Sample records for model resolution matrix

  1. Probability matrix decomposition models

    NARCIS (Netherlands)

    Maris, E.; DeBoeck, P.; Mechelen, I. van


    In this paper, we consider a class of models for two-way matrices with binary entries of 0 and 1. First, we consider Boolean matrix decomposition, conceptualize it as a latent response model (LRM) and, by making use of this conceptualization, generalize it to a larger class of matrix decomposition

  2. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.


    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  3. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J


    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  4. Homolumo Gap and Matrix Model

    CERN Document Server

    Andric, I; Jurman, D; Nielsen, H B


    We discuss a dynamical matrix model by which probability distribution is associated with Gaussian ensembles from random matrix theory. We interpret the matrix M as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show that a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest occupied eigenvalue and the lowest unoccupied eigenvalue.

  5. M-theoretic matrix models (United States)

    Grassi, Alba; Mariño, Marcos


    Some matrix models admit, on top of the usual 't Hooft expansion, an M-theory-like expansion, i.e. an expansion at large N but where the rest of the parameters are fixed, instead of scaling with N . These models, which we call M-theoretic matrix models, appear in the localization of Chern-Simons-matter theories, and also in two-dimensional statistical physics. Generically, their partition function receives non-perturbative corrections which are not captured by the 't Hooft expansion. In this paper, we discuss general aspects of these type of matrix integrals and we analyze in detail two different examples. The first one is the matrix model computing the partition function of supersymmetric Yang-Mills theory in three dimensions with one adjoint hypermultiplet and N f fundamentals, which has a conjectured M-theory dual, and which we call the N f matrix model. The second one, which we call the polymer matrix model, computes form factors of the 2d Ising model and is related to the physics of 2d polymers. In both cases we determine their exact planar limit. In the N f matrix model, the planar free energy reproduces the expected behavior of the M-theory dual. We also study their M-theory expansion by using Fermi gas techniques, and we find non-perturbative corrections to the 't Hooft expansion.

  6. Minnesota Digital Elevation Model - Tiled 93 Meter Resolution (United States)

    Minnesota Department of Natural Resources — Digital Elevation Model (DEM) at a resolution of 93 meters. Original data resolution was 3 arc seconds which corresponds (approximately) to a matrix of points at a...

  7. Matrix models of induced QCD

    International Nuclear Information System (INIS)

    Makeenko, Yu.


    I review recent works on the problem of inducing large-N QCD by matrix fields. In the first part of the talk I describe the matrix models which induce large-N QCD and present the results of studies of their phase structure by the standard lattice technology (in particular, by the mean field method). The second part is devoted to the exact solution of these models in the strong coupling region by means of the loop equations. I describe the solution of the Kazakov-Migdal model with the quadratic and logarithmic potentials as well as that of analogous fermionic models with the quadratic potential. (orig.)

  8. Noncommutative spaces from matrix models (United States)

    Lu, Lei

    Noncommutative (NC) spaces commonly arise as solutions to matrix model equations of motion. They are natural generalizations of the ordinary commutative spacetime. Such spaces may provide insights into physics close to the Planck scale, where quantum gravity becomes relevant. Although there has been much research in the literature, aspects of these NC spaces need further investigation. In this dissertation, we focus on properties of NC spaces in several different contexts. In particular, we study exact NC spaces which result from solutions to matrix model equations of motion. These spaces are associated with finite-dimensional Lie-algebras. More specifically, they are two-dimensional fuzzy spaces that arise from a three-dimensional Yang-Mills type matrix model, four-dimensional tensor-product fuzzy spaces from a tensorial matrix model, and Snyder algebra from a five-dimensional tensorial matrix model. In the first part of this dissertation, we study two-dimensional NC solutions to matrix equations of motion of extended IKKT-type matrix models in three-space-time dimensions. Perturbations around the NC solutions lead to NC field theories living on a two-dimensional space-time. The commutative limit of the solutions are smooth manifolds which can be associated with closed, open and static two-dimensional cosmologies. One particular solution is a Lorentzian fuzzy sphere, which leads to essentially a fuzzy sphere in the Minkowski space-time. In the commutative limit, this solution leads to an induced metric that does not have a fixed signature, and have a non-constant negative scalar curvature, along with singularities at two fixed latitudes. The singularities are absent in the matrix solution which provides a toy model for resolving the singularities of General relativity. We also discussed the two-dimensional fuzzy de Sitter space-time, which has irreducible representations of su(1,1) Lie-algebra in terms of principal, complementary and discrete series. Field

  9. A quenched c = 1 critical matrix model

    International Nuclear Information System (INIS)

    Qiu, Zongan; Rey, Soo-Jong.


    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints

  10. High Resolution Turntable Radar Imaging via Two Dimensional Deconvolution with Matrix Completion. (United States)

    Lu, Xinfei; Xia, Jie; Yin, Zhiping; Chen, Weidong


    Resolution is the bottleneck for the application of radar imaging, which is limited by the bandwidth for the range dimension and synthetic aperture for the cross-range dimension. The demand for high azimuth resolution inevitably results in a large amount of cross-range samplings, which always need a large number of transmit-receive channels or a long observation time. Compressive sensing (CS)-based methods could be used to reduce the samples, but suffer from the difficulty of designing the measurement matrix, and they are not robust enough in practical application. In this paper, based on the two-dimensional (2D) convolution model of the echo after matched filter (MF), we propose a novel 2D deconvolution algorithm for turntable radar to improve the radar imaging resolution. Additionally, in order to reduce the cross-range samples, we introduce a new matrix completion (MC) algorithm based on the hyperbolic tangent constraint to improve the performance of MC with undersampled data. Besides, we present a new way of echo matrix reconstruction for the situation that only partial cross-range data are observed and some columns of the echo matrix are missing. The new matrix has a better low rank property and needs just one operation of MC for all of the missing elements compared to the existing ways. Numerical simulations and experiments are carried out to demonstrate the effectiveness of the proposed method.

  11. 3D-OSEM iterative image reconstruction for high-resolution PET using precalculated system matrix

    International Nuclear Information System (INIS)

    Ortuno, Juan E.; Guerra-Gutierrez, Pedro; Rubio, Jose L.; Kontaxakis, George; Santos, Andres


    An efficient iterative image reconstruction methodology is presented, adapted to high-resolution flat-head 3D positron emission tomography cameras. It is based on the ordered subsets expectation maximization algorithm and applies to systems with axial symmetry. The associated system matrix is calculated off-line, including a model of the γ-event detection in the crystal, taking into account photoelectric effect and Compton scattering interactions. The nonzero elements of the sparse system matrix are stored in disc in an efficient way that allows the fast sequential access to the matrix elements during the reconstruction. A detailed calculation is performed for the voxels corresponding to central plane within the field of view (FOV) of the camera and the remaining values of the system matrix are obtained via translations based on the symmetries of the system along the axial dimension. GATE-based simulations have been used for the validation of the results

  12. Matrix Models and String World Sheet Duality


    de Alwis, S. P.


    The scaling limit used recently to derive matrix models, and a certain analyticity assumption, are invoked to argue that the agreement between some matrix model calculations and supergravity is a consequence of string world sheet duality.

  13. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede


    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  14. Risk matrix model for rotating equipment

    Directory of Open Access Journals (Sweden)

    Wassan Rano Khan


    Full Text Available Different industries have various residual risk levels for their rotating equipment. Accordingly the occurrence rate of the failures and associated failure consequences categories are different. Thus, a generalized risk matrix model is developed in this study which can fit various available risk matrix standards. This generalized risk matrix will be helpful to develop new risk matrix, to fit the required risk assessment scenario for rotating equipment. Power generation system was taken as case study. It was observed that eight subsystems were under risk. Only vibration monitor system was under high risk category, while remaining seven subsystems were under serious and medium risk categories.

  15. Matrix models with γstring>0

    International Nuclear Information System (INIS)

    Marzban, C.; Viswanathan, R.R.


    Within the framework of c = 1 matrix models, we consider multi-matrix models. A connection is established between a D-dimensional gas of fermions (bosons) for odd (even) values of D. A statistical mechanical analysis yields the scaling law for the free energy, and hence the susceptibility exponents for the various models. The exponents turn out to be positive for the multi-matrix models, suggesting that these could represent models of 2 d-gravity coupled to c>1 matter. Whereas in the c=1 case the density of states itself diverges as one approaches the critical point, in the D-matrix models various derivatives of the density of states diverge, with the order of the derivative depending on D. This qualitatively different behaviour of the density of states could be a signal of the conjectured ''phase transition'' at c=1. (author). 14 refs

  16. Micromechanical Modeling of Woven Metal Matrix Composites (United States)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy


    This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity

  17. Matrix models of 2d gravity

    International Nuclear Information System (INIS)

    Ginsparg, P.


    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  18. Multi-matrix models from jet coefficients

    International Nuclear Information System (INIS)

    Apfeldorf, K.M.; California Univ., Berkeley, CA


    We present a very natural framework in which to discuss multi-matrix models of two-dimensional quantum gravity. Multi-matrix model actions, string equations, and other quantities can be compactly expressed in terms of the jets of the resolvents of the relevant differential operators. This allows one to write down equations describing minimal matter coupled to two-dimensional quantum gravity directly in terms of known functionals. (orig.)

  19. Hermitian Matrix Model with Plaquette Interaction

    DEFF Research Database (Denmark)

    Chekhov, L.; Kristjansen, C.


    We study a hermitian $(n+1)$-matrix model with plaquette interaction, $\\sum_{i=1}^n MA_iMA_i$. By means of a conformal transformation we rewrite the model as an $O(n)$ model on a random lattice with a non polynomial potential. This allows us to solve the model exactly. We investigate the critical...

  20. Regularization of the one-matrix models

    International Nuclear Information System (INIS)

    Jurkiewicz, J.


    We analyze the critical properties of the one-matrix model near its critical point, corresponding to the continuum limit. We consider the model with quartic and six-order interactions. This last can be viewed as a regularization of the model. We show that the regularized theory develops a phase structure in which it is impossible to reach the standard continuum limit. (orig.)

  1. A matrix model from string field theory

    Directory of Open Access Journals (Sweden)

    Syoji Zeze


    Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  2. Perturbed generalized multicritical one-matrix models (United States)

    Ambjørn, J.; Chekhov, L.; Makeenko, Y.


    We study perturbations around the generalized Kazakov multicritical one-matrix model. The multicritical matrix model has a potential where the coefficients of zn only fall off as a power 1 /n s + 1. This implies that the potential and its derivatives have a cut along the real axis, leading to technical problems when one performs perturbations away from the generalized Kazakov model. Nevertheless it is possible to relate the perturbed partition function to the tau-function of a KdV hierarchy and solve the model by a genus expansion in the double scaling limit.

  3. A hierarchical model for ordinal matrix factorization

    DEFF Research Database (Denmark)

    Paquet, Ulrich; Thomson, Blaise; Winther, Ole


    This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based...

  4. Super-resolution reconstruction of 4D-CT lung data via patch-based low-rank matrix reconstruction (United States)

    Fang, Shiting; Wang, Huafeng; Liu, Yueliang; Zhang, Minghui; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu


    Lung 4D computed tomography (4D-CT), which is a time-resolved CT data acquisition, performs an important role in explicitly including respiratory motion in treatment planning and delivery. However, the radiation dose is usually reduced at the expense of inter-slice spatial resolution to minimize radiation-related health risk. Therefore, resolution enhancement along the superior-inferior direction is necessary. In this paper, a super-resolution (SR) reconstruction method based on a patch low-rank matrix reconstruction is proposed to improve the resolution of lung 4D-CT images. Specifically, a low-rank matrix related to every patch is constructed by using a patch searching strategy. Thereafter, the singular value shrinkage is employed to recover the high-resolution patch under the constraints of the image degradation model. The output high-resolution patches are finally assembled to output the entire image. This method is extensively evaluated using two public data sets. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 9.7%-33.4% and the edge width by 11.4%-24.3%, relative to linear interpolation, back projection (BP) and Zhang et al’s algorithm. A new algorithm has been developed to improve the resolution of 4D-CT. In all experiments, the proposed method outperforms various interpolation methods, as well as BP and Zhang et al’s method, thus indicating the effectivity and competitiveness of the proposed algorithm.

  5. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH


    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  6. Ensemble Topic Modeling via Matrix Factorization


    Belford, Mark; MacNamee, Brian; Greene, Derek


    Topic models can provide us with an insight into the underlying latent structure of a large corpus of documents, facilitating knowledge discovery and information summarization. A range of methods have been proposed in the literature, including probabilistic topic models and techniques based on matrix factorization. However, these methods tend to have stochastic elements in their initialization, which can lead to their output being unstable. That is, if a topic modeling algorithm is applied to...

  7. Solving matrix-effects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms I. Effect of signal pre-treatment. (United States)

    De Zan, M M; Gil García, M D; Culzoni, M J; Siano, R G; Goicoechea, H C; Martínez Galera, M


    The effect of piecewise direct standardization (PDS) and baseline correction approaches was evaluated in the performance of multivariate curve resolution (MCR-ALS) algorithm for the resolution of three-way data sets from liquid chromatography with diode-array detection (LC-DAD). First, eight tetracyclines (tetracycline, oxytetracycline, chlorotetracycline, demeclocycline, methacycline, doxycycline, meclocycline and minocycline) were isolated from 250 mL effluent wastewater samples by solid-phase extraction (SPE) with Oasis MAX 500 mg/6 mL cartridges and then separated on an Aquasil C18 150 mm x 4.6mm (5 microm particle size) column by LC and detected by DAD. Previous experiments, carried out with Milli-Q water samples, showed a considerable loss of the most polar analytes (minocycline, oxitetracycline and tetracycline) due to breakthrough. PDS was applied to overcome this important drawback. Conversion of chromatograms obtained from standards prepared in solvent was performed obtaining a high correlation with those corresponding to the real situation (r2 = 0.98). Although the enrichment and clean-up steps were carefully optimized, the sample matrix caused a large baseline drift, and also additive interferences were present at the retention times of the analytes. These problems were solved with the baseline correction method proposed by Eilers. MCR-ALS was applied to the corrected and uncorrected three-way data sets to obtain spectral and chromatographic profiles of each tetracycline, as well as those corresponding to the co-eluting interferences. The complexity of the calibration model built from uncorrected data sets was higher, as expected, and the quality of the spectral and chromatographic profiles was worse.

  8. Matrix models with non-even potentials

    International Nuclear Information System (INIS)

    Marzban, C.; Raju Viswanathan, R.


    We study examples of hermitian 1-matrix models with even and odd terms present in the potential. A definition of criticality is presented which in these cases leads to multicritical models falling into the same universality classes as those of the purely even potentials. We also show that, in our examples, for polynomial potentials ending in odd powers (unbounded) the coupling constants, in addition to their expected real critical values, also admit critical values which alternate between imaginary/real values in the odd/even terms. We find that, remarkably, the ensuing statistical models are insensitive to the real/imaginary nature of these critical values. This feature may be of relevance in the recently-studied connection between matrix models and the moduli space of Riemann surfaces. (author). 9 refs

  9. Notes on Mayer expansions and matrix models

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile


    Mayer cluster expansion is an important tool in statistical physics to evaluate grand canonical partition functions. It has recently been applied to the Nekrasov instanton partition function of N=2 4d gauge theories. The associated canonical model involves coupled integrations that take the form of a generalized matrix model. It can be studied with the standard techniques of matrix models, in particular collective field theory and loop equations. In the first part of these notes, we explain how the results of collective field theory can be derived from the cluster expansion. The equalities between free energies at first orders is explained by the discrete Laplace transform relating canonical and grand canonical models. In a second part, we study the canonical loop equations and associate them with similar relations on the grand canonical side. It leads to relate the multi-point densities, fundamental objects of the matrix model, to the generating functions of multi-rooted clusters. Finally, a method is proposed to derive loop equations directly on the grand canonical model

  10. Matrix model calculations beyond the spherical limit

    International Nuclear Information System (INIS)

    Ambjoern, J.; Chekhov, L.; Kristjansen, C.F.; Makeenko, Yu.


    We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)

  11. A novel super-resolution camera model (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli


    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  12. Random matrix models for phase diagrams

    International Nuclear Information System (INIS)

    Vanderheyden, B; Jackson, A D


    We describe a random matrix approach that can provide generic and readily soluble mean-field descriptions of the phase diagram for a variety of systems ranging from quantum chromodynamics to high-T c materials. Instead of working from specific models, phase diagrams are constructed by averaging over the ensemble of theories that possesses the relevant symmetries of the problem. Although approximate in nature, this approach has a number of advantages. First, it can be useful in distinguishing generic features from model-dependent details. Second, it can help in understanding the 'minimal' number of symmetry constraints required to reproduce specific phase structures. Third, the robustness of predictions can be checked with respect to variations in the detailed description of the interactions. Finally, near critical points, random matrix models bear strong similarities to Ginsburg-Landau theories with the advantage of additional constraints inherited from the symmetries of the underlying interaction. These constraints can be helpful in ruling out certain topologies in the phase diagram. In this Key Issues Review, we illustrate the basic structure of random matrix models, discuss their strengths and weaknesses, and consider the kinds of system to which they can be applied.

  13. Correlation functions of two-matrix models

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong, C.S.


    We show how to calculate correlation functions of two matrix models without any approximation technique (except for genus expansion). In particular we do not use any continuum limit technique. This allows us to find many solutions which are invisible to the latter technique. To reach our goal we make full use of the integrable hierarchies and their reductions which were shown in previous papers to naturally appear in multi-matrix models. The second ingredient we use, even though to a lesser extent, are the W-constraints. In fact an explicit solution of the relevant hierarchy, satisfying the W-constraints (string equation), underlies the explicit calculation of the correlation functions. The correlation functions we compute lend themselves to a possible interpretation in terms of topological field theories. (orig.)

  14. Multi-cut solutions in Chern-Simons matrix models (United States)

    Morita, Takeshi; Sugiyama, Kento


    We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.

  15. Perturbation analysis of nonlinear matrix population models

    Directory of Open Access Journals (Sweden)

    Hal Caswell


    Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.

  16. Matrix models and 2-D gravity

    International Nuclear Information System (INIS)

    David, F.


    In these lectures, I shall focus on the matrix formulation of 2-d gravity. In the first one, I shall discuss the main results of the continuum formulation of 2-d gravity, starting from the first renormalization group calculations which led to the concept of the conformal anomaly, going through the Polyakov bosonic string and the Liouville action, up to the recent results on the scaling properties of conformal field theories coupled to 2-d gravity. In the second lecture, I shall discuss the discrete formulation of 2-d gravity in term of random lattices, and the mapping onto random matrix models. The occurrence of critical points in the planar limit and the scaling limit at those critical points will be described, as well as the identification of these scaling limits with continuum 2-d gravity coupled to some matter field theory. In the third lecture, the double scaling limit in the one matrix model, and its connection with continuum non perturbative 2-d gravity, will be presented. The connection with the KdV hierarchy and the general form of the string equation will be discuted. In the fourth lecture, I shall discuss the non-perturbative effects present in the non perturbative solutions, in the case of pure gravity. The Schwinger-Dyson equations for pure gravity in the double scaling limit are described and their compatibility with the solutions of the string equation for pure gravity is shown to be somewhat problematic

  17. Matrix models, geometric engineering and elliptic genera

    International Nuclear Information System (INIS)

    Hollowood, Timothy; Iqbal, Amer; Vafa, Cumrun


    We compute the prepotential of N = 2 supersymmetric gauge theories in four dimensions obtained by toroidal compactifications of gauge theories from 6 dimensions, as a function of Kaehler and complex moduli of T 2 . We use three different methods to obtain this: matrix models, geometric engineering and instanton calculus. Matrix model approach involves summing up planar diagrams of an associated gauge theory on T 2 . Geometric engineering involves considering F-theory on elliptic threefolds, and using topological vertex to sum up worldsheet instantons. Instanton calculus involves computation of elliptic genera of instanton moduli spaces on R 4 . We study the compactifications of N = 2* theory in detail and establish equivalence of all these three approaches in this case. As a byproduct we geometrically engineer theories with massive adjoint fields. As one application, we show that the moduli space of mass deformed M5-branes wrapped on T 2 combines the Kaehler and complex moduli of T 2 and the mass parameter into the period matrix of a genus 2 curve

  18. Mirror of the refined topological vertex from a matrix model

    CERN Document Server

    Eynard, B


    We find an explicit matrix model computing the refined topological vertex, starting from its representation in terms of plane partitions. We then find the spectral curve of that matrix model, and thus the mirror symmetry of the refined vertex. With the same method we also find a matrix model for the strip geometry, and we find its mirror curve. The fact that there is a matrix model shows that the refined topological string amplitudes also satisfy the remodeling the B-model construction.

  19. Information matrix estimation procedures for cognitive diagnostic models. (United States)

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei


    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  20. Matrix Sublimation/Recrystallization for Imaging Proteins by Mass Spectrometry at High Spatial Resolution (United States)

    Yang, Junhai; Caprioli, Richard M.


    We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high quality MALDI mass spectra and high spatial resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of tissue section and amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20 and 10 µm spatial resolution are presented and are correlated with H&E stained optical images. For targeted analysis, histology directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section. PMID:21639088

  1. Development of a Matrix Alteration Model (MAM)

    International Nuclear Information System (INIS)

    Martinez Esparza, A.; Cunado, M. A.; Gago, J. A.; Quinones, J.; Iglesias, E.; Cobos, J.; Gonzalez de la Huebra, A.; Cera, E.; Merino, J.; Bruno, J.; Pablos, J. de; Casas, I.; Clarens, F.; Gimenez, J.


    The present report is a summary of the main tasks carried out within the WP4 of the SFS project (5th Framework Programme of the European Commission) by ENRESA and collaborators, mainly focused on the development of the so-called Matrix Alteration Model (MAM), a model to study the long-term oxidant dissolution of the spent fuel matrix under repository conditions. A variety of issues have been addressed: development of the MAM conceptual model, integration of a new matrix alteration mechanism in the radiolytic model, calibration and testing of the model, calculations for base case in Performance Assessment exercises, sensitivity analysis and an assessment of applicability of the MAM. The conceptual model for the UO2 oxidant dissolution is based on the processes expected to occur in the long term under repository conditions. Briefly, when water will enter in contact with the fuel surface, the first process we may expect is the radiolysis of water. Water radiolysis will generate reductant and oxidants and we may expect local oxidising conditions. Because of these local conditions, the surface of the fuel will be oxidized. The oxidation of the matrix and the attachment of aqueous ligands able to form strong complexes with its major component will favour the dissolution of the matrix. The integration of the matrix alteration (oxidation and dissolution) mechanism in the radiolytic model by means of elemental reactions has been mainly elucidated from the mechanistic models developed for non-irradiated UO2 dissolution experiments. Moreover, flow-through dissolution experiments with unirradiated UO2 have been used to calibrate the oxidative dissolution mechanism of UO2. The model developed has been able to reproduce experimental dissolution rates for pH > 5 and [HCO3 -] < 10-2 M when the oxidant is O2 at partial pressures lower than 21%, and 3 < pH < 9 and [HCO3 -] = 210-3 M and when the oxidant is H2O2 at concentrations below 10-4 M. These ranges cover the geochemical

  2. Spectral properties in supersymmetric matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, Lyonell, E-mail: [Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Garcia del Moral, Maria Pilar, E-mail: [Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain); Restuccia, Alvaro, E-mail: [Departamento de Fisica, Universidad Simon Bolivar, Apartado 89000, Caracas (Venezuela, Bolivarian Republic of); Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain)


    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  3. Project-matrix models of marketing organization

    Directory of Open Access Journals (Sweden)

    Gutić Dragutin


    Full Text Available Unlike theory and practice of corporation organization, in marketing organization numerous forms and contents at its disposal are not reached until this day. It can be well estimated that marketing organization today in most of our companies and in almost all its parts, noticeably gets behind corporation organization. Marketing managers have always been occupied by basic, narrow marketing activities as: sales growth, market analysis, market growth and market share, marketing research, introduction of new products, modification of products, promotion, distribution etc. They rarely found it necessary to focus a bit more to different aspects of marketing management, for example: marketing planning and marketing control, marketing organization and leading. This paper deals with aspects of project - matrix marketing organization management. Two-dimensional and more-dimensional models are presented. Among two-dimensional, these models are analyzed: Market management/products management model; Products management/management of product lifecycle phases on market model; Customers management/marketing functions management model; Demand management/marketing functions management model; Market positions management/marketing functions management model. .

  4. Towards using direct methods in seismic tomography: computation of the full resolution matrix using high-performance computing and sparse QR factorization (United States)

    Bogiatzis, Petros; Ishii, Miaki; Davis, Timothy A.


    For more than two decades, the number of data and model parameters in seismic tomography problems has exceeded the available computational resources required for application of direct computational methods, leaving iterative solvers the only option. One disadvantage of the iterative techniques is that the inverse of the matrix that defines the system is not explicitly formed, and as a consequence, the model resolution and covariance matrices cannot be computed. Despite the significant effort in finding computationally affordable approximations of these matrices, challenges remain, and methods such as the checkerboard resolution tests continue to be used. Based upon recent developments in sparse algorithms and high-performance computing resources, we show that direct methods are becoming feasible for large seismic tomography problems. We demonstrate the application of QR factorization in solving the regional P-wave structure and computing the full resolution matrix with 267 520 model parameters.

  5. Lorentzian 3d gravity with wormholes via matrix models

    NARCIS (Netherlands)

    Ambjørn, J.; Jurkiewicz, J.; Loll, R.; Vernizzi, G.


    We uncover a surprising correspondence between a non-perturbative formulation of three-dimensional Lorentzian quantum gravity and a hermitian two-matrix model with ABAB-interaction. The gravitational transfer matrix can be expressed as the logarithm of a two-matrix integral, and we deduce from

  6. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution. (United States)

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin


    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution. Graphical Abstract ᅟ.

  7. Matrix-Independent Calibration of Laser Ablation Microanalysis by High Resolution ICP- MS (United States)

    Gaboardi, M.; Humayun, M.


    The combination of laser ablation and inductively coupled plasma mass spectrometry (LA-ICPMS) allows for rapid chemical analysis of solid samples at high spatial resolution. Calibration of the technique is limited by the small number of reliable standards available and by the diversity of solid matrices, including silicates, oxides, sulfides, carbonates, metals, etc. The situation is best for silicate glasses, for which both USGS standards and MPI-DING glass standards are available spanning a wide range of silica content. In laser ablation, the laser produces an aerosol that is ionized by the argon plasma source, so that ionization efficiency depends primarily on the plasma and not on the ablation process. Thus, internally standardized measurements by laser ablation should, in principle, be insensitive to matrix composition. Concerns about the necessity for sample-standard matrix matching have previously limited the possible quantitative applications of the method, but the necessity of matrix matching has not been previously studied in detail. We will present the results of a detailed study of matrix- dependence on inter-calibration of a broad range of elements in silicate, sulfide, metal and aqueous matrices, using a UP213 (213 nm) laser ablation system coupled to high resolution ICP-MS (Element1 and Element XR). We define a relative sensitivity factor (RSF) for each element which, when multiplied by the ion intensity ratio, yields a concentration ratio to an internal standard element. This study documents that the RSFs for practically all elements with a First Ionization Potential (FIP) below 8 ev are matrix-independent. The calibration of laser ablation analysis of such elements can be performed using aqueous or desolvated aqueous standards. Finally, using the faraday cup detector of an Element XR, we examine the influence of the measured oxygen and argon ion intensities on the RSFs of other elements. We find that as the oxygen ion to argon ion ratio increases

  8. Elements of matrix modeling and computing with Matlab

    CERN Document Server

    White, Robert E


    As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat

  9. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph (United States)

    Moskal, P.; Rundel, O.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Giergiel, K.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Słomski, A.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Witkowski, P.; Zieliński, M.; Zoń, N.


    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2× 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2× 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  10. Random matrix model of adiabatic quantum computing

    International Nuclear Information System (INIS)

    Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.


    We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size

  11. Random matrix model for disordered conductors

    Indian Academy of Sciences (India)

    We present a random matrix ensemble where real, positive semi-definite matrix elements, , are log-normal distributed, exp ⁡ [ − log 2 ⁡ ( x ) ] . We show that the level density varies with energy, , as 2/(1 + ) for large , in the unitary family, consistent with the expectation for disordered conductors. The two-level ...

  12. Matrix diffusion model. In situ tests using natural analogues

    International Nuclear Information System (INIS)

    Rasilainen, K.


    Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories

  13. Matrix diffusion model. In situ tests using natural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rasilainen, K. [VTT Energy, Espoo (Finland)


    Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories. 98 refs. The thesis includes also eight previous publications by author.

  14. Population matrix models and palm resource management

    Directory of Open Access Journals (Sweden)


    Full Text Available MATRICES DE POPULATIONS ET MISE EN VALEUR DES PALMIERS. Au cours des 20 dernières années, les structures de population de nombreuses espèces de palmiers ont été décrites et discutées. La croissance et la stabilité des populations ont été analysées à l’aide de matrices. Dans cet article, nous reprenons un modèle et en discutons les aspects méthodologiques en vue d’une estimation des paramètres de l’histoire de la vie des palmiers. Les généralisations résultant de précédentes études sont présentées et les conséquences pour la mise en valeur des palmiers, concernant en particulier la confection de toitures, les fruits, la récolte des stipes, sont discutées. MATRICES DE POBLACIONES Y MANEJO DE PALMERAS. En los últimos 20 años, las estructuras de población de numerosas especies de palmeras han sido descritas y discutidas. El crecimiento y la estabilidad de las poblaciones han sido analizadas, utilizando matrices. En el presente artículo, presentamos un modelo y discutimos los aspectos metodológicos específicos para hacer una estimación de los parámetros de la historia de la vida de las palmeras. Son presentadas las generalizaciones diseñadas por estudios previos, y discutidas las implicancias en el manejo de las palmeras, en cuanto a techado, frutas, cosecha de los estípites. Population structures of numerous palm species have been described and discussed in the last 20 years. Population growth and stability have been analyzed with matrix models. In this paper we review matrix models and discuss methodological issues specific to estimating palm life history parameters. Generalizations drawn from previous studies are presented and implications for palm resource management, specifically for thatch, fruit, and stem harvest, are discussed.

  15. Convergence of Transition Probability Matrix in CLVMarkov Models (United States)

    Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.


    A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.

  16. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. (United States)

    Gawlak, M; Górkiewicz, T; Gorlewicz, A; Konopacki, F A; Kaczmarek, L; Wilczynski, G M


    Synaptic plasticity involves remodeling of extracellular matrix. This is mediated, in part, by enzymes of the matrix metalloproteinase (MMP) family, in particular by gelatinase MMP-9. Accordingly, there is a need of developing methods to visualize gelatinolytic activity at the level of individual synapses, especially in the context of neurotransmitters receptors. Here we present a high-resolution fluorescent in situ zymography (ISZ), performed in thin sections of the alcohol-fixed and polyester wax-embedded brain tissue of the rat (Rattus norvegicus), which is superior to the current ISZ protocols. The method allows visualization of structural details up to the resolution-limit of light microscopy, in conjunction with immunofluorescent labeling. We used this technique to visualize and quantify gelatinolytic activity at the synapses in control and seizure-affected rat brain. In particular, we demonstrated, for the first time, frequent colocalization of gelatinase(s) with synaptic N-methyl-D-aspartic acid (NMDA)- and AMPA-type glutamate receptors. We believe that our method represents a valuable tool to study extracellular proteolytic processes at the synapses, it could be used, as well, to investigate proteinase involvement in a range of physiological and pathological phenomena in the nervous system.

  17. Integrating autonomous Problem Resolution Models with Remedy


    Marquina, M A; Padilla, J; Ramos, R


    This paper briefly defines the concept of Problem Resolution Model and shows possible approaches to the issues which may arise when integrating various PRMs to present a consistent view to the end user, despite of the peculiarities of each physical implementation. Integration refers to various autonomous PRMs having to interact as problems pass from one to another in the resolution flow. This process should be transparent to the user and internally there must be a way to track in which stage ...

  18. Rule-based Modelling and Tunable Resolution

    Directory of Open Access Journals (Sweden)

    Russ Harmer


    Full Text Available We investigate the use of an extension of rule-based modelling for cellular signalling to create a structured space of model variants. This enables the incremental development of rule sets that start from simple mechanisms and which, by a gradual increase in agent and rule resolution, evolve into more detailed descriptions.

  19. Solving matrix effects exploiting the second-order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms II. Prediction and figures of merit. (United States)

    García, M D Gil; Culzoni, M J; De Zan, M M; Valverde, R Santiago; Galera, M Martínez; Goicoechea, H C


    A new powerful algorithm (unfolded-partial least squares followed by residual bilinearization (U-PLS/RBL)) was applied for first time on second-order liquid chromatography with diode array detection (LC-DAD) data and compared with a well-known established method (multivariate curve resolution-alternating least squares (MCR-ALS)) for the simultaneous determination of eight tetracyclines (tetracycline, oxytetracycline, meclocycline, minocycline, metacycline, chlortetracycline, demeclocycline and doxycycline) in wastewaters. Tetracyclines were pre-concentrated using Oasis Max C18 cartridges and then separated on a Thermo Aquasil C18 (150 mm x 4.6mm, 5 microm) column. The whole method was validated using Milli-Q water samples and both univariate and multivariate analytical figures of merit were obtained. Additionally, two data pre-treatment were applied (baseline correction and piecewise direct standardization), which allowed to correct the effect of breakthrough and to reduce the total interferences retained after pre-concentration of wastewaters. The results showed that the eight tetracycline antibiotics can be successfully determined in wastewaters, the drawbacks due to matrix interferences being adequately handled and overcome by using U-PSL/RBL.

  20. A Diode Matrix model M792

    CERN Multimedia

    A diode matrix is an extremely low-density form of read-only memory. It's one of the earliest forms of ROMs (dating back to the 1950s). Each bit in the ROM is represented by the presence or absence of one diode. The ROM is easily user-writable using a soldering iron and pair of wire cutters.This diode matrix board is a floppy disk boot ROM for a PDP-11, and consists of 32 16-bit words. When you access an address on the ROM, the circuit returns the represented data from that address.

  1. Moving towards Hyper-Resolution Hydrologic Modeling (United States)

    Rouf, T.; Maggioni, V.; Houser, P.; Mei, Y.


    Developing a predictive capability for terrestrial hydrology across landscapes, with water, energy and nutrients as the drivers of these dynamic systems, faces the challenge of scaling meter-scale process understanding to practical modeling scales. Hyper-resolution land surface modeling can provide a framework for addressing science questions that we are not able to answer with coarse modeling scales. In this study, we develop a hyper-resolution forcing dataset from coarser resolution products using a physically based downscaling approach. These downscaling techniques rely on correlations with landscape variables, such as topography, roughness, and land cover. A proof-of-concept has been implemented over the Oklahoma domain, where high-resolution observations are available for validation purposes. Hourly NLDAS (North America Land Data Assimilation System) forcing data (i.e., near-surface air temperature, pressure, and humidity) have been downscaled to 500m resolution over the study area for 2015-present. Results show that correlation coefficients between the downscaled temperature dataset and ground observations are consistently higher than the ones between the NLDAS temperature data at their native resolution and ground observations. Not only correlation coefficients are higher, but also the deviation around the 1:1 line in the density scatterplots is smaller for the downscaled dataset than the original one with respect to the ground observations. Results are therefore encouraging as they demonstrate that the 500m temperature dataset has a good agreement with the ground information and can be adopted to force the land surface model for soil moisture estimation. The study has been expanded to wind speed and direction, incident longwave and shortwave radiation, pressure, and precipitation. Precipitation is well known to vary dramatically with elevation and orography. Therefore, we are pursuing a downscaling technique based on both topographical and vegetation

  2. Nuclear reaction matrix calculations with a shell-model Q

    International Nuclear Information System (INIS)

    Barrett, B.R.; McCarthy, R.J.


    Das Barrett-Hewitt-McCarthy (BHM) method for calculating the nuclear reaction matrix G is used to compute shell-model matrix elements for A = 18 nuclei. The energy denominators in intermediate states containing one unoccupied single-particle (s.p.) state and one valence s.p. state are treated correctly, in contrast to previous calculations. These corrections are not important for valence-shell matrix elements but are found to lead to relatively large changes in cross-shell matrix elements involved in core-polarization diagrams. (orig.) [de

  3. Global unitary fixing and matrix-valued correlations in matrix models

    International Nuclear Information System (INIS)

    Adler, Stephen L.; Horwitz, Lawrence P.


    We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions

  4. Costs equations for cost modeling: application of ABC Matrix

    Directory of Open Access Journals (Sweden)

    Alex Fabiano Bertollo Santana


    Full Text Available This article aimed at providing an application of the ABC Matrix model - a management tool that models processes and activities. The ABC Matrix is based on matrix multiplication, using a fast algorithm for the development of costing systems and the subsequent translation of the costs in cost equations and systems. The research methodology is classified as a case study, using the simulation data to validate the model. The conclusion of the research is that the algorithm presented is an important development, because it is an effective approach to calculating the product cost and because it provides simple and flexible algorithm design software for controlling the cost of products

  5. Chern-Simons matrix models and unoriented strings

    International Nuclear Information System (INIS)

    Halmagyi, Nick; Yasnov, Vadim


    For matrix models with measure on the Lie algebra of SO/Sp, the sub-leading free energy is given by F 1 (S) ±{1/4}({δF 0 (S)}/{δS}). Motivated by the fact that this relationship does not hold for Chern-Simons theory on S 3 , we calculate the sub-leading free energy in the matrix model for this theory, which is a Gaussian matrix model with Haar measure on the group SO/Sp. We derive a quantum loop equation for this matrix model and then find that F 1 is an integral of the leading order resolvent over the spectral curve. We explicitly calculate this integral for quadratic potential and find agreement with previous studies of SO/Sp Chern-Simons theory. (author)

  6. a Variable Resolution Global Spectral Model. (United States)

    Hardiker, Vivek Manohar

    A conformal transformation suggested by F. Schimdt is followed to implement a global spectral model with variable horizontal resolution. A conformal mapping is defined between the real physical sphere (Earth) to a transformed (Computational) sphere. The model equations are discretized on the computational sphere and the conventional spectral technique is applied to solve the model equations. There are two types of transformations used in the present study, namely, the Stretching transformation and the Rotation of the horizontal grid points. Application of the stretching transformation results in finer resolution along the meridional direction. The stretching is controlled by a parameter C. The rotation transformation can be used to relocate the North Pole of the model to any point on the geographic sphere. The idea is now to rotate the pole to the area of interest and refine the resolution around the new pole by applying the stretching transformation. The stretching transformation can be applied alone without the rotation. A T-42 Spectral Shallow-Water model is transformed by applying the stretching transformation alone as well as the two transformations together. A T-42 conventional Spectral Shallow-Water model is run as the control experiment and a conventional T-85 Spectral Shallow-Water model run is treated as the benchmark (Truth) solution. RMS error analysis for the geopotential field as well as the wind field is performed to evaluate the forecast made by the transformed model. It is observed that the RMS error of the transformed model is lower than that of the control run in a latitude band, for the case of stretching transformation alone, while for the total transformation (rotation followed by stretching), similar results are obtained for a rectangular domain. A multi-level global spectral model is designed from the current FSU global spectral model in order to implement the conformal transformation. The transformed T-85 model is used to study Hurricane

  7. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng


    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  8. Modeling cometary photopolarimetric characteristics with Sh-matrix method (United States)

    Kolokolova, L.; Petrov, D.


    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  9. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.


    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  10. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.


    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  11. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites (United States)

    Morscher, Gregory N.


    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

  12. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions : resolution with dietary modification and statin therapy

    NARCIS (Netherlands)

    Fujimoto, Shinichiro; Hartung, Dagmar; Ohshima, Satoru; Edwards, D. Scott; Zhou, Jun; Yalamanchili, Padmaja; Azure, Michael; Fujimoto, Ai; Isobe, Satoshi; Matsumoto, Yuji; Boersma, Hendrikus; Wong, Nathan; Yamazaki, Junichi; Narula, Navneet; Petrov, Artiom; Narula, Jagat


    OBJECTIVES: This study sought to evaluate the feasibility of noninvasive detection of matrix metalloproteinase (MMP) activity in experimental atherosclerosis using technetium-99m-labeled broad matrix metalloproteinase inhibitor (MPI) and to determine the effect of dietary modification and statin

  13. Geometric deviation modeling by kinematic matrix based on Lagrangian coordinate (United States)

    Liu, Weidong; Hu, Yueming; Liu, Yu; Dai, Wanyi


    Typical representation of dimension and geometric accuracy is limited to the self-representation of dimension and geometric deviation based on geometry variation thinking, yet the interactivity affection of geometric variation and gesture variation of multi-rigid body is not included. In this paper, a kinematic matrix model based on Lagrangian coordinate is introduced, with the purpose of unified model for geometric variation and gesture variation and their interactive and integrated analysis. Kinematic model with joint, local base and movable base is built. The ideal feature of functional geometry is treated as the base body; the fitting feature of functional geometry is treated as the adjacent movable body; the local base of the kinematic model is fixed onto the ideal geometry, and the movable base of the kinematic model is fixed onto the fitting geometry. Furthermore, the geometric deviation is treated as relative location or rotation variation between the movable base and the local base, and it's expressed by the Lagrangian coordinate. Moreover, kinematic matrix based on Lagrangian coordinate for different types of geometry tolerance zones is constructed, and total freedom for each kinematic model is discussed. Finally, the Lagrangian coordinate library, kinematic matrix library for geometric deviation modeling is illustrated, and an example of block and piston fits is introduced. Dimension and geometric tolerances of the shaft and hole fitting feature are constructed by kinematic matrix and Lagrangian coordinate, and the results indicate that the proposed kinematic matrix is capable and robust in dimension and geometric tolerances modeling.

  14. Matrix models of RNA folding with external interactions: A review

    Indian Academy of Sciences (India)

    Abstract. The matrix model of (simplified) RNA folding with an external linear interaction in the action of the partition function is reviewed. The important results for structure combinatorics of the model are discussed and analysed in terms of the already existing models.

  15. Proposed framework for thermomechanical life modeling of metal matrix composites (United States)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.


    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed

  16. Integrating autonomous Problem Resolution Models with Remedy

    CERN Document Server

    Marquina, M A; Ramos, R


    This paper briefly defines the concept of Problem Resolution Model and shows possible approaches to the issues which may arise when integrating various PRMs to present a consistent view to the end user, despite of the peculiarities of each physical implementation. Integration refers to various autonomous PRMs having to interact as problems pass from one to another in the resolution flow. This process should be transparent to the user and internally there must be a way to track in which stage of the resolution process any problem is. This means addressing two different issues. On one side PRMs which are to be integrated need to comply with certain interface standards. These standards must ensure that problems exchanged between them can always be traced. On the other side problems owned by different PRMs should be presented to the end user under a homogeneous view. This means having an uniform criteria for automatic notification messages, a single reference point (www) where users can query the status of proble...

  17. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

    Directory of Open Access Journals (Sweden)

    Vibha Tiwari


    Full Text Available Compressive sensing theory enables faithful reconstruction of signals, sparse in domain $ \\Psi $, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix $ \\Phi $ which satisfies restricted isometric property. The role played by sensing matrix $ \\Phi $ and sparsity matrix $ \\Psi $ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads to high computational cost. In this paper, effort is made to design sparse sensing matrix with least incurred computational cost while maintaining quality of reconstructed image. The design approach followed is based on sparse block circulant matrix (SBCM with few modifications. The other used sparse sensing matrix consists of 15 ones in each column. The medical images used are acquired from US, MRI and CT modalities. The image quality measurement parameters are used to compare the performance of reconstructed medical images using various sensing matrices. It is observed that, since Gram matrix of dictionary matrix ($ \\Phi \\Psi \\mathrm{} $ is closed to identity matrix in case of proposed modified SBCM, therefore, it helps to reconstruct the medical images of very good quality.

  18. Loop equations for multi-cut matrix models

    International Nuclear Information System (INIS)

    Akemann, G.


    The loop equation for the complex one-matrix model with a multi-cut structure is derived and solved in the planar limit. An iterative scheme for higher genus contributions to the free energy and the multi-loop correlators is presented for the two-cut model, where explicit results are given up to and including genus two. The double-scaling limit is analyzed and the relation to the one-cut solution of the hermitian and complex one-matrix model is discussed. (orig.)

  19. Model-based OPC using the MEEF matrix (United States)

    Cobb, Nicolas B.; Granik, Yuri


    This paper covers the topic of matrix-OPC. In matrix-OPC, we perform OPC edge movements, considering the cross-MEEF of all edges which affect the edge placement error (EPE) at each simulation site. This contrasts with standard model-based OPC methods. In the standard methods a simulation site is placed on each edge fragment. The EPE is monitored by simulation along all sites. The EPE is assumed to be controllable for each site by moving the position of its edge fragment. In matrix OPC, not just one fragment, but all fragments which influence the EPE are used to control the EPE for a given site. Matrix OPC has application to the following areas: (1) OPC on PSM where non-adjacent edges can have larger impact than adjacent edges, (2) dipole and other complex illumination schemes, and (3) when the assumption that the self-MEEF terms are dominant starts to break down or when MEEF becomes negative.

  20. pp-wave matrix models from point-like gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Y. [Departamento de Fisica, Universidad de Oviedo, Av. Calvo Sotelo 18, 33007 Oviedo (Spain); Rodriguez-Gomez, D. [Department of Physics, Princeton University, Princeton, NJ 08540 (United States)


    The BFSS Matrix model can be regarded as a theory of coincident M-theory gravitons. In this spirit, we summarize how using the action for coincident gravitons proposed in hep-th/0207199 it is possible to go beyond the linear order approximation of Kabat and Taylor, and to provide a satisfactory microscopical description of giant gravitons in AdS{sub m} x S{sup n} backgrounds. We then show that in the M-theory maximally supersymmetric pp-wave background, the action for coincident gravitons, besides reproducing the BMN Matrix model, predicts a new quadrupolar coupling to the M-theory 6-form potential, which supports the so far elusive fuzzy 5-sphere giant graviton solution. Finally, we discuss similar Matrix models that can be derived in Type II string theories using dualities. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Solutions of matrix models in the DIII generator ensemble


    Roussel, Harold


    In this paper we solve two matrix models, using standard and new techniques. The two models are represented by special form of antisymmetric matrices and are classified in the DIII generator ensemble. It is shown that, in the double scaling limit, their free energy has the same behavior as previous models describing oriented and unoriented surfaces. We also found an additional solution for the first model.

  2. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry. (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek


    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  3. Possilibity of estimating payoff matrix from model for hit phenomena

    International Nuclear Information System (INIS)

    Ishii, Akira; Sakaidani, Shota; Iwanaga, Saori


    The conflicts of topics on social media is considered using an extended mathematical model based on the mathematical model for hit phenomena that has been used to analyze entertainment hits. The social media platform used in this study was blog. The calculation results shows examples of strong conflict, weak conflict, and no conflict cases. Since the conflict of two topics can be considered in the framework of game theory, the results can be used to determine each matrix element of the payoff matrix of game theory.

  4. Matrix models for quantifying competitive intransitivity. (United States)

    Ulrich, Werner; Soliveres, Santiago; Kryszewski, Wojciech; Maestre, Fernando T; Gotelli, Nicholas J


    Assessing the relative importance of intransitive competition networks in nature has been difficult because it requires a large number of pairwise competition experiments linked to observed field abundances of interacting species. Here we introduce metrics and statistical tests for evaluating the contribution of intransitivity to community structure using two kinds of data: competition matrices derived from the outcomes of pairwise experimental studies ( C matrices) and species abundance matrices. We use C matrices to develop patch transition matrices ( P ) that predict community structure in a simple Markov chain model. We propose a randomization test to evaluate the degree of intransitivity from these P matrices in combination with empirical or simulated C matrices. Benchmark tests revealed that the methods could correctly detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. These tests represent the first tools for estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to both spatio-temporal data sampled in homogeneous environments or across environmental gradients, and to experimental measures of pairwise interactions. To illustrate the methods, we analyzed empirical data matrices on the colonization of slug carrion by necrophagous flies and their parasitoids.

  5. Matrix models with Penner interaction inspired by interacting ...

    Indian Academy of Sciences (India)

    the presence of the double peak only for genus 0 structures, the higher genii behave normally with. N. Comparable behaviour is found in studies involving interactions of RNA with osmolytes and monovalent cations in unfolding experiments. Keywords. Ribonucleic acid; random matrix model; Penner interaction; database.

  6. Unifying model for random matrix theory in arbitrary space dimensions (United States)

    Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio


    A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.

  7. All genus correlation functions for the hermitian 1-matrix model


    Eynard, B.


    We rewrite the loop equations of the hermitian matrix model, in a way which allows to compute all the correlation functions, to all orders in the topological $1/N^2$ expansion, as residues on an hyperelliptical curve. Those residues, can be represented diagrammaticaly as Feynmann graphs of a cubic interaction field theory on the curve.

  8. Construction of the exact Fisher information matrix of Gaussian time series models by means of matrix differential rules

    NARCIS (Netherlands)

    Klein, A.A.B.; Melard, G.; Zahaf, T.


    The Fisher information matrix is of fundamental importance for the analysis of parameter estimation of time series models. In this paper the exact information matrix of a multivariate Gaussian time series model expressed in state space form is derived. A computationally efficient procedure is used

  9. Universality of correlation functions in random matrix models of QCD

    International Nuclear Information System (INIS)

    Jackson, A.D.; Sener, M.K.; Verbaarschot, J.J.M.


    We demonstrate the universality of the spectral correlation functions of a QCD inspired random matrix model that consists of a random part having the chiral structure of the QCD Dirac operator and a deterministic part which describes a schematic temperature dependence. We calculate the correlation functions analytically using the technique of Itzykson-Zuber integrals for arbitrary complex supermatrices. An alternative exact calculation for arbitrary matrix size is given for the special case of zero temperature, and we reproduce the well-known Laguerre kernel. At finite temperature, the microscopic limit of the correlation functions are calculated in the saddle-point approximation. The main result of this paper is that the microscopic universality of correlation functions is maintained even though unitary invariance is broken by the addition of a deterministic matrix to the ensemble. (orig.)

  10. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials (United States)


    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  11. Implementing Problem Resolution Models in Remedy

    CERN Document Server

    Marquina, M A; Ramos, R


    This paper defines the concept of Problem Resolution Model (PRM) and describes the current implementation made by the User Support unit at CERN. One of the main challenges of User Support services in any High Energy Physics institute/organization is to address solving of the computing-relatedproblems faced by their researchers. The User Support group at CERN is the IT unit in charge of modeling the operations of the Help Desk and acts as asecond level support to some of the support lines whose problems are receptioned at the Help Desk. The motivation behind the use of a PRM is to provide well defined procedures and methods to react in an efficient way to a request for solving a problem,providing advice, information etc. A PRM is materialized on a workflow which has a set of defined states in which a problem can be. Problems move from onestate to another according to actions as decided by the person who is handling them. A PRM can be implemented by a computer application, generallyreferred to as Problem Report...

  12. Stability of the matrix model in operator interpretation

    Directory of Open Access Journals (Sweden)

    Katsuta Sakai


    Full Text Available The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.

  13. H∞ /H2 model reduction through dilated linear matrix inequalities

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob


    This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field{N}$. Arb......This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field...... not satisfactorily approximates the original system, an iterative algorithm based on dilated LMIs is proposed to significantly improve the approximation bound. The effectiveness of the method is accessed by numerical experiments. The method is also applied to the $H_2$ order reduction of a flexible wind turbine...

  14. Regularization of quantum gravity in the matrix model approach

    International Nuclear Information System (INIS)

    Ueda, Haruhiko


    We study divergence problem of the partition function in the matrix model approach for two-dimensional quantum gravity. We propose a new model V(φ) = 1/2Trφ 2 + g 4 /NTrφ 4 + g'/N 4 Tr(φ 4 ) 2 and show that in the sphere case it has no divergence problem and the critical exponent is of pure gravity. (author)

  15. Exact 2-point function in Hermitian matrix model

    International Nuclear Information System (INIS)

    Morozov, A.; Shakirov, Sh.


    J. Harer and D. Zagier have found a strikingly simple generating function [1,2] for exact (all-genera) 1-point correlators in the Gaussian Hermitian matrix model. In this paper we generalize their result to 2-point correlators, using Toda integrability of the model. Remarkably, this exact 2-point correlation function turns out to be an elementary function - arctangent. Relation to the standard 2-point resolvents is pointed out. Some attempts of generalization to 3-point and higher functions are described.

  16. Topological σ Models and Large N Matrix Integral (United States)

    Eguchi, Tohru; Hori, Kentaro; Yang, Sung-Kil

    In this paper we describe in some detail the representation of the topological CP1 model in terms of a matrix integral which we have introduced in a previous article. We first discuss the integrable structure of the CP1 model and show that it is governed by an extension of the one-dimensional Toda hierarchy. We then introduce a matrix model which reproduces the sum over holomorphic maps from arbitrary Riemann surfaces onto CP1. We compute intersection numbers on the moduli space of curves using a geometrical method and show that the results agree with those predicted by the matrix model. We also develop a Landau-Ginzburg (LG) description of the CP1 model using a superpotential eX + et0,Q e-X given by the Lax operator of the Toda hierarchy (X is the LG field and t0,Q is the coupling constant of the Kähler class). The form of the superpotential indicates the close connection between CP1 and N=2 supersymmetric sine-Gordon theory which was noted sometime ago by several authors. We also discuss possible generalizations of our construction to other manifolds and present an LG formulation of the topological CP2 model.

  17. Fabricating high-resolution offset color-filter black matrix by integrating heterostructured substrate with inkjet printing

    International Nuclear Information System (INIS)

    Lu, Guo-Shin; You, Po-Chin; Lin, Kai-Lun; Hong, Chien-Chong; Liou, Tong-Miin


    This paper presents a self-aligning ink by integrating an inkjet printing technique and heterostructures to fabricate a black matrix with a micrometer-scale tunable thickness. The black matrix is a grid-like structure used in color filters. Traditionally, a black matrix has been fabricated using photolithography techniques, the disadvantages of which are high material consumption, less fabrication flexibility, complex processing procedures, and high chemical pollution. Inkjet printing technology has garnered attention because of its low material costs, high fabrication flexibility, and reduced processing procedures and pollution. In this study, a fabricating process combining an inkjet printing technique with heterostructures to form stripe-arranged and delta-arranged thickness-tunable black matrices has been demonstrated. The deformation and self-aligning process of ink droplet impingement onto gutters are driven by designed heterogeneous surface properties. The minimum track width attained is 10 µm, which is competitive for color filter resolutions for thin-film transistor liquid crystal displays. The developed technology surmounts the bottlenecks of inkjet printing resolution, and saves more than 75% black material than modern photolithography. (paper)

  18. Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model (United States)

    Lyu, Jingyuan; Nakarmi, Ukash; Zhang, Chaoyi; Ying, Leslie


    This paper presents a new approach to highly accelerated dynamic parallel MRI using low rank matrix completion, partial separability (PS) model. In data acquisition, k-space data is moderately randomly undersampled at the center kspace navigator locations, but highly undersampled at the outer k-space for each temporal frame. In reconstruction, the navigator data is reconstructed from undersampled data using structured low-rank matrix completion. After all the unacquired navigator data is estimated, the partial separable model is used to obtain partial k-t data. Then the parallel imaging method is used to acquire the entire dynamic image series from highly undersampled data. The proposed method has shown to achieve high quality reconstructions with reduction factors up to 31, and temporal resolution of 29ms, when the conventional PS method fails.

  19. Deconfinement in matrix models about the Gross-Witten point

    International Nuclear Information System (INIS)

    Dumitru, Adrian; Lenaghan, Jonathan; Pisarski, Robert D.


    We study the deconfining phase transition in SU(N) gauge theories at nonzero temperature using a matrix model of Polyakov loops. The most general effective action, including all terms up to two spatial derivatives, is presented. At large N, the action is dominated by the loop potential: following Aharony et al., we show how the Gross-Witten model represents an ultracritical point in this potential. Although masses vanish at the Gross-Witten point, the transition is of first order, as the fundamental loop jumps only halfway to its perturbative value. Comparing numerical analysis of the N=3 matrix model to lattice simulations, for three colors the deconfining transition appears to be near the Gross-Witten point. To see if this persists for N≥4, we suggest measuring within a window ∼1/N 2 of the transition temperature

  20. Higher genus correlators for the complex matrix model

    International Nuclear Information System (INIS)

    Ambjorn, J.; Kristhansen, C.F.; Makeenko, Y.M.


    In this paper, the authors describe an iterative scheme which allows us to calculate any multi-loop correlator for the complex matrix model to any genus using only the first in the chain of loop equations. The method works for a completely general potential and the results contain no explicit reference to the couplings. The genus g contribution to the m-loop correlator depends on a finite number of parameters, namely at most 4g - 2 + m. The authors find the generating functional explicitly up to genus three. The authors show as well that the model is equivalent to an external field problem for the complex matrix model with a logarithmic potential

  1. Higher genus correlators from the hermitian one-matrix model

    International Nuclear Information System (INIS)

    Ambjoern, J.; Chekhov, L.; Makeenko, Yu.


    We develop an iterative algorithm for the genus expansion of the hermitian NxN one-matrix model (is the Penner model in an external field). By introducing moments of the external field, we prove that the genus g contribution to the m-loop correlator depends only on 3g-2+m lower moments (3g-2 for the partition function). We present the explicit results for the partition function and the one-loop correlator in genus one. We compare the correlators for the hermitian one-matrix model with those at zero momenta for c=1 CFT and show an agreement of the one-loop correlators for genus zero. (orig.)

  2. Generalized Information Matrix Tests for Detecting Model Misspecification

    Directory of Open Access Journals (Sweden)

    Richard M. Golden


    Full Text Available Generalized Information Matrix Tests (GIMTs have recently been used for detecting the presence of misspecification in regression models in both randomized controlled trials and observational studies. In this paper, a unified GIMT framework is developed for the purpose of identifying, classifying, and deriving novel model misspecification tests for finite-dimensional smooth probability models. These GIMTs include previously published as well as newly developed information matrix tests. To illustrate the application of the GIMT framework, we derived and assessed the performance of new GIMTs for binary logistic regression. Although all GIMTs exhibited good level and power performance for the larger sample sizes, GIMT statistics with fewer degrees of freedom and derived using log-likelihood third derivatives exhibited improved level and power performance.

  3. Matrix models and stochastic growth in Donaldson-Thomas theory

    International Nuclear Information System (INIS)

    Szabo, Richard J.; Tierz, Miguel


    We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kähler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

  4. High-resolution DEM Effects on Geophysical Flow Models (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.


    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (solutions for rectification of the problem.

  5. DLCQ and plane wave matrix Big Bang models (United States)

    Blau, Matthias; O'Loughlin, Martin


    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  6. DLCQ and plane wave matrix Big Bang models

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin


    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.

  7. Matrix model of QCD: Edge localized glueballs and phase transitions (United States)

    Acharyya, Nirmalendu; Balachandran, A. P.


    In a matrix model of pure SU(2) Yang-Mills theory, boundaries emerge in the space of Mat3(R ) and the Hamiltonian requires boundary conditions. We show the existence of edge localized glueball states that can have negative energies. These edge levels can be lifted to positive energies if the gluons acquire a London-like mass. This suggests a new phase of QCD with an incompressible bulk.

  8. Modeling and simulation of matrix converter for wind power generation

    International Nuclear Information System (INIS)

    Masood, F.; Mahmood, T.; Choudhry, M.A.


    In this paper, a matrix converter structure is proposed which is suitable for wind power generation applications. The matrix converter (MC) is the most general converter type in the family of AC-AC converters. It is a single-stage converter which has an array of m x n bidirectional power switches to connect, directly, an m- phase voltage source to an n-Phase load. It does not have any DC-link circuit and does not need any large energy storage elements. The key element in a matrix converter is the fully controlled four quadrant bidirectional switch, which allows highfrequency operation. The proposed converter uses MOSFETs as bidirectional switches. The model has been implemented using MATLAB/SIMULINK. The results obtained are presented. The waveforms for input current and output voltage are sinusoidal with very low total harmonic distortion (THD). Low THD is an indication that the model is suitable for wind power generation applications. The simulation results confirm the reduction of conversion losses by 10% to 12% as compared to conventional two stage converters thereby increasing the overall conversion efficiency. The MOSFETs which have been used as switching devices have four to five times more switching frequency as compared to IGBTs thus improving the resulting wave shapes. (author)

  9. Global tropospheric ozone modeling: Quantifying errors due to grid resolution (United States)

    Wild, Oliver; Prather, Michael J.


    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.

  10. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling (United States)

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.


    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239

  11. R-matrix calculations of triplet gerade states of molecular hydrogen and their use for high-resolution spectroscopy (United States)

    Oueslati, H.; Argoubi, F.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.


    A variational R-matrix approach combined with multichannel quantum defect theory is used for a computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated as functions of internuclear distance and energy for the bound and continuum ranges including singly and doubly excited configurations built on the 1σg (X+2Σg+) and 1σu (A+2Σu+) core states of the H2+ ion. It is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013), 10.1021/jp311793t], producing agreement with experiment to within 0.5 cm-1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic continuum.

  12. Hyper-Resolution Groundwater Modeling using MODFLOW 6 (United States)

    Hughes, J. D.; Langevin, C.


    MODFLOW 6 is the latest version of the U.S. Geological Survey's modular hydrologic model. MODFLOW 6 was developed to synthesize many of the recent versions of MODFLOW into a single program, improve the way different process models are coupled, and to provide an object-oriented framework for adding new types of models and packages. The object-oriented framework and underlying numerical solver make it possible to tightly couple any number of hyper-resolution models within coarser regional models. The hyper-resolution models can be used to evaluate local-scale groundwater issues that may be affected by regional-scale forcings. In MODFLOW 6, hyper-resolution meshes can be maintained as separate model datasets, similar to MODFLOW-LGR, which simplifies the development of a coarse regional model with imbedded hyper-resolution models from a coarse regional model. For example, the South Atlantic Coastal Plain regional water availability model was converted from a MODFLOW-2000 model to a MODFLOW 6 model. The horizontal discretization of the original model is approximately 3,218 m x 3,218 m. Hyper-resolution models of the Aiken and Sumter County water budget areas in South Carolina with a horizontal discretization of approximately 322 m x 322 m were developed and were tightly coupled to a modified version of the original coarse regional model that excluded these areas. Hydraulic property and aquifer geometry data from the coarse model were mapped to the hyper-resolution models. The discretization of the hyper-resolution models is fine enough to make detailed analyses of the effect that changes in groundwater withdrawals in the production aquifers have on the water table and surface-water/groundwater interactions. The approach used in this analysis could be applied to other regional water availability models that have been developed by the U.S. Geological Survey to evaluate local scale groundwater issues.

  13. Global tropospheric ozone modeling: Quantifying errors due to grid resolution


    Wild, Oliver; Prather, Michael J


    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quant...

  14. The multitrace matrix model: An alternative to Connes NCG and IKKT model in 2 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ydri, Badis, E-mail:


    We present a new multitrace matrix model, which is a generalization of the real quartic one matrix model, exhibiting dynamical emergence of a fuzzy two-sphere and its non-commutative gauge theory. This provides a novel and a much simpler alternative to Connes non-commutative geometry and to the IKKT matrix model for emergent geometry in two dimensions. However, in higher dimensions this mechanism is not known to exist and the systematic frameworks of NCG and IKKT are expected to hold sway.

  15. Higher rank ABJM Wilson loops from matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Cookmeyer, Jonathan [Haverford College,370 Lancaster Avenue, Haverford, PA, 19041 (United States); Liu, James T. [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,450 Church Street, Ann Arbor, MI, 48109 (United States); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, Trieste, 34014 (Italy)


    We compute the vacuum expectation values of 1/6 supersymmetric Wilson loops in higher dimensional representations of the gauge group in ABJM theory. We present results for the m-symmetric and m-antisymmetric representations by exploiting standard matrix model techniques. At leading order, in the saddle point approximation, our expressions reproduce holographic results from both D6 and D2 branes corresponding to the antisymmetric and symmetric representations, respectively. We also compute 1/N corrections to the leading saddle point results.

  16. Three-Body Nuclear Forces from a Matrix Model

    CERN Document Server

    Hashimoto, Koji


    We compute three-body nuclear forces at short distances by using the nuclear matrix model of holographic QCD proposed in our previous paper with P. Yi. We find that the three-body forces at short distances are repulsive for (a) aligned three neutrons with averaged spins, and (b) aligned proton-proton-neutron / proton-neutron-neutron. These indicate that in dense states of neutrons such as cores of neutron stars, or in Helium-3 / tritium nucleus, the repulsive forces are larger than the ones estimated from two-body forces only.

  17. Chiral condensate in the Schwinger model with matrix product operators

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, Hana [Tsukuba Univ. (Japan). Center for Computational Sciences


    Tensor network (TN) methods, in particular the Matrix Product States (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the non-zero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.

  18. Ultracentrifuge separative power modeling with multivariate regression using covariance matrix

    International Nuclear Information System (INIS)

    Migliavacca, Elder


    In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 460 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process variables, which significantly influence the δU values are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow rate F, cut θ and product line pressure P p . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heteroscedasticity with any explained regression model variable. The surface curves are made relating the separative power with the control variables F, θ and P p to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)

  19. Influence of horizontal resolution and ensemble size on model performance

    CSIR Research Space (South Africa)

    Dalton, A


    Full Text Available Computing costs increase with an increase in global model resolution and ensemble size. This paper strives to determine the extent to which resolution and ensemble size affect seasonal forecast skill when simulating mid-summer rainfall totals over...

  20. Matrix Model for Choosing Green Marketing Sustainable Strategic Alternatives

    Directory of Open Access Journals (Sweden)

    Cătălina Sitnikov


    Full Text Available Green marketing examines the symbiotic role played by marketing in ensuring sustainable business, exploring issues concerning the environment and the way strategic decisions can influence it. At present, the environmental issues concern more and more the competitive approach any organization can implement. Based on this approach, organizations can gain competitive advantage by managing environmental variables and by developing and implementing green marketing strategies. Considering the importance and impact of green marketing, by using theoretical concepts and defining a set of research directions, the paper and the research conducted were focused on creating a matrix model for choosing the optimal green marketing strategy, oriented towards competitive advantage. The model is based on the correlation that can be established among the generic strategies of competitive advantage, the variables of extended marketing mix (7Ps and the green marketing strategy matrix. There are also analyzed the implications that may be generated within a company by the adoption of a green marketing strategy and its role in promoting the environmental benefits of products.

  1. RNA matrix models with external interactions and their asymptotic behavior

    International Nuclear Information System (INIS)

    Garg, I.; Deo, N.


    We study a matrix model of RNA in which an external perturbation on n nucleotides is introduced in the action of the partition function of the polymer chain. The effect of the perturbation appears in the exponential generating function of the partition function as a factor exp(1-nα/L) (where α is the ratio of strengths of the original to the perturbed term and L is the length of the chain). The asymptotic behavior of the genus distribution functions as a function of length for the matrix model with interaction is analyzed numerically for all n≤L. It is found that as nα/L is increased from 0 to 1, the term 3 L in the number of diagrams a L,g,α ' at a fixed length L, genus g and α, goes to 2 L [(3-(nα/L)) L for any nα/L] and the total number of diagrams N α ' at a fixed length L and α but independent of genus g, undergoes a change in the factor exp(√(L)) to 1 (exp[(1-nα/L)√(L)] for any nα/L). However the exponent L of the dominant length dependent term in a L,g,α ' stays unchanged. Hence the universality is robust to changes in the interaction (α). The distribution functions also exhibit unusual behavior at small lengths.

  2. Emergent phase space description of unitary matrix model (United States)

    Chattopadhyay, Arghya; Dutta, Parikshit; Dutta, Suvankar


    We show that large N phases of a 0 dimensional generic unitary matrix model (UMM) can be described in terms of topologies of two dimensional droplets on a plane spanned by eigenvalue and number of boxes in Young diagram. Information about different phases of UMM is encoded in the geometry of droplets. These droplets are similar to phase space distributions of a unitary matrix quantum mechanics (UMQM) ((0 + 1) dimensional) on constant time slices. We find that for a given UMM, it is possible to construct an effective UMQM such that its phase space distributions match with droplets of UMM on different time slices at large N . Therefore, large N phase transitions in UMM can be understood in terms of dynamics of an effective UMQM. From the geometry of droplets it is also possible to construct Young diagrams corresponding to U( N) representations and hence different large N states of the theory in momentum space. We explicitly consider two examples: single plaquette model with Tr U 2 terms and Chern-Simons theory on S 3. We describe phases of CS theory in terms of eigenvalue distributions of unitary matrices and find dominant Young distributions for them.

  3. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    NARCIS (Netherlands)

    Klein, A.A.B.; Neudecker, H.


    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be


    Directory of Open Access Journals (Sweden)

    E. A. Gyamera


    Full Text Available Since land contributes to about 73 % of most countries Gross Domestic Product (GDP, attention on land rights have tremendously increased globally. Conflicts over land have therefore become part of the major problems associated with land administration. However, the conventional mechanisms for land conflict resolution do not provide satisfactory result to disputants due to various factors. This study sought to develop a Framework of using Participatory Geographic Information System (PGIS for customary land conflict resolution. The framework was modelled using Unified Modelling Language (UML. The PGIS framework, called butterfly model, consists of three units namely, Social Unit (SU, Technical Unit (TU and Decision Making Unit (DMU. The name butterfly model for land conflict resolution was adopted for the framework based on its features and properties. The framework has therefore been recommended to be adopted for land conflict resolution in customary areas.

  5. Teaching Improvement Model Designed with DEA Method and Management Matrix (United States)

    Montoneri, Bernard


    This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…

  6. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, Motoki, E-mail: [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1, Yanagido, Gifu 501-1193 (Japan); Tatsumi, Kazuyoshi; Muto, Shunsuke [Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Tsuda, Koji [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561 (Japan); Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064 (Japan); Yamamoto, Yuta [High-Voltage Electron Microscope Laboratory, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Mori, Toshiyuki [Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Tanji, Takayoshi [Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)


    Advances in scanning transmission electron microscopy (STEM) techniques have enabled us to automatically obtain electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectral datasets from a specified region of interest (ROI) at an arbitrary step width, called spectral imaging (SI). Instead of manually identifying the potential constituent chemical components from the ROI and determining the chemical state of each spectral component from the SI data stored in a huge three-dimensional matrix, it is more effective and efficient to use a statistical approach for the automatic resolution and extraction of the underlying chemical components. Among many different statistical approaches, we adopt a non-negative matrix factorization (NMF) technique, mainly because of the natural assumption of non-negative values in the spectra and cardinalities of chemical components, which are always positive in actual data. This paper proposes a new NMF model with two penalty terms: (i) an automatic relevance determination (ARD) prior, which optimizes the number of components, and (ii) a soft orthogonal constraint, which clearly resolves each spectrum component. For the factorization, we further propose a fast optimization algorithm based on hierarchical alternating least-squares. Numerical experiments using both phantom and real STEM-EDX/EELS SI datasets demonstrate that the ARD prior successfully identifies the correct number of physically meaningful components. The soft orthogonal constraint is also shown to be effective, particularly for STEM-EELS SI data, where neither the spatial nor spectral entries in the matrices are sparse. - Highlights: • Automatic resolution of chemical components from spectral imaging is considered. • We propose a new non-negative matrix factorization with two new penalties. • The first penalty is sparseness to choose the number of components from data. • Experimental results with real data demonstrate effectiveness of our method.

  7. Thermal evolution of the Schwinger model with matrix product operators

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Cichy, K. [Frankfurt am Main Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing (NIC); Jansen, K.; Saito, H. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing (NIC)


    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.

  8. Higher Rank ABJM Wilson Loops from Matrix Models (United States)

    Cookmeyer, Jonathan; Liu, James; Zayas, Leopoldo


    We compute the expectation values of 1/6 supersymmetric Wilson Loops in ABJM theory in higher rank representations. Using standard matrix model techniques, we calculate the expectation value in the rank m fully symmetric and fully antisymmetric representation where m is scaled with N. To leading order, we find agreement with the classical action of D6 and D2 branes in AdS4 ×CP3 respectively. Further, we compute the first subleading order term, which, on the AdS side, makes a prediction for the one-loop effective action of the corresponding D6 and D2 branes. Supported by the National Science Foundation under Grant No. PHY 1559988 and the US Department of Energy under Grant No. DE-SC0007859.

  9. Analytical Model of Water Flow in Coal with Active Matrix (United States)

    Siemek, Jakub; Stopa, Jerzy


    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  10. Free fermion resolution of supergroup WZNW models

    Energy Technology Data Exchange (ETDEWEB)

    Quella, T.; Schomerus, V.


    Extending our earlier work on PSL(2 vertical stroke 2), we explain how to reduce the solution of WZNW models on general type I supergroups to those defined on the bosonic subgroup. The new analysis covers in particular the supergroups GL(M vertical stroke N) along with several close relatives such as PSL(N vertical stroke N), certain Poincar'e supergroups and the series OSP(2 vertical stroke 2N). This remarkable progress relies on the use of a special Feigin-Fuchs type representation. In preparation for the field theory analysis, we shall exploit a minisuperspace analogue of a free fermion construction to deduce the spectrum of the Laplacian on type I supergroups. The latter is shown to be non-diagonalizable. After lifting these results to the full WZNW model, we address various issues of the field theory, including its modular invariance and the computation of correlation functions. In agreement with previous findings, supergroup WZNW models allow to study chiral and non-chiral aspects of logarithmic conformal field theory within a geometric framework. We shall briefly indicate how insights from WZNW models carry over to non-geometric examples, such as e.g. the W(p) triplet models.

  11. Influence of Regional Climate Model spatial resolution on wind climates (United States)

    Pryor, S. C.; Barthelmie, R. J.; Nikulin, G.; Jones, C.


    Global and regional climate models are being run at increasingly fine horizontal and vertical resolution with the goal of increased skill. However, relatively few studies have quantified the change in modeled wind climates that derives from applying a Regional Climate Model (RCM) at varying resolutions, and the response to varying resolution may be highly non-linear since most models run in climate mode are hydrostatic. Thus, herein we examine the influence of grid-resolution on modelled wind speeds and gusts and derived extremes thereof over southern Scandinavia using output from the Rossby Centre (RCA3) RCM run at four different resolutions from 50 x 50 km to 6 x 6 km, and with two different vertical grid-spacings. Domain averaged fifty-year return period wind speeds and wind gusts derived using the method of moments approach to compute the Gumbel parameters, increase with resolution (Table 1), though the change is strongly mediated by the model grid-cell surface characteristics. Power spectra of the 3-hourly model time-step ‘instantaneous’ wind speeds and daily wind gusts at all four resolutions show clear peaks in the variance associated with bi-annual, annual, seasonal and synoptic frequencies. The variance associated with these peaks is enhanced with increased resolution, though not in a monotonic fashion, and is more marked in wind gusts than wind speeds. Relative to in situ observations, the model generally underestimates the variance, particularly associated with the synoptic time scale, even for the highest resolution simulations. There is some evidence to suggest that the change in the power spectra with horizontal resolution is less marked in the transition from 12.5 km to 6.25 km, than from 50 to 25 km, or 25 km to 12.5 km.Table 1. Domain averaged mean annual wind speed (U), 50-year return period extreme wind speed (U50yr) and wind gust (Gust50yr) (m/s) from the four RCA3 simulations at different resolution based on output from 1987-2008. The

  12. Multi-scale climate modelling over Southern Africa using a variable-resolution global model

    CSIR Research Space (South Africa)

    Engelbrecht, FA


    Full Text Available -resolution global simulations, to ultra-high resolution simulations at the micro-scale. The model used for these experiments is a variable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM). It is shown that CCAM may be used to obtain...

  13. SHMF: Interest Prediction Model with Social Hub Matrix Factorization

    Directory of Open Access Journals (Sweden)

    Chaoyuan Cui


    Full Text Available With the development of social networks, microblog has become the major social communication tool. There is a lot of valuable information such as personal preference, public opinion, and marketing in microblog. Consequently, research on user interest prediction in microblog has a positive practical significance. In fact, how to extract information associated with user interest orientation from the constantly updated blog posts is not so easy. Existing prediction approaches based on probabilistic factor analysis use blog posts published by user to predict user interest. However, these methods are not very effective for the users who post less but browse more. In this paper, we propose a new prediction model, which is called SHMF, using social hub matrix factorization. SHMF constructs the interest prediction model by combining the information of blogs posts published by both user and direct neighbors in user’s social hub. Our proposed model predicts user interest by integrating user’s historical behavior and temporal factor as well as user’s friendships, thus achieving accurate forecasts of user’s future interests. The experimental results on Sina Weibo show the efficiency and effectiveness of our proposed model.

  14. A new Expert Finding model based on Term Correlation Matrix

    Directory of Open Access Journals (Sweden)

    Ehsan Pornour


    Full Text Available Due to the enormous volume of unstructured information available on the Web and inside organization, finding an answer to the knowledge need in a short time is difficult. For this reason, beside Search Engines which don’t consider users individual characteristics, Recommender systems were created which use user’s previous activities and other individual characteristics to help users find needed knowledge. Recommender systems usage is increasing every day. Expert finder systems also by introducing expert people instead of recommending information to users have provided this facility for users to ask their questions form experts. Having relation with experts not only causes information transition, but also with transferring experiences and inception causes knowledge transition. In this paper we used university professors academic resume as expert people profile and then proposed a new expert finding model that recommends experts to users query. We used Term Correlation Matrix, Vector Space Model and PageRank algorithm and proposed a new hybrid model which outperforms conventional methods. This model can be used in internet environment, organizations and universities that experts have resume dataset.

  15. Link Community Detection Using Generative Model and Nonnegative Matrix Factorization (United States)

    He, Dongxiao; Jin, Di; Baquero, Carlos; Liu, Dayou


    Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. While most of the existing approaches have focused on discovering communities of nodes, recent studies have shown the advantages and uses of link community discovery in networks. Generative models provide a promising class of techniques for the identification of modular structures in networks, but most generative models mainly focus on the detection of node communities rather than link communities. In this work, we propose a generative model, which is based on the importance of each node when forming links in each community, to describe the structure of link communities. We proceed to fit the model parameters by taking it as an optimization problem, and solve it using nonnegative matrix factorization. Thereafter, in order to automatically determine the number of communities, we extend the above method by introducing a strategy of iterative bipartition. This extended method not only finds the number of communities all by itself, but also obtains high efficiency, and thus it is more suitable to deal with large and unexplored real networks. We test this approach on both synthetic benchmarks and real-world networks including an application on a large biological network, and compare it with two highly related methods. Results demonstrate the superior performance of our approach over competing methods for the detection of link communities. PMID:24489803

  16. Is Convection Sensitive to Model Vertical Resolution and Why? (United States)

    Xie, S.; Lin, W.; Zhang, G. J.


    Model sensitivity to horizontal resolutions has been studied extensively, whereas model sensitivity to vertical resolution is much less explored. In this study, we use the US Department of Energy (DOE)'s Accelerated Climate Modeling for Energy (ACME) atmosphere model to examine the sensitivity of clouds and precipitation to the increase of vertical resolution of the model. We attempt to understand what results in the behavior change (if any) of convective processes represented by the unified shallow and turbulent scheme named CLUBB (Cloud Layers Unified by Binormals) and the Zhang-McFarlane deep convection scheme in ACME. A short-term hindcast approach is used to isolate parameterization issues from the large-scale circulation. The analysis emphasizes on how the change of vertical resolution could affect precipitation partitioning between convective- and grid-scale as well as the vertical profiles of convection-related quantities such as temperature, humidity, clouds, convective heating and drying, and entrainment and detrainment. The goal is to provide physical insight into potential issues with model convective processes associated with the increase of model vertical resolution. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others


    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  18. Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. (United States)

    Thomas, Aurélien; Charbonneau, Jade Laveaux; Fournaise, Erik; Chaurand, Pierre


    Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.

  19. High Resolution Lidar Digital Elevation Models and Low Resolution Shaded Relief Maps of Antarctica from USGS, Version 1 (United States)

    National Aeronautics and Space Administration — Lidar high-resolution elevation digital elevation model data and low-resolution shaded relief maps of Antarctica are available for download from the U.S. Antarctic...

  20. Multiscale modeling of PVDF matrix carbon fiber composites (United States)

    Greminger, Michael; Haghiashtiani, Ghazaleh


    Self-sensing carbon fiber reinforced composites have the potential to enable structural health monitoring that is inherent to the composite material rather than requiring external or embedded sensors. It has been demonstrated that a self-sensing carbon fiber reinforced polymer composite can be created by using the piezoelectric polymer polyvinylidene difluoride (PVDF) as the matrix material and using a Kevlar layer to separate two carbon fiber layers. In this configuration, the electrically conductive carbon fiber layers act as electrodes and the Kevlar layer acts as a dielectric to prevent the electrical shorting of the carbon fiber layers. This composite material has been characterized experimentally for its effective d 33 and d 31 piezoelectric coefficients. However, for design purposes, it is desirable to obtain a predictive model of the effective piezoelectric coefficients for the final smart composite material. Also, the inverse problem can be solved to determine the degree of polarization obtained in the PVDF material during polarization by comparing the effective d 33 and d 31 values obtained in experiment to those predicted by the finite element model. In this study, a multiscale micromechanics and coupled piezoelectric-mechanical finite element modeling approach is introduced to predict the mechanical and piezoelectric performance of a plain weave carbon fiber reinforced PVDF composite. The modeling results show good agreement with the experimental results for the mechanical and electrical properties of the composite. In addition, the degree of polarization of the PVDF component of the composite is predicted using this multiscale modeling approach and shows that there is opportunity to drastically improve the smart composite’s performance by improving the polarization procedure.

  1. Physical characterization and kinetic modelling of matrix tablets of ...

    African Journals Online (AJOL)

    Purpose: To design controlled release ketorolac tromethamol (KT) matrix tablets for increased drug bioavailability. Methods: Waxes (Compritol® ATO 888, Precirol® ATO 5 and stearic acid - SA) and polymers (hydroxypropyl methylcellulose - HPMC and xanthan gum - XG) were used in the preparation of the matrix tablets at ...

  2. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.


    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  3. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging. (United States)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D


    Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate

  4. Modeling of piezoelectric Langevin transducers by using mixed transfer matrix methods

    International Nuclear Information System (INIS)

    Fu, Bo; Li, Chao; Zhang, Jianming; Huang, Zhenwei; Hemsel, Tobias


    In the modeling of piezoelectric Langevin transducers using the usual transfer matrix methods, some simplifications have been adopted. This leads to a reduction in the model quality. A mixed transfer matrix method is employed in the modeling of Langevin transducers, where the pre-stressed bolt is modeled as a separate four-pole element connected to other elements in parallel. Based on the mixed transfer matrix method, the four (six)-pole element description of the piezoelectric Langevin transducer is built up, and the total transfer matrix relation is derived. The resonance frequencies of the transducer are calculated and then measured using an impedance analyzer (HP4192). Experimental results show that the mixed transfer matrix method has better modeling quality than the usual transfer matrix method for the vibration analysis of piezoelectric Langevin transducers.

  5. Stage-structured matrix models for organisms with non-geometric development times (United States)

    Andrew Birt; Richard M. Feldman; David M. Cairns; Robert N. Coulson; Maria Tchakerian; Weimin Xi; James M. Guldin


    Matrix models have been used to model population growth of organisms for many decades. They are popular because of both their conceptual simplicity and their computational efficiency. For some types of organisms they are relatively accurate in predicting population growth; however, for others the matrix approach does not adequately model...


    Directory of Open Access Journals (Sweden)

    F. Menna


    Full Text Available The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.

  7. Chern-Simons Theory, Matrix Models, and Topological Strings

    International Nuclear Information System (INIS)

    Walcher, J


    This book is a find. Marino meets the challenge of filling in less than 200 pages the need for an accessible review of topological gauge/gravity duality. He is one of the pioneers of the subject and a clear expositor. It is no surprise that reading this book is a great pleasure. The existence of dualities between gauge theories and theories of gravity remains one of the most surprising recent discoveries in mathematical physics. While it is probably fair to say that we do not yet understand the full reach of such a relation, the impressive amount of evidence that has accumulated over the past years can be regarded as a substitute for a proof, and will certainly help to delineate the question of what is the most fundamental quantum mechanical theory. Here is a brief summary of the book. The journey begins with matrix models and an introduction to various techniques for the computation of integrals including perturbative expansion, large-N approximation, saddle point analysis, and the method of orthogonal polynomials. The second chapter, on Chern-Simons theory, is the longest and probably the most complete one in the book. Starting from the action we meet Wilson loop observables, the associated perturbative 3-manifold invariants, Witten's exact solution via the canonical duality to WZW models, the framing ambiguity, as well as a collection of results on knot invariants that can be derived from Chern-Simons theory and the combinatorics of U (∞) representation theory. The chapter also contains a careful derivation of the large-N expansion of the Chern-Simons partition function, which forms the cornerstone of its interpretation as a closed string theory. Finally, we learn that Chern-Simons theory can sometimes also be represented as a matrix model. The story then turns to the gravity side, with an introduction to topological sigma models (chapter 3) and topological string theory (chapter 4). While this presentation is necessarily rather condensed (and the beginner may

  8. Matrix product states and the non-Abelian rotor model (United States)

    Milsted, Ashley


    We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.

  9. Ceramic Matrix Composite Environmental Barrier Coating Durability Model, Phase I (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  10. Ceramic Matrix Composite Environmental Barrier Coating Durability Model, Phase II (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  11. Problem Resolution through Electronic Mail: A Five-Step Model. (United States)

    Grandgenett, Neal; Grandgenett, Don


    Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…

  12. Modeling Protein Structure at Near Atomic Resolutions With Gorgon (United States)

    Baker, Matthew L.; Abeysinghe, Sasakthi S.; Schuh, Stephen; Coleman, Ross A.; Abrams, Austin; Marsh, Michael P.; Hryc, Corey F.; Ruths, Troy; Chiu, Wah; Ju, Tao


    Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 Å), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure. PMID:21296162

  13. Extracellular matrix alterations in the ketamine model of schizophrenia. (United States)

    Matuszko, Gabriela; Curreli, Sebastiano; Kaushik, Rahul; Becker, Axel; Dityatev, Alexander


    The neural extracellular matrix (ECM) plays an important role in regulation of perisomatic GABAergic inhibition and synaptic plasticity in the hippocampus and cortex. Decreased labeling of perineuronal nets, a form of ECM predominantly associated with parvalbumin-expressing interneurons in the brain, has been observed in post-mortem studies of schizophrenia patients, specifically, in brain areas such as prefrontal cortex, entorhinal cortex, and amygdala. Moreover, glial ECM in the form of dandelion clock-like structures was reported to be altered in schizophrenia patients. Here, we verified whether similar abnormalities in neural ECM can be reproduced in a rat model of schizophrenia, in which animals received sub-chronic administration of ketamine to reproduce the aspects of disease related to disrupted signaling through N-methyl-D-aspartate receptors. Our study focused on two schizophrenia-related brain areas, namely the medial prefrontal cortex (mPFC) and hippocampus. Semi-quantitative immunohistochemistry was performed to evaluate investigate ECM expression using Wisteria floribunda agglutinin (WFA) and CS56 antibody, both labeling distinct chondroitin sulfate epitopes enriched in perineuronal nets and glial ECM, respectively. Our analysis revealed that ketamine-treated rats exhibit reduced number of WFA-labeled perineuronal nets, and a decreased intensity of parvalbumin fluorescence in mPFC interneurons somata. Moreover, we found an increased expression of CS56 immunoreactive form of ECM. Importantly, the loss of perineuronal nets was revealed in the mPFC, and was not detected in the hippocampus, suggesting regional specificity of ECM alterations. These data open an avenue for further investigations of functional importance of ECM abnormalities in schizophrenia as well as for search of treatments for their compensation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Neutron diffraction measurements and modeling of residual strains in metal matrix composites (United States)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.


    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  15. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials (United States)

    Jordan, William


    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  16. The Characterization of Laser Ablation Patterns and a New Definition of Resolution in Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS) (United States)

    O'Rourke, Matthew B.; Raymond, Benjamin B. A.; Padula, Matthew P.


    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution.

  17. A generative model for resolution enhancement of diffusion MRI data. (United States)

    Yap, Pew-Thian; An, Hongyu; Chen, Yasheng; Shen, Dinggang


    The advent of diffusion magnetic resonance imaging (DMRI) presents unique opportunities for the exploration of white matter connectivity in vivo and non-invasively. However, DMRI suffers from insufficient spatial resolution, often limiting its utility to the studying of only major white matter structures. Many image enhancement techniques rely on expensive scanner upgrades and complex time-consuming sequences. We will instead take a post-processing approach in this paper for resolution enhancement of DMRI data. This will allow the enhancement of existing data without re-acquisition. Our method uses a generative model that reflects the image generation process and, after the parameters of the model have been estimated, we can effectively sample high-resolution images from this model. More specifically, we assume that the diffusion-weighted signal at each voxel is an agglomeration of signals from an ensemble of fiber segments that can be oriented and located freely within the voxel. Our model for each voxel therefore consists of an arbitrary number of signal generating fiber segments, and the model parameters that need to be determined are the locations and orientations of these fiber segments. Solving for these parameters is an ill-posed problem. However, by borrowing information from neighboring voxels, we show that this can be solved by using Markov chain Monte Carlo (MCMC) methods such as the Metropolis-Hastings algorithm. Preliminary results indicate that out method substantially increases structural visibility in both subcortical and cortical regions.

  18. Importance of resolution and model configuration when downscaling extreme precipitation

    Directory of Open Access Journals (Sweden)

    Adrian J. Champion


    Full Text Available Dynamical downscaling is frequently used to investigate the dynamical variables of extra-tropical cyclones, for example, precipitation, using very high-resolution models nested within coarser resolution models to understand the processes that lead to intense precipitation. It is also used in climate change studies, using long timeseries to investigate trends in precipitation, or to look at the small-scale dynamical processes for specific case studies. This study investigates some of the problems associated with dynamical downscaling and looks at the optimum configuration to obtain the distribution and intensity of a precipitation field to match observations. This study uses the Met Office Unified Model run in limited area mode with grid spacings of 12, 4 and 1.5 km, driven by boundary conditions provided by the ECMWF Operational Analysis to produce high-resolution simulations for the Summer of 2007 UK flooding events. The numerical weather prediction model is initiated at varying times before the peak precipitation is observed to test the importance of the initialisation and boundary conditions, and how long the simulation can be run for. The results are compared to raingauge data as verification and show that the model intensities are most similar to observations when the model is initialised 12 hours before the peak precipitation is observed. It was also shown that using non-gridded datasets makes verification more difficult, with the density of observations also affecting the intensities observed. It is concluded that the simulations are able to produce realistic precipitation intensities when driven by the coarser resolution data.

  19. Matrix Models – An Approach to Understand Complex Systems

    Indian Academy of Sciences (India)

    Matrices with random matrix elements appear to have applications in physics, mathematics, bi- ology, telecommunications, etc. In fact, experi- mental data of many complex systems, such as the spacing distribution of energy level spectra of heavy nuclei, and the distribution of the non- real zeros of the Riemann zeta function ...

  20. Matrix models with Penner interaction inspired by interacting ...

    Indian Academy of Sciences (India)

    An additional dependence of the structure combinatorics factor on N (related to the size of the matrix and the ... tems [5], wireless communication [6], stock and financial market [7] and many more. In many of these ... stress. These external factors play important roles in deciding the correct conformation of. RNA chain and ...

  1. Constructing service-oriented architecture adoption maturity matrix using Kano model (United States)

    Hamzah, Mohd Hamdi Irwan; Baharom, Fauziah; Mohd, Haslina


    Commonly, organizations adopted Service-Oriented Architecture (SOA) because it can provide a flexible reconfiguration and can reduce the development time and cost. In order to guide the SOA adoption, previous industry and academia have constructed SOA maturity model. However, there is a limited number of works on how to construct the matrix in the previous SOA maturity model. Therefore, this study is going to provide a method that can be used in order to construct the matrix in the SOA maturity model. This study adapts Kano Model to construct the cross evaluation matrix focused on SOA adoption IT and business benefits. This study found that Kano Model can provide a suitable and appropriate method for constructing the cross evaluation matrix in SOA maturity model. Kano model also can be used to plot, organize and better represent the evaluation dimension for evaluating the SOA adoption.

  2. Distributed Modeling with Parflow using High Resolution LIDAR Data (United States)

    Barnes, M.; Welty, C.; Miller, A. J.


    Urban landscapes provide a challenging domain for the application of distributed surface-subsurface hydrologic models. Engineered water infrastructure and altered topography influence surface and subsurface flow paths, yet these effects are difficult to quantify. In this work, a parallel, distributed watershed model (ParFlow) is used to simulate urban watersheds using spatial data at the meter and sub-meter scale. An approach using GRASS GIS (Geographic Resources Analysis Support System) is presented that incorporates these data to construct inputs for the ParFlow simulation. LIDAR topography provides the basis for the fully coupled overland flow simulation. Methods to address real discontinuities in the urban land-surface for use with the grid-based kinematic wave approximation used in ParFlow are presented. The spatial distribution of impervious surface is delineated accurately from high-resolution land cover data; hydrogeological properties are specified from literature values. An application is presented for part of the Dead Run subwatershed of the Gwynns Falls in Baltimore County, MD. The domain is approximately 3 square kilometers, and includes a highly impacted urban stream, a major freeway, and heterogeneous urban development represented at a 10-m horizontal resolution and 1-m vertical resolution. This resolution captures urban features such as building footprints and highways at an appropriate scale. The Dead Run domain provides an effective test case for ParFlow application at the fine scale in an urban environment. Preliminary model runs employ a homogeneous subsurface domain with no-flow boundaries. Initial results reflect the highly articulated topography of the road network and the combined influence of surface runoff from impervious surfaces and subsurface flux toward the channel network. Subsequent model runs will include comparisons of the coupled surface-subsurface response of alternative versions of the Dead Run domain with and without impervious

  3. Estuarine modeling: Does a higher grid resolution improve model performance? (United States)

    Ecological models are useful tools to explore cause effect relationships, test hypothesis and perform management scenarios. A mathematical model, the Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to the Louisiana continental shelf of the northern ...

  4. Towards a 1km resolution global flood risk model (United States)

    Bates, Paul; Neal, Jeff; Sampson, Chris; Smith, Andy


    Recent advances in computationally efficient numerical algorithms and new High Performance Computing architectures now make high (1-2km) resolution global hydrodynamic models a realistic proposition. However in many areas of the world the data sets and tools necessary to undertake such modelling do not currently exist. In particular, five major problems need to be resolved: (1) the best globally available terrain data (SRTM) was generated from X-band interferometric radar data which does not penetrate vegetation canopies and which has significant problems in determining ground elevations in urban areas; (2) a global river bathymetry data set does not currently exist; (3) most river channels globally are less than the smallest currently resolvable grid scale (1km) and therefore require a sub-grid treatment; (4) a means to estimate the magnitude of the T year flood at any point along the global river network does not currently exist; and (5) a large proportion of flood losses are generated by off-floodplain surface water flows which are not well represented in current hydrodynamic modelling systems. In this paper we propose solutions to each of these five issues as part of a concerted effort to develop a 1km (or better) resolution global flood hazard model. We describe the new numerical algorithms, computer architectures and computational resources used, and demonstrate solutions to the five previously intractable problems identified above. We conduct a validation study of the modelling against satellite imagery of major flooding on the Mississippi-Missouri confluence plain in the central USA before outlining a proof-of-concept regional study for SE Asia as a step towards a global scale model. For SE Asia we simulate flood hazard for ten different flood return periods over the entire Thailand, Cambodia, Vietnam, Malaysia and Laos region at 1km resolution and show that the modelling produces coherent, consistent and sensible simulations of extent and water depth.

  5. Parametric level correlations in random-matrix models

    International Nuclear Information System (INIS)

    Weidenmueller, Hans A


    We show that parametric level correlations in random-matrix theories are closely related to a breaking of the symmetry between the advanced and the retarded Green functions. The form of the parametric level correlation function is the same as for the disordered case considered earlier by Simons and Altshuler and is given by the graded trace of the commutator of the saddle-point solution with the particular matrix that describes the symmetry breaking in the actual case of interest. The strength factor differs from the case of disorder. It is determined solely by the Goldstone mode. It is essentially given by the number of levels that are strongly mixed as the external parameter changes. The factor can easily be estimated in applications

  6. A high resolution WRF model for wind energy forecasting (United States)

    Vincent, Claire Louise; Liu, Yubao


    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the

  7. Recursive calculation of matrix elements for the generalized seniority shell model

    International Nuclear Information System (INIS)

    Luo, F.Q.; Caprio, M.A.


    A recursive calculational scheme is developed for matrix elements in the generalized seniority scheme for the nuclear shell model. Recurrence relations are derived which permit straightforward and efficient computation of matrix elements of one-body and two-body operators and basis state overlaps.

  8. Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units

    Directory of Open Access Journals (Sweden)

    Zhang Le


    Full Text Available Abstract Multiscale agent-based modeling (MABM has been widely used to simulate Glioblastoma Multiforme (GBM and its progression. At the intracellular level, the MABM approach employs a system of ordinary differential equations to describe quantitatively specific intracellular molecular pathways that determine phenotypic switches among cells (e.g. from migration to proliferation and vice versa. At the intercellular level, MABM describes cell-cell interactions by a discrete module. At the tissue level, partial differential equations are employed to model the diffusion of chemoattractants, which are the input factors of the intracellular molecular pathway. Moreover, multiscale analysis makes it possible to explore the molecules that play important roles in determining the cellular phenotypic switches that in turn drive the whole GBM expansion. However, owing to limited computational resources, MABM is currently a theoretical biological model that uses relatively coarse grids to simulate a few cancer cells in a small slice of brain cancer tissue. In order to improve this theoretical model to simulate and predict actual GBM cancer progression in real time, a graphics processing unit (GPU-based parallel computing algorithm was developed and combined with the multi-resolution design to speed up the MABM. The simulated results demonstrated that the GPU-based, multi-resolution and multiscale approach can accelerate the previous MABM around 30-fold with relatively fine grids in a large extracellular matrix. Therefore, the new model has great potential for simulating and predicting real-time GBM progression, if real experimental data are incorporated.

  9. The genealogical decomposition of a matrix population model with applications to the aggregation of stages. (United States)

    Bienvenu, François; Akçay, Erol; Legendre, Stéphane; McCandlish, David M


    Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population model to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A high-resolution global flood hazard model (United States)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.


    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  11. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4 (United States)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas


    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  12. An enhanced matrix-free edge-based finite volume approach to model structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan


    Full Text Available This paper presents the formulation, implementation and evaluation of an enhanced matrix free edge-based finite volume approach to model the mechanics of solids undergoing large non-linear deformations. The developed technology is evaluated via...

  13. Phase Structure Of Fuzzy Field Theories And Multi trace Matrix Models

    International Nuclear Information System (INIS)

    Tekel, J.


    We review the interplay of fuzzy field theories and matrix models, with an emphasis on the phase structure of fuzzy scalar field theories. We give a self-contained introduction to these topics and give the details concerning the saddle point approach for the usual single trace and multi trace matrix models. We then review the attempts to explain the phase structure of the fuzzy field theory using a corresponding random matrix ensemble, showing the strength and weaknesses of this approach. We conclude with a list of challenges one needs to overcome and the most interesting open problems one can try to solve. (author)

  14. Model of subgrain boundaries formation in matrix of M-MeC eutedtic alloys

    International Nuclear Information System (INIS)

    Bokshtejn, S.Z.; Vasilenok, L.B.; Kishkin, S.T.; Razumovskij, I.M.


    A model of subgrain boundary formation and, therefore, formation of substructure in matrix of M-MeC alloy prepared by the method of directed crystallization where M-nickel-base or cobalt-base solid solution, MeC-carbide of tantalum, niobium and hafnium is suggested. The model is based on the concept of dislocation replacement from interfaces into the matrix volume. It is stated that an essential difference of thermal expansion coefficients, a definite ratio of lattice periods of hardening phase and matrix and the presence of a dislocation network on the interface of ordered phases are the important factors determining a possibility of subgrain boundary formation

  15. Effect of Matrix Size on the Image Quality of Ultra-high-resolution CT of the Lung: Comparison of 512 × 512, 1024 × 1024, and 2048 × 2048. (United States)

    Hata, Akinori; Yanagawa, Masahiro; Honda, Osamu; Kikuchi, Noriko; Miyata, Tomo; Tsukagoshi, Shinsuke; Uranishi, Ayumi; Tomiyama, Noriyuki


    This study aimed to assess the effect of matrix size on the spatial resolution and image quality of ultra-high-resolution computed tomography (U-HRCT). Slit phantoms and 11 cadaveric lungs were scanned on U-HRCT. Slit phantom scans were reconstructed using a 20-mm field of view (FOV) with 1024 matrix size and a 320-mm FOV with 512, 1024, and 2048 matrix sizes. Cadaveric lung scans were reconstructed using 512, 1024, and 2048 matrix sizes. Three observers subjectively scored the images on a three-point scale (1 = worst, 3 = best), in terms of overall image quality, noise, streak artifact, vessel, bronchi, and image findings. The median score of the three observers was evaluated by Wilcoxon signed-rank test with Bonferroni correction. Noise was measured quantitatively and evaluated with the Tukey test. A P value of matrix had the highest resolution and was significantly better than the 1024 matrix in terms of overall quality, solid nodule, ground-glass opacity, emphysema, intralobular reticulation, honeycombing, and clarity of vessels (P matrix (P matrix size maintained the spatial resolution and improved the image quality and assessment of lung diseases, despite an increase in image noise, when compared to a 512 matrix size. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Matrix string models for exact (2,2) string theories in RR backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Giulio E-mail:


    We formulate matrix string models on a class of exact string backgrounds with non-constant RR-flux parameterized by a holomorphic prepotential function and with manifest (2,2) supersymmetry. This lifts these string theories to M-theory exposing the non-perturbative string interaction which is studied by generalizing the instanton asymptotic expansion, well established in the flat background case, to this more general case. We obtain also a companion matrix model with four manifest supersymmetries in eleven dimensions.

  17. Neuromorphic model of magnocellular and parvocellular visual paths: spatial resolution

    International Nuclear Information System (INIS)

    Aguirre, Rolando C; Felice, Carmelo J; Colombo, Elisa M


    Physiological studies of the human retina show the existence of at least two visual information processing channels, the magnocellular and the parvocellular ones. Both have different spatial, temporal and chromatic features. This paper focuses on the different spatial resolution of these two channels. We propose a neuromorphic model, so that they match the retina's physiology. Considering the Deutsch and Deutsch model (1992), we propose two configurations (one for each visual channel) of the connection between the retina's different cell layers. The responses of the proposed model have similar behaviour to those of the visual cells: each channel has an optimum response corresponding to a given stimulus size which decreases for larger or smaller stimuli. This size is bigger for the magno path than for the parvo path and, in the end, both channels produce a magnifying of the borders of a stimulus

  18. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson


    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  19. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)


    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  20. Mueller-matrix modeling and characterization of a dual-crystal electro-optic modulator. (United States)

    Cervantes-L, Joel; Serrano-Garcia, David I; Otani, Yukitoshi; Cense, Barry


    A general mathematical model based on Mueller-matrix calculation is presented to describe the optical behavior of a dual-crystal electro-optic modulator. The two crystals inside the modulator are oriented at ± 45° with respect to the horizontal, thereby cancelling natural birefringence and temperature-induced birefringence. We describe the behavior of the modulator as a function of the ellipticity of the crystals, the rotation angles of the crystals and the applied voltage. By fitting the measured data with a Mueller-matrix model that uses values for the ellipticity and orientation angles of the crystals, the simulated data and the experimental measurements could be matched. This Mueller-matrix includes physical properties of the thermally compensated electro optic modulator, and the matrix can be used in simulations where these device-specific properties are important, for instance in the modeling of a polarization-sensitive optical coherence tomography system.

  1. The finite and large-N behaviors of independent-value matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Ben Geloun, Joseph, E-mail: [Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario N2L 2Y5 (Canada); International Chair in Mathematical Physics and Applications, ICMPA–UNESCO Chair, 072 B.P. 50 Cotonou, Republic of Benin (Benin); Klauder, John R., E-mail: [Department of Physics and Department of Mathematics, University of Florida, Gainesville, Florida 32611-8440 (United States)


    We investigate the finite and large N behaviors of independent-value O(N)-invariant matrix models. These are models defined with matrix-type fields and with no gradient term in their action. They are generically nonrenormalizable but can be handled by nonperturbative techniques. We find that the functional integral of any O(N) matrix trace invariant may be expressed in terms of an O(N)-invariant measure. Based on this result, we prove that, in the limit that all interaction coupling constants go to zero, any interacting theory is continuously connected to a pseudo-free theory. This theory differs radically from the familiar free theory consisting in putting the coupling constants to zero in the initial action. The proof is given for generic, finite-size matrix models, whereas, in the limiting case N → ∞, we succeed in showing this behavior for restricted types of actions using a particular scaling of the parameters.

  2. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen


    to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions......Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... differences between the eight enzyme-substrate complexes were studied with particular emphasis on the active site, and possible sites for obtaining selectivity among the MMP's are discussed. Differences in the P1' pocket are well-documented and have been extensively exploited in inhibitor design. The present...

  3. Modeling Extreme Precipitation over East China with a Global Variable-Resolution Modeling Framework (MPAS) (United States)

    Zhao, C.; Xu, M.; Wang, Y.; Guo, J.; Hu, Z.; Ruby, L.; Duda, M.; Skamarock, W. C.


    Modeling extreme precipitation requires high-resolution scales. Traditional regional downscaling modeling framework has some issues such as ill-posed boundary conditions, mismatches between the driving global and regional dynamics and physics, and the lack of regional feedback to global scales. The non-hydrostatic Model for Prediction Across Scales (MPAS), a global variable-resolution modeling framework, offers an opportunity to obtain regional features at high-resolution scales using regional mesh refinement without boundary limiting. In this study, the MPAS model is first time applied with the refined meshes over East China at various high-resolutions (16 km and 4 km) to simulate an extreme precipitation event during 26-27 June 2012. The simulations are evaluated with the ground observations from the Chinese Meteorological Administration (CMA) network and the reanalysis data. Sensitivity experiments with different physics and forecast lead time are conducted to understand the uncertainties in simulating spatial and temporal variation of precipitation. The variable-resolution simulations are also compared with the traditional global uniform-resolution simulations at a relatively low scale ( 30 km) and a relatively high scale ( 16 km). The analysis shows that the variable-resolution simulation can capture the high-scale feature of precipitation over East China as the uniform-resolution simulation at a relatively high scale. It also indicates that high-resolution significantly improves the capability of simulating extreme precipitation. The MPAS simulations are also compared with the traditional limited-area simulations at similar scales using the Weather Research and Forecasting Model (WRF). The difference between the simulations using these two different modeling framework is also discussed.

  4. eWaterCycle: A high resolution global hydrological model (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin


    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  5. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited) (United States)

    Luettich, R.; Westerink, J. J.


    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  6. Assessing Australian Rainfall Projections in Two Model Resolutions (United States)

    Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.


    Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.

  7. Decadal prediction skill using a high-resolution climate model (United States)

    Monerie, Paul-Arthur; Coquart, Laure; Maisonnave, Éric; Moine, Marie-Pierre; Terray, Laurent; Valcke, Sophie


    The ability of a high-resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of a quarter of a degree in the ocean and of about 0.5° in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed based on initialized hindcasts over the 1993-2009 period. Significant skill in predicting sea surface temperatures is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). The model skill is mainly due to the external forcing associated with well-mixed greenhouse gases. A decrease in the global warming rate associated with a negative phase of the Pacific Decadal Oscillation is simulated by the model over a suite of 10-year periods when initialized from starting dates between 1999 and 2003. The model ability to predict regional change is investigated by focusing on the mid-90's Atlantic Ocean subpolar gyre warming. The model simulates the North Atlantic warming associated with a meridional heat transport increase, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation: a negative sea level pressure anomaly, located south of the subpolar gyre is associated with a wind speed decrease over the subpolar gyre. This leads to a reduced oceanic heat-loss and favors a northward displacement of anomalously warm and salty subtropical water that both concur to the subpolar gyre warming. We finally conclude that the subpolar gyre warming is mainly triggered by ocean dynamics with a possible contribution of atmospheric circulation favoring its persistence.

  8. A matrix approach to the statistics of longevity in heterogeneous frailty models

    Directory of Open Access Journals (Sweden)

    Hal Caswell


    Full Text Available Background: The gamma-Gompertz model is a fixed frailty model in which baseline mortality increasesexponentially with age, frailty has a proportional effect on mortality, and frailty at birth follows a gamma distribution. Mortality selects against the more frail, so the marginal mortality rate decelerates, eventually reaching an asymptote. The gamma-Gompertz is one of a wider class of frailty models, characterized by the choice of baseline mortality, effects of frailty, distributions of frailty, and assumptions about the dynamics of frailty. Objective: To develop a matrix model to compute all the statistical properties of longevity from thegamma-Gompertz and related models. Methods: I use the vec-permutation matrix formulation to develop a model in which individuals are jointly classified by age and frailty. The matrix is used to project the age and frailty dynamicsof a cohort and the fundamental matrix is used to obtain the statistics of longevity. Results: The model permits calculation of the mean, variance, coefficient of variation, skewness and all moments of longevity, the marginal mortality and survivorship functions, the dynamics of the frailty distribution, and other quantities. The matrix formulation extends naturally to other frailty models. I apply the analysis to the gamma-Gompertz model (for humans and laboratory animals, the gamma-Makeham model, and the gamma-Siler model, and to a hypothetical dynamic frailty model characterized by diffusion of frailty with reflecting boundaries.The matrix model permits partitioning the variance in longevity into components due to heterogeneity and to individual stochasticity. In several published human data sets, heterogeneity accounts for less than 10Š of the variance in longevity. In laboratory populations of five invertebrate animal species, heterogeneity accounts for 46Š to 83Š ofthe total variance in longevity.

  9. Modeling social influence through network autocorrelation : constructing the weight matrix

    NARCIS (Netherlands)

    Leenders, Roger Th. A. J.

    Many physical and social phenomena are embedded within networks of interdependencies, the so-called 'context' of these phenomena. In network analysis, this type of process is typically modeled as a network autocorrelation model. Parameter estimates and inferences based on autocorrelation models,

  10. High resolution modelling of extreme precipitation events in urban areas (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave


    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  11. Culture Models to Define Key Mediators of Cancer Matrix Remodeling

    Directory of Open Access Journals (Sweden)

    Emily Suzanne Fuller


    Full Text Available High grade serous epithelial ovarian cancer (HG-SOC is one of the most devastating gynecological cancers affecting women worldwide, with a poor survival rate despite clinical treatment advances. HG-SOC commonly metastasizes within the peritoneal cavity, primarily to the mesothelial cells of the omentum which regulate an extracellular matrix (ECM rich in collagens type I, III and IV along with laminin, vitronectin and fibronectin. Cancer cells depend on their ability to penetrate and invade secondary tissue sites to spread, however a detailed understanding of the molecular mechanisms underlying these processes remain largely unknown. Given the high metastatic potential of HG-SOC and the associated poor clinical outcome, it is extremely important to identify the pathways and the components of which that are responsible for the progression of this disease. In-vitro methods of recapitulating human disease processes are the critical first step in such investigations. In this context, establishment of an in-vitro ‘tumor-like’ microenvironment, such as 3D culture, to study early disease and metastasis of human HG-SOC is an important and highly insightful method. In recent years many such methods have been established to investigate the adhesion and invasion of human ovarian cancer cell lines. The aim of this review is to summarize recent developments in ovarian cancer culture systems and their use to investigate clinically relevant findings concerning the key players in driving human HG-SOC.

  12. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.


    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  13. Determination of Hamiltonian matrix for IBM4 and compare it is self value with shells model

    International Nuclear Information System (INIS)

    Slyman, S.; Hadad, S.; Souman, H.


    The Hamiltonian is determined using the procedure OAI and the mapping of (IBM4) states into the shell model, which is based on the seniority classification scheme. A boson sub-matrix of the shell model Hamiltonian for the (sd) 4 configuration is constructed, and is proved to produce the same eigenvalues as the shell model Hamiltonian for the corresponding fermion states. (authors)

  14. Efficient matrix-vector products for large-scale nuclear Shell-Model calculations


    Toivanen, J.


    A method to accelerate the matrix-vector products of j-scheme nuclear Shell-Model Configuration Interaction (SMCI) calculations is presented. The method takes advantage of the matrix product form of the j-scheme proton-neutron Hamiltonian matrix. It is shown that the method can speed up unrestricted large-scale pf-shell calculations by up to two orders of magnitude compared to previously existing related j-scheme method. The new method allows unrestricted SMCI calculations up to j-scheme dime...

  15. Modelling prospects for in situ matrix diffusion at Palmottu natural analogue site, SW Finland

    International Nuclear Information System (INIS)

    Rasilainen, K.; Suksi, J.


    Concentration distributions of natural decay chains 4n+2 and 4n+3 in crystalline rock intersected by a natural fracture were measured. Calcite coating on the same fracture surface was dated. Material properties of the rock matrix, and nuclide concentrations in groundwater were measured. The interpretation of the concentration distributions is based on the classical matrix diffusion concept. Although support was obtained, this calibration exercise does not yet validate the model. Besides initial and boundary conditions, matrix properties are uncertain due to the small amount of rock material. Experimental sorption data was not available, but its importance and the need for systematic studies was demonstrated. (orig.) (10 refs., 5 figs., 5 tabs.)

  16. Testing Constancy of the Error Covariance Matrix in Vector Models against Parametric Alternatives using a Spectral Decomposition

    DEFF Research Database (Denmark)

    Yang, Yukay

    I consider multivariate (vector) time series models in which the error covariance matrix may be time-varying. I derive a test of constancy of the error covariance matrix against the alternative that the covariance matrix changes over time. I design a new family of Lagrange-multiplier tests against...... to consider multivariate volatility modelling....

  17. Integrating vital rate variability into perturbation analysis: an evaluation for matrix population models of six plant species

    NARCIS (Netherlands)

    Zuidema, P.A.; Franco, M.


    1 Matrix population models are usually constructed by employing average values of vital rates (survival, growth and reproduction) for each size category. Perturbation analyses of matrix models assess the influence of vital rates or matrix elements on population growth rate. They consider the impact

  18. Covariant field equations, gauge fields and conservation laws from Yang-Mills matrix models

    International Nuclear Information System (INIS)

    Steinacker, Harold


    The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.

  19. Aroma behaviour during steam cooking within a potato starch-based model matrix. (United States)

    Descours, Emilie; Hambleton, Alicia; Kurek, Mia; Debeaufort, Fréderic; Voilley, Andrée; Seuvre, Anne-Marie


    To help understand the organoleptic qualities of steam cooked foods, the kinetics of aroma release during cooking in a potato starch based model matrix was studied. Behaviour of components having a major impact in potato flavour were studied using solid phase micro extraction-gas chromatography (SPME-GC). Evolution of microstructure of potato starch model-matrix during steam cooking process was analyzed using environmental scanning electron microscopy (ESEM). Both aroma compounds that are naturally present in starch matrix and those that were added were analyzed. Both the aroma compounds naturally presented and those added had different behaviour depending on their physico-chemical properties (hydrophobicity, saturation vapour pressure, molecular weight, etc.). The physical state of potato starch influences of the retention of aromatized matrix with Starch gelatinization appearing to be the major phenomenon influencing aroma release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A planar model study of creep in metal matrix composites with misaligned short fibres

    DEFF Research Database (Denmark)

    Sørensen, N.J.


    The effect of fibre misalignment on the creep behaviour of metal matrix composites is modelled, including hardening behaviour (stage 1), dynamic recovery and steady state creep (stage 2) of the matrix material, using an internal variable constitutive model for the creep behaviour of the metal...... matrix. Numerical plane strain results in terms of average properties and detailed local deformation behaviour up to large strains are needed to show effects of fibre misalignment on the development of inelastic strains and the resulting over-all creep resistance of the material. The creep resistance...... for the composite is markedly reduced by the fibre misalignment and the time needed to reach an approximate steady state is elongated due to the strain induced rotation of the short fibres in the matrix....

  1. Matrix Diffusion for Performance Assessment - Experimental Evidence, Modelling Assumptions and Open Issues

    International Nuclear Information System (INIS)

    Jakob, A.


    In this report a comprehensive overview on the matrix diffusion of solutes in fractured crystalline rocks is presented. Some examples from observations in crystalline bedrock are used to illustrate that matrix diffusion indeed acts on various length scales. Fickian diffusion is discussed in detail followed by some considerations on rock porosity. Due to the fact that the dual-porosity medium model is a very common and versatile method for describing solute transport in fractured porous media, the transport equations and the fundamental assumptions, approximations and simplifications are discussed in detail. There is a variety of geometrical aspects, processes and events which could influence matrix diffusion. The most important of these, such as, e.g., the effect of the flow-wetted fracture surface, channelling and the limited extent of the porous rock for matrix diffusion etc., are addressed. In a further section open issues and unresolved problems related to matrix diffusion are mentioned. Since matrix diffusion is one of the key retarding processes in geosphere transport of dissolved radionuclide species, matrix diffusion was consequently taken into account in past performance assessments of radioactive waste repositories in crystalline host rocks. Some issues regarding matrix diffusion are site-specific while others are independent of the specific situation of a planned repository for radioactive wastes. Eight different performance assessments from Finland, Sweden and Switzerland were considered with the aim of finding out how matrix diffusion was addressed, and whether a consistent picture emerges regarding the varying methodology of the different radioactive waste organisations. In the final section of the report some conclusions are drawn and an outlook is given. An extensive bibliography provides the reader with the key papers and reports related to matrix diffusion. (author)

  2. On reducibility and ergodicity of population projection matrix models

    DEFF Research Database (Denmark)

    Stott, Iain; Townley, Stuart; Carslake, David


    1. Population projection matrices (PPMs) are probably the most commonly used empirical population models. To be useful for predictive or prospective analyses, PPM models should generally be irreducible (the associated life cycle graph contains the necessary transition rates to facilitate pathways...... structure used in the population projection). In our sample of published PPMs, 15·6% are non-ergodic. 3. This presents a problem: reducible–ergodic models often defy biological rationale in their description of the life cycle but may or may not prove problematic for analysis as they often behave similarly...... to irreducible models. Reducible–non-ergodic models will usually defy biological rationale in their description of the both the life cycle and population dynamics, hence contravening most analytical methods. 4. We provide simple methods to evaluate reducibility and ergodicity of PPM models, present illustrative...

  3. Unitary-matrix models as exactly solvable string theories (United States)

    Periwal, Vipul; Shevitz, Danny


    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  4. Application of the Matrix Model of Hydrocyclone in Coal Preparation

    Directory of Open Access Journals (Sweden)

    Leško Michal


    Full Text Available The paper describes mathematical model of the ”water only” cyclone function on the basis Of experimental data. The experiments have been realized in a pilot plant cyclone. The model was verified in the case of steam coal preparation from the Cíge¾, Handlová and Nováky localities. The obtained results confirmed that the applied model is suitable for the design of cyclones parameters under the operating condition.

  5. Effect of model resolution on a regional climate model simulation over southeast Australia

    KAUST Repository

    Evans, J. P.


    Dynamically downscaling climate projections from global climate models (GCMs) for use in impacts and adaptation research has become a common practice in recent years. In this study, the CSIRO Mk3.5 GCM is downscaled using the Weather Research and Forecasting (WRF) regional climate model (RCM) to medium (50 km) and high (10 km) resolution over southeast Australia. The influence of model resolution on the present-day (1985 to 2009) modelled regional climate and projected future (2075 to 2099) changes are examined for both mean climate and extreme precipitation characteristics. Increasing model resolution tended to improve the simulation of present day climate, with larger improvements in areas affected by mountains and coastlines. Examination of circumstances under which increasing the resolution decreased performance revealed an error in the GCM circulation, the effects of which had been masked by the coarse GCM topography. Resolution modifications to projected changes were largest in regions with strong topographic and coastline influences, and can be large enough to change the sign of the climate change projected by the GCM. Known physical mechanisms for these changes included orographic uplift and low-level blocking of air-masses caused by mountains. In terms of precipitation extremes, the GCM projects increases in extremes even when the projected change in the mean was a decrease: but this was not always true for the higher resolution models. Thus, while the higher resolution RCM climate projections often concur with the GCM projections, there are times and places where they differ significantly due to their better representation of physical processes. It should also be noted that the model resolution can modify precipitation characteristics beyond just its mean value.

  6. Influence of input matrix representation on topic modelling performance

    CSIR Research Space (South Africa)

    De Waal, A


    Full Text Available Topic models explain a collection of documents with a small set of distributions over terms. These distributions over terms define the topics. Topic models ignore the structure of documents and use a bag-of-words approach which relies solely...

  7. Matrix models with Penner interaction inspired by interacting ...

    Indian Academy of Sciences (India)


    Jan 29, 2015 ... Then the genus is calculated for every structure and plotted as a function of length. The genus distribution function is compared with the prediction from the nonlinear (NL) model. The specific heat and distribution of structure with temperature calculated from the NL model shows that the NL inter-action is ...

  8. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading (United States)

    Li, Longbiao


    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  9. Evaluation of the Actuator Line Model with coarse resolutions (United States)

    Draper, M.; Usera, G.


    The aim of the present paper is to evaluate the Actuator Line Model (ALM) in spatial resolutions coarser than what is generally recommended, also using larger time steps. To accomplish this, the ALM has been implemented in the open source code caffa3d.MBRi and validated against experimental measurements of two wind tunnel campaigns (stand alone wind turbine and two wind turbines in line, case A and B respectively), taking into account two spatial resolutions: R/8 and R/15 (R is the rotor radius). A sensitivity analysis in case A was performed in order to get some insight into the influence of the smearing factor (3D Gaussian distribution) and time step size in power and thrust, as well as in the wake, without applying a tip loss correction factor (TLCF), for one tip speed ratio (TSR). It is concluded that as the smearing factor is larger or time step size is smaller the power is increased, but the velocity deficit is not as much affected. From this analysis, a smearing factor was obtained in order to calculate precisely the power coefficient for that TSR without applying TLCF. Results with this approach were compared with another simulation choosing a larger smearing factor and applying Prandtl's TLCF, for three values of TSR. It is found that applying the TLCF improves the power estimation and weakens the influence of the smearing factor. Finally, these 2 alternatives were tested in case B, confirming that conclusion.

  10. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model (United States)

    Li, J.


    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  11. Polymer Matrix Composites using Fused Deposition Modeling Technology Project (United States)

    National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...

  12. Adapted Boolean network models for extracellular matrix formation

    Directory of Open Access Journals (Sweden)

    Wollbold Johannes


    Full Text Available Abstract Background Due to the rapid data accumulation on pathogenesis and progression of chronic inflammation, there is an increasing demand for approaches to analyse the underlying regulatory networks. For example, rheumatoid arthritis (RA is a chronic inflammatory disease, characterised by joint destruction and perpetuated by activated synovial fibroblasts (SFB. These abnormally express and/or secrete pro-inflammatory cytokines, collagens causing joint fibrosis, or tissue-degrading enzymes resulting in destruction of the extra-cellular matrix (ECM. We applied three methods to analyse ECM regulation: data discretisation to filter out noise and to reduce complexity, Boolean network construction to implement logic relationships, and formal concept analysis (FCA for the formation of minimal, but complete rule sets from the data. Results First, we extracted literature information to develop an interaction network containing 18 genes representing ECM formation and destruction. Subsequently, we constructed an asynchronous Boolean network with biologically plausible time intervals for mRNA and protein production, secretion, and inactivation. Experimental gene expression data was obtained from SFB stimulated by TGFβ1 or by TNFα and discretised thereafter. The Boolean functions of the initial network were improved iteratively by the comparison of the simulation runs to the experimental data and by exploitation of expert knowledge. This resulted in adapted networks for both cytokine stimulation conditions. The simulations were further analysed by the attribute exploration algorithm of FCA, integrating the observed time series in a fine-tuned and automated manner. The resulting temporal rules yielded new contributions to controversially discussed aspects of fibroblast biology (e.g., considerable expression of TNF and MMP9 by fibroblasts stimulation and corroborated previously known facts (e.g., co-expression of collagens and MMPs after TNF

  13. High-resolution Doppler model of the human gait (United States)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.


    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  14. Followee recommendation in microblog using matrix factorization model with structural regularization. (United States)

    Yu, Yan; Qiu, Robin G


    Microblog that provides us a new communication and information sharing platform has been growing exponentially since it emerged just a few years ago. To microblog users, recommending followees who can serve as high quality information sources is a competitive service. To address this problem, in this paper we propose a matrix factorization model with structural regularization to improve the accuracy of followee recommendation in microblog. More specifically, we adapt the matrix factorization model in traditional item recommender systems to followee recommendation in microblog and use structural regularization to exploit structure information of social network to constrain matrix factorization model. The experimental analysis on a real-world dataset shows that our proposed model is promising.

  15. The Topological CP1 Model and the Large-N Matrix Integral (United States)

    Eguchi, Tohru; Yang, Sung-Kil

    We discuss the topological CP1 model which consists of the holomorphic maps from Riemann surfaces onto CP1. We construct a large-N matrix model which reproduces precisely the partition function of the CP1 model at all genera of Riemann surfaces. The action of our matrix model has the form \\begin{array}{c} {\\rm Tr}\\, V (M) = -2\\, {\\rm Tr}\\, M (\\log M -1) +2\\displaystyle\\sum t_{n, P}\\, {\\rm Tr}\\, M^n (\\log M -c_n)\\\\[5pt] \\kern8pt +\\displaystyle\\sum 1/n\\cdot t_{n -1, Q}\\, {\\rm Tr}\\, M^n\\,, \\quad c_n =\\displaystyle\\sum_1^n 1/j\\,, \\end{array} where M is an N × N Hermitian matrix and tn,P(tn,Q), (n = 0, 1, 2, …) are the coupling constants of the nth descendant of the puncture (Kähler) operator.

  16. Exact solution of Chern-Simons-matter matrix models with characteristic/orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Tierz, Miguel [Departamento de Matemática, Grupo de Física Matemática,Faculdade de Ciências, Universidade de Lisboa,Campo Grande, Edifício C6, 1749-016 Lisboa (Portugal)


    We solve for finite N the matrix model of supersymmetric U(N) Chern-Simons theory coupled to N{sub f} fundamental and N{sub f} anti-fundamental chiral multiplets of R-charge 1/2 and of mass m, by identifying it with an average of inverse characteristic polynomials in a Stieltjes-Wigert ensemble. This requires the computation of the Cauchy transform of the Stieltjes-Wigert polynomials, which we carry out, finding a relationship with Mordell integrals, and hence with previous analytical results on the matrix model. The semiclassical limit of the model is expressed, for arbitrary N{sub f}, in terms of a single Hermite polynomial. This result also holds for more general matter content, involving matrix models with double-sine functions.

  17. Low Resolution Refinement of Atomic Models Against Crystallographic Data. (United States)

    Nicholls, Robert A; Kovalevskiy, Oleg; Murshudov, Garib N


    This review describes some of the problems encountered during low-resolution refinement and map calculation. Refinement is considered as an application of Bayes' theorem, allowing combination of information from various sources including crystallographic experimental data and prior chemical and structural knowledge. The sources of prior knowledge relevant to macromolecules include basic chemical information such as bonds and angles, structural information from reference models of known homologs, knowledge about secondary structures, hydrogen bonding patterns, and similarity of non-crystallographically related copies of a molecule. Additionally, prior information encapsulating local conformational conservation is exploited, keeping local interatomic distances similar to those in the starting atomic model. The importance of designing an accurate likelihood function-the only link between model parameters and observed data-is emphasized. The review also reemphasizes the importance of phases, and describes how the use of raw observed amplitudes could give a better correlation between the calculated and "true" maps. It is shown that very noisy or absent observations can be replaced by calculated structure factors, weighted according to the accuracy of the atomic model. This approach helps to smoothen the map. However, such replacement should be used sparingly, as the bias toward errors in the model could be too much to avoid. It is in general recommended that, whenever a new map is calculated, map quality should be judged by inspection of the parts of the map where there is no atomic model. It is also noted that it is advisable to work with multiple blurred and sharpened maps, as different parts of a crystal may exhibit different degrees of mobility. Doing so can allow accurate building of atomic models, accounting for overall shape as well as finer structural details. Some of the results described in this review have been implemented in the programs REFMAC5, Pro

  18. Exact results for quantum chaotic systems and one-dimensional fermions from matrix models

    International Nuclear Information System (INIS)

    Simons, B.D.; Lee, P.A.; Altshuler, B.L.


    We demonstrate a striking connection between the universal parametric correlations of the spectra of quantum chaotic systems and a class of integrable quantum hamiltonians. We begin by deriving a non-perturbative expression for the universal m-point correlation function of the spectra of random matrix ensembles in terms of a non-linear supermatrix σ-model. These results are shown to coincide with those from previous studies of weakly disordered metallic systems. We then introduce a continuous matrix model which describes the quantum mechanics of the Sutherland hamiltonian describing particles interacting through an inverse-square pairwise potential. We demonstrate that a field theoretic approach can be employed to determine exact analytical expressions for correlations of the quantum hamiltonian. The results, which are expressed in terms of a non-linear σ-model, are shown to coincide with those for analogous correlation functions of random matrix ensembles after an appropriate change of variables. We also discuss possible generalizations of the matrix model to higher dimensions. These results reveal a common mathematical structure which underlies branches of theoretical physics ranging from continuous matrix models to strongly interacting quantum hamiltonians, and universalities in the spectra of quantum chaotic systems. (orig.)

  19. General structure of democratic mass matrix of quark sector in E{sub 6} model

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, R., E-mail: [Ankara (Turkey); Çiftci, A. K., E-mail: [Ankara University, Ankara (Turkey)


    An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.


    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.


    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  1. High-resolution urban flood modelling - a joint probability approach (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen


    The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge

  2. Modelling of packet traffic with matrix analytic methods

    DEFF Research Database (Denmark)

    Andersen, Allan T.


    vot reveal any adverse behaviour. In fact the observed traffic seemed very close to what would be expected from Poisson traffic. The Changeover/Changeback procedure in SS7, which is used to redirect traffic in case of link failure, has been analyzed. The transient behaviour during a Changeover...... scenario was modelled using Markovian models. The Ordinary Differential Equations arising from these models were solved numerically. The results obtained seemed very similar to those obtained using a different method in previous work by Akinpelu & Skoog 1985. Recent measurement studies of packet traffic...... is found by noting the close relationship with the expressions for the corresponding infinite queue. For the special case of a batch Poisson arrival process this observation makes it possible to express the queue length at an arbitrary in terms of the corresponding queue lengths for the infinite case....

  3. 3D self-consistent modeling of a matrix source of negative hydrogen ions. (United States)

    Tarnev, Kh; Demerdjiev, A; Shivarova, A; Lishev, St


    The paper is in the scope of studies on the rf driving of a matrix source of negative hydrogen ions: a matrix of small radius discharges with planar-coil inductive driving and single aperture extraction from each discharge. The results from a three-dimensional model, in which plasma description is coupled to electrodynamics, confirm former conclusion that a single coil driving of the whole matrix by a zigzag coil with an omega-shaped conductor on the bottom of each discharge tube ensures efficient rf power deposition to the plasma. The latter is due to similarities with the rf driving of a single discharge by a single planar coil, shown by the obtained induced current and spatial distribution of the plasma parameters. Distinctions associated with the coil configuration as a single coil for the whole matrix are also discussed.

  4. A Convex Model for Nonnegative Matrix Factorization and Dimensionality Reduction on Physical Space (United States)

    Esser, Ernie; Moller, Michael; Osher, Stanley; Sapiro, Guillermo; Xin, Jack


    A collaborative convex framework for factoring a data matrix $X$ into a non-negative product $AS$, with a sparse coefficient matrix $S$, is proposed. We restrict the columns of the dictionary matrix $A$ to coincide with certain columns of the data matrix $X$, thereby guaranteeing a physically meaningful dictionary and dimensionality reduction. We use $l_{1,\\infty}$ regularization to select the dictionary from the data and show this leads to an exact convex relaxation of $l_0$ in the case of distinct noise free data. We also show how to relax the restriction-to-$X$ constraint by initializing an alternating minimization approach with the solution of the convex model, obtaining a dictionary close to but not necessarily in $X$. We focus on applications of the proposed framework to hyperspectral endmember and abundances identification and also show an application to blind source separation of NMR data.

  5. The Particle-Matrix model: limitations and further improvements needed

    DEFF Research Database (Denmark)

    Cepuritis, Rolands; Jacobsen, Stefan; Spangenberg, Jon

    workability for different types of concrete, but has also indicated that somepotential cases exist when its application is limited. The paper presents recent studies onimproving the method by analysing how the PMM one-point flow parameter λQ can beexpressed by rheological models (Bingham and Herschel-Bulkley)....

  6. Population dynamics of species-rich ecosystems: the mixture of matrix population models approach

    DEFF Research Database (Denmark)

    Mortier, Frédéric; Rossi, Vivien; Guillot, Gilles


    Matrix population models are widely used to predict population dynamics, but when applied to species-rich ecosystems with many rare species, the small population sample sizes hinder a good fit of species-specific models. This issue can be overcome by assigning species to groups to increase the size...... species with similar population dynamics....

  7. Models based on multichannel R-matrix theory for evaluating light element reactions

    International Nuclear Information System (INIS)

    Dodder, D.C.; Hale, G.M.; Nisley, R.A.; Witte, K.; Young, P.G.


    Multichannel R-matrix theory has been used as a basis for models for analysis and evaluation of light nuclear systems. These models have the characteristic that data predictions can be made utilizing information derived from other reactions related to the one of primary interest. Several examples are given where such an approach is valid and appropriate. (auth.)

  8. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.


    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  9. Statistical models for the estimation of the origin-destination matrix from traffic counts

    Directory of Open Access Journals (Sweden)

    Anselmo Ramalho Pitombeira Neto


    Full Text Available In transportation planning, one of the first steps is to estimate the travel demand. The final product of the estimation process is an origin-destination (OD matrix, whose entries correspond to the number of trips between pairs of origin-destination zones in a study region. In this paper, we review the main statistical models proposed in the literature for the estimation of the OD matrix based on traffic counts. Unlike reconstruction models, statistical models do not aim at estimating the exact OD matrix corresponding to observed traffic volumes, but they rather aim at estimating the parameters of a statistical model of the population of OD matrices. Initially we define the estimation problem, emphasizing its underspecified nature, which has lead to the development of several models based on different approaches. We describe static models whose parameters are estimated by means of maximum likelihood, the method of moments, and Bayesian inference. We also describe  some recent dynamic models. Following that, we discuss research questions related to the underspecification problem, model assumptions and the estimation of the route choice matrix, and indicate promising research directions.

  10. A study on the determination of phosphorus in Th-U matrix by a high resolution spectroanalyser (ICP-AES)

    International Nuclear Information System (INIS)

    Save, Neeta; Kumar, Neeraj; Jaiswal, Rajesh; Ghosh, Seema; Malav, R.K.; Das, D.K.; Prakash, Amrit; Behere, P.G.; Afzal, Mohd


    Phosphorus is present as an impurity in Thoria and constitutes an important chemical specification of the Thoria based fuel. The present paper depicts the importance of determination of phosphorus, which forms an important quality control step during the fabrication of mixed oxide (Th-U)O 2 pellet. A high resolution spectroanalyser using ICP-AES has been used for the determination of Phosphorus in (ThO 2 -3.25%UO 2 ). (author)

  11. A high-resolution European dataset for hydrologic modeling (United States)

    Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta


    There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as


    Directory of Open Access Journals (Sweden)

    A. S. Vasilyev


    Full Text Available The paper deals with modeling of dynamic systems with modulation by the possibilities of state-space method. This method, being the basis of modern control theory, is based on the possibilities of vector-matrix formalism of linear algebra and helps to solve various problems of technical control of continuous and discrete nature invariant with respect to the dimension of their “input-output” objects. Unfortunately, it turned its back on the wide group of control systems, which hardware environment modulates signals. The marked system deficiency is partially offset by this paper, which proposes Kronecker vector-matrix representations for purposes of system representation of processes with signal modulation. The main result is vector-matrix representation of processes with modulation with no formal difference from continuous systems. It has been found that abilities of these representations could be effectively used in research of systems with modulation. Obtained model representations of processes with modulation are best adapted to the state-space method. These approaches for counting eigenvalues of Kronecker matrix summaries, that are matrix basis of model representations of processes described by Kronecker vector products, give the possibility to use modal direction in research of dynamics for systems with modulation. It is shown that the use of controllability for eigenvalues of general matrixes applied to Kronecker structures enabled to divide successfully eigenvalue spectrum into directed and not directed components. Obtained findings including design problems for models of dynamic processes with modulation based on the features of Kronecker vector and matrix structures, invariant with respect to the dimension of input-output relations, are applicable in the development of alternate current servo drives.

  13. Lexical ambiguity resolution for Turkish in direct transfer machine translation models


    Tantuğ, A. Cüneyd; Tantug, A. Cuneyd; Oflazer, Kemal; Adalı, Eşref; Adali, Esref


    This paper presents a statistical lexical ambiguity resolution method in direct transfer machine translation models in which the target language is Turkish. Since direct transfer MT models do not have full syntactic information, most of the lexical ambiguity resolution methods are not very helpful. Our disambiguation model is based on statistical language models. We have investigated the performances of some statistical language model types and parameters in lexical ambiguity resolution for o...

  14. Modelling thermomechanical conditions at the tool/matrix interface in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper


    In friction stir welding the material flow is among others controlled by the contact condition at the tool interface, the thermomechanical state of the matrix and the welding parameters. The conditions under which the deposition process is successful are not fully understood and in most models...... frictional and plastic dissipation. Of special interest is the contact condition along the shoulder/matrix and probe/matrix interfaces, as especially the latter affects the efficiency of the deposition process. The thermo-mechanical state in the workpiece is established by modelling both the dwell and weld...... presented previously in literature, the modelling of the material flow at the tool interface has been prescribed as boundary conditions, i.e. the material is forced to keep contact with the tool. The objective of the present work is to analyse the thermomechanical conditions under which a consolidated weld...

  15. Image-based modeling of the flow transition from a Berea rock matrix to a propped fracture (United States)

    Sanematsu, P.; Willson, C. S.; Thompson, K. E.


    In the past decade, new technologies and advances in horizontal hydraulic fracturing to extract oil and gas from tight rocks have raised questions regarding the physics of the flow and transport processes that occur during production. Many of the multi-dimensional details of flow from the rock matrix into the fracture and within the proppant-filled fracture are still unknown, which leads to unreliable well production estimations. In this work, we use x-ray computed micro tomography (XCT) to image 30/60 CarboEconoprop light weight ceramic proppant packed between berea sandstone cores (6 mm in diameter and ~2 mm in height) under 4000 psi (~28 MPa) loading stress. Image processing and segmentation of the 6 micron voxel resolution tomography dataset into solid and void space involved filtering with anisotropic diffusion (AD), segmentation using an indicator kriging (IK) algorithm, and removal of noise using a remove islands and holes program. Physically-representative pore network structures were generated from the XCT images, and a representative elementary volume (REV) was analyzed using both permeability and effective porosity convergence. Boundary conditions were introduced to mimic the flow patterns that occur when fluid moves from the matrix into the proppant-filled fracture and then downstream within the proppant-filled fracture. A smaller domain, containing Berea and proppants close to the interface, was meshed using an in-house unstructured meshing algorithm that allows different levels of refinement. Although most of this domain contains proppants, the Berea section accounted for the majority of the elements due to mesh refinement in this region of smaller pores. A finite element method (FEM) Stokes flow model was used to provide more detailed insights on the flow transition from rock matrix to fracture. Results using different pressure gradients are used to describe the flow transition from the Berea rock matrix to proppant-filled fracture.

  16. Deformed type 0A matrix model and super-Liouville theory for fermionic black holes

    International Nuclear Information System (INIS)

    Ahn, Changrim; Kim, Chanju; Park, Jaemo; Suyama, Takao; Yamamoto, Masayoshi


    We consider a c-circumflex = 1 model in the fermionic black hole background. For this purpose we consider a model which contains both the N 1 and the N = 2 super-Liouville interactions. We propose that this model is dual to a recently proposed type 0A matrix quantum mechanics model with vortex deformations. We support our conjecture by showing that non-perturbative corrections to the free energy computed by both the matrix model and the super-Liouville theories agree exactly by treating the N = 2 interaction as a small perturbation. We also show that a two-point function on sphere calculated from the deformed type 0A matrix model is consistent with that of the N = 2 super-Liouville theory when the N = 1 interaction becomes small. This duality between the matrix model and super-Liouville theories leads to a conjecture for arbitrary n-point correlation functions of the N = 1 super-Liouville theory on the sphere

  17. Modeling of Arctic Storms with a Variable High-Resolution General Circulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roesler, Erika Louise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bosler, Peter Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The Department of Energy’s (DOE) Biological and Environmental Research project, “Water Cycle and Climate Extremes Modeling” is improving our understanding and modeling of regional details of the Earth’s water cycle. Sandia is using high resolution model behavior to investigate storms in the Arctic.

  18. Numerical transfer-matrix study of a model with competing metastable states

    DEFF Research Database (Denmark)

    Fiig, T.; Gorman, B.M.; Rikvold, P.A.


    The Blume-Capel model, a three-state lattice-gas model capable of displaying competing metastable states, is investigated in the limit of weak, long-range interactions. The methods used are scalar field theory, a numerical transfer-matrix method, and dynamical Monte Carlo simulations...... 'metastable free-energy density This transfer-matrix approach gives a free-energy cost of nucleation that supports the proportionality relation for the decay rate of the metastable phase T proportional to\\Imf alpha\\, even in cases where two metastable states compete. The picture that emerges from this study...

  19. Higher genus correlators for the hermitian matrix model with multiple cuts

    International Nuclear Information System (INIS)

    Akemann, G.


    An iterative scheme is set up for solving the loop equation of the hermitian one-matrix model with a multi-cut structure. Explicit results are presented for genus one for an arbitrary but finite number of cuts. Due to the complicated form of the boundary conditions, the loop correlators now contain elliptic integrals. This demonstrates the existence of new universality classes for the hermitian matrix model. The two-cut solution is investigated in more detail, including the double scaling limit. It is shown that in special cases it differs from the known continuum solution with one cut. (orig.)

  20. Constraints effects in swollen particulate composites with hyperelastic polymer matrix of finite extensibility modeled by FEM (United States)

    Šomvársky, Ján; Dušek, Karel; Dušková-Smrčková, Miroslava


    The class of particulate composites with cross-linked hyperelastic polymer matrix and non-deformable filler particles represents many important biopolymer and engineering materials. At application conditions, the matrix is either in the swollen state, or the swollen state is utilized for matrix characterization. In this contribution, a numerical model for simulation of equilibrium stress-strain and swelling behavior of this composite material was developed based on finite element method using COMSOL Multiphysics® software. In the constitutive equations (Gibbs energy), the elastic contribution is based on statistical-mechanical model of a network composed of freely jointed chains of finite extensibility and polymer-solvent mixing term is derived from the Flory-Huggins lattice model. A perfect adhesion of matrix-to-particle is assumed. The adhesion of matrix to stiff surface generates stress and degree-of-swelling fields in the composite. The existence of these fields determines the mechanical and swelling properties of the composite. Spatial distribution of filler particles in the composite plays an important role.

  1. High Resolution Modelling of Crop Response to Climate Change (United States)

    Mirmasoudi, S. S.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.


    Crop production is one of the most vulnerable sectors to climatic variability and change. Increasing atmospheric CO2 concentration and other greenhouse gases are causing increases in global temperature. In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. Increasing temperatures may create heat stress for some crops regardless of soil water supply, and increasing surface O3 and other pollutants may damage crops and ecosystems. CO2 fertilization may or may not be an advantage in future. This work is part of a larger study that will address a series of questions based on a range of future climate scenarios for several watersheds in western North America. The key questions are: (1) how will snowmelt and rainfall runoff vary in future; (2) how will seasonal and inter-annual soil water supply vary, and how might that impacts food supplies; (3) how might heat stress impact (some) crops even with adequate soil water; (4) will CO2 fertilization alter crop yields; and (5) will pollution loads, particularly O3, cause meaningful changes to crop yields? The Generate Earth Systems Science (GENESYS) Spatial Hydrometeorological Model is an innovative, efficient, high-resolution model designed to assess climate driven changes in mountain snowpack derived water supplies. We will link GENESYS to the CROPWAT crop model system to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios. Literature bases studies will be utilised to develop approximate crop response functions for heat stress, CO2 fertilization and for O3 damages. The overall objective is to create modeling systems that allows meaningful assessment of agricultural productivity at a watershed scale under a

  2. Optimal waste load allocation using graph model for conflict resolution. (United States)

    Saberi, Leila; Niksokhan, Mohammad Hossein


    In this paper, a new methodology is proposed for waste load allocation in river systems using the decision support system (DSS) for the graph model for conflict resolution II (GMCRII), multi-criteria decision making (MCDM) analysis and the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. Minimization of total treatment and penalty costs and minimization of biological oxygen demand violation of standards at the check point are considered as the main objectives of this study. At first, the water quality along the river was simulated using the Streeter-Phelps (S-P) equation coupled with the MOPSO model. Thereby a trade-off curve between the objectives is obtained and a set of non-dominated solutions is selected. In the next step, the best alternative is chosen using MCDM techniques and the GMCRII DSS package and non-cooperative stability definitions. The applicability and efficiency of the methodology are examined in a real-world case study of the Sefidrud River in the northern part of Iran.

  3. Large N Penner matrix model and a novel asymptotic formula for the generalized Laguerre polynomials

    International Nuclear Information System (INIS)

    Deo, N


    The Gaussian Penner matrix model is re-examined in the light of the results which have been found in double-well matrix models. The orthogonal polynomials for the Gaussian Penner model are shown to be the generalized Laguerre polynomials L (α) n (x) with α and x depending on N, the size of the matrix. An asymptotic formula for the orthogonal polynomials is derived following closely the orthogonal polynomial method of Deo (1997 Nucl. Phys. B 504 609). The universality found in the double-well matrix model is extended to include non-polynomial potentials. An asymptotic formula is also found for the Laguerre polynomial using the saddle-point method by rescaling α and x with N. Combining these results a novel asymptotic formula is found for the generalized Laguerre polynomials (different from that given in Szego's book) in a different asymptotic regime. This may have applications in mathematical and physical problems in the future. The density-density correlators are derived and are the same as those found for the double-well matrix models. These correlators in the smoothed large N limit are sensitive to odd and even N where N is the size of the matrix. These results for the two-point density-density correlation function may be useful in finding eigenvalue effects in experiments in mesoscopic systems or small metallic grains. There may be applications to string theory as well as the tunnelling of an eigenvalue from one valley to the other being an important quantity there

  4. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.


    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  5. Impact of atmospheric model resolution on simulation of ENSO feedback processes: a coupled model study (United States)

    Hua, Lijuan; Chen, Lin; Rong, Xinyao; Su, Jingzhi; Wang, Lu; Li, Tim; Yu, Yongqiang


    This study examines El Niño-Southern Oscillation (ENSO)-related air-sea feedback processes in a coupled general circulation model (CGCM) to gauge model errors and pin down their sources in ENSO simulation. Three horizontal resolutions of the atmospheric component (T42, T63 and T106) of the CGCM are used to investigate how the simulated ENSO behaviors are affected by the resolution. We find that air-sea feedback processes in the three experiments mainly differ in terms of both thermodynamic and dynamic feedbacks. We also find that these processes are simulated more reasonably in the highest resolution version than in the other two lower resolution versions. The difference in the thermodynamic feedback arises from the difference in the shortwave-radiation (SW) feedback. Due to the severely (mildly) excessive cold tongue in the lower (higher) resolution version, the SW feedback is severely (mildly) underestimated. The main difference in the dynamic feedback processes lies in the thermocline feedback and the zonal-advection feedback, both of which are caused by the difference in the anomalous thermocline response to anomalous zonal wind stress. The difference in representing the anomalous thermocline response is attributed to the difference in meridional structure of zonal wind stress anomaly in the three simulations, which is linked to meridional resolution.

  6. A high-resolution ambient seismic noise model for Europe (United States)

    Kraft, Toni


    measurement precision (i.e. earthquake location), while considering this extremely complex boundary condition. To solve this problem I have developed a high-resolution ambient seismic noise model for Europe. The model is based on land-use data derived from satellite imagery by the EU-project CORINE in a resolution of 100x100m. The the CORINE data consists of several land-use classes, which, besides others, contain: industrial areas, mines, urban fabric, agricultural areas, permanent corps, forests and open spaces. Additionally, open GIS data for highways, and major and minor roads and railway lines were included from the OpenStreetMap project ( This data was divided into three classes that represent good, intermediate and bad ambient conditions of the corresponding land-use class based on expert judgment. To account for noise propagation away from its source a smoothing operator was applied to individual land-use noise-fields. Finally, the noise-fields were stacked to obtain an European map of ambient noise conditions. A calibration of this map with data of existing seismic stations Europe allowed me to estimate the expected noise level in actual ground motion units for the three ambient noise condition classes of the map. The result is a high-resolution ambient seismic noise map, that allows the network designer to make educated predictions on the expected noise level for arbitrary location in Europe. The ambient noise model was successfully tested in several network optimization projects in Switzerland and surrounding countries and will hopefully be a valuable contribution to improving the data quality of microseismic monitoring networks in Europe.

  7. On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions (United States)

    Hagendorf, Christian; Liénardy, Jean


    The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L  =  2n  +  1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.

  8. Use of shell model calculations in R-matrix studies of neutron-induced reactions

    International Nuclear Information System (INIS)

    Knox, H.D.


    R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)

  9. Blending process modeling and control by multivariate curve resolution. (United States)

    Jaumot, J; Igne, B; Anderson, C A; Drennen, J K; de Juan, A


    The application of the Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) method to model and control blend processes of pharmaceutical formulations is assessed. Within the MCR-ALS framework, different data analysis approaches have been tested depending on the objective of the study, i.e., knowing the effect of different factors in the evolution of the blending process (modeling) or detecting the blend end-point and monitoring the concentration of the different species during and at the end of the process (control). Data analysis has been carried out studying multiple blending runs simultaneously taking advantage of the multiset mode of the MCR-ALS method. During the ALS optimization, natural constraints, such as non-negativity (spectral and concentration directions) have been applied for blend modeling. When blending control is the main purpose, a variant of the MCR-ALS algorithm with correlation constraint in the concentration direction has been additionally used. This constraint incorporates an internal calibration procedure, which relates resolved concentration values (in arbitrary units) with the real reference concentration values in the calibration samples (known references) providing values in real concentration scale in the final MCR-ALS results. Two systems consisting of pharmaceutical mixtures of an active principle (acetaminophen) with two or four excipients have been investigated. In the first case, MCR results allowed the description of the evolution of the individual compounds and the assessment of some physical effects in the blending process. In the second case, MCR analysis allowed the detection of the end-point of the process and the assessment of the effects linked to variations in the concentration level of the compounds. © 2013 Elsevier B.V. All rights reserved.

  10. Atomic resolution investigations of phase transformation from TaN to CrTaN in a steel matrix

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Hald, John


    strength of the steel. The Cr content promotes Z-phase precipitation, making MN strengthening of these materials unfeasible, since 12%Cr is necessary for oxidation resistance. The authors have suggested an acceleration of Z-phase precipitation to obtain a fine and stable distribution of CrMN instead of MN...... atoms diffuse from the steel matrix into TaN precipitates and physically transform them into CrTaN. The crystal structure of the precipitates changes from that of a typical MN NaCl type crystal structure to a Z-phase crystal structure with alternating double layers of Cr and TaN. Since there is a large......In development of 12%Cr high temperature steels used for fossil fired power plants, the precipitation of large Z-phase particles, CrMN, has been identified as a major problem since they replace small and finely distributed MN particles. This causes a premature breakdown in the longterm creep...

  11. Is a matrix exponential specification suitable for the modeling of spatial correlation structures? (United States)

    Strauß, Magdalena E; Mezzetti, Maura; Leorato, Samantha


    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms.

  12. Determination of static moduli in fractured rocks by T-matrix model

    Czech Academy of Sciences Publication Activity Database

    Chalupa, F.; Vilhelm, J.; Petružálek, Matěj; Bukovská, Z.


    Roč. 22, č. 1 (2017), s. 22-31 ISSN 1335-1788 Institutional support: RVO:67985831 Keywords : fractured rocks * dynamic and static moduli * T-matrix model * elastic wave velocity * well logging Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 0.769, year: 2016

  13. A joint matrix completion and filtering model for influenza serological data integration.

    Directory of Open Access Journals (Sweden)

    Xiao-Tong Yuan

    Full Text Available Antigenic characterization based on serological data, such as Hemagglutination Inhibition (HI assay, is one of the routine procedures for influenza vaccine strain selection. In many cases, it would be impossible to measure all pairwise antigenic correlations between testing antigens and reference antisera in each individual experiment. Thus, we have to combine and integrate the HI tables from a number of individual experiments. Measurements from different experiments may be inconsistent due to different experimental conditions. Consequently we will observe a matrix with missing data and possibly inconsistent measurements. In this paper, we develop a new mathematical model, which we refer to as Joint Matrix Completion and Filtering, for HI data integration. In this approach, we simultaneously handle the incompleteness and uncertainty of observations by assuming that the underlying merged HI data matrix has low rank, as well as carefully modeling different levels of noises in each individual table. An efficient blockwise coordinate descent procedure is developed for optimization. The performance of our approach is validated on synthetic and real influenza datasets. The proposed joint matrix completion and filtering model can be adapted as a general model for biological data integration, targeting data noises and missing values within and across experiments.

  14. Performance modeling and optimization of sparse matrix-vector multiplication on NVIDIA CUDA platform

    NARCIS (Netherlands)

    Xu, S.; Xue, W.; Lin, H.X.


    In this article, we discuss the performance modeling and optimization of Sparse Matrix-Vector Multiplication (SpMV) on NVIDIA GPUs using CUDA. SpMV has a very low computation-data ratio and its performance is mainly bound by the memory bandwidth. We propose optimization of SpMV based on ELLPACK from

  15. Schwinger-Dyson equations for the two-matrix model and W3 algebra

    International Nuclear Information System (INIS)

    Gava, E.; Narain, K.S.


    The continuum Schwinger-Dyson equations for the two-matrix model, around the Ising critical point, are derived for operators involving one of the two matrices. It is shown that, within the space of the corresponding couplings, the resulting constraints obey a W 3 algebra. (author). 11 refs


    Directory of Open Access Journals (Sweden)



    Full Text Available Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 °C, and for Mo content in the range of 6 – 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

  17. Modeling of interaction layer growth between U-Mo particles and an Al matrix

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Horman, G. L.; Ryu, Ho Jin; Park, Jong Man; Robinson, A. B.; Wachs, D. M.


    Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 .deg. C, and for Mo content in the range of 6 - 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed

  18. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm. (United States)

    Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao


    To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved.

  19. Analysis of α-12C elastic scattering at intermediate energies by the S-matrix model (United States)

    Berezhnoy, Yu. A.; Onyshchenko, G. M.; Pilipenko, V. V.

    The results of calculations of differential cross-sections for α-12C elastic scattering by the S-matrix model are presented for 10 energy values in the energy range 65MeV ≤ Eα ≤ 386MeV in a wide range of scattering angles. The behavior of various scattering characteristics as functions of the projectile energy is analyzed. It is shown that the chosen parametrization of S-matrix allows describing correctly the Fraunhofer oscillations of the cross-sections in the region of small scattering angles and the rainbow scattering pattern in the region of sufficiently large angles.

  20. High-resolution modeling of protein structures based on flexible fitting of low-resolution structural data. (United States)

    Zheng, Wenjun; Tekpinar, Mustafa


    To circumvent the difficulty of directly solving high-resolution biomolecular structures, low-resolution structural data from Cryo-electron microscopy (EM) and small angle solution X-ray scattering (SAXS) are increasingly used to explore multiple conformational states of biomolecular assemblies. One promising venue to obtain high-resolution structural models from low-resolution data is via data-constrained flexible fitting. To this end, we have developed a new method based on a coarse-grained Cα-only protein representation, and a modified form of the elastic network model (ENM) that allows large-scale conformational changes while maintaining the integrity of local structures including pseudo-bonds and secondary structures. Our method minimizes a pseudo-energy which linearly combines various terms of the modified ENM energy with an EM/SAXS-fitting score and a collision energy that penalizes steric collisions. Unlike some previous flexible fitting efforts using the lowest few normal modes, our method effectively utilizes all normal modes so that both global and local structural changes can be fully modeled with accuracy. This method is also highly efficient in computing time. We have demonstrated our method using adenylate kinase as a test case which undergoes a large open-to-close conformational change. The EM-fitting method is available at a web server (, and the SAXS-fitting method is available as a pre-compiled executable upon request. © 2014 Elsevier Inc. All rights reserved.

  1. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    International Nuclear Information System (INIS)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M.; Seelos, K.; Yousry, T.; Exner, H.; Rosen, B.R.


    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.)

  2. A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix

    Directory of Open Access Journals (Sweden)

    YAO Yibin


    Full Text Available The ordinary least square method could not solve the problem that the error exist both in design matrix and observation vector while compute parameter values of AR model. In this article, a new method is proposed which consider the random errors of design matrix. The source of design matrix and observation vector is same and the amount of parameters contain error can be equal by introducing virtual observation. Then, this problem could be solved under the framework of normal least square by equivalence transformation of observation equation. The result of this new method is superior to SVD method and normal least square method by simulation date and observation data which verify the feasibility and effectiveness of this method.

  3. Quantitative performance of liquid chromatography coupled to Q-Exactive high resolution mass spectrometry (HRMS) for the analysis of tetracyclines in a complex matrix. (United States)

    Solliec, Morgan; Roy-Lachapelle, Audrey; Sauvé, Sébastien


    The presence of antibiotics in the environment is of increased interest and, as modern mass spectrometers become more efficient, we are increasingly aware of traces of pharmaceuticals appearing in a wide range of environmental and biological matrices. The Q-Exactive mass spectrometer is part of these innovative hybrid high-resolution mass spectrometers (HRMS) which is often associated with peptide sequencing or metabolomics but with a limited number of studies focusing on its application to the quantification of small molecules in environmental and biological matrices. It combines the high resolving power (RP) performance of the Orbitrap with the high performance selectivity of the quadrupole. Tetracyclines (TCs) are a family comprising some of the most widely used antibiotics in veterinary medicine. This study presents the quantitative performances of the Q-Exactive by illustrating a new approach to quantify TCs using liquid chromatography coupled to a HRMS in a complex matrix, i.e., swine manure. The Q-Exactive was used at high-resolution in both full scan (FS) and targeted ion fragmentation (tMS(2)) modes. These two modes were optimized and compared to determine the most reliable and efficient approach to quantify TCs with good accuracy. The proposed method was optimized to obtain the best selectivity and sensitivity, thus eliminating false positive and allowing the detection of trace levels of analyte. The TCs were extracted from the matrix by sonication using McIlvaine buffer followed by an off-line solid phase extraction method to concentrate and clean the extracts. Both FS and tMS(2) modes presented good linearity (R(2)>0.991) and repeatability (RSD<15%). Mass accuracy was acceptable with values below 2 ppm. The method detection limits (MLD) calculated from the calibration curves ranged from 2.0 to 12 ng g(-1) for FS mode and from 1.5 to 3.6 ng g(-1) for tMS(2) mode. Accuracy and interday/intraday relative standard deviations were below 21% for both modes

  4. Massive quiver matrix models for massive charged particles in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Curtis T.; Denef, Frederik [Department of Physics, Columbia University,538 West 120th Street, New York, New York 10027 (United States); Dzienkowski, Eric [Department of Physics, Broida Hall, University of California Santa Barbara,Santa Barbara, California 93106 (United States)


    We present a new class of N=4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can be obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.

  5. Multidisciplinary Product Decomposition and Analysis Based on Design Structure Matrix Modeling

    DEFF Research Database (Denmark)

    Habib, Tufail


    Design structure matrix (DSM) modeling in complex system design supports to define physical and logical configuration of subsystems, components, and their relationships. This modeling includes product decomposition, identification of interfaces, and structure analysis to increase the architectural...... interactions across subsystems and components. For this purpose, Cambridge advanced modeler (CAM) software tool is used to develop the system matrix. The analysis of the product (printer) architecture includes clustering, partitioning as well as structure analysis of the system. The DSM analysis is helpful...... understanding of the system. Since product architecture has broad implications in relation to product life cycle issues, in this paper, mechatronic product is decomposed into subsystems and components, and then, DSM model is developed to examine the extent of modularity in the system and to manage multiple...

  6. Some remarks on estimating a covariance structure model from a sample correlation matrix


    Maydeu Olivares, Alberto; Hernández Estrada, Adolfo


    A popular model in structural equation modeling involves a multivariate normal density with a structured covariance matrix that has been categorized according to a set of thresholds. In this setup one may estimate the covariance structure parameters from the sample tetrachoricl polychoric correlations but only if the covariance structure is scale invariant. Doing so when the covariance structure is not scale invariant results in estimating a more restricted covariance structure than the one i...

  7. Spatial smoothing in Bayesian models: a comparison of weights matrix specifications and their impact on inference. (United States)

    Duncan, Earl W; White, Nicole M; Mengersen, Kerrie


    When analysing spatial data, it is important to account for spatial autocorrelation. In Bayesian statistics, spatial autocorrelation is commonly modelled by the intrinsic conditional autoregressive prior distribution. At the heart of this model is a spatial weights matrix which controls the behaviour and degree of spatial smoothing. The purpose of this study is to review the main specifications of the spatial weights matrix found in the literature, and together with some new and less common specifications, compare the effect that they have on smoothing and model performance. The popular BYM model is described, and a simple solution for addressing the identifiability issue among the spatial random effects is provided. Seventeen different definitions of the spatial weights matrix are defined, which are classified into four classes: adjacency-based weights, and weights based on geographic distance, distance between covariate values, and a hybrid of geographic and covariate distances. These last two definitions embody the main novelty of this research. Three synthetic data sets are generated, each representing a different underlying spatial structure. These data sets together with a real spatial data set from the literature are analysed using the models. The models are evaluated using the deviance information criterion and Moran's I statistic. The deviance information criterion indicated that the model which uses binary, first-order adjacency weights to perform spatial smoothing is generally an optimal choice for achieving a good model fit. Distance-based weights also generally perform quite well and offer similar parameter interpretations. The less commonly explored options for performing spatial smoothing generally provided a worse model fit than models with more traditional approaches to smoothing, but usually outperformed the benchmark model which did not conduct spatial smoothing. The specification of the spatial weights matrix can have a colossal impact on model

  8. Modified permeability modeling of coal incorporating sorption-induced matrix shrinkage (United States)

    Soni, Aman

    The variation in the cleat permeability of coalbed methane (CBM) reservoirs is attributed primarily to two cardinal processes, with opposing effects. Increase in effective stresses with reduction in pore pressure tends to decrease the cleat permeability, whereas the sorption-induced coal matrix shrinkage actuates reduction in the effective stresses which increases the reservoir permeability. The net effect of the two processes determines the pressure-dependent-permeability and, hence, the overall trend of CBM production with depletion. Several analytical models have been developed and used to predict the dynamic behavior of CBM reservoir permeability during production through pressure depletion, all based on combining the two effects. The purpose of this study was to introduce modifications to two most commonly used permeability models, namely the Palmer and Mansoori, and Shi and Durucan, for permeability variation and evaluate their performance when projecting gas production. The basis for the modification is the linear relationship between the volume of sorbed gas and the associated matrix shrinkage. Hence, the impact of matrix shrinkage is incorporated as a function of the amount of gas produced, or that remaining in coal, at any time during production. Since the exact production from a reservoir is known throughout its life, this significantly simplifies the process of permeability modeling. Furthermore, the modification is also expected to streamline the process of modeling by classifying the shrinkage parameters for coals of different regions, but with similar characteristics. A good analogy is the San Juan basin, where sorption characteristics of coal are so well understood and defined that operators no longer carry out laboratory sorption work. The goal is to achieve the same for incorporation of the matrix shrinkage behavior. Another modification is to incorporate the matrix, or grain, compressibility effect of coal as a correction factor in the Shi and

  9. Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®. (United States)

    Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P


    The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions (United States)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.


    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  11. A model for human calcium pyrophosphate crystal deposition disease: crystallization kinetics in a gelatin matrix. (United States)

    Mandel, N S; Mandel, G S


    A model for the deposition of calcium pyrophosphate dihydrate (CPPD) crystals in cartilage observed in human CPPD crystal deposition disease has been developed using diffusion of calcium and pyrophosphate ions through a denatured collagen matrix environment at physiologic pH. This model system uses biological grade gelatin and has allowed for the study of crystal deposition over a wide range of calcium and pyrophosphate concentrations, including physiologic levels. The model has reproducibly formed the two crystallographic dimorphs observed clinically: triclinic and monoclinic calcium pyrophosphate dihydrate. In addition, amorphous calcium pyrophosphate has been identified, and is the first species to form in the crystallization process and transforms to orthorhombic calcium pyrophosphate tetrahydrate. This in turn dissolves with a very localized increase in available pyrophosphate leading to the formation of triclinic and monoclinic calcium pyrophosphate dihydrate. The denatured collagen matrix has allowed for the formation of the two in vivo crystals at pyrophosphate concentrations lower than previously reported in solution studies.

  12. Estimation in a multiplicative mixed model involving a genetic relationship matrix

    Directory of Open Access Journals (Sweden)

    Eccleston John A


    Full Text Available Abstract Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.

  13. Nine-Phase Induction Motor Dynamic Model Based On 3x9 Transformation Matrix

    Directory of Open Access Journals (Sweden)

    Mauridhi Heri Purnomo


    Full Text Available A dynamic model of multi-phase induction motors in term qdn is used to simplify analysis and separate armature and field of the motor. However, to generate dynamic model qdn, square matrices are always applied to all the analysis and based on two reference frames and a circuit of magnetically coupled transformer. In order to gain the qdn dynamic model of the nine-phase induction motors in easy, simple, quick and consistent way, the analysis is done through the equivalent circuit T model until it obtains the equations in matrix form. The 3x9 transformation matrix qdn is substituted into the equation form abc so that the matrix equation of qdn is obtained. Then qdn equation results a similar qd equivalent circuit, which has different methods n that is, based the circuit of magnetically coupled transformer. Simulation results show that the two-bases circuit is magnetically coupled into the transformer model and has similar angular speed and torque response to the motor though the load changes.

  14. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling (United States)

    Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.


    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  15. Comparison of experimental methods for estimating matrix diffusion coefficients for contaminant transport modeling. (United States)

    Telfeyan, Katherine; Ware, S Doug; Reimus, Paul W; Birdsell, Kay H


    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Influence of air quality model resolution on uncertainty associated with health impacts

    Directory of Open Access Journals (Sweden)

    T. M. Thompson


    Full Text Available We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx, we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone


    Directory of Open Access Journals (Sweden)

    E DU


    Full Text Available We developed a model to describe polarized photon scattering in biological tissues. In this model, tissues are simplified to a mixture of scatterers and surrounding medium. There are two types of scatterers in the model: solid spheres and infinitely long solid cylinders. Variables related to the scatterers include: the densities and sizes of the spheres and cylinders, the orientation and angular distribution of cylinders. Variables related to the surrounding medium include: the refractive index, absorption coefficient and birefringence. In this paper, as a development we introduce an optical activity effect to the model. By comparing experiments and Monte Carlo simulations, we analyze the backscattering Mueller matrix patterns of several tissue-like media, and summarize the different effects coming from anisotropic scattering and optical properties. In addition, we propose a possible method to extract the optical activity values for tissues. Both the experimental and simulated results show that, by analyzing the Mueller matrix patterns, the microstructure and optical properties of the medium can be obtained. The characteristic features of Mueller matrix patterns are potentially powerful tools for studying the contrast mechanisms of polarization imaging for medical diagnosis.

  18. Artificial neural network modeling of mechanical alloying process for synthesizing of metal matrix nanocomposite powders

    International Nuclear Information System (INIS)

    Dashtbayazi, M.R.; Shokuhfar, A.; Simchi, A.


    An artificial neural network model was developed for modeling of the effects of mechanical alloying parameters including milling time, milling speed and ball to powder weight ratio on the characteristics of Al-8 vol%SiC nanocomposite powders. The crystallite size and lattice strain of the aluminum matrix were considered for modeling. This nanostructured nanocomposite powder was synthesized by utilizing planetary high energy ball mill and the required data for training were collected from the experimental results. The characteristics of the particles were determined by X-ray diffraction, scanning and transmission electron microscopy. Two types of neural network architecture, i.e. multi-layer perceptron (MLP) and radial basis function (RBF), were used. The steepest descent along with variable learning rate back-propagation algorithm known as a heuristic technique was utilized for training the MLP network. It was found that MLP network yields better results compared to RBF network, giving an acceptable mapping between the network responses and the target data with a high correlation coefficients. The response surfaces between the response variables, i.e. crystallite size, lattice strain of the aluminum matrix and the processing parameters are presented. The procedure modeling can be used for optimization of the MA process for synthesizing of nanostructured metal matrix nanocomposites

  19. A Comprehensive School-based Conflict-Resolution Model. (United States)

    Woody, Debra


    Describes a comprehensive school-based conflict-resolution approach designed by two school-based social workers and implemented in an "alternative" urban high school over a two-year period. Results indicate that a more cooperative atmosphere developed in the school as a result of the program and that the program was effective in reducing both…

  20. High-resolution modelling of health impacts from air pollution using the integrated model system EVA (United States)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.


    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  1. Refined open intersection numbers and the Kontsevich-Penner matrix model

    International Nuclear Information System (INIS)

    Alexandrov, Alexander; Buryak, Alexandr; Tessler, Ran J.


    A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.

  2. Optimal experimental designs for fMRI when the model matrix is uncertain. (United States)

    Kao, Ming-Hung; Zhou, Lin


    This study concerns optimal designs for functional magnetic resonance imaging (fMRI) experiments when the model matrix of the statistical model depends on both the selected stimulus sequence (fMRI design), and the subject's uncertain feedback (e.g. answer) to each mental stimulus (e.g. question) presented to her/him. While practically important, this design issue is challenging. This mainly is because that the information matrix cannot be fully determined at the design stage, making it difficult to evaluate the quality of the selected designs. To tackle this challenging issue, we propose an easy-to-use optimality criterion for evaluating the quality of designs, and an efficient approach for obtaining designs optimizing this criterion. Compared with a previously proposed method, our approach requires a much less computing time to achieve designs with high statistical efficiencies. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Refined open intersection numbers and the Kontsevich-Penner matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Alexander [Center for Geometry and Physics, Institute for Basic Science (IBS),Pohang 37673 (Korea, Republic of); Centre de Recherches Mathématiques (CRM), Université de Montréal,Montréal (Canada); Department of Mathematics and Statistics, Concordia University,Montréal (Canada); Institute for Theoretical and Experimental Physics (ITEP),Moscow (Russian Federation); Buryak, Alexandr [Department of Mathematics, ETH Zurich, Zurich (Switzerland); Tessler, Ran J. [Institute for Theoretical Studies, ETH Zurich,Zurich (Switzerland)


    A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J.P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J.P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.

  4. Aligning Animal Models of Clinical Germinal Matrix Hemorrhage, From Basic Correlation to Therapeutic Approach. (United States)

    Lekic, Tim; Klebe, Damon; Pichon, Pilar; Brankov, Katarina; Sultan, Sally; McBride, Devin; Casel, Darlene; Al-Bayati, Alhamza; Ding, Yan; Tang, Jiping; Zhang, John H


    Germinal matrix hemorrhage is a leading cause of mortality and morbidity from prematurity. This brain region is vulnerable to bleeding and re-bleeding within the first 72 hours of preterm life. Cerebroventricular expansion of blood products contributes to the mechanisms of brain injury. Consequences include lifelong hydrocephalus, cerebral palsy, and intellectual disability. Unfortunately little is known about the therapeutic needs of this patient population. This review discusses the mechanisms of germinal matrix hemorrhage, the animal models utilized, and the potential therapeutic targets. Potential therapeutic approaches identified in pre-clinical investigations include corticosteroid therapy, iron chelator administration, and transforming growth factor-β pathway modulation, which all warrant further investigation. Thus, effective preclinical modeling is essential for elucidating and evaluating novel therapeutic approaches, ahead of clinical consideration. Copyright© Bentham Science Publishers; For any queries, please email at

  5. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix. (United States)

    Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li


    Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.

  6. Metal Cluster Models for Heterogeneous Catalysis: A Matrix-Isolation Perspective. (United States)

    Hübner, Olaf; Himmel, Hans-Jörg


    Metal cluster models are of high relevance for establishing new mechanistic concepts for heterogeneous catalysis. The high reactivity and particular selectivity of metal clusters is caused by the wealth of low-lying electronically excited states that are often thermally populated. Thereby the metal clusters are flexible with regard to their electronic structure and can adjust their states to be appropriate for the reaction with a particular substrate. The matrix isolation technique is ideally suited for studying excited state reactivity. The low matrix temperatures (generally 4-40 K) of the noble gas matrix host guarantee that all clusters are in their electronic ground-state (with only a very few exceptions). Electronically excited states can then be selectively populated and their reactivity probed. Unfortunately, a systematic research in this direction has not been made up to date. The purpose of this review is to provide the grounds for a directed approach to understand cluster reactivity through matrix-isolation studies combined with quantum chemical calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Image Retrieval Based on Multiview Constrained Nonnegative Matrix Factorization and Gaussian Mixture Model Spectral Clustering Method

    Directory of Open Access Journals (Sweden)

    Qunyi Xie


    Full Text Available Content-based image retrieval has recently become an important research topic and has been widely used for managing images from repertories. In this article, we address an efficient technique, called MNGS, which integrates multiview constrained nonnegative matrix factorization (NMF and Gaussian mixture model- (GMM- based spectral clustering for image retrieval. In the proposed methodology, the multiview NMF scheme provides competitive sparse representations of underlying images through decomposition of a similarity-preserving matrix that is formed by fusing multiple features from different visual aspects. In particular, the proposed method merges manifold constraints into the standard NMF objective function to impose an orthogonality constraint on the basis matrix and satisfy the structure preservation requirement of the coefficient matrix. To manipulate the clustering method on sparse representations, this paper has developed a GMM-based spectral clustering method in which the Gaussian components are regrouped in spectral space, which significantly improves the retrieval effectiveness. In this way, image retrieval of the whole database translates to a nearest-neighbour search in the cluster containing the query image. Simultaneously, this study investigates the proof of convergence of the objective function and the analysis of the computational complexity. Experimental results on three standard image datasets reveal the advantages that can be achieved with the proposed retrieval scheme.

  8. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration (United States)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.


    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  9. Objective Tuning of Model Parameters in CAM5 Across Different Spatial Resolutions (United States)

    Bulaevskaya, V.; Lucas, D. D.


    Parameterizations of physical processes in climate models are highly dependent on the spatial and temporal resolution and must be tuned for each resolution under consideration. At high spatial resolutions, objective methods for parameter tuning are computationally prohibitive. Our work has focused on calibrating parameters in the Community Atmosphere Model 5 (CAM5) for three spatial resolutions: 1, 2, and 4 degrees. Using perturbed-parameter ensembles and uncertainty quantification methodology, we have identified input parameters that minimize discrepancies of energy fluxes simulated by CAM5 across the three resolutions and with respect to satellite observations. We are also beginning to exploit the parameter-resolution relationships to objectively tune parameters in a high-resolution version of CAM5 by leveraging cheaper, low-resolution simulations and statistical models. We will present our approach to multi-resolution climate model parameter tuning, as well as the key findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported from the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.

  10. The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States

    International Nuclear Information System (INIS)

    Saito, H; Jansen, K.; Cichy, K.; Frankfurt Univ.; Poznan Univ.


    We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.

  11. Genus one contribution to free energy in Hermitian two-matrix model

    International Nuclear Information System (INIS)

    Eynard, B.; Kokotov, A.; Korotkin, D.


    We compute the genus one correction to free energy of Hermitian two-matrix model in large N limit in terms of theta-functions associated to the spectral curve. We discuss the relationship of this expression to the isomonodromic tau-function, the Bergmann tau-function on Hurwitz spaces, the G-function of Frobenius manifolds and the determinant of Laplacian in a singular metric over the spectral curve

  12. Operator product expansion of higher rank Wilson loops from D-branes and matrix models

    International Nuclear Information System (INIS)

    Giombi, Simone; Ricci, Riccardo; Trancanelli, Diego


    In this paper we study correlation functions of circular Wilson loops in higher dimensional representations with chiral primary operators of N = 4 super Yang-Mills theory. This is done using the recently established relation between higher rank Wilson loops in gauge theory and D-branes with electric fluxes in supergravity. We verify our results with a matrix model computation, finding perfect agreement in both the symmetric and the antisymmetric case

  13. Matrix model approximations of fuzzy scalar field theories and their phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)


    We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.

  14. Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS (United States)

    Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur


    The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.

  15. Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution (United States)

    Wild, O.; Prather, M. J.


    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.

  16. Regional modelling of tracer transport by tropical convection – Part 2: Sensitivity to model resolutions

    Directory of Open Access Journals (Sweden)

    J. Arteta


    Full Text Available The general objective of this series of two papers is to evaluate long duration limited-area simulations with idealised tracers as a possible tool to assess the tracer transport in chemistry-transport models (CTMs. In this second paper we analyse the results of three simulations using different horizontal and vertical resolutions. The goal is to study the impact of the model spatial resolution on convective transport of idealized tracer in the tropics. The reference simulation (REF uses a 60 km horizontal resolution and 300 m vertically in the upper troposphere/lower stratosphere (UTLS. A 20 km horizontal resolution simulation (HR is run as well as a simulation with 850 m vertical resolution in the UTLS (CVR. The simulations are run for one month during the SCOUT-O3 field campaign. Aircraft data, TRMM rainrate estimates and radiosoundings have been used to evaluate the simulations. They show that the HR configuration gives generally a better agreement with the measurements than the REF simulation. The CVR simulation gives generally the worst results. The vertical distribution of the tropospheric tracers for the simulations has a similar shape with a ~15 km altitude maximum for the 6h-lifetime tracer of 0.4 ppbv for REF, 1.2 for HR and 0.04 for CVR. These differences are related to the dynamics produced by the three simulations that leads to larger values of the upward velocities on average for HR and lower for CVR compared to REF. HR simulates more frequent and stronger convection leading to enhanced fluxes compared to REF and higher detrainment levels compared to CVR. HR provides also occasional overshoots over the cold point dynamical barrier. For the stratospheric tracers the differences between the three simulations are small. The diurnal cycle of the fluxes of all tracers in the Tropical Tropopause Layer exhibits a maximum linked to the maximum of convective activity.

  17. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.


    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  18. The Matrix model and the non-commutative geometry of the supermembrane

    CERN Document Server

    Floratos, Emmanuel G


    This is a short note on the relation of the Matrix model with the non-commutative geometry of the 11-dimensional supermembrane. We put forward the idea that M-theory is described by the t' Hooft topological expansion of the Matrix model in the large N-limit where all topologies of membranes appear. This expansion can faithfully be represented by the Moyal Yang-Mills theory of membranes. We discuss this conjecture in the case of finite N, where the non-commutative geometry of the membrane is given be the finite quantum mechanics. The use of the finite dimensional representations of the Heisenberg group reveals the cellular structure of a toroidal supemembrane on which the Matrix model appears as a non-commutatutive Yang-Mills theory. The Moyal star product on the space of functions in the case of rational values of Planck constant \\hbar represents exactly this cellular structure. We also discuss the integrability of the instanton sector as well as the topological charge and the corresponding Bogomol'nyi bound.

  19. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L


    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  20. Matrix model formulation of LS-covariant noncommutative quantum field theories on Minkowski spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andre


    In this thesis we construct a class of noncommutative quantum field theories on Minkowski spacetime via an analytical continuation of the Euclidean Grosse-Wulkenhaar and LSZ models, which are defined by a perturbative setting based on modified Feynman diagrams. Characteristic of these theories is the presence of a constant, external electromagnetic field, which renders their ultraviolet and infrared regimes indistinguishable. This feature is known as LS-duality and is believed to be responsible for the renormalizability and vanishing of the {beta}-functions in the Euclidean case. We introduce an alternative to the i{epsilon}-prescription of these Minkowskian models, which is shown to lead to causal propagators. This regularization allows us to map the LS-covariant theories onto matrix models via a generalization of the Landau basis, and to impose a simultaneous UV und IR-regularization of the Feynmann diagrams, while keeping the LS-duality manifestly. A new quality on Minkowski spacetime is the instability of the vacuum with respect to pair production, which is due to the lack of translation invariance caused by the electromagnetic field. We discuss its implication on the perturbative expansion and the unitarity of the scattering matrix. As a first step towards a renormalization of these theories, we derive the corresponding propagators in Minkowski spacetime in position and matrix representation and discuss their asymptotics. (orig.)

  1. Statistical moments in modelling of swelling, erosion and drug release of hydrophilic matrix-tablets. (United States)

    Barmpalexis, P; Kachrimanis, K; Malamataris, S


    Statistical moments were evaluated as suitable parameters for describing swelling and erosion processes (along with drug release) in hydrophilic controlled release matrix tablets. The effect of four independent formulation variables, corresponding to the quantity of four polymeric matrix excipients (namely polyethylene glycol, povidone, and two grades of hydroxyl-propylmethyl cellulose) on statistical moments describing swelling (mean swelling time, MST), erosion (mean erosion time, MET) and drug-release (mean dissolution time, MDT) was evaluated with the aid of multi-linear regression (MLR) and artificial neural networks (ANNs) based on a central composite experimental design. Results were compared to conventional model fitting, where the rate of water uptake during swelling (a), the maximum % water uptake (S max ), the time at which S max is achieved (t max ), the constant of apparent matrix-tablet erosion rate (k e ) and the release exponent (n) from Korsmeyer-Peppas drug-release equation were used as model parameters. Fitting to an external validation test set revealed superior prediction efficacy for statistical moments compared to conventional model fitting, while the combination of statistical moments with ANNs presented the most efficient approach (R 2 and RMSEp values of 0.922, 0.833, 0.987 and 0.443, 0.691, 0.173 for MST, MET, and MDT, respectively). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.


    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  3. Uncertainty of global summer precipitation in the CMIP5 models: a comparison between high-resolution and low-resolution models (United States)

    Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing


    The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.

  4. High Resolution Tsunami Modeling and Assessment of Harbor Resilience; Case Study in Istanbul (United States)

    Cevdet Yalciner, Ahmet; Aytore, Betul; Gokhan Guler, Hasan; Kanoglu, Utku; Duzgun, Sebnem; Zaytsev, Andrey; Arikawa, Taro; Tomita, Takashi; Ozer Sozdinler, Ceren; Necmioglu, Ocal; Meral Ozel, Nurcan


    Ports and harbors are the major vulnerable coastal structures under tsunami attack. Resilient harbors against tsunami impacts are essential for proper, efficient and successful rescue operations and reduction of the loss of life and property by tsunami disasters. There are several critical coastal structures as such in the Marmara Sea. Haydarpasa and Yenikapi ports are located in the Marmara Sea coast of Istanbul. These two ports are selected as the sites of numerical experiments to test their resilience under tsunami impact. Cargo, container and ro-ro handlings, and short/long distance passenger transfers are the common services in both ports. Haydarpasa port has two breakwaters with the length of three kilometers in total. Yenikapi port has one kilometer long breakwater. The accurate resilience analysis needs high resolution tsunami modeling and careful assessment of the site. Therefore, building data with accurate coordinates of their foot prints and elevations are obtained. The high resolution bathymetry and topography database with less than 5m grid size is developed for modeling. The metadata of the several types of structures and infrastructure of the ports and environs are processed. Different resistances for the structures/buildings/infrastructures are controlled by assigning different friction coefficients in a friction matrix. Two different tsunami conditions - high expected and moderate expected - are selected for numerical modeling. The hybrid tsunami simulation and visualization codes NAMI DANCE, STOC-CADMAS System are utilized to solve all necessary tsunami parameters and obtain the spatial and temporal distributions of flow depth, current velocity, inundation distance and maximum water level in the study domain. Finally, the computed critical values of tsunami parameters are evaluated and structural performance of the port components are discussed in regard to a better resilience. ACKNOWLEDGEMENTS: Support by EU 603839 ASTARTE Project, UDAP-Ç-12

  5. A Unified Model for the Prediction of Yield Strength in Particulate-Reinforced Metal Matrix Nanocomposites

    Directory of Open Access Journals (Sweden)

    F. A. Mirza


    Full Text Available Lightweighting in the transportation industry is today recognized as one of the most important strategies to improve fuel efficiency and reduce anthropogenic climate-changing, environment-damaging, and human death-causing emissions. However, the structural applications of lightweight alloys are often limited by some inherent deficiencies such as low stiffness, high wear rate and inferior strength. These properties could be effectively enhanced by the addition of stronger and stiffer reinforcements, especially nano-sized particles, into metal matrix to form composites. In most cases three common strengthening mechanisms (load-bearing effect, mismatch of coefficients of thermal expansion, and Orowan strengthening have been considered to predict the yield strength of metal matrix nanocomposites (MMNCs. This study was aimed at developing a unified model by taking into account the matrix grain size and porosity (which is unavoidable in the materials processing such as casting and powder metallurgy in the prediction of the yield strength of MMNCs. The Zener pinning effect of grain boundaries by the nano-sized particles has also been integrated. The model was validated using the experimental data of magnesium- and titanium-based nanocomposites containing different types of nano-sized particles (namely, Al2O3, Y2O3, and carbon nanotubes. The predicted results were observed to be in good agreement with the experimental data reported in the literature.

  6. Exploring Mixed Membership Stochastic Block Models via Non-negative Matrix Factorization

    KAUST Repository

    Peng, Chengbin


    Many real-world phenomena can be modeled by networks in which entities and connections are represented by nodes and edges respectively. When certain nodes are highly connected with each other, those nodes forms a cluster, which is called community in our context. It is usually assumed that each node belongs to one community only, but evidences in biology and social networks reveal that the communities often overlap with each other. In other words, one node can probably belong to multiple communities. In light of that, mixed membership stochastic block models (MMB) have been developed to model those networks with overlapping communities. Such a model contains three matrices: two incidence matrices indicating in and out connections and one probability matrix. When the probability of connections for nodes between communities are significantly small, the parameter inference problem to this model can be solved by a constrained non-negative matrix factorization (NMF) algorithm. In this paper, we explore the connection between the two models and propose an algorithm based on NMF to infer the parameters of MMB. The proposed algorithms can detect overlapping communities regardless of knowing or not the number of communities. Experiments show that our algorithm can achieve a better community detection performance than the traditional NMF algorithm. © 2014 IEEE.

  7. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation" (United States)

    Zhang, Zhidong


    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  8. Bulk-boundary correlators in the hermitian matrix model and minimal Liouville gravity

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile; Ishiki, Goro; Rim, Chaiho


    We construct the one matrix model (MM) correlators corresponding to the general bulk-boundary correlation numbers of the minimal Liouville gravity (LG) on the disc. To find agreement between both discrete and continuous approach, we investigate the resonance transformation mixing boundary and bulk couplings. It leads to consider two sectors, depending on whether the matter part of the LG correlator is vanishing due to the fusion rules. In the vanishing case, we determine the explicit transformation of the boundary couplings at the first order in bulk couplings. In the non-vanishing case, no bulk-boundary resonance is involved and only the first order of pure boundary resonances have to be considered. Those are encoded in the matrix polynomials determined in our previous paper. We checked the agreement for the bulk-boundary correlators of MM and LG in several non-trivial cases. In this process, we developed an alternative method to derive the boundary resonance encoding polynomials.

  9. Diffraction Scattering in the Ericson Model for the S-Matrix

    CERN Document Server

    Shebeko, A V


    Elastic spinless charge particle scattering on nuclei has been considered by using the strong absorption model put forward by Ericson for the S-matrix in the angular momentum representation. Our analytical method for summation of the partial amplitudes is based upon an extension of the Abel-Plana formula, that enables us to account for contributions from possible singularities of the S-matrix in the right l-halfplane. A uniform asymptotics for the scattering amplitude, derived here, offers a fresh sight at origin of diffractive patterns in the elastic heavy-ion angular distributions. Special attention has been paid to the Coulomb-nuclear interference (particularly, refractive phenomena) for the scattering inside the classically - allowed region (the "illuminated" region) and the classically - forbidden region (the "shadow" region). Unlike the existing analytical results, our solutions of the diffraction problem give no reasons for drawing any deep parallels neither with the Fresnel diffraction in optics nor w...

  10. Phase Diagram of Planar Matrix Quantum Mechanics, Tensor, and Sachdev-Ye-Kitaev Models (United States)

    Azeyanagi, Tatsuo; Ferrari, Frank; Massolo, Fidel I. Schaposnik


    We study the Schwinger-Dyson equations of a fermionic planar matrix quantum mechanics [or tensor and Sachdev-Ye-Kitaev (SYK) models] at leading melonic order. We find two solutions describing a high entropy, SYK black-hole-like phase and a low entropy one with trivial IR behavior. There is a line of first order phase transitions that terminates at a new critical point. Critical exponents are nonmean field and differ on the two sides of the transition. Interesting phenomena are also found in unstable and stable bosonic models, including Kazakov critical points and inconsistency of SYK-like solutions of the IR limit.

  11. Wedge-Local Fields in Integrable Models with Bound States II: Diagonal S-Matrix (United States)

    Cadamuro, Daniela; Tanimoto, Yoh


    We construct candidates for observables in wedge-shaped regions for a class of 1+1-dimensional integrable quantum field theories with bound states whose S-matrix is diagonal, by extending our previous methods for scalar S-matrices. Examples include the Z(N)-Ising models, the A_N-affine Toda field theories and some S-matrices with CDD factors. We show that these candidate operators which are associated with elementary particles commute weakly on a dense domain. For the models with two species of particles, we can take a larger domain of weak commutativity and give an argument for the Reeh-Schlieder property.

  12. Phase Diagram of Planar Matrix Quantum Mechanics, Tensor, and Sachdev-Ye-Kitaev Models. (United States)

    Azeyanagi, Tatsuo; Ferrari, Frank; Massolo, Fidel I Schaposnik


    We study the Schwinger-Dyson equations of a fermionic planar matrix quantum mechanics [or tensor and Sachdev-Ye-Kitaev (SYK) models] at leading melonic order. We find two solutions describing a high entropy, SYK black-hole-like phase and a low entropy one with trivial IR behavior. There is a line of first order phase transitions that terminates at a new critical point. Critical exponents are nonmean field and differ on the two sides of the transition. Interesting phenomena are also found in unstable and stable bosonic models, including Kazakov critical points and inconsistency of SYK-like solutions of the IR limit.

  13. a Structural Flexibility Transformation Matrix for Modelling Open-Kinematic Chains with Revolute and Prismatic Joints (United States)

    Chalhoub, N. G.; Chen, L.


    A general approach to systematically derive the equations of motion of flexible open-kinematic chains is presented in this paper. The methodology exploits the serial characteristics of the kinematic chain by complementing the 4×4 Denavit-Hartenberg transformation matrix with a 4×4 structural flexibility matrix. The latter is defined based on a floating coordinate system which rendered the formulation applicable to both prismatic and revolute joints. The versatility of the approach is demonstrated through its implementation to formulate forward kinematic problems of manipulators with revolute and prismatic joints. Moreover, the proposed flexibility matrix is used in the development of a dynamic model for a compliant spherical robotic manipulator. This task has a dual purpose. First, it demonstrates how the flexibility matrix can be implemented in a systematic approach for deriving the equations of motion of an open-kinematic chain that account for the axial geometric shortening, the torsional vibration, and the in-plane and out-of-plane transverse deformations of the compliant member. Second, the inclusion of the torsional vibration in the equation of motion serves to broaden the scope of previous research work done on modelling open-kinematic chains. The formulation can now address dynamic problems that are not limited to the positioning but are also concerned with the orientation of rigid body payloads as they are being manipulated by robotic manipulators. The digital simulation results exhibit the interaction between the torsional vibration and the rigid body motion of the arm. Furthermore, they demonstrate a strong coupling effect between the torsional vibration and the transverse deformations of the arm whenever the payload is not grasped at its mass center by the gripper.

  14. A random matrix model for elliptic curve L-functions of finite conductor

    International Nuclear Information System (INIS)

    Dueñez, E; Huynh, D K; Keating, J P; Snaith, N C; Miller, S J


    We propose a random-matrix model for families of elliptic curve L-functions of finite conductor. A repulsion of the critical zeros of these L-functions away from the centre of the critical strip was observed numerically by Miller (2006 Exp. Math. 15 257–79); such behaviour deviates qualitatively from the conjectural limiting distribution of the zeros (for large conductors this distribution is expected to approach the one-level density of eigenvalues of orthogonal matrices after appropriate rescaling). Our purpose here is to provide a random-matrix model for Miller’s surprising discovery. We consider the family of even quadratic twists of a given elliptic curve. The main ingredient in our model is a calculation of the eigenvalue distribution of random orthogonal matrices whose characteristic polynomials are larger than some given value at the symmetry point in the spectra. We call this sub-ensemble of SO(2N) the excised orthogonal ensemble. The sieving-off of matrices with small values of the characteristic polynomial is akin to the discretization of the central values of L-functions implied by the formulae of Waldspurger and Kohnen–Zagier. The cut-off scale appropriate to modelling elliptic curve L-functions is exponentially small relative to the matrix size N. The one-level density of the excised ensemble can be expressed in terms of that of the well-known Jacobi ensemble, enabling the former to be explicitly calculated. It exhibits an exponentially small (on the scale of the mean spacing) hard gap determined by the cut-off value, followed by soft repulsion on a much larger scale. Neither of these features is present in the one-level density of SO(2N). When N → ∞ we recover the limiting orthogonal behaviour. Our results agree qualitatively with Miller’s discrepancy. Choosing the cut-off appropriately gives a model in good quantitative agreement with the number-theoretical data. (paper)

  15. Modeling the Effects of Interfacial Characteristics on Gas Permeation Behavior of Nanotube-Mixed Matrix Membranes. (United States)

    Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad


    Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.

  16. An A_r threesome: Matrix models, 2d CFTs and 4d N=2 gauge theories


    Schiappa, Ricardo; Wyllard, Niclas


    We explore the connections between three classes of theories: A_r quiver matrix models, d=2 conformal A_r Toda field theories and d=4 N=2 supersymmetric conformal A_r quiver gauge theories. In particular, we analyse the quiver matrix models recently introduced by Dijkgraaf and Vafa and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in orde...

  17. An Ar threesome: Matrix models, 2d conformal field theories, and 4d N =2 gauge theories (United States)

    Schiappa, Ricardo; Wyllard, Niclas


    We explore the connections between three classes of theories: Ar quiver matrix models, d =2 conformal Ar Toda field theories, and d =4 N =2 supersymmetric conformal Ar quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N =2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.

  18. An Ar threesome: Matrix models, 2d conformal field theories, and 4dN=2 gauge theories

    International Nuclear Information System (INIS)

    Schiappa, Ricardo; Wyllard, Niclas


    We explore the connections between three classes of theories: A r quiver matrix models, d=2 conformal A r Toda field theories, and d=4N=2 supersymmetric conformal A r quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.

  19. Pollutant Dispersion Modeling in Natural Streams Using the Transmission Line Matrix Method

    Directory of Open Access Journals (Sweden)

    Safia Meddah


    Full Text Available Numerical modeling has become an indispensable tool for solving various physical problems. In this context, we present a model of pollutant dispersion in natural streams for the far field case where dispersion is considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM, which has earned a reputation as powerful and efficient numerical method, is used. The presented one-dimensional TLM model requires a minimum input data and provides a significant gain in computing time. To validate our model, the results are compared with observations and experimental data from the river Severn (UK. The results show a good agreement with experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant in natural streams for effective and rapid decision-making in a case of emergency, such as accidental discharges in a stream with a dynamic similar to that of the river Severn (UK.

  20. Black holes as random particles: entanglement dynamics in infinite range and matrix models

    International Nuclear Information System (INIS)

    Magán, Javier M.


    We first propose and study a quantum toy model of black hole dynamics. The model is unitary, displays quantum thermalization, and the Hamiltonian couples every oscillator with every other, a feature intended to emulate the color sector physics of large-N matrix models. Considering out of equilibrium initial states, we analytically compute the time evolution of every correlator of the theory and of the entanglement entropies, allowing a proper discussion of global thermalization/scrambling of information through the entire system. Microscopic non-locality causes factorization of reduced density matrices, and entanglement just depends on the time evolution of occupation densities. In the second part of the article, we show how the gained intuition extends to large-N matrix models, where we provide a gauge invariant entanglement entropy for ‘generalized free fields’, again depending solely on the quasinormal frequencies. The results challenge the fast scrambling conjecture and point to a natural scenario for the emergence of the so-called brick wall or stretched horizon. Finally, peculiarities of these models in regards to the thermodynamic limit and the information paradox are highlighted.

  1. Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage (United States)

    Pintilie, Grigore; Chen, Dong-Hua; Haase-Pettingell, Cameron A.; King, Jonathan A.; Chiu, Wah


    CryoEM continues to produce density maps of larger and more complex assemblies with multiple protein components of mixed symmetries. Resolution is not always uniform throughout a cryoEM map, and it can be useful to estimate the resolution in specific molecular components of a large assembly. In this study, we present procedures to 1) estimate the resolution in subcomponents by gold-standard Fourier shell correlation (FSC); 2) validate modeling procedures, particularly at medium resolutions, which can include loop modeling and flexible fitting; and 3) build probabilistic models that combine high-accuracy priors (such as crystallographic structures) with medium-resolution cryoEM densities. As an example, we apply these methods to new cryoEM maps of the mature bacteriophage P22, reconstructed without imposing icosahedral symmetry. Resolution estimates based on gold-standard FSC show the highest resolution in the coat region (7.6 Å), whereas other components are at slightly lower resolutions: portal (9.2 Å), hub (8.5 Å), tailspike (10.9 Å), and needle (10.5 Å). These differences are indicative of inherent structural heterogeneity and/or reconstruction accuracy in different subcomponents of the map. Probabilistic models for these subcomponents provide new insights, to our knowledge, and structural information when taking into account uncertainty given the limitations of the observed density. PMID:26743049

  2. Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites (United States)

    Nemeth, Noel N.; Mital, Subodh; Lang, Jerry


    Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.

  3. Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. (United States)

    Hughes, Chris J R; Jacobs, J Roger


    The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster , an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila , including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.

  4. A semi-analytical method for simulating matrix diffusion in numerical transport models. (United States)

    Falta, Ronald W; Wang, Wenwen


    A semi-analytical approximation for transient matrix diffusion is developed for use in numerical contaminant transport simulators. This method is an adaptation and extension of the heat conduction method of Vinsome and Westerveld (1980) used to simulate heat losses during thermally enhanced oil recovery. The semi-analytical method is used in place of discretization of the low permeability materials, and it represents the concentration profile in the low permeability materials with a fitting function that is adjusted in each element at each time-step. The resulting matrix diffusion fluxes are added to the numerical model as linear concentration-dependent source/sink terms. Since only the high permeability zones need to be discretized, the numerical formulation is extremely efficient compared to traditional approaches that require discretization of both the high and low permeability zones. The semi-analytical method compares favorably with the analytical solution for transient one-dimensional diffusion with first order decay, with a two-layer aquifer/aquitard solution, with the solution for transport in a fracture with matrix diffusion and decay, and with a fully numerical solution for transport in a thin sand zone bounded by clay with variable decay rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Enamel matrix derivative for replanted teeth in animal models: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim


    Full Text Available Objectives To investigate the effect of enamel matrix derivative (EMD on periodontal healing of replanted teeth in animal models. Materials and Methods The authors searched MEDLINE, PubMed, EMBASE, Cochrane Library, Web of Knowledge and Scopus for articles published up to Oct 2012. Animal studies in which EMD was applied in transplanted or replanted teeth with adequate controls and histological data were considered. Normal periodontal healing or root resorption determined by histology after EMD was applied in replanted teeth with adequate controls was used as outcome measures. The following search strategy was used: ('Emdogain' OR 'enamel matrix proteins' OR 'enamel matrix derivative' AND ('avulsion' OR 'transplantion' OR 'autotransplantation' OR 'replantation'. Results Six animal studies were included in the final review. There was great heterogeneity in study design among included studies. Two studies with similar study designs were identified and analyzed by a meta-analysis. The pooled estimates showed a significantly higher normal healing and surface resorption and significantly less inflammatory and replacement resorption in EMD-treated groups compared with non-EMD-treated groups. Conclusions With the limitations of this systematic review, the use of EMD led to greater normal periodontal healing and surface root resorption and less inflammatory and replacement root resorption in the presence of periodontal ligaments. However, no definite conclusion could be drawn with regard to the effect of EMD on periodontal healing and root resorption when no periodontal ligaments exist.

  6. Matrix model of the grinding process of cement clinker in the ball mill (United States)

    Sharapov, Rashid R.


    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  7. A mathematical model of the inline CMOS matrix sensor for investigation of particles in hydraulic liquids (United States)

    Kornilin, DV; Kudryavtsev, IA


    One of the most effective ways to diagnose the state of hydraulic system is an investigation of the particles in their liquids. The sizes of such particles range from 2 to 200 gm and their concentration and shape reveal important information about the current state of equipment and the necessity of maintenance. In-line automatic particle counters (APC), which are built into hydraulic system, are widely used for determination of particle size and concentration. These counters are based on a single photodiode and a light emitting diode (LED); however, samples of liquid are needed for analysis using microscope or industrial video camera in order to get information about particle shapes. The act of obtaining the sample leads to contamination by other particles from the air or from the sample tube, meaning that the results are usually corrupted. Using the CMOS or CCD matrix sensor without any lens for inline APC is the solution proposed by authors. In this case the matrix sensors are put into the liquid channel of the hydraulic system and illuminated by LED. This system could be stable in arduous conditions like high pressure and the vibration of the hydraulic system; however, the image or signal from that matrix sensor needs to be processed differently in comparison with the signal from microscope or industrial video camera because of relatively short distance between LED and sensor. This paper introduces mathematical model of a sensor with CMOS and LED, which can be built into hydraulic system. It is also provided a computational algorithm and results, which can be useful for calculation of particle sizes and shapes using the signal from the CMOS matrix sensor.

  8. Comparison of Experimental Methods for Estimating Matrix Diffusion Coefficients for Contaminant Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.

  9. Separation of variables in anisotropic models and non-skew-symmetric elliptic r-matrix (United States)

    Skrypnyk, Taras


    We solve a problem of separation of variables for the classical integrable hamiltonian systems possessing Lax matrices satisfying linear Poisson brackets with the non-skew-symmetric, non-dynamical elliptic so(3)⊗ so(3)-valued classical r-matrix. Using the corresponding Lax matrices, we present a general form of the "separating functions" B( u) and A( u) that generate the coordinates and the momenta of separation for the associated models. We consider several examples and perform the separation of variables for the classical anisotropic Euler's top, Steklov-Lyapunov model of the motion of anisotropic rigid body in the liquid, two-spin generalized Gaudin model and "spin" generalization of Steklov-Lyapunov model.

  10. Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures (United States)

    Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea


    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.

  11. Progressive refining of spatial and temporal resolutions in a hydrological model: how far should we go? (United States)

    de Lavenne, Alban; Ficchi, Andrea; Goullet, Julien


    Choosing a modelling resolution for an hydrological model is an important preliminary question. However, it is quite often arbitrary determined by the modeller experience according to the objective, the model capacity or the available measurements. The hydrological literature provides numerous studies which focus on the effect of refining either spatial resolution or (sometimes) temporal resolution in order to better catch hydrological response. In this study, we investigate the impact of changing simultaneously both resolutions on hydrological model performance. The idea is that these resolutions are linked and should be considered together. Thus, we look for the combination of spatial and temporal resolutions fitting at best each catchment behaviour and type of rainfall events. A large data set of 240 catchments scattered all around France is used, and in particular, we benefit from a high-resolution precipitation database (ANTILOPE, Météo-France) that describes hourly precipitation at 1 km2 resolution. Data were aggregated at different time steps (1h, 3h, 6h, 12h and 24h). Streamflow simulations are performed at these different time steps using the GR5 model in its lumped and semi-distributed version (GRSD, de Lavenne et al. (2016)), with a mesh grid of 500, 250, 100 and 50 km2. Ten different indices are used to describe spatio-temporal characteristics of rainfall events, in order to analyse in which contexts refined resolutions are needed to improve the performance of the model. These indices characterise the spatial variability, localisation, movement, intensity and temporal variability of rainfall events. In addition to some indices already reported in the hydrological literature, we propose some new indices like an indice usually applied in economics. This analysis at different time steps, events and catchments demonstrates the limits for some of them and allows to propose some corrections (Goullet J., 2016). Model performances are shown to be

  12. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database (United States)

    Verdin, Kristine L.


    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  13. Nonlinear Adjustment Model with Integral and Its Application to Super Resolution Image Reconstruction

    Directory of Open Access Journals (Sweden)

    ZHU Jianjun


    Full Text Available The process of super resolution image reconstruction is such a process that multiple observations are taken on the same target to obtain low resolution images, then the low resolution images are used to reconstruct the real image of the target, namely high resolution image. This process is similar to that in the field of surveying and mapping, in which the same target is observed repeatedly and the optimal values is calculated with surveying adjustment methods. In this paper, the method of surveying adjustment is applied into super resolution image reconstruction. A integral nonlinear adjustment model for super resolution image reconstruction is proposed at first. And then the model is parameterized with a quadratic function. Finally the model is solved with the least squares adjustment method. Based on the proposed adjustment method, the specific strategy of image reconstruction is presented. This method for super resolution image reconstruction can make quantitative analysis of the results, and avoid successfully ill-condition problem, etc. The results show that, compared to the traditional method of super resolution image reconstruction, this method has greatly improved the visual effects, and the PSNR and SSIM has also greatly improved, so the method is reliable and feasible.

  14. In house validation of a high resolution mass spectrometry Orbitrap-based method for multiple allergen detection in a processed model food. (United States)

    Pilolli, Rosa; De Angelis, Elisabetta; Monaci, Linda


    In recent years, mass spectrometry (MS) has been establishing its role in the development of analytical methods for multiple allergen detection, but most analyses are being carried out on low-resolution mass spectrometers such as triple quadrupole or ion traps. In this investigation, performance provided by a high resolution (HR) hybrid quadrupole-Orbitrap™ MS platform for the multiple allergens detection in processed food matrix is presented. In particular, three different acquisition modes were compared: full-MS, targeted-selected ion monitoring with data-dependent fragmentation (t-SIM/dd2), and parallel reaction monitoring. In order to challenge the HR-MS platform, the sample preparation was kept as simple as possible, limited to a 30-min ultrasound-aided protein extraction followed by clean-up with disposable size exclusion cartridges. Selected peptide markers tracing for five allergenic ingredients namely skim milk, whole egg, soy flour, ground hazelnut, and ground peanut were monitored in home-made cookies chosen as model processed matrix. Timed t-SIM/dd2 was found the best choice as a good compromise between sensitivity and accuracy, accomplishing the detection of 17 peptides originating from the five allergens in the same run. The optimized method was validated in-house through the evaluation of matrix and processing effects, recoveries, and precision. The selected quantitative markers for each allergenic ingredient provided quantification of 60-100 μg ingred /g allergenic ingredient/matrix in incurred cookies.

  15. A Bridging Cell Multiscale Methodology to Model the Structural Behaviour of Polymer Matrix Composites (United States)

    Iacobellis, Vincent

    Composite and nanocomposite materials exhibit behaviour which is inherently multiscale, extending from the atomistic to continuum levels. In composites, damage growth tends to occur at the nano and microstructural scale by means of crack growth and fibre-matrix debonding. Concurrent multiscale modeling provides a means of efficiently solving such localized phenomena, however its use in this application has been limited due to a number of existing issues in the multiscale field. These include the seamless transfer of information between continuum and atomistic domains, the small timesteps required for dynamic simulation, and limited research into concurrent multiscale modeling of amorphous polymeric materials. The objective of this thesis is thus twofold: to formulate a generalized approach to solving a coupled atomistic-to-continuum system that addresses these issues and to extend the application space of concurrent multiscale modeling to damage modeling in composite microstructures. To achieve these objectives, a finite element based multiscale technique termed the Bridging Cell Method (BCM), has been formulated with a focus on crystalline material systems. Case studies are then presented that show the effectiveness of the developed technique with respect to full atomistic simulations. The BCM is also demonstrated for applications of stress around a nanovoid, nanoindentation, and crack growth due to monotonic and cyclic loading. Next, the BCM is extended to modeling amorphous polymeric material systems where an adaptive solver and a two-step iterative solution algorithm are introduced. Finally, the amorphous and crystalline BCM is applied to modeling a polymer-graphite interface. This interface model is used to obtain cohesive zone parameters which are used in a cohesive zone model of fibre-matrix interfacial cracking in a composite microstructure. This allows for an investigation of the temperature dependent damage mechanics from the nano to microscale within

  16. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Tsunehide, E-mail: [General Eduction, National Institute of Technology, Kagawa College, 551 Kohda, Takuma-cho, Mitoyo, Kagawa 769-1192 (Japan); Sugino, Fumihiko, E-mail: [Okayama Institute for Quantum Physics, Furugyocho 1-7-36, Naka-ku, Okayama 703-8278 (Japan)


    In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  17. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings

    International Nuclear Information System (INIS)

    Kuroki, Tsunehide; Sugino, Fumihiko


    In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  18. One-point functions of non-SUSY operators at arbitrary genus in a matrix model for type IIA superstrings (United States)

    Kuroki, Tsunehide; Sugino, Fumihiko


    In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond-Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.

  19. System management model based on the design SWOT-matrix and quality management system for energy complex enterprise


    Novikov, Vladimir


    The article deals with categorical apparatus of information management systems to build a model pairing SWOT-matrix and the quality management system, which is especially important for the energytion industry.

  20. A statistical prediction model based on sparse representations for single image super-resolution. (United States)

    Peleg, Tomer; Elad, Michael


    We address single image super-resolution using a statistical prediction model based on sparse representations of low- and high-resolution image patches. The suggested model allows us to avoid any invariance assumption, which is a common practice in sparsity-based approaches treating this task. Prediction of high resolution patches is obtained via MMSE estimation and the resulting scheme has the useful interpretation of a feedforward neural network. To further enhance performance, we suggest data clustering and cascading several levels of the basic algorithm. We suggest a training scheme for the resulting network and demonstrate the capabilities of our algorithm, showing its advantages over existing methods based on a low- and high-resolution dictionary pair, in terms of computational complexity, numerical criteria, and visual appearance. The suggested approach offers a desirable compromise between low computational complexity and reconstruction quality, when comparing it with state-of-the-art methods for single image super-resolution.

  1. Rapid Calibration of High Resolution Geologic Models to Dynamic Data Using Inverse Modeling: Field Application and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Akhil Datta-Gupta


    Streamline-based assisted and automatic history matching techniques have shown great potential in reconciling high resolution geologic models to production data. However, a major drawback of these approaches has been incompressibility or slight compressibility assumptions that have limited applications to two-phase water-oil displacements only. We propose an approach to history matching three-phase flow using a novel compressible streamline formulation and streamline-derived analytic sensitivities. First, we utilize a generalized streamline model to account for compressible flow by introducing an 'effective density' of total fluids along streamlines. Second, we analytically compute parameter sensitivities that define the relationship between the reservoir properties and the production response, viz. water-cut and gas/oil ratio (GOR). These sensitivities are an integral part of history matching, and streamline models permit efficient computation of these sensitivities through a single flow simulation. We calibrate geologic models to production data by matching the water-cut and gas/oil ratio using our previously proposed generalized travel time inversion (GTTI) technique. For field applications, however, the highly non-monotonic profile of the gas/oil ratio data often presents a challenge to this technique. In this work we present a transformation of the field production data that makes it more amenable to GTTI. Further, we generalize the approach to incorporate bottom-hole flowing pressure during three-phase history matching. We examine the practical feasibility of the method using a field-scale synthetic example (SPE-9 comparative study) and a field application. Recently Ensemble Kalman Filtering (EnKF) has gained increased attention for history matching and continuous reservoir model updating using data from permanent downhole sensors. It is a sequential Monte-Carlo approach that works with an ensemble of reservoir models. Specifically, the method

  2. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL


    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  3. Relative Dispersion from a High-Resolution Coastal Model of the Adriatic Sea

    National Research Council Canada - National Science Library

    Haza, Angelique C; Poje, Andrew C; Ozgokmen, Tamay M; Martin, Paul


    Synthetic drifter trajectories computed from velocity data produced by a high-resolution NCOM model are used to investigate the scaling of relative dispersion and the distribution of finite-scale Lyapunov exponent (FSLE...

  4. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh


    Precipitation is a key input variable to hydrological models, and the spatial variability of the input is expected to impact the hydrological response predicted by a distributed model. In this study, the effect of spatial resolution of precipitation on runoff , recharge and groundwater head...... was analyzed in the Alergaarde catchment in Denmark. Six different precipitation spatial resolutions were used as inputs to a physically based, distributed hydrological model, the MIKE SHE model. The results showed that the resolution of precipitation input had no apparent effect on annual water balance...... of the total catchment and runoff discharge hydrograph at watershed outlet. On the other hand, groundwater recharge and groundwater head were both aff ected. The impact of the spatial resolution of precipitation input is reduced with increasing catchment size. The effect on stream discharge is relatively low...

  5. Density induced phase transitions in the Schwinger model. A study with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC


    We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  6. The model for the strategic management of technology. The improvement cycle and matrixes deployment QFD

    International Nuclear Information System (INIS)

    Benavides Velasco, C. A.; Quintana Garcia, C.


    In spite of the importance of innovative firms, few contributions study in depth the strategic management of their technological resources. After describing the process of strategic management of technology, we propose a model that enables the application of that process and guarantees organizational flexibility in technological companies. For it, such a process has been adapted to She wart cycle (Deeming wheel) and combined with the quality function deployment (QFD). As a result, we propose the improvement cycle of technology. It contains two matrixes that allow identifying and prioritizing with greater clarity the activities related to the management of technological resources. (Authors)

  7. Random matrix theory and higher genus integrability: the quantum chiral Potts model

    International Nuclear Information System (INIS)

    Angles d'Auriac, J.Ch.; Maillard, J.M.; Viallet, C.M.


    We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)

  8. Properties of loop equations for the Hermitean matrix model and for two-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Ambjoern, J.; Makeenko, Yu.M.


    We study properties of the loop equations for the NxN Hermitean matrix model with arbitrary (even) interaction as well as of their continuum limit, associated with the two-dimensional quantum gravity. We apply the general procedure of iterative solution proposed recently by David. We relate the specific heat to the singular behavior of the connected correlator of two loops. We solve the continuum equation to a few lower orders in the string coupling constant, obtaining results for macroscopic loops, including the case of a multicritical fixed point. (orig.)

  9. Cosmological space-times with resolved Big Bang in Yang-Mills matrix models (United States)

    Steinacker, Harold C.


    We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.

  10. A Toolkit for Building Hybrid, Multi-Resolution PMESII Models

    National Research Council Canada - National Science Library

    Bachman, John A; Harper, Karen A


    ...) models in support of a Commander's Predictive Environment (CPE) was developed. This development environment is based upon Charles River Analytic's Graphical Agent Development Environment (GRADE...

  11. An Analytical Model of Thermal Conductivity for Carbon/Carbon Composites with Pitch-Based Matrix

    Directory of Open Access Journals (Sweden)

    Zhi-Hai Feng


    Full Text Available The carbon/carbon (C/C composites are composed of carbon fibers, carbon matrix, and pores and cracks, which have been successfully used in various aerospace applications. In this paper, nanoscale submodel is proposed to describe the thermal conductivity of the matrix based on its microscopic structure, and then the submodel is incorporated into a microscale model to analytically predict the equivalent thermal conductivities of the composites by equivalent circuit approach. The results predicted by the present model agree well with those from the experimental measurements. Based on the model, the effects of the composite porosity as well as the thickness and porosity of the interface phase on the thermal performance of five composites are studied. It is found that the thermal conductivities show decreasing trends in responding to an increase in each of the three parameters. The composite porosity has a significant effect on the thermal conductivities both parallel and transverse to the fiber axis, while the thickness and the porosity of the interface phase remarkably affect the thermal conductivity only transverse to the fiber axis.

  12. Discrete state moduli of string theory from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R


    We propose a new formulation of the space-time interpretation of the c=1 matrix model. Our formulation uses the well-known leg-pole factor that relates the matrix model amplitudes to that of the 2-dimensional string theory, but includes fluctuations around the fermi vacuum on {\\sl both sides} of the inverted harmonic oscillator potential of the double-scaled model, even when the fluctuations are small and confined entirely within the asymptotes in the phase plane. We argue that including fluctuations on both sides of the potential is essential for a consistent interpretation of the leg-pole transformed theory as a theory of space-time gravity. We reproduce the known results for the string theory tree level scattering amplitudes for flat space and linear dilaton background as a special case. We show that the generic case corresponds to more general space-time backgrounds. In particular, we identify the parameter corresponding to background metric perturbation in string theory (black hole mass) in terms of the ...

  13. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites (United States)

    Min, J. B.; Xue, D.; Shi, Y.


    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  14. A comparative verification of high resolution precipitation forecasts using model output statistics (United States)

    van der Plas, Emiel; Schmeits, Maurice; Hooijman, Nicolien; Kok, Kees


    Verification of localized events such as precipitation has become even more challenging with the advent of high-resolution meso-scale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this study a verification strategy based on model output statistics is applied that aims to address both double penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis and lead time. The ELR equations are derived for predictands based on areal calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the non-hydrostatic model Harmonie (2.5 km resolution), Hirlam (11 km resolution) and the ECMWF model (16 km resolution), overall yielding similar Brier skill scores for the 3 post-processed models, but larger differences for individual lead times. Besides, the Fractions Skill Score is computed using the 3 deterministic forecasts, showing somewhat better skill for the Harmonie model. In other words, despite the realism of Harmonie precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the 2 lower resolution models, at least in the Netherlands.

  15. Automatic Detection and Resolution of Lexical Ambiguity in Process Models

    NARCIS (Netherlands)

    Pittke, F.; Leopold, H.; Mendling, J.


    System-related engineering tasks are often conducted using process models. In this context, it is essential that these models do not contain structural or terminological inconsistencies. To this end, several automatic analysis techniques have been proposed to support quality assurance. While formal

  16. A Toolkit for Building Hybrid, Multi-Resolution PMESII Models (United States)


    Ptolemy Integration 23 4. Support for Interoperable PMESII Modeling 31 5. Support for PMESII Model Verification and Validation 34 5.1 Verification 34...terrorist leader behavior .............................................. 20 Figure 3-2: Editors for Two Ptolemy Components in the GRADE Edit Workspace...27 Figure 3-3: Selecting the Customize→Ports Context Menu Item in the Ptolemy Component Editor

  17. A new timing model for calculating the intrinsic timing resolution of a scintillator detector

    International Nuclear Information System (INIS)

    Shao Yiping


    The coincidence timing resolution is a critical parameter which to a large extent determines the system performance of positron emission tomography (PET). This is particularly true for time-of-flight (TOF) PET that requires an excellent coincidence timing resolution (<<1 ns) in order to significantly improve the image quality. The intrinsic timing resolution is conventionally calculated with a single-exponential timing model that includes two parameters of a scintillator detector: scintillation decay time and total photoelectron yield from the photon-electron conversion. However, this calculation has led to significant errors when the coincidence timing resolution reaches 1 ns or less. In this paper, a bi-exponential timing model is derived and evaluated. The new timing model includes an additional parameter of a scintillator detector: scintillation rise time. The effect of rise time on the timing resolution has been investigated analytically, and the results reveal that the rise time can significantly change the timing resolution of fast scintillators that have short decay time constants. Compared with measured data, the calculations have shown that the new timing model significantly improves the accuracy in the calculation of timing resolutions

  18. The effect of high-resolution orography on numerical modelling of atmospheric flow: a preliminary experiment

    International Nuclear Information System (INIS)

    Scarani, C.; Tampieri, F.; Tibaldi, S.


    The effect of increasing the resolution of the topography in models of numerical weather prediction is assessed. Different numerical experiments have been performed, referring to a case of cyclogenesis in the lee of the Alps. From the comparison, it appears that the lower atmospheric levels are better described by the model with higherresolution topography; comparable horizontal resolution runs with smoother topography appear to be less satisfactory in this respect. It turns out also that the vertical propagation of the signal due to the front-mountain interaction is faster in the high-resolution experiment

  19. Integrable lax hierarchies, their symmetry reductions and multi-matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Aratyn, H. [Illinois Univ., Chicago, IL (United States). Dept. of Physics]. E-mail:


    Some new developments in constrained Lax integrable systems and their applications to physics are reviewed. After summarizing the tau function construction of the K P hierarchy and the basic concepts of the symmetry of nonlinear equations, more recent ideas dealing with constrained K P models are described. A unifying approach to constrained K P hierarchy based on graded S L(r+n,n) algebra is presented and equivalence formulas are obtained for various pseudo-differential Lax operators appearing in this context. It is then shown how the Toda lattice structure emerges from constrained K P models via canonical Darboux-Baecklund transformations. These transformations enable to find simple Wronskian solutions for the underlying tau-functions. We also establish a relation between two-matrix models and constrained Toda lattice systems and derive from this relation expressions for the corresponding partition function. (author)

  20. An efficient method for computing genus expansions and counting numbers in the Hermitian matrix model

    International Nuclear Information System (INIS)

    Alvarez, Gabriel; Martinez Alonso, Luis; Medina, Elena


    We present a method to compute the genus expansion of the free energy of Hermitian matrix models from the large N expansion of the recurrence coefficients of the associated family of orthogonal polynomials. The method is based on the Bleher-Its deformation of the model, on its associated integral representation of the free energy, and on a method for solving the string equation which uses the resolvent of the Lax operator of the underlying Toda hierarchy. As a byproduct we obtain an efficient algorithm to compute generating functions for the enumeration of labeled k-maps which does not require the explicit expressions of the coefficients of the topological expansion. Finally we discuss the regularization of singular one-cut models within this approach.

  1. Parameters Identification of Interface Friction Model for Ceramic Matrix Composites Based on Stress-Strain Response (United States)

    Han, Xiao; Gao, Xiguang; Song, Yingdong


    An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.

  2. CBP and Extracellular Matrix-Induced Apoptosis in p53(-) HMECs: A Model of Early Mammary Carcinogenesis (United States)


    current prevention strategies. 15. SUBJECT TERMS prevention, CREBP-binding protein, extracellular matrix, apoptosis 16. SECURITY CLASSIFICATION OF...the retention time of Tam and QTam were 4.3 and 4.8min, respectively. QTam was 495% pure by reverse phase HPLC. The high-resolution FAB -MS and [1H]NMR... Leukemia , 11, 2087–2096. Giles RH, Petrij F, Dauwerse HG, den Hollander AI, Lushnikova T, van Ommen GJ, Goodman RH, Deaven LL, Doggett NA, Peters DJ

  3. Toward an ultra-high resolution community climate system model for the BlueGene platform

    International Nuclear Information System (INIS)

    Dennis, John M; Jacob, Robert; Vertenstein, Mariana; Craig, Tony; Loy, Raymond


    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10 0 resolution for CICE, POP, and CLM models and 1/4 0 resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science

  4. Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis. (United States)

    Li, Chenggang; Zhou, Xiaobo; Sun, Yang; Zhang, Erik; Mancini, John D; Parkhitko, Andrey; Morrison, Tasha A; Silverman, Edwin K; Henske, Elizabeth P; Yu, Jane J


    Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)-2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)-2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM.

  5. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model

    Directory of Open Access Journals (Sweden)

    JA DeQuach


    Full Text Available Peripheral artery disease (PAD currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI, which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold’s degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.

  6. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE

    International Nuclear Information System (INIS)

    Castellote, M.; Andrade, C.


    This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade, X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO 2 , with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity

  7. A regional high resolution model of the marine mercury cycle. (United States)

    Bieser, J.; Daewel, U.; Schrum, C.


    One of the main sources for mercury intoxication is the uptake of methylmercury from sea food. However, only little is known about the dynamics of methylmercury in the marine environment and its accumulation along the food chain. To further our understanding of the pathways from anthropogenic emissions of elemental mercury to the bio-accumulation of methylmercury in fish we developed the first regional Eulerian three dimensional multi-media chemistry transport model (MECOSMO) that includes atmosphere, ocean, and ecosystem. The marine part of the model includes a complete representation of the marine ecosystem ranging from phytoplankton up to higher trophic levels, including fish. We used the MECOSMO model to reconstruct mercury concentrations in water and biota in the North- and Baltic Sea for the past 60 years. Based on our model we examined the natural short and longterm variability of the system as well as long term trends in the distribution and amount of methylmercury in water and fish. Based on our findings we show how models can be utilized to develop future measurement strategies for marine mercury. Finally, the presented modelling system can be used to project the impact of future perturbations in the system (i.e.: emission reductions, climate change, nutrient control) on the mercury accumulation in sea food. Thereby, supporting the implementation of the Minamata Convention on Mercury on a regional scale by enabling us to estimate the impact of emission reductions on the marine mercury cycle.

  8. Reducing uncertainty in high-resolution sea ice models.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Kara J.; Bochev, Pavel Blagoveston


    Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.

  9. Ability of matrix models to explain the past and predict the future of plant populations. (United States)

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S


    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.

  10. Ability of matrix models to explain the past and predict the future of plant populations. (United States)

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.


    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  11. Impact of rainfall temporal resolution on urban water quality modelling performance and uncertainties. (United States)

    Manz, Bastian Johann; Rodríguez, Juan Pablo; Maksimović, Cedo; McIntyre, Neil


    A key control on the response of an urban drainage model is how well the observed rainfall records represent the real rainfall variability. Particularly in urban catchments with fast response flow regimes, the selection of temporal resolution in rainfall data collection is critical. Furthermore, the impact of the rainfall variability on the model response is amplified for water quality estimates, as uncertainty in rainfall intensity affects both the rainfall-runoff and pollutant wash-off sub-models, thus compounding uncertainties. A modelling study was designed to investigate the impact of altering rainfall temporal resolution on the magnitude and behaviour of uncertainties associated with the hydrological modelling compared with water quality modelling. The case study was an 85-ha combined sewer sub-catchment in Bogotá (Colombia). Water quality estimates showed greater sensitivity to the inter-event variability in rainfall hyetograph characteristics than to changes in the rainfall input temporal resolution. Overall, uncertainties from the water quality model were two- to five-fold those of the hydrological model. However, owing to the intrinsic scarcity of observations in urban water quality modelling, total model output uncertainties, especially from the water quality model, were too large to make recommendations for particular model structures or parameter values with respect to rainfall temporal resolution.

  12. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet) (United States)

    Glen E. Liston; Kelly Elder


    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  13. Modeling Optical Properties of Polluted Dust and its Morphological Effects by T-Matrix Method (United States)

    Xu, G.; Yang, P.; Brooks, S. D.


    Dust storms largely contribute to regional or global aerosol loads, influence radiative energy budget, and air quality, and cause atmospheric environmental, public health problems. As dusts are transported long distances, aerosols such as black carbon can pollute the air mass along the transport path. Two mixing processes, externally and semi-externally (sticking) mixing may substantially affect the single-scattering and radiative properties of polluted dust particles compared to the unpolluted counterparts. This study focuses on quantifying the changes in the optical properties of dust aerosols due to black carbon contamination. The dust model we use is an irregular polyhedron, which is in good agreement with the laboratory measurement. The black carbon model is spherules aggregate defined with a cluster-cluster aggregation algorithm. Specifically, we define the degree of pollution in terms of two variables, the adhesion degree of pollutants and their mixing ratios, since both can alter the optical properties of polluted dust in different ways. By applying the Invariant Imbedding T-matrix Method (II-TM), we obtain the scattering phase matrix and other optical properties of dust aerosols with different degrees of contamination. Furthermore, the morphological effects on the optical properties of polluted dust are quantified by considering different fractal dimensions of black carbon as particles age. The overall changes due to different degrees of pollution by black carbon are investigated at various wavelengths.

  14. In vitro evaluation of matrix metalloproteinases as predictive testing for nickel, a model sensitizing agent

    International Nuclear Information System (INIS)

    Lamberti, Monica; Perfetto, Brunella; Costabile, Teresa; Canozo, Nunzia; Baroni, Adone; Liotti, Francesco; Sannolo, Nicola; Giuliano, Mariateresa


    The identification of potential damage due to chemical exposure in the workplace is a major health and regulatory concern. Traditional tests that measure both sensitization and elicitation responses require the use of animals. An alternative to this widespread use of experimental animals could have a crucial impact on risk assessment, especially for the preliminary screening of new molecules. We developed an in vitro model for the screening of potential toxic compounds. Human keratinocytes (HaCat) were used as target cells while matrix metalloproteinases (MMP) were selected as responders because they are key enzymes involved in extracellular matrix (ECM) degradation in physiological and pathological conditions. Chemical exposure was performed using nickel sulphate as a positive tester. Nickel contact induced upregulation of MMP-2 and IL-8 mRNA production. Molecular activation occurred even at very low nickel concentrations even though no phenotypic changes were observed. MMP-9 accumulation was found in the medium of treated cells with respect to controls. These observations led to the hypothesis that even minimal exposure can accumulate transcriptional activity resulting in long-term clinical signs after contact. Our simple in vitro model can be applied as a useful preliminary complement to the animal studies to screen the effects of new potential toxic compounds

  15. A modelling of AC voltage stabilizer based on a hybrid transformer with matrix converter

    Directory of Open Access Journals (Sweden)

    Szcześniak Paweł


    Full Text Available This article presents a study of an AC voltage stabilizer based on a three-phase hybrid transformer combined with a matrix converter. The proposed solution is used to control AC voltage amplitude and phase shift. By adjustment of these voltage parameters we can reduce the effects of overvoltage, voltage dips or lamp flicker. Such negative phenomena are very significant, particularly from the perspective of the final consumer and sensitive loads connected to the power network. Often the voltage in the power system can be adjusted using a mechanical or thyristor controlled regulator, which in a stepwise manner switches the taps of the electromagnetic transformer. The method for obtaining continuous control of the voltage magnitude and phase shift with the use of a conventional transformer with two output windings and a matrix converter is presented in this paper. The operating principles, mathematical model and properties of the proposed voltage stabilizers are discussed in this paper. The main part of the article will be devoted to the mathematical model which is based on an averaged equation. Computer simulation results are presented and compared with the results of a mathematical study.

  16. Diquark and pion condensation in random matrix models for two-color QCD

    International Nuclear Information System (INIS)

    Klein, B.; Toublan, D.; Verbaarschot, J.J.M.


    We introduce a random matrix model with the symmetries of QCD with two colors at nonzero isospin and baryon chemical potentials and temperature. We analyze its phase diagram and find phases with condensation of pion and diquark states in addition to the phases with spontaneously broken chiral symmetries. In the limit of small chemical potentials and quark masses, we reproduce the mean field results obtained from chiral Lagrangians. As in the case of QCD with three colors, the presence of two chemical potentials breaks the flavor symmetry and leads to phases that are characterized by different behaviors of the chiral condensates for each flavor. In particular, the phase diagram we obtain is similar to QCD with three colors and three flavors of quarks of equal masses at zero baryon chemical potential and nonzero isospin and strange chemical potentials. A tricritical point of the superfluid transitions found in lattice calculations and from an analysis in terms of chiral Lagrangians does not appear in the random matrix model. Remarkably, at fixed isospin chemical potential, for the regions outside of the superfluid phases, the phase diagrams in the temperature--baryon chemical potential plane for two colors and three colors are qualitatively the same

  17. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz


    Full Text Available Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.

  18. The application of high temporal resolution data in river catchment modelling and management strategies. (United States)

    Crockford, L; O'Riordain, S; Taylor, D; Melland, A R; Shortle, G; Jordan, P


    Modelling changes in river water quality, and by extension developing river management strategies, has historically been reliant on empirical data collected at relatively low temporal resolutions. With access to data collected at higher temporal resolutions, this study investigated how these new dataset types could be employed to assess the precision and accuracy of two phosphorus (P) load apportionment models (LAMs) developed on lower resolution empirical data. Predictions were made of point and diffuse sources of P across ten different sampling scenarios. Sampling resolution ranged from hourly to monthly through the use of 2000 newly created datasets from high frequency P and discharge data collected from a eutrophic river draining a 9.48 km 2 catchment. Outputs from the two LAMs were found to differ significantly in the P load apportionment (51.4% versus 4.6% from point sources) with reducing precision and increasing bias as sampling frequency decreased. Residual analysis identified a large deviation from observed data at high flows. This deviation affected the apportionment of P from diffuse sources in particular. The study demonstrated the potential problems in developing empirical models such as LAMs based on temporally relatively poorly-resolved data (the level of resolution that is available for the majority of catchments). When these models are applied ad hoc and outside an expert modelling framework using extant datasets of lower resolution, interpretations of their outputs could potentially reduce the effectiveness of management decisions aimed at improving water quality.

  19. The influence of model resolution on ozone in industrial volatile organic compound plumes. (United States)

    Henderson, Barron H; Jeffries, Harvey E; Kim, Byeong-Uk; Vizuete, William G


    Regions with concentrated petrochemical industrial activity (e.g., Houston or Baton Rouge) frequently experience large, localized releases of volatile organic compounds (VOCs). Aircraft measurements suggest these released VOCs create plumes with ozone (O3) production rates 2-5 times higher than typical urban conditions. Modeling studies found that simulating high O3 productions requires superfine (1-km) horizontal grid cell size. Compared with fine modeling (4-kmin), the superfine resolution increases the peak O3 concentration by as much as 46%. To understand this drastic O3 change, this study quantifies model processes for O3 and "odd oxygen" (Ox) in both resolutions. For the entire plume, the superfine resolution increases the maximum O3 concentration 3% but only decreases the maximum Ox concentration 0.2%. The two grid sizes produce approximately equal Ox mass but by different reaction pathways. Derived sensitivity to oxides of nitrogen (NOx) and VOC emissions suggests resolution-specific sensitivity to NOx and VOC emissions. Different sensitivity to emissions will result in different O3 responses to subsequently encountered emissions (within the city or downwind). Sensitivity of O3 to emission changes also results in different simulated O3 responses to the same control strategies. Sensitivity of O3 to NOx and VOC emission changes is attributed to finer resolved Eulerian grid and finer resolved NOx emissions. Urban NOx concentration gradients are often caused by roadway mobile sources that would not typically be addressed with Plume-in-Grid models. This study shows that grid cell size (an artifact of modeling) influences simulated control strategies and could bias regulatory decisions. Understanding the dynamics of VOC plume dependence on grid size is the first step toward providing more detailed guidance for resolution. These results underscore VOC and NOx resolution interdependencies best addressed by finer resolution. On the basis of these results, the

  20. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge...... of the tides improves the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever...

  1. Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

    Energy Technology Data Exchange (ETDEWEB)

    Muender, Wolfgang


    This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption

  2. Quantitative Research: A Dispute Resolution Model for FTC Advertising Regulation. (United States)

    Richards, Jef I.; Preston, Ivan L.

    Noting the lack of a dispute mechanism for determining whether an advertising practice is truly deceptive without generating the costs and negative publicity produced by traditional Federal Trade Commission (FTC) procedures, this paper proposes a model based upon early termination of the issues through jointly commissioned behavioral research. The…

  3. High Resolution PV Power Modeling for Distribution Circuit Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B. L.; Dise, J. H.


    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  4. Numerical resolution of a model of tumour growth. (United States)

    Muñoz, Ana I


    We consider and solve numerically a mathematical model of tumour growth based on cancer stem cells (CSC) hypothesis with the aim of gaining some insight into the relation of different processes leading to exponential growth in solid tumours and into the evolution of different subpopulations of cells. The model consists of four hyperbolic equations of first order to describe the evolution of four subpopulations of cells. A fifth equation is introduced to model the evolution of the moving boundary. The coefficients of the model represent the rates at which reactions occur. In order to integrate numerically the four hyperbolic equations, a formulation in terms of the total derivatives is posed. A finite element discretization is applied to integrate the model equations in space. Our numerical results suggest the existence of a pseudo-equilibrium state reached at the early stage of the tumour, for which the fraction of CSC remains small. We include the study of the behaviour of the solutions for longer times and we obtain that the solutions to the system of partial differential equations stabilize to homogeneous steady states whose values depend only on the values of the parameters. We show that CSC may comprise different proportions of the tumour, becoming, in some cases, the predominant type of cells within the tumour. We also obtain that possible effective measure to detain tumour progression should combine the targeting of CSC with the targeting of progenitor cells. © The Authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  5. Utilization of Short-Simulations for Tuning High-Resolution Climate Model (United States)

    Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.


    Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in greater detail once an educated set of parameter choice is selected. Limitations on using short-term simulations for tuning climate model are also discussed.

  6. The implementation of sea ice model on a regional high-resolution scale (United States)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter


    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  7. Anomaly in RTT relation for DIM algebra and network matrix models (United States)

    Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor


    We discuss the recent proposal of arxiv:arXiv:1608.05351 about generalization of the RTT relation to network matrix models. We show that the RTT relation in these models is modified by a nontrivial, but essentially abelian anomaly cocycle, which we explicitly evaluate for the free field representations of the quantum toroidal algebra. This cocycle is responsible for the braiding, which permutes the external legs in the q-deformed conformal block and its 5 d / 6 d gauge theory counterpart, i.e. the non-perturbative Nekrasov functions. Thus, it defines their modular properties and symmetry. We show how to cancel the anomaly using a construction somewhat similar to the anomaly matching condition in gauge theory. We also describe the singular limit to the affine Yangian (4d Nekrasov functions), which breaks the spectral duality.

  8. Anomaly in RTT relation for DIM algebra and network matrix models

    Directory of Open Access Journals (Sweden)

    Hidetoshi Awata


    Full Text Available We discuss the recent proposal of arXiv:1608.05351 about generalization of the RTT relation to network matrix models. We show that the RTT relation in these models is modified by a nontrivial, but essentially abelian anomaly cocycle, which we explicitly evaluate for the free field representations of the quantum toroidal algebra. This cocycle is responsible for the braiding, which permutes the external legs in the q-deformed conformal block and its 5d/6d gauge theory counterpart, i.e. the non-perturbative Nekrasov functions. Thus, it defines their modular properties and symmetry. We show how to cancel the anomaly using a construction somewhat similar to the anomaly matching condition in gauge theory. We also describe the singular limit to the affine Yangian (4d Nekrasov functions, which breaks the spectral duality.

  9. Modelling of the Contact Condition at the Tool/Matrix Interface in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John


    The objective of the present paper is to investigate the heat generation and contact condition during Friction Stir Welding (FSW). For this purpose, an analytical model is developed for the heat generation and this is combined with a Eulerian FE-analysis of the temperature field. The heat...... generation is closely related to the friction condition at the contact interface between the FSW tool and the weld piece material as well as the material flow in the weld matrix, since the mechanisms for heat generation by frictional and plastic dissipation are different. The heat generation from the tool...... is governed by the contact condition, i.e. whether there is sliding, sticking or partial sliding/sticking. The contact condition in FSW is complex (dependent on alloy, welding parameters, tool design etc.), and previous models (both analytical and numerical) for simulation of the heat generation assume...

  10. Thermal evolution of the one-flavour Schwinger model using matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H.; Jansen, K. [DESY Zeuthen (Germany). John von Neumann Institute for Computing; Banuls, M.C.; Cirac, J.I. [Max-Planck Institute of Quantum Optics, Garching (Germany); Cichy, K. [Frankfurt am Main Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics


    The Schwinger model, or 1+1 dimensional QED, offers an interesting object of study, both at zero and non-zero temperature, because of its similarities to QCD. In this proceeding, we present the a full calculation of the temperature dependent chiral condensate of this model in the continuum limit using Matrix Product States (MPS). MPS methods, in general tensor networks, constitute a very promising technique for the non-perturbative study of Hamiltonian quantum systems. In the last few years, they have shown their suitability as ansatzes for ground states and low-lying excitations of lattice gauge theories. We show the feasibility of the approach also for finite temperature, both in the massless and in the massive case.

  11. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail:


    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  12. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker


    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  13. Binary modelling the milling of UG2 ore using a matrix approach

    Directory of Open Access Journals (Sweden)

    Méschac-Bill Kime


    Full Text Available The study reports a binary matrix modelling and simulation studies to improve the performance of the secondary grinding circuit of UG2 ores. The model developed was intended to help searching for optimal operating conditions of the secondary milling circuit so that the platinum group element (PGE recovery is increased while reducing Cr2O3 entrainment in the subsequent flotation stage. A series of laboratory batch-scale tests was carried out in order to estimate the milling kinetics parameters of the chromite and non-chromite components. Finally, two alternatives circuit configurations for a better performance were evaluated using simulations. The optimal design consisted of a conventional ball mill in closed circuit with a hydrocyclone to separate the milling product into lights (non-chromite-rich and heavies (chromite-rich fractions followed by a vibrating screen to de-slime the cyclone underflow before it is returned to the mill for further grinding.

  14. Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions. (United States)

    Lee, Ping I


    The purpose of this review is to provide an overview of approximate analytical solutions to the general moving boundary diffusion problems encountered during the release of a dispersed drug from matrix systems. Starting from the theoretical basis of the Higuchi equation and its subsequent improvement and refinement, available approximate analytical solutions for the more complicated cases involving heterogeneous matrix, boundary layer effect, finite release medium, surface erosion, and finite dissolution rate are also discussed. Among various modeling approaches, the pseudo-steady state assumption employed in deriving the Higuchi equation and related approximate analytical solutions appears to yield reasonably accurate results in describing the early stage release of a dispersed drug from matrices of different geometries whenever the initial drug loading (A) is much larger than the drug solubility (C(s)) in the matrix (or A≫C(s)). However, when the drug loading is not in great excess of the drug solubility (i.e. low A/C(s) values) or when the drug loading approaches the drug solubility (A→C(s)) which occurs often with drugs of high aqueous solubility, approximate analytical solutions based on the pseudo-steady state assumption tend to fail, with the Higuchi equation for planar geometry exhibiting a 11.38% error as compared with the exact solution. In contrast, approximate analytical solutions to this problem without making the pseudo-steady state assumption, based on either the double-integration refinement of the heat balance integral method or the direct simplification of available exact analytical solutions, show close agreement with the exact solutions in different geometries, particularly in the case of low A/C(s) values or drug loading approaching the drug solubility (A→C(s)). However, the double-integration heat balance integral approach is generally more useful in obtaining approximate analytical solutions especially when exact solutions are not

  15. Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions (United States)

    Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.


    In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.

  16. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

    Directory of Open Access Journals (Sweden)

    Sette Alessandro


    Full Text Available Abstract Background Many processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM. This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP and proteasomal cleavage of protein sequences. Results Herein we report the implementation of the SMM algorithm as a publicly available software package. Specific features determining the type of problems the method is most appropriate for are discussed. Advantageous features of the package are: (1 the output generated is easy to interpret, (2 input and output are both quantitative, (3 specific computational strategies to handle experimental noise are built in, (4 the algorithm is designed to effectively handle bounded experimental data, (5 experimental data from randomized peptide libraries and conventional peptides can easily be combined, and (6 it is possible to incorporate pair interactions between positions of a sequence. Conclusion Making the SMM method publicly available enables bioinformaticians and experimental biologists to easily access it, to compare its performance to other prediction methods, and to extend it to other applications.

  17. Core surface flow modelling from high-resolution secular variation

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils


    -flux hypothesis, but the spectrum of the SV implies that a conclusive test of frozen-flux is not possible. We parametrize the effects of diffusion as an expected misfit in the flow prediction due to departure from the frozen-flux hypothesis; at low spherical harmonic degrees, this contribution dominates...... the expected departure of the SV predictions from flow to the observed SV, while at high degrees the SV model uncertainty is dominant. We construct fine-scale core surface flows to model the SV. Flow non-uniqueness is a serious problem because the flows are sufficiently small scale to allow flow around non......-series of magnetic data and better parametrization of the external magnetic field....

  18. Data Integration for the Generation of High Resolution Reservoir Models

    Energy Technology Data Exchange (ETDEWEB)

    Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han


    The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

  19. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. (United States)

    Zhang, Peipei; Liu, Ruimin; Bao, Yimeng; Wang, Jiawei; Yu, Wenwen; Shen, Zhenyao


    The objective of this study was to enhance understanding of the sensitivity of the SWAT model to the resolutions of Digital Elevation Models (DEMs) based on the analysis of multiple evaluation indicators. The Xiangxi River, a large tributary of Three Gorges Reservoir in China, was selected as the study area. A range of 17 DEM spatial resolutions, from 30 to 1000 m, was examined, and the annual and monthly model outputs based on each resolution were compared. The following results were obtained: (i) sediment yield was greatly affected by DEM resolution; (ii) the prediction of dissolved oxygen load was significantly affected by DEM resolutions coarser than 500 m; (iii) Total Nitrogen (TN) load was not greatly affected by the DEM resolution; (iv) Nitrate Nitrogen (NO₃-N) and Total Phosphorus (TP) loads were slightly affected by the DEM resolution; and (v) flow and Ammonia Nitrogen (NH₄-N) load were essentially unaffected by the DEM resolution. The flow and dissolved oxygen load decreased more significantly in the dry season than in the wet and normal seasons. Excluding flow and dissolved oxygen, the uncertainties of the other Hydrology/Non-point Source (H/NPS) pollution indicators were greater in the wet season than in the dry and normal seasons. Considering the temporal distribution uncertainties, the optimal DEM resolutions for flow was 30-200 m, for sediment and TP was 30-100 m, for dissolved oxygen and NO₃-N was 30-300 m, for NH₄-N was 30 to 70 m and for TN was 30-150 m. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon (United States)

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad


    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in

  1. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    KAUST Repository

    Attada, Raju


    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena

  2. Towards Tuning the Mechanical Properties of Three-Dimensional Collagen Scaffolds Using a Coupled Fiber-Matrix Model

    Directory of Open Access Journals (Sweden)

    Shengmao Lin


    Full Text Available Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network and the matrix. The knowledge obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds for improved tissue regeneration applications.

  3. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle

    Energy Technology Data Exchange (ETDEWEB)

    Quirbach, Sebastian; Trattnig, Siegfried [Vienna General Hospital, MR Center - High-Field MR, Department of Radiology, Medical University of Vienna, Vienna (Austria); Marlovits, Stefan; Zimmermann, Valentin [Medical University of Vienna, Center for Joint and Cartilage, Department of Trauma Surgery, Vienna (Austria); Domayer, Stephan; Dorotka, Ronald [Medical University of Vienna, Department of Orthopedic Surgery, Vienna (Austria); Mamisch, Tallal C. [University of Berne, Department of Orthopedic Surgery, Berne (Switzerland); Bohndorf, Klaus [Klinikum Augsburg, Department of Radiology, Augsburg (Germany); Welsch, Goetz H. [Vienna General Hospital, MR Center - High-Field MR, Department of Radiology, Medical University of Vienna, Vienna (Austria); University of Erlangen, Department of Trauma Surgery, Erlangen (Germany)


    The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. The overall MOCART score in patients after MACT was 73.8. T2 relaxation times ({proportional_to}50 ms), T2* relaxation times ({proportional_to}16 ms), and the diffusion constant for DWI ({proportional_to}1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p{>=}0.05) compared to the control cartilage; however, a significantly higher diffusivity ({proportional_to}1.5; p<0.05) was noted in the cartilage repair tissue. The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated

  4. Using Molecular Simulation to Model High-Resolution Cryo-EM Reconstructions. (United States)

    Kirmizialtin, Serdal; Loerke, Justus; Behrmann, Elmar; Spahn, Christian M T; Sanbonmatsu, Karissa Y


    An explosion of new data from high-resolution cryo-electron microscopy (cryo-EM) studies has produced a large number of data sets for many species of ribosomes in various functional states over the past few years. While many methods exist to produce structural models for lower resolution cryo-EM reconstructions, high-resolution reconstructions are often modeled using crystallographic techniques and extensive manual intervention. Here, we present an automated fitting technique for high-resolution cryo-EM data sets that produces all-atom models highly consistent with the EM density. Using a molecular dynamics approach, atomic positions are optimized with a potential that includes the cross-correlation coefficient between the structural model and the cryo-EM electron density, as well as a biasing potential preserving the stereochemistry and secondary structure of the biomolecule. Specifically, we use a hybrid structure-based/ab initio molecular dynamics potential to extend molecular dynamics fitting. In addition, we find that simulated annealing integration, as opposed to straightforward molecular dynamics integration, significantly improves performance. We obtain atomistic models of the human ribosome consistent with high-resolution cryo-EM reconstructions of the human ribosome. Automated methods such as these have the potential to produce atomistic models for a large number of ribosome complexes simultaneously that can be subsequently refined manually. © 2015 Elsevier Inc. All rights reserved.

  5. Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies

    International Nuclear Information System (INIS)

    Ohsenbrügge, Christoph; Marth, Wieland; Navarro y de Sosa, Iñaki; Drossel, Welf-Guntram; Voigt, Axel


    Highlights: • Closed cell metal foam sandwich structures were investigated. • High resolution numerical studies were conducted using CT scan data. • A reduced model for use in commercial FE software reduces needed degrees of freedom. • Thermal inertia is increased about 4 to 5 times in PCM filled structures. • The reduced material model was verified using experimental data. - Abstract: The thermal behaviour of closed cell metal foam infiltrated with paraffin wax as latent heat storage for application in high precision tool machines was examined. Aluminium foam sandwiches with metallically bound cover layers were prepared in a powder metallurgical process and cross-sectional images of the structures were generated with X-ray computed tomography. Based on the image data a three dimensional highly detailed model was derived and prepared for simulation with the adaptive FE-library AMDiS. The pores were assumed to be filled with paraffin wax. The thermal conductivity and the transient thermal behaviour in the phase-change region were investigated. Based on the results from the highly detailed simulations a reduced model for use in commercial FE-software (ANSYS) was derived. It incorporates the properties of the matrix and the phase change material into a homogenized material. A sandwich-structure with and without paraffin was investigated experimentally under constant thermal load. The results were used to verify the reduced material model in ANSYS.

  6. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program


    Friedrich, Leandro Ferreira; Wang, Chong


    Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for co...

  7. Skeletal Muscle Regeneration in a Rat (Rattus norvegicus) Model with CorMatrix and Adipose Derived Stem Cells (United States)


    Model with CorMatrix and Adipose Derived Stem Cells ." PRINCIPAL INVESTIGATOR (Pl) I TRAINING COORDINATOR (TC): Major Lucas Neff DEPARTMENT...ability of the matrix to work in concert with adipose derived stem cells for further augmentation of healing. 3 FDGXXX Attachments: Attachment 1...Introduction: The increasing use of explosive devices has led to a dramatic increase in traumatic injury accompanied by severe tissue trauma and

  8. Matrix Metalloproteinases Are Differentially Regulated and Responsive to Compression Therapy in a Red Duroc Model of Hypertrophic Scar. (United States)

    Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W


    Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.

  9. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    Energy Technology Data Exchange (ETDEWEB)

    Drover, Damion, Ryan


    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a

  10. Modeling acquisition geometries with improved super-resolution in digital breast tomosynthesis (United States)

    Acciavatti, Raymond J.; Wileyto, E. Paul; Maidment, Andrew D. A.


    In digital breast tomosynthesis (DBT), a reconstruction is created from multiple x-ray projection images. Our previous work demonstrated that the reconstruction is capable of super-resolution (i.e., subpixel resolution) relative to the detector. In order for super-resolution to yield a reliable improvement in image quality, it should be achievable at all positions in the reconstruction. This paper demonstrates that super-resolution is not achievable at all depths, or at all heights above the breast support. For this purpose, a bar pattern phantom was imaged using a commercial DBT system. A goniometry stand was used to orient the long axis of the parallel bars along an oblique plane relative to the breast support. This setup allowed a single test frequency to be visualized over a continuous range of depths. The orientation of the test frequency was parallel to the direction of x-ray tube motion. An oblique reconstruction in the plane of the bar pattern phantom showed that the existence of super-resolution is depth-dependent. To identify design strategies for optimizing super-resolution, a theoretical model was then developed in which a test frequency higher than the alias frequency of the detector was simulated. Two design modifications that improve super-resolution are identified. In particular, it is shown that reducing the spacing between the x-ray source positions minimizes the number of depths lacking super-resolution. Additionally, introducing detector motion along the direction perpendicular to the breast support allows for more uniform super-resolution throughout the image volume. In conclusion, this work presents strategies for optimizing super-resolution in DBT.

  11. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors. (United States)

    Marko, Matthew David; Shevach, Glenn


    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.

  12. Robust Hydrological Forecasting for High-resolution Distributed Models Using a Unified Data Assimilation Approach (United States)

    Hernandez, F.; Liang, X.


    Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational

  13. The southern high-resolution modeling consortium - a source for research and operational collaboration (United States)

    Gary L. Achtemeier; Scott L. Goodrick; Yongqiang Liu


    The Southern High-Resolution Modeling Consortium (SHRMC) is one of five regional Fire Consortia for Advanced Modeling of Meteorology and Smoke (FCAMMS) consortia established as part of the National Fire Plan. FCAMMS involves research and development activities collaborating across all land management agencies, NOAA, NASA, and Universities. These activities will support...

  14. Impact of climate change on river flooding assessed with different spatial model resolutions

    NARCIS (Netherlands)

    Booij, Martijn J.


    The impact of climate change on flooding in the river Meuse is assessed on a daily basis using spatially and temporally changed climate patterns and a hydrological model with three different spatial resolutions. This is achieved by selecting a hydrological modelling framework and implementing

  15. An object model for genome information at all levels of resolution

    Energy Technology Data Exchange (ETDEWEB)

    Honda, S.; Parrott, N.W.; Smith, R.; Lawrence, C.


    An object model for genome data at all levels of resolution is described. The model was derived by considering the requirements for representing genome related objects in three application domains: genome maps, large-scale DNA sequencing, and exploring functional information in gene and protein sequences. The methodology used for the object-oriented analysis is also described.

  16. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method (United States)

    Jiao, C. F.; Engel, J.; Holt, J. D.


    We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.

  17. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Directory of Open Access Journals (Sweden)

    Yizhuang Liu


    Full Text Available We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  18. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution (United States)

    Jiang, Yunpeng; Qiu, Kun; Sun, Longgang; Wu, Qingqing


    The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

  19. Spacetime emergence of the robertson-walker universe from a matrix model. (United States)

    Erdmenger, Johanna; Meyer, René; Park, Jeong-Hyuck


    Using a novel, string theory-inspired formalism based on a Hamiltonian constraint, we obtain a conformal mechanical system for the spatially flat four-dimensional Robertson-Walker Universe. Depending on parameter choices, this system describes either a relativistic particle in the Robertson-Walker background or metric fluctuations of the Robertson-Walker geometry. Moreover, we derive a tree-level M theory matrix model in this time-dependent background. Imposing the Hamiltonian constraint forces the spacetime geometry to be fuzzy near the big bang, while the classical Robertson-Walker geometry emerges as the Universe expands. From our approach, we also derive the temperature of the Universe interpolating between the radiation and matter dominated eras.

  20. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier


    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  1. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier


    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  2. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail:; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)


    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  3. Two- and three-point functions in the D=1 matrix model

    International Nuclear Information System (INIS)

    Ben-Menahem, S.


    The critical behavior of the genus-zero two-point function in the D=1 matrix model is carefully analyzed for arbitrary embedding-space momentum. Kostov's result is recovered for momenta below a certain value P 0 (which is 1/√α' in the continuum language), with a non-universal form factor which is expressed simply in terms of the critical fermion trajectory. For momenta above P 0 , the Kostov scaling term is found to be subdominant. We then extend the large-N WKB treatment to calculate the genus-zero three-point function, and elucidate its critical behavior when all momenta are below P 0 . The resulting universal scaling behavior, as well as the non-universal form factor for the three-point function, are related to the two-point functions of the individual external momenta, through the factorization familiar from continuum conformal field theories. (orig.)

  4. A matrix model for valuing anesthesia service with the resource-based relative value system. (United States)

    Sinclair, David R; Lubarsky, David A; Vigoda, Michael M; Birnbach, David J; Harris, Eric A; Behrens, Vicente; Bazan, Richard E; Williams, Steve M; Arheart, Kristopher; Candiotti, Keith A


    The purpose of this study was to propose a new crosswalk using the resource-based relative value system (RBRVS) that preserves the time unit component of the anesthesia service and disaggregates anesthesia billing into component parts (preoperative evaluation, intraoperative management, and postoperative evaluation). The study was designed as an observational chart and billing data review of current and proposed payments, in the setting of a preoperative holing area, intraoperative suite, and post anesthesia care unit. In total, 1,195 charts of American Society of Anesthesiology (ASA) physical status 1 through 5 patients were reviewed. No direct patient interventions were undertaken. Spearman correlations between the proposed RBRVS billing matrix payments and the current ASA relative value guide methodology payments were strong (r=0.94-0.96, Pbilling matrix yielded payments that were 3.0%±1.34% less than would have been expected from commercial insurers, using standard rates for commercial ASA relative value units and RBRVS relative value units. Compared with current Medicare reimbursement under the ASA relative value guide, reimbursement would almost double when converting to an RBRVS billing model. The greatest increases in Medicare reimbursement between the current system and proposed billing model occurred as anesthetic management complexity increased. The new crosswalk correlates with existing evaluation and management and intensive care medicine codes in an essentially revenue neutral manner when applied to the market-based rates of commercial insurers. The new system more highly values delivery of care to more complex patients undergoing more complex surgery and better represents the true value of anesthetic case management.

  5. A matrix model for valuing anesthesia service with the resource-based relative value system (United States)

    Sinclair, David R; Lubarsky, David A; Vigoda, Michael M; Birnbach, David J; Harris, Eric A; Behrens, Vicente; Bazan, Richard E; Williams, Steve M; Arheart, Kristopher; Candiotti, Keith A


    Background The purpose of this study was to propose a new crosswalk using the resource-based relative value system (RBRVS) that preserves the time unit component of the anesthesia service and disaggregates anesthesia billing into component parts (preoperative evaluation, intraoperative management, and postoperative evaluation). The study was designed as an observational chart and billing data review of current and proposed payments, in the setting of a preoperative holing area, intraoperative suite, and post anesthesia care unit. In total, 1,195 charts of American Society of Anesthesiology (ASA) physical status 1 through 5 patients were reviewed. No direct patient interventions were undertaken. Results Spearman correlations between the proposed RBRVS billing matrix payments and the current ASA relative value guide methodology payments were strong (r=0.94–0.96, P<0.001 for training, test, and overall). The proposed RBRVS-based billing matrix yielded payments that were 3.0%±1.34% less than would have been expected from commercial insurers, using standard rates for commercial ASA relative value units and RBRVS relative value units. Compared with current Medicare reimbursement under the ASA relative value guide, reimbursement would almost double when converting to an RBRVS billing model. The greatest increases in Medicare reimbursement between the current system and proposed billing model occurred as anesthetic management complexity increased. Conclusion The new crosswalk correlates with existing evaluation and management and intensive care medicine codes in an essentially revenue neutral manner when applied to the market-based rates of commercial insurers. The new system more highly values delivery of care to more complex patients undergoing more complex surgery and better represents the true value of anesthetic case management. PMID:25336964

  6. Numerical Computation of a Continuous-thrust State Transition Matrix Incorporating Accurate Hardware and Ephemeris Models (United States)

    Ellison, Donald; Conway, Bruce; Englander, Jacob


    A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.


    Directory of Open Access Journals (Sweden)

    Aleksandr V. Romanenko


    Full Text Available Introduction. The problem of formation and information management systems management of manufacturing system businesses is analyzed in the article. Existing schemes of the Russian economy increased demands for its efficiency. Stability integrative model business entity lifecycle requires a search for solutions based on new technologies in the organization and operation of information management systems. Results. On the basis of the analysis of their importance for sustainability of the entity components of its life cycle conclusions are made about the applicability of the matrix model to the production system management. Contradiction in the application of this management model are solved by separating the information on the basis of the state of product and process state. This division contributes to a better organization of the distribution of responsibility between the profit centers and cost centers. As an indicator of the efficiency of profit centers, it is proposed to use the ratio revenue net from the sale of products to the current value of the planned costs of its production. To assess the effectiveness of cost centers used index that is similar to profitability of fixed assets taking into account the cost of resources utilized by each cost center separately. Discussion and Conclusions. We analyze the relationship between goals management of the production system with the role of profit centers and cost centers. The proposed basis of the formation model information ensures the management of the production system, contributing to improve the quality of managerial decisions in implementing the competitive advantages of business entity.

  8. Eigenstate thermalization in the two-dimensional transverse field Ising model. II. Off-diagonal matrix elements of observables. (United States)

    Mondaini, Rubem; Rigol, Marcos


    We study the matrix elements of few-body observables, focusing on the off-diagonal ones, in the eigenstates of the two-dimensional transverse field Ising model. By resolving all symmetries, we relate the onset of quantum chaos to the structure of the matrix elements. In particular, we show that a general result of the theory of random matrices, namely, the value 2 of the ratio of variances (diagonal to off-diagonal) of the matrix elements of Hermitian operators, occurs in the quantum chaotic regime. Furthermore, we explore the behavior of the off-diagonal matrix elements of observables as a function of the eigenstate energy differences and show that it is in accordance with the eigenstate thermalization hypothesis ansatz.

  9. Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials (United States)

    Wang, Xiaolin

    of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.

  10. Comparison of Satellite NO2 Observations with High Resolution Model Simulations over the Balkan Peninsula

    International Nuclear Information System (INIS)

    Zyrichidou, I.; Koukouli, M. E.; Balis, D. S.; Katragkou, E.; Poupkou, A.; Kioutsioukis, I.; Markakis, K.; Melas, D.; van der A., R.; Boersma, F. K.; Roozendael, M. van


    High resolution model estimations of tropospheric NO 2 column amounts from the Comprehensive Air Quality Model (CAMx) were simulated for the Balkan Peninsula and were compared with satellite data for a period of one year, in order to study the characteristics of the spatial and temporal variability of pollution in the area. The Balkan area is considered a crossroad of different pollution sources and therefore has been divided in urban, industrial and rural regions, aiming to investigate the consistency of satellite retrievals and model predictions at high spatial resolution. Satellite measurements of tropospheric NO 2 are available daily at 13:30 LT since 2004 from OMI/Aura with a resolution of 13x24 km. The anthropogenic emissions used in CAMx for the domain under study, was compiled employing bottom-up approaches (road transport sector, off-road machinery) as well as other national registries and international databases. High resolution GIS maps (road network, landuses, population) were also used in order to achieve high spatial resolution. In most of the cases the model reveals similar spatial patterns with the satellite data, while over certain areas discrepancies were found and investigated.

  11. Simulating the Agulhas system in global ocean models - nesting vs. multi-resolution unstructured meshes (United States)

    Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey


    Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.

  12. Analytical model of SiPM time resolution and order statistics with crosstalk

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, S., E-mail: [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Leninskiy Prospekt 53, Moscow (Russian Federation)


    Time resolution is the most important parameter of photon detectors in a wide range of time-of-flight and time correlation applications within the areas of high energy physics, medical imaging, and others. Silicon photomultipliers (SiPM) have been initially recognized as perfect photon-number-resolving detectors; now they also provide outstanding results in the scintillator timing resolution. However, crosstalk and afterpulsing introduce false secondary non-Poissonian events, and SiPM time resolution models are experiencing significant difficulties with that. This study presents an attempt to develop an analytical model of the timing resolution of an SiPM taking into account statistics of secondary events resulting from a crosstalk. Two approaches have been utilized to derive an analytical expression for time resolution: the first one based on statistics of independent identically distributed detection event times and the second one based on order statistics of these times. The first approach is found to be more straightforward and “analytical-friendly” to model analog SiPMs. Comparisons of coincidence resolving times predicted by the model with the known experimental results from a LYSO:Ce scintillator and a Hamamatsu MPPC are presented.

  13. Analytical model of SiPM time resolution and order statistics with crosstalk

    International Nuclear Information System (INIS)

    Vinogradov, S.


    Time resolution is the most important parameter of photon detectors in a wide range of time-of-flight and time correlation applications within the areas of high energy physics, medical imaging, and others. Silicon photomultipliers (SiPM) have been initially recognized as perfect photon-number-resolving detectors; now they also provide outstanding results in the scintillator timing resolution. However, crosstalk and afterpulsing introduce false secondary non-Poissonian events, and SiPM time resolution models are experiencing significant difficulties with that. This study presents an attempt to develop an analytical model of the timing resolution of an SiPM taking into account statistics of secondary events resulting from a crosstalk. Two approaches have been utilized to derive an analytical expression for time resolution: the first one based on statistics of independent identically distributed detection event times and the second one based on order statistics of these times. The first approach is found to be more straightforward and “analytical-friendly” to model analog SiPMs. Comparisons of coincidence resolving times predicted by the model with the known experimental results from a LYSO:Ce scintillator and a Hamamatsu MPPC are presented

  14. Can Low-Resolution Airborne Laser Scanning Data Be Used to Model Stream Rating Curves?

    Directory of Open Access Journals (Sweden)

    Steve W. Lyon


    Full Text Available This pilot study explores the potential of using low-resolution (0.2 points/m2 airborne laser scanning (ALS-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m2 ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries. This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.

  15. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Walko, Robert [Univ. of Miami, Coral Gables, FL (United States)


    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of the atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.

  16. High resolution climate simulations with the AWI Climate Model (AWI-CM) (United States)

    Sein, Dmitry; Semmler, Tido; Danilov, Sergey; Rackow, Thomas; Sidorenko, Dmitry; Jung, Thomas


    The ocean component of AWI-CM (FESOM) uses unstructured meshes, which allows the use of variable resolutions without traditional nesting. Due to the flexibility of unstructured meshes, one needs to carefully design meshes so that the variable resolution can most efficiently improve the simulated results with the least possible computational cost. We propose a new approach to set up variable resolution, which uses the satellite-observed sea surface height variability to determine the regions where high resolution should be assigned. This approach is verified using both idealized experiments and ocean simulations. It will also become one of the standard mesh design methods for general FESOM users. The added value of the use of the high resolution ocean model is demonstrated by two different FESOM ocean setups (LR and HR) coupled with the atmospheric model ECHAM6. LR (low resolution) employs a coarse mesh with nominal resolution of about 100 km in the global ocean, about 25 km north of 50°N, about 35 km in the equatorial band, and moderate refinement along the coasts. HR (high resolution) uses a locally eddy-resolving mesh. Its design relies on the AVISO satellite altimetry product. The coarsest resolution on this mesh is set to 60 km, and the finest resolution is 10 km. The refinement was determined by a low-pass filtered SSH variance (SSHV) pattern derived from the AVISO data. Fine resolution is obtained in regions with high SSHV, including the pathways of main currents - the Gulf Stream, Kuroshio, Antarctic Circumpolar Current (ACC) and Agulhas Current. The HR mesh contains about 1.3 million surface grid nodes, which is close to the number of nodes on a 1/4° Mercator mesh (only wet nodes are dealt with on unstructured meshes). This mesh size ensures reasonably fast simulations with available computational resources. The AWI-CM simulations with the two global ocean setups were carried out in the framework of the PRIMAVERA EU project according to the High


    Directory of Open Access Journals (Sweden)

    M. Karamouz, M. Akhbari, A. Moridi, R. Kerachian


    Full Text Available System dynamics approach by simulating a bargaining process can be used for resolving conflict of interests in water quality management. This approach can be a powerful alternative for traditional approaches for conflict resolution, which often rely on classical game theory. Waste load allocation models for river water quality management determine the optimal monthly waste load allocation to each point load. Most of these approaches are based on the multi-objective optimization models and do not consider the existing conflicts. In this study, a system dynamics-based conflict resolution model is presented for monthly waste load allocation in river systems. In this model, the stakeholders and decision-makers negotiate with each other considering their relative authorities, aspirations and dissatisfactions. System dynamics approach is actually used for simulating the bargaining process among the players. The model incorporates the objectives and preferences of stakeholders and decision-makers of the system in the form of utility functions and could provide a final agreement among the players. To evaluate the spatial and temporal variation of the concentration of the water quality indicator in the system, a water quality simulation model is also linked to the conflict resolution model. In the proposed model, a pre-assigned utility is allocated to different water users and the results are evaluated using a simulation model. The allocated utilities are tested and adjusted in order to provide an agreement between the assumed utilities and the utilities assigned by the model. The proposed model is applied to the Karkheh River system located in the southwest of Iran. The results show that the model can effectively incorporate the preferences of the players in providing a final agreement and the runtime of the proposed model is much less than the classical conflict resolution models. It is also shown that the waste load allocation can significantly reduce

  18. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions (United States)

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre


    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  19. An open-access modeled passenger flow matrix for the global air network in 2010.

    Directory of Open Access Journals (Sweden)

    Zhuojie Huang

    Full Text Available The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air project at:

  20. High Resolution Model Intercomparison Project (HighResMIP v1.0 for CMIP6

    Directory of Open Access Journals (Sweden)

    R. J. Haarsma


    Full Text Available Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6 is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs. Increases in high-performance computing (HPC resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period

  1. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Jacques [Univ. of Regensburg (Germany). Inst. for Theorectical Physics; Glesaan, Jonas [Swansea Univ., Swansea U.K.; Verbaarschot, Jacobus [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy; Zafeiropoulos, Savvas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Heidelberg Univ. (Germany). Inst. for Theoretische Physik


    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.

  2. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem (United States)

    Erdogan, F.; Pacella, A. H.


    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  3. Multi-scale modelling of the effect of a viscoelastic matrix on the strength of a carbon fibre composite (United States)

    Foreman, Joel P.; Behzadi, Shabnam; Porter, David; Jones, Frank R.


    A recently developed multi-scale model has proven successful in predicting the tensile strength of a unidirectional fibre composite from fundamental molecular inputs. This technique is now extended to subtle changes in the properties of the matrix. The chemistry of the resin matrix is varied on the functional group level resulting in a series of stress-strain profiles predicted using group interaction modelling. The transfer of strain as the result of a fibre break in the composite is modelled using finite element methods. The resulting characteristic ineffective lengths and strain concentration factors are incorporated into a statistical simulation of the propagation of fibre failure events in a typical composite. This allows the prediction of ultimate tensile strength for a composite containing a yielding and non-yielding matrix phase.

  4. Validation of a global hydrodynamic flood inundation model against high resolution observation data of urban flooding (United States)

    Bates, Paul; Sampson, Chris; Smith, Andy; Neal, Jeff


    In this work we present further validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model that uses highly efficient numerical algorithms (LISFLOOD-FP) to simulate flood inundation at ~1km resolution globally and then use downscaling algorithms to determine flood extent and water depth at 3 seconds of arc spatial resolution (~90m at the equator). The global model has ~150 million cells and requires ~180 hours of CPU time for a 10 year simulation period. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. This method has already been show to compare well to return period flood hazard maps derived from models built with high resolution and accuracy local data (Sampson et al., submitted), yet the output from the global flood model has not yet been compared to real flood observations. Whilst the spatial resolution of the global model is high given the size of the model domain, ~1km resolution is still coarse compared to the models typically used to simulate urban flooding and the data typically used to validate these (~25m or less). Comparison of the global model to real-world observations or urban flooding therefore represents an exceptionally stringent test of model skill. In this paper we therefore

  5. Comprehensive analysis of leukocytes, vascularization and matrix metalloproteinases in human menstrual xenograft model.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation.

  6. Kinetic Modelling of Drug Release from Pentoxifylline Matrix Tablets based on Hydrophilic, Lipophilic and Inert Polymers

    Directory of Open Access Journals (Sweden)

    Mircia Eleonora


    Full Text Available Pentoxifylline is a xanthine derivative used in the treatment of peripheral vascular disease, which because of its pharmacokinetic and pharmacologic profile is an ideal candidate for the development of extended release formulations. The aim of this study is to present a kinetic analysis of the pentoxifylline release from different extended release tablets formulations, using mechanistic and empirical kinetic models. A number of 28 formulations were prepared and analysed; the analysed formulations differed in the nature of the matrix forming polymers (hydrophilic, lipophilic, inert and in their concentrations. Measurements were conducted in comparison with the reference product Trental 400 mg (Aventis Pharma. The conditions for the dissolution study were according to official regulations of USP 36: apparatus no. 2, dissolution medium water, volume of dissolution medium is 1,000 mL, rotation speed is 50 rpm, spectrophotometric assay at 274 nm. Six mathematical models, five mechanistic (0 orders, 1st-order release, Higuchi, Hopfenberg, Hixson-Crowell and one empirical (Peppas, were fitted to pentoxifylline dissolution profile from each pharmaceutical formulation. The representative model describing the kinetics of pentoxifylline release was the 1st-order release, and its characteristic parameters were calculated and analysed.

  7. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions. (United States)

    Doutres, Olivier; Atalla, Noureddine; Osman, Haisam


    Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.

  8. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber


    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  9. Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population. (United States)

    Cushing, J M; Henson, Shandelle M


    For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.

  10. Last Glacial Maximum simulations over southern Africa using a variable-resolution global model: synoptic-scale verification

    CSIR Research Space (South Africa)

    Nkoana, R


    Full Text Available the paleoclimate of the Cape south coast region of South Africa using high resolution regional climate modelling. The model used for this purpose is a variable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), which has been...

  11. What model resolution is required in climatological downscaling over complex terrain? (United States)

    El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem


    This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited Wind speeds, on the other hand, are generally overestimated for all model resolutions, in comparison with observational data, particularly on the coast (up to 50%) compared to inland stations (up to 40%). The findings therefore indicate that a 3 km resolution is sufficient for the downscaling, especially that it would allow more years and scenarios to be investigated compared to the higher 1 km resolution at the same computational effort. In addition, the results provide a quantitative measure of the potential errors for various hydrometeorological variables.

  12. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)


    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  13. Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model

    Directory of Open Access Journals (Sweden)

    Jessica L. Ungerleider, BS


    Full Text Available Although surgical and endovascular revascularization can be performed in peripheral arterial disease (PAD, 40% of patients with critical limb ischemia do not have a revascularization option. This study examines the efficacy and mechanisms of action of acellular extracellular matrix-based hydrogels as a potential novel therapy for treating PAD. We tested the efficacy of using a tissue-specific injectable hydrogel derived from decellularized porcine skeletal muscle (SKM and compared this to a new human umbilical cord-derived matrix (hUC hydrogel, which could have greater potential for tissue regeneration because of the younger age of the tissue source. In a rodent hindlimb ischemia model, both hydrogels were injected 1-week post-surgery and perfusion was regularly monitored with laser speckle contrast analysis to 35 days post-injection. There were significant improvements in hindlimb tissue perfusion and perfusion kinetics with both biomaterials. Histologic analysis indicated that the injected hydrogels were biocompatible, and resulted in arteriogenesis, rather than angiogenesis, as well as improved recruitment of skeletal muscle progenitors. Skeletal muscle fiber morphology analysis indicated that the muscle treated with the tissue-specific SKM hydrogel more closely matched healthy tissue morphology. Whole transcriptome analysis indicated that the SKM hydrogel caused a shift in the inflammatory response, decreased cell death, and increased blood vessel and muscle development. These results show the efficacy of an injectable ECM hydrogel alone as a potential therapy for treating patients with PAD. Our results indicate that the SKM hydrogel improved functional outcomes through stimulation of arteriogenesis and muscle progenitor cell recruitment.

  14. A hybrid downscaling using statistical correction and high resolution regional climate model information (United States)

    Wakazuki, Y.


    The author presented the outline of a statistical downscaling method using high resolution regional climate model simulation results, which is called hybrid-downscaling, at AGU fall meeting 2016. This presentation is the extension. The statistical downscaling is calculated with lighter computational costs for various patterns of climate states in future which are needed to estimate uncertainty of regional climate change. However, the estimation accuracy is low in the region where the density of observation is low. On the other hand, dynamical downscaling using regional climate model (RCM) use huge computational costs. However, climatological features are well reproduced even in the region where the density of observation is low. I proposed a method to compensate the disadvantages of statistical and dynamical downscaling methods in the hybrid-downscaling. The downscaling processes are divided into horizontal interpolation (HI) and bias correction (BC). In HI, middle-resolution multi-RCM simulation results are interpolated to high resolution data which has grid sizes of 1-2 km. The HI model for climatological variables such as mean precipitation and temperature is learned by using the high resolution dynamical downscaling result. In BC, correction ratio/difference of high-resolution data are estimated by a generalized linear model with predictors of geographical elements. In this method, spatial distribution is largely influenced by the high-resolution RCM result. The hybrid-downscaling model has been applied for regional climate model simulation with the target region around Japan. Multiple future climate simulations had been performed to cover the uncertainty with 24 and 6 km grid sizes. However, only two climate simulations had been calculated with 2 km grid size because of huge computational costs. To estimate 2 km grid information, two kinds of hybrid-downscaling, in which 24 and 6 km RCM results were used as middle-resolution RCMs, were performed. The


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper investigates the effect of preparation of polyimide/polyethersulfone (PI/PES blending-zeolite mixed matrix membrane through the manipulation of membrane production variables such as polymer concentration, blending composition and zeolite loading. Combination of central composite design and response surface methodology were applied to determine the main effect and interaction effects of these variables on membrane separation performance. The quadratic models between each response and the independent parameters were developed and the response surface models were tested with analysis of variance (ANOVA. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The separation performance of mixed matrix membrane had been tested using pure gases such as CO2 and CH4. The results showed that zeolite loading was the most significant variable that influenced the CO2/CH4 selectivity among three variables and the experimental results were in good agreement with those predicted by the proposed regression models. The gas separation performance of the membrane was relatively higher as compare to polymeric membrane. Therefore, combination of central composite design and response surface methodology can be used to prepare optimal condition for mixed matrix membrane fabrication. The incorporation of 20 wt% zeolite 4A into 25 wt% of PI/PES matrix had resulted in a high separation performance of membrane material.

  16. Incorporating uncertainty of management costs in sensitivity analyses of matrix population models. (United States)

    Salomon, Yacov; McCarthy, Michael A; Taylor, Peter; Wintle, Brendan A


    The importance of accounting for economic costs when making environmental-management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population-management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost-efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on

  17. Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment. (United States)

    Joseph, Agnel Praveen; Malhotra, Sony; Burnley, Tom; Wood, Chris; Clare, Daniel K; Winn, Martyn; Topf, Maya


    As the resolutions of Three Dimensional Electron Microscopic reconstructions of biological macromolecules are being improved, there is a need for better fitting and refinement methods at high resolutions and robust approaches for model assessment. Flex-EM/MODELLER has been used for flexible fitting of atomic models in intermediate-to-low resolution density maps of different biological systems. Here, we demonstrate the suitability of the method to successfully refine structures at higher resolutions (2.5-4.5Å) using both simulated and experimental data, including a newly processed map of Apo-GroEL. A hierarchical refinement protocol was adopted where the rigid body definitions are relaxed and atom displacement steps are reduced progressively at successive stages of refinement. For the assessment of local fit, we used the SMOC (segment-based Manders' overlap coefficient) score, while the model quality was checked using the Qmean score. Comparison of SMOC profiles at different stages of refinement helped in detecting regions that are poorly fitted. We also show how initial model errors can have significant impact on the goodness-of-fit. Finally, we discuss the implementation of Flex-EM in the CCP-EM software suite. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The sensitivity of ecosystem service models to choices of input data and spatial resolution (United States)

    Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven; Sun, Ge


    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings.

  19. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yao Dezhong [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu City, 610054, Sichuan Province (China); He Bin [The University of Illinois at Chicago, IL (United States)


    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping.

  20. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging. (United States)

    Yao, Dezhong; He, Bin


    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping.

  1. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability (United States)

    Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.


    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent

  2. Self-modeling curve resolution (SMCR) by particle swarm optimization (PSO). (United States)

    Shinzawa, Hideyuki; Jiang, Jian-Hui; Iwahashi, Makio; Noda, Isao; Ozaki, Yukihiro


    Particle swarm optimization (PSO) combined with alternating least squares (ALS) is introduced to self-modeling curve resolution (SMCR) in this study for effective initial estimate. The proposed method aims to search concentration profiles or pure spectra which give the best resolution result by PSO. SMCR sometimes yields insufficient resolution results by getting trapped in a local minimum with poor initial estimates. The proposed method enables to reduce an undesirable effect of the local minimum in SMCR due to the advantages of PSO. Moreover, a new criterion based on global phase angle is also proposed for more effective performance of SMCR. It takes full advantage of data structure, that is to say, a sequential change with respect to a perturbation can be considered in SMCR with the criterion. To demonstrate its potential, SMCR by PSO is applied to concentration-dependent near-infrared (NIR) spectra of mixture solutions of oleic acid (OA) and ethanol. Its curve resolution performances are compared with SMCR with evolving factor analysis (EFA). The results show that SMCR by PSO yields significantly better curve resolution performances than those by EFA. It is revealed that SMCR by PSO is less sensitive to a local minimum in SMCR and it can be a new effective tool for curve resolution analysis.

  3. On the impact of using high-resolution atmosphere models for GRACE de-aliasing (United States)

    You, Wei; Kusche, Jürgen; Forootan, Ehsan; Eicker, Annette; Bollmeyer, Christoph; Ohlwein, Christian


    The accurate reduction of atmospheric mass change has an important impact on the quality of temporal gravity and mass change recovery using GRACE (Gravity Recovery and Climate Experiment) observations, both at longer (signal separation) and shorter (de-aliasing) time-scales. This impact will be even more important for GRACE-FO and future satellite gravimetry missions such as ESA's NGGM. Any major improvement of temporal gravity field models will likely necessitate improvements of the atmospheric de-aliasing models. The state-of-the-art methodology of atmospheric de-aliasing uses ECMWFop (European Centre for Medium-Range Weather Forecasts operational analysis) or ERA-Interim reanalysis data with spatial resolution of about 0.5°or 0.75°and 2-D or 3-D integration methods to compute atmosphere de-aliasing models. Yet it is suspected that this resolution may lead to errors, for example, due to insufficient orographic representation in mountainous regions. In this study, we focus on using high-resolution regional meteorological models like COSMO-EU (COnsortium for Small-Scale MOdelling) or the COSMO-REA6 reanalysis with spatial resolution of about 0.0625°or 0.055,°together with ERA-Interim to determine atmosphere de-aliasing models by 2-D and 3-D integration methods. The quality of the atmospheric de-aliasing models, derived from different input fields and integration techniques will be assessed. In particular, the impact of spatial resolution on the recovery of GRACE gravity fields will be evaluated.

  4. Quantifying the Representation Error of Land Biosphere Models using High Resolution Footprint Analyses and UAS Observations (United States)

    Hanson, C. V.; Schmidt, A.; Law, B. E.; Moore, W.


    The validity of land biosphere model outputs rely on accurate representations of ecosystem processes within the model. Typically, a vegetation or land cover type for a given area (several Km squared or larger resolution), is assumed to have uniform properties. The limited spacial and temporal resolution of models prevents resolving finer scale heterogeneous flux patterns that arise from variations in vegetation. This representation error must be quantified carefully if models are informed through data assimilation in order to assign appropriate weighting of model outputs and measurement data. The representation error is usually only estimated or ignored entirely due to the difficulty in determining reasonable values. UAS based gas sensors allow measurements of atmospheric CO2 concentrations with unprecedented spacial resolution, providing a means of determining the representation error for CO2 fluxes empirically. In this study we use three dimensional CO2 concentration data in combination with high resolution footprint analyses in order to quantify the representation error for modelled CO2 fluxes for typical resolutions of regional land biosphere models. CO2 concentration data were collected using an Atlatl X6A hexa-copter, carrying a highly calibrated closed path infra-red gas analyzer based sampling system with an uncertainty of ≤ ±0.2 ppm CO2. Gas concentration data was mapped in three dimensions using the UAS on-board position data and compared to footprints generated using WRF 3.61. Chad Hanson, Oregon State University, Corvallis, OR Andres Schmidt, Oregon State University, Corvallis, OR Bev Law, Oregon State University, Corvallis, OR

  5. Descriptive and predictive evaluation of high resolution Markov chain precipitation models

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Madsen, Henrik; Arnbjerg-Nielsen, Karsten


    . Continuous modelling of the Markov process proved attractive because of a marked decrease in the number of parameters. Inclusion of seasonality into the continuous Markov chain model proved difficult. Monte Carlo simulations with the models show that it is very difficult for all the model formulations......A time series of tipping bucket recordings of very high temporal and volumetric resolution precipitation is modelled using Markov chain models. Both first and second‐order Markov models as well as seasonal and diurnal models are investigated and evaluated using likelihood based techniques....... The first‐order Markov model seems to capture most of the properties of precipitation, but inclusion of seasonal and diurnal variation improves the model. Including a second‐order Markov Chain component does improve the descriptive capabilities of the model, but is very expensive in its parameter use...

  6. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data (United States)

    Fries, K. J.; Kerkez, B.


    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  7. Variable-Resolution Ensemble Climatology Modeling of Sierra Nevada Snowpack within the Community Earth System Model (CESM) (United States)

    Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.; Levy, M.; Taylor, M.


    Snowpack is crucial for the western USA, providing around 75% of the total fresh water supply (Cayan et al., 1996) and buffering against seasonal aridity impacts on agricultural, ecosystem, and urban water demands. The resilience of the California water system is largely dependent on natural stores provided by snowpack. This resilience has shown vulnerabilities due to anthropogenic global climate change. Historically, the northern Sierras showed a net decline of 50-75% in snow water equivalent (SWE) while the southern Sierras showed a net accumulation of 30% (Mote et al., 2005). Future trends of SWE highlight that western USA SWE may decline by 40-70% (Pierce and Cayan, 2013), snowfall may decrease by 25-40% (Pierce and Cayan, 2013), and more winter storms may tend towards rain rather than snow (Bales et al., 2006). The volatility of Sierran snowpack presents a need for scientific tools to help water managers and policy makers assess current and future trends. A burgeoning tool to analyze these trends comes in the form of variable-resolution global climate modeling (VRGCM). VRGCMs serve as a bridge between regional and global models and provide added resolution in areas of need, eliminate lateral boundary forcings, provide model runtime speed up, and utilize a common dynamical core, physics scheme and sub-grid scale parameterization package. A cubed-sphere variable-resolution grid with 25 km horizontal resolution over the western USA was developed for use in the Community Atmosphere Model (CAM) within the Community Earth System Model (CESM). A 25-year three-member ensemble climatology (1980-2005) is presented and major snowpack metrics such as SWE, snow depth, snow cover, and two-meter surface temperature are assessed. The ensemble simulation is also compared to observational, reanalysis, and WRF model datasets. The variable-resolution model provides a mechanism for reaching towards non-hydrostatic scales and simulations are currently being developed with refined

  8. High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA (United States)

    Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi


    Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.

  9. The effect of re-solution models on fission gas disposition in irradiated UO2 fuel

    International Nuclear Information System (INIS)

    Wazzan, A.R.; Orkent, D.; Villalobos, A.


    A computer code developed earlier by Villalobos et al. to predict fission gas behavior in uranium oxide fuel under steady-state irradiation conditions and where bubble gas resolution is represented with the single knock-on model (SKO) is modified to replace the SKO model with the complete bubble destruction model (CBD). The CBD model required that bubble nucleation be included in the analysis. The revised code is used to compute gas release and total swelling. Both are found to be insensitive to whether they are obtained with the CBD or the SKO option. This is mainly because at low atomic percent of burnup, total swelling is dominated by the grain-edge bubble gas contribution, and release is dependent on the formation of a complete grainface/grain-edge tunnel network - factors that are not much affected by either the SKO or CBD models. At higher atomic percent of burnup, intragranular swelling, which can be sensitive to the re-solution model, contributes more to swelling. But even then, computations at 1.0 at .% burnup suggest total swelling will continue to be dominated by grain-edge gas. These results suggest that in modeling swelling and release in irradiated uranium dioxide fuel, the simpler SKO resolution model is satisfactory

  10. In vitro extracellular matrix model to evaluate stroma cell response to transvaginal mesh. (United States)

    Wu, Ming-Ping; Huang, Kuan-Hui; Long, Cheng-Yu; Yang, Chau-Chen; Tong, Yat-Ching


    The use of surgical mesh for female pelvic floor reconstruction has increased in recent years. However, there is paucity of information about the biological responses of host stroma cells to different meshes. This study was aimed to establish an in vitro experimental model to study the micro-environment of extracellular matrix (ECM) with embedded mesh and the stroma cell behaviors to different synthetic meshes. Matrigel multi-cellular co-culture system with embedded mesh was used to evaluate the interaction of stroma cells and synthetic mesh in a simulated ECM environment. Human umbilical vein endothelial cells (HUVEC) and NIH3T3 fibroblasts were inoculated in the system. The established multi-cellular Matrigel co-culture system was used to detect stroma cell recruitment and tube formation ability for different synthetic meshes. HUVEC and NIH3T3 cells were recruited into the mesh interstices and organized into tube-like structures in type I mesh material from Perigee, Marlex and Prolift 24 hr after cell inoculation. On the contrary, there was little recruitment of HUVEC and NIH3T3 cells into the type III mesh of intra-vaginal sling (IVS). The Matrigel multi-cellular co-culture system with embedded mesh offers a useful in vitro model to study the biological behaviors of stroma cells in response to different types of synthetic meshes. The system can help to select ideal mesh candidates before actual implantation into the human body. © 2013 Wiley Periodicals, Inc.

  11. Brain Mapping-Based Model of Δ(9)-Tetrahydrocannabinol Effects on Connectivity in the Pain Matrix. (United States)

    Walter, Carmen; Oertel, Bruno G; Felden, Lisa; Kell, Christian A; Nöth, Ulrike; Vermehren, Johannes; Kaiser, Jochen; Deichmann, Ralf; Lötsch, Jörn


    Cannabinoids receive increasing interest as analgesic treatments. However, the clinical use of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) has progressed with justified caution, which also owes to the incomplete mechanistic understanding of its analgesic effects, in particular its interference with the processing of sensory or affective components of pain. The present placebo-controlled crossover study therefore focused on the effects of 20 mg oral THC on the connectivity between brain areas of the pain matrix following experimental stimulation of trigeminal nocisensors in 15 non-addicted healthy volunteers. A general linear model (GLM) analysis identified reduced activations in the hippocampus and the anterior insula following THC administration. However, assessment of psychophysiological interaction (PPI) revealed that the effects of THC first consisted in a weakening of the interaction between the thalamus and the secondary somatosensory cortex (S2). From there, dynamic causal modeling (DCM) was employed to infer that THC attenuated the connections to the hippocampus and to the anterior insula, suggesting that the reduced activations in these regions are secondary to a reduction of the connectivity from somatosensory regions by THC. These findings may have consequences for the way THC effects are currently interpreted: as cannabinoids are increasingly considered in pain treatment, present results provide relevant information about how THC interferes with the affective component of pain. Specifically, the present experiment suggests that THC does not selectively affect limbic regions, but rather interferes with sensory processing which in turn reduces sensory-limbic connectivity, leading to deactivation of affective regions.

  12. Mass matrix ansatz and lepton flavor violation in the two-Higgs doublet model-III

    International Nuclear Information System (INIS)

    Diaz-Cruz, J.L.; Noriega-Papaqui, R.; Rosado, A.


    Predictive Higgs-boson-fermion couplings can be obtained when a specific texture for the fermion mass matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the charged lepton sector using a Hermitian mass matrix ansatz with four-texture zeros. The presence of unconstrained phases in the vertices φ i l i l j modifies the pattern of flavor-violating Higgs boson interactions. Bounds on the model parameters are obtained from present limits on rare lepton flavor-violating processes, which could be extended further by the search for the decay τ→μμμ and μ-e conversion at future experiments. The signal from Higgs boson decays φ i →τμ could be searched for at the CERN Large Hadron Collider, while e-μ transitions could produce a detectable signal at a future eμ collider, through the reaction e + μ - →h 0 →τ + τ -

  13. Novel Polyurethane Matrix Systems Reveal a Particular Sustained Release Behavior Studied by Imaging and Computational Modeling. (United States)

    Campiñez, María Dolores; Caraballo, Isidoro; Puchkov, Maxim; Kuentz, Martin


    The aim of the present work was to better understand the drug-release mechanism from sustained release matrices prepared with two new polyurethanes, using a novel in silico formulation tool based on 3-dimensional cellular automata. For this purpose, two polymers and theophylline as model drug were used to prepare binary matrix tablets. Each formulation was simulated in silico, and its release behavior was compared to the experimental drug release profiles. Furthermore, the polymer distributions in the tablets were imaged by scanning electron microscopy (SEM) and the changes produced by the tortuosity were quantified and verified using experimental data. The obtained results showed that the polymers exhibited a surprisingly high ability for controlling drug release at low excipient concentrations (only 10% w/w of excipient controlled the release of drug during almost 8 h). The mesoscopic in silico model helped to reveal how the novel biopolymers were controlling drug release. The mechanism was found to be a special geometrical arrangement of the excipient particles, creating an almost continuous barrier surrounding the drug in a very effective way, comparable to lipid or waxy excipients but with the advantages of a much higher compactability, stability, and absence of excipient polymorphism.

  14. Transchromosomic cell model of Down syndrome shows aberrant migration, adhesion and proteome response to extracellular matrix

    Directory of Open Access Journals (Sweden)

    Cotter Finbarr E


    Full Text Available Abstract Background Down syndrome (DS, caused by trisomy of human chromosome 21 (HSA21, is the most common genetic birth defect. Congenital heart defects (CHD are seen in 40% of DS children, and >50% of all atrioventricular canal defects in infancy are caused by trisomy 21, but the causative genes remain unknown. Results Here we show that aberrant adhesion and proliferation of DS cells can be reproduced using a transchromosomic model of DS (mouse fibroblasts bearing supernumerary HSA21. We also demonstrate a deacrease of cell migration in transchromosomic cells independently of their adhesion properties. We show that cell-autonomous proteome response to the presence of Collagen VI in extracellular matrix is strongly affected by trisomy 21. Conclusion This set of experiments establishes a new model system for genetic dissection of the specific HSA21 gene-overdose contributions to aberrant cell migration, adhesion, proliferation and specific proteome response to collagen VI, cellular phenotypes linked to the pathogenesis of CHD.

  15. Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study.

    Directory of Open Access Journals (Sweden)

    Alvaro Köhn-Luque

    Full Text Available During embryonic vasculogenesis, endothelial precursor cells of mesodermal origin known as angioblasts assemble into a characteristic network pattern. Although a considerable amount of markers and signals involved in this process have been identified, the mechanisms underlying the coalescence of angioblasts into this reticular pattern remain unclear. Various recent studies hypothesize that autocrine regulation of the chemoattractant vascular endothelial growth factor (VEGF is responsible for the formation of vascular networks in vitro. However, the autocrine regulation hypothesis does not fit well with reported data on in vivo early vascular development. In this study, we propose a mathematical model based on the alternative assumption that endodermal VEGF signalling activity, having a paracrine effect on adjacent angioblasts, is mediated by its binding to the extracellular matrix (ECM. Detailed morphometric analysis of simulated networks and images obtained from in vivo quail embryos reveals the model mimics the vascular patterns with high accuracy. These results show that paracrine signalling can result in the formation of fine-grained cellular networks when mediated by angioblast-produced ECM. This lends additional support to the theory that patterning during early vascular development in the vertebrate embryo is regulated by paracrine signalling.

  16. Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. (United States)

    Köhn-Luque, Alvaro; de Back, Walter; Starruss, Jörn; Mattiotti, Andrea; Deutsch, Andreas; Pérez-Pomares, José María; Herrero, Miguel A


    During embryonic vasculogenesis, endothelial precursor cells of mesodermal origin known as angioblasts assemble into a characteristic network pattern. Although a considerable amount of markers and signals involved in this process have been identified, the mechanisms underlying the coalescence of angioblasts into this reticular pattern remain unclear. Various recent studies hypothesize that autocrine regulation of the chemoattractant vascular endothelial growth factor (VEGF) is responsible for the formation of vascular networks in vitro. However, the autocrine regulation hypothesis does not fit well with reported data on in vivo early vascular development. In this study, we propose a mathematical model based on the alternative assumption that endodermal VEGF signalling activity, having a paracrine effect on adjacent angioblasts, is mediated by its binding to the extracellular matrix (ECM). Detailed morphometric analysis of simulated networks and images obtained from in vivo quail embryos reveals the model mimics the vascular patterns with high accuracy. These results show that paracrine signalling can result in the formation of fine-grained cellular networks when mediated by angioblast-produced ECM. This lends additional support to the theory that patterning during early vascular development in the vertebrate embryo is regulated by paracrine signalling.

  17. Exact tensor hypercontraction: a universal technique for the resolution of matrix elements of local finite-range N-body potentials in many-body quantum problems. (United States)

    Parrish, Robert M; Hohenstein, Edward G; Schunck, Nicolas F; Sherrill, C David; Martínez, Todd J


    Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-range potentials, we develop the exact tensor hypercontraction method, which provides a quantized renormalization of the coordinate-space form of the N-body potential, allowing for a highly separable tensor factorization of the configuration-space matrix elements. This representation allows for substantial computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to difficult "exchangelike" contractions.

  18. Constructing multi-resolution Markov State Models (MSMs) to elucidate RNA hairpin folding mechanisms. (United States)

    Huang, Xuhui; Yao, Yuan; Bowman, Gregory R; Sun, Jian; Guibas, Leonidas J; Carlsson, Gunnar; Pande, Vijay S


    Simulating biologically relevant timescales at atomic resolution is a challenging task since typical atomistic simulations are at least two orders of magnitude shorter. Markov State Models (MSMs) provide one means of overcoming this gap without sacrificing atomic resolution by extracting long time dynamics from short simulations. MSMs coarse grain space by dividing conformational space into long-lived, or metastable, states. This is equivalent to coarse graining time by integrating out fast motions within metastable states. By varying the degree of coarse graining one can vary the resolution of an MSM; therefore, MSMs are inherently multi-resolution. Here we introduce a new algorithm Super-level-set Hierarchical Clustering (SHC), to our knowledge, the first algorithm focused on constructing MSMs at multiple resolutions. The key insight of this algorithm is to generate a set of super levels covering different density regions of phase space, then cluster each super level separately, and finally recombine this information into a single MSM. SHC is able to produce MSMs at different resolutions using different super density level sets. To demonstrate the power of this algorithm we apply it to a small RNA hairpin, generating MSMs at four different resolutions. We validate these MSMs by showing that they are able to reproduce the original simulation data. Furthermore, long time folding dynamics are extracted from these models. The results show that there are no metastable on-pathway intermediate states. Instead, the folded state serves as a hub directly connected to multiple unfolded/misfolded states which are separated from each other by large free energy barriers.

  19. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John


    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... of a contaminant in a single fracture-clay matrix system coupled with a reactive model for anaerobic dechlorination. The model takes into account microbially driven anaerobic dechlorination, where sequential Monod kinetics with competitive inhibition is used to model the reaction rates, and degradation...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  20. High resolution global flood hazard map from physically-based hydrologic and hydraulic models. (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.


    The global flood map published online at at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  1. A note on the Fisher information matrix for the skew-generalized-normal model


    Arellano-Valle, Reinaldo B.


    In this paper, the exact form of the Fisher information matrix for the skew-generalized normal (SGN) distribution is determined. The existence of singularity problems of this matrix for the skewnormal and normal particular cases is investigated. Special attention is given to the asymptotic properties of the MLEs under the skew-normality hypothesis.

  2. A note on the Fisher information matrix for the skew-generalized-normal model


    Arellano-Valle, Reinaldo B.; Gómez, Héctor W.; Salinas, Hugo S.


    In this paper, the exact form of the Fisher information matrix for the skew-generalized normal (SGN) distribution is determined. The existence of singularity problems of this matrix for the skew-normal and normal particular cases is investigated. Special attention is given to the asymptotic properties of the MLEs under the skew-normality hypothesis. Peer Reviewed

  3. Gradient System Modelling of Matrix Converters with Input and Output Filters

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Scherpen, Jacquelien M.A.; Klaassens, J. Ben


    Due to its complexity, the dynamics of matrix converters are usually neglected in controller design. However, increasing demands on reduced harmonic generation and higher bandwidths makes it necessary to study large-signal dynamics. A unified methodology that considers matrix converters, including

  4. Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering

    NARCIS (Netherlands)

    Braak, ter C.J.F.; Kourmpetis, Y.I.A.; Kiers, H.A.L.; Bink, M.C.A.M.


    Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n×K fuzzy memberships matrix P is found by least-squares approximation of the off-diagonal

  5. Approximating a similarity matrix by a latent class model : A reappraisal of additive fuzzy clustering

    NARCIS (Netherlands)

    ter Braak, Cajo J. F.; Kourmpetis, Yiannis; Kiers, Henk A. L.; Bink, Marco C. A. M.


    Let Q be a given n x n square symmetric matrix of nonnegative elements between 0 and 1, e.g. similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n x K fuzzy memberships matrix P is found by least-squares approximation of the

  6. Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution

    Energy Technology Data Exchange (ETDEWEB)

    Marti, Olivier; Braconnot, P.; Bellier, J.; Brockmann, P.; Caubel, A.; Noblet, N. de; Friedlingstein, P.; Idelkadi, A.; Kageyama, M. [Unite Mixte CEA-CNRS-UVSQ, IPSL/LSCE, Gif-sur-Yvette Cedex (France); Dufresne, J.L.; Bony, S.; Codron, F.; Fairhead, L.; Grandpeix, J.Y.; Hourdin, F.; Musat, I. [Unite Mixte CNRS-Ecole Polytechnique-ENS-UPCM, IPSL/LMD, Paris Cedex 05 (France); Benshila, R.; Guilyardi, E.; Levy, C.; Madec, G.; Mignot, J.; Talandier, C. [unite mixte CNRS-IRD-UPMC, IPLS/LOCEAN, Paris Cedex 05 (France); Cadule, P.; Denvil, S.; Foujols, M.A. [Institut Pierre Simon Laplace des Sciences de l' Environnement (IPSL), Paris Cedex 05 (France); Fichefet, T.; Goosse, H. [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); Krinner, G. [Unite mixte CNRS-UJF Grenoble, LGGE, BP96, Saint-Martin-d' Heres (France); Swingedouw, D. [CNRS/CERFACS, Toulouse (France)


    This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean-atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean-atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Nino-Southern oscillation) consequently increases, as the damping processes are left unchanged. (orig.)

  7. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution (United States)

    Selvarajah, Geeta; Selvarajah, Susila


    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  8. Wind turbine large-eddy simulations on very coarse grid resolutions using an actuator line model

    NARCIS (Netherlands)

    Martínez-Tossas, Luis A.; Stevens, Richard J.A.M.; Meneveau, Charles


    In this work the accuracy of the Actuator Line Model (ALM) in Large Eddy Simulations of wind turbine flow is studied under the specific conditions of very coarse spatial resolutions. For finely-resolved conditions, it is known that ALM provides better accuracy compared to the standard Actuator Disk

  9. Wind Farm Large-Eddy Simulations on Very Coarse Grid Resolutions using an Actuator Line Model

    NARCIS (Netherlands)

    Martinez, L.A.; Meneveau, C.; Stevens, Richard Johannes Antonius Maria


    In this work the accuracy of the Actuator Line Model (ALM) in Large Eddy Simula- tions of wind turbine flow is studied under the speci c conditions of very coarse spatial resolutions. For finely-resolved conditions, it is known that ALM provides better accuracy compared to the standard Actuator Disk

  10. Role of land state in a high resolution mesoscale model for ...

    Indian Academy of Sciences (India)

    Land surface characteristics; high resolution mesoscale model; Uttarakhand rainfall; monsoon season. .... radiation flux at the. Analysis for Research and surface (SW). Applications (MERRA). Downward longwave radiation flux at the surface (LW). Rain rate (PCP) ...... cal diffusion package with an explicit treatment of.

  11. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling

    NARCIS (Netherlands)

    Ettema, J.|info:eu-repo/dai/nl/304831913; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van Meijgaard, E.; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Bamber, Jonathan L.; Box, J.E.; Bales, R.C.


    High-resolution (∼11 km) regional climate modeling shows total annual precipitation on the Greenland ice sheet for 1958–2007 to be up to 24% and surface mass balance up to 63% higher than previously thought. The largest differences occur in coastal southeast Greenland, where the much higher

  12. A distributed stream temperature model using high resolution temperature observations (vol 11, pg 1469, 2007)

    NARCIS (Netherlands)

    Westhoff, M. C.; Savenije, H.G.; Luxemburg, W. M. J.; Stelling, G.S.; van de Giesen, N.C.; Selker, J. S.; Pfister, L.; Uhlenbrook, S.


    Distributed temperature data are used as input and as calibration data for an energy based temperature model of a first order stream in Luxembourg. A DTS (Distributed Temperature Sensing) system with a fiber optic cable of 1500m was used to measure stream water temperature with 1m resolution each 2

  13. High resolution experiments with the ALADIN-Climate regional climate model (United States)

    Csima, G.


    The global climate models are able to describe the climate of the Earth at a rather coarse resolution providing realistic projections only for the synoptic scale characteristics of the climate. For this reason, they are insufficient for detailed regional or local scale estimations. However, impact studies and policy makers need simulations including all the effects caused by local features. Consequently, techniques for downscaling global climate model simulations - such as regional climate modelling - are essential. The ALADIN-Climate regional climate model (developed by Météo France on the basis of the internationally developed ALADIN modelling system) was adapted at the Hungarian Meteorological Service a few years ago. In the framework of the CECILIA project (, the ALADIN-Climate regional climate model runs at high (10 km) horizontal resolution. Therefore, it is anticipated to give more realistic climate estimation for this century than either the global models or the lower resolution regional climate models. The ALADIN-Climate model was coupled to both ERA-40 re-analysis data and the ARPEGE/OPA global atmosphere-ocean general circulation model for the past - 1961-1990 - as the reference period. For the future time slices of 2021-2050 and 2071-2100, the lateral boundary conditions were provided by the same global model with the use of A1B SRES scenario. The results have been validated against different observational datasets for the past, and have been compared to the results of the ARPEGE-Climat global model in order to expose the added value of the regional climate model. The ALADIN-Climate model has also been evaluated for the future to give an estimation of climate change in the Carpathian Basin.

  14. Cloud-Based Tools to Support High-Resolution Modeling (Invited) (United States)

    Jones, N.; Nelson, J.; Swain, N.; Christensen, S.


    The majority of watershed models developed to support decision-making by water management agencies are simple, lumped-parameter models. Maturity in research codes and advances in the computational power from multi-core processors on desktop machines, commercial cloud-computing resources, and supercomputers with thousands of cores have created new opportunities for employing more accurate, high-resolution distributed models for routine use in decision support. The barriers for using such models on a more routine basis include massive amounts of spatial data that must be processed for each new scenario and lack of efficient visualization tools. In this presentation we will review a current NSF-funded project called CI-WATER that is intended to overcome many of these roadblocks associated with high-resolution modeling. We are developing a suite of tools that will make it possible to deploy customized web-based apps for running custom scenarios for high-resolution models with minimal effort. These tools are based on a software stack that includes 52 North, MapServer, PostGIS, HT Condor, CKAN, and Python. This open source stack provides a simple scripting environment for quickly configuring new custom applications for running high-resolution models as geoprocessing workflows. The HT Condor component facilitates simple access to local distributed computers or commercial cloud resources when necessary for stochastic simulations. The CKAN framework provides a powerful suite of tools for hosting such workflows in a web-based environment that includes visualization tools and storage of model simulations in a database to archival, querying, and sharing of model results. Prototype applications including land use change, snow melt, and burned area analysis will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1135482

  15. A matrix model for valuing anesthesia service with the resource-based relative value system

    Directory of Open Access Journals (Sweden)

    Sinclair DR


    Full Text Available David R Sinclair,1 David A Lubarsky,1 Michael M Vigoda,1 David J Birnbach,1 Eric A Harris,1 Vicente Behrens,1 Richard E Bazan,1 Steve M Williams,1 Kristopher Arheart,2 Keith A Candiotti1 1Department of Anesthesiology, Perioperative Medicine and Pain Management, 2Department of Public Health Sciences, Division of Biostatistics, University of Miami Miller School of Medicine, Miami, FL, USA Background: The purpose of this study was to propose a new crosswalk using the resource-based relative value system (RBRVS that preserves the time unit component of the anesthesia service and disaggregates anesthesia billing into component parts (preoperative evaluation, intraoperative management, and postoperative evaluation. The study was designed as an observational chart and billing data review of current and proposed payments, in the setting of a preoperative holing area, intraoperative suite, and post anesthesia care unit. In total, 1,195 charts of American Society of Anesthesiology (ASA physical status 1 through 5 patients were reviewed. No direct patient interventions were undertaken. Results: Spearman correlations between the proposed RBRVS billing matrix payments and the current ASA relative value guide methodology payments were strong (r=0.94–0.96, P<0.001 for training, test, and overall. The proposed RBRVS-based billing matrix yielded payments that were 3.0%±1.34% less than would have been expected from commercial insurers, using standard rates for commercial ASA relative value units and RBRVS relative value units. Compared with current Medicare reimbursement under the ASA relative value guide, reimbursement would almost double when converting to an RBRVS billing model. The greatest increases in Medicare reimbursement between the current system and proposed billing model occurred as anesthetic management complexity increased. Conclusion: The new crosswalk correlates with existing evaluation and management and intensive care medicine codes in an

  16. Usefulness of high resolution coastal models for operational oil spill forecast: the "Full City" accident

    Directory of Open Access Journals (Sweden)

    G. Broström


    Full Text Available Oil spill modeling is considered to be an important part of a decision support system (DeSS for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution, the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas.

  17. Performance of a TV white space database with different terrain resolutions and propagation models

    Directory of Open Access Journals (Sweden)

    A. M. Fanan


    Full Text Available Cognitive Radio has now become a realistic option for the solution of the spectrum scarcity problem in wireless communication. TV channels (the primary user can be protected from secondary-user interference by accurate prediction of TV White Spaces (TVWS by using appropriate propagation modelling. In this paper we address two related aspects of channel occupancy prediction for cognitive radio. Firstly we investigate the best combination of empirical propagation model and spatial resolution of terrain data for predicting TVWS by examining the performance of three propagation models (Extended-Hata, Davidson-Hata and Egli in the TV band 470 to 790 MHz along with terrain data resolutions of 1000, 100 and 30 m, when compared with a comprehensive set of propagation measurements taken in randomly-selected locations around Hull, UK. Secondly we describe how such models can be integrated into a database-driven tool for cognitive radio channel selection within the TVWS environment.

  18. Using High Resolution Model Data to Improve Lightning Forecasts across Southern California (United States)

    Capps, S. B.; Rolinski, T.


    Dry lightning often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of lightning as well as lightning amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical lightning strike data. These equations do a reasonably good job of capturing a lightning episode (3-5 consecutive days or greater of lightning), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic lightning events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting

  19. A seamless, high-resolution digital elevation model (DEM) of the north-central California coast (United States)

    Foxgrover, Amy C.; Barnard, Patrick L.


    A seamless, 2-meter resolution digital elevation model (DEM) of the north-central California coast has been created from the most recent high-resolution bathymetric and topographic datasets available. The DEM extends approximately 150 kilometers along the California coastline, from Half Moon Bay north to Bodega Head. Coverage extends inland to an elevation of +20 meters and offshore to at least the 3 nautical mile limit of state waters. This report describes the procedures of DEM construction, details the input data sources, and provides the DEM for download in both ESRI Arc ASCII and GeoTIFF file formats with accompanying metadata.

  20. In vitro model to study the effects of matrix stiffening on Ca2+handling and myofilament function in isolated adult rat cardiomyocytes. (United States)

    van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda


    This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte