. The respondents involved in this study were the patients who ever got healthcare at Puskesmas in Padang, West Sumatera. All 394 respondents who had complete information were included in the analysis. This study found that each construct; service quality, patient satisfaction and patient loyalty were valid. It means that all hypothesized indicator variables were significant to measure their corresponding latent variable. Service quality is the most measured by tangible, patient satisfaction is the most mesured by satisfied on service and patient loyalty is the most measured by good service quality. Meanwhile in structural equation, this study found that patient loyalty was affected by patient satisfaction positively and directly. Service quality affected patient loyalty indirectly with patient satisfaction as mediator variable between both latent variables. Both structural equations were also valid. This study also proved that validity values which obtained here were also consistence based on simulation study using bootstrap approach.

  9. The EURAD model: Design and first results

    International Nuclear Information System (INIS)

    1989-01-01

    The contributions are abridged versions of lectures delivered on the occasion of the presentation meeting of the EURAD project on the 20th and 21st of February 1989 in Cologne. EURAD stands for European Acid Deposition Model. The project takes one of the possible and necessary ways to search for scientific answers to the questions which the modifications of the atmosphere caused by anthropogenic influence raise. One of the objectives is to develop a realistic numeric model of long-distance transport of harmful substances in the troposphere over Europe and to use this model for the investigation of pollutant distribution but also for the support of their experimental study. The EURAD Model consists of two parts: a meteorologic mesoscale model and a chemical transport model. In the first part of the presentation, these parts are introduced and questions concerning the implementation of the entire model on the computer system CRAY X-MP/22 discussed. Afterwards it is reported upon the results of the test calculations for the cases 'Chernobyl' and 'Alpex'. Thereafter selected problems concerning the treatments of meteorological and air-chemistry processes as well as the parametrization of subscale processes within the model are discussed. The conclusion is made by two lectures upon emission evaluations and emission scenarios. (orig./KW) [de

  10. Macroscopic self-consistent model for external-reflection near-field microscopy

    International Nuclear Information System (INIS)

    Berntsen, S.; Bozhevolnaya, E.; Bozhevolnyi, S.

    1993-01-01

    The self-consistent macroscopic approach based on the Maxwell equations in two-dimensional geometry is developed to describe tip-surface interaction in external-reflection near-field microscopy. The problem is reduced to a single one-dimensional integral equation in terms of the Fourier components of the field at the plane of the sample surface. This equation is extended to take into account a pointlike scatterer placed on the sample surface. The power of light propagating toward the detector as the fiber mode is expressed by using the self-consistent field at the tip surface. Numerical results for trapezium-shaped tips are presented. The authors show that the sharper tip and the more confined fiber mode result in better resolution of the near-field microscope. Moreover, it is found that the tip-surface distance should not be too small so that better resolution is ensured. 14 refs., 10 figs

  11. The Bioenvironmental modeling of Bahar city based on Climate-consistent Architecture

    OpenAIRE

    Parna Kazemian

    2014-01-01

    The identification of the climate of a particularplace and the analysis of the climatic needs in terms of human comfort and theuse of construction materials is one of the prerequisites of aclimate-consistent design. In studies on climate and weather, usingillustrative reports, first a picture of the state of climate is offered. Then,based on the obtained results, the range of changes is determined, and thecause-effect relationships at different scales are identified. Finally, by ageneral exam...

  12. RPA method based on the self-consistent cranking model for 168Er and 158Dy

    International Nuclear Information System (INIS)

    Kvasil, J.; Cwiok, S.; Chariev, M.M.; Choriev, B.

    1983-01-01

    The low-lying nuclear states in 168 Er and 158 Dy are analysed within the random phase approximation (RPA) method based on the self-consistent cranking model (SCCM). The moment of inertia, the value of chemical potential, and the strength constant k 1 have been obtained from the symmetry condition. The pairing strength constants Gsub(tau) have been determined from the experimental values of neutron and proton pairing energies for nonrotating nuclei. A quite good agreement with experimental energies of states with positive parity was obtained without introducing the two-phonon vibrational states

  13. Quest for consistent modelling of statistical decay of the compound nucleus

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2018-01-01

    A statistical model description of heavy ion induced fusion-fission reactions is presented where shell effects, collective enhancement of level density, tilting away effect of compound nuclear spin and dissipation are included. It is shown that the inclusion of all these effects provides a consistent picture of fission where fission hindrance is required to explain the experimental values of both pre-scission neutron multiplicities and evaporation residue cross-sections in contrast to some of the earlier works where a fission hindrance is required for pre-scission neutrons but a fission enhancement for evaporation residue cross-sections.

  14. Consistency and Main Differences Between European Regional Climate Downscaling Intercomparison Results; From PRUDENCE and ENSEMBLES to CORDEX

    Science.gov (United States)

    Christensen, J. H.; Larsen, M. A. D.; Christensen, O. B.; Drews, M.

    2017-12-01

    For more than 20 years, coordinated efforts to apply regional climate models to downscale GCM simulations for Europe have been pursued by an ever increasing group of scientists. This endeavor showed its first results during EU framework supported projects such as RACCS and MERCURE. Here, the foundation for today's advanced worldwide CORDEX approach was laid out by a core of six research teams, who conducted some of the first coordinated RCM simulations with the aim to assess regional climate change for Europe. However, it was realized at this stage that model bias in GCMs as well as RCMs made this task very challenging. As an immediate outcome, the idea was conceived to make an even more coordinated effort by constructing a well-defined and structured set of common simulations; this lead to the PRUDENCE project (2001-2004). Additional coordinated efforts involving ever increasing numbers of GCMs and RCMs followed in ENSEMBLES (2004-2009) and the ongoing Euro-CORDEX (officially commenced 2011) efforts. Along with the overall coordination, simulations have increased their standard resolution from 50km (PRUDENCE) to about 12km (Euro-CORDEX) and from time slice simulations (PRUDENCE) to transient experiments (ENSEMBLES and CORDEX); from one driving model and emission scenario (PRUDENCE) to several (Euro-CORDEX). So far, this wealth of simulations have been used to assess the potential impacts of future climate change in Europe providing a baseline change as defined by a multi-model mean change with associated uncertainties calculated from model spread in the ensemble. But how has the overall picture of state-of-the-art regional climate change projections changed over this period of almost two decades? Here we compare across scenarios, model resolutions and model vintage the results from PRUDENCE, ENSEMBLES and Euro-CORDEX. By appropriate scaling we identify robust findings about the projected future of European climate expressed by temperature and precipitation changes

  15. Comparison of squashing and self-consistent input-output models of quantum feedback

    Science.gov (United States)

    Peřinová, V.; Lukš, A.; Křepelka, J.

    2018-03-01

    The paper (Yanagisawa and Hope, 2010) opens with two ways of analysis of a measurement-based quantum feedback. The scheme of the feedback includes, along with the homodyne detector, a modulator and a beamsplitter, which does not enable one to extract the nonclassical field. In the present scheme, the beamsplitter is replaced by the quantum noise evader, which makes it possible to extract the nonclassical field. We re-approach the comparison of two models related to the same scheme. The first one admits that in the feedback loop between the photon annihilation and creation operators, unusual commutation relations hold. As a consequence, in the feedback loop, squashing of the light occurs. In the second one, the description arrives at the feedback loop via unitary transformations. But it is obvious that the unitary transformation which describes the modulator changes even the annihilation operator of the mode which passes by the modulator which is not natural. The first model could be called "squashing model" and the second one could be named "self-consistent model". Although the predictions of the two models differ only a little and both the ways of analysis have their advantages, they have also their drawbacks and further investigation is possible.

  16. A comprehensive, consistent and systematic mathematical model of PEM fuel cells

    International Nuclear Information System (INIS)

    Baschuk, J.J.; Li Xianguo

    2009-01-01

    This paper presents a comprehensive, consistent and systematic mathematical model for PEM fuel cells that can be used as the general formulation for the simulation and analysis of PEM fuel cells. As an illustration, the model is applied to an isothermal, steady state, two-dimensional PEM fuel cell. Water is assumed to be in either the gas phase or as a liquid phase in the pores of the polymer electrolyte. The model includes the transport of gas in the gas flow channels, electrode backing and catalyst layers; the transport of water and hydronium in the polymer electrolyte of the catalyst and polymer electrolyte layers; and the transport of electrical current in the solid phase. Water and ion transport in the polymer electrolyte was modeled using the generalized Stefan-Maxwell equations, based on non-equilibrium thermodynamics. Model simulations show that the bulk, convective gas velocity facilitates hydrogen transport from the gas flow channels to the anode catalyst layers, but inhibits oxygen transport. While some of the water required by the anode is supplied by the water produced in the cathode, the majority of water must be supplied by the anode gas phase, making operation with fully humidified reactants necessary. The length of the gas flow channel has a significant effect on the current production of the PEM fuel cell, with a longer channel length having a lower performance relative to a shorter channel length. This lower performance is caused by a greater variation in water content within the longer channel length

  17. Consistent modelling of wind turbine noise propagation from source to receiver

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine...... propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine....... and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound...

  18. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    Science.gov (United States)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate

  19. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    Science.gov (United States)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  20. Consistent initial conditions for the Saint-Venant equations in river network modeling

    Directory of Open Access Journals (Sweden)

    C.-W. Yu

    2017-09-01

    Full Text Available Initial conditions for flows and depths (cross-sectional areas throughout a river network are required for any time-marching (unsteady solution of the one-dimensional (1-D hydrodynamic Saint-Venant equations. For a river network modeled with several Strahler orders of tributaries, comprehensive and consistent synoptic data are typically lacking and synthetic starting conditions are needed. Because of underlying nonlinearity, poorly defined or inconsistent initial conditions can lead to convergence problems and long spin-up times in an unsteady solver. Two new approaches are defined and demonstrated herein for computing flows and cross-sectional areas (or depths. These methods can produce an initial condition data set that is consistent with modeled landscape runoff and river geometry boundary conditions at the initial time. These new methods are (1 the pseudo time-marching method (PTM that iterates toward a steady-state initial condition using an unsteady Saint-Venant solver and (2 the steady-solution method (SSM that makes use of graph theory for initial flow rates and solution of a steady-state 1-D momentum equation for the channel cross-sectional areas. The PTM is shown to be adequate for short river reaches but is significantly slower and has occasional non-convergent behavior for large river networks. The SSM approach is shown to provide a rapid solution of consistent initial conditions for both small and large networks, albeit with the requirement that additional code must be written rather than applying an existing unsteady Saint-Venant solver.

  1. Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models

    KAUST Repository

    Vignal, Philippe

    2016-02-11

    Phase-field models are emerging as a promising strategy to simulate interfacial phenomena. Rather than tracking interfaces explicitly as done in sharp interface descriptions, these models use a diffuse order parameter to monitor interfaces implicitly. This implicit description, as well as solid physical and mathematical footings, allow phase-field models to overcome problems found by predecessors. Nonetheless, the method has significant drawbacks. The phase-field framework relies on the solution of high-order, nonlinear partial differential equations. Solving these equations entails a considerable computational cost, so finding efficient strategies to handle them is important. Also, standard discretization strategies can many times lead to incorrect solutions. This happens because, for numerical solutions to phase-field equations to be valid, physical conditions such as mass conservation and free energy monotonicity need to be guaranteed. In this work, we focus on the development of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure evolution. The algorithm developed conserves, guarantees energy stability and is second order accurate in time. The second part of the thesis presents two numerical schemes that generalize literature regarding energy-stable methods for conserved and non-conserved phase-field models. The time discretization strategies can conserve mass if needed, are energy-stable, and second order accurate in time. We also develop an adaptive time-stepping strategy, which can be applied to any second-order accurate scheme. This time-adaptive strategy relies on a backward approximation to give an accurate error estimator. The spatial discretization, in both parts, relies on a mixed finite element formulation and isogeometric analysis. The codes are

  2. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    Science.gov (United States)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  3. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Science.gov (United States)

    Screen, James A.; Deser, Clara; Smith, Doug M.; Zhang, Xiangdong; Blackport, Russell; Kushner, Paul J.; Oudar, Thomas; McCusker, Kelly E.; Sun, Lantao

    2018-03-01

    The decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.

  4. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  5. A thermodynamically consistent quasi-particle model without temperature-dependent infinity of the vacuum zero point energy

    International Nuclear Information System (INIS)

    Cao Jing; Jiang Yu; Sun Weimin; Zong Hongshi

    2012-01-01

    In this Letter, an improved quasi-particle model is presented. Unlike the previous approach of establishing quasi-particle model, we introduce a classical background field (it is allowed to depend on the temperature) to deal with the infinity of thermal vacuum energy which exists in previous quasi-particle models. After taking into account the effect of this classical background field, the partition function of quasi-particle system can be made well-defined. Based on this and following the standard ensemble theory, we construct a thermodynamically consistent quasi-particle model without the need of any reformulation of statistical mechanics or thermodynamical consistency relation. As an application of our model, we employ it to the case of (2+1) flavor QGP at zero chemical potential and finite temperature and obtain a good fit to the recent lattice simulation results of Borsányi et al. A comparison of the result of our model with early calculations using other models is also presented. It is shown that our method is general and can be generalized to the case where the effective mass depends not only on the temperature but also on the chemical potential.

  6. Direct detection of WIMPs: implications of a self-consistent truncated isothermal model of the Milky Way's dark matter halo

    Science.gov (United States)

    Chaudhury, Soumini; Bhattacharjee, Pijushpani; Cowsik, Ramanath

    2010-09-01

    Direct detection of Weakly Interacting Massive Particle (WIMP) candidates of Dark Matter (DM) is studied within the context of a self-consistent truncated isothermal model of the finite-size dark halo of the Galaxy. The halo model, based on the ``King model'' of the phase space distribution function of collisionless DM particles, takes into account the modifications of the phase-space structure of the halo due to the gravitational influence of the observed visible matter in a self-consistent manner. The parameters of the halo model are determined by a fit to a recently determined circular rotation curve of the Galaxy that extends up to ~ 60 kpc. Unlike in the Standard Halo Model (SHM) customarily used in the analysis of the results of WIMP direct detection experiments, the velocity distribution of the WIMPs in our model is non-Maxwellian with a cut-off at a maximum velocity that is self-consistently determined by the model itself. For our halo model that provides the best fit to the rotation curve data, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section from the recent results of the CDMS-II experiment, for example, is ~ 5.3 × 10-8 pb at a WIMP mass of ~ 71 GeV. We also find, using the original 2-bin annual modulation amplitude data on the nuclear recoil event rate seen in the DAMA experiment, that there exists a range of small WIMP masses, typically ~ 2-16 GeV, within which DAMA collaboration's claimed annual modulation signal purportedly due to WIMPs is compatible with the null results of other experiments. These results, based as they are on a self-consistent model of the dark matter halo of the Galaxy, strengthen the possibility of low-mass (lsim10 GeV) WIMPs as a candidate for dark matter as indicated by several earlier studies performed within the context of the SHM. A more rigorous analysis using DAMA bins over smaller intervals should be able to better constrain the ``DAMA regions'' in the WIMP parameter space within the context of

  7. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood

    OpenAIRE

    Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.

    2012-01-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-est...

  8. Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation

    Science.gov (United States)

    Gerault, M.; Coltice, N.

    2017-12-01

    Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the

  9. INTRAVAL test case 1b - modelling results

    International Nuclear Information System (INIS)

    Jakob, A.; Hadermann, J.

    1991-07-01

    This report presents results obtained within Phase I of the INTRAVAL study. Six different models are fitted to the results of four infiltration experiments with 233 U tracer on small samples of crystalline bore cores originating from deep drillings in Northern Switzerland. Four of these are dual porosity media models taking into account advection and dispersion in water conducting zones (either tubelike veins or planar fractures), matrix diffusion out of these into pores of the solid phase, and either non-linear or linear sorption of the tracer onto inner surfaces. The remaining two are equivalent porous media models (excluding matrix diffusion) including either non-linear sorption onto surfaces of a single fissure family or linear sorption onto surfaces of several different fissure families. The fits to the experimental data have been carried out by Marquardt-Levenberg procedure yielding error estimates of the parameters, correlation coefficients and also, as a measure for the goodness of the fits, the minimum values of the χ 2 merit function. The effects of different upstream boundary conditions are demonstrated and the penetration depth for matrix diffusion is discussed briefly for both alternative flow path scenarios. The calculations show that the dual porosity media models are significantly more appropriate to the experimental data than the single porosity media concepts. Moreover, it is matrix diffusion rather than the non-linearity of the sorption isotherm which is responsible for the tailing part of the break-through curves. The extracted parameter values for some models for both the linear and non-linear (Freundlich) sorption isotherms are consistent with the results of independent static batch sorption experiments. From the fits, it is generally not possible to discriminate between the two alternative flow path geometries. On the basis of the modelling results, some proposals for further experiments are presented. (author) 15 refs., 23 figs., 7 tabs

  10. Self-consistent Random Phase Approximation applied to a schematic model of the field theory

    International Nuclear Information System (INIS)

    Bertrand, Thierry

    1998-01-01

    The self-consistent Random Phase Approximation (SCRPA) is a method allowing in the mean-field theory inclusion of the correlations in the ground and excited states. It has the advantage of not violating the Pauli principle in contrast to RPA, that is based on the quasi-bosonic approximation; in addition, numerous applications in different domains of physics, show a possible variational character. However, the latter should be formally demonstrated. The first model studied with SCRPA is the anharmonic oscillator in the region where one of its symmetries is spontaneously broken. The ground state energy is reproduced by SCRPA more accurately than RPA, with no violation of the Ritz variational principle, what is not the case for the latter approximation. The success of SCRPA is the the same in case of ground state energy for a model mixing bosons and fermions. At the transition point the SCRPA is correcting RPA drastically, but far from this region the correction becomes negligible, both methods being of similar precision. In the deformed region in the case of RPA a spurious mode occurred due to the microscopical character of the model.. The SCRPA may also reproduce this mode very accurately and actually it coincides with an excitation in the exact spectrum

  11. Self-Consistent Atmosphere Models of the Most Extreme Hot Jupiters

    Science.gov (United States)

    Lothringer, Joshua; Barman, Travis

    2018-01-01

    We present a detailed look at self-consistent PHOENIX atmosphere models of the most highly irradiated hot Jupiters known to exist. These hot Jupiters typically have equilibrium temperatures approaching and sometimes exceeding 3000 K, orbiting A, F, and early-G type stars on orbits less than 0.03 AU (10x closer than Mercury is to the Sun). The most extreme example, KELT-9b, is the hottest known hot Jupiter with a measured dayside temperature of 4600 K. Many of the planets we model have recently attracted attention with high profile discoveries, including temperature inversions in WASP-33b and WASP-121, changing phase curve offsets possibly caused by magnetohydrodymanic effects in HAT-P-7b, and TiO in WASP-19b. Our modeling provides a look at the a priori expectations for these planets and helps us understand these recent discoveries. We show that, in the hottest cases, all molecules are dissociated down to relatively high pressures. These planets may have detectable temperature inversions, more akin to thermospheres than stratospheres in that an optical absorber like TiO or VO is not needed. Instead, the inversions are created by a lack of cooling in the IR combined with heating from atoms and ions at UV and blue optical wavelengths. We also reevaluate some of the assumptions that have been made in retrieval analyses of these planets.

  12. Methodology and consistency of slant and vertical assessments for ionospheric electron content models

    Science.gov (United States)

    Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül

    2017-12-01

    A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.

  13. Providing comprehensive and consistent access to astronomical observatory archive data: the NASA archive model

    Science.gov (United States)

    McGlynn, Thomas; Fabbiano, Giuseppina; Accomazzi, Alberto; Smale, Alan; White, Richard L.; Donaldson, Thomas; Aloisi, Alessandra; Dower, Theresa; Mazzerella, Joseph M.; Ebert, Rick; Pevunova, Olga; Imel, David; Berriman, Graham B.; Teplitz, Harry I.; Groom, Steve L.; Desai, Vandana R.; Landry, Walter

    2016-07-01

    Since the turn of the millennium a constant concern of astronomical archives have begun providing data to the public through standardized protocols unifying data from disparate physical sources and wavebands across the electromagnetic spectrum into an astronomical virtual observatory (VO). In October 2014, NASA began support for the NASA Astronomical Virtual Observatories (NAVO) program to coordinate the efforts of NASA astronomy archives in providing data to users through implementation of protocols agreed within the International Virtual Observatory Alliance (IVOA). A major goal of the NAVO collaboration has been to step back from a piecemeal implementation of IVOA standards and define what the appropriate presence for the US and NASA astronomy archives in the VO should be. This includes evaluating what optional capabilities in the standards need to be supported, the specific versions of standards that should be used, and returning feedback to the IVOA, to support modifications as needed. We discuss a standard archive model developed by the NAVO for data archive presence in the virtual observatory built upon a consistent framework of standards defined by the IVOA. Our standard model provides for discovery of resources through the VO registries, access to observation and object data, downloads of image and spectral data and general access to archival datasets. It defines specific protocol versions, minimum capabilities, and all dependencies. The model will evolve as the capabilities of the virtual observatory and needs of the community change.

  14. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  15. Geometry and time scales of self-consistent orbits in a modified SU(2) model

    International Nuclear Information System (INIS)

    Jezek, D.M.; Hernandez, E.S.; Solari, H.G.

    1986-01-01

    We investigate the time-dependent Hartree-Fock flow pattern of a two-level many fermion system interacting via a two-body interaction which does not preserve the parity symmetry of standard SU(2) models. The geometrical features of the time-dependent Hartree-Fock energy surface are analyzed and a phase instability is clearly recognized. The time evolution of one-body observables along self-consistent and exact trajectories are examined together with the overlaps between both orbits. Typical time scales for the determinantal motion can be set and the validity of the time-dependent Hartree-Fock approach in the various regions of quasispin phase space is discussed

  16. Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.

    1994-01-01

    A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works

  17. Self-consistent finite-temperature model of atom-laser coherence properties

    International Nuclear Information System (INIS)

    Fergusson, J.R.; Geddes, A.J.; Hutchinson, D.A.W.

    2005-01-01

    We present a mean-field model of a continuous-wave atom laser with Raman output coupling. The noncondensate is pumped at a fixed input rate which, in turn, pumps the condensate through a two-body scattering process obeying the Fermi golden rule. The gas is then coupled out by a Gaussian beam from the system, and the temperature and particle number are self-consistently evaluated against equilibrium constraints. We observe the dependence of the second-order coherence of the output upon the width of the output-coupling beam, and note that even in the presence of a highly coherent trapped gas, perfect coherence of the output matter wave is not guaranteed

  18. Homogenization of linearly anisotropic scattering cross sections in a consistent B1 heterogeneous leakage model

    International Nuclear Information System (INIS)

    Marleau, G.; Debos, E.

    1998-01-01

    One of the main problems encountered in cell calculations is that of spatial homogenization where one associates to an heterogeneous cell an homogeneous set of cross sections. The homogenization process is in fact trivial when a totally reflected cell without leakage is fully homogenized since it involved only a flux-volume weighting of the isotropic cross sections. When anisotropic leakages models are considered, in addition to homogenizing isotropic cross sections, the anisotropic scattering cross section must also be considered. The simple option, which consists of using the same homogenization procedure for both the isotropic and anisotropic components of the scattering cross section, leads to inconsistencies between the homogeneous and homogenized transport equation. Here we will present a method for homogenizing the anisotropic scattering cross sections that will resolve these inconsistencies. (author)

  19. The Consistent Kinetics Porosity (CKP) Model: A Theory for the Mechanical Behavior of Moderately Porous Solids

    Energy Technology Data Exchange (ETDEWEB)

    BRANNON,REBECCA M.

    2000-11-01

    A theory is developed for the response of moderately porous solids (no more than {approximately}20% void space) to high-strain-rate deformations. The model is consistent because each feature is incorporated in a manner that is mathematically compatible with the other features. Unlike simple p-{alpha} models, the onset of pore collapse depends on the amount of shear present. The user-specifiable yield function depends on pressure, effective shear stress, and porosity. The elastic part of the strain rate is linearly related to the stress rate, with nonlinear corrections from changes in the elastic moduli due to pore collapse. Plastically incompressible flow of the matrix material allows pore collapse and an associated macroscopic plastic volume change. The plastic strain rate due to pore collapse/growth is taken normal to the yield surface. If phase transformation and/or pore nucleation are simultaneously occurring, the inelastic strain rate will be non-normal to the yield surface. To permit hardening, the yield stress of matrix material is treated as an internal state variable. Changes in porosity and matrix yield stress naturally cause the yield surface to evolve. The stress, porosity, and all other state variables vary in a consistent manner so that the stress remains on the yield surface throughout any quasistatic interval of plastic deformation. Dynamic loading allows the stress to exceed the yield surface via an overstress ordinary differential equation that is solved in closed form for better numerical accuracy. The part of the stress rate that causes no plastic work (i.e-, the part that has a zero inner product with the stress deviator and the identity tensor) is given by the projection of the elastic stressrate orthogonal to the span of the stress deviator and the identity tensor.The model, which has been numerically implemented in MIG format, has been exercised under a wide array of extremal loading and unloading paths. As will be discussed in a companion

  20. Consistent stress-strain ductile fracture model as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Ford, L.M.

    1980-01-01

    Published yield and ultimate biaxial stress and strain data for two grades of beryllium are correlated with a more complete method of characterizing macroscopic strain at fracture initiation in ductile materials. Results are compared with those obtained from an exponential, mean stress dependent, model. Simple statistical methods are employed to illustrate the degree of correlation for each method with the experimental data

  1. Engineering model cryocooler test results

    International Nuclear Information System (INIS)

    Skimko, M.A.; Stacy, W.D.; McCormick, J.A.

    1992-01-01

    This paper reports that recent testing of diaphragm-defined, Stirling-cycle machines and components has demonstrated cooling performance potential, validated the design code, and confirmed several critical operating characteristics. A breadboard cryocooler was rebuilt and tested from cryogenic to near-ambient cold end temperatures. There was a significant increase in capacity at cryogenic temperatures and the performance results compared will with code predictions at all temperatures. Further testing on a breadboard diaphragm compressor validated the calculated requirement for a minimum axial clearance between diaphragms and mating heads

  2. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    International Nuclear Information System (INIS)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and the preferred monolayer curvature J 0 m , and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k c and the area compression modulus k A are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k ¯ and J 0 m can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k ¯ and J 0 m change sign with relevant parameter changes. Although typically k ¯ 0 m ≫0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks

  3. Quantum self-consistency of AdSxΣ brane models

    International Nuclear Information System (INIS)

    Flachi, Antonino; Pujolas, Oriol

    2003-01-01

    Continuing our previous work, we consider a class of higher dimensional brane models with the topology of AdS D 1 +1 xΣ, where Σ is a one-parameter compact manifold and two branes of codimension one are located at the orbifold fixed points. We consider a setup where such a solution arises from Einstein-Yang-Mills theory and evaluate the one-loop effective potential induced by gauge fields and by a generic bulk scalar field. We show that this type of brane model resolves the gauge hierarchy between the Planck and electroweak scales through redshift effects due to the warp factor a=e -πkr . The value of a is then fixed by minimizing the effective potential. We find that, as in the Randall-Sundrum case, the gauge field contribution to the effective potential stabilizes the hierarchy without fine-tuning as long as the Laplacian Δ Σ on Σ has a zero eigenvalue. Scalar fields can stabilize the hierarchy depending on the mass and the nonminimal coupling. We also address the quantum self-consistency of the solution, showing that the classical brane solution is not spoiled by quantum effects

  4. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    Directory of Open Access Journals (Sweden)

    M. V. Chertova

    2012-10-01

    Full Text Available Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free slip sidewalls while comparing results for two model aspect ratios of 3:1 and 6:1. Slab buoyancy driven subduction with open boundaries and free plates immediately develops into strong rollback with high trench retreat velocities and predominantly laminar asthenospheric flow. In contrast, free-slip sidewalls prove highly restrictive on subduction rollback evolution, unless the lithosphere plates are allowed to move away from the sidewalls. This initiates return flows pushing both plates toward the subduction zone speeding up subduction. Increasing the aspect ratio to 6:1 does not change the overall flow pattern when using open sidewalls but only the flow magnitude. In contrast, for free-slip boundaries, the slab evolution does change with respect to the 3:1 aspect ratio model and slab evolution does not resemble the evolution obtained with open boundaries using 6:1 aspect ratio. For models with open side boundaries, we could develop a flow-speed scaling based on energy dissipation arguments to convert between flow fields of different model aspect ratios. We have also investigated incorporating the effect of far-field generated lithosphere stress in our open boundary models. By applying realistic normal stress conditions to the strong part of the overriding plate at the sidewalls, we can transfer intraplate stress to influence subduction dynamics varying from slab roll-back, stationary subduction, to advancing subduction. The relative independence of the flow field on model aspect ratio allows for a smaller modelling domain. Open boundaries allow for subduction to evolve freely and avoid the adverse effects (e.g. forced return flows of free-slip boundaries. We

  5. Is the thermal-spike model consistent with experimentally determined electron temperature?

    International Nuclear Information System (INIS)

    Ajryan, Eh.A.; Fedorov, A.V.; Kostenko, B.F.

    2000-01-01

    Carbon K-Auger electron spectra from amorphous carbon foils induced by fast heavy ions are theoretically investigated. The high-energy tail of the Auger structure showing a clear projectile charge dependence is analyzed within the thermal-spike model framework as well as in the frame of another model taking into account some kinetic features of the process. A poor comparison results between theoretically and experimentally determined temperatures are suggested to be due to an improper account of double electron excitations or due to shake-up processes which leave the system in a more energetic initial state than a statically screened core hole

  6. Multi-Time Scale Model Order Reduction and Stability Consistency Certification of Inverter-Interfaced DG System in AC Microgrid

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Meng

    2018-01-01

    Full Text Available AC microgrid mainly comprise inverter-interfaced distributed generators (IIDGs, which are nonlinear complex systems with multiple time scales, including frequency control, time delay measurements, and electromagnetic transients. The droop control-based IIDG in an AC microgrid is selected as the research object in this study, which comprises power droop controller, voltage- and current-loop controllers, and filter and line. The multi-time scale characteristics of the detailed IIDG model are divided based on singular perturbation theory. In addition, the IIDG model order is reduced by neglecting the system fast dynamics. The static and transient stability consistency of the IIDG model order reduction are demonstrated by extracting features of the IIDG small signal model and using the quadratic approximation method of the stability region boundary, respectively. The dynamic response consistencies of the IIDG model order reduction are evaluated using the frequency, damping and amplitude features extracted by the Prony transformation. Results are applicable to provide a simplified model for the dynamic characteristic analysis of IIDG systems in AC microgrid. The accuracy of the proposed method is verified by using the eigenvalue comparison, the transient stability index comparison and the dynamic time-domain simulation.

  7. Colonic stem cell data are consistent with the immortal model of stem cell division under non-random strand segregation.

    Science.gov (United States)

    Walters, K

    2009-06-01

    Colonic stem cells are thought to reside towards the base of crypts of the colon, but their numbers and proliferation mechanisms are not well characterized. A defining property of stem cells is that they are able to divide asymmetrically, but it is not known whether they always divide asymmetrically (immortal model) or whether there are occasional symmetrical divisions (stochastic model). By measuring diversity of methylation patterns in colon crypt samples, a recent study found evidence in favour of the stochastic model, assuming random segregation of stem cell DNA strands during cell division. Here, the effect of preferential segregation of the template strand is considered to be consistent with the 'immortal strand hypothesis', and explore the effect on conclusions of previously published results. For a sample of crypts, it is shown how, under the immortal model, to calculate mean and variance of the number of unique methylation patterns allowing for non-random strand segregation and compare them with those observed. The calculated mean and variance are consistent with an immortal model that incorporates non-random strand segregation for a range of stem cell numbers and levels of preferential strand segregation. Allowing for preferential strand segregation considerably alters previously published conclusions relating to stem cell numbers and turnover mechanisms. Evidence in favour of the stochastic model may not be as strong as previously thought.

  8. Towards three-dimensional continuum models of self-consistent along-strike megathrust segmentation

    Science.gov (United States)

    Pranger, Casper; van Dinther, Ylona; May, Dave; Le Pourhiet, Laetitia; Gerya, Taras

    2016-04-01

    into one algorithm. We are working towards presenting the first benchmarked 3D dynamic rupture models as an important step towards seismic cycle modelling of megathrust segmentation in a three-dimensional subduction setting with slow tectonic loading, self consistent fault development, and spontaneous seismicity.

  9. A self-consistent model for low-high transitions in tokamaks

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Hassam, A.B.

    1996-01-01

    A system of equations that couples the rapidly varying fluctuations of resistive ballooning modes to the slowly varying transport of the density, vorticity and parallel momentum have been derived and solved numerically. Only a single toroidal mode number is retained in the present work. The low-mode (L-mode) phase consists of strong poloidally asymmetric particle transport driven by resistive ballooning modes, with larger flux on the outboard side compared to the inboard side. With the onset of shear flow driven by a combination of toroidal drive mechanisms as well as the Reynolds stress, the fluctuations associated with the resistive ballooning modes are attenuated leading to a strong reduction in the particle transport. The drop in the particle transport results in steepening of the density profile leading to the high-mode (H-mode). copyright 1996 American Institute of Physics

  10. Determinants of National Health Insurance enrolment in Ghana across the life course: Are the results consistent between surveys?

    Science.gov (United States)

    van der Wielen, Nele; Falkingham, Jane; Channon, Andrew Amos

    2018-04-23

    Ghana is currently undergoing a profound demographic transition, with large increases in the number of older adults in the population. Older adults require greater levels of healthcare as illness and disability increase with age. Ghana therefore provides an important and timely case study of policy implementation aimed at improving equal access to healthcare in the context of population ageing. This paper examines the determinants of National Health Insurance (NHIS) enrolment in Ghana, using two different surveys and distinguishing between younger and older adults. Two surveys are used in order to investigate consistency in insurance enrolment. The comparison between age groups is aimed at understanding whether determinants differ for older adults. Previous studies have mainly focused on the enrolment of young and middle aged adults; thus by widening the focus to include older adults and taking into account differences in their demographic and socio-economic characteristics this paper provides a unique contribution to the literature. Using data from the 2007-2008 Study on Global Ageing and Adult Health (SAGE) and the 2012-2013 Ghanaian Living Standards Survey (GLSS) the determinants of NHIS enrolment among younger adults (aged 18-49) and older adults (aged 50 and over) are compared. Logistic regression explores the socio-economic and demographic determinants of NHIS enrolment and multinomial logistic regression investigates the correlates of insurance drop out. Similar results for people aged 18-49 and people aged 50 plus were revealed, with older adults having a slightly lower probability of dropping out of insurance coverage compared to younger adults. Both surveys confirm that education and wealth increase the likelihood of NHIS affiliation. Further, residential differences in insurance coverage are found, with greater NHIS coverage in urban areas. The findings give assurance that both datasets (SAGE and GLSS) are suitable for research on insurance affiliation

  11. Assessing the reliability of predictive activity coefficient models for molecules consisting of several functional groups

    Directory of Open Access Journals (Sweden)

    R. P. Gerber

    2013-03-01

    Full Text Available Currently, the most successful predictive models for activity coefficients are those based on functional groups such as UNIFAC. In contrast, these models require a large amount of experimental data for the determination of their parameter matrix. A more recent alternative is the models based on COSMO, for which only a small set of universal parameters must be calibrated. In this work, a recalibrated COSMO-SAC model was compared with the UNIFAC (Do model employing experimental infinite dilution activity coefficient data for 2236 non-hydrogen-bonding binary mixtures at different temperatures. As expected, UNIFAC (Do presented better overall performance, with a mean absolute error of 0.12 ln-units against 0.22 for our COSMO-SAC implementation. However, in cases involving molecules with several functional groups or when functional groups appear in an unusual way, the deviation for UNIFAC was 0.44 as opposed to 0.20 for COSMO-SAC. These results show that COSMO-SAC provides more reliable predictions for multi-functional or more complex molecules, reaffirming its future prospects.

  12. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  13. A self-consistent first-principle based approach to model carrier mobility in organic materials

    International Nuclear Information System (INIS)

    Meded, Velimir; Friederich, Pascal; Symalla, Franz; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang

    2015-01-01

    Transport through thin organic amorphous films, utilized in OLEDs and OPVs, has been a challenge to model by using ab-initio methods. Charge carrier mobility depends strongly on the disorder strength and reorganization energy, both of which are significantly affected by the details in environment of each molecule. Here we present a multi-scale approach to describe carrier mobility in which the materials morphology is generated using DEPOSIT, a Monte Carlo based atomistic simulation approach, or, alternatively by molecular dynamics calculations performed with GROMACS. From this morphology we extract the material specific hopping rates, as well as the on-site energies using a fully self-consistent embedding approach to compute the electronic structure parameters, which are then used in an analytic expression for the carrier mobility. We apply this strategy to compute the carrier mobility for a set of widely studied molecules and obtain good agreement between experiment and theory varying over several orders of magnitude in the mobility without any freely adjustable parameters. The work focuses on the quantum mechanical step of the multi-scale workflow, explains the concept along with the recently published workflow optimization, which combines density functional with semi-empirical tight binding approaches. This is followed by discussion on the analytic formula and its agreement with established percolation fits as well as kinetic Monte Carlo numerical approaches. Finally, we skatch an unified multi-disciplinary approach that integrates materials science simulation and high performance computing, developed within EU project MMM@HPC

  14. Scale Model Thruster Acoustic Measurement Results

    Science.gov (United States)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  15. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  16. Multiscale Modeling at Nanointerfaces: Polymer Thin Film Materials Discovery via Thermomechanically Consistent Coarse Graining

    Science.gov (United States)

    Hsu, David D.

    Due to high nanointerfacial area to volume ratio, the properties of "nanoconfined" polymer thin films, blends, and composites become highly altered compared to their bulk homopolymer analogues. Understanding the structure-property mechanisms underlying this effect is an active area of research. However, despite extensive work, a fundamental framework for predicting the local and system-averaged thermomechanical properties as a function of configuration and polymer species has yet to be established. Towards bridging this gap, here, we present a novel, systematic coarse-graining (CG) method which is able to capture quantitatively, the thermomechanical properties of real polymer systems in bulk and in nanoconfined geometries. This method, which we call thermomechanically consistent coarse-graining (TCCG), is a two-bead-per-monomer CG hybrid approach through which bonded interactions are optimized to match the atomistic structure via the Iterative Boltzmann Inversion method (IBI), and nonbonded interactions are tuned to macroscopic targets through parametric studies. We validate the TCCG method by systematically developing coarse-grain models for a group of five specialized methacrylate-based polymers including poly(methyl methacrylate) (PMMA). Good correlation with bulk all-atom (AA) simulations and experiments is found for the temperature-dependent glass transition temperature (Tg) Flory-Fox scaling relationships, self-diffusion coefficients of liquid monomers, and modulus of elasticity. We apply this TCCG method also to bulk polystyrene (PS) using a comparable coarse-grain CG bead mapping strategy. The model demonstrates chain stiffness commensurate with experiments, and we utilize a density-correction term to improve the transferability of the elastic modulus over a 500 K range. Additionally, PS and PMMA models capture the unexplained, characteristically dissimilar scaling of Tg with the thickness of free-standing films as seen in experiments. Using vibrational

  17. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease

    Directory of Open Access Journals (Sweden)

    Imis Dogan

    2015-01-01

    Full Text Available Huntington's disease (HD is a progressive neurodegenerative disorder characterized by a complex neuropsychiatric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in premanifest HD in the striatum and middle occipital gyrus (MOG. For early manifest HD convergent evidence of atrophy was most prominent in the striatum, motor cortex (M1 and inferior frontal junction (IFJ. The aim of the present study was to functionally characterize this topography of brain atrophy and to investigate differential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based meta-analytic connectivity modeling (MACM. MACM utilizes the large data source of the BrainMap database and identifies significant areas of above-chance co-activation with the seed-region via the activation-likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds in the premanifest and manifest stages of HD, respectively. Functional characterization of the seeds was obtained using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sensorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that experiments

  18. Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2017-12-09

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive alternative recently over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of multiple fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.

  19. A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling

    Science.gov (United States)

    Shapiro, B.; Jin, Q.

    2015-12-01

    Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.

  20. Self-consistent one-dimensional modelling of x-ray laser plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Walling, R.S.; Scott, H.A.; Mayle, R.W.; Osterheld, A.L.

    1992-01-01

    This paper presents the simulation of a planar, one-dimensional expanding Ge x-ray laser plasma using a new code which combines hydrodynamics, laser absorption, and detailed level population calculations within the same simulation. Previously, these simulations were performed in separate steps. We will present the effect of line transfer on gains and excited level populations and compare the line transfer result with simulations using escape probabilities. We will also discuss the impact of different atomic models on the accuracy of our simulation

  1. In situ neutron diffraction and Elastic–Plastic Self-Consistent polycrystal modeling of HT-9

    International Nuclear Information System (INIS)

    Clausen, B.; Brown, D.W.; Bourke, M.A.M.; Saleh, T.A.; Maloy, S.A.

    2012-01-01

    Qualifying materials for use in reactors with fluences greater than 200 dpa (displacements per atom) requires development of advanced alloys and irradiations in fast reactors to test these alloys. Research into the mechanical behavior of these materials under reactor conditions is ongoing. In order to probe changes in deformation mechanisms due to radiation in these materials, samples of HT-9 were tested in tension in situ on the SMARTS instrument at Los Alamos Neutron Science Center. Experimental results, confirmed with modeling, show significant load sharing between the carbides and parent phase of the steel beyond yield, displaying the critical role of carbides during deformation, along with basic texture development.

  2. In situ neutron diffraction and Elastic-Plastic Self-Consistent polycrystal modeling of HT-9

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B., E-mail: clausen@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, D.W.; Bourke, M.A.M.; Saleh, T.A.; Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-06-15

    Qualifying materials for use in reactors with fluences greater than 200 dpa (displacements per atom) requires development of advanced alloys and irradiations in fast reactors to test these alloys. Research into the mechanical behavior of these materials under reactor conditions is ongoing. In order to probe changes in deformation mechanisms due to radiation in these materials, samples of HT-9 were tested in tension in situ on the SMARTS instrument at Los Alamos Neutron Science Center. Experimental results, confirmed with modeling, show significant load sharing between the carbides and parent phase of the steel beyond yield, displaying the critical role of carbides during deformation, along with basic texture development.

  3. A self-consistent kinetic modeling of a 1-D, bounded, plasma in ...

    Indian Academy of Sciences (India)

    ions, consistent with the idea of scattering off a random collection of stationary scattering points, while it yields a constant for slow ions, consistent with the idea of collisions experienced by a stationary particle in an ideal gas. For this treatment, o has been assumed independent of position. Pramana – J. Phys., Vol. 55, Nos 5 ...

  4. A Consistent Fuzzy Preference Relations Based ANP Model for R&D Project Selection

    Directory of Open Access Journals (Sweden)

    Chia-Hua Cheng

    2017-08-01

    Full Text Available In today’s rapidly changing economy, technology companies have to make decisions on research and development (R&D projects investment on a routine bases with such decisions having a direct impact on that company’s profitability, sustainability and future growth. Companies seeking profitable opportunities for investment and project selection must consider many factors such as resource limitations and differences in assessment, with consideration of both qualitative and quantitative criteria. Often, differences in perception by the various stakeholders hinder the attainment of a consensus of opinion and coordination efforts. Thus, in this study, a hybrid model is developed for the consideration of the complex criteria taking into account the different opinions of the various stakeholders who often come from different departments within the company and have different opinions about which direction to take. The decision-making trial and evaluation laboratory (DEMATEL approach is used to convert the cause and effect relations representing the criteria into a visual network structure. A consistent fuzzy preference relations based analytic network process (CFPR-ANP method is developed to calculate the preference-weights of the criteria based on the derived network structure. The CFPR-ANP is an improvement over the original analytic network process (ANP method in that it reduces the problem of inconsistency as well as the number of pairwise comparisons. The combined complex proportional assessment (COPRAS-G method is applied with fuzzy grey relations to resolve conflicts arising from differences in information and opinions provided by the different stakeholders about the selection of the most suitable R&D projects. This novel combination approach is then used to assist an international brand-name company to prioritize projects and make project decisions that will maximize returns and ensure sustainability for the company.

  5. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood.

    Science.gov (United States)

    Donnellan, M Brent; Kenny, David A; Trzesniewski, Kali H; Lucas, Richard E; Conger, Rand D

    2012-12-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development.

  6. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood

    Science.gov (United States)

    Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.

    2012-01-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development. PMID:23180899

  7. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    Science.gov (United States)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  8. Do we really use rainfall observations consistent with reality in hydrological modelling?

    Science.gov (United States)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  9. Advancing nucleosynthesis in self-consistent, multidimensional models of core-collapse supernovae

    International Nuclear Information System (INIS)

    Austin Harris, J.; Chertkow, M.A.; Blondin, J.M.; Pedro Marronetti; Florida Atlantic University, Boca Raton, FL

    2014-01-01

    We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by 'post-processing' with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of four ab initio axisymmetric CCSN 2D models evolved with the smaller α-network, and initiated from stellar metallicity, nonrotating progenitors of mass 12, 15, 20, and 25 M ⊙ 2 . As a test of the limitations of postprocessing, we provide preliminary results from an ongoing simulation of the 15 M ⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional 'mass-cut' in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks. (author)

  10. Consistent and Conservative Model Selection with the Adaptive LASSO in Stationary and Nonstationary Autoregressions

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl

    2016-01-01

    We show that the adaptive Lasso is oracle efficient in stationary and nonstationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...

  11. Consistency of different tropospheric models and mapping functions for precise GNSS processing

    Science.gov (United States)

    Graffigna, Victoria; Hernández-Pajares, Manuel; García-Rigo, Alberto; Gende, Mauricio

    2017-04-01

    The TOmographic Model of the IONospheric electron content (TOMION) software implements a simultaneous precise geodetic and ionospheric modeling, which can be used to test new approaches for real-time precise GNSS modeling (positioning, ionospheric and tropospheric delays, clock errors, among others). In this work, the software is used to estimate the Zenith Tropospheric Delay (ZTD) emulating real time and its performance is evaluated through a comparative analysis with a built-in GIPSY estimation and IGS final troposphere product, exemplified in a two-day experiment performed in East Australia. Furthermore, the troposphere mapping function was upgraded from Niell to Vienna approach. On a first scenario, only forward processing was activated and the coordinates of the Wide Area GNSS network were loosely constrained, without fixing the carrier phase ambiguities, for both reference and rover receivers. On a second one, precise point positioning (PPP) was implemented, iterating for a fixed coordinates set for the second day. Comparisons between TOMION, IGS and GIPSY estimates have been performed and for the first one, IGS clocks and orbits were considered. The agreement with GIPSY results seems to be 10 times better than with the IGS final ZTD product, despite having considered IGS products for the computations. Hence, the subsequent analysis was carried out with respect to the GIPSY computations. The estimates show a typical bias of 2cm for the first strategy and of 7mm for PPP, in the worst cases. Moreover, Vienna mapping function showed in general a fairly better agreement than Niell one for both strategies. The RMS values' were found to be around 1cm for all studied situations, with a slightly fitter performance for the Niell one. Further improvement could be achieved for such estimations with coefficients for the Vienna mapping function calculated from raytracing as well as integrating meteorological comparative parameters.

  12. Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model

    Directory of Open Access Journals (Sweden)

    Li Wan

    2014-03-01

    Full Text Available In this work, we treat the Poisson-Nernst-Planck (PNP equations as the basis for a consistent framework of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving Poisson-Boltzmann (CCPB equation, with guaranteed charge neutrality within the computational domain. We propose a surface potential trap model that attributes an energy cost to the interfacial charge dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when the channel width is much larger than the Debye length. However, important differences emerge when the channel width is small, so the Debye screening layers from the opposite sides of the channel overlap with each other. In particular, the theory automatically yields a variation of σ that is generally known as the “charge regulation” behavior, attendant with predictions of force variation as a function of nanoscale separation between two charged surfaces that are in good agreement with the experiments, with no adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of the electro-osmotic (EO effect, the coupled PNP and Navier-Stokes equations are solved numerically under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an intrinsic time dependence that is noninertial in its origin. Under a step-function applied

  13. Mental health courts and their selection processes: modeling variation for consistency.

    Science.gov (United States)

    Wolff, Nancy; Fabrikant, Nicole; Belenko, Steven

    2011-10-01

    Admission into mental health courts is based on a complicated and often variable decision-making process that involves multiple parties representing different expertise and interests. To the extent that eligibility criteria of mental health courts are more suggestive than deterministic, selection bias can be expected. Very little research has focused on the selection processes underpinning problem-solving courts even though such processes may dominate the performance of these interventions. This article describes a qualitative study designed to deconstruct the selection and admission processes of mental health courts. In this article, we describe a multi-stage, complex process for screening and admitting clients into mental health courts. The selection filtering model that is described has three eligibility screening stages: initial, assessment, and evaluation. The results of this study suggest that clients selected by mental health courts are shaped by the formal and informal selection criteria, as well as by the local treatment system.

  14. Assessing the Accuracy and Consistency of Language Proficiency Classification under Competing Measurement Models

    Science.gov (United States)

    Zhang, Bo

    2010-01-01

    This article investigates how measurement models and statistical procedures can be applied to estimate the accuracy of proficiency classification in language testing. The paper starts with a concise introduction of four measurement models: the classical test theory (CTT) model, the dichotomous item response theory (IRT) model, the testlet response…

  15. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.

    Science.gov (United States)

    Zhao, Dong; Sakoda, Hideyuki; Sawyer, W Gregory; Banks, Scott A; Fregly, Benjamin J

    2008-02-01

    Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial

  16. Multi-model comparison highlights consistency in predicted effect of warming on a semi-arid shrub

    Science.gov (United States)

    Renwick, Katherine M.; Curtis, Caroline; Kleinhesselink, Andrew R.; Schlaepfer, Daniel R.; Bradley, Bethany A.; Aldridge, Cameron L.; Poulter, Benjamin; Adler, Peter B.

    2018-01-01

    A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi-model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.

  17. THE GAMMA-RAY AND NEUTRINO SKY: A CONSISTENT PICTURE OF FERMI-LAT, MILAGRO, AND ICECUBE RESULTS

    International Nuclear Information System (INIS)

    Gaggero, Daniele; Urbano, Alfredo; Valli, Mauro; Grasso, Dario; Marinelli, Antonio

    2015-01-01

    We compute the γ-ray and neutrino diffuse emission of the Galaxy on the basis of a recently proposed phenomenological model characterized by radially dependent cosmic-ray (CR) transport properties. We show how this model, designed to reproduce both Fermi-LAT γ-ray data and local CR observables, naturally reproduces the anomalous TeV diffuse emission observed by Milagro in the inner Galactic plane. Above 100 TeV our picture predicts a neutrino flux that is about five (two) times larger than the neutrino flux computed with conventional models in the Galactic Center region (full-sky). Explaining in that way up to ∼25% of the flux measured by IceCube, we reproduce the full-sky IceCube spectrum adding an extra-Galactic component derived from the muonic neutrinos flux in the northern hemisphere. We also present precise predictions for the Galactic plane region where the flux is dominated by the Galactic emission

  18. Empirical phylogenies and species abundance distributions are consistent with pre-equilibrium dynamics of neutral community models with gene flow

    KAUST Repository

    Bonnet-Lebrun, Anne-Sophie

    2017-03-17

    Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modelled communities - i.e., with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities - from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in pre-equilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under pre-equilibrium conditions. This article is protected by copyright. All rights reserved.

  19. Empirical phylogenies and species abundance distributions are consistent with pre-equilibrium dynamics of neutral community models with gene flow

    KAUST Repository

    Bonnet-Lebrun, Anne-Sophie; Manica, Andrea; Eriksson, Anders; Rodrigues, Ana S.L.

    2017-01-01

    Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modelled communities - i.e., with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities - from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in pre-equilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under pre-equilibrium conditions. This article is protected by copyright. All rights reserved.

  20. An Improved Cognitive Model of the Iowa and Soochow Gambling Tasks With Regard to Model Fitting Performance and Tests of Parameter Consistency

    Directory of Open Access Journals (Sweden)

    Junyi eDai

    2015-03-01

    Full Text Available The Iowa Gambling Task (IGT and the Soochow Gambling Task (SGT are two experience-based risky decision-making tasks for examining decision-making deficits in clinical populations. Several cognitive models, including the expectancy-valence learning model (EVL and the prospect valence learning model (PVL, have been developed to disentangle the motivational, cognitive, and response processes underlying the explicit choices in these tasks. The purpose of the current study was to develop an improved model that can fit empirical data better than the EVL and PVL models and, in addition, produce more consistent parameter estimates across the IGT and SGT. Twenty-six opiate users (mean age 34.23; SD 8.79 and 27 control participants (mean age 35; SD 10.44 completed both tasks. Eighteen cognitive models varying in evaluation, updating, and choice rules were fit to individual data and their performances were compared to that of a statistical baseline model to find a best fitting model. The results showed that the model combining the prospect utility function treating gains and losses separately, the decay-reinforcement updating rule, and the trial-independent choice rule performed the best in both tasks. Furthermore, the winning model produced more consistent individual parameter estimates across the two tasks than any of the other models.

  1. A consistent framework for modeling inorganic pesticides: Adaptation of life cycle inventory models to metal-base pesticides

    DEFF Research Database (Denmark)

    Peña, N.A.; Anton, A.; Fantke, Peter

    2016-01-01

    emission factors (percentages) or dynamic models base on specific application scenarios that describe only the behavior of organic pesticides. Currently fixed emission fractions for pesticides dearth to account for the influence of pesticide-specific function to crop type and application methods....... On the other hand the dynamic models need to account for the variability in this interactions in emissions of inorganic pesticides. This lack of appropriate models to estimate emission fractions of inorganic pesticides results in a lower accuracy when accounting for emissions in agriculture......, and it will influence the outcomes of the impact profile. The pesticide emission model PestLCI 2.0 is the most advanced currently available inventory model for LCA intended to provide an estimation of organic pesticide emission fractions to the environment. We use this model as starting point for quantifying emission...

  2. Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge?

    Science.gov (United States)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2015-03-01

    Regional climate modelling sometimes requires that the regional model be nudged towards the large-scale driving data to avoid the development of inconsistencies between them. These inconsistencies are known to produce large surface temperature and rainfall artefacts. Therefore, it is essential to maintain the synoptic circulation within the simulation domain consistent with the synoptic circulation at the domain boundaries. Nudging techniques, initially developed for data assimilation purposes, are increasingly used in regional climate modeling and offer a workaround to this issue. In this context, several questions on the "optimal" use of nudging are still open. In this study we focus on a specific question which is: What variable should we nudge? in order to maintain the consistencies between the regional model and the driving fields as much as possible. For that, a "Big Brother Experiment", where a reference atmospheric state is known, is conducted using the weather research and forecasting (WRF) model over the Euro-Mediterranean region. A set of 22 3-month simulations is performed with different sets of nudged variables and nudging options (no nudging, indiscriminate nudging, spectral nudging) for summer and winter. The results show that nudging clearly improves the model capacity to reproduce the reference fields. However the skill scores depend on the set of variables used to nudge the regional climate simulations. Nudging the tropospheric horizontal wind is by far the key variable to nudge to simulate correctly surface temperature and wind, and rainfall. To a lesser extent, nudging tropospheric temperature also contributes to significantly improve the simulations. Indeed, nudging tropospheric wind or temperature directly impacts the simulation of the tropospheric geopotential height and thus the synoptic scale atmospheric circulation. Nudging moisture improves the precipitation but the impact on the other fields (wind and temperature) is not significant. As

  3. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    NARCIS (Netherlands)

    Chertova, M.V.; Geenen, T.; van den Berg, A.; Spakman, W.

    2012-01-01

    Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free

  4. Studying the Consistency between and within the Student Mental Models for Atomic Structure

    Science.gov (United States)

    Zarkadis, Nikolaos; Papageorgiou, George; Stamovlasis, Dimitrios

    2017-01-01

    Science education research has revealed a number of student mental models for atomic structure, among which, the one based on Bohr's model seems to be the most dominant. The aim of the current study is to investigate the coherence of these models when students apply them for the explanation of a variety of situations. For this purpose, a set of…

  5. Pedagogical Approaches Used by Faculty in Holland's Model Environments: The Role of Environmental Consistency

    Science.gov (United States)

    Smart, John C.; Ethington, Corinna A.; Umbach, Paul D.

    2009-01-01

    This study examines the extent to which faculty members in the disparate academic environments of Holland's theory devote different amounts of time in their classes to alternative pedagogical approaches and whether such differences are comparable for those in "consistent" and "inconsistent" environments. The findings show wide variations in the…

  6. Integration and consistency testing of groundwater flow models with hydro-geochemistry in site investigations in Finland

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Loefman, J.; Korkealaakso, J.; Koskinen, L.; Ruotsalainen, P.; Hautojaervi, A.; Aeikaes, T.

    1999-01-01

    In the assessment of the suitability and safety of a geological repository for radioactive waste the understanding of the fluid flow at a site is essential. In order to build confidence in the assessment of the hydrogeological performance of a site in various conditions, integration of hydrological and hydrogeochemical methods and studies provides the primary method for investigating the evolution that has taken place in the past, and for predicting future conditions at the potential disposal site. A systematic geochemical sampling campaign was started since the beginning of 1990's in the Finnish site investigation programme. This enabled the initiating of integration and evaluation of site scale hydrogeochemical and groundwater flow models. Hydrogeochemical information has been used to screen relevant external processes and variables for definition of the initial and boundary conditions in hydrological simulations. The results obtained from interpretation and modelling hydrogeochemical evolution have been employed in testing the hydrogeochemical consistency of conceptual flow models. Integration and testing of flow models with hydrogeochemical information are considered to improve significantly the hydrogeological understanding of a site and increases confidence in conceptual hydrogeological models. (author)

  7. Thermodynamic consistency of viscoplastic material models involving external variable rates in the evolution equations for the internal variables

    International Nuclear Information System (INIS)

    Malmberg, T.

    1993-09-01

    The objective of this study is to derive and investigate thermodynamic restrictions for a particular class of internal variable models. Their evolution equations consist of two contributions: the usual irreversible part, depending only on the present state, and a reversible but path dependent part, linear in the rates of the external variables (evolution equations of ''mixed type''). In the first instance the thermodynamic analysis is based on the classical Clausius-Duhem entropy inequality and the Coleman-Noll argument. The analysis is restricted to infinitesimal strains and rotations. The results are specialized and transferred to a general class of elastic-viscoplastic material models. Subsequently, they are applied to several viscoplastic models of ''mixed type'', proposed or discussed in the literature (Robinson et al., Krempl et al., Freed et al.), and it is shown that some of these models are thermodynamically inconsistent. The study is closed with the evaluation of the extended Clausius-Duhem entropy inequality (concept of Mueller) where the entropy flux is governed by an assumed constitutive equation in its own right; also the constraining balance equations are explicitly accounted for by the method of Lagrange multipliers (Liu's approach). This analysis is done for a viscoplastic material model with evolution equations of the ''mixed type''. It is shown that this approach is much more involved than the evaluation of the classical Clausius-Duhem entropy inequality with the Coleman-Noll argument. (orig.) [de

  8. Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization

    Science.gov (United States)

    Ishigaki, Masafumi; Kawamata, Ryota; Ouchi, Masami; Oguri, Masamune; Shimasaku, Kazuhiro; Ono, Yoshiaki

    2018-02-01

    We present UV luminosity functions of dropout galaxies at z∼ 6{--}10 with the complete Hubble Frontier Fields data. We obtain a catalog of ∼450 dropout-galaxy candidates (350, 66, and 40 at z∼ 6{--}7, 8, and 9, respectively), with UV absolute magnitudes that reach ∼ -14 mag, ∼2 mag deeper than the Hubble Ultra Deep Field detection limits. We carefully evaluate number densities of the dropout galaxies by Monte Carlo simulations, including all lensing effects such as magnification, distortion, and multiplication of images as well as detection completeness and contamination effects in a self-consistent manner. We find that UV luminosity functions at z∼ 6{--}8 have steep faint-end slopes, α ∼ -2, and likely steeper slopes, α ≲ -2 at z∼ 9{--}10. We also find that the evolution of UV luminosity densities shows a non-accelerated decline beyond z∼ 8 in the case of {M}trunc}=-15, but an accelerated one in the case of {M}trunc}=-17. We examine whether our results are consistent with the Thomson scattering optical depth from the Planck satellite and the ionized hydrogen fraction Q H II at z≲ 7 based on the standard analytic reionization model. We find that reionization scenarios exist that consistently explain all of the observational measurements with the allowed parameters of {f}esc}={0.17}-0.03+0.07 and {M}trunc}> -14.0 for {log}{ξ }ion}/[{erg}}-1 {Hz}]=25.34, where {f}esc} is the escape fraction, M trunc is the faint limit of the UV luminosity function, and {ξ }ion} is the conversion factor of the UV luminosity to the ionizing photon emission rate. The length of the reionization period is estimated to be {{Δ }}z={3.9}-1.6+2.0 (for 0.1< {Q}{{H}{{II}}}< 0.99), consistent with the recent estimate from Planck.

  9. Towards a more consistent picture of isopycnal mixing in climate models

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M. A. S.; Koszalka, I.; Abernathey, R. P.

    2014-12-01

    The stirring of tracers by mesoscale eddies along isopycnal surfaces is often represented in coarse-resolution models by the Redi diffusion parameter ARedi. Theoretical treatments of ARedi often assume it should scale as the eddy energy or the growth rate of mesoscale eddies,. producing a picture where it is high in boundary currents and low )of order a few hundred m2/s) in the gyre interiors. However, observational estimates suggest that ARedi should be very large (of order thousands of m2/s) in the gyre interior. We present results of recent simulations comparing a range of spatially constant values ARedi (with values of 400, 800, 1200 and 2400 m2/s) to a spatially resolved estimate based on altimetry and a zonally averaged version of the same estimate. In general, increasing the ARedi coefficient destratifies and warms the high latitudes. Relative to our control simulation, the spatially dependent coefficient is lower in the Southern Ocean, but high in the North Pacific, and so the temperature changes mirror this. We also examine the response of ocean hypoxia to these changes. In general, the zonally averaged version of the altimetry-based estimate of ARedi does not capture the full 2d representation.

  10. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    OpenAIRE

    Estève , D. ,; Sarazin , Y.; Garbet , X.; Grandgirard , V.; Breton , S. ,; Donnel , P. ,; Asahi , Y. ,; Bourdelle , C.; Dif-Pradalier , G; Ehrlacher , C.; Emeriau , C.; Ghendrih , Ph; Gillot , C.; Latu , G.; Passeron , C.

    2018-01-01

    International audience; Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code [V. Grandgirard et al., Comp. Phys. Commun. 207, 35 (2016)]. A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime likely relevant for tungsten, the standard expression of the neoclassical impurity flux is shown t...

  11. CONSISTENT USE OF THE KALMAN FILTER IN CHEMICAL TRANSPORT MODELS (CTMS) FOR DEDUCING EMISSIONS

    Science.gov (United States)

    Past research has shown that emissions can be deduced using observed concentrations of a chemical, a Chemical Transport Model (CTM), and the Kalman filter in an inverse modeling application. An expression was derived for the relationship between the "observable" (i.e., the con...

  12. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    Science.gov (United States)

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  13. A simple model of the plasma deflagration gun including self-consistent electric and magnetic fields

    International Nuclear Information System (INIS)

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    At the Air Force Weapons Laboratory, interest has continued for some time in energetic plasma injectors. A possible scheme for such a device is the plasma deflagration gun. When the question arose whether it would be possible to scale a deflagration gun to the multi-megajoule energy level, it became clear that a scaling law which described the fun as a circuit element and allowed one to confidently scale gun parameters would be required. The authors sought to develop a scaling law which self-consistently described the current, magnetic field, and velocity profiles in the gun. They based this scaling law on plasma parameters exclusively, abandoning the fluid approach

  14. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    -level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within......-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder...

  15. Implicit implementation and consistent tangent modulus of a viscoplastic model for polymers

    OpenAIRE

    ACHOUR-RENAULT, Nadia; CHATZIGEORGIOU, George; MERAGHNI, Fodil; CHEMISKY, Yves; FITOUSSI, Joseph

    2015-01-01

    In this work, the phenomenological viscoplastic DSGZ model[Duan, Y., Saigal, A., Greif, R., Zimmerman, M. A., 2001. A Uniform Phenomenological Constitutive Model for Glassy and Semicrystalline Polymers. Polymer Engineering and Science 41 (8), 1322-1328], developed for glassy or semi-crystalline polymers, is numerically implemented in a three dimensional framework, following an implicit formulation. The computational methodology is based on the radial return mapping algorithm. This implicit fo...

  16. Thermodynamically self-consistent theory for the Blume-Capel model.

    Science.gov (United States)

    Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G

    2001-04-01

    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.

  17. The standard lateral gene transfer model is statistically consistent for pectinate four-taxon trees

    DEFF Research Database (Denmark)

    Sand, Andreas; Steel, Mike

    2013-01-01

    Evolutionary events such as incomplete lineage sorting and lateral gene transfers constitute major problems for inferring species trees from gene trees, as they can sometimes lead to gene trees which conflict with the underlying species tree. One particularly simple and efficient way to infer...... species trees from gene trees under such conditions is to combine three-taxon analyses for several genes using a majority vote approach. For incomplete lineage sorting this method is known to be statistically consistent; however, for lateral gene transfers it was recently shown that a zone...... of inconsistency exists for a specific four-taxon tree topology, and it was posed as an open question whether inconsistencies could exist for other four-taxon tree topologies? In this letter we analyze all remaining four-taxon topologies and show that no other inconsistencies exist....

  18. Results of the naive quark model

    International Nuclear Information System (INIS)

    Gignoux, C.

    1987-10-01

    The hypotheses and limits of the naive quark model are recalled and results on nucleon-nucleon scattering and possible multiquark states are presented. Results show that with this model, ropers do not come. For hadron-hadron interactions, the model predicts Van der Waals forces that the resonance group method does not allow. Known many-body forces are not found in the model. The lack of mesons shows up in the absence of a far reaching force. However, the model does have strengths. It is free from spuriousness of center of mass, and allows a democratic handling of flavor. It has few parameters, and its predictions are very good [fr

  19. Coulomb displacement energies in relativistic and non-relativistic self-consistent models

    International Nuclear Information System (INIS)

    Marcos, S.; Savushkin, L.N.; Giai, N. van.

    1992-03-01

    Coulomb displacement energies in mirror nuclei are comparatively analyzed in Dirac-Hartree and Skyrme-Hartree-Fock models. Using a non-linear effective Lagrangian fitted on ground state properties of finite nuclei, it is found that the predictions of relativistic models are lower than those of Hartree-Fock calculations with Skyrme force. The main sources of reduction are the kinetic energy and the Coulomb-nuclear interference potential. The discrepancy with the data is larger than in the Skyrme-Hartree-Fock case. (author) 24 refs., 3 tabs

  20. A self-consistent model of rich clusters of galaxies. I. The galactic component of a cluster

    International Nuclear Information System (INIS)

    Konyukov, M.V.

    1985-01-01

    It is shown that to obtain the distribution function for the galactic component of a cluster reduces in the last analysis to solving the boundary-value problem for the gravitational potential of a self-consistent field. The distribution function is determined by two main parameters. An algorithm is constructed for the solution of the problem, and a program is set up to solve it. It is used to establish the region of values of the parameters in the problem for which solutions exist. The scheme proposed is extended to the case where there exists in the cluster a separate central body with a known density distribution (for example, a cD galaxy). A method is indicated for the estimation of the parameters of the model from the results of observations of clusters of galaxies in the optical range

  1. Strong time-consistency in the cartel-versus-fringe model

    NARCIS (Netherlands)

    Groot, F.; Withagen, C.A.A.M.; Zeeuw, de A.J.

    2003-01-01

    Due to developments on the oil market in the 1970s, the theory of exhaustible resources was extended with the cartel-versus-fringe model to characterize markets with one big coherent cartel and a large number of small suppliers called the fringe. Because cartel and fringe are leader and follower,

  2. Self-consistent semi-analytic models of the first stars

    Science.gov (United States)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2018-04-01

    We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter haloes from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual haloes) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.

  3. A consistent multigroup model for radiative transfer and its underlying mean opacities

    International Nuclear Information System (INIS)

    Turpault, Rodolphe

    2005-01-01

    In some regimes, such as in plasma physics or in super orbital atmospheric entry of space objects, the effects of radiation are crucial and can tremendously modify the hydrodynamics of the gas. In such cases, it is therefore important to have a good prediction of the radiative variables. However, full transport solutions of these multi-dimensional, time-dependent problems are too expensive to get to be involved in a coupled configuration. It is hence necessary to develop other models for radiation that are cheap, yet accurate enough to give good predictions of the radiative effects. We will herein introduce the multigroup-M1 model and look at its characteristics and in particular try to separate the angular error from the frequential one since these two approximation play very different roles. The angular behaviour of the model will be tested on a case proposed by Su and Olson and used by Olson et al. to compare various moments and (flux-limited) diffusion models. For the frequency behaviour, we use a simplified flame test-case and show the importance of taking good mean opacities

  4. Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive

  5. Self-consistent model for the radial current generation during fishbone activity

    International Nuclear Information System (INIS)

    Lutsenko, V.V.; Marchenko, V.S.

    2002-01-01

    Line broadened quasilinear burst model, originally developed for the bump-on-tail instability [H. L. Berk et al., Nucl. Fusion 35, 1661 (1995)], is extended to the problem of sheared flow generation by the fishbone burst. It is supposed that the radial current of the resonant fast ions can be sufficient to create the transport barrier

  6. Latent state-trait models for longitudinal family data : Investigating consistency in perceived support

    NARCIS (Netherlands)

    Loncke, Justine; Mayer, Axel; Eichelsheim, Veroni I.; Branje, Susan J.T.; Meeus, Wim H.J.; Koot, Hans M.; Buysse, Ann; Loeys, Tom

    2017-01-01

    Support is key to healthy family functioning. Using the family social relations model (SRM), it has already been shown that variability in perceived support is mostly attributed to individual perceiver effects. Little is known, however, as to whether those effects are stable or occasion-specific.

  7. Latent state-trait models for longitudinal family data investigating consistency in perceived support

    NARCIS (Netherlands)

    Loncke, Justine; Mayer, Axel; Eichelsheim, Veroni I.; Branje, Susan J. T.; Meeus, W.H.J.; Koot, Hans M.; Buysse, Ann; Loeys, Tom

    Support is key to healthy family functioning. Using the family social relations model (SRM), it has already been shown that variability in perceived support is mostly attributed to individual perceiver effects. Little is known, however, as to whether those effects are stable or occasion-specific.

  8. A self-consistent model for the Galactic cosmic ray, antiproton and positron spectra

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In this talk I will present the escape model of Galactic cosmic rays. This model explains the measured cosmic ray spectra of individual groups of nuclei from TeV to EeV energies. It predicts an early transition to extragalactic cosmic rays, in agreement with recent Auger data. The escape model also explains the soft neutrino spectrum 1/E^2.5 found by IceCube in concordance with Fermi gamma-ray data. I will show that within the same model one can explain the excess of positrons and antiprotons above 20 GeV found by PAMELA and AMS-02, the discrepancy in the slopes of the spectra of cosmic ray protons and heavier nuclei in the TeV-PeV energy range and the plateau in cosmic ray dipole anisotropy in the 2-50 TeV energy range by adding the effects of a 2 million year old nearby supernova.

  9. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    International Nuclear Information System (INIS)

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-01-01

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation

  10. Genome scale models of yeast: towards standardized evaluation and consistent omic integration

    DEFF Research Database (Denmark)

    Sanchez, Benjamin J.; Nielsen, Jens

    2015-01-01

    Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published and are curre......Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published...... in which all levels of omics data (from gene expression to flux) have been integrated in yeast GEMs. Relevant conclusions and current challenges for both GEM evaluation and omic integration are highlighted....

  11. Flood damage: a model for consistent, complete and multipurpose scenarios

    Directory of Open Access Journals (Sweden)

    S. Menoni

    2016-12-01

    implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  12. A consistent model for leptogenesis, dark matter and the IceCube signal

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentin, M. Re [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Niro, V. [Departamento de Física Teórica, Universidad Autónoma de Madrid,Cantoblanco, E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC,Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Fornengo, N. [Dipartimento di Fisica, Università di Torino,via P. Giuria, 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino,via P. Giuria, 1, 10125 Torino (Italy)

    2016-11-04

    We discuss a left-right symmetric extension of the Standard Model in which the three additional right-handed neutrinos play a central role in explaining the baryon asymmetry of the Universe, the dark matter abundance and the ultra energetic signal detected by the IceCube experiment. The energy spectrum and neutrino flux measured by IceCube are ascribed to the decays of the lightest right-handed neutrino N{sub 1}, thus fixing its mass and lifetime, while the production of N{sub 1} in the primordial thermal bath occurs via a freeze-in mechanism driven by the additional SU(2){sub R} interactions. The constraints imposed by IceCube and the dark matter abundance allow nonetheless the heavier right-handed neutrinos to realize a standard type-I seesaw leptogenesis, with the B−L asymmetry dominantly produced by the next-to-lightest neutrino N{sub 2}. Further consequences and predictions of the model are that: the N{sub 1} production implies a specific power-law relation between the reheating temperature of the Universe and the vacuum expectation value of the SU(2){sub R} triplet; leptogenesis imposes a lower bound on the reheating temperature of the Universe at 7×10{sup 9} GeV. Additionally, the model requires a vanishing absolute neutrino mass scale m{sub 1}≃0.

  13. Demonstration of a geostatistical approach to physically consistent downscaling of climate modeling simulations

    KAUST Repository

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason P.; McCabe, Matthew

    2013-01-01

    A downscaling approach based on multiple-point geostatistics (MPS) is presented. The key concept underlying MPS is to sample spatial patterns from within training images, which can then be used in characterizing the relationship between different variables across multiple scales. The approach is used here to downscale climate variables including skin surface temperature (TSK), soil moisture (SMOIS), and latent heat flux (LH). The performance of the approach is assessed by applying it to data derived from a regional climate model of the Murray-Darling basin in southeast Australia, using model outputs at two spatial resolutions of 50 and 10 km. The data used in this study cover the period from 1985 to 2006, with 1985 to 2005 used for generating the training images that define the relationships of the variables across the different spatial scales. Subsequently, the spatial distributions for the variables in the year 2006 are determined at 10 km resolution using the 50 km resolution data as input. The MPS geostatistical downscaling approach reproduces the spatial distribution of TSK, SMOIS, and LH at 10 km resolution with the correct spatial patterns over different seasons, while providing uncertainty estimates through the use of multiple realizations. The technique has the potential to not only bridge issues of spatial resolution in regional and global climate model simulations but also in feature sharpening in remote sensing applications through image fusion, filling gaps in spatial data, evaluating downscaled variables with available remote sensing images, and aggregating/disaggregating hydrological and groundwater variables for catchment studies.

  14. Consistent framework data for modeling and formation of scenarios in the Federal Environment Office; Konsistente Rahmendaten fuer Modellierungen und Szenariobildung im Umweltbundesamt

    Energy Technology Data Exchange (ETDEWEB)

    Weimer-Jehle, Wolfgang; Wassermann, Sandra; Kosow, Hannah [Internationales Zentrum fuer Kultur- und Technikforschung an der Univ. Stuttgart (Germany). ZIRN Interdisziplinaerer Forschungsschwerpunkt Risiko und Nachhaltige Technikentwicklung

    2011-04-15

    Model-based environmental scenarios normally require multiple framework assumptions regarding future social, political and economic developments (external developments). In most cases these framework assumptions are highly uncertain. Furthermore, different external developments are not isolated from each other and their interdependences can be described by qualitative judgments only. If the internal consistency of framework assumptions is not methodologically addressed, environmental models risk to be based on inconsistent combinations of framework assumptions which do not reflect existing relations between the respective factors in an appropriate way. This report aims at demonstrating how consistent context scenarios can be developed with the help of the cross-impact balance analysis (CIB). This method allows not only for the internal consistency of framework assumptions of a single model but also for the overall consistency of framework assumptions of modeling instruments, supporting the integrated interpretation of the results of different models. In order to demonstrate the method, in a first step, ten common framework assumptions were chosen and their possible future developments until 2030 were described. In a second step, a qualitative impact network was developed based on expert elicitation. The impact network provided the basis for a qualitative but systematic analysis of the internal consistency of combinations of framework assumptions. This analysis was carried out with the CIB-method and resulted in a set of consistent context scenarios. These scenarios can be used as an informative background for defining framework assumptions for environmental models at the UBA. (orig.)

  15. Characterisation of poly(lactic acid): poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach

    NARCIS (Netherlands)

    Heald, C.R.; Stolnik, S.; Matteis, De C.; Garnett, M.C.; Illum, L.; Davis, S.S.; Leermakers, F.A.M.

    2003-01-01

    Self-consistent field (SCF) modelling studies can be used to predict the properties of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the theory developed by Scheutjens and Fleer. Good agreement in the results between experimental and modelled data has been observed previously

  16. Self-Consistant Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H.

    2010-01-01

    The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the growth rate and frequency patterns in space-time of the electron cloud driven transverse instability for a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Comparisons to selected experimental data are also given. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons. Comparisons to experimental data are also given.

  17. LIDT-DD: A New Self-Consistent Debris Disc Model Including Radiation Pressure and Coupling Dynamical and Collisional Evolution

    Science.gov (United States)

    Kral, Q.; Thebault, P.; Charnoz, S.

    2014-01-01

    The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.

  18. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  19. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Although cyanobacterial β-N-methylamino-l-alanine (BMAA has been implicated in the development of Alzheimer’s Disease (AD, Parkinson’s Disease (PD and Amyotrophic Lateral Sclerosis (ALS, no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.

  20. A multichannel model for the self-consistent analysis of coherent transport in graphene nanoribbons.

    Science.gov (United States)

    Mencarelli, Davide; Pierantoni, Luca; Farina, Marco; Di Donato, Andrea; Rozzi, Tullio

    2011-08-23

    In this contribution, we analyze the multichannel coherent transport in graphene nanoribbons (GNRs) by a scattering matrix approach. We consider the transport properties of GNR devices of a very general form, involving multiple bands and multiple leads. The 2D quantum transport over the whole GNR surface, described by the Schrödinger equation, is strongly nonlinear as it implies calculation of self-generated and externally applied electrostatic potentials, solutions of the 3D Poisson equation. The surface charge density is computed as a balance of carriers traveling through the channel at all of the allowed energies. Moreover, formation of bound charges corresponding to a discrete modal spectrum is observed and included in the model. We provide simulation examples by considering GNR configurations typical for transistor devices and GNR protrusions that find an interesting application as cold cathodes for X-ray generation. With reference to the latter case, a unified model is required in order to couple charge transport and charge emission. However, to a first approximation, these could be considered as independent problems, as in the example. © 2011 American Chemical Society

  1. Interpreting Results from the Multinomial Logit Model

    DEFF Research Database (Denmark)

    Wulff, Jesper

    2015-01-01

    This article provides guidelines and illustrates practical steps necessary for an analysis of results from the multinomial logit model (MLM). The MLM is a popular model in the strategy literature because it allows researchers to examine strategic choices with multiple outcomes. However, there see...... suitable for both interpretation and communication of results. The pratical steps are illustrated through an application of the MLM to the choice of foreign market entry mode.......This article provides guidelines and illustrates practical steps necessary for an analysis of results from the multinomial logit model (MLM). The MLM is a popular model in the strategy literature because it allows researchers to examine strategic choices with multiple outcomes. However, there seem...... to be systematic issues with regard to how researchers interpret their results when using the MLM. In this study, I present a set of guidelines critical to analyzing and interpreting results from the MLM. The procedure involves intuitive graphical representations of predicted probabilities and marginal effects...

  2. Thermodynamically consistent modeling and simulation of multi-component two-phase flow model with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2016-11-25

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest alternative over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of two fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.

  3. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  4. Ensuring consistency and persistence to the Quality Information Model - The role of the GeoViQua Broker

    Science.gov (United States)

    Bigagli, Lorenzo; Papeschi, Fabrizio; Nativi, Stefano; Bastin, Lucy; Masó, Joan

    2013-04-01

    a few products are annotated with their PID; recent studies show that on a total of about 100000 Clearinghouse products, only 37 have the Product Identifier. Furthermore the association should be persistent within the GeoViQua scope. GeoViQua architecture is built on the brokering approach successfully experimented within the EuroGEOSS project and realized by the GEO DAB (Discovery and Access Broker). Part of the GEOSS Common Infrastructure (GCI), the GEO DAB allows for harmonization and distribution in a transparent way for both users and data providers. This way, GeoViQua can effectively complement and extend the GEO DAB obtaining a Quality-augmentation broker (GeoViQua Broker) which plays a central role in ensuring the consistency of the Producer and User quality models. This work is focused on the typical use case in which the GeoViQua Broker performs data discovery from different data providers, and then integrates in the Quality Information Model the producer quality report with the feedback given by users. In particular, this work highlights the problems faced by the GeoViQua Broker and the techniques adopted to ensure consistency and persistency also for quality reports whose target products are not annotated with a PID. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 265178.

  5. Complementarity of DM Searches in a Consistent Simplified Model: the Case of Z'

    CERN Document Server

    Jacques, Thomas; Morgante, Enrico; Racco, Davide; Rameez, Mohamed; Riotto, Antonio

    2016-01-01

    We analyze the constraints from direct and indirect detection on fermionic Majorana Dark Matter (DM). Because the interaction with the Standard Model (SM) particles is spin-dependent, a priori the constraints that one gets from neutrino telescopes, the LHC and direct detection experiments are comparable. We study the complementarity of these searches in a particular example, in which a heavy $Z'$ mediates the interactions between the SM and the DM. We find that in most cases IceCube provides the strongest bounds on this scenario, while the LHC constraints are only meaningful for smaller dark matter masses. These light masses are less motivated by thermal relic abundance considerations. We show that the dominant annihilation channels of the light DM in the Sun are either $b \\bar b$ or $t \\bar t$, while the heavy DM annihilation is completely dominated by $Zh$ channel. The latter produces a hard neutrino spectrum which has not been previously analyzed. We study the neutrino spectrum yielded by DM and recast Ice...

  6. Complementarity of DM searches in a consistent simplified model: the case of Z′

    International Nuclear Information System (INIS)

    Jacques, Thomas; Katz, Andrey; Morgante, Enrico; Racco, Davide; Rameez, Mohamed; Riotto, Antonio

    2016-01-01

    We analyze the constraints from direct and indirect detection on fermionic Majorana Dark Matter (DM). Because the interaction with the Standard Model (SM) particles is spin-dependent, a priori the constraints that one gets from neutrino telescopes, the LHC, direct and indirect detection experiments are comparable. We study the complementarity of these searches in a particular example, in which a heavy Z ′ mediates the interactions between the SM and the DM. We find that for heavy dark matter indirect detection provides the strongest bounds on this scenario, while IceCube bounds are typically stronger than those from direct detection. The LHC constraints are dominant for smaller dark matter masses. These light masses are less motivated by thermal relic abundance considerations. We show that the dominant annihilation channels of the light DM in the Sun and the Galactic Center are either bb̄ or tt̄, while the heavy DM annihilation is completely dominated by Zh channel. The latter produces a hard neutrino spectrum which has not been previously analyzed. We study the neutrino spectrum yielded by DM and recast IceCube constraints to allow proper comparison with constraints from direct and indirect detection experiments and LHC exclusions.

  7. Clumpy molecular clouds: A dynamic model self-consistently regulated by T Tauri star formation

    International Nuclear Information System (INIS)

    Norman, C.; Silk, J.

    1980-01-01

    A new model is proposed which can account for the longevity, energetics, and dynamical structure of dark molecular clouds. It seems clear that the kinetic and gravitational energy in macroscopic cloud motions cannot account for the energetic of many molecular clouds. A stellar energy source must evidently be tapped, and infrared observations indicate that one cannot utilize massive stars in dark clouds. Recent observations of a high space density of T Tauri stars in some dark clouds provide the basis for our assertion that high-velocity winds from these low-mass pre--main-sequence stars provide a continuous dynamic input into molecular clouds. The T Tauri winds sweep up shells of gas, the intersections or collisions of which form dense clumps embedded in a more rarefied interclump medium. Observations constrain the clumps to be ram-pressure confined, but at the relatively low Mach numbers, continuous leakage occurs. This mass input into the interclump medium leads to the existence of two phases; a dense, cold phase (clumps of density approx.10 4 --10 5 cm -3 and temperature approx.10 K) and a warm, more diffuse, interclump medium (ICM, of density approx.10 3 --10 4 cm -3 and temperature approx.30 K). Clump collisions lead to coalescence, and the evolution of the mass spectrum of clumps is studied

  8. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    Science.gov (United States)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  9. A Self-consistent Model of a Ray Through the Orion Complex

    Science.gov (United States)

    Abel, N. P.; Ferland, G. J.

    2003-12-01

    The Orion Complex is the best studied region of active star formation, with observational data available over the entire electromagnetic spectrum. These extensive observations give us a good idea of the physical structure of Orion, that being a thin ( ˜ 0.1 parsec) blister H II region on the face of the molecular cloud OMC-1. A PDR, where the transition from atoms & ions to molecules occurs, forms an interface between the two. Most of the physical processes are driven by starlight from the Trapezium cluster, with the star Ori C being the strongest source of radiation. Observations made towards lines of sight near Ori C reveal numerous H II and molecular line intensities. Photoionization calculations have played an important role in determining the physical properties of the regions where these lines originate, but thus far have treated the H II region and PDR as separate problems. Actually these regions are energized by the same source of radiation, with the gas hydrodynamics providing the physical link between them. Here were present a unified physical model of a single ray through the Orion Complex. We choose a region 60'' west of Ori C, where extensive observations exist. These include lines that originate within the H II region, background PDR, and from regions deep inside OMC-1 itself. An improved treatment of the grain, molecular hydrogen, and CO physics have all been developed as part of the continuing evolution of the plasma code Cloudy, so that we can now simultaneously predict the full spectrum with few free parameters. This provides a holistic approach that will be validated in this well-studied environment then extended to the distant starburst galaxies. Acknowledgements: We thank the NSF and NASA for support.

  10. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  11. Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2014-01-01

    The evolution of lattice strains in a fully recrystallised Fe–24Mn–3Al–2Si–1Ni–0.06C TWinning Induced Plasticity (TWIP) steel subjected to uniaxial tensile loading up to a true strain of ∼35% was investigated via in-situ neutron diffraction. Typical of fcc elastic and plastic anisotropy, the {111} and {200} grain families record the lowest and highest lattice strains, respectively. Using modelling cases with and without latent hardening, the recently extended Elasto-Plastic Self-Consistent model successfully predicted the macroscopic stress–strain response, the evolution of lattice strains and the development of crystallographic texture. Compared to the isotropic hardening case, latent hardening did not have a significant effect on lattice strains and returned a relatively faster development of a stronger 〈111〉 and a weaker 〈100〉 double fibre parallel to the tensile axis. Close correspondence between the experimental lattice strains and those predicted using particular orientations embedded within a random aggregate was obtained. The result suggests that the exact orientations of the surrounding aggregate have a weak influence on the lattice strain evolution

  12. Self-consistent GW0 results for the electron gas: Fixed screened potential W0 within the random-phase approximation

    International Nuclear Information System (INIS)

    von Barth, U.; Holm, B.

    1996-01-01

    With the aim of properly understanding the basis for and the utility of many-body perturbation theory as applied to extended metallic systems, we have calculated the electronic self-energy of the homogeneous electron gas within the GW approximation. The calculation has been carried out in a self-consistent way; i.e., the one-electron Green function obtained from Dyson close-quote s equation is the same as that used to calculate the self-energy. The self-consistency is restricted in the sense that the screened interaction W is kept fixed and equal to that of the random-phase approximation for the gas. We have found that the final results are marginally affected by the broadening of the quasiparticles, and that their self-consistent energies are still close to their free-electron counterparts as they are in non-self-consistent calculations. The reduction in strength of the quasiparticles and the development of satellite structure (plasmons) gives, however, a markedly smaller dynamical self-energy leading to, e.g., a smaller reduction in the quasiparticle strength as compared to non-self-consistent results. The relatively bad description of plasmon structure within the non-self-consistent GW approximation is marginally improved. A first attempt at including W in the self-consistency cycle leads to an even broader and structureless satellite spectrum in disagreement with experiment. copyright 1996 The American Physical Society

  13. Application of the adiabatic self-consistent collective coordinate method to a solvable model of prolate-oblate shape coexistence

    International Nuclear Information System (INIS)

    Kobayasi, Masato; Matsuyanagi, Kenichi; Nakatsukasa, Takashi; Matsuo, Masayuki

    2003-01-01

    The adiabatic self-consistent collective coordinate method is applied to an exactly solvable multi-O(4) model that is designed to describe nuclear shape coexistence phenomena. The collective mass and dynamics of large amplitude collective motion in this model system are analyzed, and it is shown that the method yields a faithful description of tunneling motion through a barrier between the prolate and oblate local minima in the collective potential. The emergence of the doublet pattern is clearly described. (author)

  14. Modeling of the 3RS tau protein with self-consistent field method and Monte Carlo simulation

    NARCIS (Netherlands)

    Leermakers, F.A.M.; Jho, Y.S.; Zhulina, E.B.

    2010-01-01

    Using a model with amino acid resolution of the 196 aa N-terminus of the 3RS tau protein, we performed both a Monte Carlo study and a complementary self-consistent field (SCF) analysis to obtain detailed information on conformational properties of these moieties near a charged plane (mimicking the

  15. Multinational consistency of a discrete choice model in quantifying health states for the extended 5-level EQ-5D

    NARCIS (Netherlands)

    Krabbe, P.F.M.; Devlin, N.J.; Stolk, E.A.; Shah, K.K.; Oppe, M.; Van Hout, B.; Quik, E.H.; Pickard, A.S.; Xie, F.

    2013-01-01

    Objectives: To investigate the feasibility of choice experiments for EQ-5D-5L states using computer-based data collection, and to examine the consistency of the estimated parameters values derived after modeling the stated preference data across countries in a multinational study. Methods: Similar

  16. Consistent momentum space regularization/renormalization of supersymmetric quantum field theories: the three-loop β-function for the Wess-Zumino model

    International Nuclear Information System (INIS)

    Carneiro, David; Sampaio, Marcos; Nemes, Maria Carolina; Scarpelli, Antonio Paulo Baeta

    2003-01-01

    We compute the three loop β function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disentangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories. (author)

  17. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    International Nuclear Information System (INIS)

    Cook, J W S; Chapman, S C; Dendy, R O; Brady, C S

    2011-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a parameter regime motivated by tokamak fusion plasma conditions, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes excited by energetic ions, whose ring-beam distribution is motivated by population inversions related to ion cyclotron emission, in a background plasma with a temperature similar to that of the core of a large tokamak plasma. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the initial antiparallel travelling ring-beam distribution of 3 MeV protons in a background 10 keV Maxwellian deuterium plasma with realistic ion-electron mass ratio. These simulations provide a proof-of-principle for a key plasma physics process that may be exploited in future alpha channelling scenarios for magnetically confined burning plasmas.

  18. Results of steel containment vessel model test

    International Nuclear Information System (INIS)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.; Komine, Kuniaki; Matsumoto, Tomoyuki; Costello, J.F.

    1998-05-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed by the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed

  19. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  20. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Science.gov (United States)

    Candy, Adam S.; Pietrzak, Julie D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  1. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  2. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  3. Comparison of bootstrap current and plasma conductivity models applied in a self-consistent equilibrium calculation for Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br

    2004-07-01

    Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)

  4. Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G., E-mail: grzgr@ifm.liu.se; Hultman, L.

    2016-11-30

    Highlights: • We present first self-consistent model of TiN core level spectra with a cross-peak qualitative and quantitative agreement. • Model is tested for a series of TiN thin films oxidized to different extent by varying the venting temperature. • Conventional deconvolution process relies on reference binding energies that typically show large spread introducing ambiguity. • By imposing requirement of quantitative cross-peak self-consistency reliability of extracted chemical information is enhanced. • We propose that the cross-peak self-consistency should be a prerequisite for reliable XPS peak modelling. - Abstract: We present first self-consistent modelling of x-ray photoelectron spectroscopy (XPS) Ti 2p, N 1s, O 1s, and C 1s core level spectra with a cross-peak quantitative agreement for a series of TiN thin films grown by dc magnetron sputtering and oxidized to different extent by varying the venting temperature T{sub v} of the vacuum chamber before removing the deposited samples. So-obtained film series constitute a model case for XPS application studies, where certain degree of atmosphere exposure during sample transfer to the XPS instrument is unavoidable. The challenge is to extract information about surface chemistry without invoking destructive pre-cleaning with noble gas ions. All TiN surfaces are thus analyzed in the as-received state by XPS using monochromatic Al Kα radiation (hν = 1486.6 eV). Details of line shapes and relative peak areas obtained from deconvolution of the reference Ti 2p and N 1 s spectra representative of a native TiN surface serve as an input to model complex core level signals from air-exposed surfaces, where contributions from oxides and oxynitrides make the task very challenging considering the influence of the whole deposition process at hand. The essential part of the presented approach is that the deconvolution process is not only guided by the comparison to the reference binding energy values that often show

  5. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  6. Branch-based model for the diameters of the pulmonary airways: accounting for departures from self-consistency and registration errors.

    Science.gov (United States)

    Neradilek, Moni B; Polissar, Nayak L; Einstein, Daniel R; Glenny, Robb W; Minard, Kevin R; Carson, James P; Jiao, Xiangmin; Jacob, Richard E; Cox, Timothy C; Postlethwait, Edward M; Corley, Richard A

    2012-06-01

    We examine a previously published branch-based approach for modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that take account of error. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys, and one ozone-exposed monkey. Our results showed substantial departures from self-consistency in all five subjects. When departures from self-consistency exist, we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. The new variance model can be used instead. Measurement error has an important impact on the estimated morphometry models and needs to be addressed in the analysis. Copyright © 2012 Wiley Periodicals, Inc.

  7. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  8. A time consistent risk averse three-stage stochastic mixed integer optimization model for power generation capacity expansion

    International Nuclear Information System (INIS)

    Pisciella, P.; Vespucci, M.T.; Bertocchi, M.; Zigrino, S.

    2016-01-01

    We propose a multi-stage stochastic optimization model for the generation capacity expansion problem of a price-taker power producer. Uncertainties regarding the evolution of electricity prices and fuel costs play a major role in long term investment decisions, therefore the objective function represents a trade-off between expected profit and risk. The Conditional Value at Risk is the risk measure used and is defined by a nested formulation that guarantees time consistency in the multi-stage model. The proposed model allows one to determine a long term expansion plan which takes into account uncertainty, while the LCoE approach, currently used by decision makers, only allows one to determine which technology should be chosen for the next power plant to be built. A sensitivity analysis is performed with respect to the risk weighting factor and budget amount. - Highlights: • We propose a time consistent risk averse multi-stage model for capacity expansion. • We introduce a case study with uncertainty on electricity prices and fuel costs. • Increased budget moves the investment from gas towards renewables and then coal. • Increased risk aversion moves the investment from coal towards renewables. • Time inconsistency leads to a profit gap between planned and implemented policies.

  9. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data

    Science.gov (United States)

    Seno, Tetsuzo; Stein, Seth; Gripp, Alice E.

    1993-01-01

    We investigate angular velocity vectors of the Philippine Sea (PH) plate relative to the adjacent major plates, Eurasia (EU) and Pacific (PA), and the smaller Caroline (CR) plate. Earthquake slip vector data along the Philippine Sea plate are inverted, subject to the constraint that EU-PA motion equals that predicted by the global relative plate model NUVEL-1. The resulting solution fails to satisfy geological constraints along the Caroline-Pacific boundary: convergence along the Mussau Trench and divergence along the Sorol Trough. We then seek solutions satisfying both the CR-PA boundary conditions and the Philippine Sea slip vector data, by adjusting the PA-PH and EU-PH best fitting poles within their error ellipses. We also consider northern Honshu to be part of the North American plate and impose the constraint that the Philippine Sea plate subducts beneath northern Honshu along the Sagmi Trough in a NNW-NW direction. Of the solutions satisfying these conditions, we select the best EU-PH as 48.2 deg N, 157.0 deg E, 1.09 deg/my, corresponding to a pole far from Japan and south of Kamchatka, and PA-PH, 1.2 deg N, 134.2 deg E, 1.00 deg/my. Predicted NA-PH and EU-PH convergence rates in central Honshu are consistent with estimated seismic slip rates. Previous estimates of the EU-PH pole close to central Honshu are inconsistent with extension within the Bonin backarc implied by earthquake slip vectors and NNW-NW convergence of the Bonin forearc at the Sagami Trough.

  10. Thermodynamically consistent modeling and simulation of multi-component two-phase flow model with partial miscibility

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2016-01-01

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest

  11. Consistent classical supergravity theories

    International Nuclear Information System (INIS)

    Muller, M.

    1989-01-01

    This book offers a presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. The formulae needed for further modelling are included

  12. Comparison of the EIA, EETA and ETWA, received in the model GSM TIP, at the self-consistent approach and with use of the model MSIS-90

    Science.gov (United States)

    Klimenko, M. V.; Klimenko, V. V.; Bryukhanov, V. V.

    On the basis of the Global Self-consistent model of the thermosphere ionosphere and protonosphere GSM TIP developed in WD IZMIRAN the calculations for the quiet geomagnetic conditions of the equinox in the minimum of solar activity are carried out In the calculations the new block of the computation of electric fields in the ionosphere briefly described in COSPAR2006-A-00108 was used Two variants of calculations are executed with the account only the dynamo field generated by the thermosphere winds - completely self-consistent and with use of the model MSIS-90 for the calculation of the composition and temperature of the neutral atmosphere The results of the calculations are compared among themselves The global distributions of the foF2 the latitude behavior of the N e and T e on the near-midnight meridian at two height levels 233 and 626 km the latitude-altitude sections on the near-midnight meridian of the T e and time developments on UT of zonal component of the thermosphere wind and ion temperature at height sim 300 km and foF2 and h m F2 for three longitudinal chains of stations - Brazil Pacific and Indian in a vicinity of geomagnetic equator COSPAR2006-A-00109 calculated in two variants are submitted It is shown that at the self-consistent approach the maxima of the crests of the equatorial ionization anomaly EIA in the foF2 are shifted concerning calculated with the MSIS aside later evening hours The equatorial electron temperature anomaly EETA is formed in both variants of calculations However at the

  13. A consistent and verifiable macroscopic model for the dissolution of liquid CO2 in water under hydrate forming conditions

    International Nuclear Information System (INIS)

    Radhakrishnan, R.; Demurov, A.; Trout, B.L.; Herzog, H.

    2003-01-01

    Direct injection of liquid CO 2 into the ocean has been proposed as one method to reduce the emission levels of CO 2 into the atmosphere. When liquid CO 2 is injected (normally as droplets) at ocean depths >500 m, a solid interfacial region between the CO 2 and the water is observed to form. This region consists of hydrate clathrates and hinders the rate of dissolution of CO 2 . It is, therefore, expected to have a significant impact on the injection of liquid CO 2 into the ocean. Up until now, no consistent and predictive model for the shrinking of droplets of CO 2 under hydrate forming conditions has been proposed. This is because all models proposed to date have had too many unknowns. By computing rates of the physical and chemical processes in hydrates via molecular dynamics simulations, we have been able to determine independently some of these unknowns. We then propose the most reasonable model and use it to make independent predictions of the rates of mass transfer and thickness of the hydrate region. These predictions are compared to measurements, and implications to the rates of shrinkage of CO 2 droplets under varying flow conditions are discussed. (author)

  14. Discussion of gas trade model (GTM) results

    International Nuclear Information System (INIS)

    Manne, A.

    1989-01-01

    This is in response to your invitation to comment on the structure of GTM and also upon the differences between its results and those of other models participating in EMF9. First a word upon the structure. GTM was originally designed to provide both regional and sectoral detail within the North American market for natural gas at a single point in time, e.g. the year 2000. It is a spatial equilibrium model in which a solution is obtained by maximizing a nonlinear function, the sum of consumers and producers surplus. Since transport costs are included in producers cost, this formulation automatically ensures that geographical price differentials will not differ by more than transport costs. For purposes of EMF9, GTM was modified to allow for resource development and depletion over time

  15. Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model

    Science.gov (United States)

    Hazan, Aurélien

    2017-05-01

    We show that a steady-state stock-flow consistent macro-economic model can be represented as a Constraint Satisfaction Problem (CSP). The set of solutions is a polytope, which volume depends on the constraints applied and reveals the potential fragility of the economic circuit, with no need to study the dynamics. Several methods to compute the volume are compared, inspired by operations research methods and the analysis of metabolic networks, both exact and approximate. We also introduce a random transaction matrix, and study the particular case of linear flows with respect to money stocks.

  16. The Danish national passenger modelModel specification and results

    DEFF Research Database (Denmark)

    Rich, Jeppe; Hansen, Christian Overgaard

    2016-01-01

    The paper describes the structure of the new Danish National Passenger model and provides on this basis a general discussion of large-scale model design, cost-damping and model validation. The paper aims at providing three main contributions to the existing literature. Firstly, at the general level......, the paper provides a description of a large-scale forecast model with a discussion of the linkage between population synthesis, demand and assignment. Secondly, the paper gives specific attention to model specification and in particular choice of functional form and cost-damping. Specifically we suggest...... a family of logarithmic spline functions and illustrate how it is applied in the model. Thirdly and finally, we evaluate model sensitivity and performance by evaluating the distance distribution and elasticities. In the paper we present results where the spline-function is compared with more traditional...

  17. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  18. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  19. Exact results for the one dimensional asymmetric exclusion model

    International Nuclear Information System (INIS)

    Derrida, B.; Evans, M.R.; Pasquier, V.

    1993-01-01

    The asymmetric exclusion model describes a system of particles hopping in a preferred direction with hard core repulsion. These particles can be thought of as charged particles in a field, as steps of an interface, as cars in a queue. Several exact results concerning the steady state of this system have been obtained recently. The solution consists of representing the weights of the configurations in the steady state as products of non-commuting matrices. (author)

  20. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  1. Producing physically consistent and bias free extreme precipitation events over the Switzerland: Bridging gaps between meteorology and impact models

    Science.gov (United States)

    José Gómez-Navarro, Juan; Raible, Christoph C.; Blumer, Sandro; Martius, Olivia; Felder, Guido

    2016-04-01

    Extreme precipitation episodes, although rare, are natural phenomena that can threat human activities, especially in areas densely populated such as Switzerland. Their relevance demands the design of public policies that protect public assets and private property. Therefore, increasing the current understanding of such exceptional situations is required, i.e. the climatic characterisation of their triggering circumstances, severity, frequency, and spatial distribution. Such increased knowledge shall eventually lead us to produce more reliable projections about the behaviour of these events under ongoing climate change. Unfortunately, the study of extreme situations is hampered by the short instrumental record, which precludes a proper characterization of events with return period exceeding few decades. This study proposes a new approach that allows studying storms based on a synthetic, but physically consistent database of weather situations obtained from a long climate simulation. Our starting point is a 500-yr control simulation carried out with the Community Earth System Model (CESM). In a second step, this dataset is dynamically downscaled with the Weather Research and Forecasting model (WRF) to a final resolution of 2 km over the Alpine area. However, downscaling the full CESM simulation at such high resolution is infeasible nowadays. Hence, a number of case studies are previously selected. This selection is carried out examining the precipitation averaged in an area encompassing Switzerland in the ESM. Using a hydrological criterion, precipitation is accumulated in several temporal windows: 1 day, 2 days, 3 days, 5 days and 10 days. The 4 most extreme events in each category and season are selected, leading to a total of 336 days to be simulated. The simulated events are affected by systematic biases that have to be accounted before this data set can be used as input in hydrological models. Thus, quantile mapping is used to remove such biases. For this task

  2. A self-consistent model of a thermally balanced quiescent prominence in magnetostatic equilibrium in a uniform gravitational field

    International Nuclear Information System (INIS)

    Lerche, I.; Low, B.C.

    1977-01-01

    A theoretical model of quiescent prominences in the form of an infinite vertical sheet is presented. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. It is assumed that the prominence plasma emits more radiation than it absorbes from the radiation fields of the photosphere, chromosphere and corona, and the above hypothetical heat sink is interpreted to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 10 11 particles cm -3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, the physical properties implied by the model are discussed. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence. (Auth.)

  3. Reporting consistently on CSR

    DEFF Research Database (Denmark)

    Thomsen, Christa; Nielsen, Anne Ellerup

    2006-01-01

    This chapter first outlines theory and literature on CSR and Stakeholder Relations focusing on the different perspectives and the contextual and dynamic character of the CSR concept. CSR reporting challenges are discussed and a model of analysis is proposed. Next, our paper presents the results...... of a case study showing that companies use different and not necessarily consistent strategies for reporting on CSR. Finally, the implications for managerial practice are discussed. The chapter concludes by highlighting the value and awareness of the discourse and the discourse types adopted...... in the reporting material. By implementing consistent discourse strategies that interact according to a well-defined pattern or order, it is possible to communicate a strong social commitment on the one hand, and to take into consideration the expectations of the shareholders and the other stakeholders...

  4. Modelling Extortion Racket Systems: Preliminary Results

    Science.gov (United States)

    Nardin, Luis G.; Andrighetto, Giulia; Székely, Áron; Conte, Rosaria

    Mafias are highly powerful and deeply entrenched organised criminal groups that cause both economic and social damage. Overcoming, or at least limiting, their harmful effects is a societally beneficial objective, which renders its dynamics understanding an objective of both scientific and political interests. We propose an agent-based simulation model aimed at understanding how independent and combined effects of legal and social norm-based processes help to counter mafias. Our results show that legal processes are effective in directly countering mafias by reducing their activities and changing the behaviour of the rest of population, yet they are not able to change people's mind-set that renders the change fragile. When combined with social norm-based processes, however, people's mind-set shifts towards a culture of legality rendering the observed behaviour resilient to change.

  5. New results in the Dual Parton Model

    International Nuclear Information System (INIS)

    Van, J.T.T.; Capella, A.

    1984-01-01

    In this paper, the similarity between the x distribution for particle production and the fragmentation functions are observed in e+e- collisions and in deep inelastic scattering are presented. Based on the observation, the authors develop a complete approach to multiparticle production which incorporates the most important features and concepts learned about high energy collisions. 1. Topological expansion : the dominant diagram at high energy corresponds to the simplest topology. 2. Unitarity : diagrams of various topology contribute to the cross sections in a way that unitary is preserved. 3. Regge behaviour and Duality. 4. Partonic structure of hadrons. These general theoretical ideas, result from many joint experimental and theoretical efforts on the study of soft hadron physics. The dual parton model is able to explain all the experimental features from FNAL to SPS collider energies. It has all the properties of an S-matrix theory and provides a unified description of hadron-hadron, hadron-nucleus and nucleus-nucleus collisions

  6. An improved algorithm for the polycrystal viscoplastic self-consistent model and its integration with implicit finite element schemes

    International Nuclear Information System (INIS)

    Galán, J; Verleysen, P; Lebensohn, R A

    2014-01-01

    A new algorithm for the solution of the deformation of a polycrystalline material using a self-consistent scheme, and its integration as part of the finite element software Abaqus/Standard are presented. The method is based on the original VPSC formulation by Lebensohn and Tomé and its integration with Abaqus/Standard by Segurado et al. The new algorithm has been implemented as a set of Fortran 90 modules, to be used either from a standalone program or from Abaqus subroutines. The new implementation yields the same results as VPSC7, but with a significantly better performance, especially when used in multicore computers. (paper)

  7. Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for Tc.

    Science.gov (United States)

    Jang, Seung Woo; Kotani, Takao; Kino, Hiori; Kuroki, Kazuhiko; Han, Myung Joon

    2015-07-24

    Despite decades of progress, an understanding of unconventional superconductivity still remains elusive. An important open question is about the material dependence of the superconducting properties. Using the quasiparticle self-consistent GW method, we re-examine the electronic structure of copper oxide high-Tc materials. We show that QSGW captures several important features, distinctive from the conventional LDA results. The energy level splitting between d(x(2)-y(2)) and d(3z(2)-r(2)) is significantly enlarged and the van Hove singularity point is lowered. The calculated results compare better than LDA with recent experimental results from resonant inelastic xray scattering and angle resolved photoemission experiments. This agreement with the experiments supports the previously suggested two-band theory for the material dependence of the superconducting transition temperature, Tc.

  8. A new 2D climate model with chemistry and self consistent eddy-parameterization. The impact of airplane NO{sub x} on the chemistry of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gepraegs, R; Schmitz, G; Peters, D [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany)

    1998-12-31

    A 2D version of the ECHAM T21 climate model has been developed. The new model includes an efficient spectral transport scheme with implicit diffusion. Furthermore, photodissociation and chemistry of the NCAR 2D model have been incorporated. A self consistent parametrization scheme is used for eddy heat- and momentum flux in the troposphere. It is based on the heat flux parametrization of Branscome and mixing-length formulation for quasi-geostrophic vorticity. Above 150 hPa the mixing-coefficient K{sub yy} is prescribed. Some of the model results are discussed, concerning especially the impact of aircraft NO{sub x} emission on the model chemistry. (author) 6 refs.

  9. A new 2D climate model with chemistry and self consistent eddy-parameterization. The impact of airplane NO{sub x} on the chemistry of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gepraegs, R.; Schmitz, G.; Peters, D. [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany)

    1997-12-31

    A 2D version of the ECHAM T21 climate model has been developed. The new model includes an efficient spectral transport scheme with implicit diffusion. Furthermore, photodissociation and chemistry of the NCAR 2D model have been incorporated. A self consistent parametrization scheme is used for eddy heat- and momentum flux in the troposphere. It is based on the heat flux parametrization of Branscome and mixing-length formulation for quasi-geostrophic vorticity. Above 150 hPa the mixing-coefficient K{sub yy} is prescribed. Some of the model results are discussed, concerning especially the impact of aircraft NO{sub x} emission on the model chemistry. (author) 6 refs.

  10. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. C.; Melosh, H. J. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Thebault, P. [LESIA, Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Henning, W. G. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Gaidos, E. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Elkins-Tanton, L. T. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Bridges, J. C. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Morlok, A., E-mail: johns477@purdue.edu [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  11. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    International Nuclear Information System (INIS)

    Johnson, B. C.; Melosh, H. J.; Lisse, C. M.; Chen, C. H.; Wyatt, M. C.; Thebault, P.; Henning, W. G.; Gaidos, E.; Elkins-Tanton, L. T.; Bridges, J. C.; Morlok, A.

    2012-01-01

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10 19 kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at ∼6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that ∼10 47 molecules of SiO vapor are needed to explain an emission feature at ∼8 μm in the Spitzer IRS spectrum of HD 172555. We find that unless there are ∼10 48 atoms or 0.05 M ⊕ of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the ∼8 μm feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  12. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2015-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  13. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2012-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  14. Finiteness results for Abelian tree models

    NARCIS (Netherlands)

    Draisma, J.; Eggermont, R.H.

    2015-01-01

    Equivariant tree models are statistical models used in the reconstruction of phylogenetic trees from genetic data. Here equivariant§ refers to a symmetry group imposed on the root distribution and on the transition matrices in the model. We prove that if that symmetry group is Abelian, then the

  15. TH-C-18A-06: Combined CT Image Quality and Radiation Dose Monitoring Program Based On Patient Data to Assess Consistency of Clinical Imaging Across Scanner Models

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, O; Winslow, J; Samei, E [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using optical character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image

  16. TH-C-18A-06: Combined CT Image Quality and Radiation Dose Monitoring Program Based On Patient Data to Assess Consistency of Clinical Imaging Across Scanner Models

    International Nuclear Information System (INIS)

    Christianson, O; Winslow, J; Samei, E

    2014-01-01

    Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using optical character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image

  17. Product consistency test and toxicity characteristic leaching procedure results of the ceramic waste form from the electrometallurgical treatment process for spent fuel

    International Nuclear Information System (INIS)

    Johnson, S. G.; Adamic, M. L.: DiSanto, T.; Warren, A. R.; Cummings, D. G.; Foulkrod, L.; Goff, K. M.

    1999-01-01

    The ceramic waste form produced from the electrometallurgical treatment of sodium bonded spent fuel from the Experimental Breeder Reactor-II was tested using two immersion tests with separate and distinct purposes. The product consistency test is used to assess the consistency of the waste forms produced and thus is an indicator of a well-controlled process. The toxicity characteristic leaching procedure is used to determine whether a substance is to be considered hazardous by the Environmental Protection Agency. The proposed high level waste repository will not be licensed to receive hazardous waste, thus any waste forms destined to be placed there cannot be of a hazardous nature as defined by the Resource Conservation and Recovery Act. Results are presented from the first four fully radioactive ceramic waste forms produced and from seven ceramic waste forms produced from cold surrogate materials. The fully radioactive waste forms are approximately 2 kg in weight and were produced with salt used to treat 100 driver subassemblies of spent fuel

  18. Interfacial tension and wettability in water-carbon dioxide systems: Experiments and self-consistent field modeling

    NARCIS (Netherlands)

    Banerjee, S.; Hassenklover, E.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    This paper presents experimental and modeling results on water–CO2 interfacial tension (IFT) together with wettability studies of water on both hydrophilic and hydrophobic surfaces immersed in CO2. CO2–water interfacial tension (IFT) measurements showed that the IFT decreased with increasing

  19. Immersive visualization of dynamic CFD model results

    International Nuclear Information System (INIS)

    Comparato, J.R.; Ringel, K.L.; Heath, D.J.

    2004-01-01

    With immersive visualization the engineer has the means for vividly understanding problem causes and discovering opportunities to improve design. Software can generate an interactive world in which collaborators experience the results of complex mathematical simulations such as computational fluid dynamic (CFD) modeling. Such software, while providing unique benefits over traditional visualization techniques, presents special development challenges. The visualization of large quantities of data interactively requires both significant computational power and shrewd data management. On the computational front, commodity hardware is outperforming large workstations in graphical quality and frame rates. Also, 64-bit commodity computing shows promise in enabling interactive visualization of large datasets. Initial interactive transient visualization methods and examples are presented, as well as development trends in commodity hardware and clustering. Interactive, immersive visualization relies on relevant data being stored in active memory for fast response to user requests. For large or transient datasets, data management becomes a key issue. Techniques for dynamic data loading and data reduction are presented as means to increase visualization performance. (author)

  20. Linkage of PRA models. Phase 1, Results

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.L.; Knudsen, J.K.; Kelly, D.L.

    1995-12-01

    The goal of the Phase I work of the ``Linkage of PRA Models`` project was to postulate methods of providing guidance for US Nuclear Regulator Commission (NRC) personnel on the selection and usage of probabilistic risk assessment (PRA) models that are best suited to the analysis they are performing. In particular, methods and associated features are provided for (a) the selection of an appropriate PRA model for a particular analysis, (b) complementary evaluation tools for the analysis, and (c) a PRA model cross-referencing method. As part of this work, three areas adjoining ``linking`` analyses to PRA models were investigated: (a) the PRA models that are currently available, (b) the various types of analyses that are performed within the NRC, and (c) the difficulty in trying to provide a ``generic`` classification scheme to groups plants based upon a particular plant attribute.

  1. Linkage of PRA models. Phase 1, Results

    International Nuclear Information System (INIS)

    Smith, C.L.; Knudsen, J.K.; Kelly, D.L.

    1995-12-01

    The goal of the Phase I work of the ''Linkage of PRA Models'' project was to postulate methods of providing guidance for US Nuclear Regulator Commission (NRC) personnel on the selection and usage of probabilistic risk assessment (PRA) models that are best suited to the analysis they are performing. In particular, methods and associated features are provided for (a) the selection of an appropriate PRA model for a particular analysis, (b) complementary evaluation tools for the analysis, and (c) a PRA model cross-referencing method. As part of this work, three areas adjoining ''linking'' analyses to PRA models were investigated: (a) the PRA models that are currently available, (b) the various types of analyses that are performed within the NRC, and (c) the difficulty in trying to provide a ''generic'' classification scheme to groups plants based upon a particular plant attribute

  2. Engineering Glass Passivation Layers -Model Results

    Energy Technology Data Exchange (ETDEWEB)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan

  3. Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2017-02-01

    Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

  4. Three-dimensional self-consistent radiation transport model for the fluid simulation of plasma display panel cell

    International Nuclear Information System (INIS)

    Kim, H.C.; Yang, S.S.; Lee, J.K.

    2003-01-01

    In plasma display panels (PDPs), the resonance radiation trapping is one of the important processes. In order to incorporate this effect in a PDP cell, a three-dimensional radiation transport model is self-consistently coupled with a fluid simulation. This model is compared with the conventional trapping factor method in gas mixtures of neon and xenon. It shows the differences in the time evolutions of spatial profile and the total number of resonant excited states, especially in the afterglow. The generation rates of UV light are also compared for the two methods. The visible photon flux reaching the output window from the phosphor layers as well as the total UV photon flux arriving at the phosphor layer from the plasma region are calculated for resonant and nonresonant excited species. From these calculations, the time-averaged spatial profiles of the UV flux on the phosphor layers and the visible photon flux through the output window are obtained. Finally, the diagram of the energy efficiency and the contribution of each UV light are shown

  5. CIEMAT model results for Esthwaite Water

    International Nuclear Information System (INIS)

    Aguero, A.; Garcia-Olivares, A.

    2000-01-01

    This study used the transfer model PRYMA-LO, developed by CIEMAT-IMA, Madrid, Spain, to simulate the transfer of Cs-137 in watershed scenarios. The main processes considered by the model include: transfer of the fallout to the ground, incorporation of the fallout radioisotopes into the water flow, and their removal from the system. The model was tested against observation data obtained in water and sediments of Esthwaite Water, Lake District, UK. This comparison made it possible to calibrate the parameters of the model to the specific scenario

  6. Application of a self-consistent theory of large amplitude collective motion to the generalized Meshkov-Glick-Lipkin model

    International Nuclear Information System (INIS)

    Umar, A.S.; Klein, A.

    1986-01-01

    A recent formulation of the theory of large amplitude collective motion in the adiabatic limit is applied to a generalized monopole shell model. Numerical calculations are carried out for the three-level model, approximately equivalent to a classical system with two degrees of freedom. Our results go somewhat beyond previous treatments of this system and provide substantiation for the validity of the method, in suitable parameter ranges, as a way of recognizing and decoupling the collective and the non-collective degrees of freedom. (orig.)

  7. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus; DeAngelo, B. J.; McFarland, Jim; Jantarasami, Lesley; Shouse, Kate C.; Crimmins, Allison; Ohrel, Sara; Li, Jia

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets of 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.

  8. Toward a consistent model for strain accrual and release for the New Madrid Seismic Zone, central United States

    Science.gov (United States)

    Hough, S.E.; Page, M.

    2011-01-01

    At the heart of the conundrum of seismogenesis in the New Madrid Seismic Zone is the apparently substantial discrepancy between low strain rate and high recent seismic moment release. In this study we revisit the magnitudes of the four principal 1811–1812 earthquakes using intensity values determined from individual assessments from four experts. Using these values and the grid search method of Bakun and Wentworth (1997), we estimate magnitudes around 7.0 for all four events, values that are significantly lower than previously published magnitude estimates based on macroseismic intensities. We further show that the strain rate predicted from postglacial rebound is sufficient to produce a sequence with the moment release of one Mmax6.8 every 500 years, a rate that is much lower than previous estimates of late Holocene moment release. However, Mw6.8 is at the low end of the uncertainty range inferred from analysis of intensities for the largest 1811–1812 event. We show that Mw6.8 is also a reasonable value for the largest main shock given a plausible rupture scenario. One can also construct a range of consistent models that permit a somewhat higher Mmax, with a longer average recurrence rate. It is thus possible to reconcile predicted strain and seismic moment release rates with alternative models: one in which 1811–1812 sequences occur every 500 years, with the largest events being Mmax∼6.8, or one in which sequences occur, on average, less frequently, with Mmax of ∼7.0. Both models predict that the late Holocene rate of activity will continue for the next few to 10 thousand years.

  9. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  10. Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling

    International Nuclear Information System (INIS)

    Liuzzi, G.; Masiello, G.; Serio, C.; Venafra, S.; Camy-Peyret, C.

    2016-01-01

    Spectra observed by the Infrared Atmospheric Sounder Interferometer (IASI) have been used to assess both retrievals and the spectral quality and consistency of current forward models and spectroscopic databases for atmospheric gas line and continuum absorption. The analysis has been performed with thousands of observed spectra over sea surface in the Pacific Ocean close to the Mauna Loa (Hawaii) validation station. A simultaneous retrieval for surface temperature, atmospheric temperature, H_2O, HDO, O_3 profiles and gas average column abundance of CO_2, CO, CH_4, SO_2, N_2O, HNO_3, NH_3, OCS and CF_4 has been performed and compared to in situ observations. The retrieval system considers the full IASI spectrum (all 8461 spectral channels on the range 645–2760 cm"−"1). We have found that the average column amount of atmospheric greenhouse gases can be retrieved with a precision better than 1% in most cases. The analysis of spectral residuals shows that, after inversion, they are generally reduced to within the IASI radiometric noise. However, larger residuals still appear for many of the most abundant gases, namely H_2O, CH_4 and CO_2. The H_2O ν_2 spectral region is in general warmer (higher radiance) than observations. The CO_2ν_2 and N_2O/CO_2ν_3 spectral regions now show a consistent behavior for channels, which are probing the troposphere. Updates in CH_4 spectroscopy do not seem to improve the residuals. The effect of isotopic fractionation of HDO is evident in the 2500–2760 cm"−"1 region and in the atmospheric window around 1200 cm"−"1. - Highlights: • This is the first work that uses the full IASI spectrum. This aspect is new and unique. • Simultaneous retrieval of the average amount of CO_2, N_2O, CO, CH_4, SO_2, HNO_3, NH_3, OCS and CF_4, T, H_2O, HDO, O_3 profiles, and T_s. • Assessment of spectroscopy consistency over the full IASI spectrum (645 to 2760 cm"−"1). • Two-year record of IASI retrievals are available on request, compared

  11. Quantitative CT assessment in chronic obstructive pulmonary disease patients: Comparison of the patients with and without consistent clinical symptoms and pulmonary function results

    International Nuclear Information System (INIS)

    Nam, Boda; Hwang, Jung Hwa; Lee, Young Mok; Park, Jai Soung; Jou, Sung Shick; Kim, Young Bae

    2015-01-01

    We compared the clinical and quantitative CT measurement parameters between chronic obstructive pulmonary disease (COPD) patients with and without consistent clinical symptoms and pulmonary function results. This study included 60 patients having a clinical diagnosis of COPD, who underwent chest CT scan and pulmonary function tests. These 60 patients were classified into typical and atypical groups, which were further sub-classified into 4 groups, based on their dyspnea score and the result of pulmonary function tests [typical 1: mild dyspnea and pulmonary function impairment (PFI); typical 2: severe dyspnea and PFI; atypical 1: mild dyspnea and severe PFI; atypical 2: severe dyspnea and mild PFI]. Quantitative measurements of the CT data for emphysema, bronchial wall thickness and air-trapping were performed using software analysis. Comparative statistical analysis was performed between the groups. The CT emphysema index correlated well with the results of the pulmonary functional test (typical 1 vs. atypical 1, p = 0.032), and the bronchial wall area ratio correlated with the dyspnea score (typical 1 vs. atypical 2, p = 0.033). CT air-trapping index also correlated with the results of the pulmonary function test (typical 1 vs. atypical 1, p = 0.012) and dyspnea score (typical 1 vs. atypical 2, p = 0.000), and was found to be the most significant parameter between the typical and atypical groups. Quantitative CT measurements for emphysema and airways correlated well with the dyspnea score and pulmonary function results in patients with COPD. Air-trapping was the most significant parameter between the typical vs. atypical group of COPD patients

  12. Quantitative CT assessment in chronic obstructive pulmonary disease patients: Comparison of the patients with and without consistent clinical symptoms and pulmonary function results

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Boda; Hwang, Jung Hwa [Dept. of Radiology, Soonchunhyang University Hospital, Seoul (Korea, Republic of); Lee, Young Mok [Bangbae GF Allergy Clinic, Seoul (Korea, Republic of); Park, Jai Soung [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Jou, Sung Shick [Dept. of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan (Korea, Republic of); Kim, Young Bae [Dept. of Preventive Medicine, Soonchunhyang University College of Medicine, Cheonan (Korea, Republic of)

    2015-09-15

    We compared the clinical and quantitative CT measurement parameters between chronic obstructive pulmonary disease (COPD) patients with and without consistent clinical symptoms and pulmonary function results. This study included 60 patients having a clinical diagnosis of COPD, who underwent chest CT scan and pulmonary function tests. These 60 patients were classified into typical and atypical groups, which were further sub-classified into 4 groups, based on their dyspnea score and the result of pulmonary function tests [typical 1: mild dyspnea and pulmonary function impairment (PFI); typical 2: severe dyspnea and PFI; atypical 1: mild dyspnea and severe PFI; atypical 2: severe dyspnea and mild PFI]. Quantitative measurements of the CT data for emphysema, bronchial wall thickness and air-trapping were performed using software analysis. Comparative statistical analysis was performed between the groups. The CT emphysema index correlated well with the results of the pulmonary functional test (typical 1 vs. atypical 1, p = 0.032), and the bronchial wall area ratio correlated with the dyspnea score (typical 1 vs. atypical 2, p = 0.033). CT air-trapping index also correlated with the results of the pulmonary function test (typical 1 vs. atypical 1, p = 0.012) and dyspnea score (typical 1 vs. atypical 2, p = 0.000), and was found to be the most significant parameter between the typical and atypical groups. Quantitative CT measurements for emphysema and airways correlated well with the dyspnea score and pulmonary function results in patients with COPD. Air-trapping was the most significant parameter between the typical vs. atypical group of COPD patients.

  13. Development of new pedestal temperature models with self-consistent magnetic shear and safety factor in BALDUR and JETTO codes

    International Nuclear Information System (INIS)

    Suwanna, S.; Onjun, T.; Wongpan, P.; Parail, V.; Poolyarat, N.; Picha, R.

    2009-01-01

    Full text: A formation of a steep pressure gradient region near the plasma edge, called the pedestal, is a main reason for an improved performance in H-mode plasma. In this work, new pedestal temperature models are developed based on different theoretical-based width concepts: flow shear stabilization width concept, magnetic and flow shear stabilization width concept, and diamagnetic stabilization width concept. In the BALDUR code, each pedestal width model is combined with a ballooning mode pressure gradient model to predict the pedestal temperature, which is a boundary condition needed to predict plasma profiles. In the JETTO code, an anomalous transport is suppressed within the pedestal region, which results in a formation of a steep pressure gradient region. The pedestal width is predicted using these theoretically based width concepts. The plasma profiles in the pedestal region are limited by ELM crashes, which can be triggered either by ballooning modes or by peeling modes, depending on which instability is destabilized first. It is found in the BALDUR simulations that the simulated pedestal temperature profiles agree well with experimental data in the region close to the pedestal, but show larger deviation in the core region. In a preliminary investigation, these models agree reasonably well with experiments, yielding overall RMS less than 20%. Furthermore, the model based flow shear stabilization matches very well data from both DIII-D and JET, while the model based on magnetic and flow shear stabilization over-predicts results from JET and under-predicts those from DIII-D. Other statistical analyses such a calculation of offset values, ratios of predicted pedestal (resp. core) temperatures to those from experiments are performed. (author)

  14. Initial CGE Model Results Summary Exogenous and Endogenous Variables Tests

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    The following discussion presents initial results of tests of the most recent version of the National Infrastructure Simulation and Analysis Center Dynamic Computable General Equilibrium (CGE) model developed by Los Alamos National Laboratory (LANL). The intent of this is to test and assess the model’s behavioral properties. The test evaluated whether the predicted impacts are reasonable from a qualitative perspective. This issue is whether the predicted change, be it an increase or decrease in other model variables, is consistent with prior economic intuition and expectations about the predicted change. One of the purposes of this effort is to determine whether model changes are needed in order to improve its behavior qualitatively and quantitatively.

  15. Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models

    Science.gov (United States)

    Arai, Y.; McBeath, M.; Bargar, J.R.; Joye, J.; Davis, J.A.

    2006-01-01

    Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ???7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 ??M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and ?? charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in

  16. Flying Training Capacity Model: Initial Results

    National Research Council Canada - National Science Library

    Lynch, Susan

    2005-01-01

    OBJECTIVE: (1) Determine the flying training capacity for 6 bases: * Sheppard AFB * Randolph AFB * Moody AFB * Columbus AFB * Laughlin AFB * Vance AFB * (2) Develop versatile flying training capacity simulation model for AETC...

  17. Self-Consistent-Field Method and τ-Functional Method on Group Manifold in Soliton Theory: a Review and New Results

    Directory of Open Access Journals (Sweden)

    Seiya Nishiyama

    2009-01-01

    Full Text Available The maximally-decoupled method has been considered as a theory to apply an basic idea of an integrability condition to certain multiple parametrized symmetries. The method is regarded as a mathematical tool to describe a symmetry of a collective submanifold in which a canonicity condition makes the collective variables to be an orthogonal coordinate-system. For this aim we adopt a concept of curvature unfamiliar in the conventional time-dependent (TD self-consistent field (SCF theory. Our basic idea lies in the introduction of a sort of Lagrange manner familiar to fluid dynamics to describe a collective coordinate-system. This manner enables us to take a one-form which is linearly composed of a TD SCF Hamiltonian and infinitesimal generators induced by collective variable differentials of a canonical transformation on a group. The integrability condition of the system read the curvature C = 0. Our method is constructed manifesting itself the structure of the group under consideration. To go beyond the maximaly-decoupled method, we have aimed to construct an SCF theory, i.e., υ (external parameter-dependent Hartree-Fock (HF theory. Toward such an ultimate goal, the υ-HF theory has been reconstructed on an affine Kac-Moody algebra along the soliton theory, using infinite-dimensional fermion. An infinite-dimensional fermion operator is introduced through a Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent potential with a Υ-periodicity. A bilinear equation for the υ-HF theory has been transcribed onto the corresponding τ-function using the regular representation for the group and the Schur-polynomials. The υ-HF SCF theory on an infinite-dimensional Fock space F∞ leads to a dynamics on an infinite-dimensional Grassmannian Gr∞ and may describe more precisely such a dynamics on the group manifold. A finite-dimensional Grassmannian is identified with a Gr

  18. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  19. Intramolecular structures in a single copolymer chain consisting of flexible and semiflexible blocks: Monte Carlo simulation of a lattice model

    International Nuclear Information System (INIS)

    Martemyanova, Julia A; Ivanov, Victor A; Paul, Wolfgang

    2014-01-01

    We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.

  20. Consistency and Communication in Committees

    OpenAIRE

    Inga Deimen; Felix Ketelaar; Mark T. Le Quement

    2013-01-01

    This paper analyzes truthtelling incentives in pre-vote communication in heterogeneous committees. We generalize the classical Condorcet jury model by introducing a new informational structure that captures consistency of information. In contrast to the impossibility result shown by Coughlan (2000) for the classical model, full pooling of information followed by sincere voting is an equilibrium outcome of our model for a large set of parameter values implying the possibility of ex post confli...

  1. Graphical interpretation of numerical model results

    International Nuclear Information System (INIS)

    Drewes, D.R.

    1979-01-01

    Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements

  2. Test results of the SMES model coil. Pulse performance

    International Nuclear Information System (INIS)

    Hamajima, Takataro; Shimada, Mamoru; Ono, Michitaka

    1998-01-01

    A model coil for superconducting magnetic energy storage (SMES model coil) has been developed to establish the component technologies needed for a small-scale 100 kWh SMES device. The SMES model coil was fabricated, and then performance tests were carried out in 1996. The coil was successfully charged up to around 30 kA and down to zero at the same ramp rate of magnetic field experienced in a 100 kWh SMES device. AC loss in the coil was measured by an enthalpy method as parameters of ramp rate and flat top current. The results were evaluated by an analysis and compared with short-sample test results. The measured hysteresis loss is in good agreement with that estimated from the short-sample results. It was found that the coupling loss of the coil consists of two major coupling time constants. One is a short time constant of about 200 ms, which is in agreement with the test results of a short real conductor. The other is a long time constant of about 30 s, which could not be expected from the short sample test results. (author)

  3. Ignalina NPP Safety Analysis: Models and Results

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Research directions, linked to safety assessment of the Ignalina NPP, of the scientific safety analysis group are presented: Thermal-hydraulic analysis of accidents and operational transients; Thermal-hydraulic assessment of Ignalina NPP Accident Localization System and other compartments; Structural analysis of plant components, piping and other parts of Main Circulation Circuit; Assessment of RBMK-1500 reactor core and other. Models and main works carried out last year are described. (author)

  4. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    Directory of Open Access Journals (Sweden)

    D. Vatvani

    2012-07-01

    results obtained, we conclude that, for a good reproduction of the storm surges under hurricane conditions, Makin's new drag parameterization is favourable above the traditional Charnock relation. Furthermore, we are encouraged by these results to continue the studies and establish the effect of improved Makin's wind drag parameterization in the wave model.

    The results from this study will be used to evaluate the relevance of extending the present towards implementation of a similar wind drag parameterization in the SWAN wave model, in line with our aim to apply a consistent wind drag formulation throughout the entire storm surge modelling approach.

  5. Towards a Self-Consistent Physical Framework for Modeling Coupled Human and Physical Activities during the Anthropocene

    Science.gov (United States)

    Garrett, T. J.

    2014-12-01

    Studies of the response of global climate to anthropogenic activities rely upon scenarios for future human activity to provide a range of possible trajectories for greenhouse gases emissions over the coming century. Sophisticated integrated models are used to explore not only what will happen, but what should happen in order to optimize societal well-being. Hundreds of equations might be used to account for the interplay between human decisions, technological change, and macroeconomic priniciples. In contrast, the model equations used to describe geophysical phenomena look very different because they are a) purely deterministic and b) consistent with basic thermodynamic laws. This inconsistency between macroeconomics and physics suggests a rather unhappy marriage. During the Anthropocene the evolution of humanity and our environment will become increasingly intertwined. Representing such a coupling suggests a need for a common theoretical basis. To this end, the approach that is described here is to treat civilization like any other physical process, that is as an open, non-equilibrium thermodynamic system that dissipates energy and diffuses matter in order to sustain existing circulations and to further its material growth. Theoretical arguments and over 40 years of measurements show that a very general representation of global economic wealth (not GDP) has been tied to rates of global primary energy consumption through a constant 7.1 ± 0.1 mW per year 2005 USD. This link between physics and economics leads to very simple expressions for how fast civilization and its rate of energy consumption grow. These are expressible as a function of rates of energy and material resource discovery and depletion, and of the magnitude of externally imposed decay. The equations are validated through hindcasts that show, for example, that economic conditions in the 1950s can be invoked to make remarkably accurate forecasts of present rates of global GDP growth and primary energy

  6. Multi-virulence-locus sequence typing of Staphylococcus lugdunensis generates results consistent with a clonal population structure and is reliable for epidemiological typing.

    Science.gov (United States)

    Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis; Pestel-Caron, Martine

    2014-10-01

    Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Microplasticity of MMC. Experimental results and modelling

    International Nuclear Information System (INIS)

    Maire, E.; Lormand, G.; Gobin, P.F.; Fougeres, R.

    1993-01-01

    The microplastic behavior of several MMC is investigated by means of tension and compression tests. This behavior is assymetric : the proportional limit is higher in tension than in compression but the work hardening rate is higher in compression. These differences are analysed in terms of maxium of the Tresca's shear stress at the interface (proportional limit) and of the emission of dislocation loops during the cooling (work hardening rate). On another hand, a model is proposed to calculate the value of the yield stress, describing the composite as a material composed of three phases : inclusion, unaffected matrix and matrix surrounding the inclusion having a gradient in the density of the thermally induced dilocations. (orig.)

  8. Microplasticity of MMC. Experimental results and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Maire, E. (Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, INSA, 69 Villeurbanne (France)); Lormand, G. (Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, INSA, 69 Villeurbanne (France)); Gobin, P.F. (Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, INSA, 69 Villeurbanne (France)); Fougeres, R. (Groupe d' Etude de Metallurgie Physique et de Physique des Materiaux, INSA, 69 Villeurbanne (France))

    1993-11-01

    The microplastic behavior of several MMC is investigated by means of tension and compression tests. This behavior is assymetric : the proportional limit is higher in tension than in compression but the work hardening rate is higher in compression. These differences are analysed in terms of maxium of the Tresca's shear stress at the interface (proportional limit) and of the emission of dislocation loops during the cooling (work hardening rate). On another hand, a model is proposed to calculate the value of the yield stress, describing the composite as a material composed of three phases : inclusion, unaffected matrix and matrix surrounding the inclusion having a gradient in the density of the thermally induced dilocations. (orig.).

  9. Physical Properties of the SKYLAB North Polar Coronal Hole with an Extended Base and its MHD Self-Consistent Modelling

    Science.gov (United States)

    Bravo, S.; Ocania, G.

    1991-04-01

    energetization of the wind, one of the possibilities allowed for fltix the observational uncertailities shows a very good agreement wi4 an NI Ill) seli'consistent modelling with the only additional term of the Lorentz force in the iiii equation. Key words: SUN-CORONA

  10. Results of the eruptive column model inter-comparison study

    Science.gov (United States)

    Costa, Antonio; Suzuki, Yujiro; Cerminara, M.; Devenish, Ben J.; Esposti Ongaro, T.; Herzog, Michael; Van Eaton, Alexa; Denby, L.C.; Bursik, Marcus; de' Michieli Vitturi, Mattia; Engwell, S.; Neri, Augusto; Barsotti, Sara; Folch, Arnau; Macedonio, Giovanni; Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.; Mastin, Larry G.; Woodhouse, Mark J.; Phillips, Jeremy C.; Hogg, Andrew J.; Degruyter, Wim; Bonadonna, Costanza

    2016-01-01

    This study compares and evaluates one-dimensional (1D) and three-dimensional (3D) numerical models of volcanic eruption columns in a set of different inter-comparison exercises. The exercises were designed as a blind test in which a set of common input parameters was given for two reference eruptions, representing a strong and a weak eruption column under different meteorological conditions. Comparing the results of the different models allows us to evaluate their capabilities and target areas for future improvement. Despite their different formulations, the 1D and 3D models provide reasonably consistent predictions of some of the key global descriptors of the volcanic plumes. Variability in plume height, estimated from the standard deviation of model predictions, is within ~ 20% for the weak plume and ~ 10% for the strong plume. Predictions of neutral buoyancy level are also in reasonably good agreement among the different models, with a standard deviation ranging from 9 to 19% (the latter for the weak plume in a windy atmosphere). Overall, these discrepancies are in the range of observational uncertainty of column height. However, there are important differences amongst models in terms of local properties along the plume axis, particularly for the strong plume. Our analysis suggests that the simplified treatment of entrainment in 1D models is adequate to resolve the general behaviour of the weak plume. However, it is inadequate to capture complex features of the strong plume, such as large vortices, partial column collapse, or gravitational fountaining that strongly enhance entrainment in the lower atmosphere. We conclude that there is a need to more accurately quantify entrainment rates, improve the representation of plume radius, and incorporate the effects of column instability in future versions of 1D volcanic plume models.

  11. Transport simulations of ohmic TFTR experiments with profile-consistent microinstability-based models for chi/sub e/ and chi/sub i/

    International Nuclear Information System (INIS)

    Redi, M.H.; Tang, W.M.; Efthimion, P.C.; Mikkelsen, D.R.; Schmidt, G.L.

    1987-03-01

    Transport simulations of ohmically heated TFTR experiments with recently developed profile-consistent microinstability models for the anomalous thermal diffusivities, chi/sub e/ and chi/sub i/, give good agreement with experimental data. The steady-state temperature profiles and the total energy confinement times, tau/sub e/, were found to agree for each of the ohmic TFTR experiments simulated, including three high radiation cases and two plasmas fueled by pellet injection. Both collisional and collisionless models are tested. The trapped-electron drift wave microinstability model results are consistent with the thermal confinement of large plasma ohmic experiments on TFTR. We also find that transport due to the toroidal ion temperature gradient (eta/sub i/) modes can cause saturation in tau/sub E/ at the highest densities comparable to that observed on TFTR and equivalent to a neoclassical anomaly factor of 3. Predictions based on stabilized eta/sub i/-mode-driven ion transport are found to be in agreement with the enhanced global energy confinement times for pellet-fueled plasmas. 33 refs., 26 figs., 4 tabs

  12. Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b

    Science.gov (United States)

    Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.

    2018-03-01

    We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.

  13. The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI

    DEFF Research Database (Denmark)

    Churchill, Nathan William; Madsen, Kristoffer Hougaard; Mørup, Morten

    2016-01-01

    flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension......The brain consists of specialized cortical regions that exchange information between each other, reflecting a combination of segregated (local) and integrated (distributed) processes that define brain function. Functional magnetic resonance imaging (fMRI) is widely used to characterize...... brain regions where network expression predicts subject age in the experimental data. Thus, the FSIM is effective at summarizing functional connectivity structure in group-level fMRI, with applications in modeling the relationships between network variability and behavioral/demographic variables....

  14. Dermal uptake of phthalates from clothing: Comparison of model to human participant results

    DEFF Research Database (Denmark)

    Morrison, G. C.; Weschler, Charles J.; Beko, G.

    2017-01-01

    In this research, we extend a model of transdermal uptake of phthalates to include a layer of clothing. When compared with experimental results, this model better estimates dermal uptake of diethylphthalate and di-n-butylphthalate (DnBP) than a previous model. The model predictions are consistent...

  15. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    International Nuclear Information System (INIS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-01-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition. (paper)

  16. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    Science.gov (United States)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  17. A Spectral Unmixing Model for the Integration of Multi-Sensor Imagery: A Tool to Generate Consistent Time Series Data

    Directory of Open Access Journals (Sweden)

    Georgia Doxani

    2015-10-01

    Full Text Available The Sentinel missions have been designed to support the operational services of the Copernicus program, ensuring long-term availability of data for a wide range of spectral, spatial and temporal resolutions. In particular, Sentinel-2 (S-2 data with improved high spatial resolution and higher revisit frequency (five days with the pair of satellites in operation will play a fundamental role in recording land cover types and monitoring land cover changes at regular intervals. Nevertheless, cloud coverage usually hinders the time series availability and consequently the continuous land surface monitoring. In an attempt to alleviate this limitation, the synergistic use of instruments with different features is investigated, aiming at the future synergy of the S-2 MultiSpectral Instrument (MSI and Sentinel-3 (S-3 Ocean and Land Colour Instrument (OLCI. To that end, an unmixing model is proposed with the intention of integrating the benefits of the two Sentinel missions, when both in orbit, in one composite image. The main goal is to fill the data gaps in the S-2 record, based on the more frequent information of the S-3 time series. The proposed fusion model has been applied on MODIS (MOD09GA L2G and SPOT4 (Take 5 data and the experimental results have demonstrated that the approach has high potential. However, the different acquisition characteristics of the sensors, i.e. illumination and viewing geometry, should be taken into consideration and bidirectional effects correction has to be performed in order to reduce noise in the reflectance time series.

  18. Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model

    DEFF Research Database (Denmark)

    Silvennoinen, Annestiina; Terasvirta, Timo

    A new multivariate volatility model that belongs to the family of conditional correlation GARCH models is introduced. The GARCH equations of this model contain a multiplicative deterministic component to describe long-run movements in volatility and, in addition, the correlations...

  19. Pearl-necklace structures in core-shell molecular brushes: Experiments, Monte Carlo simulations and self-consistent field modeling

    NARCIS (Netherlands)

    Polotsky, A.; Charlaganov, M.; Xu, Y.P.; Leermakers, F.A.M.; Daoud, M.; Muller, A.H.E.; Dotera, T.; Borisov, O.V.

    2008-01-01

    We present theoretical arguments and experimental evidence for a longitudinal instability in core-shell cylindrical polymer brushes with a solvophobic inner (core) block and a solvophilic outer (shell) block in selective solvents. The two-gradient self-consistent field Scheutjens-Fleer (SCF-SF)

  20. A model for hormonal control of the menstrual cycle: structural consistency but sensitivity with regard to data.

    Science.gov (United States)

    Selgrade, J F; Harris, L A; Pasteur, R D

    2009-10-21

    This study presents a 13-dimensional system of delayed differential equations which predicts serum concentrations of five hormones important for regulation of the menstrual cycle. Parameters for the system are fit to two different data sets for normally cycling women. For these best fit parameter sets, model simulations agree well with the two different data sets but one model also has an abnormal stable periodic solution, which may represent polycystic ovarian syndrome. This abnormal cycle occurs for the model in which the normal cycle has estradiol levels at the high end of the normal range. Differences in model behavior are explained by studying hysteresis curves in bifurcation diagrams with respect to sensitive model parameters. For instance, one sensitive parameter is indicative of the estradiol concentration that promotes pituitary synthesis of a large amount of luteinizing hormone, which is required for ovulation. Also, it is observed that models with greater early follicular growth rates may have a greater risk of cycling abnormally.

  1. Thermal-Chemical Model Of Subduction: Results And Tests

    Science.gov (United States)

    Gorczyk, W.; Gerya, T. V.; Connolly, J. A.; Yuen, D. A.; Rudolph, M.

    2005-12-01

    Seismic structures with strong positive and negative velocity anomalies in the mantle wedge above subduction zones have been interpreted as thermally and/or chemically induced phenomena. We have developed a thermal-chemical model of subduction, which constrains the dynamics of seismic velocity structure beneath volcanic arcs. Our simulations have been calculated over a finite-difference grid with (201×101) to (201×401) regularly spaced Eulerian points, using 0.5 million to 10 billion markers. The model couples numerical thermo-mechanical solution with Gibbs energy minimization to investigate the dynamic behavior of partially molten upwellings from slabs (cold plumes) and structures associated with their development. The model demonstrates two chemically distinct types of plumes (mixed and unmixed), and various rigid body rotation phenomena in the wedge (subduction wheel, fore-arc spin, wedge pin-ball). These thermal-chemical features strongly perturb seismic structure. Their occurrence is dependent on the age of subducting slab and the rate of subduction.The model has been validated through a series of test cases and its results are consistent with a variety of geological and geophysical data. In contrast to models that attribute a purely thermal origin for mantle wedge seismic anomalies, the thermal-chemical model is able to simulate the strong variations of seismic velocity existing beneath volcanic arcs which are associated with development of cold plumes. In particular, molten regions that form beneath volcanic arcs as a consequence of vigorous cold wet plumes are manifest by > 20% variations in the local Poisson ratio, as compared to variations of ~ 2% expected as a consequence of temperature variation within the mantle wedge.

  2. Urban traffic noise assessment by combining measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Graafland, F.; Wessels, P.W.; Basten, T.G.H.

    2013-01-01

    A model based monitoring system is applied on a local scale in an urban area to obtain a better understanding of the traffic noise situation. The system consists of a scalable sensor network and an engineering model. A better understanding is needed to take appropriate and cost efficient measures,

  3. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    International Nuclear Information System (INIS)

    Fradera, J.; Cuesta-López, S.

    2013-01-01

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM ® CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium nucleation

  4. Nucleation, growth and transport modelling of helium bubbles under nuclear irradiation in lead–lithium with the self-consistent nucleation theory and surface tension corrections

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    Highlights: • The work presented in this manuscript provides a reliable computational tool to quantify the He complex phenomena in a HCLL. • A model based on the self-consistent nucleation theory (SCT) is exposed. It includes radiation induced nucleation modelling and surface tension corrections. • Results informed reinforce the necessity of conducting experiments to determine nucleation conditions and bubble transport parameters in LM breeders. • Our findings and model provide a good qualitative insight into the helium nucleation phenomenon in LM systems for fusion technology and can be used to identify key system parameters. -- Abstract: Helium (He) nucleation in liquid metal breeding blankets of a DT fusion reactor may have a significant impact regarding system design, safety and operation. Large He production rates are expected due to tritium (T) fuel self-sufficiency requirement, as both, He and T, are produced at the same rate. Low He solubility, local high concentrations, radiation damage and fluid discontinuities, among other phenomena, may yield the necessary conditions for He nucleation. Hence, He nucleation may have a significant impact on T inventory and may lower the T breeding ratio. A model based on the self-consistent nucleation theory (SCT) with a surface tension curvature correction model has been implemented in OpenFOAM{sup ®} CFD code. A modification through a single parameter of the necessary nucleation condition is proposed in order to take into account all the nucleation triggering phenomena, specially radiation induced nucleation. Moreover, the kinetic growth model has been adapted so as to allow for the transition from a critical cluster to a macroscopic bubble with a diffusion growth process. Limitations and capabilities of the models are shown by means of zero-dimensional simulations and sensitivity analyses to key parameters under HCLL breeding unit conditions. Results provide a good qualitative insight into the helium

  5. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  6. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  7. Consistent analysis of collective level structure and neutron interaction data for 12C in the framework of the soft-rotator model

    International Nuclear Information System (INIS)

    Sukhovitskii, E.Sh.; Porodzinskii, Yu.V.; Iwamoto, Osamu; Chiba, Satoshi.

    1997-09-01

    A systematic analysis of nuclear structure and neutron interaction data for 12 C was carried out in the framework of the soft-rotator model. The model was firstly applied to analyze the low-lying collective level structure of the 12 C nucleus, which turned out to be very successful. The intrinsic wave function obtained in such an analysis was then used to construct the coupling potentials in the coupled-channels formalism to calculate the neutron total and scattering cross sections. The quadrupole deformation parameter obtained in the present analysis was 0.164, which was much smaller in the absolute sense than the value used in the symmetric-rotator, vibrator model employed frequently in the past, i.e., ≅0.6. When averaged over the β-vibration function, however, the present result yields an effective quadrupole strength of about the same scale as the previous studies due to softness of the 12 C wave function with respect to β 2 degree of freedom. The soft-rotator model was found to be very successful in reproducing both the structure and neutron scattering data consistently for the first time in this mass region. (author)

  8. Description of nucleon scattering on 208Pb by a fully Lane-consistent dispersive spherical optical model potential

    Science.gov (United States)

    Sun, W. L.; Wang, J.; Soukhovitskii, E. Sh.; Capote, R.; Quesada, J. M.

    2017-09-01

    A fully Lane-consistent dispersive spherical optical potential is proposed to describe nucleon scattering interaction with doubly magic nucleus 208Pb up to 200 MeV. The experimental neutron total cross sections, elastically scattered nucleon angular distributions and (p,n) data had been used to search the potential parameters. Good agreement between experiments and the calculations with this potential is observed. Meanwhile, the application of the determined optical potential with the same parameters to neighbouring near magic Pb-Bi isotopes is also examined to show the predictive power of this potential.

  9. A consistent NPMLE of the joint distribution function with competing risks data under the dependent masking and right-censoring model.

    Science.gov (United States)

    Li, Jiahui; Yu, Qiqing

    2016-01-01

    Dinse (Biometrics, 38:417-431, 1982) provides a special type of right-censored and masked competing risks data and proposes a non-parametric maximum likelihood estimator (NPMLE) and a pseudo MLE of the joint distribution function [Formula: see text] with such data. However, their asymptotic properties have not been studied so far. Under the extention of either the conditional masking probability (CMP) model or the random partition masking (RPM) model (Yu and Li, J Nonparametr Stat 24:753-764, 2012), we show that (1) Dinse's estimators are consistent if [Formula: see text] takes on finitely many values and each point in the support set of [Formula: see text] can be observed; (2) if the failure time is continuous, the NPMLE is not uniquely determined, and the standard approach (which puts weights only on one element in each observed set) leads to an inconsistent NPMLE; (3) in general, Dinse's estimators are not consistent even under the discrete assumption; (4) we construct a consistent NPMLE. The consistency is given under a new model called dependent masking and right-censoring model. The CMP model and the RPM model are indeed special cases of the new model. We compare our estimator to Dinse's estimators through simulation and real data. Simulation study indicates that the consistent NPMLE is a good approximation to the underlying distribution for moderate sample sizes.

  10. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  11. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    Science.gov (United States)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  12. Structural Consistency, Consistency, and Sequential Rationality.

    OpenAIRE

    Kreps, David M; Ramey, Garey

    1987-01-01

    Sequential equilibria comprise consistent beliefs and a sequentially ra tional strategy profile. Consistent beliefs are limits of Bayes ratio nal beliefs for sequences of strategies that approach the equilibrium strategy. Beliefs are structurally consistent if they are rationaliz ed by some single conjecture concerning opponents' strategies. Consis tent beliefs are not necessarily structurally consistent, notwithstan ding a claim by Kreps and Robert Wilson (1982). Moreover, the spirit of stru...

  13. Angular distributions of evaporated particles, fission and intermediate-mass fragments: on the search for consistent models

    International Nuclear Information System (INIS)

    Alexander, J.M.

    1987-01-01

    During the last two years there has been a true cacophony concerning the meaning of experimental angular distributions for fission and fission-like fragments. The heavily used, saddle-point, transition-state model has been shown to be of limited value for high-spin systems, and a wide variety of proposals has appeared often with mutual inconsistencies and conflicting views. Even though equilibrium statistical models for fragment emission and particle evaporation must have a very close kinship, this relationship, often left as murky, has now come onto center stage for understanding reactions at ≥ 100 MeV. Basic questions concern the nature of the decision-point configurations, their degrees of freedom, the role of deformation and the relevant moments of inertia. This paper points out serious inconsistencies in several recent scission-point models and discusses conditions for applicability of saddle-point and scission-point approaches

  14. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION

    International Nuclear Information System (INIS)

    Rauscher, Emily; Menou, Kristen

    2013-01-01

    We present the first three-dimensional circulation models for extrasolar gas giant atmospheres with geometrically and energetically consistent treatments of magnetic drag and ohmic dissipation. Atmospheric resistivities are continuously updated and calculated directly from the flow structure, strongly coupling the magnetic effects with the circulation pattern. We model the hot Jupiters HD 189733b (T eq ≈ 1200 K) and HD 209458b (T eq ≈ 1500 K) and test planetary magnetic field strengths from 0 to 30 G. We find that even at B = 3 G the atmospheric structure and circulation of HD 209458b are strongly influenced by magnetic effects, while the cooler HD 189733b remains largely unaffected, even in the case of B = 30 G and super-solar metallicities. Our models of HD 209458b indicate that magnetic effects can substantially slow down atmospheric winds, change circulation and temperature patterns, and alter observable properties. These models establish that longitudinal and latitudinal hot spot offsets, day-night flux contrasts, and planetary radius inflation are interrelated diagnostics of the magnetic induction process occurring in the atmospheres of hot Jupiters and other similarly forced exoplanets. Most of the ohmic heating occurs high in the atmosphere and on the dayside of the planet, while the heating at depth is strongly dependent on the internal heat flux assumed for the planet, with more heating when the deep atmosphere is hot. We compare the ohmic power at depth in our models, and estimates of the ohmic dissipation in the bulk interior (from general scaling laws), to evolutionary models that constrain the amount of heating necessary to explain the inflated radius of HD 209458b. Our results suggest that deep ohmic heating can successfully inflate the radius of HD 209458b for planetary magnetic field strengths of B ≥ 3-10 G.

  15. Development of a self-consistent model of dust grain charging at elevated pressures using the method of moments

    International Nuclear Information System (INIS)

    Filippov, A.V.; Dyatko, N.A.; Pal', A.F.; Starostin, A.N.

    2003-01-01

    A model of dust grain charging is constructed using the method of moments. The dust grain charging process in a weakly ionized helium plasma produced by a 100-keV electron beam at atmospheric pressure is studied theoretically. In simulations, the beam current density was varied from 1 to 10 6 μA/cm 2 . It is shown that, in a He plasma, dust grains of radius 5 μm and larger perturb the electron temperature only slightly, although the reduced electric field near the grain reaches 8 Td, the beam current density being 10 6 μA/cm 2 . It is found that, at distances from the grain that are up to several tens or hundreds of times larger than its radius, the electron and ion densities are lower than their equilibrium values. Conditions are determined under which the charging process may be described by a model with constant electron transport coefficients. The dust grain charge is shown to be weakly affected by secondary electron emission. In a beam-produced helium plasma, the dust grain potential calculated in the drift-diffusion model is shown to be close to that calculated in the orbit motion limited model. It is found that, in the vicinity of a body perturbing the plasma, there may be no quasineutral plasma presheath with an ambipolar diffusion of charged particles. The conditions for the onset of this presheath in a beam-produced plasma are determined

  16. Modelling of DEMO core plasma consistent with SOL/divertor simulations for long-pulse scenarios with impurity seeding

    International Nuclear Information System (INIS)

    Pacher, G.W.; Pacher, H.D.; Janeschitz, G.; Kukushkin, A.S.; Kotov, V.; Reiter, D.

    2007-01-01

    The integrated core-pedestal-SOL model is applied to the simulation of a typical DEMO operation. Impurity seeding is used to reduce the power load on the divertor to acceptable levels. The influence on long-pulse operation of impurity seeding with various impurities is investigated. DEMO operation at acceptable peak power loads and long-pulse lengths is demonstrated

  17. Modal Bin Hybrid Model: A surface area consistent, triple-moment sectional method for use in process-oriented modeling of atmospheric aerosols

    Science.gov (United States)

    Kajino, Mizuo; Easter, Richard C.; Ghan, Steven J.

    2013-09-01

    triple-moment sectional (TMS) aerosol dynamics model, Modal Bin Hybrid Model (MBHM), has been developed. In addition to number and mass (volume), surface area is predicted (and preserved), which is important for aerosol processes and properties such as gas-to-particle mass transfer, heterogeneous reaction, and light extinction cross section. The performance of MBHM was evaluated against double-moment sectional (DMS) models with coarse (BIN4) to very fine (BIN256) size resolutions for simulating evolution of particles under simultaneously occurring nucleation, condensation, and coagulation processes (BINx resolution uses x sections to cover the 1 nm to 1 µm size range). Because MBHM gives a physically consistent form of the intrasectional distributions, errors and biases of MBHM at BIN4-8 resolution were almost equivalent to those of DMS at BIN16-32 resolution for various important variables such as the moments Mk (k: 0, 2, 3), dMk/dt, and the number and volume of particles larger than a certain diameter. Another important feature of MBHM is that only a single bin is adequate to simulate full aerosol dynamics for particles whose size distribution can be approximated by a single lognormal mode. This flexibility is useful for process-oriented (multicategory and/or mixing state) modeling: Primary aerosols whose size parameters would not differ substantially in time and space can be expressed by a single or a small number of modes, whereas secondary aerosols whose size changes drastically from 1 to several hundred nanometers can be expressed by a number of modes. Added dimensions can be applied to MBHM to represent mixing state or photochemical age for aerosol mixing state studies.

  18. Allocating city space to multiple transportation modes: A new modeling approach consistent with the physics of transport

    OpenAIRE

    Gonzales, Eric J.; Geroliminis, Nikolas; Cassidy, Michael J.; Daganzo, Carlos F.

    2008-01-01

    A macroscopic modeling approach is proposed for allocating a city’s road space among competing transport modes. In this approach, a city or neighborhood street network is viewed as a reservoir with aggregated traffic. Taking the number of vehicles (accumulation) in a reservoir as input, we show how one can reliably predict system performance in terms of person and vehicle hours spent in the system and person and vehicle kilometers traveled. The approach is used here to unveil two important ...

  19. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1994-01-01

    Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  20. A NEW ALGORITHM FOR SELF-CONSISTENT THREE-DIMENSIONAL MODELING OF COLLISIONS IN DUSTY DEBRIS DISKS

    International Nuclear Information System (INIS)

    Stark, Christopher C.; Kuchner, Marc J.

    2009-01-01

    We present a new 'collisional grooming' algorithm that enables us to model images of debris disks where the collision time is less than the Poynting-Robertson (PR) time for the dominant grain size. Our algorithm uses the output of a collisionless disk simulation to iteratively solve the mass flux equation for the density distribution of a collisional disk containing planets in three dimensions. The algorithm can be run on a single processor in ∼1 hr. Our preliminary models of disks with resonant ring structures caused by terrestrial mass planets show that the collision rate for background particles in a ring structure is enhanced by a factor of a few compared to the rest of the disk, and that dust grains in or near resonance have even higher collision rates. We show how collisions can alter the morphology of a resonant ring structure by reducing the sharpness of a resonant ring's inner edge and by smearing out azimuthal structure. We implement a simple prescription for particle fragmentation and show how PR drag and fragmentation sort particles by size, producing smaller dust grains at smaller circumstellar distances. This mechanism could cause a disk to look different at different wavelengths, and may explain the warm component of dust interior to Fomalhaut's outer dust ring seen in the resolved 24 μm Spitzer image of this system.

  1. A consistent analysis of (p,p`) and (n,n`) reactions using the Feshbach-Kerman-Koonin model

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, S.; Watanabe, Y.; Harada, M. [Kyushu Univ., Fukuoka (Japan)] [and others

    1997-03-01

    Double-differential proton emission cross sections were measured for proton-induced reactions on several medium-heavy nuclei ({sup 54,56}Fe, {sup 60}Ni, {sup 90}Zr, and {sup 93}Nb) at two incident energies of 14.1 and 26 MeV. The (p,p`) data for {sup 56}Fe and {sup 93}Nb were compared with available data of (n,n`) scattering for the same target nuclei and incident energies, and both data were analyzed using the Feshbach-Kerman-Koonin model to extract the strength V{sub 0} of the effective N-N interaction which is the only free parameter used in multistep direct calculations. (author)

  2. The vortex-like self-consistent electron fluid model by the applied-B ion diode: equilibrium and instability

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A V [Kurchatov Institute, Moscow (Russian Federation). Nuclear Fusion Institute

    1997-12-31

    The electron inertia effects in the one-dimensional model of the applied-B ion diode for the relativistic diode potential eU/m{sub e}c{sup 2} {>=} 1 were investigated, where the magnetic Debye length r{sub B} is of the order of the collisionless electron skin depth c/{omega}{sub pe}. For this, an analytical relation between the magnetic field and the electric potential was developed, owing to which the second order eigenvalue problem can be reduced to a system of algebraic equations. Instabilities inside the vacuum gap and in the near-anode emitting plasma are considered. In the near-anode Hall plasma, the instability with two ion species was obtained; this can can contribute to the ion angle divergence. (author). 10 refs.

  3. The vortex-like self-consistent electron fluid model by the applied-B ion diode: equilibrium and instability

    International Nuclear Information System (INIS)

    Gordeev, A.V.

    1996-01-01

    The electron inertia effects in the one-dimensional model of the applied-B ion diode for the relativistic diode potential eU/m e c 2 ≥ 1 were investigated, where the magnetic Debye length r B is of the order of the collisionless electron skin depth c/ω pe . For this, an analytical relation between the magnetic field and the electric potential was developed, owing to which the second order eigenvalue problem can be reduced to a system of algebraic equations. Instabilities inside the vacuum gap and in the near-anode emitting plasma are considered. In the near-anode Hall plasma, the instability with two ion species was obtained; this can can contribute to the ion angle divergence. (author). 10 refs

  4. Metallic Material Image Segmentation by using 3D Grain Structure Consistency and Intra/Inter-Grain Model Information

    Science.gov (United States)

    2015-01-05

    Based on these research results, we built an interactive interface as a web application using the Django [9] web framework for the backend , and a...started from 2014) ∗ Partially supported by this AFOSR grant. Publications: 1. R. Meng, S. Nelakuditi, S. Wang, R. Choudhury. OmniView: A Mobile ...11. S. Singh, R. Meng, S. Nelakuditi, Y. Tong, S. Wang. SideEye: Mobile Assistant for Blind Spot Monitoring, International Conference on Computing

  5. Final theory spiral-field-model. Basic ideas for a compatible physics and a consistent nature science

    International Nuclear Information System (INIS)

    Hartje, U.A.J.

    2005-01-01

    This script contains theses for an universal 'Spiral-Field-Theory' that are capable to dissolve problems in parallel from different areas which are far from each other. Starting point is the stuck principle discussion about the relationships between the Classic Physics and the Quantum Physics. Aim is the clarification of questions which remained open. In 1925 Max Planck had formulated as follows: 'The research of physics can not rest, so long not has been together-welded: on the one hand the mechanics and the electrodynamics with on the other hand the lesson of the stationary one and the radiating heat to a sole unitary theory'. The Spiral-Field-Model develops a supporting structure from General Field into which they will class the secure knowledge from experiments and well-proved theories. The most important thing of this new Final Theory is the detailed generating of all nature courses of phenomena exclusively from radiation and that in the direct meaning of the word. In the final effect the two great disciplines of the physics which are drifted from each other, become bonded together to a super ordinate theoretical building of the nature sciences. (orig.)

  6. A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis

    Science.gov (United States)

    Roubíček, Tomáš; Tomassetti, Giuseppe

    2018-06-01

    A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.

  7. The elastic network model reveals a consistent picture on intrinsic functional dynamics of type II restriction endonucleases

    International Nuclear Information System (INIS)

    Uyar, A; Kurkcuoglu, O; Doruker, P; Nilsson, L

    2011-01-01

    The vibrational dynamics of various type II restriction endonucleases, in complex with cognate/non-cognate DNA and in the apo form, are investigated with the elastic network model in order to reveal common functional mechanisms in this enzyme family. Scissor-like and tong-like motions observed in the slowest modes of all enzymes and their complexes point to common DNA recognition and cleavage mechanisms. Normal mode analysis further points out that the scissor-like motion has an important role in differentiating between cognate and non-cognate sequences at the recognition site, thus implying its catalytic relevance. Flexible regions observed around the DNA-binding site of the enzyme usually concentrate on the highly conserved β-strands, especially after DNA binding. These β-strands may have a structurally stabilizing role in functional dynamics for target site recognition and cleavage. In addition, hot spot residues based on high-frequency modes reveal possible communication pathways between the two distant cleavage sites in the enzyme family. Some of these hot spots also exist on the shortest path between the catalytic sites and are highly conserved

  8. Quantifying sources of elemental carbon over the Guanzhong Basin of China: A consistent network of measurements and WRF-Chem modeling

    International Nuclear Information System (INIS)

    Li, Nan; He, Qingyang; Tie, Xuexi; Cao, Junji; Liu, Suixin; Wang, Qiyuan; Li, Guohui; Huang, Rujin; Zhang, Qiang

    2016-01-01

    We conducted a year-long WRF-Chem (Weather Research and Forecasting Chemical) model simulation of elemental carbon (EC) aerosol and compared the modeling results to the surface EC measurements in the Guanzhong (GZ) Basin of China. The main goals of this study were to quantify the individual contributions of different EC sources to EC pollution, and to find the major cause of the EC pollution in this region. The EC measurements were simultaneously conducted at 10 urban, rural, and background sites over the GZ Basin from May 2013 to April 2014, and provided a good base against which to evaluate model simulation. The model evaluation showed that the calculated annual mean EC concentration was 5.1 μgC m −3 , which was consistent with the observed value of 5.3 μgC m −3 . Moreover, the model result also reproduced the magnitude of measured EC in all seasons (regression slope = 0.98–1.03), as well as the spatial and temporal variations (r = 0.55–0.78). We conducted several sensitivity studies to quantify the individual contributions of EC sources to EC pollution. The sensitivity simulations showed that the local and outside sources contributed about 60% and 40% to the annual mean EC concentration, respectively, implying that local sources were the major EC pollution contributors in the GZ Basin. Among the local sources, residential sources contributed the most, followed by industry and transportation sources. A further analysis suggested that a 50% reduction of industry or transportation emissions only caused a 6% decrease in the annual mean EC concentration, while a 50% reduction of residential emissions reduced the winter surface EC concentration by up to 25%. In respect to the serious air pollution problems (including EC pollution) in the GZ Basin, our findings can provide an insightful view on local air pollution control strategies. - Highlights: • A yearlong WRF-Chem simulation is conducted to identify sources of the EC pollution. • A network of

  9. Eye Movement Deficits Are Consistent with a Staging Model of pTDP-43 Pathology in Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Martin Gorges

    Full Text Available The neuropathological process underlying amyotrophic lateral sclerosis (ALS can be traced as a four-stage progression scheme of sequential corticofugal axonal spread. The examination of eye movement control gains deep insights into brain network pathology and provides the opportunity to detect both disturbance of the brainstem oculomotor circuitry as well as executive deficits of oculomotor function associated with higher brain networks.To study systematically oculomotor characteristics in ALS and its underlying network pathology in order to determine whether eye movement deterioration can be categorized within a staging system of oculomotor decline that corresponds to the neuropathological model.Sixty-eight ALS patients and 31 controls underwent video-oculographic, clinical and neuropsychological assessments.Oculomotor examinations revealed increased anti- and delayed saccades' errors, gaze-palsy and a cerebellary type of smooth pursuit disturbance. The oculomotor disturbances occurred in a sequential manner: Stage 1, only executive control of eye movements was affected. Stage 2 indicates disturbed executive control plus 'genuine' oculomotor dysfunctions such as gaze-paly. We found high correlations (p<0.001 between the oculomotor stages and both, the clinical presentation as assessed by the ALS Functional Rating Scale (ALSFRS score, and cognitive scores from the Edinburgh Cognitive and Behavioral ALS Screen (ECAS.Dysfunction of eye movement control in ALS can be characterized by a two-staged sequential pattern comprising executive deficits in Stage 1 and additional impaired infratentorial oculomotor control pathways in Stage 2. This pattern parallels the neuropathological staging of ALS and may serve as a technical marker of the neuropathological spreading.

  10. Funding Medical Research Projects: Taking into Account Referees' Severity and Consistency through Many-Faceted Rasch Modeling of Projects' Scores.

    Science.gov (United States)

    Tesio, Luigi; Simone, Anna; Grzeda, Mariuzs T; Ponzio, Michela; Dati, Gabriele; Zaratin, Paola; Perucca, Laura; Battaglia, Mario A

    2015-01-01

    The funding policy of research projects often relies on scores assigned by a panel of experts (referees). The non-linear nature of raw scores and the severity and inconsistency of individual raters may generate unfair numeric project rankings. Rasch measurement (many-facets version, MFRM) provides a valid alternative to scoring. MFRM was applied to the scores achieved by 75 research projects on multiple sclerosis sent in response to a previous annual call by FISM-Italian Foundation for Multiple Sclerosis. This allowed to simulate, a posteriori, the impact of MFRM on the funding scenario. The applications were each scored by 2 to 4 independent referees (total = 131) on a 10-item, 0-3 rating scale called FISM-ProQual-P. The rotation plan assured "connection" of all pairs of projects through at least 1 shared referee.The questionnaire fulfilled satisfactorily the stringent criteria of Rasch measurement for psychometric quality (unidimensionality, reliability and data-model fit). Arbitrarily, 2 acceptability thresholds were set at a raw score of 21/30 and at the equivalent Rasch measure of 61.5/100, respectively. When the cut-off was switched from score to measure 8 out of 18 acceptable projects had to be rejected, while 15 rejected projects became eligible for funding. Some referees, of various severity, were grossly inconsistent (z-std fit indexes less than -1.9 or greater than 1.9). The FISM-ProQual-P questionnaire seems a valid and reliable scale. MFRM may help the decision-making process for allocating funds to MS research projects but also in other fields. In repeated assessment exercises it can help the selection of reliable referees. Their severity can be steadily calibrated, thus obviating the need to connect them with other referees assessing the same projects.

  11. Universe of quantum whirls in the final theory spiral field model. Basic ideas for a compatible physics and a consistent nature science. 3. rev. ed.

    International Nuclear Information System (INIS)

    Hartje, Udo A.J.

    2008-01-01

    Internationally stressed physics is looking for the solution of the basic problems of physics at higher and higher energies in impressive plants which outbid themselves in their expenditure for technology reciprocally. If with this manner shall be to seek the ''atomos'' and the ''unit of the physics'' then this is an error way. Sought-after Higgs particles are certainly not a simply thing; but a most complex object which would contain an enormous number of effect quanta in its structure. Since Planck, Poincare, Einstein, Bohr, Heisenberg, Schroedinger, De Broglie and others well-known physicists we know that this ''atomos'' have only a tiny energy quantity which single is not measurable. The search with gigantic machines is at all besides more nonsensical than such processes there will pump even energy into it. The elementary contains only fractions from the energy what is in known smallest particles or weakest beams too. This work follows another approach to grasp the nature in a Final Theory (Grand Unification) on a deductive way. It starts from a most general analysis and synthesis of scientific and everyday-language concepts. This shored up it on the principle of general physical field. The dynamic processes of the field are vivid illustrated by graphic means in systems of coordinates with space-time. Through it arises a everywhere consistent view for most simple existences and simple structures up to most complicate existences for all fields of physics and philosophy. That remained shut off till now obstinately for the cognition. A important result is the solution of the puzzle of ''Dualism of Wave and Particle''. Matter-structures consist not from 'a priori' existing 'little verdicts' which secondary swing. But they consist from beams; which remain in the inside of the particles radiation-like: and they rotate there in themselves. This creates locality without changing the radiation itself into 'electrons' which rotate on paths. The Classical Physics and the

  12. Universe of quantum whirls in the final theory spiral field model. Basic ideas for a compatible physics and a consistent nature science. 2. rev. ed.

    International Nuclear Information System (INIS)

    Hartje, Udo A.J.

    2007-01-01

    Internationally stressed physics is looking for the solution of the basic problems of physics at higher and higher energies in impressive plants which outbid themselves in their expenditure for technology reciprocally. If with this manner shall be to seek the ''atomos'' and the ''unit of the physics'' then this is an error way. Sought-after Higgs particles are certainly not a simply thing; but a most complex object which would contain an enormous number of effect quanta in its structure. Since Planck, Poincare, Einstein, Bohr, Heisenberg, Schroedinger, De Broglie and others well-known physicists we know that this ''atomos'' have only a tiny energy quantity which single is not measurable. The search with gigantic machines is at all besides more nonsensical than such processes there will pump even energy into it. The elementary contains only fractions from the energy what is in known smallest particles or weakest beams too. This work follows another approach to grasp the nature in a Final Theory (Grand Unification) on a deductive way. It starts from a most general analysis and synthesis of scientific and everyday-language concepts. This shored up it on the principle of general physical field. The dynamic processes of the field are vivid illustrated by graphic means in systems of coordinates with space-time. Through it arises a everywhere consistent view for most simple existences and simple structures up to most complicate existences for all fields of physics and philosophy. That remained shut off till now obstinately for the cognition. A important result is the solution of the puzzle of ''Dualism of Wave and Particle''. Matter-structures consist not from 'a priori' existing 'little verdicts' which secondary swing. But they consist from beams; which remain in the inside of the particles radiation-like: and they rotate there in themselves. This creates locality without changing the radiation itself into 'electrons' which rotate on paths. The Classical Physics and the

  13. An NDVI-Based Vegetation Phenology Is Improved to be More Consistent with Photosynthesis Dynamics through Applying a Light Use Efficiency Model over Boreal High-Latitude Forests

    Directory of Open Access Journals (Sweden)

    Siheng Wang

    2017-07-01

    Full Text Available Remote sensing of high-latitude forests phenology is essential for understanding the global carbon cycle and the response of vegetation to climate change. The normalized difference vegetation index (NDVI has long been used to study boreal evergreen needleleaf forests (ENF and deciduous broadleaf forests. However, the NDVI-based growing season is generally reported to be longer than that based on gross primary production (GPP, which can be attributed to the difference between greenness and photosynthesis. Instead of introducing environmental factors such as land surface or air temperature like previous studies, this study attempts to make VI-based phenology more consistent with photosynthesis dynamics through applying a light use efficiency model. NDVI (MOD13C2 was used as a proxy for both fractional of absorbed photosynthetically active radiation (APAR and light use efficiency at seasonal time scale. Results show that VI-based phenology is improved towards tracking seasonal GPP changes more precisely after applying the light use efficiency model compared to raw NDVI or APAR, especially over ENF.

  14. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    Science.gov (United States)

    Varenyk, O. V.; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V.; Morozovska, A. N.

    2015-08-01

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  15. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    Energy Technology Data Exchange (ETDEWEB)

    Varenyk, O. V.; Morozovska, A. N., E-mail: sergei2@ornl.gov, E-mail: anna.n.morozovska@gmail.com [Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, 03028 Kyiv (Ukraine); Silibin, M. V. [National Research University of Electronic Technology “MIET,” 124498 Moscow (Russian Federation); Kiselev, D. A. [National University of Science and Technology “MISiS,” 119049 Moscow, Leninskiy pr. 4 (Russian Federation); Eliseev, E. A. [Institute for Problems of Materials Science, NAS of Ukraine, Krjijanovskogo 3, 03142 Kyiv (Ukraine); Kalinin, S. V., E-mail: sergei2@ornl.gov, E-mail: anna.n.morozovska@gmail.com [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-08-21

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  16. Is cosmology consistent?

    International Nuclear Information System (INIS)

    Wang Xiaomin; Tegmark, Max; Zaldarriaga, Matias

    2002-01-01

    We perform a detailed analysis of the latest cosmic microwave background (CMB) measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the 'standard' adiabatic inflationary cosmological model. Our best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favor 'small-field' inflation models

  17. The uncertainty analysis of model results a practical guide

    CERN Document Server

    Hofer, Eduard

    2018-01-01

    This book is a practical guide to the uncertainty analysis of computer model applications. Used in many areas, such as engineering, ecology and economics, computer models are subject to various uncertainties at the level of model formulations, parameter values and input data. Naturally, it would be advantageous to know the combined effect of these uncertainties on the model results as well as whether the state of knowledge should be improved in order to reduce the uncertainty of the results most effectively. The book supports decision-makers, model developers and users in their argumentation for an uncertainty analysis and assists them in the interpretation of the analysis results.

  18. Precipitation Processes developed during ARM (1997), TOGA COARE(1992), GATE(1 974), SCSMEX(1998) and KWAJEX(1999): Consistent 2D and 3D Cloud Resolving Model Simulations

    Science.gov (United States)

    Tao, W.-K.; Shie, C.-H.; Simpson, J.; Starr, D.; Johnson, D.; Sud, Y.

    2003-01-01

    Real clouds and clouds systems are inherently three dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud system with large horizontal domains at the National Center for Atmospheric Research. The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D simulations of these same cases. The reason for the strong similarity between the 2D and 3D CRM simulations is that the observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main forcing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used in CSU and U.K. Met Office showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this project are to calculate and axamine: (1)the surface energy and water budgets, (2) the precipitation processes in the convective and stratiform regions, (3) the cloud upward and downward mass fluxes in the convective and stratiform regions; (4) cloud characteristics such as size, updraft intensity and lifetime, and (5) the entrainment and detrainment rates associated with clouds and cloud systems that developed in TOGA COARE, GATE, SCSMEX, ARM and KWAJEX. Of special note is that the analyzed (model generated) data sets are all produced by the same current version of the GCE model, i.e. consistent model physics and configurations. Trajectory analyse and inert tracer calculation will be conducted to identify the differences and similarities in the organization of convection between simulated 2D and 3D cloud systems.

  19. A novel mouse model carrying a human cytoplasmic dynein mutation shows motor behavior deficits consistent with Charcot-Marie-Tooth type 2O disease.

    Science.gov (United States)

    Sabblah, Thywill T; Nandini, Swaran; Ledray, Aaron P; Pasos, Julio; Calderon, Jami L Conley; Love, Rachal; King, Linda E; King, Stephen J

    2018-01-29

    Charcot-Marie-Tooth disease (CMT) is a peripheral neuromuscular disorder in which axonal degeneration causes progressive loss of motor and sensory nerve function. The loss of motor nerve function leads to distal muscle weakness and atrophy, resulting in gait problems and difficulties with walking, running, and balance. A mutation in the cytoplasmic dynein heavy chain (DHC) gene was discovered to cause an autosomal dominant form of the disease designated Charcot-Marie-Tooth type 2 O disease (CMT2O) in 2011. The mutation is a single amino acid change of histidine into arginine at amino acid 306 (H306R) in DHC. In order to understand the onset and progression of CMT2, we generated a knock-in mouse carrying the corresponding CMT2O mutation (H304R/+). We examined H304R/+ mouse cohorts in a 12-month longitudinal study of grip strength, tail suspension, and rotarod assays. H304R/+ mice displayed distal muscle weakness and loss of motor coordination phenotypes consistent with those of individuals with CMT2. Analysis of the gastrocnemius of H304R/+ male mice showed prominent defects in neuromuscular junction (NMJ) morphology including reduced size, branching, and complexity. Based on these results, the H304R/+ mouse will be an important model for uncovering functions of dynein in complex organisms, especially related to CMT onset and progression.

  20. V and V Efforts of Auroral Precipitation Models: Preliminary Results

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Rastaetter, Lutz; Hesse, Michael

    2011-01-01

    Auroral precipitation models have been valuable both in terms of space weather applications and space science research. Yet very limited testing has been performed regarding model performance. A variety of auroral models are available, including empirical models that are parameterized by geomagnetic indices or upstream solar wind conditions, now casting models that are based on satellite observations, or those derived from physics-based, coupled global models. In this presentation, we will show our preliminary results regarding V&V efforts of some of the models.

  1. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  2. Waste glass corrosion modeling: Comparison with experimental results

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1993-11-01

    A chemical model of glass corrosion will be used to predict the rates of release of radionuclides from borosilicate glass waste forms in high-level waste repositories. The model will be used both to calculate the rate of degradation of the glass, and also to predict the effects of chemical interactions between the glass and repository materials such as spent fuel, canister and container materials, backfill, cements, grouts, and others. Coupling between the degradation processes affecting all these materials is expected. Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations

  3. Argonne Fuel Cycle Facility ventilation system -- modeling and results

    International Nuclear Information System (INIS)

    Mohr, D.; Feldman, E.E.; Danielson, W.F.

    1995-01-01

    This paper describes an integrated study of the Argonne-West Fuel Cycle Facility (FCF) interconnected ventilation systems during various operations. Analyses and test results include first a nominal condition reflecting balanced pressures and flows followed by several infrequent and off-normal scenarios. This effort is the first study of the FCF ventilation systems as an integrated network wherein the hydraulic effects of all major air systems have been analyzed and tested. The FCF building consists of many interconnected regions in which nuclear fuel is handled, transported and reprocessed. The ventilation systems comprise a large number of ducts, fans, dampers, and filters which together must provide clean, properly conditioned air to the worker occupied spaces of the facility while preventing the spread of airborne radioactive materials to clean am-as or the atmosphere. This objective is achieved by keeping the FCF building at a partial vacuum in which the contaminated areas are kept at lower pressures than the other worker occupied spaces. The ventilation systems of FCF and the EBR-II reactor are analyzed as an integrated totality, as demonstrated. We then developed the network model shown in Fig. 2 for the TORAC code. The scope of this study was to assess the measured results from the acceptance/flow balancing testing and to predict the effects of power failures, hatch and door openings, single-failure faulted conditions, EBR-II isolation, and other infrequent operations. The studies show that the FCF ventilation systems am very controllable and remain stable following off-normal events. In addition, the FCF ventilation system complex is essentially immune to reverse flows and spread of contamination to clean areas during normal and off-normal operation

  4. Results from Development of Model Specifications for Multifamily Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, K.

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  5. Results From Development of Model Specifications for Multifamily Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Brozyna, Kevin [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  6. Verification of aseismic design model by using experimental results

    International Nuclear Information System (INIS)

    Mizuno, N.; Sugiyama, N.; Suzuki, T.; Shibata, Y.; Miura, K.; Miyagawa, N.

    1985-01-01

    A lattice model is applied as an analysis model for an aseismic design of the Hamaoka nuclear reactor building. With object to verify an availability of this design model, two reinforced concrete blocks are constructed on the ground and the forced vibration tests are carried out. The test results are well followed by simulation analysis using the lattice model. Damping value of the ground obtained from the test is more conservative than the design value. (orig.)

  7. First Results of Modeling Radiation Belt Electron Dynamics with the SAMI3 Plasmasphere Model

    Science.gov (United States)

    Komar, C. M.; Glocer, A.; Huba, J.; Fok, M. C. H.; Kang, S. B.; Buzulukova, N.

    2017-12-01

    The radiation belts were one of the first discoveries of the Space Age some sixty years ago and radiation belt models have been improving since the discovery of the radiation belts. The plasmasphere is one region that has been critically important to determining the dynamics of radiation belt populations. This region of space plays a critical role in describing the distribution of chorus and magnetospheric hiss waves throughout the inner magnetosphere. Both of these waves have been shown to interact with energetic electrons in the radiation belts and can result in the energization or loss of radiation belt electrons. However, radiation belt models have been historically limited in describing the distribution of cold plasmaspheric plasma and have relied on empirically determined plasmasphere models. Some plasmasphere models use an azimuthally symmetric distribution of the plasmasphere which can fail to capture important plasmaspheric dynamics such as the development of plasmaspheric drainage plumes. Previous work have coupled the kinetic bounce-averaged Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model used to model ring current and radiation belt populations with the Block-adaptive Tree Solar wind Roe-type Upwind Scheme (BATSRUS) global magnetohydrodynamic model to self-consistently obtain the magnetospheric magnetic field and ionospheric potential. The present work will utilize this previous coupling and will additionally couple the SAMI3 plasmasphere model to better represent the dynamics on the plasmasphere and its role in determining the distribution of waves throughout the inner magnetosphere. First results on the relevance of chorus, hiss, and ultralow frequency waves on radiation belt electron dynamics will be discussed in context of the June 1st, 2013 storm-time dropout event.

  8. Petrologically-constrained thermo-chemical modelling of cratonic upper mantle consistent with elevation, geoid, surface heat flow, seismic surface waves and MT data

    Science.gov (United States)

    Jones, A. G.; Afonso, J. C.

    2015-12-01

    The Earth comprises a single physio-chemical system that we interrogate from its surface and/or from space making observations related to various physical and chemical parameters. A change in one of those parameters affects many of the others; for example a change in velocity is almost always indicative of a concomitant change in density, which results in changes to elevation, gravity and geoid observations. Similarly, a change in oxide chemistry affects almost all physical parameters to a greater or lesser extent. We have now developed sophisticated tools to model/invert data in our individual disciplines to such an extent that we are obtaining high resolution, robust models from our datasets. However, in the vast majority of cases the different datasets are modelled/inverted independently of each other, and often even without considering other data in a qualitative sense. The LitMod framework of Afonso and colleagues presents integrated inversion of geoscientific data to yield thermo-chemical models that are petrologically consistent and constrained. Input data can comprise any combination of elevation, geoid, surface heat flow, seismic surface wave (Rayleigh and Love) data and receiver function data, and MT data. The basis of LitMod is characterization of the upper mantle in terms of five oxides in the CFMAS system and a thermal structure that is conductive to the LAB and convective along the adiabat below the LAB to the 410 km discontinuity. Candidate solutions are chosen from prior distributions of the oxides. For the crust, candidate solutions are chosen from distributions of crustal layering, velocity and density parameters. Those candidate solutions that fit the data within prescribed error limits are kept, and are used to establish broad posterior distributions from which new candidate solutions are chosen. Examples will be shown of application of this approach fitting data from the Kaapvaal Craton in South Africa and the Rae Craton in northern Canada. I

  9. The Rucio Consistency Service

    CERN Document Server

    Serfon, Cedric; The ATLAS collaboration

    2016-01-01

    One of the biggest challenge with Large scale data management system is to ensure the consistency between the global file catalog and what is physically on all storage elements. To tackle this issue, the Rucio software which is used by the ATLAS Distributed Data Management system has been extended to automatically handle lost or unregistered files (aka Dark Data). This system automatically detects these inconsistencies and take actions like recovery or deletion of unneeded files in a central manner. In this talk, we will present this system, explain the internals and give some results.

  10. Dynamically consistent oil import tariffs

    International Nuclear Information System (INIS)

    Karp, L.; Newbery, D.M.

    1992-01-01

    The standard theory of optimal tariffs considers tariffs on perishable goods produced abroad under static conditions, in which tariffs affect prices only in that period. Oil and other exhaustable resources do not fit this model, for current tariffs affect the amount of oil imported, which will affect the remaining stock and hence its future price. The problem of choosing a dynamically consistent oil import tariff when suppliers are competitive but importers have market power is considered. The open-loop Nash tariff is solved for the standard competitive case in which the oil price is arbitraged, and it was found that the resulting tariff rises at the rate of interest. This tariff was found to have an equilibrium that in general is dynamically inconsistent. Nevertheless, it is shown that necessary and sufficient conditions exist under which the tariff satisfies the weaker condition of time consistency. A dynamically consistent tariff is obtained by assuming that all agents condition their current decisions on the remaining stock of the resource, in contrast to open-loop strategies. For the natural case in which all agents choose their actions simultaneously in each period, the dynamically consistent tariff was characterized, and found to differ markedly from the time-inconsistent open-loop tariff. It was shown that if importers do not have overwhelming market power, then the time path of the world price is insensitive to the ability to commit, as is the level of wealth achieved by the importer. 26 refs., 4 figs

  11. Identifiability Results for Several Classes of Linear Compartment Models.

    Science.gov (United States)

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

  12. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    International Nuclear Information System (INIS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-01-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions

  13. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    Directory of Open Access Journals (Sweden)

    F. Pattyn

    2012-05-01

    Full Text Available Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing. Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.

  14. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    Science.gov (United States)

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-02

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.

  15. Elasto-viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa

    Science.gov (United States)

    Lin, F.; Hilairet, N.; Raterron, P.; Addad, A.; Immoor, J.; Marquardt, H.; Tomé, C. N.; Miyagi, L.; Merkel, S.

    2017-11-01

    Anisotropy has a crucial effect on the mechanical response of polycrystalline materials. Polycrystal anisotropy is a consequence of single crystal anisotropy and texture (crystallographic preferred orientation) development, which can result from plastic deformation by dislocation glide. The plastic behavior of polycrystals is different under varying hydrostatic pressure conditions, and understanding the effect of hydrostatic pressure on plasticity is of general interest. Moreover, in the case of geological materials, it is useful for understanding material behavior in the deep earth and for the interpretation of seismic data. Periclase is a good material to test because of its simple and stable crystal structure (B1), and it is of interest to geosciences, as (Mg,Fe)O is the second most abundant phase in Earth's lower mantle. In this study, a polycrystalline sintered sample of periclase is deformed at ˜5.4 GPa and ambient temperature, to a total strain of 37% at average strain rates of 2.26 × 10-5/s and 4.30 × 10-5/s. Lattice strains and textures in the polycrystalline sample are recorded using in-situ synchrotron x-ray diffraction and are modeled with Elasto-Viscoplastic Self Consistent (EVPSC) methods. Parameters such as critical resolved shear stress (CRSS) for the various slip systems, strain hardening, initial grain shape, and the strength of the grain-neighborhood interaction are tested in order to optimize the simulation. At the beginning of deformation, a transient maximum occurs in lattice strains, then lattice strains relax to a "steady-state" value, which, we believe, corresponds to the true flow strength of periclase. The "steady state" CRSS of the {" separators="| 110 } ⟨" separators="| 1 1 ¯ 0 ⟩ slip system is 1.2 GPa, while modeling the transient maximum requires a CRSS of 2.2 GPa. Interpretation of the overall experimental data via modeling indicates dominant {" separators="| 110 } ⟨" separators="| 1 1 ¯ 0 ⟩ slip with initial strain

  16. The calculation of exchange forces: General results and specific models

    International Nuclear Information System (INIS)

    Scott, T.C.; Babb, J.F.; Dalgarno, A.; Morgan, J.D. III

    1993-01-01

    In order to clarify questions about the calculation of the exchange energy of a homonuclear molecular ion, an analysis is carried out of a model problem consisting of the one-dimensional limit of H 2 + . It is demonstrated that the use of the infinite polarization expansion for the localized wave function in the Holstein--Herring formula yields an approximate exchange energy which at large internuclear distances R has the correct leading behavior to O(e -R ) and is close to but not equal to the exact exchange energy. The extension to the n-dimensional double-well problem is presented

  17. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline Model for the high aluminum Hanford glass composition region

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    In this report, Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high level waste (HLW) glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  18. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline model for the high aluminum Hanford Glass composition region

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States); Mcclane, D. L. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-17

    In this report, SRNL provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated HLW glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  19. Updating the CHAOS series of field models using Swarm data and resulting candidate models for IGRF-12

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars

    th order spline representation with knot points spaced at 0.5 year intervals. The resulting field model is able to consistently fit data from six independent low Earth orbit satellites: Oersted, CHAMP, SAC-C and the three Swarm satellites. As an example, we present comparisons of the excellent model...... therefore conclude that Swarm data is suitable for building high-resolution models of the large-scale internal field, and proceed to extract IGRF-12 candidate models for the main field in epochs 2010 and 2015, as well as the predicted linear secular variarion for 2015-2020. The properties of these IGRF...... candidate models are briefly presented....

  20. Generalised Chou-Yang model and recent results

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Rashid, H.

    1995-09-01

    It is shown that most recent results of E710 and UA4/2 collaboration for the total cross section and ρ together with earlier measurements give good agreement with measurements for the differential cross section at 546 and 1800 GeV the framework of Generalised Chou-Yang model. These results are also compared with the predictions of other models. (author). 16 refs, 2 figs

  1. Generalised Chou-Yang model and recent results

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-e-Aleem [International Centre for Theoretical Physics, Trieste (Italy); Rashid, H. [Punjab Univ., Lahore (Pakistan). Centre for High Energy Physics

    1996-12-31

    It is shown that most recent results of E710 and UA4/2 collaboration for the total cross section and {rho} together with earlier measurements give good agreement with measurements for the differential cross section at 546 and 1800 GeV within the framework of Generalised Chou-Yang model. These results are also compared with the predictions of other models. (author) 16 refs.

  2. Generalised Chou-Yang model and recent results

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Rashid, H.

    1996-01-01

    It is shown that most recent results of E710 and UA4/2 collaboration for the total cross section and ρ together with earlier measurements give good agreement with measurements for the differential cross section at 546 and 1800 GeV within the framework of Generalised Chou-Yang model. These results are also compared with the predictions of other models. (author)

  3. The 3D Reference Earth Model: Status and Preliminary Results

    Science.gov (United States)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the

  4. An elasto-plastic self-consistent model with hardening based on dislocation density, twinning and de-twinning: Application to strain path changes in HCP metals

    International Nuclear Information System (INIS)

    Zecevic, Milovan; Knezevic, Marko; Beyerlein, Irene J.; Tomé, Carlos N.

    2015-01-01

    In this work, we develop a polycrystal mean-field constitutive model based on an elastic–plastic self-consistent (EPSC) framework. In this model, we incorporate recently developed subgrain models for dislocation density evolution with thermally activated slip, twin activation via statistical stress fluctuations, reoriented twin domains within the grain and associated stress relaxation, twin boundary hardening, and de-twinning. The model is applied to a systematic set of strain path change tests on pure beryllium (Be). Under the applied deformation conditions, Be deforms by multiple slip modes and deformation twinning and thereby provides a challenging test for model validation. With a single set of material parameters, determined using the flow-stress vs. strain responses during monotonic testing, the model predicts well the evolution of texture, lattice strains, and twinning. With further analysis, we demonstrate the significant influence of internal residual stresses on (1) the flow stress drop when reloading from one path to another, (2) deformation twin activation, (3) de-twinning during a reversal strain path change, and (4) the formation of additional twin variants during a cross-loading sequence. The model presented here can, in principle, be applied to other metals, deforming by multiple slip and twinning modes under a wide range of temperature, strain rate, and strain path conditions

  5. Results from the IAEA benchmark of spallation models

    International Nuclear Information System (INIS)

    Leray, S.; David, J.C.; Khandaker, M.; Mank, G.; Mengoni, A.; Otsuka, N.; Filges, D.; Gallmeier, F.; Konobeyev, A.; Michel, R.

    2011-01-01

    Spallation reactions play an important role in a wide domain of applications. In the simulation codes used in this field, the nuclear interaction cross-sections and characteristics are computed by spallation models. The International Atomic Energy Agency (IAEA) has recently organised a benchmark of the spallation models used or that could be used in the future into high-energy transport codes. The objectives were, first, to assess the prediction capabilities of the different spallation models for the different mass and energy regions and the different exit channels and, second, to understand the reason for the success or deficiency of the models. Results of the benchmark concerning both the analysis of the prediction capabilities of the models and the first conclusions on the physics of spallation models are presented. (authors)

  6. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.

    Science.gov (United States)

    Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier

    2013-02-19

    Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of

  7. The effect of bathymetric filtering on nearshore process model results

    Science.gov (United States)

    Plant, N.G.; Edwards, K.L.; Kaihatu, J.M.; Veeramony, J.; Hsu, L.; Holland, K.T.

    2009-01-01

    Nearshore wave and flow model results are shown to exhibit a strong sensitivity to the resolution of the input bathymetry. In this analysis, bathymetric resolution was varied by applying smoothing filters to high-resolution survey data to produce a number of bathymetric grid surfaces. We demonstrate that the sensitivity of model-predicted wave height and flow to variations in bathymetric resolution had different characteristics. Wave height predictions were most sensitive to resolution of cross-shore variability associated with the structure of nearshore sandbars. Flow predictions were most sensitive to the resolution of intermediate scale alongshore variability associated with the prominent sandbar rhythmicity. Flow sensitivity increased in cases where a sandbar was closer to shore and shallower. Perhaps the most surprising implication of these results is that the interpolation and smoothing of bathymetric data could be optimized differently for the wave and flow models. We show that errors between observed and modeled flow and wave heights are well predicted by comparing model simulation results using progressively filtered bathymetry to results from the highest resolution simulation. The damage done by over smoothing or inadequate sampling can therefore be estimated using model simulations. We conclude that the ability to quantify prediction errors will be useful for supporting future data assimilation efforts that require this information.

  8. Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein.

    Science.gov (United States)

    Ding, Kai; Han, Lei; Zong, Huifang; Chen, Junsheng; Zhang, Baohong; Zhu, Jianwei

    2017-03-01

    Demonstration of reproducibility and consistency of process and product quality is one of the most crucial issues in using transient gene expression (TGE) technology for biopharmaceutical development. In this study, we challenged the production consistency of TGE by expressing nine batches of recombinant IgG antibody in human embryonic kidney 293 cells to evaluate reproducibility including viable cell density, viability, apoptotic status, and antibody yield in cell culture supernatant. Product quality including isoelectric point, binding affinity, secondary structure, and thermal stability was assessed as well. In addition, major glycan forms of antibody from different batches of production were compared to demonstrate glycosylation consistency. Glycan compositions of the antibody harvested at different time periods were also measured to illustrate N-glycan distribution over the culture time. From the results, it has been demonstrated that different TGE batches are reproducible from lot to lot in overall cell growth, product yield, and product qualities including isoelectric point, binding affinity, secondary structure, and thermal stability. Furthermore, major N-glycan compositions are consistent among different TGE batches and conserved during cell culture time.

  9. Circulation in the Gulf of Trieste: measurements and model results

    International Nuclear Information System (INIS)

    Bogunovici, B.; Malacic, V.

    2008-01-01

    The study presents seasonal variability of currents in the southern part of the Gulf of Trieste. A time series analysis of currents and wind stress for the period 2003-2006, which were measured by the coastal oceanographic buoy, was conducted. A comparison between these data and results obtained from a numerical model of circulation in the Gulf was performed to validate model results. Three different approaches were applied to the wind data to determine the wind stress. Similarities were found between Kondo and Smith approaches while the method of Vera shows differences which were particularly noticeable for lower (= 1 m/s) and higher wind speeds (= 15 m/s). Mean currents in the surface layer are generally outflow currents from the Gulf due to wind forcing (bora). However in all other depth layers inflow currents are dominant. With the principal component analysis (Pca) major and minor axes were determined for all seasons. The major axis of maximum variance in years between 2003 and 2006 is prevailing in Ne-Sw direction, which is parallel to the coastline. Comparison of observation and model results is showing that currents are similar (in direction) for the surface and bottom layers but are significantly different for the middle layer (5-13 m). At a depth between 14-21 m velocities are comparable in direction as well as in magnitude even though model values are higher. Higher values of modelled currents at the surface and near the bottom are explained by higher values of wind stress that were used in the model as driving input with respect to the stress calculated from the measured winds. Larger values of modelled currents near the bottom are related to the larger inflow that needs to compensate for the larger modelled outflow at the surface. However, inspection of the vertical structure of temperature, salinity and density shows that the model is reproducing a weaker density gradient which enables the penetration of the outflow surface currents to larger depths.

  10. Melt coolability modeling and comparison to MACE test results

    International Nuclear Information System (INIS)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1992-01-01

    An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments

  11. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  12. Experimental results and modeling of a dynamic hohlraum on SATURN

    International Nuclear Information System (INIS)

    Derzon, M.S.; Allshouse, G.O.; Deeney, C.; Leeper, R.J.; Nash, T.J.; Matuska, W.; Peterson, D.L.; MacFarlane, J.J.; Ryutov, D.D.

    1998-06-01

    Experiments were performed at SATURN, a high current z-pinch, to explore the feasibility of creating a hohlraum by imploding a tungsten wire array onto a low-density foam. Emission measurements in the 200--280 eV energy band were consistent with a 110--135 eV Planckian before the target shock heated, or stagnated, on-axis. Peak pinch radiation temperatures of nominally 160 eV were obtained. Measured early time x-ray emission histories and temperature estimates agree well with modeled performance in the 200--280 eV band using a 2D radiation magneto-hydrodynamics code. However, significant differences are observed in comparisons of the x-ray images and 2D simulations

  13. A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding

    International Nuclear Information System (INIS)

    Pang Shengyong; Chen Liliang; Zhou Jianxin; Yin Yajun; Chen Tao

    2011-01-01

    A three-dimensional sharp interface model is proposed to investigate the self-consistent keyhole and weld pool dynamics in deep penetration laser welding. The coupling of three-dimensional heat transfer, fluid flow and keyhole free surface evolutions in the welding process is simulated. It is theoretically confirmed that under certain low heat input welding conditions deep penetration laser welding with a collapsing free keyhole could be obtained and the flow directions near the keyhole wall are upwards and approximately parallel to the keyhole wall. However, significantly different weld pool dynamics in a welding process with an unstable keyhole are numerically found. Many flow patterns in the welding process with an unstable keyhole, verified by x-ray transmission experiments, were successfully simulated and analysed. Periodical keyhole collapsing and bubble formation processes are also successfully simulated and believed to be in good agreement with experiments. The mechanisms of keyhole instability are found to be closely associated with the behaviour of humps on the keyhole wall, and it is found that the welding speed and surface tension are closely related to the formation of humps on the keyhole wall. It is also shown that the weld pool dynamics in laser welding with an unstable keyhole are closely associated with the transient keyhole instability and therefore modelling keyhole and weld pool in a self-consistent way is significant to understand the physics of laser welding.

  14. Relationship Marketing results: proposition of a cognitive mapping model

    Directory of Open Access Journals (Sweden)

    Iná Futino Barreto

    2015-12-01

    Full Text Available Objective - This research sought to develop a cognitive model that expresses how marketing professionals understand the relationship between the constructs that define relationship marketing (RM. It also tried to understand, using the obtained model, how objectives in this field are achieved. Design/methodology/approach – Through cognitive mapping, we traced 35 individual mental maps, highlighting how each respondent understands the interactions between RM elements. Based on the views of these individuals, we established an aggregate mental map. Theoretical foundation – The topic is based on a literature review that explores the RM concept and its main elements. Based on this review, we listed eleven main constructs. Findings – We established an aggregate mental map that represents the RM structural model. Model analysis identified that CLV is understood as the final result of RM. We also observed that the impact of most of the RM elements on CLV is brokered by loyalty. Personalization and quality, on the other hand, proved to be process input elements, and are the ones that most strongly impact others. Finally, we highlight that elements that punish customers are much less effective than elements that benefit them. Contributions - The model was able to insert core elements of RM, but absent from most formal models: CLV and customization. The analysis allowed us to understand the interactions between the RM elements and how the end result of RM (CLV is formed. This understanding improves knowledge on the subject and helps guide, assess and correct actions.

  15. Functional results-oriented healthcare leadership: a novel leadership model.

    Science.gov (United States)

    Al-Touby, Salem Said

    2012-03-01

    This article modifies the traditional functional leadership model to accommodate contemporary needs in healthcare leadership based on two findings. First, the article argues that it is important that the ideal healthcare leadership emphasizes the outcomes of the patient care more than processes and structures used to deliver such care; and secondly, that the leadership must strive to attain effectiveness of their care provision and not merely targeting the attractive option of efficient operations. Based on these premises, the paper reviews the traditional Functional Leadership Model and the three elements that define the type of leadership an organization has namely, the tasks, the individuals, and the team. The article argues that concentrating on any one of these elements is not ideal and proposes adding a new element to the model to construct a novel Functional Result-Oriented healthcare leadership model. The recommended Functional-Results Oriented leadership model embosses the results element on top of the other three elements so that every effort on healthcare leadership is directed towards attaining excellent patient outcomes.

  16. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  17. Value of the distant future: Model-independent results

    Science.gov (United States)

    Katz, Yuri A.

    2017-01-01

    This paper shows that the model-independent account of correlations in an interest rate process or a log-consumption growth process leads to declining long-term tails of discount curves. Under the assumption of an exponentially decaying memory in fluctuations of risk-free real interest rates, I derive the analytical expression for an apt value of the long run discount factor and provide a detailed comparison of the obtained result with the outcome of the benchmark risk-free interest rate models. Utilizing the standard consumption-based model with an isoelastic power utility of the representative economic agent, I derive the non-Markovian generalization of the Ramsey discounting formula. Obtained analytical results allowing simple calibration, may augment the rigorous cost-benefit and regulatory impact analysis of long-term environmental and infrastructure projects.

  18. Storm-time ring current: model-dependent results

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2012-01-01

    Full Text Available The main point of the paper is to investigate how much the modeled ring current depends on the representations of magnetic and electric fields and boundary conditions used in simulations. Two storm events, one moderate (SymH minimum of −120 nT on 6–7 November 1997 and one intense (SymH minimum of −230 nT on 21–22 October 1999, are modeled. A rather simple ring current model is employed, namely, the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM, in order to make the results most evident. Four different magnetic field and two electric field representations and four boundary conditions are used. We find that different combinations of the magnetic and electric field configurations and boundary conditions result in very different modeled ring current, and, therefore, the physical conclusions based on simulation results can differ significantly. A time-dependent boundary outside of 6.6 RE gives a possibility to take into account the particles in the transition region (between dipole and stretched field lines forming partial ring current and near-Earth tail current in that region. Calculating the model SymH* by Biot-Savart's law instead of the widely used Dessler-Parker-Sckopke (DPS relation gives larger and more realistic values, since the currents are calculated in the regions with nondipolar magnetic field. Therefore, the boundary location and the method of SymH* calculation are of key importance for ring current data-model comparisons to be correctly interpreted.

  19. Higher plant modelling for life support applications: first results of a simple mechanistic model

    Science.gov (United States)

    Hezard, Pauline; Dussap, Claude-Gilles; Sasidharan L, Swathy

    2012-07-01

    In the case of closed ecological life support systems, the air and water regeneration and food production are performed using microorganisms and higher plants. Wheat, rice, soybean, lettuce, tomato or other types of eatable annual plants produce fresh food while recycling CO2 into breathable oxygen. Additionally, they evaporate a large quantity of water, which can be condensed and used as potable water. This shows that recycling functions of air revitalization and food production are completely linked. Consequently, the control of a growth chamber for higher plant production has to be performed with efficient mechanistic models, in order to ensure a realistic prediction of plant behaviour, water and gas recycling whatever the environmental conditions. Purely mechanistic models of plant production in controlled environments are not available yet. This is the reason why new models must be developed and validated. This work concerns the design and test of a simplified version of a mathematical model coupling plant architecture and mass balance purposes in order to compare its results with available data of lettuce grown in closed and controlled chambers. The carbon exchange rate, water absorption and evaporation rate, biomass fresh weight as well as leaf surface are modelled and compared with available data. The model consists of four modules. The first one evaluates plant architecture, like total leaf surface, leaf area index and stem length data. The second one calculates the rate of matter and energy exchange depending on architectural and environmental data: light absorption in the canopy, CO2 uptake or release, water uptake and evapotranspiration. The third module evaluates which of the previous rates is limiting overall biomass growth; and the last one calculates biomass growth rate depending on matter exchange rates, using a global stoichiometric equation. All these rates are a set of differential equations, which are integrated with time in order to provide

  20. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, John M. [University of Wisconsin, Madison, WI (United States); Zhang, Dongsheng [University of Wisconsin, Madison, WI (United States)

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.