WorldWideScience

Sample records for model representing clinical

  1. A model-driven approach for representing clinical archetypes for Semantic Web environments.

    Science.gov (United States)

    Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Maldonado, José Alberto

    2009-02-01

    The life-long clinical information of any person supported by electronic means configures his Electronic Health Record (EHR). This information is usually distributed among several independent and heterogeneous systems that may be syntactically or semantically incompatible. There are currently different standards for representing and exchanging EHR information among different systems. In advanced EHR approaches, clinical information is represented by means of archetypes. Most of these approaches use the Archetype Definition Language (ADL) to specify archetypes. However, ADL has some drawbacks when attempting to perform semantic activities in Semantic Web environments. In this work, Semantic Web technologies are used to specify clinical archetypes for advanced EHR architectures. The advantages of using the Ontology Web Language (OWL) instead of ADL are described and discussed in this work. Moreover, a solution combining Semantic Web and Model-driven Engineering technologies is proposed to transform ADL into OWL for the CEN EN13606 EHR architecture.

  2. Representing clinical guidelines in UMl: a comparative study.

    Science.gov (United States)

    Hederman, Lucy; Smutek, Daniel; Wade, Vincent; Knape, Thomas

    2002-01-01

    Clinical guidelines can be represented using models, such as GLIF, specifically designed for healthcare guidelines. This paper demonstrates that they can also be modelled using a mainstream business modelling language such as UML. The paper presents a guideline in GLIF and as UML activity diagrams, and then presents a mapping of GLIF primitives to UML. The potential benefits of using a mainstream modelling language are outlined. These include availability of advanced modelling tools, transfer between modelling tools, and automation via business workflow technology.

  3. Bruton's tyrosine kinase inhibitor BMS-986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care.

    Science.gov (United States)

    Gillooly, Kathleen M; Pulicicchio, Claudine; Pattoli, Mark A; Cheng, Lihong; Skala, Stacey; Heimrich, Elizabeth M; McIntyre, Kim W; Taylor, Tracy L; Kukral, Daniel W; Dudhgaonkar, Shailesh; Nagar, Jignesh; Banas, Dana; Watterson, Scott H; Tino, Joseph A; Fura, Aberra; Burke, James R

    2017-01-01

    Bruton's tyrosine kinase (BTK) regulates critical signal transduction pathways involved in the pathobiology of rheumatoid arthritis (RA) and other autoimmune disorders. BMS-986142 is a potent and highly selective reversible small molecule inhibitor of BTK currently being investigated in clinical trials for the treatment of both RA and primary Sjögren's syndrome. In the present report, we detail the in vitro and in vivo pharmacology of BMS-986142 and show this agent provides potent and selective inhibition of BTK (IC50 = 0.5 nM), blocks antigen receptor-dependent signaling and functional endpoints (cytokine production, co-stimulatory molecule expression, and proliferation) in human B cells (IC50 ≤ 5 nM), inhibits Fcγ receptor-dependent cytokine production from peripheral blood mononuclear cells, and blocks RANK-L-induced osteoclastogenesis. Through the benefits of impacting these important drivers of autoimmunity, BMS-986142 demonstrated robust efficacy in murine models of rheumatoid arthritis (RA), including collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA). In both models, robust efficacy was observed without continuous, complete inhibition of BTK. When a suboptimal dose of BMS-986142 was combined with other agents representing the current standard of care for RA (e.g., methotrexate, the TNFα antagonist etanercept, or the murine form of CTLA4-Ig) in the CIA model, improved efficacy compared to either agent alone was observed. The results suggest BMS-986142 represents a potential therapeutic for clinical investigation in RA, as monotherapy or co-administered with agents with complementary mechanisms of action.

  4. Representing uncertainty on model analysis plots

    Science.gov (United States)

    Smith, Trevor I.

    2016-12-01

    Model analysis provides a mechanism for representing student learning as measured by standard multiple-choice surveys. The model plot contains information regarding both how likely students in a particular class are to choose the correct answer and how likely they are to choose an answer consistent with a well-documented conceptual model. Unfortunately, Bao's original presentation of the model plot did not include a way to represent uncertainty in these measurements. I present details of a method to add error bars to model plots by expanding the work of Sommer and Lindell. I also provide a template for generating model plots with error bars.

  5. Representing Context in Hypermedia Data Models

    DEFF Research Database (Denmark)

    Hansen, Frank Allan

    2005-01-01

    As computers and software systems move beyond the desktopand into the physical environments we live and workin, the systems are required to adapt to these environmentsand the activities taking place within them. Making applicationscontext-aware and representing context informationalong side...... application data can be a challenging task. Thispaper describes how digital context traditionally has beenrepresented in hypermedia data models and how this representationcan scale to also represent physical context. TheHyCon framework and data model, designed for the developmentof mobile context...

  6. STATISTICAL MODELS OF REPRESENTING INTELLECTUAL CAPITAL

    Directory of Open Access Journals (Sweden)

    Andreea Feraru

    2016-07-01

    Full Text Available This article entitled Statistical Models of Representing Intellectual Capital approaches and analyses the concept of intellectual capital, as well as the main models which can support enterprisers/managers in evaluating and quantifying the advantages of intellectual capital. Most authors examine intellectual capital from a static perspective and focus on the development of its various evaluation models. In this chapter we surveyed the classical static models: Sveiby, Edvisson, Balanced Scorecard, as well as the canonical model of intellectual capital. Among the group of static models for evaluating organisational intellectual capital the canonical model stands out. This model enables the structuring of organisational intellectual capital in: human capital, structural capital and relational capital. Although the model is widely spread, it is a static one and can thus create a series of errors in the process of evaluation, because all the three entities mentioned above are not independent from the viewpoint of their contents, as any logic of structuring complex entities requires.

  7. Do regional climate models represent regional climate?

    Science.gov (United States)

    Maraun, Douglas; Widmann, Martin

    2014-05-01

    When using climate change scenarios - either from global climate models or further downscaled - to assess localised real world impacts, one has to ensure that the local simulation indeed correctly represents the real world local climate. Representativeness has so far mainly been discussed as a scale issue: simulated meteorological variables in general represent grid box averages, whereas real weather is often expressed by means of point values. As a result, in particular simulated extreme values are not directly comparable with observed local extreme values. Here we argue that the issue of representativeness is more general. To illustrate this point, assume the following situations: first, the (GCM or RCM) simulated large scale weather, e.g., the mid-latitude storm track, might be systematically distorted compared to observed weather. If such a distortion at the synoptic scale is strong, the simulated local climate might be completely different from the observed. Second, the orography even of high resolution RCMs is only a coarse model of true orography. In particular in mountain ranges the simulated mesoscale flow might therefore considerably deviate from the observed flow, leading to systematically displaced local weather. In both cases, the simulated local climate does not represent observed local climate. Thus, representativeness also encompasses representing a particular location. We propose to measure this aspect of representativeness for RCMs driven with perfect boundary conditions as the correlation between observations and simulations at the inter-annual scale. In doing so, random variability generated by the RCMs is largely averaged out. As an example, we assess how well KNMIs RACMO2 RCM at 25km horizontal resolution represents winter precipitation in the gridded E-OBS data set over the European domain. At a chosen grid box, RCM precipitation might not be representative of observed precipitation, in particular in the rain shadow of major moutain ranges

  8. How Are Feedbacks Represented in Land Models?

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2016-09-01

    Full Text Available Land systems are characterised by many feedbacks that can result in complex system behaviour. We defined feedbacks as the two-way influences between the land use system and a related system (e.g., climate, soils and markets, both of which are encompassed by the land system. Land models that include feedbacks thus probably more accurately mimic how land systems respond to, e.g., policy or climate change. However, representing feedbacks in land models is a challenge. We reviewed articles incorporating feedbacks into land models and analysed each with predefined indicators. We found that (1 most modelled feedbacks couple land use systems with transport, soil and market systems, while only a few include feedbacks between land use and social systems or climate systems; (2 equation-based land use models that follow a top-down approach prevail; and (3 feedbacks’ effects on system behaviour remain relatively unexplored. We recommend that land system modellers (1 consider feedbacks between land use systems and social systems; (2 adopt (bottom-up approaches suited to incorporating spatial heterogeneity and better representing land use decision-making; and (3 pay more attention to nonlinear system behaviour and its implications for land system management and policy.

  9. Representing Turbulence Model Uncertainty with Stochastic PDEs

    Science.gov (United States)

    Oliver, Todd; Moser, Robert

    2012-11-01

    Validation of and uncertainty quantification for extrapolative predictions of RANS turbulence models are necessary to ensure that the models are not used outside of their domain of applicability and to properly inform decisions based on such predictions. In previous work, we have developed and calibrated statistical models for these purposes, but it has been found that incorporating all the knowledge of a domain expert--e.g., realizability, spatial smoothness, and known scalings--in such models is difficult. Here, we explore the use of stochastic PDEs for this purpose. The goal of this formulation is to pose the uncertainty model in a setting where it is easier for physical modelers to express what is known. To explore the approach, multiple stochastic models describing the error in the Reynolds stress are coupled with multiple deterministic turbulence models to make uncertain predictions of channel flow. These predictions are compared with DNS data to assess their credibility. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

  10. SPECIFIC MODELS OF REPRESENTING THE INTELLECTUAL CAPITAL

    Directory of Open Access Journals (Sweden)

    Andreea Feraru

    2014-12-01

    Full Text Available Various scientists in the modern age of management have launched different models for evaluating intellectual capital, and some of these models are analysed critically in this study, too. Most authors examine intellectual capital from a static perspective and focus on the development of its various evaluation models. In this chapter we surveyed the classical static models: Sveiby, Edvisson, Balanced Scorecard, as well as the canonical model of intellectual capital. In a spectral dynamic analysis, organisational intellectual capital is structured in: organisational knowledge, organisational intelligence, organisational values, and their value is built on certain mechanisms entitled integrators, whose chief constitutive elements are: individual knowledge, individual intelligence and individual cultural values. The organizations, as employers, must especially reconsider those employees’ work who value knowledge because they are free to choose how, and especially where they are inclined to invest their own energy, skills and time, and they can be treated as freelancers or as some little entrepreneurs .

  11. Patient representatives' views on patient information in clinical cancer trials

    DEFF Research Database (Denmark)

    Dellson, Pia; Nilbert, Mef; Carlsson, Christina

    2016-01-01

    of future simplified and more attractive informed consent forms. CONCLUSIONS: The emotional and cognitive responses to written patient information reported by patient representatives provides a basis for revised formats in future trials and add to the body of information that support use of plain language......BACKGROUND: Patient enrolment into clinical trials is based on oral information and informed consent, which includes an information sheet and a consent certificate. The written information should be complete, but at the same time risks being so complex that it may be questioned if a fully informed......-III trials, randomized and non-randomized trials that evaluated chemotherapy/targeted therapy in the neoadjuvant, adjuvant and palliative settings. Data were collected through focus groups and were analysed using inductive content analysis. RESULTS: Two major themes emerged: emotional responses and cognitive...

  12. Representing Practice: Practice Models, Patterns, Bundles

    Science.gov (United States)

    Falconer, Isobel; Finlay, Janet; Fincher, Sally

    2011-01-01

    This article critiques learning design as a representation for sharing and developing practice, based on synthesis of three projects. Starting with the findings of the Mod4L Models of Practice project, it argues that the technical origins of learning design, and the consequent focus on structure and sequence, limit its usefulness for sharing…

  13. Clinical professional governance for detailed clinical models.

    Science.gov (United States)

    Goossen, William; Goossen-Baremans, Anneke

    2013-01-01

    This chapter describes the need for Detailed Clinical Models for contemporary Electronic Health Systems, data exchange and data reuse. It starts with an explanation of the components related to Detailed Clinical Models with a brief summary of knowledge representation, including terminologies representing clinic relevant "things" in the real world, and information models that abstract these in order to let computers process data about these things. Next, Detailed Clinical Models are defined and their purpose is described. It builds on existing developments around the world and accumulates in current work to create a technical specification at the level of the International Standards Organization. The core components of properly expressed Detailed Clinical Models are illustrated, including clinical knowledge and context, data element specification, code bindings to terminologies and meta-information about authors, versioning among others. Detailed Clinical Models to date are heavily based on user requirements and specify the conceptual and logical levels of modelling. It is not precise enough for specific implementations, which requires an additional step. However, this allows Detailed Clinical Models to serve as specifications for many different kinds of implementations. Examples of Detailed Clinical Models are presented both in text and in Unified Modelling Language. Detailed Clinical Models can be positioned in health information architectures, where they serve at the most detailed granular level. The chapter ends with examples of projects that create and deploy Detailed Clinical Models. All have in common that they can often reuse materials from earlier projects, and that strict governance of these models is essential to use them safely in health care information and communication technology. Clinical validation is one point of such governance, and model testing another. The Plan Do Check Act cycle can be applied for governance of Detailed Clinical Models

  14. Representing clinical communication knowledge through database management system integration.

    Science.gov (United States)

    Khairat, Saif; Craven, Catherine; Gong, Yang

    2012-01-01

    Clinical communication failures are considered the leading cause of medical errors [1]. The complexity of the clinical culture and the significant variance in training and education levels form a challenge to enhancing communication within the clinical team. In order to improve communication, a comprehensive understanding of the overall communication process in health care is required. In an attempt to further understand clinical communication, we conducted a thorough methodology literature review to identify strengths and limitations of previous approaches [2]. Our research proposes a new data collection method to study the clinical communication activities among Intensive Care Unit (ICU) clinical teams with a primary focus on the attending physician. In this paper, we present the first ICU communication instrument, and, we introduce the use of database management system to aid in discovering patterns and associations within our ICU communications data repository.

  15. Selection of Representative Models for Decision Analysis Under Uncertainty

    Science.gov (United States)

    Meira, Luis A. A.; Coelho, Guilherme P.; Santos, Antonio Alberto S.; Schiozer, Denis J.

    2016-03-01

    The decision-making process in oil fields includes a step of risk analysis associated with the uncertainties present in the variables of the problem. Such uncertainties lead to hundreds, even thousands, of possible scenarios that are supposed to be analyzed so an effective production strategy can be selected. Given this high number of scenarios, a technique to reduce this set to a smaller, feasible subset of representative scenarios is imperative. The selected scenarios must be representative of the original set and also free of optimistic and pessimistic bias. This paper is devoted to propose an assisted methodology to identify representative models in oil fields. To do so, first a mathematical function was developed to model the representativeness of a subset of models with respect to the full set that characterizes the problem. Then, an optimization tool was implemented to identify the representative models of any problem, considering not only the cross-plots of the main output variables, but also the risk curves and the probability distribution of the attribute-levels of the problem. The proposed technique was applied to two benchmark cases and the results, evaluated by experts in the field, indicate that the obtained solutions are richer than those identified by previously adopted manual approaches. The program bytecode is available under request.

  16. Establishment of stable and clinically representative mouse models of Clostridium difficile infection%具有临床代表性的艰难梭菌感染小鼠稳定模型的构建

    Institute of Scientific and Technical Information of China (English)

    费稼希; 林倩云; 张岩; 曾丽珊; 王浦; 陈烨

    2016-01-01

    Objective To build mouse models of Clostridium difficile infection with clinical representativeness and good stability,and provide suitable tools for researches on the infection of Clostridium difficile.Methods 3 different species of mice (C57BL/6 mice,BALB/c mice and KM mice) were treated with antibiotics and then challenged with different concentrations of Clostridium difficile suspension by garage.The symptom of diarrhea,general situation and pathological changes of colonic tissues were observed.Results After gavage,all the BALB/c mice in the 1010 CFU/mL concentration group developed diarrhea,with a mortality rate of 16.7%.The diarrhea symptoms of mice in other experimental groups varied in severity or even were mild and only seen in some of the mice.The mice with diarrhea had loose or even watery stool,wet tail,weight loss and reduced food intake.Histological examination showed congestion,hemorrhage and neutrophil infiltration of the mucosa in dead mice.Conclusion BALB/c mice which were induced by gavage with five antibiotics for 9 days and intraperitoneal injection with clindamycin,then gavaged with 1010 CFU/mL of Clostridium difficile bacterial suspension are the most stable models for Clostridium difficile associated diarrhea.%目的 构建临床代表性好、稳定性佳的艰难梭菌感染小鼠模型,为艰难梭菌感染相关疾病提供研究工具.方法 选择C57BL/6、BALB/c、昆明小鼠,经抗生素诱导后,分别予以不同浓度(108 CFU/mL~1010 CFU/mL)的临床分离菌株混悬液灌胃,观察不同品系小鼠不同时间点腹泻、全身情况及结肠组织病理学变化.结果 灌菌后,BALB/c小鼠1010 CFU/mL浓度组全部出现腹泻,死亡率为16.7%;其他实验组小鼠腹泻程度差异较大或仅部分出现轻度腹泻.腹泻小鼠表现为稀烂便甚至水样便和湿尾现象,体重减轻,肠道病理显示结肠黏膜充血水肿伴炎性细胞浸润.结论 经5种抗生素灌胃9 d+

  17. Representing vegetation processes in hydrometeorological simulations using the WRF model

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund

    -ments are still needed in the representation of the land surface variability and of some key land surface processes. This thesis explores two possibilities for improving the near-surface model predictions using the mesoscale Weather Research and Forecasting (WRF) model. In the _rst approach, data from satellite......For accurate predictions of weather and climate, it is important that the land surface and its processes are well represented. In a mesoscale model the land surface processes are calculated in a land surface model (LSM). These pro-cesses include exchanges of energy, water and momentum between...... the land surface components, such as vegetation and soil, and their interactions with the atmosphere. The land surface processes are complex and vary in time and space. Signi_cant e_ort by the land surface community has therefore been invested in improving the LSMs over the recent decades. However, improve...

  18. Representing the environment 3.0. Maps, models, networks.

    Directory of Open Access Journals (Sweden)

    Letizia Bollini

    2014-05-01

    Full Text Available Web 3.0 is changing the world we live and perceive the environment anthropomorphized, making a stratifation of levels of experience and mediated by the devices. If the urban landscape is designed, shaped and planned space, there is a social landscape that overwrite the territory of values, representations shared images, narratives of personal and collective history. Mobile technology introduces an additional parameter, a kind of non-place, which allows the coexistence of the here and elsewhere in an sort of digital landscape. The maps, mental models, the system of social networks become, then, the way to present, represented and represent themselves in a kind of ideal coring of the co-presence of levels of physical, cognitive and collective space.

  19. A BRIEF REVIEW OF MODELS REPRESENTING CREEP OF ALLOY 617

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, Robert W [ORNL; Swindeman, Michael [University of Dayton Research Institute; Ren, Weiju [ORNL

    2005-01-01

    Alloy 617 is being considered for the construction of components to operate in the Next Generation Nuclear Plant (NGNP). Service temperatures will range from 650 to 1000 C. To meet the needs of the conceptual designers of this plant, a materials handbook is being developed that will provide information on alloy 617, as well as other materials of interest. The database for alloy 617 to be incorporated into the handbook was produced in the 1970s and 1980s, while creep and damage models were developed from the database for use in the design of high-temperature gas-cooled reactors. In the work reported here, the US database and creep models are briefly reviewed. The work reported represents progress toward a useful model of the behavior of this material in the temperature range of 650 to 1000 C.

  20. Model parameters for representative wetland plant functional groups

    Science.gov (United States)

    Williams, Amber S.; Kiniry, James R.; Mushet, David M.; Smith, Loren M.; McMurry, Scott T.; Attebury, Kelly; Lang, Megan; McCarty, Gregory W.; Shaffer, Jill A.; Effland, William R.; Johnson, Mari-Vaughn V.

    2017-01-01

    Wetlands provide a wide variety of ecosystem services including water quality remediation, biodiversity refugia, groundwater recharge, and floodwater storage. Realistic estimation of ecosystem service benefits associated with wetlands requires reasonable simulation of the hydrology of each site and realistic simulation of the upland and wetland plant growth cycles. Objectives of this study were to quantify leaf area index (LAI), light extinction coefficient (k), and plant nitrogen (N), phosphorus (P), and potassium (K) concentrations in natural stands of representative plant species for some major plant functional groups in the United States. Functional groups in this study were based on these parameters and plant growth types to enable process-based modeling. We collected data at four locations representing some of the main wetland regions of the United States. At each site, we collected on-the-ground measurements of fraction of light intercepted, LAI, and dry matter within the 2013–2015 growing seasons. Maximum LAI and k variables showed noticeable variations among sites and years, while overall averages and functional group averages give useful estimates for multisite simulation modeling. Variation within each species gives an indication of what can be expected in such natural ecosystems. For P and K, the concentrations from highest to lowest were spikerush (Eleocharis macrostachya), reed canary grass (Phalaris arundinacea), smartweed (Polygonum spp.), cattail (Typha spp.), and hardstem bulrush (Schoenoplectus acutus). Spikerush had the highest N concentration, followed by smartweed, bulrush, reed canary grass, and then cattail. These parameters will be useful for the actual wetland species measured and for the wetland plant functional groups they represent. These parameters and the associated process-based models offer promise as valuable tools for evaluating environmental benefits of wetlands and for evaluating impacts of various agronomic practices in

  1. Lightweight Expression of Granular Objects (LEGO) Content Modeling Using the SNOMED CT Observables Model to Represent Nursing Assessment Data.

    Science.gov (United States)

    Johnson, Christie

    2016-01-01

    This poster presentation presents a content modeling strategy using the SNOMED CT Observable Model to represent large amounts of detailed clinical data in a consistent and computable manner that can support multiple use cases. Lightweight Expression of Granular Objects (LEGOs) represent question/answer pairs on clinical data collection forms, where a question is modeled by a (usually) post-coordinated SNOMED CT expression. LEGOs transform electronic patient data into a normalized consumable, which means that the expressions can be treated as extensions of the SNOMED CT hierarchies for the purpose of performing subsumption queries and other analytics. Utilizing the LEGO approach for modeling clinical data obtained from a nursing admission assessment provides a foundation for data exchange across disparate information systems and software applications. Clinical data exchange of computable LEGO patient information enables the development of more refined data analytics, data storage and clinical decision support.

  2. Representing plants as rigid cylinders in experiments and models

    Science.gov (United States)

    Vargas-Luna, Andrés; Crosato, Alessandra; Calvani, Giulio; Uijttewaal, Wim S. J.

    2016-07-01

    Simulating the morphological adaptation of water systems often requires including the effects of plants on water and sediment dynamics. Physical and numerical models need representing vegetation in a schematic easily-quantifiable way despite the variety of sizes, shapes and flexibility of real plants. Common approaches represent plants as rigid cylinders, but the ability of these schematizations to reproduce the effects of vegetation on morphodynamic processes has never been analyzed systematically. This work focuses on the consequences of representing plants as rigid cylinders in laboratory tests and numerical simulations. New experiments show that the flow resistance decreases for increasing element Reynolds numbers for both plants and rigid cylinders. Cylinders on river banks can qualitatively reproduce vegetation effects on channel width and bank-related processes. A comparative review of numerical simulations shows that Baptist's method that sums the contribution of bed shear stress and vegetation drag, underestimates bed erosion within sparse vegetation in real rivers and overestimates the mean flow velocity in laboratory experiments. This is due to assuming uniform flow among plants and to an overestimation of the role of the submergence ratio.

  3. Representing plant hydraulics in a global Earth system model.

    Science.gov (United States)

    Kennedy, D.; Gentine, P.

    2015-12-01

    Earth system models need improvement to reproduce observed seasonal and diurnal cycles of photosynthesis and respiration. Model water stress parameterizations lag behind the plant physiology literature. A plant hydraulics model is developed and deployed in a global Earth system model (NCAR CESM 1.2.2 with CLM 4.5). Assimilation and transpiration are attenuated according to literature cavitation curves. Water stress is evaluated based on plant functional type hydraulic parameters forced by soil moisture and atmospheric conditions. Resolving the plant water status allows for modelling divergent strategies for water stress. The case of isohydric versus anisohydric species is presented, showing that including plant hydraulic traits alter modelled photosynthesis and transpiration.

  4. Guidance on Evaluating Options for Representing Clinical Data within Health Information Systems.

    Science.gov (United States)

    Hardiker, Nicholas R; Hynes, Brenda

    2012-01-01

    The health information system PlunketPlus is a clinical initiative of Plunket (the Royal New Zealand Plunket Society) with a goal of further improving the health outcomes for children in New Zealand. The success of PlunketPlus depends heavily on how data is represented within the system. The purpose of the study described in this paper was to use PlunketPlus as a case study to inform the development of guidance on evaluating options for representing clinical data within health information systems, with a particular focus on automating existing informational processes. It has been possible to take some of the lessons learned to inform the development of initial more generic guidance that might be applicable across a range of domains. This paper concludes with a description of how Plunket applied the guidance as part of the development of PlunketPlus.

  5. Explicitly representing soil microbial processes in Earth system models

    Science.gov (United States)

    Wieder, William R.; Allison, Steven D.; Davidson, Eric A.; Georgiou, Katerina; Hararuk, Oleksandra; He, Yujie; Hopkins, Francesca; Luo, Yiqi; Smith, Matthew J.; Sulman, Benjamin; Todd-Brown, Katherine; Wang, Ying-Ping; Xia, Jianyang; Xu, Xiaofeng

    2015-10-01

    Microbes influence soil organic matter decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) will make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models, we suggest the following: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.

  6. Quantum turing machine and brain model represented by Fock space

    Science.gov (United States)

    Iriyama, Satoshi; Ohya, Masanori

    2016-05-01

    The adaptive dynamics is known as a new mathematics to treat with a complex phenomena, for example, chaos, quantum algorithm and psychological phenomena. In this paper, we briefly review the notion of the adaptive dynamics, and explain the definition of the generalized Turing machine (GTM) and recognition process represented by the Fock space. Moreover, we show that there exists the quantum channel which is described by the GKSL master equation to achieve the Chaos Amplifier used in [M. Ohya and I. V. Volovich, J. Opt. B 5(6) (2003) 639., M. Ohya and I. V. Volovich, Rep. Math. Phys. 52(1) (2003) 25.

  7. A time fractional model to represent rainfall process

    Directory of Open Access Journals (Sweden)

    Jacques GOLDER

    2014-01-01

    Full Text Available This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered α-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE with tempered α-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered α-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered α-stable waiting times is more efficient in reproducing the observed behavior.

  8. Representing Microbial Processes in Environmental Reactive Transport Models

    Science.gov (United States)

    van Cappellen, P.

    2009-04-01

    Microorganisms play a key role in the biogeochemical functioning of the earth's surface and shallow subsurface. In the context of reactive transport modeling, a major challenge is to derive, parameterize, calibrate and verify mathematical expressions for microbially-mediated reactions in the environmental. This is best achieved by combining field observations, laboratory experiments, theoretical principles and modeling. Here, I will illustrate such an integrated approach for the case of microbial respiration processes in aquatic sediments. Important issues that will be covered include experimental design, model consistency and performance, as well as the bioenergetics and transient behavior of geomicrobial reaction systems.

  9. Representing and managing uncertainty in qualitative ecological models

    NARCIS (Netherlands)

    Nuttle, T.; Bredeweg, B.; Salles, P.; Neumann, M.

    2009-01-01

    Ecologists and decision makers need ways to understand systems, test ideas, and make predictions and explanations about systems. However, uncertainty about causes and effects of processes and parameter values is pervasive in models of ecological systems. Uncertainty associated with incomplete

  10. DO CANCER CLINICAL TRIAL POPULATIONS TRULY REPRESENT CANCER PATIENTS? A COMPARISON OF OPEN CLINICAL TRIALS TO THE CANCER GENOME ATLAS.

    Science.gov (United States)

    Geifman, Nophar; Butte, Atul J

    2016-01-01

    Open clinical trial data offer many opportunities for the scientific community to independently verify published results, evaluate new hypotheses and conduct meta-analyses. These data provide a springboard for scientific advances in precision medicine but the question arises as to how representative clinical trials data are of cancer patients overall. Here we present the integrative analysis of data from several cancer clinical trials and compare these to patient-level data from The Cancer Genome Atlas (TCGA). Comparison of cancer type-specific survival rates reveals that these are overall lower in trial subjects. This effect, at least to some extent, can be explained by the more advanced stages of cancer of trial subjects. This analysis also reveals that for stage IV cancer, colorectal cancer patients have a better chance of survival than breast cancer patients. On the other hand, for all other stages, breast cancer patients have better survival than colorectal cancer patients. Comparison of survival in different stages of disease between the two datasets reveals that subjects with stage IV cancer from the trials dataset have a lower chance of survival than matching stage IV subjects from TCGA. One likely explanation for this observation is that stage IV trial subjects have lower survival rates since their cancer is less likely to respond to treatment. To conclude, we present here a newly available clinical trials dataset which allowed for the integration of patient-level data from many cancer clinical trials. Our comprehensive analysis reveals that cancer-related clinical trials are not representative of general cancer patient populations, mostly due to their focus on the more advanced stages of the disease. These and other limitations of clinical trials data should, perhaps, be taken into consideration in medical research and in the field of precision medicine.

  11. A Topic Model Approach to Representing and Classifying Football Plays

    KAUST Repository

    Varadarajan, Jagannadan

    2013-09-09

    We address the problem of modeling and classifying American Football offense teams’ plays in video, a challenging example of group activity analysis. Automatic play classification will allow coaches to infer patterns and tendencies of opponents more ef- ficiently, resulting in better strategy planning in a game. We define a football play as a unique combination of player trajectories. To this end, we develop a framework that uses player trajectories as inputs to MedLDA, a supervised topic model. The joint maximiza- tion of both likelihood and inter-class margins of MedLDA in learning the topics allows us to learn semantically meaningful play type templates, as well as, classify different play types with 70% average accuracy. Furthermore, this method is extended to analyze individual player roles in classifying each play type. We validate our method on a large dataset comprising 271 play clips from real-world football games, which will be made publicly available for future comparisons.

  12. Representing spatial information in a computational model for network management

    Science.gov (United States)

    Blaisdell, James H.; Brownfield, Thomas F.

    1994-01-01

    While currently available relational database management systems (RDBMS) allow inclusion of spatial information in a data model, they lack tools for presenting this information in an easily comprehensible form. Computer-aided design (CAD) software packages provide adequate functions to produce drawings, but still require manual placement of symbols and features. This project has demonstrated a bridge between the data model of an RDBMS and the graphic display of a CAD system. It is shown that the CAD system can be used to control the selection of data with spatial components from the database and then quickly plot that data on a map display. It is shown that the CAD system can be used to extract data from a drawing and then control the insertion of that data into the database. These demonstrations were successful in a test environment that incorporated many features of known working environments, suggesting that the techniques developed could be adapted for practical use.

  13. Model and observed seismicity represented in a two dimensional space

    Directory of Open Access Journals (Sweden)

    M. Caputo

    1976-06-01

    Full Text Available In recent years theoretical seismology lias introduced
    some formulae relating the magnitude and the seismic moment of earthquakes
    to the size of the fault and the stress drop which generated the
    earthquake.
    In the present paper we introduce a model for the statistics of the
    earthquakes based on these formulae. The model gives formulae which
    show internal consistency and are also confirmed by observations.
    For intermediate magnitudes the formulae reproduce also the trend
    of linearity of the statistics of magnitude and moment observed in all the
    seismic regions of the world. This linear trend changes into a curve with
    increasing slope for large magnitudes and moment.
    When a catalogue of the magnitudes and/or the seismic moment of
    the earthquakes of a seismic region is available, the model allows to estimate
    the maximum magnitude possible in the region.

  14. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  15. Manipulating Models and Grasping the Ideas They Represent

    Science.gov (United States)

    Bryce, T. G. K.; Blown, E. J.

    2016-03-01

    This article notes the convergence of recent thinking in neuroscience and grounded cognition regarding the way we understand mental representation and recollection: ideas are dynamic and multi-modal, actively created at the point of recall. Also, neurophysiologically, re-entrant signalling among cortical circuits allows non-conscious processing to support our deliberative thoughts and actions. The qualitative research we describe examines the exchanges occurring during semi-structured interviews with 360 children age 3-13, including 294 from New Zealand (158 boys, 136 girls) and 66 from China (34 boys, 32 girls) concerning their understanding of the shape and motion of the Earth, Sun and Moon (ESM). We look closely at the relationships between what is revealed as children manipulate their own play-dough models and their apparent understandings of ESM concepts. In particular, we focus on the switching taking place between what is said, what is drawn and what is modelled. The evidence is supportive of Edelman's view that memory is non-representational and that concepts are the outcome of perceptual mappings, a view which is also in accord with Barsalou's notion that concepts are simulators or skills which operate consistently across several modalities. Quantitative data indicate that the dynamic structure of memory/concept creation is similar in both genders and common to the cultures/ethnicities compared (New Zealand European and Māori; Chinese Han) and that repeated interviews in this longitudinal research lead to more advanced modelling skills and/or more advanced shape and motion concepts, the results supporting hypotheses ( Kolmogorov- Smirnov alpha levels .05; r s : p < .001).

  16. Utilization of group-based, community acupuncture clinics: a comparative study with a nationally representative sample of acupuncture users.

    Science.gov (United States)

    Chao, Maria T; Tippens, Kimberly M; Connelly, Erin

    2012-06-01

    Acupuncture utilization in the United States has increased in recent years, but is less common among racial/ethnic minorities and those of low socioeconomic status. Group-based, community acupuncture is a delivery model gaining in popularity around the United States, due in part to low-cost treatments provided on a sliding-fee scale. Affordable, community-based acupuncture may increase access to health care at a time when increasing numbers of people are uninsured. To assess the population using local community acupuncture clinics, sociodemographic factors, health status, and utilization patterns compared to national acupuncture users were examined. Data were employed from (1) a cross-sectional survey of 478 clients of two community acupuncture clinics in Portland, Oregon and (2) a nationally representative sample of acupuncture users from the 2007 National Health Interview Survey. Portland community acupuncture clients were more homogeneous racially, had higher educational attainment, lower household income, and were more likely to receive 10 or more treatments in the past 12 months (odds ratio=5.39, 95% confidence interval=3.54, 8.22), compared to a nationally representative sample of U.S. acupuncture users. Self-reported health status and medical reasons for seeking acupuncture treatment were similar in both groups. Back pain (21%), joint pain (17%), and depression (13%) were the most common conditions for seeking treatment at community acupuncture clinics. Study findings suggest that local community acupuncture clinics reach individuals of a broad socioeconomic spectrum and may allow for increased frequency of treatment. Limited racial diversity among community acupuncture clients may reflect local demographics of Portland. In addition, exposure to and knowledge about acupuncture is likely to vary by race and ethnicity. Future studies should examine access, patient satisfaction, frequency of treatment, and clinical outcomes of group-based models of community

  17. Studying Effective Factors on Corporate Entrepreneurship: Representing a Model

    Directory of Open Access Journals (Sweden)

    Maryam Soleimani

    2013-02-01

    Full Text Available Development and advancement of current organizations depends on Corporate Entrepreneurship (CE and its anticipants considerably. Therefore purpose of conducting this survey is to study effective factors on corporate entrepreneurship (personal characteristics of entrepreneurship, human resource practices, organizational culture and employees' satisfaction. This survey was conducted using descriptive-field methodology. Statistical population included managers and experts of Hexa Consulting Engineers Company (Tehran/Iran and the sample consisted of forty seven of them. Questionnaire was tool of data collection. Data was collected in cross-sectional form in July-August 2011. Descriptive and inferential (spearman correlation statistics methods were used for data analysis. According to results, there is a positive significant relationship among all factors (personal characteristics of entrepreneurship, human resource practices, organizational culture and employees' satisfaction and corporate entrepreneurship. In other words, the proposed variables as effective factors on corporate entrepreneurship were confirmed in conceptual model of survey.

  18. Modeling and Representing National Climate Assessment Information using Linked Data

    Science.gov (United States)

    Zheng, J.; Tilmes, C.; Smith, A.; Zednik, S.; Fox, P. A.

    2012-12-01

    Every four years, earth scientists work together on a National Climate Assessment (NCA) report which integrates, evaluates, and interprets the findings of climate change and impacts on affected industries such as agriculture, natural environment, energy production and use, etc. Given the amount of information presented in each report, and the wide range of information sources and topics, it can be difficult for users to find and identify desired information. To ease the user effort of information discovery, well-structured metadata is needed that describes the report's key statements and conclusions and provide for traceable provenance of data sources used. We present an assessment ontology developed to describe terms, concepts and relations required for the NCA metadata. Wherever possible, the assessment ontology reuses terms from well-known ontologies such as Semantic Web for Earth and Environmental Terminology (SWEET) ontology, Dublin Core (DC) vocabulary. We have generated sample National Climate Assessment metadata conforming to our assessment ontology and publicly exposed via a SPARQL-endpoint and website. We have also modeled provenance information for the NCA writing activities using the W3C recommendation-candidate PROV-O ontology. Using this provenance the user will be able to trace the sources of information used in the assessment and therefore make trust decisions. In the future, we are planning to implement a faceted browser over the metadata to enhance metadata traversal and information discovery.

  19. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad

    2016-09-01

    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method to replace correlations and equations of state in subsurface flow simulators. In order to accelerate MC simulations, a set of early rejection schemes (conservative, hybrid, and non-conservative) in addition to extrapolation methods through reweighting and reconstruction of pre-generated MC Markov chains were developed. Furthermore, an extensive study was conducted to investigate sorption and transport processes of methane, carbon dioxide, water, and their mixtures in the inorganic part of shale using both MC and MD simulations. These simulations covered a wide range of thermodynamic conditions, pore sizes, and fluid compositions shedding light on several interesting findings. For example, the possibility to have more carbon dioxide adsorbed with more preadsorbed water concentrations at relatively large basal spaces. The dissertation is divided into four chapters. The first chapter corresponds to the introductory part where a brief background about molecular simulation and motivations are given. The second chapter is devoted to discuss the theoretical aspects and methodology of the proposed MC speeding up techniques in addition to the corresponding results leading to the successful multi-scale simulation of the compressible single-phase flow scenario. In chapter 3, the results regarding our extensive study on shale gas at laboratory conditions are reported. At the fourth and last chapter, we end the dissertation with few concluding remarks highlighting the key findings and summarizing the future directions.

  20. Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists.

    Science.gov (United States)

    Elkin, Peter L; Brown, Steven H; Husser, Casey S; Bauer, Brent A; Wahner-Roedler, Dietlind; Rosenbloom, S Trent; Speroff, Ted

    2006-06-01

    To evaluate the ability of SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms) version 1.0 to represent the most common problems seen at the Mayo Clinic in Rochester, Minn. We selected the 4996 most common nonduplicated text strings from the Mayo Master Sheet Index that describe patient problems associated with inpatient and outpatient episodes of care. From July 2003 through January 2004, 2 physician reviewers compared the Master Sheet Index text with the SNOMED CT terms that were automatically mapped by a vocabulary server or that they identified using a vocabulary browser and rated the "correctness" of the match. If the 2 reviewers disagreed, a third reviewer adjudicated. We evaluated the specificity, sensitivity, and positive predictive value of SNOMED CT. Of the 4996 problems in the test set, SNOMED CT correctly identified 4568 terms (true-positive results); 36 terms were true negatives, 9 terms were false positives, and 383 terms were false negatives. SNOMED CT had a sensitivity of 92.3%, a specificity of 80.0%, and a positive predictive value of 99.8%. SNOMED CT, when used as a compositional terminology, can exactly represent most (92.3%) of the terms used commonly in medical problem lists. Improvements to synonymy and adding missing modifiers would lead to greater coverage of common problem statements. Health care organizations should be encouraged and provided incentives to begin adopting SNOMED CT to drive their decision-support applications.

  1. Comparison of Statistical Multifragmentation Model simulations with Canonical Thermodynamical Model results: a few representative cases

    CERN Document Server

    Botvina, A; Gupta, S Das; Mishustin, I

    2008-01-01

    The statistical multifragmentation model (SMM) has been widely used to explain experimental data of intermediate energy heavy ion collisions. A later entrant in the field is the canonical thermodynamic model (CTM) which is also being used to fit experimental data. The basic physics of both the models is the same, namely that fragments are produced according to their statistical weights in the available phase space. However, they are based on different statistical ensembles, and the methods of calculation are different: while the SMM uses Monte-Carlo simulations, the CTM solves recursion relations. In this paper we compare the predictions of the two models for a few representative cases.

  2. A box model for representing estuarine physical processes in Earth system models

    Science.gov (United States)

    Sun, Qiang; Whitney, Michael M.; Bryan, Frank O.; Tseng, Yu-heng

    2017-04-01

    Appropriately treating riverine freshwater discharge into the oceans in Earth system models is a challenging problem. Commonly, the river runoff is discharged into the ocean models with zero salinity and arbitrarily distributed either horizontally or vertically over several grid cells. Those approaches entirely neglect estuarine physical processes that modify river inputs before they reach the open ocean. In order to realistically represent riverine freshwater inputs in Earth system models, a physically based Estuary Box Model (EBM) is developed to parameterize the mixing processes in estuaries. The EBM represents the estuary exchange circulation with a two-layer box structure. It takes as input the river volume flux from the land surface model and the subsurface salinity at the estuary mouth from the ocean model. It delivers the estuarine outflow salinity and net volume flux into and out of the estuary to the ocean model. An offline test of the EBM forced with observed conditions for the Columbia River system shows good agreement with observations of outflow salinity and high-resolution simulations of the exchange flow volume flux. To illustrate the practicality of use of the EBM in an Earth system model, the EBM is implemented for all coastal grid cells with river runoff in the Community Earth System Model (CESM). Compared to the standard version of CESM, which treats runoff as an augmentation to precipitation, the EBM increases sea surface salinity and reduces stratification near river mouths. The EBM also leads to significant regional and remote changes in CESM ocean surface salinities.

  3. In vitro characterization of representative clinical South African Staphylococcus aureus isolates from various clonal lineages

    Directory of Open Access Journals (Sweden)

    W.F. Oosthuysen

    2014-07-01

    Full Text Available Data concerning the virulence and pathogenesis of South African strains of Staphylococcus aureus are limited. We investigated host–pathogen interactions of randomly selected clinical S. aureus isolates representing various clones. We characterized the ability of isolates to adhere to fibronectin, fibrinogen, collagens IV and VI, to invade host cells and to induce cell death in vitro. We analysed the possible association of these results with characteristics such as methicillin resistance, Panton–Valentine leucocidin (PVL positivity and clonality. The S. aureus isolates displayed diversity in their abilities to adhere to various human ligands. All isolates were highly invasive except for ST121. PVL-negative isolates were significantly more invasive than the PVL-positive isolates (p 0.004. Isolates of CC5, CC30 and CC121 were non-cytotoxic, whereas isolates of CC22, CC8, CC15, CC45 and CC88 were very cytotoxic. No statistical association was identified between cell death and methicillin resistance, bacterial PVL status, clonality or patient HIV status. The vast majority of isolates were invasive and induced significant cell death. PVL-negative isolates were more invasive than PVL-positive isolates, while methicillin-resistant isolates were not found to be more invasive or cytotoxic than methicillin-susceptible isolates.

  4. [Representation models and clinical psychology].

    Science.gov (United States)

    Traube, P

    1993-01-01

    Clinical psychology often borrows vocabulary from medicine as well as its analysis schemes and explanation models. This survey will deal with all analysis schemes used by the clinical psychologist, explicitly or implicitly, to make it possible to understand the psychological functioning, and work on it as soon as a problem arises.

  5. Investigating the productivity model for clinical nurses.

    Science.gov (United States)

    Dehghan Nayeri, Nahid; Hooshmand Bahabadi, Abbas; Kazemnejad, Anoshirvan

    2014-01-01

    One of the main objectives of quantitative researches is assessment of models developed by qualitative studies. Models validation through their testing implies that the designed model is representative of the existed facts. Hence, this study was conducted to assess the clinical nurses' productivity model presented for Iranian nurses' productivity. The sample of the study consisted of 360 nurses of Tehran University of Medical Sciences. The research tool was a questionnaire for measuring the components of clinical nurses' productivity. After completing all steps of instrument psychometric and getting answers from the participants, the factors introduced in the questionnaire were named and then Lisrel Path Analysis tests were performed to analyze the components of the model. The results of the model test revealed there is an internal relationship among different components of the model. Regression Analysis showed that each increasing unit in components of the model was to be added to central variable of productivity model -human resource. Model components altogether explained 20 % of clinical nurses' productivity variance. This study found that the important component of productivity is human resources that are reciprocally related to other components of the model. Therefore, it can be stated that the managers can promote the productivity by using efficient strategies to correct human resource patterns.

  6. Representing humans in system security models: An actor-network approach

    NARCIS (Netherlands)

    Pieters, Wolter

    2011-01-01

    System models to assess the vulnerability of information systems to security threats typically represent a physical infrastructure (buildings) and a digital infrastructure (computers and networks), in combination with an attacker traversing the system while acquiring credentials. Other humans are ge

  7. Representing humans in system security models: An actor-network approach

    NARCIS (Netherlands)

    Pieters, Wolter

    2011-01-01

    System models to assess the vulnerability of information systems to security threats typically represent a physical infrastructure (buildings) and a digital infrastructure (computers and networks), in combination with an attacker traversing the system while acquiring credentials. Other humans are ge

  8. Representing hybrid compensatory non-compensatory choice set formation in semi-compensatory models

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Bekhor, Shlomo; Shigtan, Yoram

    2012-01-01

    Semi-compensatory models represent a choice process consisting of an elimination-based choice set formation upon satisfying criteria thresholds and a utility-based choice. Current semi-compensatory models assume a purely non-compensatory choice set formation and hence do not support multinomial c...

  9. Reduction of the number of major representative allergens: from clinical testing to 3-dimensional structures.

    Science.gov (United States)

    He, Ying; Liu, Xueting; Huang, Yuyi; Zou, Zehong; Chen, Huifang; Lai, He; Zhang, Lida; Wu, Qiurong; Zhang, Junyan; Wang, Shan; Zhang, Jianguo; Tao, Ailin; Sun, Baoqing

    2014-01-01

    Vast amounts of allergen sequence data have been accumulated, thus complicating the identification of specific allergenic proteins when performing diagnostic allergy tests and immunotherapy. This study aims to rank the importance/potency of the allergens so as to logically reduce the number of allergens and/or allergenic sources. Meta-analysis of 62 allergenic sources used for intradermal testing on 3,335 allergic patients demonstrated that in southern China, mite, sesame, spiny amaranth, Pseudomonas aeruginosa, and house dust account for 88.0% to 100% of the observed positive reactions to the 62 types of allergenic sources tested. The Kolmogorov-Smironov Test results of the website-obtained allergen data and allergen family featured peptides suggested that allergen research in laboratories worldwide has been conducted in parallel on many of the same species. The major allergens were reduced to 21 representative allergens, which were further divided into seven structural classes, each of which contains similar structural components. This study therefore has condensed numerous allergenic sources and major allergens into fewer major representative ones, thus allowing for the use of a smaller number of allergens when conducting comprehensive allergen testing and immunotherapy treatments.

  10. Reduction of the Number of Major Representative Allergens: From Clinical Testing to 3-Dimensional Structures

    Directory of Open Access Journals (Sweden)

    Ying He

    2014-01-01

    Full Text Available Vast amounts of allergen sequence data have been accumulated, thus complicating the identification of specific allergenic proteins when performing diagnostic allergy tests and immunotherapy. This study aims to rank the importance/potency of the allergens so as to logically reduce the number of allergens and/or allergenic sources. Meta-analysis of 62 allergenic sources used for intradermal testing on 3,335 allergic patients demonstrated that in southern China, mite, sesame, spiny amaranth, Pseudomonas aeruginosa, and house dust account for 88.0% to 100% of the observed positive reactions to the 62 types of allergenic sources tested. The Kolmogorov-Smironov Test results of the website-obtained allergen data and allergen family featured peptides suggested that allergen research in laboratories worldwide has been conducted in parallel on many of the same species. The major allergens were reduced to 21 representative allergens, which were further divided into seven structural classes, each of which contains similar structural components. This study therefore has condensed numerous allergenic sources and major allergens into fewer major representative ones, thus allowing for the use of a smaller number of allergens when conducting comprehensive allergen testing and immunotherapy treatments.

  11. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  12. A general mathematical framework for representing soil organic matter dynamics in biogeochemistry models

    Science.gov (United States)

    Sierra, C. A.; Mueller, M.

    2013-12-01

    Recent work have highlighted the importance of nonlinear interactions in representing the decomposition of soil organic matter (SOM). It is unclear however how to integrate these concepts into larger biogeochemical models or into a more general mathematical description of the decomposition process. Here we present a mathematical framework that generalizes both previous decomposition models and recent ideas about nonlinear microbial interactions. The framework is based on a set of four basic principles: 1) mass balance, 2) heterogeneity in the decomposability of SOM, 3) transformations in the decomposability of SOM over time, 4) energy limitation of decomposers. This framework generalizes a large majority of SOM decomposition models proposed to date. We illustrate the application of this framework to the development of a continuous model that includes the ideas in the Dual Arrhenius Michaelis-Menten Model (DAMM) for explicitly representing temperature-moisture limitations of enzyme activity in the decomposition of heterogenous substrates.

  13. Confronting diversity in the production of clinical evidence goes beyond merely including under-represented groups in clinical trials

    NARCIS (Netherlands)

    Stronks, Karien; Wieringa, Nicolien F.; Hardon, Anita

    2013-01-01

    There is increasing evidence that outcomes of health care differ by patient characteristics, such as gender and ethnicity. If evidence-based medicine is to improve quality of care for all patients, it is essential to take this diversity into account when designing clinical studies. So far, this noti

  14. Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings

    Science.gov (United States)

    Tsai, F.; Chang, H.; Lin, Y.-W.

    2017-08-01

    This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.

  15. Latent variable indirect response modeling of categorical endpoints representing change from baseline.

    Science.gov (United States)

    Hu, Chuanpu; Xu, Zhenhua; Mendelsohn, Alan M; Zhou, Honghui

    2013-02-01

    Accurate exposure-response modeling is important in drug development. Methods are still evolving in the use of mechanistic, e.g., indirect response (IDR) models to relate discrete endpoints, mostly of the ordered categorical form, to placebo/co-medication effect and drug exposure. When the discrete endpoint is derived using change-from-baseline measurements, a mechanistic exposure-response modeling approach requires adjustment to maintain appropriate interpretation. This manuscript describes a new modeling method that integrates a latent-variable representation of IDR models with standard logistic regression. The new method also extends to general link functions that cover probit regression or continuous clinical endpoint modeling. Compared to an earlier latent variable approach that constrained the baseline probability of response to be 0, placebo effect parameters in the new model formulation are more readily interpretable and can be separately estimated from placebo data, thus allowing convenient and robust model estimation. A general inherent connection of some latent variable representations with baseline-normalized standard IDR models is derived. For describing clinical response endpoints, Type I and Type III IDR models are shown to be equivalent, therefore there are only three identifiable IDR models. This approach was applied to data from two phase III clinical trials of intravenously administered golimumab for the treatment of rheumatoid arthritis, where 20, 50, and 70% improvement in the American College of Rheumatology disease severity criteria were used as efficacy endpoints. Likelihood profiling and visual predictive checks showed reasonable parameter estimation precision and model performance.

  16. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice

    NARCIS (Netherlands)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert Jan; Sterk, H.A.M.

    2016-01-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic

  17. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice

    NARCIS (Netherlands)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert Jan; Sterk, H.A.M.

    2016-01-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic

  18. Representing tissue mass and morphology in mechanistic models of digestive function in ruminants

    NARCIS (Netherlands)

    Bannink, A.; Dijkstra, J.; France, J.

    2011-01-01

    Representing changes in morphological and histological characteristics of epithelial tissue in the rumen and intestine and to evaluate their implications for absorption and tissue mass in models of digestive function requires a quantitative approach. The aim of the present study was to quantify tiss

  19. Buffer AVL Alone Does Not Inactivate Ebola Virus in a Representative Clinical Sample Type.

    Science.gov (United States)

    Smither, Sophie J; Weller, Simon A; Phelps, Amanda; Eastaugh, Lin; Ngugi, Sarah; O'Brien, Lyn M; Steward, Jackie; Lonsdale, Steve G; Lever, Mark S

    2015-10-01

    Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples. © Crown copyright 2015.

  20. Feasibility of Representing Data from Published Nursing Research Using the OMOP Common Data Model.

    Science.gov (United States)

    Kim, Hyeoneui; Choi, Jeeyae; Jang, Imho; Quach, Jimmy; Ohno-Machado, Lucila

    2016-01-01

    We explored the feasibility of representing nursing research data with the Observational Medical Outcomes Partners (OMOP) Common Data Model (CDM) to understand the challenges and opportunities in representing various types of health data not limited to diseases and drug treatments. We collected 1,431 unique data items from 256 nursing articles and mapped them to the OMOP CDM. A deeper level of mapping was explored by simulating 10 data search use cases. Although the majority of the data could be represented in the OMOP CDM, potential information loss was identified in contents related to patient reported outcomes, socio-economic information, and locally developed nursing intervention protocols. These areas will be further investigated in a follow up study. We will use lessons learned in this study to inform the metadata development efforts for data discovery.

  1. Representing time-varying cyclic dynamics using multiple-subject state-space models.

    Science.gov (United States)

    Chow, Sy-Miin; Hamaker, Ellen L; Fujita, Frank; Boker, Steven M

    2009-11-01

    Over the last few decades, researchers have become increasingly aware of the need to consider intraindividual variability in the form of cyclic processes. In this paper, we review two contemporary cyclic state-space models: Young and colleagues' dynamic harmonic regression model and Harvey and colleagues' stochastic cycle model. We further derive the analytic equivalence between the two models, discuss their unique strengths and propose multiple-subject extensions. Using data from a study on human postural dynamics and a daily affect study, we demonstrate the use of these models to represent within-person non-stationarities in cyclic dynamics and interindividual differences therein. The use of diagnostic tools for evaluating model fit is also illustrated.

  2. Representing Operational Knowledge of PWR Plant by Using Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Jørgensen, Sten Bay

    2014-01-01

    situation and support operational decisions. This paper will provide a general MFM model of the primary side in a standard Westinghouse Pressurized Water Reactor ( PWR ) system including sub - systems of Reactor Coolant System, Rod Control System, Chemical and Volume Control System, emergency heat removal......The aim of this paper is to explore the capability of representing operational knowledge by using Multilevel Flow Modelling ( MFM ) methodology. The paper demonstrate s how the operational knowledge can be inserted into the MFM models and be used to evaluate the plant state, identify the current...... systems. And the sub - systems’ functions will be decomposed into sub - models according to different operational situations. An operational model will be developed based on the operating procedure by using MFM symbols and this model can be used to implement coordination rules for organize the utilizati...

  3. Can Geostatistical Models Represent Nature's Variability? An Analysis Using Flume Experiments

    Science.gov (United States)

    Scheidt, C.; Fernandes, A. M.; Paola, C.; Caers, J.

    2015-12-01

    The lack of understanding in the Earth's geological and physical processes governing sediment deposition render subsurface modeling subject to large uncertainty. Geostatistics is often used to model uncertainty because of its capability to stochastically generate spatially varying realizations of the subsurface. These methods can generate a range of realizations of a given pattern - but how representative are these of the full natural variability? And how can we identify the minimum set of images that represent this natural variability? Here we use this minimum set to define the geostatistical prior model: a set of training images that represent the range of patterns generated by autogenic variability in the sedimentary environment under study. The proper definition of the prior model is essential in capturing the variability of the depositional patterns. This work starts with a set of overhead images from an experimental basin that showed ongoing autogenic variability. We use the images to analyze the essential characteristics of this suite of patterns. In particular, our goal is to define a prior model (a minimal set of selected training images) such that geostatistical algorithms, when applied to this set, can reproduce the full measured variability. A necessary prerequisite is to define a measure of variability. In this study, we measure variability using a dissimilarity distance between the images. The distance indicates whether two snapshots contain similar depositional patterns. To reproduce the variability in the images, we apply an MPS algorithm to the set of selected snapshots of the sedimentary basin that serve as training images. The training images are chosen from among the initial set by using the distance measure to ensure that only dissimilar images are chosen. Preliminary investigations show that MPS can reproduce fairly accurately the natural variability of the experimental depositional system. Furthermore, the selected training images provide

  4. Application of the generalized vertical coordinate ocean model for better representing satellite data

    Science.gov (United States)

    Song, Y. T.

    2002-01-01

    It is found that two adaptive parametric functions can be introduced into the basic ocean equations for utilizing the optimal or hybrid features of commonly used z-level, terrain- following, isopycnal, and pressure coordinates in numerical ocean models. The two parametric functions are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara (1 974), the Jacobian pressure gradient formulation of Song (1 998), and a newly developed metric factor that permits both compressible (non-Boussinesq) and incompressible (Boussinesq) approximations. Based on the new formulation, an adaptive modeling strategy is proposed and a staggered finite volume method is designed to ensure conservation of important physical properties and numerical accuracy. Implementation of the combined techniques to SCRUM (Song and Haidvogel1994) shows that the adaptive modeling strategy can be applied to any existing ocean model without incurring computational expense or altering the original numerical schemes. Such a generalized coordinate model is expected to benefit diverse ocean modelers for easily choosing optimal vertical structures and sharing modeling resources based on a common model platform. Several representing oceanographic problems with different scales and characteristics, such as coastal canyons, basin-scale circulation, and global ocean circulation, are used to demonstrate the model's capability for multiple applications. New results show that the model is capable of simultaneously resolving both Boussinesq and non-Boussinesq, and both small- and large-scale processes well. This talk will focus on its applications of multiple satellite sensing data in eddy-resolving simulations of Asian Marginal Sea and Kurosio. Attention will be given to how Topex/Poseidon SSH, TRMM SST; and GRACE ocean bottom pressure can be correctly represented in a non- Boussinesq model.

  5. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    Directory of Open Access Journals (Sweden)

    José CAPACHO

    2015-01-01

    Full Text Available This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning. The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating virtual learning by Badrul H. Khan, and the Cybernetic model for evaluating virtual learning environments. The e-Learning model is systemic and of feedback by nature. The model integrates the society, Institution of Education, virtual training platform, virtual teacher and students, and finally the assessment of student learning in virtual learning spaces supported by ICT. The model consists of fourteen processes. Processes are defined taking into account the following dimensions: identification, academic, pedagogical, educational, formative, evaluative, assessment of virtual learning and technological. The model is fundamental to the management of e-learning supported by ICT, justified by the fact that it is an operative model of the teaching-learning process in virtual spaces. The importance of having an operative model in virtual education is to project the management and decision in virtual education. Then the operational, administrative and decision phases will allow the creation of a set of indicators. These indicators will assess the process of virtual education not only in students but also in the virtual institution.

  6. REPRESENTATIVE MODEL OF THE LEARNING PROCESS IN VIRTUAL SPACES SUPPORTED BY ICT

    Directory of Open Access Journals (Sweden)

    José CAPACHO

    2014-10-01

    Full Text Available This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning. The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating virtual learning by Badrul H. Khan, and the Cybernetic model for evaluating virtual learning environments. The e-Learning model is systemic and of feedback by nature. The model integrates the society, Institution of Education, virtual training platform, virtual teacher and students, and finally the assessment of student learning in virtual learning spaces supported by ICT. The model consists of fourteen processes. Processes are defined taking into account the following dimensions: identification, academic, pedagogical, educational, formative, evaluative, assessment of virtual learning and technological. The model is fundamental to the management of e-learning supported by ICT, justified by the fact that it is an operative model of the teaching-learning process in virtual spaces. The importance of having an operative model in virtual education is to project the management and decision in virtual education. Then the operational, administrative and decision phases will allow the creation of a set of indicators. These indicators will assess the process of virtual education not only in students but also in the virtual institution.

  7. Emotion as a thermostat: representing emotion regulation using a damped oscillator model.

    Science.gov (United States)

    Chow, Sy-Miin; Ram, Nilam; Boker, Steven M; Fujita, Frank; Clore, Gerald

    2005-06-01

    The authors present in this study a damped oscillator model that provides a direct mathematical basis for testing the notion of emotion as a self-regulatory thermostat. Parameters from this model reflect individual differences in emotional lability and the ability to regulate emotion. The authors discuss concepts such as intensity, rate of change, and acceleration in the context of emotion, and they illustrate the strengths of this approach in comparison with spectral analysis and growth curve models. The utility of this modeling approach is illustrated using daily emotion ratings from 179 college students over 52 consecutive days. Overall, the damped oscillator model provides a meaningful way of representing emotion regulation as a dynamic process and helps identify the dominant periodicities in individuals' emotions.

  8. How large-scale energy-environment models represent technology and technological change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-01

    In the process of selecting measures against global warming, it is important to consider the introduction of technological innovations into the models, and studies were made in this connection. An induced technical change model has to be an economically total model that represents various incentives involving the form of profits from innovations; profits from cost functions, research-and-development production functions, and abstract profits from empirical estimates; and the dimensions in which technological change is assumed to progress. Under study at the Stanford Energy Modeling Forum is how to represent various technological assumptions and development, which is necessary to predict the cost for dealing with global warming. At the conference of February 2001, 10 cases of preliminary model scenarios were discussed. In one case, for instance, a carbon tax of $25/ton in 2010 is raised $25 every decade to be $100/ton in 2040. Three working groups are engaged in the study of long-run economy/technology baseline scenarios, characterization of current and potential future technologies, and ways of modeling technological change. (NEDO)

  9. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    SCHWARTZ, S.E.; MCGRAW, R.; BENKOVITZ, C.M.; WRIGHT, D.L.

    2001-04-01

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  10. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    OpenAIRE

    Dalgıçdir, Cahit; Şensoy, Özge; Sayar, Mehmet; Peter, Christine

    2013-01-01

    A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition Cahit Dalgicdir, Ozge Sensoy, Christine Peter, and Mehmet Sayar Citation: The Journal of Chemical Physics 139, 234115 (2013); doi: 10.1063/1.4848675 View online: http://dx.doi.org/10.1063/1.4848675 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/23?ver=pdfcov Published by the AIP Publishing Articles you may be interested in...

  11. Explicitly representing soil microbial processes in Earth system models: Soil microbes in earth system models

    Energy Technology Data Exchange (ETDEWEB)

    Wieder, William R. [Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder Colorado USA; Allison, Steven D. [Department of Ecology and Evolutionary Biology, University of California, Irvine California USA; Department of Earth System Science, University of California, Irvine California USA; Davidson, Eric A. [Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg Maryland USA; Georgiou, Katerina [Department of Chemical and Biomolecular Engineering, University of California, Berkeley California USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California USA; Hararuk, Oleksandra [Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria British Columbia Canada; He, Yujie [Department of Earth System Science, University of California, Irvine California USA; Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette Indiana USA; Hopkins, Francesca [Department of Earth System Science, University of California, Irvine California USA; Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Luo, Yiqi [Department of Microbiology & Plant Biology, University of Oklahoma, Norman Oklahoma USA; Smith, Matthew J. [Computational Science Laboratory, Microsoft Research, Cambridge UK; Sulman, Benjamin [Department of Biology, Indiana University, Bloomington Indiana USA; Todd-Brown, Katherine [Department of Microbiology & Plant Biology, University of Oklahoma, Norman Oklahoma USA; Pacific Northwest National Laboratory, Richland Washington USA; Wang, Ying-Ping [CSIRO Ocean and Atmosphere Flagship, Aspendale Victoria Australia; Xia, Jianyang [Department of Microbiology & Plant Biology, University of Oklahoma, Norman Oklahoma USA; Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai China; Xu, Xiaofeng [Department of Biological Sciences, University of Texas at El Paso, Texas USA

    2015-10-01

    Microbes influence soil organic matter (SOM) decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) may make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here, we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models we suggest: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.

  12. Flow-Shop Scheduling Models with Parameters Represented by Rough Variables

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In reality, processing times are often imprecise and this imprecision is critical for the scheduling procedure. This research deals with flow-shop scheduling in rough environment. In this type of scheduling problem, we employ the rough sets to represent the job parameters. The job processing times are assumed to be rough variables, and the problem is to minimize the makespan. Three novel types of rough scheduling models are presented. A rough simulation-based genetic algorithm is designed to solve these models and its effectiveness is well illustrated by numerical experiments.

  13. Animated-simulation modeling facilitates clinical-process costing.

    Science.gov (United States)

    Zelman, W N; Glick, N D; Blackmore, C C

    2001-09-01

    Traditionally, the finance department has assumed responsibility for assessing process costs in healthcare organizations. To enhance process-improvement efforts, however, many healthcare providers need to include clinical staff in process cost analysis. Although clinical staff often use electronic spreadsheets to model the cost of specific processes, PC-based animated-simulation tools offer two major advantages over spreadsheets: they allow clinicians to interact more easily with the costing model so that it more closely represents the process being modeled, and they represent cost output as a cost range rather than as a single cost estimate, thereby providing more useful information for decision making.

  14. Dynamic viscosity modeling of methane plus n-decane and methane plus toluene mixtures: Comparative study of some representative models

    DEFF Research Database (Denmark)

    Baylaucq, A.; Boned, C.; Canet, X.;

    2005-01-01

    .15 and for several methane compositions. Although very far from real petroleum fluids, these mixtures are interesting in order to study the potential of extending various models to the simulation of complex fluids with asymmetrical components (light/heavy hydrocarbon). These data (575 data points) have been...... discussed in the framework of recent representative models (hard sphere scheme, friction theory, and free volume model) and with mixing laws and two empirical models (particularly the LBC model which is commonly used in petroleum engineering, and the self-referencing model). This comparative study shows...

  15. A computational model of the hippocampus that represents environmental structure and goal location, and guides movement.

    Science.gov (United States)

    Matsumoto, Jumpei; Makino, Yoshinari; Miura, Haruki; Yano, Masafumi

    2011-08-01

    Hippocampal place cells (PCs) are believed to represent environmental structure. However, it is unclear how and which brain regions represent goals and guide movements. Recently, another type of cells that fire around a goal was found in rat hippocampus (we designate these cells as goal place cells, GPCs). This suggests that the hippocampus is also involved in goal representation. Assuming that the activities of GPCs depend on the distance to a goal, we propose an adaptive navigation model. By monitoring the population activity of GPCs, the model navigates to shorten the distance to the goal. To achieve the distance-dependent activities of GPCs, plastic connections are assumed between PCs and GPCs, which are modified depending on two reward-triggered activities: activity propagation through PC-PC network representing the topological environmental structure, and the activity of GPCs with different durations. The former activity propagation is regarded as a computational interpretation of "reverse replay" phenomenon found in rat hippocampus. Simulation results confirm that after reaching a goal only once, the model can navigate to the goal along almost the shortest path from arbitrary places in the environment. This indicates that the hippocampus might play a primary role in the representation of not only the environmental structure but also the goal, in addition to guiding the movement. This navigation strategy using the population activity of GPCs is equivalent to the taxis strategy, the simplest and most basic for biological systems. Our model is unique because this simple strategy allows the model to follow the shortest path in the topological map of the environment.

  16. A proposed-standard format to represent and distribute tomographic models and other earth spatial data

    Science.gov (United States)

    Postpischl, L.; Morelli, A.; Danecek, P.

    2009-04-01

    Formats used to represent (and distribute) tomographic earth models differ considerably and are rarely self-consistent. In fact, each earth scientist, or research group, uses specific conventions to encode the various parameterizations used to describe, e.g., seismic wave speed or density in three dimensions, and complete information is often found in related documents or publications (if available at all) only. As a consequence, use of various tomographic models from different authors requires considerable effort, is more cumbersome than it should be and prevents widespread exchange and circulation within the community. We propose a format, based on modern web standards, able to represent different (grid-based) model parameterizations within the same simple text-based environment, easy to write, to parse, and to visualise. The aim is the creation of self-describing data-structures, both human and machine readable, that are automatically recognised by general-purpose software agents, and easily imported in the scientific programming environment. We think that the adoption of such a representation as a standard for the exchange and distribution of earth models can greatly ease their usage and enhance their circulation, both among fellow seismologists and among a broader non-specialist community. The proposed solution uses semantic web technologies, fully fitting the current trends in data accessibility. It is based on Json (JavaScript Object Notation), a plain-text, human-readable lightweight computer data interchange format, which adopts a hierarchical name-value model for representing simple data structures and associative arrays (called objects). Our implementation allows integration of large datasets with metadata (authors, affiliations, bibliographic references, units of measure etc.) into a single resource. It is equally suited to represent other geo-referenced volumetric quantities — beyond tomographic models — as well as (structured and unstructured

  17. Using McDaniel's model to represent non-Rayleigh active sonar reverberation

    Science.gov (United States)

    Gu, Ming

    Reverberation in active sonar systems has often been observed to follow non-Rayleigh distributions. Current statistical models tend to be either too restrictive, leading to significant mismatch error, or too general, leading to large estimation error. McDaniel's model has shown promise as having reasonably tight representation in terms of skewness and kurtosis for reverberation from a variety of sonar systems. This dissertation intensively explores capability and effectiveness of the generalized McDaniel's model in representing non-Rayleigh reverberation when minimal data are available. Three major topics are covered in this dissertation. First, derivation and computation of the cumulative distribution function of McDaniel's model is addressed. Two approaches, one based on direct integration and the other via characteristic function inversion, are both shown to achieve adequate precision with the former leading to a closed-form solution and the latter requiring significantly less computational effort. Second, parameter estimators using both method of moments (MM) and maximum likelihood (ML) algorithms are developed. The MM estimator has the advantage of a simple and rapid implementation, but the disadvantage of a non- zero probability of a solution not existing. Bootstrap/pruning techniques are proposed to partially deal with the failure of this method. The ML estimator will always provide a solution; however, it requires multivariate optimization. The expectation-maximization (EM) algorithm iteration is also derived for obtaining the ML estimates and compared with the simplex method and quasi-Newton multivariate optimization routines. Furthermore, the ability of various statistical models to represent the probability of false alarm is evaluated as a function of sample size. It is demonstrated that when minimal data are available, McDaniel's model can more accurately represent non-Rayleigh reverberation than the K or Rayleigh mixture models. Third, detection

  18. Clinical models of cardiovascular regulation after weightlessness

    Science.gov (United States)

    Robertson, D.; Jacob, G.; Ertl, A.; Shannon, J.; Mosqueda-Garcia, R.; Robertson, R. M.; Biaggioni, I.

    1996-01-01

    After several days in microgravity, return to earth is attended by alterations in cardiovascular function. The mechanisms underlying these effects are inadequately understood. Three clinical disorders of autonomic function represent possible models of this abnormal cardiovascular function after spaceflight. They are pure autonomic failure, baroreflex failure, and orthostatic intolerance. In pure autonomic failure, virtually complete loss of sympathetic and parasympathetic function occurs along with profound and immediate orthostatic hypotension. In baroreflex failure, various degrees of debuffering of blood pressure occur. In acute and complete baroreflex failure, there is usually severe hypertension and tachycardia, while with less complete and more chronic baroreflex impairment, orthostatic abnormalities may be more apparent. In orthostatic intolerance, blood pressure fall is minor, but orthostatic symptoms are prominent and tachycardia frequently occurs. Only careful autonomic studies of human subjects in the microgravity environment will permit us to determine which of these models most closely reflects the pathophysiology brought on by a period of time in the microgravity environment.

  19. A clinical application of the training model.

    Science.gov (United States)

    Gianotti, Patricia

    2010-03-01

    This article offers a perspective and a summary of Jack Danielian's (2010) Horneyan training model, highlighting the benefits of a meta-psychological approach for analysts in training and seasoned practitioners alike. To help illustrate the complexity of Karen Horney's views of character structure and character pathology, this article presents a model that reflects the dynamic tensions at play within individuals with narcissistic issues. It suggests that therapeutic listening can be tracked and that thematic material unfolds in a somewhat predictable, sequential, yet altogether systemic manner. Listening is not just art or intuition, nor is it merely interpretation of content based on a theoretical framework. It represents a way of holding the dialectic tension between conscious and unconscious, syntonic and dystonic. If we can better track these dynamic tensions, we can better anticipate and hopefully avoid clinical ruptures through the acting out of negative transference.

  20. Data Structure Analysis to Represent Basic Models of Finite State Automation

    Directory of Open Access Journals (Sweden)

    V. V. Gurenko

    2015-01-01

    Full Text Available Complex system engineering based on the automaton models requires a reasoned data structure selection to implement them. The problem of automaton representation and data structure selection to be used in it has been understudied. Arbitrary data structure selection for automaton model software implementation leads to unnecessary computational burden and reduces the developed system efficiency. This article proposes an approach to the reasoned selection of data structures to represent finite algoristic automaton basic models and gives practical considerations based on it.Static and dynamic data structures are proposed for three main ways to assign Mealy and Moore automatons: a transition table, a matrix of coupling and a transition graph. A thirddimensional array, a rectangular matrix and a matrix of lists are the static structures. Dynamic structures are list-oriented structures: two-level and three-level Ayliff vectors and a multi-linked list. These structures allow us to store all required information about finite state automaton model components - characteristic set cardinalities and data of transition and output functions.A criterion system is proposed for data structure comparative evaluation in virtue of algorithmic features of automata theory problems. The criteria focused on capacitive and time computational complexity of operations performed in tasks such as equivalent automaton conversions, proving of automaton equivalence and isomorphism, and automaton minimization.A data structure comparative analysis based on the criterion system has done for both static and dynamic type. The analysis showed advantages of the third-dimensional array, matrix and two-level Ayliff vector. These are structures that assign automaton by transition table. For these structures an experiment was done to measure the execution time of automation operations included in criterion system.The analysis of experiment results showed that a dynamic structure - two

  1. Clinical and economic outcomes among hospitalized patients with acute coronary syndrome: an analysis of a national representative Medicare population

    Directory of Open Access Journals (Sweden)

    Chen SY

    2013-05-01

    Full Text Available Shih-Yin Chen,1 Concetta Crivera,2 Michael Stokes,1 Luke Boulanger,1 Jeffrey Schein2 1United BioSource Corporation, Lexington, MA, USA; 2Janssen Scientific Affairs, LLC, Raritan, NJ, USA Objective: To evaluate the clinical and economic burden of acute coronary syndrome (ACS, a common cardiovascular illness, in the Medicare population. Methods: Data from the Medicare Current Beneficiary Survey were analyzed. Patients with incident hospitalization for ACS without similar events during the 6 months prior were included. Outcomes evaluated included inpatient mortality, 30-day mortality and readmission, subsequent hospitalization events, and total direct health care costs. Sample population weights were applied, accounting for multistage sampling design to obtain nationally representative estimates for the US Medicare population. Results: Between March 1, 2002 and December 31, 2006, we identified 795 incident ACS patients (mean age 76 years; 49% male representing 2,542,211 Medicare beneficiaries. The inpatient mortality rate was 9.71% and the 30-day mortality ranged from 10.96% to 13.93%. The 30-day readmission rate for surviving patients was 18.56% for all causes and 17.90% for cardiovascular disease (CVD-related diagnoses. The incidence of death since admission was 309 cases per 1000 person–years. Among patients discharged alive, the incidence was 197 for death, 847 for CVD-related admission, and 906 for all-cause admission. During the year when the ACS event occurred, mean annual total direct health care costs per person were US$50,458, with more than half attributable to inpatient hospitalization ($27,609. Conclusion: In this national representative Medicare population, we found a substantial clinical and economic burden for ACS. These findings suggest a continuing unmet medical need for more effective management of patients with ACS. The continuous burden underscores the importance of development of new interventions and/or strategies to

  2. Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-12-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22° (about 24 km rotated grid over Europe and the Mediterranean region. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the observed data fields (E-OBS data set, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best-performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of four RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the 21st century. We present and discuss the validation setting, as well as the obtained results and, in some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and advice for researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more generally, climate change impact studies in the Mediterranean region.

  3. Climate model validation and selection for hydrological applications in representative Mediterranean catchments

    Directory of Open Access Journals (Sweden)

    R. Deidda

    2013-07-01

    Full Text Available This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs, from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22-degree (about 24 km rotated grid over Europe and the Mediterranean. In the validation period (1951 to 2010 we consider daily precipitation and surface temperatures from the E-OBS dataset, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of 4 RCMs for all studied catchments reduces the (epistemic uncertainty when evaluating trends and climate change impacts in the XXI century. We present and discuss the validation setting, as well as the obtained results and, to some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and hint for an audience of researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more in general, climate change impact studies in the Mediterranean.

  4. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Science.gov (United States)

    Lee, V.; Payne, A. J.; Gregory, J. M.

    2011-01-01

    We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer. The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  5. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Directory of Open Access Journals (Sweden)

    V. Lee

    2011-01-01

    Full Text Available We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer.

    The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  6. A Proposed Model for Assessing Defendant Competence to Self-Represent.

    Science.gov (United States)

    White, Mitzi M S; Gutheil, Thomas G

    2016-12-01

    The increasing number of criminal defendants who are choosing to self-represent poses special challenges for legal systems with regard to the types of limits that should be placed on a defendant's basic human right to defend himself without the assistance of counsel. While courts strive to respect the dignity and autonomy of the defendant that are encompassed in this right, they also want to ensure that justice is delivered and the dignity of the courtroom is maintained. The Supreme Court of the United States, in its opinion in Indiana v. Edwards (2008), held that while the right to self-represent recognized in Faretta v. California (1975) remains, states and trial judges can place limits on a defendant's right to self-representation when a defendant lacks the mental capacities needed to prepare and conduct an adequate defense. Following the court's lead, we first examine the types and range of tasks that a defendant who chooses to self-represent must perform. Based on this analysis, we propose a five-part model that forensic practitioners can use as a conceptual framework for assessing whether a defendant has deficits that would affect his competence to perform critical self-representation tasks. The five areas that the model recommends practitioners assess are whether a defendant can engage in goal-directed behaviors, has sufficient communication skills, can engage in constructive social intercourse, can control his emotions in an adversarial arena, and has the cognitive abilities needed to argue his case adequately. It is recommended that practitioners use the model in their testimony to provide the trier of fact with a comprehensive report of the areas in which a defendant has deficits that will prevent him from protecting his interests in receiving a fair and equitable trial. © 2016 American Academy of Psychiatry and the Law.

  7. Representing Resources in Petri Net Models: Hardwiring or Soft-coding?

    OpenAIRE

    2011-01-01

    This paper presents an interesting design problem in developing a new tool for discrete-event dynamic systems (DEDS). A new tool known as GPenSIM was developed for modeling and simulation of DEDS; GPenSIM is based on Petri Nets. The design issue this paper talks about is whether to represent resources in DEDS hardwired as a part of the Petri net structure (which is the widespread practice) or to soft code as common variables in the program code. This paper shows that soft coding resources giv...

  8. Representing environment-induced helix-coil transitions in a coarse grained peptide model

    Science.gov (United States)

    Dalgicdir, Cahit; Globisch, Christoph; Sayar, Mehmet; Peter, Christine

    2016-10-01

    Coarse grained (CG) models are widely used in studying peptide self-assembly and nanostructure formation. One of the recurrent challenges in CG modeling is the problem of limited transferability, for example to different thermodynamic state points and system compositions. Understanding transferability is generally a prerequisite to knowing for which problems a model can be reliably used and predictive. For peptides, one crucial transferability question is whether a model reproduces the molecule's conformational response to a change in its molecular environment. This is of particular importance since CG peptide models often have to resort to auxiliary interactions that aid secondary structure formation. Such interactions take care of properties of the real system that are per se lost in the coarse graining process such as dihedral-angle correlations along the backbone or backbone hydrogen bonding. These auxiliary interactions may then easily overstabilize certain conformational propensities and therefore destroy the ability of the model to respond to stimuli and environment changes, i.e. they impede transferability. In the present paper we have investigated a short peptide with amphiphilic EALA repeats which undergoes conformational transitions between a disordered and a helical state upon a change in pH value or due to the presence of a soft apolar/polar interface. We designed a base CG peptide model that does not carry a specific (backbone) bias towards a secondary structure. This base model was combined with two typical approaches of ensuring secondary structure formation, namely a C α -C α -C α -C α pseudodihedral angle potential or a virtual site interaction that mimics hydrogen bonding. We have investigated the ability of the two resulting CG models to represent the environment-induced conformational changes in the helix-coil equilibrium of EALA. We show that with both approaches a CG peptide model can be obtained that is environment-transferable and that

  9. Association study of dysbindin gene with clinical and outcome measures in a representative cohort of Italian schizophrenic patients.

    Science.gov (United States)

    Tosato, Sarah; Ruggeri, Mirella; Bonetto, Chiara; Bertani, Mariaelena; Marrella, Giovanna; Lasalvia, Antonio; Cristofalo, Doriana; Aprili, Giuseppe; Tansella, Michele; Dazzan, Paola; Diforti, Marta; Murray, Robin M; Collier, David A

    2007-07-05

    There is evidence suggesting that Dysbindin (DTNBP1) is a susceptibility gene for schizophrenia in Caucasian, Chinese, and Japanese populations. We sought to determine if dysbindin was associated with schizophrenia and its symptoms in a representative group of schizophrenic patients from a Community-Based Mental Health Service (CMHS) in Verona, Italy. A prevalence cohort of schizophrenic patients (n = 141) was assessed at baseline and then 3 and 6 years later. Eighty patients and 106 healthy controls were genotyped for polymorphisms in dysbindin. We tested if diagnosis, clinical symptoms as measured by the Brief Psychiatric Rating Scale (BPRS), and functioning as measured by the Global Assessment of Functioning Scale (GAF), were associated with the presence of certain dysbindin polymorphisms. Finally, using the longitudinal clinical data, we tested if patients carrying dysbindin high-risk haplotypes had a more unfavorable longitudinal clinical outcome. A trend towards statistical association (P = 0.058) between schizophrenia and rs2619538 was found. Using GENECOUNTING software, we found that rs2619538-P1583 (P = 0.048), P1320-P1757 (P = 0.034), and rs2619538-P1583-P1578 (P = 0.040) haplotypes occurred more often in cases compared to controls before correction for multiple testing. The rs2619538-P1583 haplotype was more likely to be transmitted to subjects with more severe and persistent psychopathology. These preliminary results are compatible with the view that DTNBP1 is a susceptibility factor for schizophrenia, and is associated with worse psychopathology.

  10. Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity.

    Science.gov (United States)

    Marson, Daniel

    2016-09-01

    The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity.

  11. Can we trust climate models to realistically represent severe European windstorms?

    Science.gov (United States)

    Trzeciak, Tomasz M.; Knippertz, Peter; Pirret, Jennifer S. R.; Williams, Keith D.

    2016-06-01

    Cyclonic windstorms are one of the most important natural hazards for Europe, but robust climate projections of the position and the strength of the North Atlantic storm track are not yet possible, bearing significant risks to European societies and the (re)insurance industry. Previous studies addressing the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data show large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such evaluations lies in the difficulty to separate influences of the climate model's basic state from the influence of fast processes on the development of the most intense storms, which could create compensating effects and therefore suggest higher reliability than there really is. This work aims to shed new light into this problem through a cost-effective "seamless" approach of hindcasting 20 historical severe storms with the two global climate models, ECHAM6 and GA4 configuration of the Met Office Unified Model, run in a numerical weather prediction mode using different lead times, and horizontal and vertical resolutions. These runs are then compared to re-analysis data. The main conclusions from this work are: (a) objectively identified cyclone tracks are represented satisfactorily by most hindcasts; (b) sensitivity to vertical resolution is low; (c) cyclone depth is systematically under-predicted for a coarse resolution of T63 by both climate models; (d) no systematic bias is found for the higher resolution of T127 out to about three days, demonstrating that climate models are in fact able to represent the complex dynamics of explosively deepening cyclones well, if given the correct initial conditions; (e) an analysis using a recently developed diagnostic tool based on the surface pressure tendency equation points to too weak diabatic processes, mainly latent

  12. Representing winter wheat in the Community Land Model (version 4.5)

    Science.gov (United States)

    Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; Torn, Margaret S.; Kueppers, Lara M.

    2017-05-01

    Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange of CO2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.

  13. Is the mental wellbeing of young Australians best represented by a single, multidimensional or bifactor model?

    Science.gov (United States)

    Hides, Leanne; Quinn, Catherine; Stoyanov, Stoyan; Cockshaw, Wendell; Mitchell, Tegan; Kavanagh, David J

    2016-07-30

    Internationally there is a growing interest in the mental wellbeing of young people. However, it is unclear whether mental wellbeing is best conceptualized as a general wellbeing factor or a multidimensional construct. This paper investigated whether mental wellbeing, measured by the Mental Health Continuum-Short Form (MHC-SF), is best represented by: (1) a single-factor general model; (2) a three-factor multidimensional model or (3) a combination of both (bifactor model). 2220 young Australians aged between 16 and 25 years completed an online survey including the MHC-SF and a range of other wellbeing and mental ill-health measures. Exploratory factor analysis supported a bifactor solution, comprised of a general wellbeing factor, and specific group factors of psychological, social and emotional wellbeing. Confirmatory factor analysis indicated that the bifactor model had a better fit than competing single and three-factor models. The MHC-SF total score was more strongly associated with other wellbeing and mental ill-health measures than the social, emotional or psychological subscale scores. Findings indicate that the mental wellbeing of young people is best conceptualized as an overarching latent construct (general wellbeing) to which emotional, social and psychological domains contribute. The MHC-SF total score is a valid and reliable measure of this general wellbeing factor.

  14. Using ecosystem services to represent the environment in hydro-economic models

    Science.gov (United States)

    Momblanch, Andrea; Connor, Jeffery D.; Crossman, Neville D.; Paredes-Arquiola, Javier; Andreu, Joaquín

    2016-07-01

    Demand for water is expected to grow in line with global human population growth, but opportunities to augment supply are limited in many places due to resource limits and expected impacts of climate change. Hydro-economic models are often used to evaluate water resources management options, commonly with a goal of understanding how to maximise water use value and reduce conflicts among competing uses. The environment is now an important factor in decision making, which has resulted in its inclusion in hydro-economic models. We reviewed 95 studies applying hydro-economic models, and documented how the environment is represented in them and the methods they use to value environmental costs and benefits. We also sought out key gaps and inconsistencies in the treatment of the environment in hydro-economic models. We found that representation of environmental values of water is patchy in most applications, and there should be systematic consideration of the scope of environmental values to include and how they should be valued. We argue that the ecosystem services framework offers a systematic approach to identify the full range of environmental costs and benefits. The main challenges to more holistic representation of the environment in hydro-economic models are the current limits to understanding of ecological functions which relate physical, ecological and economic values and critical environmental thresholds; and the treatment of uncertainty.

  15. EXPERIMENTAL EVALUATION OF NUMERICAL MODELS TO REPRESENT THE STIFFNESS OF LAMINATED ROTOR CORES IN ELECTRICAL MACHINES

    Directory of Open Access Journals (Sweden)

    HIDERALDO L. V. SANTOS

    2013-08-01

    Full Text Available Usually, electrical machines have a metallic cylinder made up of a compacted stack of thin metal plates (referred as laminated core assembled with an interference fit on the shaft. The laminated structure is required to improve the electrical performance of the machine and, besides adding inertia, also enhances the stiffness of the system. Inadequate characterization of this element may lead to errors when assessing the dynamic behavior of the rotor. The aim of this work was therefore to evaluate three beam models used to represent the laminated core of rotating electrical machines. The following finite element beam models are analyzed: (i an “equivalent diameter model”, (ii an “unbranched model” and (iii a “branched model”. To validate the numerical models, experiments are performed with nine different electrical rotors so that the first non-rotating natural frequencies and corresponding vibration modes in a free-free support condition are obtained experimentally. The models are evaluated by comparing the natural frequencies and corresponding vibration mode shapes obtained experimentally with those obtained numerically. Finally, a critical discussion of the behavior of the beam models studied is presented. The results show that for the majority of the rotors tested, the “branched model” is the most suitable

  16. Representing life in the Earth system with soil microbial functional traits in the MIMICS model

    Science.gov (United States)

    Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Taylor, P. G.; Bonan, G. B.

    2015-06-01

    Projecting biogeochemical responses to global environmental change requires multi-scaled perspectives that consider organismal diversity, ecosystem processes, and global fluxes. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon (C) cycle-climate feedbacks. We used a microbial trait-based soil C model with two physiologically distinct microbial communities, and evaluate how this model represents soil C storage and response to perturbations. Drawing from the application of functional traits used to model other ecosystems, we incorporate copiotrophic and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization (MIMICS) model; these functional groups are akin to "gleaner" vs. "opportunist" plankton in the ocean, or r- vs. K-strategists in plant and animal communities. Here we compare MIMICS to a conventional soil C model, DAYCENT (the daily time-step version of the CENTURY model), in cross-site comparisons of nitrogen (N) enrichment effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; moreover, it raises important hypotheses involving the roles of substrate availability, community-level enzyme induction, and microbial physiological responses in explaining various soil biogeochemical responses to N enrichment. In global-scale analyses, we show that MIMICS projects much slower rates of soil C accumulation than a conventional soil biogeochemistry in response to increasing C inputs with elevated carbon dioxide (CO2) - a finding that would reduce the size of the land C sink estimated by the Earth system. Our findings illustrate that tradeoffs between theory and utility can be overcome to develop soil biogeochemistry models that evaluate and advance our theoretical understanding of microbial dynamics and soil biogeochemical responses to environmental change.

  17. Cancer and Leukemia Group B Pathology Committee guidelines for tissue microarray construction representing multicenter prospective clinical trial tissues.

    Science.gov (United States)

    Rimm, David L; Nielsen, Torsten O; Jewell, Scott D; Rohrer, Daniel C; Broadwater, Gloria; Waldman, Frederic; Mitchell, Kisha A; Singh, Baljit; Tsongalis, Gregory J; Frankel, Wendy L; Magliocco, Anthony M; Lara, Jonathan F; Hsi, Eric D; Bleiweiss, Ira J; Badve, Sunil S; Chen, Beiyun; Ravdin, Peter M; Schilsky, Richard L; Thor, Ann; Berry, Donald A

    2011-06-01

    Practice-changing evidence requires confirmation, preferably in multi-institutional clinical trials. The collection of tissue within such trials has enabled biomarker studies and evaluation of companion diagnostic tests. Tissue microarrays (TMAs) have become a standard approach in many cooperative oncology groups. A principal goal is to maximize the number of assays with this precious tissue. However, production strategies for these arrays have not been standardized, possibly decreasing the value of the study. In this article, members of the Cancer and Leukemia Group B Pathology Committee relay our experiences as array facility directors and propose guidelines regarding the production of high-quality TMAs for cooperative group studies. We also discuss statistical issues arising from having a proportion of patients available for TMAs and the possibility that patients with TMAs fail to represent the greater study population.

  18. Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model

    Directory of Open Access Journals (Sweden)

    Z. S. Stock

    2013-10-01

    Full Text Available The continuing growth of the world's urban population has led to an increasing number of cities with more than 10 million inhabitants. The higher emissions of pollutants, coupled to higher population density, makes predictions of air quality in these megacities of particular importance from both a science and a policy perspective. Global climate models are typically run at coarse resolution to enable both the efficient running of long time integrations, and the ability to run multiple future climate scenarios. However, when considering surface ozone concentrations at the local scale, coarse resolution can lead to inaccuracies arising from the highly non-linear ozone chemistry and the sensitivity of ozone to the distribution of its precursors on smaller scales. In this study, we use UM-UKCA, a global atmospheric chemistry model, coupled to the UK Met Office Unified Model, to investigate the impact of model resolution on tropospheric ozone, ranging from global to local scales. We focus on the model's ability to represent the probability of high ozone concentrations in the summer and low ozone concentrations, associated with polluted megacity environments, in the winter, and how this varies with horizontal resolution. We perform time-slice integrations with two model configurations at typical climate resolution (CR, ~150 km and at a higher resolution (HR, ~40 km. The CR configuration leads to overestimation of ozone concentrations on both regional and local scales, while it gives broadly similar results to the HR configuration on the global scale. The HR configuration is found to produce a more realistic diurnal cycle of ozone concentrations and to give a better representation of the probability density function of ozone values in urban areas such as the megacities of London and Paris. We discuss the possible causes for the observed difference in model behaviour between CR and HR configurations and estimate the relative contribution of chemical and

  19. How to Represent 100-meter Spatial Heterogeneity in Earth System Models

    Science.gov (United States)

    Chaney, Nathaniel; Shevliakova, Elena; Malyshev, Sergey

    2016-04-01

    Terrestrial ecosystems play a pivotal role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (~100 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing hyperresolution environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles or hydrologic response units (HRUs). The novel Geophysical Fluid Dynamics Laboratory (GFDL) LM3-TiHy-PPA land model is then used to simulate these HRUs and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.

  20. Analysis of the process of representing clinical statements for decision-support applications: a comparison of openEHR archetypes and HL7 virtual medical record.

    Science.gov (United States)

    González-Ferrer, A; Peleg, M; Marcos, M; Maldonado, J A

    2016-07-01

    Delivering patient-specific decision-support based on computer-interpretable guidelines (CIGs) requires mapping CIG clinical statements (data items, clinical recommendations) into patients' data. This is most effectively done via intermediate data schemas, which enable querying the data according to the semantics of a shared standard intermediate schema. This study aims to evaluate the use of HL7 virtual medical record (vMR) and openEHR archetypes as intermediate schemas for capturing clinical statements from CIGs that are mappable to electronic health records (EHRs) containing patient data and patient-specific recommendations. Using qualitative research methods, we analyzed the encoding of ten representative clinical statements taken from two CIGs used in real decision-support systems into two health information models (openEHR archetypes and HL7 vMR instances) by four experienced informaticians. Discussion among the modelers about each case study example greatly increased our understanding of the capabilities of these standards, which we share in this educational paper. Differing in content and structure, the openEHR archetypes were found to contain a greater level of representational detail and structure while the vMR representations took fewer steps to complete. The use of openEHR in the encoding of CIG clinical statements could potentially facilitate applications other than decision-support, including intelligent data analysis and integration of additional properties of data items from existing EHRs. On the other hand, due to their smaller size and fewer details, the use of vMR potentially supports quicker mapping of EHR data into clinical statements.

  1. Fault detection in processes represented by PLS models using an EWMA control scheme

    KAUST Repository

    Harrou, Fouzi

    2016-10-20

    Fault detection is important for effective and safe process operation. Partial least squares (PLS) has been used successfully in fault detection for multivariate processes with highly correlated variables. However, the conventional PLS-based detection metrics, such as the Hotelling\\'s T and the Q statistics are not well suited to detect small faults because they only use information about the process in the most recent observation. Exponentially weighed moving average (EWMA), however, has been shown to be more sensitive to small shifts in the mean of process variables. In this paper, a PLS-based EWMA fault detection method is proposed for monitoring processes represented by PLS models. The performance of the proposed method is compared with that of the traditional PLS-based fault detection method through a simulated example involving various fault scenarios that could be encountered in real processes. The simulation results clearly show the effectiveness of the proposed method over the conventional PLS method.

  2. Representing northern peatland microtopography and hydrology within the Community Land Model

    Directory of Open Access Journals (Sweden)

    X. Shi

    2015-02-01

    Full Text Available Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog, the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE. Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal

  3. Ontology modeling for generation of clinical pathways

    Directory of Open Access Journals (Sweden)

    Jasmine Tehrani

    2012-12-01

    Full Text Available Purpose: Increasing costs of health care, fuelled by demand for high quality, cost-effective healthcare has drove hospitals to streamline their patient care delivery systems. One such systematic approach is the adaptation of Clinical Pathways (CP as a tool to increase the quality of healthcare delivery. However, most organizations still rely on are paper-based pathway guidelines or specifications, which have limitations in process management and as a result can influence patient safety outcomes. In this paper, we present a method for generating clinical pathways based on organizational semiotics by capturing knowledge from syntactic, semantic and pragmatic to social level. Design/methodology/approach: The proposed modeling approach to generation of CPs adopts organizational semiotics and enables the generation of semantically rich representation of CP knowledge. Semantic Analysis Method (SAM is applied to explicitly represent the semantics of the concepts, their relationships and patterns of behavior in terms of an ontology chart. Norm Analysis Method (NAM is adopted to identify and formally specify patterns of behavior and rules that govern the actions identified on the ontology chart. Information collected during semantic and norm analysis is integrated to guide the generation of CPs using best practice represented in BPMN thus enabling the automation of CP. Findings: This research confirms the necessity of taking into consideration social aspects in designing information systems and automating CP. The complexity of healthcare processes can be best tackled by analyzing stakeholders, which we treat as social agents, their goals and patterns of action within the agent network. Originality/value: The current modeling methods describe CPs from a structural aspect comprising activities, properties and interrelationships. However, these methods lack a mechanism to describe possible patterns of human behavior and the conditions under which the

  4. Representing dispositions

    Directory of Open Access Journals (Sweden)

    Röhl Johannes

    2011-08-01

    Full Text Available Abstract Dispositions and tendencies feature significantly in the biomedical domain and therefore in representations of knowledge of that domain. They are not only important for specific applications like an infectious disease ontology, but also as part of a general strategy for modelling knowledge about molecular interactions. But the task of representing dispositions in some formal ontological systems is fraught with several problems, which are partly due to the fact that Description Logics can only deal well with binary relations. The paper will discuss some of the results of the philosophical debate about dispositions, in order to see whether the formal relations needed to represent dispositions can be broken down to binary relations. Finally, we will discuss problems arising from the possibility of the absence of realizations, of multi-track or multi-trigger dispositions and offer suggestions on how to deal with them.

  5. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.

    Science.gov (United States)

    Gold, James M; Waltz, James A; Matveeva, Tatyana M; Kasanova, Zuzana; Strauss, Gregory P; Herbener, Ellen S; Collins, Anne G E; Frank, Michael J

    2012-02-01

    Negative symptoms are a core feature of schizophrenia, but their pathogenesis remains unclear. Negative symptoms are defined by the absence of normal function. However, there must be a productive mechanism that leads to this absence. To test a reinforcement learning account suggesting that negative symptoms result from a failure in the representation of the expected value of rewards coupled with preserved loss-avoidance learning. Participants performed a probabilistic reinforcement learning paradigm involving stimulus pairs in which choices resulted in reward or in loss avoidance. Following training, participants indicated their valuation of the stimuli in a transfer test phase. Computational modeling was used to distinguish between alternative accounts of the data. A tertiary care research outpatient clinic. In total, 47 clinically stable patients with a diagnosis of schizophrenia or schizoaffective disorder and 28 healthy volunteers participated in the study. Patients were divided into a high-negative symptom group and a low-negative symptom group. The number of choices leading to reward or loss avoidance, as well as performance in the transfer test phase. Quantitative fits from 3 different models were examined. Patients in the high-negative symptom group demonstrated impaired learning from rewards but intact loss-avoidance learning and failed to distinguish rewarding stimuli from loss-avoiding stimuli in the transfer test phase. Model fits revealed that patients in the high-negative symptom group were better characterized by an "actor-critic" model, learning stimulus-response associations, whereas control subjects and patients in the low-negative symptom group incorporated expected value of their actions ("Q learning") into the selection process. Negative symptoms in schizophrenia are associated with a specific reinforcement learning abnormality: patients with high-negative symptoms do not represent the expected value of rewards when making decisions but learn

  6. Design of a Representative Low Earth Orbit Satellite to Improve Existing Debris Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Werremeyer, M.; Fitz-Coy, N.; Liou, J.-C.

    2012-01-01

    This paper summarizes the process and methodologies used in the design of a small-satellite, DebriSat, that represents materials and construction methods used in modern day Low Earth Orbit (LEO) satellites. This satellite will be used in a future hypervelocity impact test with the overall purpose to investigate the physical characteristics of modern LEO satellites after an on-orbit collision. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was conducted in 1992. The target used for that experiment was a Navy Transit satellite (40 cm, 35 kg) fabricated in the 1960 s. Modern satellites are very different in materials and construction techniques from a satellite built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. The design of DebriSat will focus on designing and building a next-generation satellite to more accurately portray modern satellites. The design of DebriSat included a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 10 kg to 5000 kg. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions, and helped direct the design of DebriSat.

  7. How to Establish Clinical Prediction Models

    Directory of Open Access Journals (Sweden)

    Yong-ho Lee

    2016-03-01

    Full Text Available A clinical prediction model can be applied to several challenging clinical scenarios: screening high-risk individuals for asymptomatic disease, predicting future events such as disease or death, and assisting medical decision-making and health education. Despite the impact of clinical prediction models on practice, prediction modeling is a complex process requiring careful statistical analyses and sound clinical judgement. Although there is no definite consensus on the best methodology for model development and validation, a few recommendations and checklists have been proposed. In this review, we summarize five steps for developing and validating a clinical prediction model: preparation for establishing clinical prediction models; dataset selection; handling variables; model generation; and model evaluation and validation. We also review several studies that detail methods for developing clinical prediction models with comparable examples from real practice. After model development and vigorous validation in relevant settings, possibly with evaluation of utility/usability and fine-tuning, good models can be ready for the use in practice. We anticipate that this framework will revitalize the use of predictive or prognostic research in endocrinology, leading to active applications in real clinical practice.

  8. 8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mai, Trieu T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve demand over the evolution of many years or decades. Various CEM formulations are used to evaluate systems ranging in scale from states or utility service territories to national or multi-national systems. CEMs can be computationally complex, and to achieve acceptable solve times, key parameters are often estimated using simplified methods. In this paper, we focus on two of these key parameters associated with the integration of variable generation (VG) resources: capacity value and curtailment. We first discuss common modeling simplifications used in CEMs to estimate capacity value and curtailment, many of which are based on a representative subset of hours that can miss important tail events or which require assumptions about the load and resource distributions that may not match actual distributions. We then present an alternate approach that captures key elements of chronological operation over all hours of the year without the computationally intensive economic dispatch optimization typically employed within more detailed operational models. The updated methodology characterizes the (1) contribution of VG to system capacity during high load and net load hours, (2) the curtailment level of VG, and (3) the potential reductions in curtailments enabled through deployment of storage and more flexible operation of select thermal generators. We apply this alternate methodology to an existing CEM, the Regional Energy Deployment System (ReEDS). Results demonstrate that this alternate approach provides more accurate estimates of capacity value and curtailments by explicitly capturing system interactions across all hours of the year. This approach could be applied more broadly to CEMs at many different scales where hourly resource and load data is available, greatly improving the representation of challenges

  9. Clinical isolates of Yersinia enterocolitica Biotype 1A represent two phylogenetic lineages with differing pathogenicity-related properties

    Directory of Open Access Journals (Sweden)

    Sihvonen Leila M

    2012-09-01

    Full Text Available Abstract Background Y. enterocolitica biotype (BT 1A strains are often isolated from human clinical samples but their contribution to disease has remained a controversial topic. Variation and the population structure among the clinical Y. enterocolitica BT 1A isolates have been poorly characterized. We used multi-locus sequence typing (MLST, 16S rRNA gene sequencing, PCR for ystA and ystB, lipopolysaccharide analysis, phage typing, human serum complement killing assay and analysis of the symptoms of the patients to characterize 298 clinical Y. enterocolitica BT 1A isolates in order to evaluate their relatedness and pathogenic potential. Results A subset of 71 BT 1A strains, selected based on their varying LPS patterns, were subjected to detailed genetic analyses. The MLST on seven house-keeping genes (adk, argA, aroA, glnA, gyrB, thrA, trpE conducted on 43 of the strains discriminated them into 39 MLST-types. By Bayesian analysis of the population structure (BAPS the strains clustered conclusively into two distinct lineages, i.e. Genetic groups 1 and 2. The strains of Genetic group 1 were more closely related (97% similarity to the pathogenic bio/serotype 4/O:3 strains than Genetic group 2 strains (95% similarity. Further comparison of the 16S rRNA genes of the BT 1A strains indicated that altogether 17 of the 71 strains belong to Genetic group 2. On the 16S rRNA analysis, these 17 strains were only 98% similar to the previously identified subspecies of Y. enterocolitica. The strains of Genetic group 2 were uniform in their pathogenecity-related properties: they lacked the ystB gene, belonged to the same LPS subtype or were of rough type, were all resistant to the five tested yersiniophages, were largely resistant to serum complement and did not ferment fucose. The 54 strains in Genetic group 1 showed much more variation in these properties. The most commonly detected LPS types were similar to the LPS types of reference strains with serotypes O

  10. Dynamic heart model for the mathematical cardiac torso (MCAT) phantom to represent the invariant total heart volume

    Science.gov (United States)

    Pretorius, P. H.; King, Michael A.; Tsui, Benjamin M.; LaCroix, Karen; Xia, Weishi

    1998-07-01

    This manuscript documents the alteration of the heart model of the MCAT phantom to better represent cardiac motion. The objective of the inclusion of motion was to develop a digital simulation of the heart such that the impact of cardiac motion on single photon emission computed tomography (SPECT) imaging could be assessed and methods of quantitating cardiac function could be investigated. The motion of the dynamic MCAT's heart is modeled by a 128 time frame volume curve. Eight time frames are averaged together to obtain a gated perfusion acquisition of 16 time frames and ensure motion within every time frame. The position of the MCAT heart was changed during contraction to rotate back and forth around the long axis through the center of the left ventricle (LV) using the end systolic time frame as turning point. Simple respiratory motion was also introduced by changing the orientation of the heart model in a 2 dimensional (2D) plane with every time frame. The averaging effect of respiratory motion in a specific time frame was modeled by randomly selecting multiple heart locations between two extreme orientations. Non-gated perfusion phantoms were also generated by averaging over all time frames. Maximal chamber volumes were selected to fit a profile of a normal healthy person. These volumes were changed during contraction of the ventricles such that the increase in volume in the atria compensated for the decrease in volume in the ventricles. The myocardium were modeled to represent shortening of muscle fibers during contraction with the base of the ventricles moving towards a static apex. The apical region was modeled with moderate wall thinning present while myocardial mass was conserved. To test the applicability of the dynamic heart model, myocardial wall thickening was measured using maximum counts and full width half maximum measurements, and compared with published trends. An analytical 3D projector, with attenuation and detector response included, was used

  11. Transit times and age distributions for reservoir models represented as nonlinear non-autonomuous systems

    Science.gov (United States)

    Müller, Markus; Meztler, Holger; Glatt, Anna; Sierra, Carlos

    2016-04-01

    We present theoretical methods to compute dynamic residence and transit time distributions for non-autonomous systems of pools governed by coupled nonlinear differential equations. Although transit time and age distributions have been used to describe reservoir models for a long time, a closer look to their assumptions reveals two major restrictions of generality in previous studies. First, the systems are assumed to be in equilibrium; and second, the equations under consideration are assumed to be linear. While both these assumptions greatly ease the computation and interpretation of transit time and age distributions they are not applicable to a wide range of problems. Moreover, the transfer of previous results learned from linear systems in steady state to the more complex nonlinear non-autonomous systems that do not even need to have equilibria, can be dangerously misleading. Fortunately the topic of time dependent age and transit time distributions has received some attention recently in hydrology, we aim to compute these distributions for systems of multiple reservoirs. We will discuss how storage selection functions can augment the information represented in an ODE system describing a system of reservoirs. We will present analytical and numerical algorithms and a Monte Carlo simulator to compute solutions for system transit time and age distributions for system-wide storage selection functions including the most simple, but important case of well mixed pools.

  12. Using EARTH Model to Estimate Groundwater Recharge at Five Representative Zones in the Hebei Plain, China

    Institute of Scientific and Technical Information of China (English)

    Bingguo Wang; Menggui Jin; Xing Liang

    2015-01-01

    Accurate estimation of groundwater recharge is essential for efficient and sustainable groundwater management in many semi-arid regions. In this paper, a lumped parameter model (EARTH) was established to simulate the recharge rate and recharge process in typical areas by the ob-servation datum of weather, soil water and groundwater synthetically, and the spatial and temporal variation law of groundwater recharge in the Hebei Plain was revealed. The mean annual recharge rates at LQ, LC, HS, DZ and CZ representative zones are 220.1, 196.7, 34.1, 141.0 and 188.0 mm/a and the recharge coefficients are 26.5%, 22.3%, 7.2%, 20.4%, and 22.0%, respectively. Recharge rate and re-charge coefficient are gradually reduced from piedmont plain to coastal plain. Groundwater recharge appears as only yearly waves, with higher frequency components of the input series filtered by the deep complicated unsaturated zone (such as LC). While at other zones, groundwater recharge series strongly dependent on the daily rainfall and irrigation because of the shallow water table or coarse lithology.

  13. Representative parameter estimation for hydrological models using a lexicographic calibration strategy

    Science.gov (United States)

    Gelleszun, Marlene; Kreye, Phillip; Meon, Günter

    2017-10-01

    We introduce the developed lexicographic calibration strategy to circumvent the imbalance between sophisticated hydrological models in combination with complex optimisation algorithms. The criteria for the evaluation of the approach were (i) robustness and transferability of the resulting parameters, (ii) goodness-of-fit criteria in calibration and validation and (iii) time-efficiency. An order of preference was determined prior to the calibration and the parameters were separated into groups for a stepwise calibration to reduce the search space. A comparison with the global optimisation method SCE-UA showed that only 6% of the calculation time was needed; the conditions total volume, seasonality and shape of the hydrograph were successfully achieved for the calibration and for the cross-validation periods. Furthermore, the parameter sets obtained by the lexicographic calibration strategy for different time periods were much more similar to each other than the parameters obtained by SCE-UA. Besides the similarities of the parameter sets, the goodness-of-fit criteria for the cross-validation were better for the lexicographic approach and the water balance components were also more similar. Thus, we concluded that the resulting parameters were more representative for the corresponding catchments and therefore more suitable for transferability. Time-efficient approximate methods were used to account for parameter uncertainty, confidence intervals and the stability of the solution in the optimum.

  14. Mathematical human body models representing a mid size male and a small female for frontal, lateral and rearward impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Lange, R. de; Bours, R.; Ridella, S.; Nayef, A.; Hoof, J. van

    2000-01-01

    A human body model representing a mid size male has been presented at the 1998 STAPP conference. A combination of modeling techniques was applied using rigid bodies for most segments, but describing the thorax as a deformable structure. In this paper, this modeling strategy was employed to also deve

  15. BIB-SEM of representative area clay structures paving towards an alternative model of porosity

    Science.gov (United States)

    Desbois, G.; Urai, J. L.; Houben, M.; Hemes, S.; Klaver, J.

    2012-04-01

    A major contribution to understanding the sealing capacity, coupled flow, capillary processes and associated deformation in clay-rich geomaterials is based on detailed investigation of the rock microstructures. However, the direct characterization of pores in representative elementary area (REA) and below µm-scale resolution remains challenging. To investigate directly the mm- to nm-scale porosity, SEM is certainly the most direct approach, but it is limited by the poor quality of the investigated surfaces. The recent development of ion milling tools (BIB and FIB; Desbois et al, 2009, 2011; Heath et al., 2011; Keller et al., 2011) and cryo-SEM allows respectively producing exceptional high quality polished cross-sections suitable for high resolution porosity SEM-imaging at nm-scale and investigating samples under wet conditions by cryogenic stabilization. This contribution focuses mainly on the SEM description of pore microstructures in 2D BIB-polished cross-sections of Boom (Mol site, Belgium) and Opalinus (Mont Terri, Switzerland) clays down to the SEM resolution. Pores detected in images are statistically analyzed to perform porosity quantification in REA. On the one hand, BIB-SEM results allow retrieving MIP measurements obtained from larger sample volumes. On the other hand, the BIB-SEM approach allows characterizing porosity-homogeneous and -predictable islands, which form the elementary components of an alternative concept of porosity/permeability model based on pore microstructures. Desbois G., Urai J.L. and Kukla P.A. (2009) Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. E-Earth, 4, 15-22. Desbois G., Urai J.L., Kukla P.A., Konstanty J. and Baerle C. (2011). High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: a new approach to investigate microstructures from mm- to nm-scale combining argon beam cross-sectioning and SEM imaging . Journal of Petroleum Science

  16. Modeling Rehabilitation Counselor Clinical Judgment.

    Science.gov (United States)

    Strohmer, Douglas C.; Leierer, Stephen J.

    2000-01-01

    Evaluate three proposed models of the rehabilitation counselor judgment process. Counselors made multiple judgments about clients whose information systematically varied across three dimensions. These data were then analyzed using path analytic techniques to determine which of the models was the best description of the process rehabilitation…

  17. Cross-cultural factorial validation of the Clinical Interview Schedule--Revised (CIS-R); findings from a nationally representative survey (EMPIRIC).

    Science.gov (United States)

    Das-Munshi, Jayati; Castro-Costa, Erico; Dewey, Michael E; Nazroo, James; Prince, Martin

    2014-06-01

    The Clinical Interview Schedule - Revised (CIS-R) has been widely adopted across cultures to assess common mental disorders. We assessed the factorial validity of the CIS-R across ethnic minority groups, using data from a nationally representative survey conducted in England in 2000. The sample comprised White British (n = 837), Irish (n = 733), Black Caribbean (n = 694), Bangladeshi (n = 650), Indian (n = 643) and Pakistani (n = 724) respondents. Ordered logistic regression determined the reporting of CIS-R symptoms. Principal components analysis (PCA) determined the underlying construct of the CIS-R in White British participants. These factor solutions were then assessed for "best fit" using confirmatory factor analyses (CFAs) across all ethnic groups. In ordered logistic regression analyses, there was heterogeneity in the reporting of worries, phobias, panic and somatic symptoms across ethnic minority groups relative to the White British group. "Best" fit solutions confirmed through CFA were models where all symptoms were allowed to vary across ethnic groups, or models where an underlying "depression-anxiety" construct was held invariant while "somatic symptoms" were permitted to vary across groups, although differences between models assessed were slight. In conclusion, there may be benefits in assessing the functioning of certain CIS-R items within specific cultural contexts to ensure adequate face validity of the CIS-R.

  18. Technical Note—Why Does the NBD Model Work? Robustness in Representing Product Purchases, Brand Purchases and Imperfectly Recorded Purchases

    OpenAIRE

    David C. Schmittlein; Albert C. Bemmaor; Donald G. Morrison

    1985-01-01

    One of the most managerially useful constructs that emerge from the stochastic modelling of brand choice is that of conditional expectations. In this paper the conditional expectations are derived for a generalization of the NBD model, called the beta binomial/negative binomial distribution (BB/NBD) model, first described by Jeuland, Bass and Wright. The model, developed to jointly represent the product class purchase and brand selection processes, is also particularly appropriate for analyzi...

  19. Nursing preceptors' experiences of two clinical education models.

    Science.gov (United States)

    Mamhidir, Anna-Greta; Kristofferzon, Marja-Leena; Hellström-Hyson, Eva; Persson, Elisabeth; Mårtensson, Gunilla

    2014-08-01

    Preceptors play an important role in the process of developing students' knowledge and skills. There is an ongoing search for the best learning and teaching models in clinical education. Little is known about preceptors' perspectives on different models. The aim of the study was to describe nursing preceptors' experiences of two clinical models of clinical education: peer learning and traditional supervision. A descriptive design and qualitative approach was used. Eighteen preceptors from surgical and medical departments at two hospitals were interviewed, ten representing peer learning (student work in pairs) and eight traditional supervision (one student follows a nurse during a shift). The findings showed that preceptors using peer learning created room for students to assume responsibility for their own learning, challenged students' knowledge by refraining from stepping in and encouraged critical thinking. Using traditional supervision, the preceptors' individual ambitions influenced the preceptorship and their own knowledge was empathized as being important to impart. They demonstrated, observed and gradually relinquished responsibility to the students. The choice of clinical education model is important. Peer learning seemed to create learning environments that integrate clinical and academic skills. Investigation of pedagogical models in clinical education should be of major concern to managers and preceptors.

  20. Development of a Future Representative Concentration Pathway for Use in the IPCC 5th Assessment Earth System Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-12-29

    The representative concentration pathway to be delivered is a scenario of atmospheric concentrations of greenhouse gases and other radiatively important atmospheric species, along with land-use changes, derived from the Global Change Assessment Model (GCAM). The particular representative concentration pathway (RCP) that the Joint Global Change Research Institute (JGCRI) has been responsible for is a not-to-exceed pathway that stabilizes at a radiative forcing of 4.5Wm-2 in the year 2100.

  1. A Sufficient Condition for a Wire-Frame Representing a Solid Modeling Uniquely

    Institute of Scientific and Technical Information of China (English)

    WANG Jiaye; CHEN Hui; WANG Wenping

    2001-01-01

    Generally speaking, it is impossible for a wire-frame to define a 3D object uniquely. But wire-frame as a graphics medium is still applied in some industrial areas. A sufficient condition is presented in this paper. If this condition is satisfied by a wire-frame,then the wire-frame can represent a 3D object uniquely. The result is applied to manufacturing of progressive stripe.

  2. Bianchi VI cosmological models representing perfect fluid and radiation with electric-type free gravitational fields

    Science.gov (United States)

    Roy, S. R.; Banerjee, S. K.

    1992-11-01

    A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.

  3. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  4. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  5. Representing Micro–Macro Linkages by Actor-based Dynamic Network Models

    NARCIS (Netherlands)

    Snijders, Thomas; Steglich, Christian

    2015-01-01

    Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many oth

  6. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  7. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  8. Clinical Productivity System - A Decision Support Model

    CERN Document Server

    Bennett, Casey C

    2012-01-01

    Purpose: This goal of this study was to evaluate the effects of a data-driven clinical productivity system that leverages Electronic Health Record (EHR) data to provide productivity decision support functionality in a real-world clinical setting. The system was implemented for a large behavioral health care provider seeing over 75,000 distinct clients a year. Design/methodology/approach: The key metric in this system is a "VPU", which simultaneously optimizes multiple aspects of clinical care. The resulting mathematical value of clinical productivity was hypothesized to tightly link the organization's performance to its expectations and, through transparency and decision support tools at the clinician level, affect significant changes in productivity, quality, and consistency relative to traditional models of clinical productivity. Findings: In only 3 months, every single variable integrated into the VPU system showed significant improvement, including a 30% rise in revenue, 10% rise in clinical percentage, a...

  9. A general method to select representative models for decision making and optimization under uncertainty

    Science.gov (United States)

    Shirangi, Mehrdad G.; Durlofsky, Louis J.

    2016-11-01

    The optimization of subsurface flow processes under geological uncertainty technically requires flow simulation to be performed over a large set of geological realizations for each function evaluation at every iteration of the optimizer. Because flow simulation over many permeability realizations (only permeability is considered to be uncertain in this study) may entail excessive computation, simulations are often performed for only a subset of 'representative' realizations. It is however challenging to identify a representative subset that provides flow statistics in close agreement with those from the full set, especially when the decision parameters (e.g., time-varying well pressures, well locations) are unknown a priori, as they are in optimization problems. In this work, we introduce a general framework, based on clustering, for selecting a representative subset of realizations for use in simulations involving 'new' sets of decision parameters. Prior to clustering, each realization is represented by a low-dimensional feature vector that contains a combination of permeability-based and flow-based quantities. Calculation of flow-based features requires the specification of a (base) flow problem and simulation over the full set of realizations. Permeability information is captured concisely through use of principal component analysis. By computing the difference between the flow response for the subset and the full set, we quantify the performance of various realization-selection methods. The impact of different weightings for flow and permeability information in the cluster-based selection procedure is assessed for a range of examples involving different types of decision parameters. These decision parameters are generated either randomly, in a manner that is consistent with the solutions proposed in global stochastic optimization procedures such as GA and PSO, or through perturbation around a base case, consistent with the solutions considered in pattern search

  10. Clinical HBSE Concentration: A Transactional Model.

    Science.gov (United States)

    Farmer, Rosemary L.

    1999-01-01

    Outlines a transactional model for addressing the underrepresentation of key areas in advanced clinical courses in human behavior in the social environment (HBSE), looking at social work's understanding of the biological and spiritual aspects of human beings. The transactional model is distinguished from other reductionist or interactionist models…

  11. Predictive modeling using a nationally representative database to identify patients at risk of developing microalbuminuria.

    Science.gov (United States)

    Villa-Zapata, Lorenzo; Warholak, Terri; Slack, Marion; Malone, Daniel; Murcko, Anita; Runger, George; Levengood, Michael

    2016-02-01

    Predictive models allow clinicians to identify higher- and lower-risk patients and make targeted treatment decisions. Microalbuminuria (MA) is a condition whose presence is understood to be an early marker for cardiovascular disease. The aims of this study were to develop a patient data-driven predictive model and a risk-score assessment to improve the identification of MA. The 2007-2008 National Health and Nutrition Examination Survey (NHANES) was utilized to create a predictive model. The dataset was split into thirds; one-third was used to develop the model, while the other two-thirds were utilized for internal validation. The 2012-2013 NHANES was used as an external validation database. Multivariate logistic regression was performed to create the model. Performance was evaluated using three criteria: (1) receiver operating characteristic curves; (2) pseudo-R (2) values; and (3) goodness of fit (Hosmer-Lemeshow). The model was then used to develop a risk-score chart. A model was developed using variables for which there was a significant relationship. Variables included were systolic blood pressure, fasting glucose, C-reactive protein, blood urea nitrogen, and alcohol consumption. The model performed well, and no significant differences were observed when utilized in the validation datasets. A risk score was developed, and the probability of developing MA for each score was calculated. The predictive model provides new evidence about variables related with MA and may be used by clinicians to identify at-risk patients and to tailor treatment. The risk score developed may allow clinicians to measure a patient's MA risk.

  12. Evaluation of clinical information modeling tools.

    Science.gov (United States)

    Moreno-Conde, Alberto; Austin, Tony; Moreno-Conde, Jesús; Parra-Calderón, Carlos L; Kalra, Dipak

    2016-11-01

    Clinical information models are formal specifications for representing the structure and semantics of the clinical content within electronic health record systems. This research aims to define, test, and validate evaluation metrics for software tools designed to support the processes associated with the definition, management, and implementation of these models. The proposed framework builds on previous research that focused on obtaining agreement on the essential requirements in this area. A set of 50 conformance criteria were defined based on the 20 functional requirements agreed by that consensus and applied to evaluate the currently available tools. Of the 11 initiative developing tools for clinical information modeling identified, 9 were evaluated according to their performance on the evaluation metrics. Results show that functionalities related to management of data types, specifications, metadata, and terminology or ontology bindings have a good level of adoption. Improvements can be made in other areas focused on information modeling and associated processes. Other criteria related to displaying semantic relationships between concepts and communication with terminology servers had low levels of adoption. The proposed evaluation metrics were successfully tested and validated against a representative sample of existing tools. The results identify the need to improve tool support for information modeling and software development processes, especially in those areas related to governance, clinician involvement, and optimizing the technical validation of testing processes. This research confirmed the potential of these evaluation metrics to support decision makers in identifying the most appropriate tool for their organization. Los Modelos de Información Clínica son especificaciones para representar la estructura y características semánticas del contenido clínico en los sistemas de Historia Clínica Electrónica. Esta investigación define, prueba y valida

  13. RHydro - Hydrological models and tools to represent and analyze hydrological data in R

    Science.gov (United States)

    Reusser, D. E.; Buytaert, W.; Vitolo, C.

    2012-04-01

    In hydrology, basic equations and procedures keep being implemented from scratch by scientist, with the potential for errors and inefficiency. The use of libraries can overcome these problems. As an example, hydrological libraries could contain: 1. Major representations of hydrological processes such as infiltration, sub-surface runoff and routing algorithms. 2. Scaling functions, for instance to combine remote sensing precipitation fields with rain gauge data 3. Data consistency checks 4. Performance measures. Here we present a beginning for such a library implemented in the high level data programming language R. Currently, Top-model, the abc-Model, HBV, a multi-model ensamble called FUSE, data import routines for WaSiM-ETH as well basic visualization and evaluation tools are implemented. Care is taken to make functions and models compatible with other existing frameworks in hydrology, such as for example Hydromad.

  14. Polar ozone depletion and trends as represented by the Whole Atmospheric Community Climate Model (WACCM)

    Science.gov (United States)

    Kinnison, Douglas; Solomon, Susan; Ivy, Diane; Mills, Michael; Neely, Ryan, III; Schmidt, Anja; Garcia, Rolando; Smith, Anne

    2016-04-01

    The Whole Atmosphere Community Climate Model, Version 4 (WACCM4) is a comprehensive numerical model, spanning the range of altitude from the Earth's surface to the lower thermosphere [Garcia et al., JGR, 2007; Kinnison et al., JGR, 2007; Marsh et al., J. of Climate, 2013]. WACCM4 is based on the framework of the NCAR Community Atmosphere Model, version 4 (CAM4), and includes all of the physical parameterizations of CAM4 and a finite volume dynamical core for the tracer advection. This version has a detailed representation of tropospheric and middle atmosphere chemical and physical processes. Simulations completed for the SPARC Chemistry Climate Model Initiative (CCMI), REFC1, REFC2, SENSC2, and REFC1SD scenarios are examined (see Eyring et al., SPARC Newsletter, 2013). Recent improvements in model representation of orographic gravity wave processes strongly impact temperature and therefore polar ozone depletion as well as its subsequent recovery. Model representation of volcanic events will also be shown to be important for ozone loss. Evaluation of polar ozone depletion processes (e.g., dehydration, denitrification, chemical activation) with key observations will be performed and the impact on future ozone recovery will be identified.

  15. Representing general theoretical concepts in structural equation models: The role of composite variables

    Science.gov (United States)

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  16. Representing life in the Earth system with soil microbial functional traits in the MIMICS model

    Directory of Open Access Journals (Sweden)

    W. R. Wieder

    2015-02-01

    Full Text Available Projecting biogeochemical responses to global environmental change requires multi-scaled perspectives that consider organismal diversity, ecosystem processes and global fluxes. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon cycle–climate feedbacks. We used a microbial trait-based soil carbon (C model, with two physiologically distinct microbial communities to improve current estimates of soil C storage and their likely response to perturbations. Drawing from the application of functional traits used to model other ecosystems, we incorporate copiotrophic and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization (MIMICS model, which incorporates oligotrophic and copiotrophic functional groups, akin to "gleaner" vs. "opportunist" plankton in the ocean, or r vs. K strategists in plant and animals communities. Here we compare MIMICS to a conventional soil C model, DAYCENT, in cross-site comparisons of nitrogen (N enrichment effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; moreover, it raises important hypotheses involving the roles of substrate availability, community-level enzyme induction, and microbial physiological responses in explaining various soil biogeochemical responses to N enrichment. In global-scale analyses, we show that current projections from Earth system models likely overestimate the strength of the land C sink in response to increasing C inputs with elevated carbon dioxide (CO2. Our findings illustrate that tradeoffs between theory and utility can be overcome to develop soil biogeochemistry models that evaluate and advance our theoretical understanding of microbial dynamics and soil biogeochemical responses to environmental change.

  17. Semantic Modeling for Exposomics with Exploratory Evaluation in Clinical Context

    Directory of Open Access Journals (Sweden)

    Jung-wei Fan

    2017-01-01

    Full Text Available Exposome is a critical dimension in the precision medicine paradigm. Effective representation of exposomics knowledge is instrumental to melding nongenetic factors into data analytics for clinical research. There is still limited work in (1 modeling exposome entities and relations with proper integration to mainstream ontologies and (2 systematically studying their presence in clinical context. Through selected ontological relations, we developed a template-driven approach to identifying exposome concepts from the Unified Medical Language System (UMLS. The derived concepts were evaluated in terms of literature coverage and the ability to assist in annotating clinical text. The generated semantic model represents rich domain knowledge about exposure events (454 pairs of relations between exposure and outcome. Additionally, a list of 5667 disorder concepts with microbial etiology was created for inferred pathogen exposures. The model consistently covered about 90% of PubMed literature on exposure-induced iatrogenic diseases over 10 years (2001–2010. The model contributed to the efficiency of exposome annotation in clinical text by filtering out 78% of irrelevant machine annotations. Analysis into 50 annotated discharge summaries helped advance our understanding of the exposome information in clinical text. This pilot study demonstrated feasibility of semiautomatically developing a useful semantic resource for exposomics.

  18. 8760-Based Method for Representing Variable Generation Capacity Value in Capacity Expansion Models

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-03

    Capacity expansion models (CEMs) are widely used to evaluate the least-cost portfolio of electricity generators, transmission, and storage needed to reliably serve load over many years or decades. CEMs can be computationally complex and are often forced to estimate key parameters using simplified methods to achieve acceptable solve times or for other reasons. In this paper, we discuss one of these parameters -- capacity value (CV). We first provide a high-level motivation for and overview of CV. We next describe existing modeling simplifications and an alternate approach for estimating CV that utilizes hourly '8760' data of load and VG resources. We then apply this 8760 method to an established CEM, the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) model (Eurek et al. 2016). While this alternative approach for CV is not itself novel, it contributes to the broader CEM community by (1) demonstrating how a simplified 8760 hourly method, which can be easily implemented in other power sector models when data is available, more accurately captures CV trends than a statistical method within the ReEDS CEM, and (2) providing a flexible modeling framework from which other 8760-based system elements (e.g., demand response, storage, and transmission) can be added to further capture important dynamic interactions, such as curtailment.

  19. Conclusions on motor control depend on the type of model used to represent the periphery.

    Science.gov (United States)

    Pinter, Ilona J; van Soest, Arthur J; Bobbert, Maarten F; Smeets, Jeroen B J

    2012-10-01

    Within the field of motor control, there is no consensus on which kinematic and kinetic aspects of movements are planned or controlled. Perturbing goal-directed movements is a frequently used tool to answer this question. To be able to draw conclusions about motor control from kinematic responses to perturbations, a model of the periphery (i.e., the skeleton, muscle-tendon complexes, and spinal reflex circuitry) is required. The purpose of the present study was to determine to what extent such conclusions depend on the level of simplification with which the dynamical properties of the periphery are modeled. For this purpose, we simulated fast goal-directed single-joint movement with four existing types of models. We tested how three types of perturbations affected movement trajectory if motor commands remained unchanged. We found that the four types of models of the periphery showed different robustness to the perturbations, leading to different predictions on how accurate motor commands need to be, i.e., how accurate the knowledge of external conditions needs to be. This means that when interpreting kinematic responses obtained in perturbation experiments the level of error correction attributed to adaptation of motor commands depends on the type of model used to describe the periphery.

  20. Modeling Fluid’s Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks

    OpenAIRE

    Andrei Khrennikov; Klaudia Oleschko; María de Jesús Correa López

    2016-01-01

    We present a new conceptual approach for modeling of fluid flows in random porous media based on explicit exploration of the treelike geometry of complex capillary networks. Such patterns can be represented mathematically as ultrametric spaces and the dynamics of fluids by ultrametric diffusion. The images of p-adic fields, extracted from the real multiscale rock samples and from some reference images, are depicted. In this model the porous background is treated as the environment contributin...

  1. A model for representing the Italian energy system. The NEEDS-TIMES experience

    Energy Technology Data Exchange (ETDEWEB)

    Cosmi, C.; Pietrapertosa, F.; Salvia, M. [National Research Council, Institute of Methodologies for Environmental Analysis, C.da S. Loja, I-85050 Tito Scalo (PZ) (Italy)]|[Federico II University, Department of Physical Sciences, Via Cintia, I-80126 Naples (Italy); Di Leo, S. [National Research Council, National Institute for the Physics of Matter, Via Cintia, I-80126 Naples (Italy)]|[University of Basilicata, Department of Environmental Engineering and Physics, C.da Macchia Romana, I-85100 Potenza (Italy); Loperte, S.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis, C.da S. Loja, I-85050 Tito Scalo (PZ) (Italy); Macchiato, M. [Federico II University, Department of Physical Sciences, Via Cintia, I-80126 Naples (Italy)]|[National Research Council, National Institute for the Physics of Matter, Via Cintia, I-80126 Naples (Italy)

    2009-05-15

    Sustainability of energy systems has a strategic role in the current energy-environmental policies as it involves key issues such as security of energy supply, mitigation of environmental impact (with special regard to air quality improvement) and energy affordability. In this framework modelling activities are more than ever a strategic issue in order to manage the large complexity of energy systems as well as to support the decision-making process at different stages and spatial scales (regional, national, Pan-European, etc.). The aim of this article is to present a new model for the Italian energy system implemented with a common effort in the framework of an integrated project under the Sixth Framework Programme. In particular, the main features of the common methodology are briefly recalled and the modelling structure, the main data and assumptions, sector by sector, are presented. Moreover the main results obtained for the baseline (BAU) scenario are fully described. (author)

  2. A Hidden Markov Model Representing the Spatial and Temporal Correlation of Multiple Wind Farms

    DEFF Research Database (Denmark)

    Fang, Jiakun; Su, Chi; Hu, Weihao

    2015-01-01

    To accommodate the increasing wind energy with stochastic nature becomes a major issue on power system reliability. This paper proposes a methodology to characterize the spatiotemporal correlation of multiple wind farms. First, a hierarchical clustering method based on self-organizing maps...... is adopted to categorize the similar output patterns of several wind farms into joint states. Then the hidden Markov model (HMM) is then designed to describe the temporal correlations among these joint states. Unlike the conventional Markov chain model, the accumulated wind power is taken into consideration....... The proposed statistical modeling framework is compatible with the sequential power system reliability analysis. A case study on optimal sizing and location of fast-response regulation sources is presented....

  3. Representing northern peatland microtopography and hydrology within the Community Land Model

    Science.gov (United States)

    X. Shi; P.E. Thornton; D.M. Ricciuto; P J. Hanson; J. Mao; Stephen Sebestyen; N.A. Griffiths; G. Bisht

    2015-01-01

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth...

  4. An Equivalent Mechanical Model for Representing the Entropy Generation in Heat Exchangers. Application to Power Cycles

    Directory of Open Access Journals (Sweden)

    Federico Ramírez

    2011-07-01

    Full Text Available

    One of the most common difficulties students face in learning Thermodynamics lies in grasping the physical meaning of concepts such as lost availability and entropy generation. This explains the quest for new approaches for explaining and comprehending these quantities, as suggested by diagrams from different authors. The difficulties worsen in the case of irreversibilities associated with heat transfer processes driven by a finite temperature difference, where no work transfer takes place. An equivalent mechanical model is proposed in this paper. Heat exchangers are modelled by means of Carnot heat engines and mechanical transmissions; the use of mechanical models allows an easy visualization of thermal irreversibilities. The proposed model is further applied to a power cycle, thus obtaining an “equivalent arrangement” where irreversibilities become clearly apparent.

  5. A mathematical model representing cellular immune development and response to Salmonella of chicken intestinal tissue

    NARCIS (Netherlands)

    Schokker, D.; Bannink, A.; Smits, M.A.; Rebel, J.M.J.

    2013-01-01

    The aim of this study was to create a dynamic mathematical model of the development of the cellular branch of the intestinal immune system of poultry during the first 42 days of life and of its response towards an oral infection with Salmonella enterica serovar Enteritidis. The system elements were

  6. A comparison of methods for representing random taste heterogeneity in discrete choice models

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Hess, Stephane

    2009-01-01

    This paper reports the findings of a systematic study using Monte Carlo experiments and a real dataset aimed at comparing the performance of various ways of specifying random taste heterogeneity in a discrete choice model. Specifically, the analysis compares the performance of two recent advanced...

  7. Towards a self-organizing pre-symbolic neural model representing sensorimotor primitives

    Directory of Open Access Journals (Sweden)

    Junpei eZhong

    2014-02-01

    Full Text Available The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e. observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  8. What Happens when Representations Fail to Represent? Graduate Students' Mental Models of Organic Chemistry Diagrams

    Science.gov (United States)

    Strickland, Amanda M.; Kraft, Adam; Bhattacharyya, Gautam

    2010-01-01

    As part of our investigations into the development of representational competence, we report results from a study in which we elicited sixteen graduate students' expressed mental models of commonly-used terms for describing organic reactions--functional group, nucleophile/electrophile, acid/base--and for diagrams of transformations and their…

  9. Use of CFD modeling for estimating spatial representativeness of urban air pollution monitoring sites and suitability of their locations

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J. L.; Martin, F.

    2015-07-01

    A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO{sub 2} dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January -May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO{sub 2} concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)

  10. Use of CFD modeling for estimating spatial representativeness of urban air pollution monitoring sites and suitability of their locations

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L.; Martin, F.

    2015-07-01

    A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO2 dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January–May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO2 concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)

  11. Final Technical Report: "Representing Endogenous Technological Change in Climate Policy Models: General Equilibrium Approaches"

    Energy Technology Data Exchange (ETDEWEB)

    Ian Sue Wing

    2006-04-18

    The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal

  12. Aeromechanical stability analysis of a multirotor vehicle model representing a hybrid heavy lift airship (HHLA)

    Science.gov (United States)

    Venkatesan, C.; Friedmann, P. P.

    1984-01-01

    Hybrid Heavy Lift Airship (HHLA) is a proposed candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure to which four rotor systems, taken from existing helicopters are attached. Nonlinear equations of motion capable of modelling the dynamics of this coupled multi-rotor/support frame/vehicle system have been developed. Using these equations of motion the aeroelastic and aeromechanical stability analysis is performed aimed at identifying potential instabilities which could occur for this type of vehicle. The coupling between various blade, supporting structure and rigid body modes is identified. Furthermore, the effects of changes in buoyancy ratio (Buoyant lift/total weight) on the dynamic characteristics of the vehicle are studied. The dynamic effects found are of considerable importance for the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.

  13. A General Model for Representing Arbitrary Unsymmetries in Various Types of Network Analysis

    DEFF Research Database (Denmark)

    Rønne-Hansen, Jan

    1997-01-01

    When dealing with unsymmetric faults various proposals have been put forward. In general they have been characterized by specific treatment of the single fault in accordance with the structure and impedances involved. The model presented is based on node equations and was originally developed for...... complicated fault situation which has not been treated before for traditional transient stability analysis...... for transient stability studies in order to allow for an arbitrary fault representation as seen from the positive sequence network. The method results in impedances -or admittances-combining the negative sequence and zero sequence representation for the symmetrical network with the structure and electrical...... constants of the unsymmetry involving one or more buses. These impedances are introduced in the positive sequence network in the nodes involved in the unsymmetrical conditions. In addition the model can be used for static fault current analysis and presents also in this connection a general method...

  14. The Adaptive Co-Management Process: an Initial Synthesis of Representative Models and Influential Variables

    Directory of Open Access Journals (Sweden)

    Ryan Plummer

    2009-12-01

    Full Text Available Collaborative and adaptive approaches to environmental management have captured the attention of administrators, resource users, and scholars. Adaptive co-management builds upon these approaches to create a novel governance strategy. This paper investigates the dynamics of the adaptive co-management process and the variables that influence it. The investigation begins by summarizing analytical and causal models relevant to the adaptive co-management process. Variables that influence this process are then synthesized from diverse literatures, categorized as being exogenous or endogenous, and developed into respective analytical frameworks. In identifying commonalities among models of the adaptive co-management process and discerning influential variables, this paper provides initial insights into understanding the dynamic social process of adaptive co-management. From these insights conjectures for future inquires are offered in the conclusion.

  15. Lattice-Boltzmann modeling of micromodel experiments representing a CO2-brine system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Mark L [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Tarimala, Sowmitri [Los Alamos National Laboratory; Abdel - Fattah, Amr I [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Carey, James W [Los Alamos National Laboratory

    2010-12-21

    Successful sequestration of CO{sub 2} into deep saline aquifers presents an enormous challenge that requires fundamental understanding of reactive-multi phase flow and transport across many temporal and spatial scales. Of critical importance is accurately predicting the efficiency of CO{sub 2} trapping mechanisms. At the pore scale (e.g., microns to millimeters) the interfacial area between CO{sub 2} and brine, as well as CO{sub 2} and the solid phase, directly influences the amount of CO{sub 2} trapped due to capillary forces, dissolution and mineral precipitation. In this work, we model immiscible displacement micromodel experiments using the lattice-Boltzmann (LB) method. We focus on quantifying interfacial area as a function of capillary numbers and viscosity ratios typically encountered in CO{sub 2} sequestration operations. We show that the LB model adequately predicts the steady-state experimental flow patterns and interfacial area measurements. Based on the steady-state agreement, we use the LB model to investigate interfacial dynamics (e.g., fluid-fluid interfacial velocity and the rate of production of fluid-fluid interfacial area). In addition, we quantify the amount of interfacial area and the interfacial dynamics associated with the capillary trapped nonwetting phase. This is expected to be important for predicting the amount of nonwetting phase subsequently trapped due to dissolution and mineral precipitation.

  16. Lattice-Boltzmann modeling of micromodel experiments representing a CO2-brine system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Mark L [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Tarimala, Sowmitri [Los Alamos National Laboratory; Abdel - Fattah, Amr I [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Carey, James W [Los Alamos National Laboratory

    2010-12-21

    Successful sequestration of CO{sub 2} into deep saline aquifers presents an enormous challenge that requires fundamental understanding of reactive-multi phase flow and transport across many temporal and spatial scales. Of critical importance is accurately predicting the efficiency of CO{sub 2} trapping mechanisms. At the pore scale (e.g., microns to millimeters) the interfacial area between CO{sub 2} and brine, as well as CO{sub 2} and the solid phase, directly influences the amount of CO{sub 2} trapped due to capillary forces, dissolution and mineral precipitation. In this work, we model immiscible displacement micromodel experiments using the lattice-Boltzmann (LB) method. We focus on quantifying interfacial area as a function of capillary numbers and viscosity ratios typically encountered in CO{sub 2} sequestration operations. We show that the LB model adequately predicts the steady-state experimental flow patterns and interfacial area measurements. Based on the steady-state agreement, we use the LB model to investigate interfacial dynamics (e.g., fluid-fluid interfacial velocity and the rate of production of fluid-fluid interfacial area). In addition, we quantify the amount of interfacial area and the interfacial dynamics associated with the capillary trapped nonwetting phase. This is expected to be important for predicting the amount of nonwetting phase subsequently trapped due to dissolution and mineral precipitation.

  17. Representing icebergs in the iLOVECLIM model (version 1.0 – a sensitivity study

    Directory of Open Access Journals (Sweden)

    M. Bügelmayer

    2014-07-01

    Full Text Available Recent modelling studies have indicated that icebergs alter the ocean's state, the thickness of sea ice and the prevailing atmospheric conditions, in short play an active role in the climate system. The icebergs' impact is due to their slowly released melt water which freshens and cools the ocean. The spatial distribution of the icebergs and thus their melt water depends on the forces (atmospheric and oceanic acting on them as well as on the icebergs' size. The studies conducted so far have in common that the icebergs were moved by reconstructed or modelled forcing fields and that the initial size distribution of the icebergs was prescribed according to present day observations. To address these shortcomings, we used the climate model iLOVECLIM that includes actively coupled ice-sheet and iceberg modules, to conduct 15 sensitivity experiments to analyse (1 the impact of the forcing fields (atmospheric vs. oceanic on the icebergs' distribution and melt flux, and (2 the effect of the used initial iceberg size on the resulting Northern Hemisphere climate and ice sheet under different climate conditions (pre-industrial, strong/weak radiative forcing. Our results show that, under equilibrated pre-industrial conditions, the oceanic currents cause the bergs to stay close to the Greenland and North American coast, whereas the atmospheric forcing quickly distributes them further away from their calving site. These different characteristics strongly affect the lifetime of icebergs, since the wind-driven icebergs melt up to two years faster as they are quickly distributed into the relatively warm North Atlantic waters. Moreover, we find that local variations in the spatial distribution due to different iceberg sizes do not result in different climate states and Greenland ice sheet volume, independent of the prevailing climate conditions (pre-industrial, warming or cooling climate. Therefore, we conclude that local differences in the distribution of their

  18. Role modeling excellence in clinical nursing practice.

    Science.gov (United States)

    Perry, R N Beth

    2009-01-01

    Role modeling excellence in clinical nursing practice is the focus of this paper. The phenomenological research study reported involved a group of 8 nurses identified by their colleagues as exemplary. The major theme revealed in this study was that these exemplary nurses were also excellent role models in the clinical setting. This paper details approaches used by these nurses that made them excellent role models. Specifically, the themes of attending to the little things, making connections, maintaining a light-hearted attitude, modeling, and affirming others are presented. These themes are discussed within the framework of Watson [Watson, J., 1989. Human caring and suffering: a subjective model for health services. In: Watson, J., Taylor, R. (Eds.), They Shall Not Hurt: Human Suffering and Human Caring. Colorado University, Boulder, CO] "transpersonal caring" and [Bandura, A., 1997. Social Learning Theory. Prentice Hall, Englewood Cliffs, NJ] "Social Learning Theory." Particular emphasis in the discussion is on how positive role modeling by exemplary practitioners can contribute to the education of clinical nurses in the practice setting.

  19. Clinical practice models in nursing education: implication for students' mobility.

    Science.gov (United States)

    Dobrowolska, B; McGonagle, I; Jackson, C; Kane, R; Cabrera, E; Cooney-Miner, D; Di Cara, V; Pajnkihar, M; Prlić, N; Sigurdardottir, A K; Kekuš, D; Wells, J; Palese, A

    2015-03-01

    In accordance with the process of nursing globalization, issues related to the increasing national and international mobility of student and qualified nurses are currently being debated. Identifying international differences and comparing similarities for mutual understanding, development and better harmonization of clinical training of undergraduate nursing students is recommended. The aim of the study was to describe and compare the nature of the nursing clinical practice education models adopted in different countries. A qualitative approach involving an expert panel of nurses was adopted. The Nominal Group Technique was employed to develop the initial research instrument for data collection. Eleven members of the UDINE-C network, representing institutions engaged in the process of professional nursing education and research (universities, high schools and clinical institutes), participated. Three data collection rounds were implemented. An analysis of the findings was performed, assuring rigour. Differences and homogeneity are reported and discussed regarding: (a) the clinical learning requirements across countries; (b) the prerequisites and clinical learning process patterns; and (c) the progress and final evaluation of the competencies achieved. A wider discussion is needed regarding nursing student exchange and internalization of clinical education in placements across European and non-European countries. A clear strategy for nursing education accreditation and harmonization of patterns of organization of clinical training at placements, as well as strategies of student assessment during this training, are recommended. There is also a need to develop international ethical guidelines for undergraduate nursing students gaining international experience. © 2015 International Council of Nurses.

  20. The SHOCT domain: a widespread domain under-represented in model organisms.

    Directory of Open Access Journals (Sweden)

    Ruth Y Eberhardt

    Full Text Available We have identified a new protein domain, which we have named the SHOCT domain (Short C-terminal domain. This domain is widespread in bacteria with over a thousand examples. But we found it is missing from the most commonly studied model organisms, despite being present in closely related species. It's predominantly C-terminal location, co-occurrence with numerous other domains and short size is reminiscent of the Gram-positive anchor motif, however it is present in a much wider range of species. We suggest several hypotheses about the function of SHOCT, including oligomerisation and nucleic acid binding. Our initial experiments do not support its role as an oligomerisation domain.

  1. Multilayered temporal modeling for the clinical domain.

    Science.gov (United States)

    Lin, Chen; Dligach, Dmitriy; Miller, Timothy A; Bethard, Steven; Savova, Guergana K

    2016-03-01

    To develop an open-source temporal relation discovery system for the clinical domain. The system is capable of automatically inferring temporal relations between events and time expressions using a multilayered modeling strategy. It can operate at different levels of granularity--from rough temporality expressed as event relations to the document creation time (DCT) to temporal containment to fine-grained classic Allen-style relations. We evaluated our systems on 2 clinical corpora. One is a subset of the Temporal Histories of Your Medical Events (THYME) corpus, which was used in SemEval 2015 Task 6: Clinical TempEval. The other is the 2012 Informatics for Integrating Biology and the Bedside (i2b2) challenge corpus. We designed multiple supervised machine learning models to compute the DCT relation and within-sentence temporal relations. For the i2b2 data, we also developed models and rule-based methods to recognize cross-sentence temporal relations. We used the official evaluation scripts of both challenges to make our results comparable with results of other participating systems. In addition, we conducted a feature ablation study to find out the contribution of various features to the system's performance. Our system achieved state-of-the-art performance on the Clinical TempEval corpus and was on par with the best systems on the i2b2 2012 corpus. Particularly, on the Clinical TempEval corpus, our system established a new F1 score benchmark, statistically significant as compared to the baseline and the best participating system. Presented here is the first open-source clinical temporal relation discovery system. It was built using a multilayered temporal modeling strategy and achieved top performance in 2 major shared tasks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Value of information estimation using geologic representative models; Estimativa de valor de informacao usando modelos geologicos representativos

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Alexandre M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Unidade de Negocio de Exploracao e Producao da Bacia de Santos. Gerencia de Reservatorio], e-mail: amxavier@petrobras.com.br; Ligero, Eliana L. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Laboratorio de Pesquisa em Simulacao e Gerenciamento de Reservatorios], e-mail: eligero@dep.fem.unicamp.br

    2006-12-15

    Petroleum field development occurs under geological, economic, technological and political uncertainties. Risk proceeding from geological uncertainties can be mitigated from additional information or operational flexibility. In petroleum field development, especially offshore fields, where investment and information costs are high and flexibility is low, it is necessary to use a probabilistic methodology in the decision analysis, mainly in the production strategy definition. The employment of probabilistic methodologies in risk analysis require some simplifications due to the complexity of the process, high number of decision possibilities and high cost of flow simulation - the tool used to evaluate alternatives. A possible simplification is the geological representative models, which are models that are able to represent reservoir geological uncertainties. In a risk methodology, the GRM models are used to integrate the geological, economic, technological and production strategies . A methodology to determine the Value of Information has been developed and it is based on the geological representative models in order to minimize the risks involved in the project. The methodology has been validated and applied to an offshore field. (author)

  3. Kidney transplantation process in Brazil represented in business process modeling notation.

    Science.gov (United States)

    Peres Penteado, A; Molina Cohrs, F; Diniz Hummel, A; Erbs, J; Maciel, R F; Feijó Ortolani, C L; de Aguiar Roza, B; Torres Pisa, I

    2015-05-01

    Kidney transplantation is considered to be the best treatment for people with chronic kidney failure, because it improves the patients' quality of life and increases their length of survival compared with patients undergoing dialysis. The kidney transplantation process in Brazil is defined through laws, decrees, ordinances, and resolutions, but there is no visual representation of this process. The aim of this study was to analyze official documents to construct a representation of the kidney transplantation process in Brazil with the use of business process modeling notation (BPMN). The methodology for this study was based on an exploratory observational study, document analysis, and construction of process diagrams with the use of BPMN. Two rounds of validations by specialists were conducted. The result includes the kidney transplantation process in Brazil representation with the use of BPMN. We analyzed 2 digital documents that resulted in 2 processes with 45 total of activities and events, 6 organizations involved, and 6 different stages of the process. The constructed representation makes it easier to understand the rules for the business of kidney transplantation and can be used by the health care professionals involved in the various activities within this process. Construction of a representation with language appropriate for the Brazilian lay public is underway. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. From representing to modelling knowledge: Proposing a two-step training for excellence in concept mapping

    Directory of Open Access Journals (Sweden)

    Joana G. Aguiar

    2017-09-01

    Full Text Available Training users in the concept mapping technique is critical for ensuring a high-quality concept map in terms of graphical structure and content accuracy. However, assessing excellence in concept mapping through structural and content features is a complex task. This paper proposes a two-step sequential training in concept mapping. The first step requires the fulfilment of low-order cognitive objectives (remember, understand and apply to facilitate novices’ development into good Cmappers by honing their knowledge representation skills. The second step requires the fulfilment of high-order cognitive objectives (analyse, evaluate and create to grow good Cmappers into excellent ones through the development of knowledge modelling skills. Based on Bloom’s revised taxonomy and cognitive load theory, this paper presents theoretical accounts to (1 identify the criteria distinguishing good and excellent concept maps, (2 inform instructional tasks for concept map elaboration and (3 propose a prototype for training users on concept mapping combining online and face-to-face activities. The proposed training application and the institutional certification are the next steps for the mature use of concept maps for educational as well as business purposes.

  5. Earth radiation balance as observed and represented in CMIP5 models

    Science.gov (United States)

    Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; König-Langlo, Gert

    2014-05-01

    The genesis and evolution of Earth's climate is largely regulated by the Earth radiation balance. Despite of its key role in the context of climate change, substantial uncertainties still exist in the quantification of the magnitudes of its different components, and its representation in climate models. While the net radiative energy flows in and out of the climate system at the top of atmosphere are now known with considerable accuracy from new satellite programs such as CERES and SORCE, the energy distribution within the climate system and at the Earth's surface is less well determined. Accordingly, the magnitudes of the components of the surface energy balance have recently been controversially disputed, and potential inconsistencies between the estimated magnitudes of the global energy and water cycle have been emphasized. Here we summarize this discussion as presented in Chapter 2.3 of the 5th IPCC assessment report (AR5). In this context we made an attempt to better constrain the magnitudes of the surface radiative components with largest uncertainties. In addition to satellite observations, we thereby made extensive use of the growing number of surface observations to constrain the radiation balance not only from space, but also from the surface. We combined these observations with the latest modeling efforts performed for AR5 (CMIP5) to infer best estimates for the global mean surface radiative components. Our analyses favor global mean values of downward surface solar and thermal radiation near 185 and 342 Wm-2, respectively, which are most compatible with surface observations (Wild et al. 2013). These estimates are on the order of 10 Wm-2 lower and higher, respectively, than in some of the previous global energy balance assessments, including those presented in previous IPCC reports. It is encouraging that these estimates, which make full use of the information contained in the surface networks, coincide within 2 Wm-2 with the latest satellite

  6. Modelling representative and coherent Danish farm types based on farm accountancy data for use in environmental assessments

    DEFF Research Database (Denmark)

    Dalgaard, Randi; Halberg, Niels; Kristensen, Ib Sillebak

    2006-01-01

    -oriented environmental assessment (e.g. greenhouse gas emissions per kg pork). The objective of this study was to establish a national agricultural model for estimating data on resource use, production and environmentally important emissions for a set of representative farm types. Every year a sample of farm accounts...... is established in order to report Danish agro-economical data to the ‘Farm Accountancy Data Network’ (FADN), and to produce ‘The annual Danish account statistics for agriculture’. The farm accounts are selected and weighted to be representative for the Danish agricultural sector, and similar samples of farm...... accounts are collected in most of the European countries. Based on a sample of 2138 farm accounts from year 1999 a national agricultural model, consisting of 31 farm types, was constructed. The farm accounts were grouped according to the major soil types, the number of working hours, the most important...

  7. Requirements for clinical information modelling tools.

    Science.gov (United States)

    Moreno-Conde, Alberto; Jódar-Sánchez, Francisco; Kalra, Dipak

    2015-07-01

    This study proposes consensus requirements for clinical information modelling tools that can support modelling tasks in medium/large scale institutions. Rather than identify which functionalities are currently available in existing tools, the study has focused on functionalities that should be covered in order to provide guidance about how to evolve the existing tools. After identifying a set of 56 requirements for clinical information modelling tools based on a literature review and interviews with experts, a classical Delphi study methodology was applied to conduct a two round survey in order to classify them as essential or recommended. Essential requirements are those that must be met by any tool that claims to be suitable for clinical information modelling, and if we one day have a certified tools list, any tool that does not meet essential criteria would be excluded. Recommended requirements are those more advanced requirements that may be met by tools offering a superior product or only needed in certain modelling situations. According to the answers provided by 57 experts from 14 different countries, we found a high level of agreement to enable the study to identify 20 essential and 21 recommended requirements for these tools. It is expected that this list of identified requirements will guide developers on the inclusion of new basic and advanced functionalities that have strong support by end users. This list could also guide regulators in order to identify requirements that could be demanded of tools adopted within their institutions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Representing Causation

    Science.gov (United States)

    Wolff, Phillip

    2007-01-01

    The dynamics model, which is based on L. Talmy's (1988) theory of force dynamics, characterizes causation as a pattern of forces and a position vector. In contrast to counterfactual and probabilistic models, the dynamics model naturally distinguishes between different cause-related concepts and explains the induction of causal relationships from…

  9. Animal models of osteogenesis imperfecta: applications in clinical research

    Directory of Open Access Journals (Sweden)

    Enderli TA

    2016-09-01

    Full Text Available Tanya A Enderli, Stephanie R Burtch, Jara N Templet, Alessandra Carriero Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA Abstract: Osteogenesis imperfecta (OI, commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin and mechanical (ie, vibrational loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients. Keywords: OI, brittle bone, clinical research, mouse, dog, zebrafish

  10. A model of placebo response in antidepressant clinical trials.

    Science.gov (United States)

    Rutherford, Bret R; Roose, Steven P

    2013-07-01

    Placebo response in clinical trials of antidepressant medications is substantial and has been increasing. High placebo response rates hamper efforts to detect signals of efficacy for new antidepressant medications, contributing to trial failures and delaying the delivery of new treatments to market. Media reports seize upon increasing placebo response and modest advantages for active drugs as reasons to question the value of antidepressant medication, which may further stigmatize treatments for depression and dissuade patients from accessing mental health care. Conversely, enhancing the factors responsible for placebo response may represent a strategy for improving available treatments for major depressive disorder. A conceptual framework describing the causes of placebo response is needed in order to develop strategies for minimizing placebo response in clinical trials, maximizing placebo response in clinical practice, and talking with depressed patients about the risks and benefits of antidepressant medications. In this review, the authors examine contributors to placebo response in antidepressant clinical trials and propose an explanatory model. Research aimed at reducing placebo response should focus on limiting patient expectancy and the intensity of therapeutic contact in antidepressant clinical trials, while the optimal strategy in clinical practice may be to combine active medication with a presentation and level of therapeutic contact designed to enhance treatment response.

  11. Triangular model integrating clinical teaching and assessment.

    Science.gov (United States)

    Abdelaziz, Adel; Koshak, Emad

    2014-01-01

    Structuring clinical teaching is a challenge facing medical education curriculum designers. A variety of instructional methods on different domains of learning are indicated to accommodate different learning styles. Conventional methods of clinical teaching, like training in ambulatory care settings, are prone to the factor of coincidence in having varieties of patient presentations. Accordingly, alternative methods of instruction are indicated to compensate for the deficiencies of these conventional methods. This paper presents an initiative that can be used to design a checklist as a blueprint to guide appropriate selection and implementation of teaching/learning and assessment methods in each of the educational courses and modules based on educational objectives. Three categories of instructional methods were identified, and within each a variety of methods were included. These categories are classroom-type settings, health services-based settings, and community service-based settings. Such categories have framed our triangular model of clinical teaching and assessment.

  12. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    Science.gov (United States)

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    hierarchical display of these 34 interaction types and their ancestor terms in INO resulted in the identification of specific gene-gene interaction patterns from the LLL dataset. The phenomenon of having multi-keyword interaction types was also frequently observed in the vaccine dataset. By modeling and representing multiple textual keywords for interaction types, the extended INO enabled the identification of complex biological gene-gene interactions represented with multiple keywords.

  13. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    Science.gov (United States)

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery.

  14. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin.

    Science.gov (United States)

    Moronkeji, K; Todd, S; Dawidowska, I; Barrett, S D; Akhtar, R

    2016-11-10

    There has been growing interest in the mechanical behaviour of skin due to the rapid development of microneedle devices for drug delivery applications into skin. However, most in vitro experimentation studies that are used to evaluate microneedle performance do not consider the biomechanical properties of skin or that of the subcutaneous layers. In this study, a representative experimental model of skin was developed which was comprised of subcutaneous and muscle mimics. Neonatal porcine skin from the abdominal and back regions was used, with gelatine gels of differing water content (67, 80, 88 and 96%) to represent the subcutaneous tissue, and a type of ballistic gelatine, Perma-Gel®, as a muscle mimic. Dynamic nanoindentation was used to characterize the mechanical properties of each of these layers. A custom-developed impact test rig was used to apply dense polymethylmethacrylate (PMMA) microneedles to the skin models in a controlled and repeatable way with quantification of the insertion force and velocity. Image analysis methods were used to measure penetration depth and area of the breach caused by microneedle penetration following staining and optical imaging. The nanoindentation tests demonstrated that the tissue mimics matched expected values for subcutaneous and muscle tissue, and that the compliance of the subcutaneous mimics increased linearly with water content. The abdominal skin was thinner and less stiff as compared to back skin. The maximum force decreased with gel water content in the abdominal skin but not in the back skin. Overall, larger and deeper perforations were found in the skin models with increasing water content. These data demonstrate the importance of subcutaneous tissue on microneedle performance and the need for representative skin models in microneedle technology development.

  15. Representing spatial and temporal complexity in ecohydrological models: a meta-analysis focusing on groundwater - surface water interactions

    Science.gov (United States)

    McDonald, Karlie; Mika, Sarah; Kolbe, Tamara; Abbott, Ben; Ciocca, Francesco; Marruedo, Amaia; Hannah, David; Schmidt, Christian; Fleckenstein, Jan; Karuse, Stefan

    2016-04-01

    Sub-surface hydrologic processes are highly dynamic, varying spatially and temporally with strong links to the geomorphology and hydrogeologic properties of an area. This spatial and temporal complexity is a critical regulator of biogeochemical and ecological processes within the interface groundwater - surface water (GW-SW) ecohydrological interface and adjacent ecosystems. Many GW-SW models have attempted to capture this spatial and temporal complexity with varying degrees of success. The incorporation of spatial and temporal complexity within GW-SW model configuration is important to investigate interactions with transient storage and subsurface geology, infiltration and recharge, and mass balance of exchange fluxes at the GW-SW ecohydrological interface. Additionally, characterising spatial and temporal complexity in GW-SW models is essential to derive predictions using realistic environmental conditions. In this paper we conduct a systematic Web of Science meta-analysis of conceptual, hydrodynamic, and reactive and heat transport models of the GW-SW ecohydrological interface since 2004 to explore how these models handled spatial and temporal complexity. The freshwater - groundwater ecohydrological interface was the most commonly represented in publications between 2004 and 2014 with 91% of papers followed by marine 6% and estuarine systems with 3% of papers. Of the GW-SW models published since 2004, the 52% have focused on hydrodynamic processes and heat and reactive transport). Within the hydrodynamic subset, 25% of models focused on a vertical depth of limitations of incorporating spatial and temporal variability into GW-SW models are identified as the inclusion of woody debris, carbon sources, subsurface geological structures and bioclogging into model parameterization. The technological limitations influence the types of models applied, such as hydrostatic coupled models and fully intrinsic saturated and unsaturated models, and the assumptions or

  16. Representing Development

    DEFF Research Database (Denmark)

    Representing Development presents the different social representations that have formed the idea of development in Western thinking over the past three centuries. Offering an acute perspective on the current state of developmental science and providing constructive insights into future pathways...... and development, addressing their contemporary enactments and reflecting on future theoretical and empirical directions. The first section of the book provides an historical account of early representations of development that, having come from life science, has shaped the way in which developmental science has...... approached development. Section two focuses upon the contemporary issues of developmental psychology, neuroscience and developmental science at large. The final section offers a series of commentaries pointing to the questions opened by the previous chapters, looking to outline the future lines...

  17. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    Science.gov (United States)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  18. Coaching Model + Clinical Playbook = Transformative Learning.

    Science.gov (United States)

    Fletcher, Katherine A; Meyer, Mary

    2016-01-01

    Health care employers demand that workers be skilled in clinical reasoning, able to work within complex interprofessional teams to provide safe, quality patient-centered care in a complex evolving system. To this end, there have been calls for radical transformation of nursing education including the development of a baccalaureate generalist nurse. Based on recommendations from the American Association of Colleges of Nursing, faculty concluded that clinical education must change moving beyond direct patient care by applying the concepts associated with designer, manager, and coordinator of care and being a member of a profession. To accomplish this, the faculty utilized a system of focused learning assignments (FLAs) that present transformative learning opportunities that expose students to "disorienting dilemmas," alternative perspectives, and repeated opportunities to reflect and challenge their own beliefs. The FLAs collected in a "Playbook" were scaffolded to build the student's competencies over the course of the clinical experience. The FLAs were centered on the 6 Quality and Safety Education for Nurses competencies, with 2 additional concepts of professionalism and systems-based practice. The FLAs were competency-based exercises that students performed when not assigned to direct patient care or had free clinical time. Each FLA had a lesson plan that allowed the student and faculty member to see the competency addressed by the lesson, resources, time on task, student instructions, guide for reflection, grading rubric, and recommendations for clinical instructor. The major advantages of the model included (a) consistent implementation of structured learning experiences by a diverse teaching staff using a coaching model of instruction; (b) more systematic approach to present learning activities that build upon each other; (c) increased time for faculty to interact with students providing direct patient care; (d) guaranteed capture of selected transformative

  19. Assessing the Collective Population Representativeness of Related Type 2 Diabetes Trials by Combining Public Data from ClinicalTrials.gov and NHANES.

    Science.gov (United States)

    He, Zhe; Wang, Shuang; Borhanian, Elhaam; Weng, Chunhua

    2015-01-01

    Randomized controlled trials generate high-quality medical evidence. However, the use of unjustified inclusion/exclusion criteria may compromise the external validity of a study. We have introduced a method to assess the population representativeness of related clinical trials using electronic health record (EHR) data. As EHR data may not perfectly represent the real-world patient population, in this work, we further validated the method and its results using the National Health and Nutrition Examination Survey (NHANES) data. We visualized and quantified the differences in the distributions of age, HbA1c, and BMI among the target population of Type 2 diabetes trials, diabetics in NHANES databases, and a convenience sample of patients enrolled in selected Type 2 diabetes trials. The results are consistent with the previous study.

  20. Cross-cultural factorial validation of the Clinical Interview Schedule-Revised (CIS-R):findings from a nationally representative survey (EMPIRIC)

    OpenAIRE

    Das-Munshi, Jayati; Castro-Costa, E.; Dewey, Michael; Nazroo, J; Prince, Martin

    2014-01-01

    The Clinical Interview Schedule – Revised (CIS-R) has been widely adopted across cultures to assess common mental disorders. We assessed the factorial validity of the CIS-R across ethnic minority groups, using data from a nationally representative survey conducted in England in 2000. The sample comprised White British (n = 837), Irish (n = 733), Black Caribbean (n = 694), Bangladeshi (n = 650), Indian (n = 643) and Pakistani (n = 724) respondents. Ordered logistic regression determined the re...

  1. Using phrases and document metadata to improve topic modeling of clinical reports.

    Science.gov (United States)

    Speier, William; Ong, Michael K; Arnold, Corey W

    2016-06-01

    Probabilistic topic models provide an unsupervised method for analyzing unstructured text, which have the potential to be integrated into clinical automatic summarization systems. Clinical documents are accompanied by metadata in a patient's medical history and frequently contains multiword concepts that can be valuable for accurately interpreting the included text. While existing methods have attempted to address these problems individually, we present a unified model for free-text clinical documents that integrates contextual patient- and document-level data, and discovers multi-word concepts. In the proposed model, phrases are represented by chained n-grams and a Dirichlet hyper-parameter is weighted by both document-level and patient-level context. This method and three other Latent Dirichlet allocation models were fit to a large collection of clinical reports. Examples of resulting topics demonstrate the results of the new model and the quality of the representations are evaluated using empirical log likelihood. The proposed model was able to create informative prior probabilities based on patient and document information, and captured phrases that represented various clinical concepts. The representation using the proposed model had a significantly higher empirical log likelihood than the compared methods. Integrating document metadata and capturing phrases in clinical text greatly improves the topic representation of clinical documents. The resulting clinically informative topics may effectively serve as the basis for an automatic summarization system for clinical reports. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Pharmacodynamic modelling of in vitro activity of tetracycline against a representative, naturally occurring population of porcine Escherichia coli

    DEFF Research Database (Denmark)

    Ahmad, Amais; Zachariasen, Camilla; Christiansen, Lasse Engbo;

    2015-01-01

    text] between susceptible and resistant strains in the absence of a drug was not different. EC 50 increased linearly with MIC on a log-log scale, and γ was different between susceptible and resistant strains. The in vitro model parameters described the inhibition effect of tetracycline on E. coli when...... of Escherichia coli representative of those found in the Danish pig population, we compared the growth of 50 randomly selected strains. The observed net growth rates were used to describe the in vitro pharmacodynamic relationship between drug concentration and net growth rate based on E max model with three...... parameters: maximum net growth rate (α max ); concentration for a half-maximal response (E max ); and the Hill coefficient (γ). The net growth rate in the absence of antibiotic did not differ between susceptible and resistant isolates (P = 0.97). The net growth rate decreased with increasing tetracycline...

  3. NewsPaperBox - Online News Space: a visual model for representing the social space of a website

    Directory of Open Access Journals (Sweden)

    Selçuk Artut

    2010-02-01

    Full Text Available NewsPaperBox * propounds an alternative visual model utilizing the treemap algorithm to represent the collective use of a website that evolves in response to user interaction. While the technology currently exists to track various user behaviors such as number of clicks, duration of stay on a given web site, these statistics are not yet employed to influence the visual representation of that site's design in real time. In that sense, this project propounds an alternative modeling of a representational outlook of a website that is developed by collaborations and competitions of its global users. This paper proposes the experience of cyberspace as a generative process driven by its effective user participation.

  4. Representing nursing guideline with unified modeling language to facilitate development of a computer system: a case study.

    Science.gov (United States)

    Choi, Jeeyae; Choi, Jeungok E

    2014-01-01

    To provide best recommendations at the point of care, guidelines have been implemented in computer systems. As a prerequisite, guidelines are translated into a computer-interpretable guideline format. Since there are no specific tools to translate nursing guidelines, only a few nursing guidelines are translated and implemented in computer systems. Unified modeling language (UML) is a software writing language and is known to well and accurately represent end-users' perspective, due to the expressive characteristics of the UML. In order to facilitate the development of computer systems for nurses' use, the UML was used to translate a paper-based nursing guideline, and its ease of use and the usefulness were tested through a case study of a genetic counseling guideline. The UML was found to be a useful tool to nurse informaticians and a sufficient tool to model a guideline in a computer program.

  5. NewsPaperBox - Online News Space: a visual model for representing the social space of a website

    Directory of Open Access Journals (Sweden)

    Selçuk Artut

    2010-02-01

    Full Text Available NewsPaperBox * propounds an alternative visual model utilizing the treemap algorithm to represent the collective use of a website that evolves in response to user interaction. While the technology currently exists to track various user behaviors such as number of clicks, duration of stay on a given web site, these statistics are not yet employed to influence the visual representation of that site's design in real time. In that sense, this project propounds an alternative modeling of a representational outlook of a website that is developed by collaborations and competitions of its global users. This paper proposes the experience of cyberspace as a generative process driven by its effective user participation.

  6. Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids

    Science.gov (United States)

    José, Marco V.; Morgado, Eberto R.; Guimarães, Romeu Cardoso; Zamudio, Gabriel S.; de Farías, Sávio Torres; Bobadilla, Juan R.; Sosa, Daniela

    2014-01-01

    Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric. We also show that there are only 12 ways to represent each of the corresponding phenotypic graphs of amino acids. The averages of statistical centrality measures of the 12 graphs for each of the three codes are carried out and they are statistically compared. The phenotypic graphs of the S-tRNA-C display a common triangular prism of amino acids in 10 out of the 12 graphs, whilst the corresponding graphs for the H-tRNA-C display only two triangular prisms. The graphs exhibit disjoint clusters of amino acids when their polar requirement values are used. We contend that the S-tRNA-C is in a frozen-like state, whereas the H-tRNA-C may be in an evolving state. PMID:25370377

  7. Quality Reporting of Multivariable Regression Models in Observational Studies: Review of a Representative Sample of Articles Published in Biomedical Journals.

    Science.gov (United States)

    Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M

    2016-05-01

    Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.

  8. Triangular model integrating clinical teaching and assessment

    Directory of Open Access Journals (Sweden)

    Abdelaziz A

    2014-03-01

    Full Text Available Adel Abdelaziz,1,2 Emad Koshak3 1Medical Education Development Unit, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia; 2Medical Education Department, Faculty of Medicine, Suez Canal University, Egypt; 3Dean and Internal Medicine Department, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia Abstract: Structuring clinical teaching is a challenge facing medical education curriculum designers. A variety of instructional methods on different domains of learning are indicated to accommodate different learning styles. Conventional methods of clinical teaching, like training in ambulatory care settings, are prone to the factor of coincidence in having varieties of patient presentations. Accordingly, alternative methods of instruction are indicated to compensate for the deficiencies of these conventional methods. This paper presents an initiative that can be used to design a checklist as a blueprint to guide appropriate selection and implementation of teaching/learning and assessment methods in each of the educational courses and modules based on educational objectives. Three categories of instructional methods were identified, and within each a variety of methods were included. These categories are classroom-type settings, health services-based settings, and community service-based settings. Such categories have framed our triangular model of clinical teaching and assessment. Keywords: curriculum development, teaching, learning, assessment, apprenticeship, community-based settings, health service-based settings

  9. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling

    Directory of Open Access Journals (Sweden)

    Iulii Didovets

    2017-03-01

    Full Text Available The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, Upper Western Bug, and Samara characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.

  10. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    Science.gov (United States)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  11. Outcome Modeling Using Clinical DVH Data

    CERN Document Server

    Gordon, JJ

    2015-01-01

    Purpose: To quantify the ability of correlation and regression analysis to extract the normal lung dose-response function from dose volume histogram (DVH) data. Methods: A local injury model is adopted, in which radiation-induced damage (functional loss) G is the integral of the DVH with function R(D). RP risk is H(G) where H() is the sigmoid cumulative distribution of functional reserve. RP incidence is a Bernoulli function of risk. A homogeneous patient cohort is assumed, allowing non-dose-related factors to be ignored. Clinically realistic DVHs are combined with the injury model to simulate RP data. Results: Correlation analysis is often used to identify predictor variables that are correlated with outcome, for inclusion in a predictive model. In the local injury model, all DVH metrics VD contribute to damage. Correlation analysis therefore has limited value. The subset of VD significantly correlated with incidence varies randomly from trial to trial due to random variations in the DVH set, and does not ne...

  12. [From clinical judgment to linear regression model.

    Science.gov (United States)

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R(2)) indicates the importance of independent variables in the outcome.

  13. Dynamic neuronal ensembles: Issues in representing structure change in object-oriented, biologically-based brain models

    Energy Technology Data Exchange (ETDEWEB)

    Vahie, S.; Zeigler, B.P.; Cho, H. [Univ. of Arizona, Tucson, AZ (United States)

    1996-12-31

    This paper describes the structure of dynamic neuronal ensembles (DNEs). DNEs represent a new paradigm for learning, based on biological neural networks that use variable structures. We present a computational neural element that demonstrates biological neuron functionality such as neurotransmitter feedback absolute refractory period and multiple output potentials. More specifically, we will develop a network of neural elements that have the ability to dynamically strengthen, weaken, add and remove interconnections. We demonstrate that the DNE is capable of performing dynamic modifications to neuron connections and exhibiting biological neuron functionality. In addition to its applications for learning, DNEs provide an excellent environment for testing and analysis of biological neural systems. An example of habituation and hyper-sensitization in biological systems, using a neural circuit from a snail is presented and discussed. This paper provides an insight into the DNE paradigm using models developed and simulated in DEVS.

  14. Modeling Fluid’s Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks

    Directory of Open Access Journals (Sweden)

    Andrei Khrennikov

    2016-07-01

    Full Text Available We present a new conceptual approach for modeling of fluid flows in random porous media based on explicit exploration of the treelike geometry of complex capillary networks. Such patterns can be represented mathematically as ultrametric spaces and the dynamics of fluids by ultrametric diffusion. The images of p-adic fields, extracted from the real multiscale rock samples and from some reference images, are depicted. In this model the porous background is treated as the environment contributing to the coefficients of evolutionary equations. For the simplest trees, these equations are essentially less complicated than those with fractional differential operators which are commonly applied in geological studies looking for some fractional analogs to conventional Euclidean space but with anomalous scaling and diffusion properties. It is possible to solve the former equation analytically and, in particular, to find stationary solutions. The main aim of this paper is to attract the attention of researchers working on modeling of geological processes to the novel utrametric approach and to show some examples from the petroleum reservoir static and dynamic characterization, able to integrate the p-adic approach with multifractals, thermodynamics and scaling. We also present a non-mathematician friendly review of trees and ultrametric spaces and pseudo-differential operators on such spaces.

  15. Towards Semantic-Web Based Representation and Harmonization of Standard Meta-data Models for Clinical Studies

    OpenAIRE

    Tao, Cui; Jiang, Guoqian; Wei, Weiqi; Solbrig, Harold R; Chute, Christopher G

    2011-01-01

    In this paper, we introduce our case studies for representing clinical study meta-data models such as the HL7 Detailed Clinical Models (DCMs) and the ISO11179 model in a framework that is based on the Semantic-Web technology. We consider such a harmonization would provide computable semantics of the models, thus facilitate the model reuse, model harmonization and data integration.1

  16. Clinical Scholar Model: providing excellence in clinical supervision of nursing students.

    Science.gov (United States)

    Preheim, Gayle; Casey, Kathy; Krugman, Mary

    2006-01-01

    The Clinical Scholar Model (CSM) is a practice-education partnership focused on improving the outcomes of clinical nursing education by bridging the academic and service settings. An expert clinical nurse serves as a clinical scholar (CS) to coordinate, supervise, and evaluate the clinical education of nursing students in collaboration with school of nursing faculty. This article describes the model's evolution, how the model is differentiated from traditional clinical instruction roles and responsibilities, and the benefits to the collaborating clinical agency and school of nursing.

  17. Are women appropriately represented and assessed in clinical trials submitted for marketing authorization? A review of the database of the European Medicines Agency.

    Science.gov (United States)

    Müllner, M; Vamvakas, S; Rietschel, M; van Zwieten-Boot, B J

    2007-09-01

    There is concern that patients included in trials do not represent the true patient population and women in particular may selectively be excluded. We looked at trial data submitted to the European Medicines Agency (EMEA) by drug companies to achieve marketing authorization in Europe between 2000 and 2003. We reviewed the EMEA database and included the main studies for the risk/benefit assessment (pivotal trials) submitted between 2000 and 2003. In pivotal trials submitted to the EMEA there was no, or generally clinically negligible, evidence for gender bias; however, women were underrepresented in hypertension, diabetes and hepatitis B trials, and overrepresented in rheumatoid arthritis and allergic conjunctivitis. In trials submitted for marketing authorization to the EMEA gender bias was not a serious problem.

  18. Representing and Performing Businesses

    DEFF Research Database (Denmark)

    Boll, Karen

    2014-01-01

    and MacKenzie’s idea of performativity. Based on these two approaches, the article demonstrates that the segmentation model represents and performs the businesses as it makes up certain new ways to be a business and as the businesses can be seen as moving targets. Inspired by MacKenzie the argument......This article investigates a segmentation model used by the Danish Tax and Customs Administration to classify businesses’ motivational postures. The article uses two different conceptualisations of performativity to analyse what the model’s segmentations do: Hacking’s notion of making up people...... is that the segmentation model embodies cleverness in that it simultaneously alters what it represents and then represents this altered reality to confirm the accuracy of its own model of the businesses’ postures. Despite the cleverness of the model, it also has a blind spot. The model assumes a world wherein everything...

  19. Why do global climate models struggle to represent low-level clouds in the West African summer monsoon?

    Science.gov (United States)

    Knippertz, Peter; Hannak, Lisa; Fink, Andreas H.; Kniffka, Anke; Pante, Gregor

    2017-04-01

    Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5-10°N, 8°W-8°E) during July-September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has so far received little attention. These clouds usually form during the night near the level of the nocturnal low-level jet ( 950 hPa), thicken and spread until the mid-morning ( 09 UTC), and then break up and rise in the course of the day, typically to about 850 hPa. The low thermal contrast to the surface and the frequent presence of obscuring higher-level clouds make detection of the low-level clouds from space rather challenging. Here we use 30 years of output from 18 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) as well as 20 years of output from 8 models participating in the Year of Tropical Convection (YoTC) experiments to identify cloud biases and their causes. A great advantage of the YoTC dataset is the 6-hourly output frequency, which allows an analysis of the diurnal cycle, and the availability of temperature and moisture tendencies from parameterized processes such as convection, radiation and boundary-layer turbulence. A comparison to earlier analyses based on CMIP3 output reveals rather limited improvements with regard to the represenation of low-level cloud and winds. Compared to ERA-Interim re-analyses, which shows satisfactory agreement with surface observations, many of the CMIP5 and YoTC models still have large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear due to concomitant effects on temperature and moisture advection as well as turbulent

  20. Using clinical element models for pharmacogenomic study data standardization.

    Science.gov (United States)

    Zhu, Qian; Freimuth, Robert R; Pathak, Jyotishman; Chute, Christopher G

    2013-01-01

    Standardized representations for pharmacogenomics data are seldom used, which leads to data heterogeneity and hinders data reuse and integration. In this study, we attempted to represent data elements from the Pharmacogenomics Research Network (PGRN) that are related to four categories, patient, drug, disease and laboratory, in a standard way using Clinical Element Models (CEMs), which have been adopted in the Strategic Health IT Advanced Research Project, secondary use of EHR (SHARPn) as a library of common logical models that facilitate consistent data representation, interpretation, and exchange within and across heterogeneous sources and applications. This was accomplished by grouping PGRN data elements into categories based on UMLS semantic type, then mapping each to one or more CEM attributes using a web-based tool that was developed to support curation activities. This study demonstrates the successful application of SHARPn CEMs to the pharmacogenomic domain. It also identified several categories of data elements that are not currently supported by SHARPn CEMs, which represent opportunities for further development and collaboration.

  1. Binge eating in pre-clinical models.

    Science.gov (United States)

    Rospond, Bartłomiej; Szpigiel, Joanna; Sadakierska-Chudy, Anna; Filip, Małgorzata

    2015-06-01

    Obesity is a globally widespread disease. Approximately 35% of world population has the problem of inappropriate body weight due to sedentary lifestyle, excessive food consumption and the lack of physical activity. In the course of many years, several pharmacological anti-obesity drugs have been discovered. Most of them, however, possess severe side effects. Recent findings suggest that disturbed functioning of the reward system can be involved in the development of obesity. The data coming from clinical and animal studies provide new evidence that links excessive food consumption with compulsive behavior that can lead to binge eating disease occurrence. In this review we discuss most commonly used animal models of binge eating such as restriction/refeeding, limited access and stress schedule model, and related to them neurobiological findings as well. We also present new, anti-obesity drugs, which are characterized by central mechanism of action. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Evaluation of the Swat Model in a Small Watershed Representative of the Atlantic Forest Biome in Southern Brazil

    Science.gov (United States)

    Marcon, I. R.; Cauduro Dias de Paiva, E. M.; Dias de Paiva, J.; Beling, F. A.; Heatwole, C.

    2011-12-01

    This study presents the results of simulations with the SWAT (Soil and Water Assessment Tool) model in a small watershed in Southern Brazil (latitude 29°38'37.5 " and longitude 53°48'2.2"), representative of the Atlantic Forest Biome. This area was monitored by two sequential stations, each with one rain gauge and one stage gauge, having contributing areas of 4.5 km2 and 12 km2 respectively. The altitudes in the basins range from 316 m to 431 m and vegetation is predominantly composed of native forest (55%) and native pasture (39%). The simulated period was from August 2007 to July 2011, corresponding to the period of monitoring. The temperature ranged from -2.2°C to 39.2°C, and annual rainfall ranged between 2005 mm and 2250 mm. For this application, a modification in the SWAT 2000 model algorithm was made, as proposed by Paiva and Paiva (2006), to adjust the rate of leaf area during the winter season of the region. The quality of the results was characterized by the Nash-Sutcliffe efficiency index (NSE) and by the coefficient of determination (R2). The model was evaluated in a monthly and daily scale. At the monthly scale, the values obtained for NSE in the calibration phase, were 0.73 and 0.81, respectively for the two sections. The values obtained for R2 were 0.77 and 0.83 in the same sections. At the daily scale, in the calibration phase NSE values were -0.44 and -0.31, respectively, for the two sections, while for R2, the values were 0.27 and 0.38 in the same sections. These results show that the fit was good for monthly values, but for daily values a proper adjustment was not possible. Due to the short period of monitoring, the validation of the model results was made with the observed data from first station with an area of 4.5 km2. The values obtained for the NSE in the validation phase were 0.73 and -0.33 for the monthly and daily scales respectively, and for R2, 0.77 and 0.27 for the monthly and daily values, thus confirming the quality of the fit

  3. Source apportionment of population representative samples of PM(2.5) in three European cities using structural equation modelling.

    Science.gov (United States)

    Ilacqua, Vito; Hänninen, Otto; Saarela, Kristina; Katsouyanni, Klea; Künzli, Nino; Jantunen, Matti

    2007-10-01

    Apportionment of urban particulate matter (PM) to sources is central for air quality management and efficient reduction of the substantial public health risks associated with fine particles (PM(2.5)). Traffic is an important source combustion particles, but also a significant source of resuspended particles that chemically resemble Earth's crust and that are not affected by development of cleaner motor technologies. A substantial fraction of urban ambient PM originates from long-range transport outside the immediate urban environment including secondary particles formed from gaseous emissions of mainly sulphur, nitrogen oxides and ammonia. Most source apportionment studies are based on small number of fixed monitoring sites and capture well population exposures to regional and long-range transported particles. However, concentrations from local sources are very unevenly distributed and the results from such studies are therefore poorly representative of the actual exposures. The current study uses PM(2.5) data observed at population based random sampled residential locations in Athens, Basle and Helsinki with 17 elemental constituents, selected VOCs (xylenes, trimethylbenzenes, nonane and benzene) and light absorbance (black smoke). The major sources identified across the three cities included crustal, salt, long-range transported inorganic and traffic sources. Traffic was associated separately with source categories with crustal (especially Athens and Helsinki) and long-range transported chemical composition (all cities). Remarkably high fractions of the variability of elemental (R(2)>0.6 except for Ca in Basle 0.38) and chemical concentrations (R(2)>0.5 except benzene in Basle 0.22 and nonane in Athens 0.39) are explained by the source factors of an SEM model. The RAINS model that is currently used as the main tool in developing European air quality management policies seems to capture the local urban fraction (the city delta term) quite well, but underestimates

  4. The Three Estates Model: Represented and Satirised in Chaucer’s General Prologue to the Canterbury Tales

    Directory of Open Access Journals (Sweden)

    Sadenur Doğan

    2013-07-01

    Full Text Available This paper presents an investigation of the ‘Three Estates Model’ of the English medieval society in Chaucer’s General Prologue to the Canterbury Tales. Based upon the descriptions and illustrations of the characters, it aims to explore the hierarchal structure of the medieval society which is divided into three main groups or ‘estates’: the ones who pray, the ones who rule and govern, and the ones who work. In the General Prologue, Chaucer gives a series of sketches of the characters that are the representatives of the three estates, and through these depictions he investigates the social characteristics and roles of the medieval people who are expected to speak and behave in accordance with what their social group requires. While presenting Three Estates Model, he employs the tradition of ‘estates satire’ by criticising the social vices resulting from the corruption in this model. Through the characteristics and virtues of the ‘Knight’, the ‘Parson’, and the ‘Plowman’, he demonstrates the perfect integration of the people who belong to chivalry, clergy and the commoners in the medieval English society. Also, by offering contrasting views to these positive traits in the portrayal of almost all of the other characters, as illustrated in the portrayal of the ‘Monk’, the ‘Reeve’, and the ‘Wife of Bathe’ in this paper, he criticises the vices and sins (that are mainly resulted from the religious, financial and moral corruption of the people belonging to the social classes of the Middle Ages.

  5. Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways

    Science.gov (United States)

    Aghakhani Afshar, A.; Hasanzadeh, Y.; Besalatpour, A. A.; Pourreza-Bilondi, M.

    2016-09-01

    Hydrology cycle of river basins and available water resources in arid and semi-arid regions are highly affected by climate changes. In recent years, the increment of temperature due to excessive increased emission of greenhouse gases has led to an abnormality in the climate system of the earth. The main objective of this study is to survey the future climate changes in one of the biggest mountainous watersheds in northeast of Iran (i.e., Kashafrood). In this research, by considering the precipitation and temperature as two important climatic parameters in watersheds, 14 models evolved in the general circulation models (GCMs) of the newest generation in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used to forecast the future climate changes in the study area. For the historical period of 1992-2005, four evaluation criteria including Nash-Sutcliffe (NS), percent of bias (PBIAS), coefficient of determination (R 2) and the ratio of the root-mean-square-error to the standard deviation of measured data (RSR) were used to compare the simulated observed data for assessing goodness-of-fit of the models. In the primary results, four climate models namely GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM, and NorESM1-M were selected among the abovementioned 14 models due to their more prediction accuracies to the investigated evaluation criteria. Thereafter, climate changes of the future periods (near-century, 2006-2037; mid-century, 2037-2070; and late-century, 2070-2100) were investigated and compared by four representative concentration pathways (RCPs) of new emission scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In order to assess the trend of annual and seasonal changes of climatic components, Mann-Kendall non-parametric test (MK) was also employed. The results of Mann-Kendall test revealed that the precipitation has significant variable trends of both positive and negative alterations. Furthermore, the mean, maximum, and minimum temperature values had significant

  6. Climate change forecasting in a mountainous data scarce watershed using CMIP5 models under representative concentration pathways

    Science.gov (United States)

    Aghakhani Afshar, A.; Hasanzadeh, Y.; Besalatpour, A. A.; Pourreza-Bilondi, M.

    2017-07-01

    Hydrology cycle of river basins and available water resources in arid and semi-arid regions are highly affected by climate changes. In recent years, the increment of temperature due to excessive increased emission of greenhouse gases has led to an abnormality in the climate system of the earth. The main objective of this study is to survey the future climate changes in one of the biggest mountainous watersheds in northeast of Iran (i.e., Kashafrood). In this research, by considering the precipitation and temperature as two important climatic parameters in watersheds, 14 models evolved in the general circulation models (GCMs) of the newest generation in the Coupled Model Intercomparison Project Phase 5 (CMIP5) were used to forecast the future climate changes in the study area. For the historical period of 1992-2005, four evaluation criteria including Nash-Sutcliffe (NS), percent of bias (PBIAS), coefficient of determination ( R 2) and the ratio of the root-mean-square-error to the standard deviation of measured data (RSR) were used to compare the simulated observed data for assessing goodness-of-fit of the models. In the primary results, four climate models namely GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM, and NorESM1-M were selected among the abovementioned 14 models due to their more prediction accuracies to the investigated evaluation criteria. Thereafter, climate changes of the future periods (near-century, 2006-2037; mid-century, 2037-2070; and late-century, 2070-2100) were investigated and compared by four representative concentration pathways (RCPs) of new emission scenarios of RCP2.6, RCP4.5, RCP6.0, and RCP8.5. In order to assess the trend of annual and seasonal changes of climatic components, Mann-Kendall non-parametric test (MK) was also employed. The results of Mann-Kendall test revealed that the precipitation has significant variable trends of both positive and negative alterations. Furthermore, the mean, maximum, and minimum temperature values had

  7. Explaining clinical behaviors using multiple theoretical models.

    Science.gov (United States)

    Eccles, Martin P; Grimshaw, Jeremy M; MacLennan, Graeme; Bonetti, Debbie; Glidewell, Liz; Pitts, Nigel B; Steen, Nick; Thomas, Ruth; Walker, Anne; Johnston, Marie

    2012-10-17

    In the field of implementation research, there is an increased interest in use of theory when designing implementation research studies involving behavior change. In 2003, we initiated a series of five studies to establish a scientific rationale for interventions to translate research findings into clinical practice by exploring the performance of a number of different, commonly used, overlapping behavioral theories and models. We reflect on the strengths and weaknesses of the methods, the performance of the theories, and consider where these methods sit alongside the range of methods for studying healthcare professional behavior change. These were five studies of the theory-based cognitions and clinical behaviors (taking dental radiographs, performing dental restorations, placing fissure sealants, managing upper respiratory tract infections without prescribing antibiotics, managing low back pain without ordering lumbar spine x-rays) of random samples of primary care dentists and physicians. Measures were derived for the explanatory theoretical constructs in the Theory of Planned Behavior (TPB), Social Cognitive Theory (SCT), and Illness Representations specified by the Common Sense Self Regulation Model (CSSRM). We constructed self-report measures of two constructs from Learning Theory (LT), a measure of Implementation Intentions (II), and the Precaution Adoption Process. We collected data on theory-based cognitions (explanatory measures) and two interim outcome measures (stated behavioral intention and simulated behavior) by postal questionnaire survey during the 12-month period to which objective measures of behavior (collected from routine administrative sources) were related. Planned analyses explored the predictive value of theories in explaining variance in intention, behavioral simulation and behavior. Response rates across the five surveys ranged from 21% to 48%; we achieved the target sample size for three of the five surveys. For the predictor variables

  8. Explaining clinical behaviors using multiple theoretical models

    Directory of Open Access Journals (Sweden)

    Eccles Martin P

    2012-10-01

    Full Text Available Abstract Background In the field of implementation research, there is an increased interest in use of theory when designing implementation research studies involving behavior change. In 2003, we initiated a series of five studies to establish a scientific rationale for interventions to translate research findings into clinical practice by exploring the performance of a number of different, commonly used, overlapping behavioral theories and models. We reflect on the strengths and weaknesses of the methods, the performance of the theories, and consider where these methods sit alongside the range of methods for studying healthcare professional behavior change. Methods These were five studies of the theory-based cognitions and clinical behaviors (taking dental radiographs, performing dental restorations, placing fissure sealants, managing upper respiratory tract infections without prescribing antibiotics, managing low back pain without ordering lumbar spine x-rays of random samples of primary care dentists and physicians. Measures were derived for the explanatory theoretical constructs in the Theory of Planned Behavior (TPB, Social Cognitive Theory (SCT, and Illness Representations specified by the Common Sense Self Regulation Model (CSSRM. We constructed self-report measures of two constructs from Learning Theory (LT, a measure of Implementation Intentions (II, and the Precaution Adoption Process. We collected data on theory-based cognitions (explanatory measures and two interim outcome measures (stated behavioral intention and simulated behavior by postal questionnaire survey during the 12-month period to which objective measures of behavior (collected from routine administrative sources were related. Planned analyses explored the predictive value of theories in explaining variance in intention, behavioral simulation and behavior. Results Response rates across the five surveys ranged from 21% to 48%; we achieved the target sample size for three of

  9. Computational modeling for addiction medicine: From cognitive models to clinical applications.

    Science.gov (United States)

    Ahn, Woo Young; Dai, Junyi; Vassileva, Jasmin; Busemeyer, Jerome R; Stout, Julie C

    2016-01-01

    Decision-making tasks that have good ecological validity, such as simulated gambling tasks, are complex, and performance on these tasks represents a synthesis of several different underlying psychological processes, such as learning from experience, and motivational processes such as sensitivity to reward and punishment. Cognitive models can be used to break down performance on these tasks into constituent processes, which can then be assessed and studied in relation to clinical characteristics and neuroimaging outcomes. Whether it will be possible to improve treatment success by targeting these constituent processes more directly remains unexplored. We review the development and testing of the Expectancy-Valence and Prospect-Valence Learning models from the past 10 years or so using simulated gambling tasks, in particular the Iowa and Soochow Gambling Tasks. We highlight the issues of model generalizability and parameter consistency, and we describe findings obtained from these models in clinical populations including substance use disorders. We then suggest future directions for this research that will help to bring its utility to broader research and clinical applications.

  10. Care pathways models and clinical outcomes in Disorders of consciousness.

    Science.gov (United States)

    Sattin, Davide; Morganti, Laura; De Torres, Laura; Dolce, Giuliano; Arcuri, Francesco; Estraneo, Anna; Cardinale, Viviana; Piperno, Roberto; Zavatta, Elena; Formisano, Rita; D'Ippolito, Mariagrazia; Vassallo, Claudio; Dessi, Barbara; Lamberti, Gianfranco; Antoniono, Elena; Lanzillotti, Crocifissa; Navarro, Jorge; Bramanti, Placido; Corallo, Francesco; Zampolini, Mauro; Scarponi, Federico; Avesani, Renato; Salvi, Luca; Ferro, Salvatore; Mazza, Luigi; Fogar, Paolo; Feller, Sandro; De Nigris, Fulvio; Martinuzzi, Andrea; Buffoni, Mara; Pessina, Adriano; Corsico, Paolo; Leonardi, Matilde

    2017-08-01

    Patients with Disorders of consciousness, are persons with extremely low functioning levels and represent a challenge for health care systems due to their high needs of facilitating environmental factors. Despite a common Italian health care pathway for these patients, no studies have analyzed information on how each region have implemented it in its welfare system correlating data with patients' clinical outcomes. A multicenter observational pilot study was realized. Clinicians collected data on the care pathways of patients with Disorder of consciousness by asking 90 patients' caregivers to complete an ad hoc questionnaire through a structured phone interview. Questionnaire consisted of three sections: sociodemographic data, description of the care pathway done by the patient, and caregiver evaluation of health services and information received. Seventy-three patients were analyzed. Length of hospital stay was different across the health care models and it was associated with improvement in clinical diagnosis. In long-term care units, the diagnosis at admission and the number of caregivers available for each patient (median value = 3) showed an indirect relationship with worsening probability in clinical outcome. Caregivers reported that communication with professionals (42%) and the answer to the need of information were the most critical points in the acute phase, whereas presence of Non-Governmental Organizations (25%) and availability of psychologists for caregivers (21%) were often missing during long-term care. The 65% of caregivers reported they did not know the UN Convention on the Rights of Persons with Disabilities. This study highlights relevant differences in analyzed models, despite a recommended national pathway of care. Future public health considerations and actions are needed to guarantee equity and standardization of the care process in all European countries.

  11. Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling.

    Science.gov (United States)

    Amabile, Celia; Choisne, Julie; Nérot, Agathe; Pillet, Hélène; Skalli, Wafa

    2016-05-03

    Body segment parameters (BSP) for each body׳s segment are needed for biomechanical analysis. To provide population-specific BSP, precise estimation of body׳s segments volume and density are needed. Widely used uniform densities, provided by cadavers׳ studies, did not consider the air present in the lungs when determining the thorax density. The purpose of this study was to propose a new uniform thorax density representative of the living population from 3D external body shape modeling. Bi-planar X-ray radiographies were acquired on 58 participants allowing 3D reconstructions of the spine, rib cage and human body shape. Three methods of computing the thorax mass were compared for 48 subjects: (1) the Dempster Uniform Density Method, currently in use for BSPs calculation, using Dempster density data, (2) the Personalized Method using full-description of the thorax based on 3D reconstruction of the rib cage and spine and (3) the Improved Uniform Density Method using a uniform thorax density resulting from the Personalized Method. For 10 participants, comparison was made between the body mass obtained from a force-plate and the body mass computed with each of the three methods. The Dempster Uniform Density Method presented a mean error of 4.8% in the total body mass compared to the force-plate vs 0.2% for the Personalized Method and 0.4% for the Improved Uniform Density Method. The adjusted thorax density found from the 3D reconstruction was 0.74g/cm(3) for men and 0.73g/cm(3) for women instead of the one provided by Dempster (0.92g/cm(3)), leading to a better estimate of the thorax mass and body mass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Extracellular and intraneuronal HMW-AbetaOs represent a molecular basis of memory loss in Alzheimer's disease model mouse

    Directory of Open Access Journals (Sweden)

    Yamamoto Naoki

    2011-03-01

    Full Text Available Abstract Background Several lines of evidence indicate that memory loss represents a synaptic failure caused by soluble amyloid β (Aβ oligomers. However, the pathological relevance of Aβ oligomers (AβOs as the trigger of synaptic or neuronal degeneration, and the possible mechanism underlying the neurotoxic action of endogenous AβOs remain to be determined. Results To specifically target toxic AβOs in vivo, monoclonal antibodies (1A9 and 2C3 specific to them were generated using a novel design method. 1A9 and 2C3 specifically recognize soluble AβOs larger than 35-mers and pentamers on Blue native polyacrylamide gel electrophoresis, respectively. Biophysical and structural analysis by atomic force microscopy (AFM revealed that neurotoxic 1A9 and 2C3 oligomeric conformers displayed non-fibrilar, relatively spherical structure. Of note, such AβOs were taken up by neuroblastoma (SH-SY5Y cell, resulted in neuronal death. In humans, immunohistochemical analysis employing 1A9 or 2C3 revealed that 1A9 and 2C3 stain intraneuronal granules accumulated in the perikaryon of pyramidal neurons and some diffuse plaques. Fluoro Jade-B binding assay also revealed 1A9- or 2C3-stained neurons, indicating their impending degeneration. In a long-term low-dose prophylactic trial using active 1A9 or 2C3 antibody, we found that passive immunization protected a mouse model of Alzheimer's disease (AD from memory deficits, synaptic degeneration, promotion of intraneuronal AβOs, and neuronal degeneration. Because the primary antitoxic action of 1A9 and 2C3 occurs outside neurons, our results suggest that extracellular AβOs initiate the AD toxic process and intraneuronal AβOs may worsen neuronal degeneration and memory loss. Conclusion Now, we have evidence that HMW-AβOs are among the earliest manifestation of the AD toxic process in mice and humans. We are certain that our studies move us closer to our goal of finding a therapeutic target and/or confirming the

  13. An Analysis of the Propulsion Experiments Performed on a Model Representing the Stretched PONCE DE LEON (SPDL) Class RO/RO Ship Fitted with Two Sets of Design Contrarotating Propellers (Model 5362; Propellers 4731 & 4732 and 9019 & 9020).

    Science.gov (United States)

    1981-01-01

    REPRESENTING THE 5TRETCHED PONQ DE LEON (S.PI.) 9€ ASS _!"Q SHIP FITTED WITH TWO SETS OF DESIGN CONTRAROTATING PROPELLERS (MODEL 5362; PROPELLERS 4731...TYPE OF REPORT & PERIOD COVERED AN ANALYSIS OF THE PROPULSION EXPERIMENTS PER- Final FORMED ON A MODEL REPRESENTING THE STRETCHED PONCE DE LEON (SPDL...number) A ser ies of propulsion exper ments were performed on Model 5362, representing a Stretched PONCE DE LEON Clas RO/RO ship. The model was fitted

  14. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    Science.gov (United States)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.

  15. A study of V79 cell survival after for proton and carbon ion beams as represented by the parameters of Katz' track structure model

    DEFF Research Database (Denmark)

    Grzanka, Leszek; Waligórski, M. P. R.; Bassler, Niels

    Katz’s theory of cellular track structure (1) is an amorphous analytical model which applies a set of four cellular parameters representing survival of a given cell line after ion irradiation. Usually the values of these parameters are best fitted to a full set of experimentally measured survival...... curves available for a variety of ions. Once fitted, using these parameter values and the analytical formulae of the model calculations, cellular survival curves and RBE may be predicted for that cell line after irradiation by any ion, including mixed ion fields. While it is known that the Katz model...... of the proton response. This suggests that for increased accuracy of a therapy planning system based on Katz’s model, different sets of parameters may need to be used to represent cell survival after proton irradiation from those representing survival of this cell line after heavier ions, up to and including...

  16. Assessing the fit of the Dysphoric Arousal model across two nationally representative epidemiological surveys: The Australian NSMHWB and the United States NESARC

    DEFF Research Database (Denmark)

    Armour, C.; Carragher, N.; Elhai, J. D.

    2013-01-01

    samples. Results revealed that the Dysphoric Arousal model provided superior fit to the data compared to the alternative models. In conclusion, these findings suggest that items D1-D3 (sleeping difficulties; irritability; concentration difficulties) represent a separate, fifth factor within PTSD's latent...

  17. A data model that captures clinical reasoning about patient problems.

    Science.gov (United States)

    Barrows, R. C.; Johnson, S. B.

    1995-01-01

    We describe a data model that has been implemented for the CPMC Ambulatory Care System, and exemplify its function for patient problems. The model captures some nuances of clinical thinking about patients that are not accommodated in most other models, such as an evolution of clinical understanding about patient problems. A record of this understanding has clinical utility, and serves research interests as well as medical audit concerns. The model is described with an example, and advantages and limitations in the current implementation are discussed. PMID:8563311

  18. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  19. A clinical internship model for the nurse practitioner programme.

    Science.gov (United States)

    Lee, Geraldine A; Fitzgerald, Les

    2008-11-01

    Nurse practitioners in Victoria, Australia must be prepared to Masters level before seeking nurse practitioner (NP) endorsement. The challenge from a university curriculum development perspective was to develop a programme that prepares the NP theoretically and clinically for their advanced practice role. The aim of this discussion paper is to outline how the internship model was developed and report the students' opinions on the model. The NP students complete the internship with a suitably qualified mentor which requires them to work together to develop and maintain a clinical learning plan, keep a log of the weekly meetings that shows how the objectives have been achieved. The internship includes advanced clinical assessment, prescribing, diagnostic and treatment skills and knowledge related to the nurse's specialty. The clinical assessment tool incorporates the National Competency Standards for the Nurse Practitioner and allows students and mentors to identify the level of practice and set clinical objectives. Students were asked to give feedback on the clinical internship and overall their comments were favourable, reporting benefits of a clinical mentor in their work and the clinical case presentations. The clinical internship allows the acquisition of knowledge and clinical skills in the clinical specialty with an expert clinical mentor in this innovative programme.

  20. Robust Multiscale Modelling Of Two-Phase Steels On Heterogeneous Hardware Infrastructures By Using Statistically Similar Representative Volume Element

    Directory of Open Access Journals (Sweden)

    Rauch Ł.

    2015-09-01

    Full Text Available The coupled finite element multiscale simulations (FE2 require costly numerical procedures in both macro and micro scales. Attempts to improve numerical efficiency are focused mainly on two areas of development, i.e. parallelization/distribution of numerical procedures and simplification of virtual material representation. One of the representatives of both mentioned areas is the idea of Statistically Similar Representative Volume Element (SSRVE. It aims at the reduction of the number of finite elements in micro scale as well as at parallelization of the calculations in micro scale which can be performed without barriers. The simplification of computational domain is realized by transformation of sophisticated images of material microstructure into artificially created simple objects being characterized by similar features as their original equivalents. In existing solutions for two-phase steels SSRVE is created on the basis of the analysis of shape coefficients of hard phase in real microstructure and searching for a representative simple structure with similar shape coefficients. Optimization techniques were used to solve this task. In the present paper local strains and stresses are added to the cost function in optimization. Various forms of the objective function composed of different elements were investigated and used in the optimization procedure for the creation of the final SSRVE. The results are compared as far as the efficiency of the procedure and uniqueness of the solution are considered. The best objective function composed of shape coefficients, as well as of strains and stresses, was proposed. Examples of SSRVEs determined for the investigated two-phase steel using that objective function are demonstrated in the paper. Each step of SSRVE creation is investigated from computational efficiency point of view. The proposition of implementation of the whole computational procedure on modern High Performance Computing (HPC

  1. Statistical properties of fluctuations of time series representing appearances of words in nationwide blog data and their applications: An example of modeling fluctuation scalings of nonstationary time series

    Science.gov (United States)

    Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako

    2016-11-01

    To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3 ×109 Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.

  2. Multiple dimensions of health locus of control in a representative population sample: ordinal factor analysis and cross-validation of an existing three and a new four factor model

    Directory of Open Access Journals (Sweden)

    Hapke Ulfert

    2011-08-01

    Full Text Available Abstract Background Based on the general approach of locus of control, health locus of control (HLOC concerns control-beliefs due to illness, sickness and health. HLOC research results provide an improved understanding of health related behaviour and patients' compliance in medical care. HLOC research distinguishes between beliefs due to Internality, Externality powerful Others (POs and Externality Chance. However, evidences for differentiating the POs dimension were found. Previous factor analyses used selected and predominantly clinical samples, while non-clinical studies are rare. The present study is the first analysis of the HLOC structure based on a large representative general population sample providing important information for non-clinical research and public health care. Methods The standardised German questionnaire which assesses HLOC was used in a representative adult general population sample for a region in Northern Germany (N = 4,075. Data analyses used ordinal factor analyses in LISREL and Mplus. Alternative theory-driven models with one to four latent variables were compared using confirmatory factor analysis. Fit indices, chi-square difference tests, residuals and factor loadings were considered for model comparison. Exploratory factor analysis was used for further model development. Results were cross-validated splitting the total sample randomly and using the cross-validation index. Results A model with four latent variables (Internality, Formal Help, Informal Help and Chance best represented the HLOC construct (three-dimensional model: normed chi-square = 9.55; RMSEA = 0.066; CFI = 0.931; SRMR = 0.075; four-dimensional model: normed chi-square = 8.65; RMSEA = 0.062; CFI = 0.940; SRMR = 0.071; chi-square difference test: p Conclusions Future non-clinical HLOC studies in western cultures should consider four dimensions of HLOC: Internality, Formal Help, Informal Help and Chance. However, the standardised German instrument

  3. Representing the acquisition and use of energy by individuals in agent-based models of animal populations

    DEFF Research Database (Denmark)

    Sibly, RS; Grimm, Volker; Johnston, Alice S.A.;

    2013-01-01

    Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge...... of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction......, and these can be used to obtain estimates of background mortality rate. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. The development of ABMs incorporating...

  4. E-health stakeholders experiences with clinical modelling and standardizations.

    Science.gov (United States)

    Gøeg, Kirstine Rosenbeck; Elberg, Pia Britt; Højen, Anne Randorff

    2015-01-01

    Stakeholders in e-health such as governance officials, health IT-implementers and vendors have to co-operate to achieve the goal of a future-proof interoperable e-health infrastructure. Co-operation requires knowledge on the responsibility and competences of stakeholder groups. To increase awareness on clinical modeling and standardization we conducted a workshop for Danish and a few Norwegian e-health stakeholders' and made them discuss their views on different aspects of clinical modeling using a theoretical model as a point of departure. Based on the model, we traced stakeholders' experiences. Our results showed there was a tendency that stakeholders were more familiar with e-health requirements than with design methods, clinical information models and clinical terminology as they are described in the scientific literature. The workshop made it possible for stakeholders to discuss their roles and expectations to each other.

  5. Structural equation modeling in the context of clinical research

    Science.gov (United States)

    2017-01-01

    Structural equation modeling (SEM) has been widely used in economics, sociology and behavioral science. However, its use in clinical medicine is quite limited, probably due to technical difficulties. Because SEM is particularly suitable for analysis of complex relationships among observed variables, it must have potential applications to clinical medicine. The article introduces basic ideas of SEM in the context of clinical medicine. A simulated dataset is employed to show how to do model specification, model fit, visualization and assessment of goodness-of-fit. The first example fits a SEM with continuous outcome variable using sem() function, and the second explores the binary outcome variable using lavaan() function. PMID:28361067

  6. Using a clinical collaborative model for nursing education: application for clinical teaching.

    Science.gov (United States)

    Maguire, Denise J; Zambroski, Cheryl H; Cadena, Sandra V

    2012-01-01

    The promise of a clinical collaborative model (CCM) is that it engages hospital partners in a mutually beneficial partnership by providing the entire student clinical experience in one institution. The CCM prepares students for the day-to-day reality of patient care through the use of individual staff nurse preceptors, enhancing the relationship between the student and hospital upon graduation. The authors describe a successful paradigm for student nurse clinical education across the baccalaureate program.

  7. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    Science.gov (United States)

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of

  8. Representing the acquisition and use of energy by individuals in agent-based models of animal populations

    Science.gov (United States)

    Sibly, Richard M.; Grimm, Volker; Martin, Benjamin T.; Johnston, Alice S.A.; Kulakowska, Katarzyna; Topping, Christopher J.; Calow, Peter; Nabe-Nielsen, Jacob; Thorbek, Pernille; DeAngelis, Donald L.

    2013-01-01

    1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests.

  9. Evaluation of clinical model for deep vein thrombosis: a cheap ...

    African Journals Online (AJOL)

    Evaluation of clinical model for deep vein thrombosis: a cheap alternative for ... Results: Twelve (57.1% of the 21 patients evaluated had a high pretest clinical ... There was a 100% correlation between the high-risk categories and the ...

  10. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    Science.gov (United States)

    Burrows, Susannah M.; Gobrogge, Eric; Fu, Li; Link, Katie; Elliott, Scott M.; Wang, Hongfei; Walker, Rob

    2016-08-01

    Here we show that the addition of chemical interactions between soluble monosaccharides and an insoluble lipid surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the alkane:hydroxyl mass ratio in modeled sea spray organic matter is reduced from a median of 2.73 to a range of 0.41-0.69, reducing the discrepancy with previous Fourier transform infrared spectroscopy (FTIR) observations of clean marine aerosol (ratio: 0.24-0.38). The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5-0.7 for submicron sea spray particles over highly active phytoplankton blooms. Sum frequency generation experiments support the modeling approach by demonstrating that soluble monosaccharides can strongly adsorb to a lipid monolayer likely via Coulomb interactions under appropriate conditions. These laboratory findings motivate further research to determine the relevance of coadsorption mechanisms for real-world, sea spray aerosol production.

  11. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Susannah M. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Gobrogge, Eric [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA; Fu, Li [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Link, Katie [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA; Elliott, Scott M. [Climate, Ocean, and Sea Ice Modelling Group, Los Alamos National Laboratory, Los Alamos New Mexico USA; Wang, Hongfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Walker, Rob [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA

    2016-08-10

    Here we show that the addition of chemical interactions of soluble polysaccharides with a surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the fraction of hydroxyl functional groups in modeled sea spray organic matter is increased, improving agreement with FTIR observations of marine aerosol composition. The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5 – 0.7 for submicron sea spray particles over highly active phytoplankton blooms. We show results from Sum Frequency Generation (SFG) experiments that support the modeling approach, by demonstrating that soluble polysaccharides can strongly adsorb to a lipid monolayer via columbic interactions under appropriate conditions.

  12. Representing soakaways in a physically distributed urban drainage model – Upscaling individual allotments to an aggregated scale

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin; Mark, Ole; Kuczera, George;

    2012-01-01

    The increased load on urban stormwater systems due to climate change and growing urbanization can be partly alleviated by using soakaways and similar infiltration techniques. However, while soakaways are usually small-scale structures, most urban drainage network models operate on a larger spatial...... of individual soakaways well. Six upscaling methods to aggregate individual soakaway units with varying saturated hydraulic conductivity (K) in the surrounding soil have been investigated. In the upscaled model, the weighted geometric mean hydraulic conductivity of individual allotments is found to provide...

  13. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV-Vis tropospheric column retrievals

    NARCIS (Netherlands)

    Boersma, K.F.; Vinken, G.C.M.; Eskes, H.J.

    2016-01-01

    Ultraviolet-visible (UV-Vis) satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric composition, for data assimilation, air quality hindcasting and forecasting, a

  14. Representing the acquisition and use of energy by individuals in agent-based models of animal populations

    DEFF Research Database (Denmark)

    Sibly, RS; Grimm, Volker; Johnston, Alice S.A.

    2013-01-01

    , and these can be used to obtain estimates of background mortality rate. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. The development of ABMs incorporating...

  15. Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations

    DEFF Research Database (Denmark)

    Santos, Ilmar; Saracho, C.M.; Smith, J.T.

    2004-01-01

    This work gives a theoretical and experimental contribution to the problem of rotor-blades dynamic interaction. A validation procedure of mathematical models is carried out with help of a simple test rig, built by a mass-spring system attached to four flexible rotating blades. With this test rig,...

  16. Towards a more representative parametrisation of hydrological models via synthesizing the strengths of particle swarm optimisation and robust parameter estimation

    Directory of Open Access Journals (Sweden)

    T. Krauße

    2011-03-01

    Full Text Available The development of methods for estimating the parameters of hydrological models considering uncertainties has been of high interest in hydrological research over the last years. In particular methods which understand the estimation of hydrological model parameters as a geometric search of a set of robust performing parameter vectors by application of the concept of data depth found growing research interest. Bárdossy and Singh (2008 presented a first proposal and applied it for the calibration of a conceptual rainfall-runoff model with daily time step. Krauße and Cullmann (2011 further developed this method and applied it in a case study to calibrate a process oriented hydrological model with hourly time step focussing on flood events in a fast responding catchment. The results of both studies showed the potential of the application of the principle of data depth. However, also the weak point of the presented approach got obvious. The algorithm identifies a set of model parameter vectors with high model performance and subsequently generates a set of parameter vectors with high data depth with respect to the first set. These both steps are repeated iteratively until a stopping criterion is met. In the first step the estimation of the good parameter vectors is based on the Monte Carlo method. The major shortcoming of this method is that it is strongly dependent on a high number of samples exponentially growing with the dimensionality of the problem. In this paper we present another robust parameter estimation strategy which applies an approved search strategy for high-dimensional parameter spaces, the particle swarm optimisation in order to identify a set of good parameter vectors with given uncertainty bounds. The generation of deep parameters is according to Krauße and Cullmann (2011. The method was compared to the Monte Carlo based robust parameter estimation algorithm on the example of a case study in Krauße and Cullmann (2011 to

  17. Towards a more representative parametrisation of hydrologic models via synthesizing the strengths of Particle Swarm Optimisation and Robust Parameter Estimation

    Directory of Open Access Journals (Sweden)

    T. Krauße

    2012-02-01

    Full Text Available The development of methods for estimating the parameters of hydrologic models considering uncertainties has been of high interest in hydrologic research over the last years. In particular methods which understand the estimation of hydrologic model parameters as a geometric search of a set of robust performing parameter vectors by application of the concept of data depth found growing research interest. Bárdossy and Singh (2008 presented a first Robust Parameter Estimation Method (ROPE and applied it for the calibration of a conceptual rainfall-runoff model with daily time step. The basic idea of this algorithm is to identify a set of model parameter vectors with high model performance called good parameters and subsequently generate a set of parameter vectors with high data depth with respect to the first set. Both steps are repeated iteratively until a stopping criterion is met. The results estimated in this case study show the high potential of the principle of data depth to be used for the estimation of hydrologic model parameters. In this paper we present some further developments that address the most important shortcomings of the original ROPE approach. We developed a stratified depth based sampling approach that improves the sampling from non-elliptic and multi-modal distributions. It provides a higher efficiency for the sampling of deep points in parameter spaces with higher dimensionality. Another modification addresses the problem of a too strong shrinking of the estimated set of robust parameter vectors that might lead to overfitting for model calibration with a small amount of calibration data. This contradicts the principle of robustness. Therefore, we suggest to split the available calibration data into two sets and use one set to control the overfitting. All modifications were implemented into a further developed ROPE approach that is called Advanced Robust Parameter Estimation (AROPE. However, in this approach the estimation of

  18. Modeling hard clinical end-point data in economic analyses.

    Science.gov (United States)

    Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V

    2013-11-01

    The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are more appropriate to accurately reflect the trial data.

  19. [Prediction of PCBs uptake by vegetable in a representative area and evaluation of the human health risk by Trapp model].

    Science.gov (United States)

    Deng, Shao-Po; Luo, Yong-Ming; Song, Jing; Teng, Ying; Chen, Yong-Shan

    2010-12-01

    Air, soil and vegetable samples were collected from an e-waste disassembly site and analyzed for characteristic contaminants PCBs. Based on the measured PCBs concentrations in soil and air, PCBs concentration in leafy vegetables was predicted by Trapp Model and the sources, composition of PCBs in vegetable and influencing factors were analyzed. By using human health risk assessment model of USEPA, risk to human health from consumption of vegetable that take up PCBs from environment was evaluated. The results showed that the Trapp Model could give good prediction of PCBs concentrations in leafy vegetables based on PCBs concentration in the soil and air. For instance, the measured sum of seven PCBs in vegetable was 51.2 microg x kg(-1) and the predicted value was 39.9 microg x kg(-1). So the predicted value agrees well with the measured value. The gaseous PCBs were the main source of PCBs in leafy vegetables, and the model predicting results indicated that the contribution rate was as high as 98.8%. The uptake pathway, n-octanol/water partition coefficient (K(ow)) and the n-octanol/air partition coefficient (K(oa)) of PCBs determine the concentration and composition of PCBs in vegetables. The duration needed for PCBs uptake to reach equilibrium was in good correlation with lgK(ow) and lgK(oa). Multiple linear regression analysis indicated that lgK(oa) was more important. Carcinogenic risk from consumption of PCBs contaminated vegetables was 10 000 times higher than that of gaseous PCBs, and the no-carcinogenic risk was increased by approximately 200 times. The main reasons are firstly the vegetables take up and accumulate more toxic PCBs with high-chloride substitutes and consequently the oral toxic factors of PCBs increase dramatically. Secondly, an adult takes 71 times more PCBs via consumption of vegetables than via inhalation of air.

  20. Development and Implementation of a Transversely Isotropic Hyperelastic Constitutive Model With Two Fiber Families to Represent Anisotropic Soft Biological Tissues

    Science.gov (United States)

    2014-06-01

    region ( cervical , thoracic or lumbar), and, starting with the most superior (highest) vertebra in that region, numbered consecutively until the most...plane of the intervertebral disc have all been used by researchers to model the fibers of the annulus fibrosus (1, 18–20). CERVICAL VERTEBRAE THORACIC...typical vertebra (panel b). Vertebra are color-coded according to their location classification. Panel c is an illustration (not drawn to scale) of an

  1. A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data.

    Science.gov (United States)

    Tao, Cui; Jiang, Guoqian; Oniki, Thomas A; Freimuth, Robert R; Zhu, Qian; Sharma, Deepak; Pathak, Jyotishman; Huff, Stanley M; Chute, Christopher G

    2013-05-01

    The clinical element model (CEM) is an information model designed for representing clinical information in electronic health records (EHR) systems across organizations. The current representation of CEMs does not support formal semantic definitions and therefore it is not possible to perform reasoning and consistency checking on derived models. This paper introduces our efforts to represent the CEM specification using the Web Ontology Language (OWL). The CEM-OWL representation connects the CEM content with the Semantic Web environment, which provides authoring, reasoning, and querying tools. This work may also facilitate the harmonization of the CEMs with domain knowledge represented in terminology models as well as other clinical information models such as the openEHR archetype model. We have created the CEM-OWL meta ontology based on the CEM specification. A convertor has been implemented in Java to automatically translate detailed CEMs from XML to OWL. A panel evaluation has been conducted, and the results show that the OWL modeling can faithfully represent the CEM specification and represent patient data.

  2. Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign

    Science.gov (United States)

    Couvreux, Fleur; Bazile, Eric; Canut, Guylaine; Seity, Yann; Lothon, Marie; Lohou, Fabienne; Guichard, Françoise; Nilsson, Erik

    2016-07-01

    This study evaluates the ability of three operational models, with resolution varying from 2.5 to 16 km, to predict the boundary-layer turbulent processes and mesoscale variability observed during the Boundary Layer Late-Afternoon and Sunset Turbulence (BLLAST) field campaign. We analyse the representation of the vertical profiles of temperature and humidity and the time evolution of near-surface atmospheric variables and the radiative and turbulent fluxes over a total of 12 intensive observing periods (IOPs), each lasting 24 h. Special attention is paid to the evolution of the turbulent kinetic energy (TKE), which was sampled by a combination of independent instruments. For the first time, this variable, a central one in the turbulence scheme used in AROME and ARPEGE, is evaluated with observations.In general, the 24 h forecasts succeed in reproducing the variability from one day to another in terms of cloud cover, temperature and boundary-layer depth. However, they exhibit some systematic biases, in particular a cold bias within the daytime boundary layer for all models. An overestimation of the sensible heat flux is noted for two points in ARPEGE and is found to be partly related to an inaccurate simplification of surface characteristics. AROME shows a moist bias within the daytime boundary layer, which is consistent with overestimated latent heat fluxes. ECMWF presents a dry bias at 2 m above the surface and also overestimates the sensible heat flux. The high-resolution model AROME resolves the vertical structures better, in particular the strong daytime inversion and the thin evening stable boundary layer. This model is also able to capture some specific observed features, such as the orographically driven subsidence and a well-defined maximum that arises during the evening of the water vapour mixing ratio in the upper part of the residual layer due to fine-scale advection. The model reproduces the order of magnitude of spatial variability observed at

  3. Bronx Teens Connection's Clinic Linkage Model: Connecting Youth to Quality Sexual and Reproductive Health Care.

    Science.gov (United States)

    O'Uhuru, Deborah J; Santiago, Vivian; Murray, Lauren E; Travers, Madeline; Bedell, Jane F

    2017-03-01

    Teen pregnancy and birth rates in the Bronx have been higher than in New York City, representing a longstanding health disparity. The New York City Department of Health and Mental Hygiene implemented a community-wide, multicomponent intervention to reduce unintended teen pregnancy, the Bronx Teens Connection. The Bronx Teens Connection Clinic Linkage Model sought to increase teens' access to and use of sexual and reproductive health care by increasing community partner capacity to link neighborhood clinics to youth-serving organizations, including schools. The Bronx Teens Connection Clinic Linkage Model used needs assessments, delineated the criteria for linkages, clarified roles and responsibilities of partners and staff, established trainings to support the staff engaged in linkage activities, and developed and used process evaluation methods. Early results demonstrated the strength and feasibility of the model over a 4-year period, with 31 linkages developed and maintained, over 11,300 contacts between clinic health educators and teens completed, and increasing adherence to the Centers for Disease Control and Prevention-defined clinical best practices for adolescent reproductive health. For those eight clinics that were able to provide data, there was a 25% increase in the number of teen clients seen over 4 years. There are many factors that relate to an increase in clinic utilization; some of this increase may have been a result of the linkages between schools and clinics. The Bronx Teens Connection Clinic Linkage Model is an explicit framework for clinical and youth-serving organizations seeking to establish formal linkage relationships that may be useful for other municipalities or organizations. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  4. Identifying the representative flow unit for capillary dominated two-phase flow in porous media using morphology-based pore-scale modeling

    Science.gov (United States)

    Mu, Yaoming; Sungkorn, Radompon; Toelke, Jonas

    2016-09-01

    In this paper, we extend pore-morphology-based methods proposed by Hazlett (1995) and Hilpert and Miller (2001) to simulate drainage and imbibition in uniformly wetting porous media and add an (optional) entrapment of the (non-)wetting phase. By improving implementation, this method allows us to identify the statistical representative elementary volume and estimate uncertainty by computing fluid flow properties and saturation distributions of hundreds of subsamples within a reasonable time-frame. The method was utilized to study three different porous medium systems and results demonstrate that morphology-based pore-scale modeling is a viable approach to assess the representative elementary volume with respect to capillary dominated two-phase flow. The focus of this paper is the determination of the representative elementary volume for multiphase-flow properties for a digital representation of a rock.

  5. Conceptual models used in clinical practice.

    Science.gov (United States)

    Wardle, M G; Mandle, C L

    1989-02-01

    Nurses' difficulties in articulation of conceptual models may be due to several factors--not the least of which are the existence of discrete theories for each area of nursing specialization, dissociation in curricula of theory from practice, a holistic conceptual framework that may be inadequately defined at the process level, and an impulse toward idealism on the part of the nurses themselves. These observations challenge both the theorists and the practitioners of modern nursing to describe more clearly the definition of quality for the science and art of nursing. Nurses are beginning to grasp the idea of holism. It is not the summation of parts to make a whole. Holism is the identification of life patterns, which are reflective of the whole. Nurses in practice and research are starting to create methods of inquiry that portray the wholeness of the autonomous person in continual, dynamic change and exchange with a changing universe. These initial explorations are leading to the evolution of the concepts of person, environment, and health into a distinctive theoretical base for nursing practice. In practice, research, and education, nurses must be committed to excellent, current descriptions of these human life patterns.

  6. Errors in the Bag Model of Strings, and Regge Trajectories Represent the Conservation of Angular Momentum in Hyperbolic Space

    CERN Document Server

    Lavenda, B H

    2011-01-01

    The MIT bag model is shown to be wrong because the bag pressure cannot be held constant, and the volume can be fixed in terms of it. The bag derivation of Regge's trajectories is invalidated by an integration of the energy and angular momentum over all values of the radius up to $r_0=c/\\omega$. This gives the absurd result that "total" angular momentum decreases as the frequency increases. The correct expression for the angular momentum is obtained from hyperbolic geometry of constant negative curvature $r_0$. When the square of the relativistic mass is introduced, it gives a negative intercept which is the Euclidean value of the angular momentum. Regge trajectories are simply statements of the conservation of angular momentum in hyperbolic space. The frequencies and values of the angular momentum are in remarkable agreement with experiment.

  7. Towards a mechanical failure model for degrading permafrost rock slopes representing changes in rock toughness and infill

    Science.gov (United States)

    Mamot, Philipp; Krautblatter, Michael; Scandroglio, Riccardo

    2016-04-01

    The climate-induced degradation of permafrost in mountain areas can reduce the stability of rock slopes. An increasing number of rockfalls and rockslides originate from permafrost-affected rock faces. Discontinuity patterns and their geometrical and mechanical properties play a decisive role in controlling rock slope stability. Under thawing conditions the shear resistance of rock reduces due to lower friction along rock-rock contacts, decreasing fracture toughness of rock-ice contacts, diminishing fracture toughness of cohesive rock bridges and altered creep or fracture of the ice itself. Compressive strength is reduced by 20 to 50 % and tensile strength decreases by 15 to 70 % when intact saturated rock thaws (KRAUTBLATTER ET AL. 2013). Elevated water pressures in fractures can lead to reduced effective normal stresses and thus to lower shear strengths of fractures. However, the impact of degrading permafrost on the mechanical properties of intact or fractured rock still remains poorly understood. In this study, we develop a new approach for modeling the influence of degrading permafrost on the stability of high mountain rock slopes. Hereby, we focus on the effect of rock- and ice-mechanical changes along striking discontinuities onto the whole rock slope. We aim at contributing to a better rock-ice mechanical process understanding of degrading permafrost rocks. For parametrisation and subsequent calibration of our model, we chose a test site (2885 m a.s.l.) close by the Zugspitze summit in Germany. It reveals i) a potential rockslide at the south face involving 10E4m³ of rock and ii) permafrost occurrence due to ice-filled caves and fractures. Here we combine kinematic, geotechnical and thermal monitoring in the field with rock-mechanical laboratory tests and a 2D numerical failure modeling. Up to date, the following results underline the potential effects of thawing rock and fracture infill on the stability of steep rock slopes in theory and praxis: i. ERT and

  8. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    Science.gov (United States)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  9. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  10. Multi-criteria assessment of the Representative Elementary Watershed approach on the Donga catchment (Benin using a downward approach of model complexity

    Directory of Open Access Journals (Sweden)

    N. Varado

    2005-11-01

    Full Text Available This study is part of the AMMA – African Multidisciplinary Monsoon Analysis – project and aims at a better understanding and modelling of the Donga catchment (580 km2, Benin behaviour. For this purpose, we applied the REW concept proposed by Reggiani et al. (1998, 1999, which allows the description of the main local processes at the sub-watershed scale. Such distributed hydrological models, which represent hydrological processes at various scales, should be evaluated not only on the discharge at the outlet but also on each of the represented processes and in several points of the catchment. This kind of multi-criteria evaluation is of importance in order to assess the global behaviour of the models. We applied such multi-criteria strategy to the Donga catchment (586 km2, in Benin. The work is supported by a strategy of observation, undertaken since 1998 consisting in a network of 20 rain gauges, an automatic meteorological station, 6 discharge stations and 18 wells.

    The first goal of this study is to assess the model ability to reproduce the discharge at the outlet, the water table dynamics in several points of the catchment and the vadose zone dynamics at the sub-catchment scale. We tested two spatial discretisations of increasing resolution. To test the internal structure of the model, we looked at its ability to represent also the discharge at intermediary stations. After adjustment of soil parameters, the model is shown to accurately represent discharge down to a drainage area of 100 km2, whereas poorer simulation is achieved on smaller catchments. We introduced the spatial variability of rainfall by distributing the daily rainfall over the REW and obtained a very low sensitivity of the model response to this variability. Our results suggest that processes in the unsaturated zone should first be improved, in order to better simulate soil water dynamics and represent perched water tables which

  11. Multi-criteria assessment of the Representative Elementary Watershed approach on the Donga catchment (Benin using a downward approach of model complexity

    Directory of Open Access Journals (Sweden)

    N. Varado

    2006-01-01

    Full Text Available This study is part of the AMMA - African Multidisciplinary Monsoon Analysis- project and aims at a better understanding and modelling of the Donga catchment (580 km2, Benin behaviour in order to determine its spatially distributed water balance. For this purpose, we applied the REW concept proposed by Reggiani et al. (1998, 1999, which allows the description of the main local processes at the sub-watershed scale. Such distributed hydrological models, which represent hydrological processes at various scales, should be evaluated not only on the discharge at the outlet but also on each of the represented processes and in several points of the catchment. This multi-criteria approach is required in order to assess the global behaviour of hydrological models. We applied such multi-criteria strategy to the Donga catchment (586 km2, in Benin. The work was supported by an observation set up, undertaken since 1998 consisting in a network of 20 rain gauges, an automatic meteorological station, 6 discharge stations and 18 wells. The main goal of this study was to assess the model's ability to reproduce the discharge at the outlet, the water table dynamics in several points of the catchment and the vadose zone dynamics at the sub-catchment scale. We tested two spatial discretisations of increasing resolution. To test the internal structure of the model, we looked at its ability to represent also the discharge at intermediate stations. After adjustment of soil parameters, the model is shown to accurately represent discharge down to a drainage area of 100 km2, whereas poorer simulation is achieved on smaller catchments. We introduced the spatial variability of rainfall by distributing the daily rainfall over the REW and obtained a very low sensitivity of the model response to this variability. Simulation of groundwater levels was poor and our results, in conjunction with new data available at the local scale, suggest that the representation of the processes

  12. Site S-7 Representative Model and Application for the Vadose Zone Monitoring System (VZMS) McClellan AFB - 1998 Semi-Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    James, A.L.; Oldenburg, C.M.

    1998-12-01

    Vadose zone data collection and enhanced data analysis are continuing for the Vadose Zone Monitoring System (VZMS) installed at site S-7 in IC 34 at McClellan MB. Data from core samples from boreholes drilled in 1998 and from VZMS continuous monitoring are evaluated and compared to previously collected data and analyses. The suite of data collected to date is used to develop and constrain a spatially averaged, one-dimensional site S-7 representative model that is implemented into T2VOC. Testing of the conceptual model under conditions of recharge of 100 mm/yr produces plausible moisture contents relative to data from several sources. Further scoping calculations involving gas-phase TCE transport in the representative model were undertaken. We investigate the role of recharge on TCE transport as well as the role of ion- and gas-phase flow driven by density and barometric pumping effects. This report provides the first example of the application of the site S-7 representative model in th e investigation of subsurface VOC movement.

  13. Clinical Data Models at University Hospitals of Geneva.

    Science.gov (United States)

    Vishnyakova, Dina; Gaudet-Blavignac, Christophe; Baumann, Philippe; Lovis, Christian

    2016-01-01

    In order to reuse data for clinical research it is then necessary to overcome two main challenges - to formalize data sources and to increase the portability. Once the challenge is resolved, it then will allow research applications to reuse clinical data. In this paper, three data models such as entity-attribute-value, ontological and data-driven are described. Their further implementation at University Hospitals of Geneva (HUG) in the data integration methodologies for operational healthcare data sources of the European projects such as DebugIT and EHR4CR and national project the Swiss Transplant Cohort Study are explained. In these methodologies the clinical data are either aligned according to standardised terminologies using different processing techniques or transformed and loaded directly to data models. Then these models are compared and discussed based on the quality criteria. The comparison shows that the described data models are strongly dependent on the objectives of the projects.

  14. A cognitive learning model of clinical nursing leadership.

    Science.gov (United States)

    Pepin, Jacinthe; Dubois, Sylvie; Girard, Francine; Tardif, Jacques; Ha, Laurence

    2011-04-01

    Cognitive modeling of competencies is important to facilitate learning and evaluation. Clinical nursing leadership is considered a competency, as it is a "complex know-act" that students and nurses develop for the quality of care of patients and their families. Previous research on clinical leadership describes the attributes and characteristics of leaders and leadership, but, to our knowledge, a cognitive learning model (CLM) has yet to be developed. The purpose of our research was to develop a CLM of the clinical nursing leadership competency, from the beginning of a nursing program to expertise. An interpretative phenomenological study design was used 1) to document the experience of learning and practicing clinical leadership, and 2) to identify critical-learning turning points. Data was gathered from interviews with 32 baccalaureate students and 21 nurses from two clinical settings. An inductive analysis of data was conducted to determine the learning stages experienced: awareness of clinical leadership in nursing; integration of clinical leadership in actions; active leadership with patient/family; active leadership with the team; and, embedded clinical leadership extended to organizational level and beyond. The resulting CLM could have significant impact on both basic and continuing nursing education. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A conceptual framework to design a dimensional model based on the HL7 Clinical Document Architecture.

    Science.gov (United States)

    Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L

    2014-01-01

    This paper proposes a conceptual framework to design a dimensional model based on the HL7 Clinical Document Architecture (CDA) standard. The adoption of this framework can represent a possible solution to facilitate the integration of heterogeneous information systems in a clinical data warehouse. This can simplify the Extract, Transform and Load (ETL) procedures that are considered the most time-consuming and expensive part of the data warehouse development process. The paper describes the main activities to be carried out to design the dimensional model outlining the main advantages in the application of the proposed framework. The feasibility of our approach is also demonstrated providing a case study to define clinical indicators for quality assessment.

  16. Mapping from a clinical data warehouse to the HL7 Reference Information Model.

    Science.gov (United States)

    Lyman, Jason A; Scully, Ken; Tropello, Steve; Boyd, James; Dalton, Jason; Pelletier, Sandra; Egyhazy, Csaba

    2003-01-01

    Large-scale data integration efforts to support clinical and biologic research are greatly facilitated by the adoption of standards for the representation and exchange of data. As part of a larger project to design the necessary architecture for multi-institutional sharing of disparate biomedical data, we explored the potential of the HL7 Reference Information Model (RIM) for representing the data stored in a local academic clinical data warehouse. A necessary first step in information exchange with such a warehouse is the development and utilization of tools for transforming between local data schemas and standards-based conceptual data models. We describe our initial efforts at mapping clinical concepts from a relational data warehouse to the HL7 RIM.

  17. Rainfall-runoff modelling in a catchment with a complex groundwater flow system: application of the Representative Elementary Watershed (REW) approach

    Science.gov (United States)

    Zhang, G. P.; Savenije, H. H. G.

    2005-09-01

    Based on the Representative Elementary Watershed (REW) approach, the modelling tool REWASH (Representative Elementary WAterShed Hydrology) has been developed and applied to the Geer river basin. REWASH is deterministic, semi-distributed, physically based and can be directly applied to the watershed scale. In applying REWASH, the river basin is divided into a number of sub-watersheds, so called REWs, according to the Strahler order of the river network. REWASH describes the dominant hydrological processes, i.e. subsurface flow in the unsaturated and saturated domains, and overland flow by the saturation-excess and infiltration-excess mechanisms. The coupling of surface and subsurface flow processes in the numerical model is realised by simultaneous computation of flux exchanges between surface and subsurface domains for each REW. REWASH is a parsimonious tool for modelling watershed hydrological response. However, it can be modified to include more components to simulate specific processes when applied to a specific river basin where such processes are observed or considered to be dominant. In this study, we have added a new component to simulate interception using a simple parametric approach. Interception plays an important role in the water balance of a watershed although it is often disregarded. In addition, a refinement for the transpiration in the unsaturated zone has been made. Finally, an improved approach for simulating saturation overland flow by relating the variable source area to both the topography and the groundwater level is presented. The model has been calibrated and verified using a 4-year data set, which has been split into two for calibration and validation. The model performance has been assessed by multi-criteria evaluation. This work represents a complete application of the REW approach to watershed rainfall-runoff modelling in a real watershed. The results demonstrate that the REW approach provides an alternative blueprint for physically

  18. Unintentional Interpersonal Synchronization Represented as a Reciprocal Visuo-Postural Feedback System: A Multivariate Autoregressive Modeling Approach.

    Directory of Open Access Journals (Sweden)

    Shuntaro Okazaki

    Full Text Available People's behaviors synchronize. It is difficult, however, to determine whether synchronized behaviors occur in a mutual direction--two individuals influencing one another--or in one direction--one individual leading the other, and what the underlying mechanism for synchronization is. To answer these questions, we hypothesized a non-leader-follower postural sway synchronization, caused by a reciprocal visuo-postural feedback system operating on pairs of individuals, and tested that hypothesis both experimentally and via simulation. In the behavioral experiment, 22 participant pairs stood face to face either 20 or 70 cm away from each other wearing glasses with or without vision blocking lenses. The existence and direction of visual information exchanged between pairs of participants were systematically manipulated. The time series data for the postural sway of these pairs were recorded and analyzed with cross correlation and causality. Results of cross correlation showed that postural sway of paired participants was synchronized, with a shorter time lag when participant pairs could see one another's head motion than when one of the participants was blindfolded. In addition, there was less of a time lag in the observed synchronization when the distance between participant pairs was smaller. As for the causality analysis, noise contribution ratio (NCR, the measure of influence using a multivariate autoregressive model, was also computed to identify the degree to which one's postural sway is explained by that of the other's and how visual information (sighted vs. blindfolded interacts with paired participants' postural sway. It was found that for synchronization to take place, it is crucial that paired participants be sighted and exert equal influence on one another by simultaneously exchanging visual information. Furthermore, a simulation for the proposed system with a wider range of visual input showed a pattern of results similar to the

  19. Unintentional Interpersonal Synchronization Represented as a Reciprocal Visuo-Postural Feedback System: A Multivariate Autoregressive Modeling Approach.

    Science.gov (United States)

    Okazaki, Shuntaro; Hirotani, Masako; Koike, Takahiko; Bosch-Bayard, Jorge; Takahashi, Haruka K; Hashiguchi, Maho; Sadato, Norihiro

    2015-01-01

    People's behaviors synchronize. It is difficult, however, to determine whether synchronized behaviors occur in a mutual direction--two individuals influencing one another--or in one direction--one individual leading the other, and what the underlying mechanism for synchronization is. To answer these questions, we hypothesized a non-leader-follower postural sway synchronization, caused by a reciprocal visuo-postural feedback system operating on pairs of individuals, and tested that hypothesis both experimentally and via simulation. In the behavioral experiment, 22 participant pairs stood face to face either 20 or 70 cm away from each other wearing glasses with or without vision blocking lenses. The existence and direction of visual information exchanged between pairs of participants were systematically manipulated. The time series data for the postural sway of these pairs were recorded and analyzed with cross correlation and causality. Results of cross correlation showed that postural sway of paired participants was synchronized, with a shorter time lag when participant pairs could see one another's head motion than when one of the participants was blindfolded. In addition, there was less of a time lag in the observed synchronization when the distance between participant pairs was smaller. As for the causality analysis, noise contribution ratio (NCR), the measure of influence using a multivariate autoregressive model, was also computed to identify the degree to which one's postural sway is explained by that of the other's and how visual information (sighted vs. blindfolded) interacts with paired participants' postural sway. It was found that for synchronization to take place, it is crucial that paired participants be sighted and exert equal influence on one another by simultaneously exchanging visual information. Furthermore, a simulation for the proposed system with a wider range of visual input showed a pattern of results similar to the behavioral results.

  20. Preliminary clinical nursing leadership competency model: a qualitative study from Thailand.

    Science.gov (United States)

    Supamanee, Treeyaphan; Krairiksh, Marisa; Singhakhumfu, Laddawan; Turale, Sue

    2011-12-01

    This qualitative study explored the clinical nursing leadership competency perspectives of Thai nurses working in a university hospital. To collect data, in-depth interviews were undertaken with 23 nurse administrators, and focus groups were used with 31 registered nurses. Data were analyzed using content analysis, and theory development was guided by the Iceberg model. Nurses' clinical leadership competencies emerged, comprising hidden characteristics and surface characteristics. The hidden characteristics composed three elements: motive (respect from the nursing and healthcare team and being secure in life), self-concept (representing positive attitudes and values), and traits (personal qualities necessary for leadership). The surface characteristics comprised specific knowledge of nurse leaders about clinical leadership, management and nursing informatics, and clinical skills, such as coordination, effective communication, problem solving, and clinical decision-making. The study findings help nursing to gain greater knowledge of the essence of clinical nursing leadership competencies, a matter critical for theory development in leadership. This study's results later led to the instigation of a training program for registered nurse leaders at the study site, and the formation of a preliminary clinical nursing leadership competency model.

  1. The Clinical Learning Dyad Model: An Innovation in Midwifery Education.

    Science.gov (United States)

    Cohen, Susanna R; Thomas, Celeste R; Gerard, Claudia

    2015-01-01

    There is a national shortage of women's health and primary care providers in the United States, including certified nurse-midwives and certified midwives. This shortage is directly related to how many students can be trained within the existing system. The current model of midwifery clinical training is based on apprenticeship, with one-on-one interaction between a student and preceptor. Thus, the number of newly trained midwifery providers is limited by the number of available and willing preceptors. The clinical learning dyad model (CLDM), which pairs 2 beginning midwifery students with one preceptor in a busy practice, addresses this problem. In addition, this model brings in a senior midwife student as a near-peer mentor when the students are first oriented into outpatient clinical practice. The model began as a pilot project to improve the quality of training and increase available student spots in clinical education. This article discusses the origins of the model, the specifics of its design, and the results of a midterm and one-year postintervention survey. Students and preceptors involved in this model identified several advantages to the program, including increased student accountability, enhanced socialization into the profession, improved learning, and reduced teaching burden on preceptors. An additional benefit of the CLDM is that students form a learning community and collaborate with preceptors to care for women in busy clinical settings. Challenges of the model will also be discussed. Further research is needed to evaluate the effectiveness of the CLDM. This article is part of a special series of articles that address midwifery innovations in clinical practice, education, interprofessional collaboration, health policy, and global health. © 2015 by the American College of Nurse-Midwives.

  2. A model for ethical practices in clinical phonetics and linguistics.

    Science.gov (United States)

    Powell, Thomas W

    2007-01-01

    The emergence of clinical phonetics and linguistics as an area of scientific inquiry gives rise to the need for guidelines that define ethical and responsible conduct. The diverse membership of the International Clinical Phonetics and Linguistics Association (ICPLA) and the readership of this journal are uniquely suited to consider ethical issues from diverse perspectives. Accordingly, this paper introduces a multi-tiered six-factor model for ethical practices to stimulate discussion of ethical issues.

  3. The "Commitment Model" for Clinical Ethics Consultations: Society's Involvement in the Solution of Individual Cases.

    Science.gov (United States)

    Fournier, Véronique; Spranzi, Marta; Foureur, Nicolas; Brunet, Laurence

    2015-01-01

    Several approaches to clinical ethics consultation (CEC) exist in medical practice and are widely discussed in the clinical ethics literature; different models of CECs are classified according to their methods, goals, and consultant's attitude. Although the "facilitation" model has been endorsed by the American Society for Bioethics and Humanities (ASBH) and is described in an influential manual, alternative approaches, such as advocacy, moral expertise, mediation, and engagement are practiced and defended in the clinical ethics field. Our Clinical Ethics Center in Paris was founded in 2002 in the wake of the Patients' Rights Act, and to date it is the largest center that provides consultation services in France. In this article we shall describe and defend our own approach to clinical ethics consultation, which we call the "Commitment Model," in comparison with other existing models. Indeed commitment implies, among other meanings, continuity through time, a series of coherent actions, and the realization of important social goals. By drawing on a recent consultation case, we shall describe the main steps of our consultation procedure: interviews with major stakeholders, including patients and proxies; case conferences; and follow up. We shall show why we have chosen the term "commitment" to represent our approach at three different but interrelated levels: commitment towards patients, within the case conference group, and towards society as a whole.

  4. Design of Dimensional Model for Clinical Data Storage and Analysis

    Directory of Open Access Journals (Sweden)

    Dipankar SENGUPTA

    2013-06-01

    Full Text Available Current research in the field of Life and Medical Sciences is generating chunk of data on daily basis. It has thus become a necessity to find solutions for efficient storage of this data, trying to correlate and extract knowledge from it. Clinical data generated in Hospitals, Clinics & Diagnostics centers is falling under a similar paradigm. Patient’s records in various hospitals are increasing at an exponential rate, thus adding to the problem of data management and storage. Major problem being faced corresponding to storage, is the varied dimensionality of the data, ranging from images to numerical form. Therefore there is a need for development of efficient data model which can handle this multi-dimensionality data issue and store the data with historical aspect.For the stated problem lying in façade of clinical informatics we propose a clinical dimensional model design which can be used for development of a clinical data mart. The model has been designed keeping in consideration temporal storage of patient's data with respect to all possible clinical parameters which can include both textual and image based data. Availability of said data for each patient can be then used for application of data mining techniques for finding the correlation of all the parameters at the level of individual and population.

  5. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories.

    Science.gov (United States)

    Celhar, Teja; Fairhurst, Anna-Marie

    2016-12-24

    Mouse models of SLE have been indispensable tools to study disease pathogenesis, to identify genetic susceptibility loci and targets for drug development, and for preclinical testing of novel therapeutics. Recent insights into immunological mechanisms of disease progression have boosted a revival in SLE drug development. Despite promising results in mouse studies, many novel drugs have failed to meet clinical end points. This is probably because of the complexity of the disease, which is driven by polygenic predisposition and diverse environmental factors, resulting in a heterogeneous clinical presentation. Each mouse model recapitulates limited aspects of lupus, especially in terms of the mechanism underlying disease progression. The main mouse models have been fairly successful for the evaluation of broad-acting immunosuppressants. However, the advent of targeted therapeutics calls for a selection of the most appropriate model(s) for testing and, ultimately, identification of patients who will be most likely to respond.

  6. Pre-clinical Orthotopic Murine Model of Human Prostate Cancer.

    Science.gov (United States)

    Shahryari, Varahram; Nip, Hannah; Saini, Sharanjot; Dar, Altaf A; Yamamura, Soichiro; Mitsui, Yozo; Colden, Melissa; Bucay, Nathan; Tabatabai, Laura Z; Greene, Kirsten; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir; Majid, Shahana

    2016-08-29

    To study the multifaceted biology of prostate cancer, pre-clinical in vivo models offer a range of options to uncover critical biological information about this disease. The human orthotopic prostate cancer xenograft mouse model provides a useful alternative approach for understanding the specific interactions between genetically and molecularly altered tumor cells, their organ microenvironment, and for evaluation of efficacy of therapeutic regimens. This is a well characterized model designed to study the molecular events of primary tumor development and it recapitulates the early events in the metastatic cascade prior to embolism and entry of tumor cells into the circulation. Thus it allows elucidation of molecular mechanisms underlying the initial phase of metastatic disease. In addition, this model can annotate drug targets of clinical relevance and is a valuable tool to study prostate cancer progression. In this manuscript we describe a detailed procedure to establish a human orthotopic prostate cancer xenograft mouse model.

  7. Modelling clinical systemic lupus erythematosus: similarities, differences and success stories

    Science.gov (United States)

    Celhar, Teja

    2017-01-01

    Abstract Mouse models of SLE have been indispensable tools to study disease pathogenesis, to identify genetic susceptibility loci and targets for drug development, and for preclinical testing of novel therapeutics. Recent insights into immunological mechanisms of disease progression have boosted a revival in SLE drug development. Despite promising results in mouse studies, many novel drugs have failed to meet clinical end points. This is probably because of the complexity of the disease, which is driven by polygenic predisposition and diverse environmental factors, resulting in a heterogeneous clinical presentation. Each mouse model recapitulates limited aspects of lupus, especially in terms of the mechanism underlying disease progression. The main mouse models have been fairly successful for the evaluation of broad-acting immunosuppressants. However, the advent of targeted therapeutics calls for a selection of the most appropriate model(s) for testing and, ultimately, identification of patients who will be most likely to respond. PMID:28013204

  8. Preparedness for clinical: evaluation of the core elements of the Clinical Immersion curriculum model.

    Science.gov (United States)

    Diefenbeck, Cynthia; Herrman, Judith; Wade, Gail; Hayes, Evelyn; Voelmeck, Wayne; Cowperthwait, Amy; Norris, Susan

    2015-01-01

    The Clinical Immersion Model is an innovative baccalaureate nursing curriculum that has demonstrated successful outcomes over the past 10 years. For those intending to adopt the model, individual components in isolation may prove ineffective. This article describes three core components of the curriculum that form the foundation of preparation for the senior-year clinical immersion. Detailed student-centered outcomes evaluation of these critical components is shared. Results of a mixed-methods evaluation, including surveys and focus groups, are presented. Implications of this curricular evaluation and future directions are explored.

  9. Selection of a Representative Subset of Global Climate Models that Captures the Profile of Regional Changes for Integrated Climate Impacts Assessment

    Science.gov (United States)

    Ruane, Alex C.; Mcdermid, Sonali P.

    2017-01-01

    We present the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP) to select a practical subset of global climate models (GCMs) for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry) are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.

  10. Selection of a Representative Subset of Global Climate Models that Captures the Profile of Regional Changes for Integrated Climate Impacts Assessment

    Science.gov (United States)

    Ruane, Alex C.; Mcdermid, Sonali P.

    2017-01-01

    We present the Representative Temperature and Precipitation (T&P) GCM Subsetting Approach developed within the Agricultural Model Intercomparison and Improvement Project (AgMIP) to select a practical subset of global climate models (GCMs) for regional integrated assessment of climate impacts when resource limitations do not permit the full ensemble of GCMs to be evaluated given the need to also focus on impacts sector and economics models. Subsetting inherently leads to a loss of information but can free up resources to explore important uncertainties in the integrated assessment that would otherwise be prohibitive. The Representative T&P GCM Subsetting Approach identifies five individual GCMs that capture a profile of the full ensemble of temperature and precipitation change within the growing season while maintaining information about the probability that basic classes of climate changes (relatively cool/wet, cool/dry, middle, hot/wet, and hot/dry) are projected in the full GCM ensemble. We demonstrate the selection methodology for maize impacts in Ames, Iowa, and discuss limitations and situations when additional information may be required to select representative GCMs. We then classify 29 GCMs over all land areas to identify regions and seasons with characteristic diagonal skewness related to surface moisture as well as extreme skewness connected to snow-albedo feedbacks and GCM uncertainty. Finally, we employ this basic approach to recognize that GCM projections demonstrate coherence across space, time, and greenhouse gas concentration pathway. The Representative T&P GCM Subsetting Approach provides a quantitative basis for the determination of useful GCM subsets, provides a practical and coherent approach where previous assessments selected solely on availability of scenarios, and may be extended for application to a range of scales and sectoral impacts.

  11. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models.

    Science.gov (United States)

    Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J

    2015-03-15

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model.

  12. Nonlinear and Nonparametric Stochastic Model to Represent Uncertainty of Renewable Generation in Operation and Expansion Planning Studies of Electrical Energy Systems

    Science.gov (United States)

    Martins, T. M.; Alberto, J.

    2015-12-01

    The uncertainties of wind and solar generation patterns tends to be a critical factor in operation and expansion planning studies of electrical energy systems, as these generations are highly dependent on atmospheric variables which are difficult to predict. Traditionally, the uncertainty of renewable generation has been represented through scenarios generated by autoregressive parametric models (ARMA, PAR(p), SARIMA, etc.), that have been widely used for simulating the uncertainty of inflows and electrical demand. These methods have 3 disadvantages: (i) it is assumed that the random variables can be modelled through a known probability distribution, usually Weibull, log-normal, or normal, which are not always adequate; (ii) the temporal and spatial coupling of the represented variables are generally constructed from the Pearson Correlation, strictly requiring the hypothesis of data normality, that in the case of wind and solar generation is not met; (iii) there is an exponential increase in the model complexity due to its dimensionality. This work proposes the use of a stochastic model built from the combination of a non-parametric approach of a probability density function (the kernel density estimation method) with a dynamic Bayesian network framework. The kernel density estimation method is used to obtain the probability density function of the random variables directly from historical records, eliminating the need of choosing prior distributions. The Bayesian network allows the representation of nonlinearities in the temporal coupling of the time series, since they allow reproducing a compact probability distribution of a variable, subject to preceding stages. The proposed model was used to the generate wind power scenarios in long-term operation studies of the Brazilian Electric System, in which inflows of major rivers were also represented. The results show a considerable quality gain when compared to scenarios generated by traditional approaches.

  13. ACE--Alliance for Clinical Enhancement: a collaborative model.

    Science.gov (United States)

    Poirrier, G P; Granger, M; Todaro, M

    1993-01-01

    This paper introduces an innovative collaborative model developed by nursing educators and practitioners, the Alliance for Clinical Enhancement Program (ACE), that combines components of traditional internship and extender programs. The goals of ACE are opportunities for role socialization, role transition, and role modeling for nursing students; enhancing clinical competence and provision of financial assistance to the students; increased recruitment of RN graduates by the involved hospital; and decreased RN time spent on non-nursing tasks by hospital RNs. The total development, implementation, and analysis of ACE Program is discussed.

  14. Sperm protamine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation.

    Science.gov (United States)

    Ni, Kai; Steger, Klaus; Yang, Hao; Wang, Hongxiang; Hu, Kai; Chen, Bin

    2014-07-01

    We investigated whether the sperm protamine-1/2 mRNA ratio and DNA fragmentation index are reliable biomarkers in patients with clinical varicocele. We performed a prospective study in 42 subfertile patients with left clinical varicocele and 10 normozoospermic healthy donors with proven fertility. All patients and female partners were seen 3 and 6 months after varicocelectomy for fertility examination. Real-time quantitative reverse transcriptase-polymerase chain reaction and SCSA® were performed to analyze the sperm protamine-1/2 mRNA ratio and DNA fragmentation index. The protamine-1/2 mRNA ratio and DNA fragmentation index were significantly higher in the preoperative group than in the control group (p fragmentation index was significantly lower than in the preoperative group (p fragmentation index did not differ (p >0.05). However, significant differences were present preoperatively according to varicocele severity in the protamine-1/2 mRNA ratio and DNA fragmentation index (p 0.05). The protamine-1/2 mRNA ratio was strongly related to preoperative and postoperative sperm concentration (Rs -0.238, p fragmentation index (Rs 0.293, p 0.05). The sperm protamine-1/2 mRNA ratio and DNA fragmentation index can effectively be used to evaluate male fertility. Male infertility due to varicocele may be associated with protamine deficiency and sperm DNA damage. The post-varicocelectomy protamine-1/2 mRNA ratio and DNA fragmentation index are associated with the post-varicocelectomy pregnancy rate. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Modeling Clinical Radiation Responses in the IMRT Era

    Science.gov (United States)

    Schwartz, J. L.; Murray, D.; Stewart, R. D.; Phillips, M. H.

    2014-03-01

    The purpose of this review is to highlight the critical issues of radiobiological models, particularly as they apply to clinical radiation therapy. Developing models of radiation responses has a long history that continues to the present time. Many different models have been proposed, but in the field of radiation oncology, the linear-quadratic (LQ) model has had the most impact on the design of treatment protocols. Questions have been raised as to the value of the LQ model given that the biological assumption underlying it has been challenged by molecular analyses of cell and tissue responses to radiation. There are also questions as to use of the LQ model for hypofractionation, especially for high dose treatments using a single fraction. While the LQ model might over-estimate the effects of large radiation dose fractions, there is insufficient information to fully justify the adoption of alternative models. However, there is increasing evidence in the literature that non-targeted and other indirect effects of radiation sometimes produce substantial deviations from LQ-like dose-response curves. As preclinical and clinical hypofractionation studies accumulate, new or refined dose-response models that incorporate high-dose/fraction non-targeted and indirect effects may be required, but for now the LQ model remains a simple, useful tool to guide the design of treatment protocols.

  16. An innovative model of supportive clinical teaching and learning for undergraduate nursing students: the cluster model.

    Science.gov (United States)

    Bourgeois, Sharon; Drayton, Nicola; Brown, Ann-Marie

    2011-03-01

    Students look forward to their clinical practicum to learn within the context of reality nursing. As educators we need to actively develop models of clinical practicum whereby students are supported to engage and learn in the clinical learning environment. The aim of this paper is to describe an innovative model of supportive clinical teaching and learning for undergraduate nursing students as implemented in a large teaching hospital in New South Wales, Australia. The model of supportive clinical teaching and learning situates eight students at a time, across a shift, on one ward, with an experienced registered nurse from the ward specialty, who is employed as the clinical teacher to support nursing students during their one to two week block practicum. Results from written evaluation statements inform the discussion component of the paper for a model that has proved to be successful in this large healthcare facility.

  17. Multiple sclerosis animal models: a clinical and histopathological perspective.

    Science.gov (United States)

    Kipp, Markus; Nyamoya, Stella; Hochstrasser, Tanja; Amor, Sandra

    2017-03-01

    There is a broad consensus that multiple sclerosis (MS) represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, that is, damage to axons, synapses and nerve cell bodies. While we are equipped with appropriate therapeutic options to prevent immune-cell driven relapses, effective therapeutic options to prevent the progressing neurodegeneration are still missing. In this review article, we will discuss to what extent pathology of the progressive disease stage can be modeled in MS animal models. While acute and relapsing-remitting forms of experimental autoimmune encephalomyelitis (EAE), which are T cell dependent, are aptly suited to model relapsing-remitting phases of MS, other EAE models, especially the secondary progressive EAE stage in Biozzi ABH mice is better representing the secondary progressive phase of MS, which is refractory to many immune therapies. Besides EAE, the cuprizone model is rapidly gaining popularity to study the formation and progression of demyelinating CNS lesions without T cell involvement. Here, we discuss these two non-popular MS models. It is our aim to point out the pathological hallmarks of MS, and discuss which pathological aspects of the disease can be best studied in the various animal models available.

  18. [Application of three compartment model and response surface model to clinical anesthesia using Microsoft Excel].

    Science.gov (United States)

    Abe, Eiji; Abe, Mari

    2011-08-01

    With the spread of total intravenous anesthesia, clinical pharmacology has become more important. We report Microsoft Excel file applying three compartment model and response surface model to clinical anesthesia. On the Microsoft Excel sheet, propofol, remifentanil and fentanyl effect-site concentrations are predicted (three compartment model), and probabilities of no response to prodding, shaking, surrogates of painful stimuli and laryngoscopy are calculated using predicted effect-site drug concentration. Time-dependent changes in these calculated values are shown graphically. Recent development in anesthetic drug interaction studies are remarkable, and its application to clinical anesthesia with this Excel file is simple and helpful for clinical anesthesia.

  19. Animal models of frailty: current applications in clinical research.

    Science.gov (United States)

    Kane, Alice E; Hilmer, Sarah N; Mach, John; Mitchell, Sarah J; de Cabo, Rafael; Howlett, Susan E

    2016-01-01

    The ethical, logistical, and biological complications of working with an older population of people inherently limits clinical studies of frailty. The recent development of animal models of frailty, and tools for assessing frailty in animal models provides an invaluable opportunity for frailty research. This review summarizes currently published animal models of frailty including the interleukin-10 knock-out mouse, the mouse frailty phenotype assessment tool, and the mouse clinical frailty index. It discusses both current and potential roles of these models in research into mechanisms of frailty, interventions to prevent/delay frailty, and the effect of frailty on outcomes. Finally, this review discusses some of the challenges and opportunities of translating research findings from animals to humans.

  20. Assessing biocomputational modelling in transforming clinical guidelines for osteoporosis management.

    Science.gov (United States)

    Thiel, Rainer; Viceconti, Marco; Stroetmann, Karl

    2011-01-01

    Biocomputational modelling as developed by the European Virtual Physiological Human (VPH) Initiative is the area of ICT most likely to revolutionise in the longer term the practice of medicine. Using the example of osteoporosis management, a socio-economic assessment framework is presented that captures how the transformation of clinical guidelines through VPH models can be evaluated. Applied to the Osteoporotic Virtual Physiological Human Project, a consequent benefit-cost analysis delivers promising results, both methodologically and substantially.

  1. Model Comparison for Breast Cancer Prognosis Based on Clinical Data.

    Directory of Open Access Journals (Sweden)

    Sabri Boughorbel

    Full Text Available We compared the performance of several prediction techniques for breast cancer prognosis, based on AU-ROC performance (Area Under ROC for different prognosis periods. The analyzed dataset contained 1,981 patients and from an initial 25 variables, the 11 most common clinical predictors were retained. We compared eight models from a wide spectrum of predictive models, namely; Generalized Linear Model (GLM, GLM-Net, Partial Least Square (PLS, Support Vector Machines (SVM, Random Forests (RF, Neural Networks, k-Nearest Neighbors (k-NN and Boosted Trees. In order to compare these models, paired t-test was applied on the model performance differences obtained from data resampling. Random Forests, Boosted Trees, Partial Least Square and GLMNet have superior overall performance, however they are only slightly higher than the other models. The comparative analysis also allowed us to define a relative variable importance as the average of variable importance from the different models. Two sets of variables are identified from this analysis. The first includes number of positive lymph nodes, tumor size, cancer grade and estrogen receptor, all has an important influence on model predictability. The second set incudes variables related to histological parameters and treatment types. The short term vs long term contribution of the clinical variables are also analyzed from the comparative models. From the various cancer treatment plans, the combination of Chemo/Radio therapy leads to the largest impact on cancer prognosis.

  2. Multiscale Modeling in the Clinic: Drug Design and Development.

    Science.gov (United States)

    Clancy, Colleen E; An, Gary; Cannon, William R; Liu, Yaling; May, Elebeoba E; Ortoleva, Peter; Popel, Aleksander S; Sluka, James P; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M

    2016-09-01

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multiscale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multiscale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multiscale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical and computational techniques employed for multiscale modeling approaches used in pharmacometric and systems pharmacology models in drug development and present several examples illustrating the current state-of-the-art models for (1) excitable systems and applications in cardiac disease; (2) stem cell driven complex biosystems; (3) nanoparticle delivery, with applications to angiogenesis and cancer therapy; (4) host-pathogen interactions and their use in metabolic disorders, inflammation and sepsis; and (5) computer-aided design of nanomedical systems. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multiscale models.

  3. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  4. Shared decision making: a model for clinical practice

    NARCIS (Netherlands)

    Elwyn, G.; Frosch, D.; Thomson, R.; Joseph-Williams, N.; Lloyd, A.; Kinnersley, P.; Cording, E.; Tomson, D.; Dodd, C.; Rollnick, S.; Edwards, A.; Barry, M.

    2012-01-01

    The principles of shared decision making are well documented but there is a lack of guidance about how to accomplish the approach in routine clinical practice. Our aim here is to translate existing conceptual descriptions into a three-step model that is practical, easy to remember, and can act as a

  5. Shared decision making: a model for clinical practice

    NARCIS (Netherlands)

    Elwyn, G.; Frosch, D.; Thomson, R.; Joseph-Williams, N.; Lloyd, A.; Kinnersley, P.; Cording, E.; Tomson, D.; Dodd, C.; Rollnick, S.; Edwards, A.; Barry, M.

    2012-01-01

    The principles of shared decision making are well documented but there is a lack of guidance about how to accomplish the approach in routine clinical practice. Our aim here is to translate existing conceptual descriptions into a three-step model that is practical, easy to remember, and can act as a

  6. Culturally Sensitive Dementia Caregiving Models and Clinical Practice

    Science.gov (United States)

    Daire, Andrew P.; Mitcham-Smith, Michelle

    2006-01-01

    Family caregiving for individuals with dementia is an increasingly complex issue that affects the caregivers' and care recipients' physical, mental, and emotional health. This article presents 3 key culturally sensitive caregiver models along with clinical interventions relevant for mental health counseling professionals.

  7. Predicting postoperative mortality after colorectal surgery : a novel clinical model

    NARCIS (Netherlands)

    van der Sluis, F. J.; Espin, E.; Vallribera, F.; de Bock, G. H.; Hoekstra, H. J.; van Leeuwen, B. L.; Engel, A. F.

    Aim The aim of this study was to develop and externally validate a clinically, practical and discriminative prediction model designed to estimate in-hospital mortality of patients undergoing colorectal surgery. Method All consecutive patients who underwent elective or emergency colorectal surgery

  8. Clinical laboratory as an economic model for business performance analysis.

    Science.gov (United States)

    Buljanović, Vikica; Patajac, Hrvoje; Petrovecki, Mladen

    2011-08-15

    To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by implementing changes in the next fiscal

  9. Clinical laboratory as an economic model for business performance analysis

    Science.gov (United States)

    Buljanović, Vikica; Patajac, Hrvoje; Petrovečki, Mladen

    2011-01-01

    Aim To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Methods Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. Conclusion The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by

  10. Modeling HIV Immune Response and Validation with Clinical Data

    Science.gov (United States)

    2007-03-28

    ment function u(t) (0 ≤ u(t) ≤ 1) representing HAART drug level, where u(t) = 0 is fully off and u(t) = 1 is fully on. Since HIV treatment is nearly...B.M. Adams, H.T. Banks, M. Davidian and E.S. Rosenberg, Model fitting and pre- diction with HIV treatment interruption data, CRSC-TR05-40, NCSU, October

  11. Evolution of the Model of the Clinical Practice of Emergency Medicine: 1979 to Present.

    Science.gov (United States)

    Counselman, Francis L; Beeson, Michael S; Marco, Catherine A; Adsit, Susan K; Harvey, Anne L; Keehbauch, Julia N

    2017-02-01

    The Model of the Clinical Practice of Emergency Medicine (the EM Model) is a three-dimensional representation of the clinical practice of emergency medicine. It is a product of successful collaboration involving the American Board of Emergency Medicine (ABEM), the American College of Emergency Physicians (ACEP), the Society for Academic Emergency Medicine (SAEM), the Emergency Medicine Residents' Association (EMRA), the Council of Emergency Medicine Residency Directors (CORD), the Residency Review Committee for Emergency Medicine (RRC-EM), and the American Academy of Emergency Medicine (AAEM). In 2017, the most recent update and revision of the EM Model will be published. This document will represent the culmination of nearly 40 years of evolution, from a simple listing of presenting patient complaints, clinical symptoms, and disease states into a three-dimensional representation of the clinical practice of emergency medicine. These dimensions include conditions and components, physician tasks, and patient acuity. In addition, over the years, two other documents have been developed, the Knowledge, Skills, and Abilities (KSAs) and the Emergency Medicine Milestones. Both serve as related and complementary educational and assessment tools. This article will review the development of the EM Model from its inception in 1979 to today. © 2016 by the Society for Academic Emergency Medicine.

  12. Effect of Clinical Teaching Associate Model on Nursing Students' Clinical Skills and Nurses' Satisfaction.

    Science.gov (United States)

    Rahnavard, Zahra; Eybpoosh, Sana; Alianmoghaddam, Narges

    2013-10-02

    Abstract Background and Objectives: The credit of the practice nurses in developing countries, due to gap between theory and practice in nursing education and health care delivery has been questioned by nursing professionals. Therefore, the aims of this study were to investigate the effectiveness of the application of the CTA model in nursing students' clinical skills and to assess the participants' (faculty members, staff nurses, and nursing students) level of satisfaction with the CTA model and with achieving the educational goals in Iran, as a developing country. Methods and Materials: In this experimental study, random sampling was used to assess 104 nursing students' clinical skills, and assess 6 faculty members and 6 staff nurses. After obtaining informed consent, the level of satisfaction was evaluated by a questionnaire and clinical skills were evaluated by standard checklists. Data were assessed and analyzed with SPSS version 15. Results: The results showed that the mean scores of all clinical skills of the students were significantly higher after intervention (pskills in nursing students in Iran as a developing country. Therefore, application of the method is recommended in clinical nursing education systems of such counties.

  13. Representativity of TMA studies.

    Science.gov (United States)

    Sauter, Guido

    2010-01-01

    The smaller the portion of a tumor sample that is analyzed becomes, the higher is the risk of missing important histological or molecular features that might be present only in a subset of tumor cells. Many researchers have, therefore, suggested using larger tissue cores or multiple cores from the same donor tissue to enhance the representativity of TMA studies. However, numerous studies comparing the results of TMA studies with the findings from conventional large sections have shown that all well-established associations between molecular markers and tumor phenotype or patient prognosis can be reproduced with TMAs even if only one single 0.6 mm tissue spot is analyzed. Moreover, the TMA technology has proven to be superior to large section analysis in finding new clinically relevant associations. The high number of samples that are typically included in TMA studies, and the unprecedented degree of standardization during TMA experiments and analysis often give TMA studies an edge over traditional large-section studies.

  14. Mouse models for pre-clinical drug testing in leukemia.

    Science.gov (United States)

    Bhatia, Sanil; Daschkey, Svenja; Lang, Franziska; Borkhardt, Arndt; Hauer, Julia

    2016-11-01

    The development of novel drugs which specifically target leukemic cells, with the overall aim to increase complete remission and to reduce toxicity and morbidity, is the most important prerequisite for modern leukemia treatment. In this regard, the current transition rate of potential novel drugs from bench to bedside is remarkably low. Although many novel drugs show promising data in vitro and in vivo, testing of these medications in clinical phase I trials is often sobering with intolerable toxic side effects leading to failure in FDA approval. Areas covered: In this review, the authors discuss the development of murine model generation in the context of targeted therapy development for the treatment of childhood leukemia, aiming to decrease the attrition rate of progressively complex targeted therapies ranging from small molecules to cell therapy. As more complex therapeutic approaches develop, more complex murine models are needed, to recapitulate closely the human phenotype. Expert opinion: Combining xenograft models for efficacy testing and GEMMs for toxicity testing will be a global approach for pre-clinical testing of complex therapeutics and will contribute to the clinical approval of novel compounds. Finally, this approach is likely to increase clinical approval of novel compounds.

  15. Clinical states model for biomarkers in bladder cancer.

    Science.gov (United States)

    Apolo, Andrea B; Milowsky, Matthew; Bajorin, Dean F

    2009-09-01

    Bladder cancer is a significant healthcare problem in the USA, with a high recurrence rate, the need for expensive continuous surveillance and limited treatment options for patients with advanced disease. Research has contributed to an understanding of the molecular pathways involved in the development and progression of bladder cancer, and that understanding has led to the discovery of potentially diagnostic, predictive and prognostic biomarkers. In this review, a clinical states model of bladder cancer is introduced and integrated into a paradigm for biomarker development. Biomarkers are systematically incorporated with predefined end points to aid in clinical management.

  16. Multiscale Modeling in the Clinic: Drug Design and Development

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, Colleen E.; An, Gary; Cannon, William R.; Liu, Yaling; May, Elebeoba E.; Ortoleva, Peter; Popel, Aleksander S.; Sluka, James P.; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M.

    2016-02-17

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.

  17. CDC25A Protein Stability Represents a Previously Unrecognized Target of HER2 Signaling in Human Breast Cancer: Implication for a Potential Clinical Relevance in Trastuzumab Treatment

    Directory of Open Access Journals (Sweden)

    Emanuela Brunetto

    2013-06-01

    Full Text Available The CDC25A-CDK2 pathway has been proposed as critical for the oncogenic action of human epidermal growth factor receptor 2 (HER2 in mammary epithelial cells. In particular, transgenic expression of CDC25A cooperates with HER2 in promoting mammary tumors, whereas CDC25A hemizygous loss attenuates the HER2-induced tumorigenesis penetrance. On the basis of this evidence of a synergism between HER2 and the cell cycle regulator CDC25A in a mouse model of mammary tumorigenesis, we investigated the role of CDC25A in human HER2-positive breast cancer and its possible implications in therapeutic response. HER2 status and CDC25A expression were assessed in 313 breast cancer patients and we found statistically significant correlation between HER2 and CDC25A (P = .007. Moreover, an HER2-positive breast cancer subgroup with high levels of CDC25A and very aggressive phenotype was identified (P = .005. Importantly, our in vitro studies on breast cancer cell lines showed that the HER2 inhibitor efficacy on cell growth and viability relied also on CDC25A expression and that such inhibition induces CDC25A down-regulation through phosphatidylinositol 3-kinase/protein kinase B pathway and DNA damage response activation. In line with this observation, we found a statistical significant association between CDC25A overexpression and trastuzumab-combined therapy response rate in two different HER2-positive cohorts of trastuzumab-treated patients in either metastatic or neoadjuvant setting (P = .018 for the metastatic cohort and P = .021 for the neoadjuvant cohort. Our findings highlight a link between HER2 and CDC25A that positively modulates HER2- targeted therapy response, suggesting that, in HER2-positive breast cancer patients, CDC25A overexpression affects trastuzumab sensitivity.

  18. CDC25A Protein Stability Represents a Previously Unrecognized Target of HER2 Signaling in Human Breast Cancer: Implication for a Potential Clinical Relevance in Trastuzumab Treatment1

    Science.gov (United States)

    Brunetto, Emanuela; Ferrara, Anna Maria; Rampoldi, Francesca; Talarico, Anna; Cin, Elena Dal; Grassini, Greta; Spagnuolo, Lorenzo; Sassi, Isabella; Ferro, Antonella; Cuorvo, Lucia Veronica; Barbareschi, Mattia; Piccinin, Sara; Maestro, Roberta; Pecciarini, Lorenza; Doglioni, Claudio; Cangi, Maria Giulia

    2013-01-01

    The CDC25A-CDK2 pathway has been proposed as critical for the oncogenic action of human epidermal growth factor receptor 2 (HER2) in mammary epithelial cells. In particular, transgenic expression of CDC25A cooperates with HER2 in promoting mammary tumors, whereas CDC25A hemizygous loss attenuates the HER2-induced tumorigenesis penetrance. On the basis of this evidence of a synergism between HER2 and the cell cycle regulator CDC25A in a mouse model of mammary tumorigenesis, we investigated the role of CDC25A in human HER2-positive breast cancer and its possible implications in therapeutic response. HER2 status and CDC25A expression were assessed in 313 breast cancer patients and we found statistically significant correlation between HER2 and CDC25A (P = .007). Moreover, an HER2-positive breast cancer subgroup with high levels of CDC25A and very aggressive phenotype was identified (P = .005). Importantly, our in vitro studies on breast cancer cell lines showed that the HER2 inhibitor efficacy on cell growth and viability relied also on CDC25A expression and that such inhibition induces CDC25A down-regulation through phosphatidylinositol 3-kinase/protein kinase B pathway and DNA damage response activation. In line with this observation, we found a statistical significant association between CDC25A overexpression and trastuzumab-combined therapy response rate in two different HER2-positive cohorts of trastuzumab-treated patients in either metastatic or neoadjuvant setting (P = .018 for the metastatic cohort and P = .021 for the neoadjuvant cohort). Our findings highlight a link between HER2 and CDC25A that positively modulates HER2-targeted therapy response, suggesting that, in HER2-positive breast cancer patients, CDC25A overexpression affects trastuzumab sensitivity. PMID:23730206

  19. A NEW MODEL AND IMPROVED CABLE FUNCTION FOR REPRESENTING THE ACTIVATING PERIPHERAL NERVES BY A TRANSVERSE ELECTRIC FIELD DURING MAGNETIC STIMULATION

    Institute of Scientific and Technical Information of China (English)

    Yu Hui; Zheng Chongxun; Wang Haiyan; Wang Yi

    2005-01-01

    Objective Previous studies of peripheral nerves activation during magnetic stimulation have focused almost exclusively on the cause of high external parallel electric field along the nerves, whereas the effect of the transverse component has been ignored. In the present paper, the classical cable function is modified to represent the excitation of peripheral nerves stimulated by a transverse electric field during magnetic stimulation. Methods Responses of the Ranvier nodes to a transverse-field are thoroughly investigated by mathematic simulation. Results The simulation demonstrates that the excitation results from the net inward current driven by an external field. Based on a two-stage process, a novel model is introduced to describe peripheral nerves stimulated by a transverse-field. Based on the new model, the classical cable function is modified. Conclusion Using this modified cable equation, the excitation threshold of peripheral nerves in a transverse field during MS is obtained. The modified cable equation can be used to represent the response of peripheral nerves by an arbitrary electric field.

  20. A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

    Science.gov (United States)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-12-01

    The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large-scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical-abuse-induced short circuit. In this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneously coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describe the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cells under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.

  1. The Assessment of Patient Clinical Outcome: Advantages, Models, Features of an Ideal Model

    Directory of Open Access Journals (Sweden)

    Mou’ath Hourani

    2016-06-01

    Full Text Available Background: The assessment of patient clinical outcome focuses on measuring various aspects of the health status of a patient who is under healthcare intervention. Patient clinical outcome assessment is a very significant process in the clinical field as it allows health care professionals to better understand the effectiveness of their health care programs and thus for enhancing the health care quality in general. It is thus vital that a high quality, informative review of current issues regarding the assessment of patient clinical outcome should be conducted. Aims & Objectives: 1 Summarizes the advantages of the assessment of patient clinical outcome; 2 reviews some of the existing patient clinical outcome assessment models namely: Simulation, Markov, Bayesian belief networks, Bayesian statistics and Conventional statistics, and Kaplan-Meier analysis models; and 3 demonstrates the desired features that should be fulfilled by a well-established ideal patient clinical outcome assessment model. Material & Methods: An integrative review of the literature has been performed using the Google Scholar to explore the field of patient clinical outcome assessment. Conclusion: This paper will directly support researchers, clinicians and health care professionals in their understanding of developments in the domain of the assessment of patient clinical outcome, thus enabling them to propose ideal assessment models.

  2. A model for preparing faculty to teach model C clinical nurse leader students.

    Science.gov (United States)

    Webb, Sherry; McKeon, Leslie

    2014-07-01

    Model C clinical nurse leader (CNL) programs are complex because they must meet the The Essentials of Baccalaureate Education for Professional Nursing Practice and The Essentials of Master's Education in Nursing, as well as the graduate level competencies outlined in the white paper Competencies and Curricular Expectations for Clinical Nurse Leader Education and Practice. Faculty assigned to teach in these programs may be experts in education or areas of clinical specialty, but they may not have a clear understanding of the CNL role to teach and mentor CNL students. This article describes a faculty development model that includes an introduction to the CNL role, course mapping of the essentials, integration of CNL professional values into clinical evaluation, consultation with practicing model C graduates, and participation in a comprehensive CNL certification review course. The model was effective in preparing faculty to teach and mentor students in a model C CNL program.

  3. Model-Driven Paediatric Cardiomyopathy Pathways - A Clinical Impact Assessment.

    Science.gov (United States)

    Stroetmann, Karl A; Thiel, Rainer

    2017-01-01

    Intermediate results from an ongoing health technology assessment exercise of a simulation model of paediatric cardiomyopathy are reported. Comprehensive data on paediatric cardiomyopathy/heart failure, treatment options, incidence and prevalence, prognoses for different outcomes to be expected were collected. Based on this knowledge, a detailed clinical pathway model was developed and validated against the clinical workflow in a tertiary paediatric care hospital. It combines three disease stages and various treatment options with estimates of the probabilities of a child moving from one stage to another. To reflect the complexity of initial decision taking by clinicians, a three-stage Markov model was combined with a decision tree approach - a Markov decision process. A Markov Chain simulation tool was applied to compare estimates of transition probabilities and cost data of present standard of care treatment options for a cohort of children over ten years with expected improvements from using a clinical decision support tool based on the disease model under development. Early results indicate a slight increase of overall costs resulting from the extra cost of using such a tool in spite of some savings to be expected from improved care. However, the intangible benefits in life years saved of severely ill children and the improvement in QoL to be expected for moderately ill ones should more than compensate for this.

  4. Exploiting missing clinical data in Bayesian network modeling for predicting medical problems.

    Science.gov (United States)

    Lin, Jau-Huei; Haug, Peter J

    2008-02-01

    When machine learning algorithms are applied to data collected during the course of clinical care, it is generally accepted that the data has not been consistently collected. The absence of expected data elements is common and the mechanism through which a data element is missing often involves the clinical relevance of that data element in a specific patient. Therefore, the absence of data may have information value of its own. In the process of designing an application intended to support a medical problem list, we have studied whether the "missingness" of clinical data can provide useful information in building prediction models. In this study, we experimented with four methods of treating missing values in a clinical data set-two of them explicitly model the absence or "missingness" of data. Each of these data sets were used to build four different kinds of Bayesian classifiers-a naive Bayes structure, a human-composed network structure, and two networks based on structural learning algorithms. We compared the performance between groups with and without explicit models of missingness using the area under the ROC curve. The results showed that in most cases the classifiers trained using the explicit missing value treatments performed better. The result suggests that information may exist in "missingness" itself. Thus, when designing a decision support system, we suggest one consider explicitly representing the presence/absence of data in the underlying logic.

  5. External model validation of binary clinical risk prediction models in cardiovascular and thoracic surgery.

    Science.gov (United States)

    Hickey, Graeme L; Blackstone, Eugene H

    2016-08-01

    Clinical risk-prediction models serve an important role in healthcare. They are used for clinical decision-making and measuring the performance of healthcare providers. To establish confidence in a model, external model validation is imperative. When designing such an external model validation study, thought must be given to patient selection, risk factor and outcome definitions, missing data, and the transparent reporting of the analysis. In addition, there are a number of statistical methods available for external model validation. Execution of a rigorous external validation study rests in proper study design, application of suitable statistical methods, and transparent reporting.

  6. Representative composition of the Murray Formation, Gale Crater, Mars, as refined through modeling utilizing Alpha Particle X-ray Spectrometer observations

    Science.gov (United States)

    VanBommel, Scott; Gellert, Ralf; Berger, Jeff; Desouza, Elstan; O'Connell-Cooper, Catherine; Thompson, Lucy; Boyd, Nicholas

    2017-04-01

    The Murray formation[1] in Gale Crater is distinctly characterized by depleted MgO and CaO, an elevated Fe/Mn ratio, and enrichments in SiO2, K2O, and Ge, compared to average Mars. Supported by observations with Curiosity's Alpha Particle X-ray Spectrometer[2], this pattern is consistent over several kilometers. However, intermixed dust, Ca-, and Mg-sulfates introduce chemical heterogeneities into the APXS field of view. Better constraints on the composition of what is characteristic of the Murray formation is achieved by applying a least-squares deconvolution[3] to a selection of APXS Murray targets. We subtract the composition of known additions (dust[4], MgSO4, CaSO4) to derive a more-representative Murray composition. Slight variations within Murray are then probed by modeling each target as a mixture of dust, sulfates and the derived representative Murray. The derived composition for what is representative of Murray has several key deviations from the straightforward average of Murray targets. The subtraction of known dust, Mg-, and Ca-sulfate additions suggests further depletion in MgO and CaO in Murray and also suggests a significant decrease in SO3 concentration compared to the average of Murray targets. While veins and concretions are contaminants when considering the composition of the bulk rock, the subtraction of Mg- or Ca-sulfate is independent of sulfate form. Sulfates within the bulk rock (detrital or cements) have been observed in the Murray formation. These sulfates are important and discussed further in [5]. Modeling APXS Murray targets as a mixture of dust, MgSO4, CaSO4, and representative Murray, provides insight into potential subtle variations within the surprisingly consistent Murray formation. For example, the high SiO2 in Buckskin, (sol 1057-1091) is not simply a mixture of representative Murray with sulfates and dust. The elevated Ni (and MgSO4) of Morrison (sol ˜775), the elevated Al2O3 of Mojave (sol ˜800-900), and the gradually

  7. Using Satellite Data to Represent Tropical Instability Waves (TIWs-Induced Wind for Ocean Modeling: A Negative Feedback onto TIW Activity in the Pacific

    Directory of Open Access Journals (Sweden)

    Jinzhong Min

    2013-05-01

    Full Text Available Recent satellite data and modeling studies indicate a pronounced role Tropical Instability Waves (TIW-induced wind feedback plays in the tropical Pacific climate system. Previously, remotely sensed data were used to derive a diagnostic model for TIW-induced wind stress perturbations (τTIW, which was embedded into an ocean general circulation model (OGCM to take into account TIW-induced ocean-atmosphere coupling in the tropical Pacific. While the previous paper by Zhang (2013 is concerned with the effect on the mean ocean state, the present paper is devoted to using the embedded system to examine the effects on TIW activity in the ocean, with τTIW being interactively determined from TIW-scale sea surface temperature (SSTTIW fields generated in the OGCM, written as τTIW = αTIW·F(SSTTIW, where αTIW is a scalar parameter introduced to represent the τTIW forcing intensity. Sensitivity experiments with varying αTIW (representing TIW-scale wind feedback strength are performed to illustrate a negative feedback induced by TIW-scale air-sea coupling and its relationship with TIW variability in the ocean. Consistent with previous modeling studies, TIW wind feedback tends to have a damping effect on TIWs in the ocean, with a general inverse relationship between the τTIW intensity and TIWs. It is further shown that TIW-scale coupling does not vary linearly with αTIW: the coupling increases linearly with intensifying τTIW forcing at low values of αTIW (in a weak τTIW forcing regime; it becomes saturated at a certain value of αTIW; it decreases when αTIW goes above a threshold value as the τTIW forcing increases further. This work presents a clear demonstration of using satellite data to effectively represent TIW-scale wind feedback and its multi-scale interactions with large-scale ocean processes in the tropical Pacific.

  8. Body circumferences: clinical implications emerging from a new geometric model

    Directory of Open Access Journals (Sweden)

    Gallagher Dympna

    2008-10-01

    Full Text Available Abstract Background Body volume expands with the positive energy balance associated with the development of adult human obesity and this "growth" is captured by two widely used clinical metrics, waist circumference and body mass index (BMI. Empirical correlations between circumferences, BMI, and related body compartments are frequently reported but fail to provide an important common conceptual foundation that can be related to key clinical observations. A two-phase program was designed to fill this important gap: a geometric model linking body volume with circumferences and BMI was developed and validated in cross-sectional cohorts; and the model was applied to the evaluation of longitudinally monitored subjects during periods of voluntary weight loss. Concepts emerging from the developed model were then used to examine the relations between the evaluated clinical measures and body composition. Methods Two groups of healthy adults (n = 494 and 1499 were included in the cross-sectional model development/testing phase and subjects in two previous weight loss studies were included in the longitudinal model evaluation phase. Five circumferences (arm, waist, hip, thigh, and calf; average of sum, C, height (H, BMI, body volume (V; underwater weighing, and the volumes of major body compartments (whole-body magnetic resonance imaging were measured. Results The evaluation of a humanoid geometric model based a cylinder confirmed that V derived from C and H was highly correlated with measured V [R2 both males and females, 0.97; p 0.5. The scaling of individual circumferences to V/H varied, with waist the highest (V/H~0.6 and calf the lowest (V/H~0.3, indicating that the largest and smallest between-subject "growth" with greater body volume occurs in the abdominal area and lower extremities, respectively. A stepwise linear regression model including all five circumferences2 showed that each contributed independently to V/H. These cross

  9. Global kinetic rate parameters for the formation of polycyclic aromatic hydrocarbons from the pyrolyis of catechol, a model compound representative of solid fuel moieties

    Energy Technology Data Exchange (ETDEWEB)

    E.B. Ledesma; N.D. Marsh; A.K. Sandrowitz; M.J. Wornat [Princeton University, Princeton, NJ (United States). Department of Mechanical and Aerospace Engineering

    2002-12-01

    To obtain kinetic parameters on PAH formation relevant to solid fuels combustion, pyrolysis experiments have been conducted with catechol, a model fuel representing entities in coal and biomass. Catechol pyrolysis experiments were performed in a tubular-flow reactor at temperatures of 500-1000{sup o}C and at a residence time of 0.4 s. PAH products were identified and quantified by high-pressure liquid chromatography with ultraviolet-visible diode-array detection and by gas chromatography with flame ionization and mass spectrometric detection. A pseudo-unimolecular reaction kinetic model was used to model the experimental yield/temperature data of 15 individual aromatics and of combinations of PAH grouped by structural class and ring-number. The modeling of the individual species' yields showed that the pseudo-unimolecular model agreed very well with the experimental data. E{sub a} values ranged from 50 to 110 kcal mol{sup -1}, generally increasing as the size of the aromatic product increased from one to five aromatic rings. The pseudo-unimolecular model also performed well in modeling the experimental yields of PAH grouped by structural class and ring number. The global kinetic analysis results for PAH grouped by ring number revealed that E{sub a} values increased in the following order: 2-ring {lt} 3-ring {lt} 4-ring {lt} 5-ring {lt} 6-ring. Their yields followed the reverse order: 2-ring {lt} 3-ring {lt} 4-ring {lt} 5-ring {lt} 6-ring. These trends of increasing E{sub a} and decreasing yield, as ring number is increased, are consistent with a mechanism for PAH growth involving successive ring buildup reactions. 39 refs., 6 figs., 3 tabs.

  10. [Clinical research XX. From clinical judgment to multiple logistic regression model].

    Science.gov (United States)

    Berea-Baltierra, Ricardo; Rivas-Ruiz, Rodolfo; Pérez-Rodríguez, Marcela; Palacios-Cruz, Lino; Moreno, Jorge; Talavera, Juan O

    2014-01-01

    The complexity of the causality phenomenon in clinical practice implies that the result of a maneuver is not solely caused by the maneuver, but by the interaction among the maneuver and other baseline factors or variables occurring during the maneuver. This requires methodological designs that allow the evaluation of these variables. When the outcome is a binary variable, we use the multiple logistic regression model (MLRM). This multivariate model is useful when we want to predict or explain, adjusting due to the effect of several risk factors, the effect of a maneuver or exposition over the outcome. In order to perform an MLRM, the outcome or dependent variable must be a binary variable and both categories must mutually exclude each other (i.e. live/death, healthy/ill); on the other hand, independent variables or risk factors may be either qualitative or quantitative. The effect measure obtained from this model is the odds ratio (OR) with 95 % confidence intervals (CI), from which we can estimate the proportion of the outcome's variability explained through the risk factors. For these reasons, the MLRM is used in clinical research, since one of the main objectives in clinical practice comprises the ability to predict or explain an event where different risk or prognostic factors are taken into account.

  11. Task Analytic Models to Guide Analysis and Design: Use of the Operator Function Model to Represent Pilot-Autoflight System Mode Problems

    Science.gov (United States)

    Degani, Asaf; Mitchell, Christine M.; Chappell, Alan R.; Shafto, Mike (Technical Monitor)

    1995-01-01

    Task-analytic models structure essential information about operator interaction with complex systems, in this case pilot interaction with the autoflight system. Such models serve two purposes: (1) they allow researchers and practitioners to understand pilots' actions; and (2) they provide a compact, computational representation needed to design 'intelligent' aids, e.g., displays, assistants, and training systems. This paper demonstrates the use of the operator function model to trace the process of mode engagements while a pilot is controlling an aircraft via the, autoflight system. The operator function model is a normative and nondeterministic model of how a well-trained, well-motivated operator manages multiple concurrent activities for effective real-time control. For each function, the model links the pilot's actions with the required information. Using the operator function model, this paper describes several mode engagement scenarios. These scenarios were observed and documented during a field study that focused on mode engagements and mode transitions during normal line operations. Data including time, ATC clearances, altitude, system states, and active modes and sub-modes, engagement of modes, were recorded during sixty-six flights. Using these data, seven prototypical mode engagement scenarios were extracted. One scenario details the decision of the crew to disengage a fully automatic mode in favor of a semi-automatic mode, and the consequences of this action. Another describes a mode error involving updating aircraft speed following the engagement of a speed submode. Other scenarios detail mode confusion at various phases of the flight. This analysis uses the operator function model to identify three aspects of mode engagement: (1) the progress of pilot-aircraft-autoflight system interaction; (2) control/display information required to perform mode management activities; and (3) the potential cause(s) of mode confusion. The goal of this paper is twofold

  12. The use of artificial neural network modeling to represent the process of concentration by molecular distillation of omega-3 from squid oil

    Directory of Open Access Journals (Sweden)

    Rossi, P.

    2014-12-01

    Full Text Available The concentration of omega-3 compounds obtained for the esterification of squid oil by molecular distillation was carried out in two stages. This operation can process these thermolabile and high molecular weight components at very low temperatures. Given the mathematical complexity of the theoretical model, artificial neural networks (ANN have provided an alternative to a classical computing analysis. The objective of this study was to create a predictive model using artificial neural network techniques to represent the concentration process of omega-3 compounds obtained from squid oil using molecular distillation. Another objective of this study was to analyze the performance of two different alternatives of ANN modeling; one of them is a model that represents all variables in the process and the other is a global model that simulates only the input and output variables of the process. The alternative of the ANN global model showed the best fit to the experimental data.La concentración de compuestos omega-3, obtenidos de la esterificación de aceite de calamar, por destilación molecular fue llevada a cabo en dos etapas. Esta operación permite procesar componentes termolábiles y de alto peso molecular a muy bajas temperaturas. Dada la alta complejidad de los modelos teóricos, las redes neuronales artificiales (RNA conforman una alternativa al análisis computacional clásico. El objetivo de este estudio fue crear un modelo predictivo usando modelos de redes neuronales artificiales para representar el proceso de concentración de compuestos omega-3 obtenidos del aceite de calamar por destilación molecular. Otro objetivo de este estudio fue analizar el desenvolvimiento de dos alternativas de modelos RNA; uno de ellos es un modelo que representa todas las variables en el proceso y otro es un modelo global que simula solo las variables de entrada y de salida del proceso. La alternativa de un modelo RNA global mostró el mejor ajuste de los

  13. Bayesian hierarchical modeling for detecting safety signals in clinical trials.

    Science.gov (United States)

    Xia, H Amy; Ma, Haijun; Carlin, Bradley P

    2011-09-01

    Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.

  14. Computational modeling as part of alternative testing strategies in the respiratory and cardiovascular systems: inhaled nanoparticle dose modeling based on representative aerosol measurements and corresponding toxicological analysis.

    Science.gov (United States)

    Pilou, Marika; Mavrofrydi, Olga; Housiadas, Christos; Eleftheriadis, Kostas; Papazafiri, Panagiota

    2015-05-01

    The objectives of modeling in this work were (a) the integration of two existing numerical models in order to connect external exposure to nanoparticles (NPs) with internal dose through inhalation, and (b) to use computational fluid-particle dynamics (CFPD) to analyze the behavior of NPs in the respiratory and the cardiovascular system. Regarding the first objective, a lung transport and deposition model was combined with a lung clearance/retention model to estimate NPs dose in the different regions of the human respiratory tract and some adjacent tissues. On the other hand, CFPD was used to estimate particle transport and deposition of particles in a physiologically based bifurcation created by the third and fourth lung generations (respiratory system), as well as to predict the fate of super-paramagnetic particles suspended in a liquid under the influence of an external magnetic field (cardiovascular system). All the above studies showed that, with proper refinement, the developed computational models and methodologies may serve as an alternative testing strategy, replacing transport/deposition experiments that are expensive both in time and resources and contribute to risk assessment.

  15. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM: a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs

    Directory of Open Access Journals (Sweden)

    R. Pavlick

    2013-06-01

    Full Text Available Terrestrial biosphere models typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical plant functional types (PFTs. There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM as a new approach to terrestrial biosphere modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs. JeDi-DGVM simulates the performance of a large number of randomly generated plant growth strategies, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a strategy is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other strategies. The biogeochemical fluxes and land surface properties of the individual strategies are aggregated to the grid-cell scale using a mass-based weighting scheme. We evaluate the simulated global biogeochemical patterns against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favourably with other state-of-the-art global vegetation models. We also evaluate the simulated patterns of functional diversity and the sensitivity of the JeDi-DGVM modelling approach to the number of sampled strategies. Altogether, the results demonstrate the

  16. Comparison of Family Clinic Community Health Service Model with State-owned Community Health Service Model

    Institute of Scientific and Technical Information of China (English)

    万方荣; 卢祖洵; 张金隆

    2002-01-01

    Summary: Based on a survey of community health service organization in several cities, communi-ty health service model based on the family clinic was compared with state-owned communityhealth service model, and status quo, advantages and problems of family community health serviceorganization were analyzed. Furthermore, policies for the management of community health ser-vice organization based on the family clinic were put forward.

  17. Representing Uncertainty by Probability and Possibility

    DEFF Research Database (Denmark)

    Uncertain parameters in modeling are usually represented by probability distributions reflecting either the objective uncertainty of the parameters or the subjective belief held by the model builder. This approach is particularly suited for representing the statistical nature or variance of uncer......Uncertain parameters in modeling are usually represented by probability distributions reflecting either the objective uncertainty of the parameters or the subjective belief held by the model builder. This approach is particularly suited for representing the statistical nature or variance...

  18. Representing Uncertainty by Probability and Possibility

    DEFF Research Database (Denmark)

    Uncertain parameters in modeling are usually represented by probability distributions reflecting either the objective uncertainty of the parameters or the subjective belief held by the model builder. This approach is particularly suited for representing the statistical nature or variance of uncer......Uncertain parameters in modeling are usually represented by probability distributions reflecting either the objective uncertainty of the parameters or the subjective belief held by the model builder. This approach is particularly suited for representing the statistical nature or variance...

  19. Clinical information modeling processes for semantic interoperability of electronic health records: systematic review and inductive analysis.

    Science.gov (United States)

    Moreno-Conde, Alberto; Moner, David; Cruz, Wellington Dimas da; Santos, Marcelo R; Maldonado, José Alberto; Robles, Montserrat; Kalra, Dipak

    2015-07-01

    This systematic review aims to identify and compare the existing processes and methodologies that have been published in the literature for defining clinical information models (CIMs) that support the semantic interoperability of electronic health record (EHR) systems. Following the preferred reporting items for systematic reviews and meta-analyses systematic review methodology, the authors reviewed published papers between 2000 and 2013 that covered that semantic interoperability of EHRs, found by searching the PubMed, IEEE Xplore, and ScienceDirect databases. Additionally, after selection of a final group of articles, an inductive content analysis was done to summarize the steps and methodologies followed in order to build CIMs described in those articles. Three hundred and seventy-eight articles were screened and thirty six were selected for full review. The articles selected for full review were analyzed to extract relevant information for the analysis and characterized according to the steps the authors had followed for clinical information modeling. Most of the reviewed papers lack a detailed description of the modeling methodologies used to create CIMs. A representative example is the lack of description related to the definition of terminology bindings and the publication of the generated models. However, this systematic review confirms that most clinical information modeling activities follow very similar steps for the definition of CIMs. Having a robust and shared methodology could improve their correctness, reliability, and quality. Independently of implementation technologies and standards, it is possible to find common patterns in methods for developing CIMs, suggesting the viability of defining a unified good practice methodology to be used by any clinical information modeler. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Animal models of chronic wound care: the application of biofilms in clinical research

    Directory of Open Access Journals (Sweden)

    Trøstrup H

    2016-11-01

    Full Text Available Hannah Trøstrup,1 Kim Thomsen,1 Henrik Calum,2 Niels Høiby,1,3 Claus Moser1 1Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, 2Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, 3Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark Abstract: Chronic wounds are a substantial clinical problem affecting millions of people worldwide. Pathophysiologically, chronic wounds are stuck in the inflammatory state of healing. The role of bacterial biofilms in suppression and perturbation of host response could be an explanation for this observation. An inhibiting effect of bacterial biofilms on wound healing is gaining significant clinical attention over the last few years. There is still a paucity of suitable animal models to recapitulate human chronic wounds. The etiology of the wound (venous insufficiency, ischemia, diabetes, pressure has to be taken into consideration as underlying pathophysiological mechanisms and comorbidities display tremendous variation in humans. Confounders such as infection, smoking, chronological age, sex, medication, metabolic disturbances, and renal impairment add to the difficulty in gaining systematic and comparable studies on nonhealing wounds. Relevant hypotheses based on clinical or in vitro observations can be tested in representative animal models, which provide crucial tools to uncover the pathophysiology of cutaneous skin repair in infectious environments. Disposing factors, species of the infectious agent(s, and time of establishment of the infection are well defined in suitable animal models. In addition, several endpoints can be involved for evaluation. Animals do not display chronic wounds in the way that humans do. However, in many cases, animal models can mirror the pathological conditions observed in humans, although discrepancies between human and animal wound repair are obvious. The use of animal models should

  1. PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Conder; Richard Skifton; Ralph Budwig

    2012-11-01

    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was found that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.

  2. Study of Clinical Practical Model of Urinary System Injury

    Directory of Open Access Journals (Sweden)

    Gang Li

    2015-01-01

    Full Text Available Background: In order to improve the clinical treatment level of urinary system injury, it is necessary to build up an animal model of urinary system wound, which is not only analogous to real clinical practice, but also simple and practical. Methods: We have developed the third generation of firearm fragment wound generator based on the first and the second producer. The best explosive charge of the blank cartridge was selected by gradient powder loading experiments. The firearm fragment injuries were made to the bulbous urethra of 10 New Zealand male rabbits. One week preoperatively and 2, 4 and 8 weeks postoperatively, all the animals underwent urethroscopy and urethrography. At 2, 4 and 8 weeks postoperatively, two animals were randomly selected and killed, and the urethra was cut off for pathological examination. Results: The shooting distance of the third generation of firearm fragment wound generator is 2 cm. The best explosive charge of the blank cartridge is 1 g of nitrocotton. All rabbits survived the procedures and stayed alive until they were killed. Injuries were limited to bulbous urethra and distal urethra. Round damaged areas, 1-1.5 cm in length, on the ventral wall were observed. Ureteroscopy results showed that canal diameter gradually shrank by over 50% in 9 rabbits. The rate of success was 90%. Urethrography result noted that a 1-1.3 cm stricture was formed at the bulbous urethra. Histology results of injured stricture urethra showed that fibrous connective tissue hyperplasia and hyaline degeneration caused further stricture in the canal. Conclusions: The third generation of firearm fragment wound generator imitates the bullet firing process and is more accurate and repeatable. The corresponding rabbit model of traumatic complex urethral stricture simulates the real complex clinical conditions. This animal model provides a standardized platform for clinical researches on treating traumatic injuries to the urinary system.

  3. A study of representativeness of subjects in clinical trials of antidepressants in China%抗抑郁药临床试验中受试者样本代表性研究

    Institute of Scientific and Technical Information of China (English)

    田腾飞; 肖乐; 胡昌清; 耿莹; 冯媛; 丰雷; 杨蕊; 王刚

    2015-01-01

    Objective To investigate the representativeness of patients participating in clinical trials of antidepressants in China,and explore factors that affect the representativeness of sample.Methods Outpatients or inpatients with major depressive disorder(MDD) who came to depression treatment center of Beijing Anding Hospital,Capital Medical University seeking for treatment were consecutively screened.The MINI-International Neuropsychiatric Interview and the HAMD17 were used for diagnostic assessment and severity evaluating.A questionnaire was designed to investigate patients' willingness to participate in drug clinical trials.Common exclusion criteria used in clinical trials of antidepressants were applied to screen MDD patients to determin the proportion of patients who would be eligible for a clinical trial.Results 302 patients were consecutively screened and 50 of them rejected our interview.Data were collected from 252 patients,whose mean age was (40.5 ± 13.1) years when being screened,including 173 female and 79 male,203 outpatients and 49 inpatients.57.5% (145/252)of the patients had no willing to participate in clinical trials,and 73.8% (186/252) were excluded by at least one exclusion.There were only 35 (13.9%,35/252) patients who were finally eligible to participate in clinical trials.Conclusions Subjects participated in antidepressant trials represent a minority of patients with MDD in clinical practice.Exclusion criteria and patients' willingness to participate in a drug clinical trial are two main factors affecting the representativeness of sample.%目的 调查国内抗抑郁药临床试验中受试者样本代表性的现状,探讨影响样本代表性的因素.方法 连续筛查就诊于首都医科大学附属北京安定医院抑郁症治疗中心门诊或住院的抑郁症患者,使用MINI定式化访谈工具确定诊断,采用HAMD17评估患者抑郁症状的严重程度,设计问卷调查患者参与药物临床试验的意愿.根据抗抑

  4. Simple clinical variables predict liver histology in hepatitis C: prospective validation of a clinical prediction model.

    Science.gov (United States)

    Romagnuolo, Joseph; Andrews, Christopher N; Bain, Vincent G; Bonacini, Maurizio; Cotler, Scott J; Ma, Mang; Sherman, Morris

    2005-11-01

    A recent single-center multivariate analysis of hepatitis C (HCV) patients showed that having any two criteria: 1) ferritin > or =200 microg/l and 2) spider nevi and/or albumin clinical prediction model using an independent multicenter sample. Eighty-one patients with previously untreated active chronic HCV underwent physical examination, laboratory investigation, and liver biopsy. Biopsies were read, in blinded fashion, by a single pathologist, using a modified Hytiroglou (1995) scale. The clinical scoring system was correlated with histology; likelihood ratios (LRs), Fisher's exact p-values, and receiver operating characteristics (ROCs) were calculated. Data recording was complete in 77 and 38 patients regarding fibrotic stage and inflammatory grade, respectively. For fibrosis, 3/3 patients with any three criteria (LR 17, positive predictive value (PPV) 100%), 4/5 patients with any two criteria (LR 5.1), and 15/47 with no criteria (LR 0.6, negative predictive value (NPV) 68%) had stage 2 or greater fibrosis on biopsy (p=0.01). For inflammation, 5/5 patients with both criteria (LR 15, PPV 100%), and 8/19 patients with no criteria (LR 0.5, NPV 58%) had moderate-severe inflammation on liver biopsy (p=0.036). When missing variables were assumed to be normal, recalculated LRs were almost identical. An alanine aminotransferase (ALAT) level data set has validated our published model which uses simple clinical variables accurately and significantly to predict hepatic fibrosis and inflammation in HCV patients.

  5. [Clinical research XIV. From the clinical judgment to the statistical model].

    Science.gov (United States)

    Talavera, Juan O; Rivas-Ruiz, Rodolfo

    2013-01-01

    A statistical test is incomprehensible when it is out of context, so it is necessary to identify the details of the phenomenon of causality in the clinical course of the disease and to integrate the statistical model. Thus, the statistical tests used will try to characterize baseline, maneuver and the outcome, and will show the relationship between them. When we read the results in clinical research, the first thing that the author describes are general characteristics of the population, starting with number of patients evaluated and selected, average age, gender, and number of subjects meeting the outcome. This is extremely important because with the same criteria two studies may contain populations completely opposite. Posterior description usually continues through tables that follow a logical sequence, which allow us to integrate the statistical model to clinical judgment: baseline characteristics of the population and its distribution in each of the maneuvers, characteristics of the main and peripheral maneuvers, main effect of the maneuver on the outcome, and the impact of principal maneuver in the outcome, but adjusted for any variable that can alter this impact.

  6. The animal models of dementia and Alzheimer's disease for pre-clinical testing and clinical translation.

    Science.gov (United States)

    Anand, Akshay; Banik, Avijit; Thakur, Keshav; Masters, Colin L

    2012-11-01

    Dementia is a clinical syndrome with abnormal degree of memory loss and impaired ability to recall events from the past often characterized by Alzheimer's disease. The various strategies to treat dementia need validation of novel compounds in suitable animal models for testing their safety and efficacy. These may include novel anti-amnesic drugs derived from synthetic chemistry or those derived from traditional herbal sources. Multiple approaches have been adopted to create reliable animal models ranging from rodents to non-human primates, where the animals are exposed to a predetermined injury or causing genetic ablation across specific regions of brain suspected to affect learning functions. In this review various animal models for Alzheimer's disease and treatment strategies in development of anti dementia drugs are discussed and an attempt has been made to provide a comprehensive report of the latest developments in the field.

  7. Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma

    Directory of Open Access Journals (Sweden)

    Oren J Becher

    2015-07-01

    Full Text Available Diffuse Intrinsic Pontine Glioma (DIPG is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of six and eight. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab, as well as to potentially treat them in the clinic. This review will detail the initial strides towards modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Lastly, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.

  8. A "three-plus-one" evaluation model for clinical research management.

    Science.gov (United States)

    Dilts, David M

    2013-12-01

    Clinical research management (CRM) is a critical resource for the management of clinical trials and it requires proper evaluation. This article advances a model of evaluation that has three local levels, plus one global level, for evaluating the value of CRM. The primary level for evaluation is that of the study or processes level. The managerial or aggregate level concerns management of the portfolio of trials under the control of the CRM office. The third, often overlooked level of evaluation, is the strategic level, whose goal is encapsulated in the phrase, "doing the right trials, while doing trials right." The global ("plus one") evaluation level concerns the need to evaluate the ever-increasing number of multi-institutional and multinational studies. As there are host of evaluation metrics, this article provides representative examples of metrics at each level and provides methods that can aid in the selecting appropriate metrics for an organization.

  9. Patients Enrolled in Large Randomized Clinical Trials of Antiplatelet Treatment for Prevention After Transient Ischemic Attack or Ischemic Stroke Are Not Representative of Patients in Clinical Practice: the Netherlands Stroke Survey

    NARCIS (Netherlands)

    E. Maasland (Lisette); R.J. van Oostenbrugge (Robert Jan); C.L. Franke (Cees); W.J.M. Scholte op Reimer (Wilma); P.J. Koudstaal (Peter Jan); D.W.J. Dippel (Diederik)

    2009-01-01

    textabstractBackground and Purpose—Many randomized clinical trials have evaluated the benefit of long-term use of antiplatelet drugs in reducing the risk of new vascular events in patients with a recent transient ischemic attack or ischemic stroke. Evidence from these trials forms the basis for nati

  10. Clinical application of the five-factor model.

    Science.gov (United States)

    Widiger, Thomas A; Presnall, Jennifer Ruth

    2013-12-01

    The Five-Factor Model (FFM) has become the predominant dimensional model of general personality structure. The purpose of this paper is to suggest a clinical application. A substantial body of research indicates that the personality disorders included within the American Psychiatric Association's (APA) Diagnostic and Statistical Manual of Mental Disorders (DSM) can be understood as extreme and/or maladaptive variants of the FFM (the acronym "DSM" refers to any particular edition of the APA DSM). In addition, the current proposal for the forthcoming fifth edition of the DSM (i.e., DSM-5) is shifting closely toward an FFM dimensional trait model of personality disorder. Advantages of this shifting conceptualization are discussed, including treatment planning.

  11. Modeling a radiotherapy clinical procedure: total body irradiation.

    Science.gov (United States)

    Esteban, Ernesto P; García, Camille; De La Rosa, Verónica

    2010-09-01

    Leukemia, non-Hodgkin's lymphoma, and neuroblastoma patients prior to bone marrow transplants may be subject to a clinical radiotherapy procedure called total body irradiation (TBI). To mimic a TBI procedure, we modified the Jones model of bone marrow radiation cell kinetics by adding mutant and cancerous cell compartments. The modified Jones model is mathematically described by a set of n + 4 differential equations, where n is the number of mutations before a normal cell becomes a cancerous cell. Assuming a standard TBI radiotherapy treatment with a total dose of 1320 cGy fractionated over four days, two cases were considered. In the first, repopulation and sub-lethal repair in the different cell populations were not taken into account (model I). In this case, the proposed modified Jones model could be solved in a closed form. In the second, repopulation and sub-lethal repair were considered, and thus, we found that the modified Jones model could only be solved numerically (model II). After a numerical and graphical analysis, we concluded that the expected results of TBI treatment can be mimicked using model I. Model II can also be used, provided the cancer repopulation factor is less than the normal cell repopulation factor. However, model I has fewer free parameters compared to model II. In either case, our results are in agreement that the standard dose fractionated over four days, with two irradiations each day, provides the needed conditioning treatment prior to bone marrow transplant. Partial support for this research was supplied by the NIH-RISE program, the LSAMP-Puerto Rico program, and the University of Puerto Rico-Humacao.

  12. Representing object role modeling models with Web ontology language description logic axioms%使用OWL DL形式化表达对象角色建模模型

    Institute of Scientific and Technical Information of China (English)

    潘文林; 刘大昕

    2011-01-01

    对象角色建模(ORM)方法已应用于本体工程,因此需要将ORM模型转换为OWL DL公理,以便将ORM本体发布到语义Web上,同时还可使用支持DL的推理机来检查ORM本体的语义一致性和冗余问题.通过模型语义分析、模型等价转换、引入新的运算符和特性等方法,提出将ORM模型形式化表达为OWL DL公理的规则.除了外部唯一约束等四种约束外,其他形态的ORM模型都可以形式化表达为OWL DL公理.%Object Role Modeling (ORM) has been used in ontology engineering to model domain ontology, which needs to represent ORM models in OWL DL axioms to check semantic conflicts and redundancy with DL reasoners, and to publish ORM ontology on the semantic Web. By means of comparing the semantics of ORM model and OWL DL axioms, equivalently model-convening, and introducing new operators and properties, that mapping rules to represent ORM models in OWL DL axioms was proposed. Except a few constraints, most ORM model elements can be represented by OWL DL axioms.

  13. Beyond clinical engagement: a pragmatic model for quality improvement interventions, aligning clinical and managerial priorities.

    Science.gov (United States)

    Pannick, Samuel; Sevdalis, Nick; Athanasiou, Thanos

    2016-09-01

    Despite taking advantage of established learning from other industries, quality improvement initiatives in healthcare may struggle to outperform secular trends. The reasons for this are rarely explored in detail, and are often attributed merely to difficulties in engaging clinicians in quality improvement work. In a narrative review of the literature, we argue that this focus on clinicians, at the relative expense of managerial staff, has proven counterproductive. Clinical engagement is not a universal challenge; moreover, there is evidence that managers-particularly middle managers-also have a role to play in quality improvement. Yet managerial participation in quality improvement interventions is often assumed, rather than proven. We identify specific factors that influence the coordination of front-line staff and managers in quality improvement, and integrate these factors into a novel model: the model of alignment. We use this model to explore the implementation of an interdisciplinary intervention in a recent trial, describing different participation incentives and barriers for different staff groups. The extent to which clinical and managerial interests align may be an important determinant of the ultimate success of quality improvement interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Development of a clinically-precise mouse model of rectal cancer.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kishimoto

    Full Text Available Currently-used rodent tumor models, including transgenic tumor models, or subcutaneously growing tumors in mice, do not sufficiently represent clinical cancer. We report here development of methods to obtain a highly clinically-accurate rectal cancer model. This model was established by intrarectal transplantation of mouse rectal cancer cells, stably expressing green fluorescent protein (GFP, followed by disrupting the epithelial cell layer of the rectal mucosa by instilling an acetic acid solution. Early-stage tumor was detected in the rectal mucosa by 6 days after transplantation. The tumor then became invasive into the submucosal tissue. The tumor incidence was 100% and mean volume (±SD was 1232.4 ± 994.7 mm(3 at 4 weeks after transplantation detected by fluorescence imaging. Spontaneous lymph node metastasis and lung metastasis were also found approximately 4 weeks after transplantation in over 90% of mice. This rectal tumor model precisely mimics the natural history of rectal cancer and can be used to study early tumor development, metastasis, and discovery and evaluation of novel therapeutics for this treatment-resistant disease.

  15. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using a global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-08-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  16. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  17. A temporal model for Clinical Data Analytics language.

    Science.gov (United States)

    Safari, Leila; Patrick, Jon D

    2013-01-01

    The proposal of a special purpose language for Clinical Data Analytics (CliniDAL) is presented along with a general model for expressing temporal events in the language. The temporal dimension of clinical data needs to be addressed from at least five different points of view. Firstly, how to attach the knowledge of time based constraints to queries; secondly, how to mine temporal data in different CISs with various data models; thirdly, how to deal with both relative time and absolute time in the query language; fourthly, how to tackle internal time-event dependencies in queries, and finally, how to manage historical time events preserved in the patient's narrative. The temporal elements of the language are defined in Bachus Naur Form (BNF) along with a UML schema. Its use in a designed taxonomy of a five class hierarchy of data analytics tasks shows the solution to problems of time event dependencies in a highly complex cascade of queries needed to evaluate scientific experiments. The issues in using the model in a practical way are discussed as well.

  18. List of Accredited Representatives

    Data.gov (United States)

    Department of Veterans Affairs — VA accreditation is for the sole purpose of providing representation services to claimants before VA and does not imply that a representative is qualified to provide...

  19. Models for patients' recruitment in clinical trials and sensitivity analysis.

    Science.gov (United States)

    Mijoule, Guillaume; Savy, Stéphanie; Savy, Nicolas

    2012-07-20

    Taking a decision on the feasibility and estimating the duration of patients' recruitment in a clinical trial are very important but very hard questions to answer, mainly because of the huge variability of the system. The more elaborated works on this topic are those of Anisimov and co-authors, where they investigate modelling of the enrolment period by using Gamma-Poisson processes, which allows to develop statistical tools that can help the manager of the clinical trial to answer these questions and thus help him to plan the trial. The main idea is to consider an ongoing study at an intermediate time, denoted t(1). Data collected on [0,t(1)] allow to calibrate the parameters of the model, which are then used to make predictions on what will happen after t(1). This method allows us to estimate the probability of ending the trial on time and give possible corrective actions to the trial manager especially regarding how many centres have to be open to finish on time. In this paper, we investigate a Pareto-Poisson model, which we compare with the Gamma-Poisson one. We will discuss the accuracy of the estimation of the parameters and compare the models on a set of real case data. We make the comparison on various criteria : the expected recruitment duration, the quality of fitting to the data and its sensitivity to parameter errors. We discuss the influence of the centres opening dates on the estimation of the duration. This is a very important question to deal with in the setting of our data set. In fact, these dates are not known. For this discussion, we consider a uniformly distributed approach. Finally, we study the sensitivity of the expected duration of the trial with respect to the parameters of the model : we calculate to what extent an error on the estimation of the parameters generates an error in the prediction of the duration.

  20. The representative animal

    OpenAIRE

    Harrison, J M

    1994-01-01

    The anthropocentric approach to the study of animal behavior uses representative nonhuman animals to understand human behavior. This approach raises problems concerning the comparison of the behavior of two different species. The datum of behavior analysis is the behavior of humans and representative animal phenotypes. The behavioral phenotype is the product of the ontogeny and phylogeny of each species, and this requires that contributions of genotype as well as behavioral history to experim...

  1. [Advance directives. Representatives' opinions].

    Science.gov (United States)

    Busquets I Font, J M; Hernando Robles, P; Font I Canals, R; Diestre Ortin, G; Quintana, S

    The use and usefulness of Advance Directives has led to a lot of controversy about their validity and effectiveness. Those areas are unexplored in our country from the perspective of representatives. To determine the opinion of the representatives appointed in a registered Statement of Advance Directives (SAD) on the use of this document. Telephone survey of representatives of 146 already dead people and who, since February 2012, had registered a SAD document. More the two-thirds (98) of respondents recalled that the SAD was consulted, with 86 (58.9%) saying that their opinion as representative was consulted, and 120 (82.1%) believe that the patient's will was respected. Of those interviewed, 102 (69.9%) believe that patients who had previously planned their care using a SAD had a good death, with 33 (22.4%) saying it could have been better, and 10 (6.9%) believe they suffered greatly. The SAD were mostly respected and consulted, and possibly this is related to the fact that most of the representatives declare that the death of those they represented was perceived as comfortable. It would be desirable to conduct further studies addressed at health personnel in order to know their perceptions regarding the use of Advance Directives in the process of dying. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Implementation of the Clinical Facilitation Model within an Australian rural setting: the role of the Clinical Facilitator.

    Science.gov (United States)

    Sanderson, Helena; Lea, Jacqueline

    2012-11-01

    Education providers globally use various models for undergraduate nurse clinical education. This paper presents the major findings of a research project conducted by a rural university in Australia that aimed to explore the Clinical Facilitation Model of undergraduate nursing education from a rural perspective. In particular how the Clinical Facilitators enacted their role within the rural environment and to identify any barriers to the provision of effective clinical learning during facilitated clinical experience within this context. This qualitative study used a phenomenological approach to explore the experiences of Clinical Facilitators. Individual in-depth interviews were conducted with eight Clinical Facilitators. Data was analysed using thematic analysis and several themes emerged from the study. This paper will report two of the major findings which are based on how Clinical Facilitators enacted their role within the rural environment. Whilst this study has a rural focus the findings will add to the limited body of knowledge internationally regarding the Clinical Facilitation model used as a result of balancing educational needs of the student with the care needs of the patients in the current health policy climate. The findings will be useful for informing undergraduate curricula, and will assist faculty and health services in planning and implementation of models of clinical education that meet the needs of the student and that are specific to the rural environment. In addition, the findings will provide insight into strategies that the rural Clinical Facilitator can utilise to assist in fulfilling their teaching role.

  3. Mathematical modeling of human glioma growth based on brain topological structures: study of two clinical cases.

    Directory of Open Access Journals (Sweden)

    Cecilia Suarez

    Full Text Available Gliomas are the most common primary brain tumors and yet almost incurable due mainly to their great invasion capability. This represents a challenge to present clinical oncology. Here, we introduce a mathematical model aiming to improve tumor spreading capability definition. The model consists in a time dependent reaction-diffusion equation in a three-dimensional spatial domain that distinguishes between different brain topological structures. The model uses a series of digitized images from brain slices covering the whole human brain. The Talairach atlas included in the model describes brain structures at different levels. Also, the inclusion of the Brodmann areas allows prediction of the brain functions affected during tumor evolution and the estimation of correlated symptoms. The model is solved numerically using patient-specific parametrization and finite differences. Simulations consider an initial state with cellular proliferation alone (benign tumor, and an advanced state when infiltration starts (malign tumor. Survival time is estimated on the basis of tumor size and location. The model is used to predict tumor evolution in two clinical cases. In the first case, predictions show that real infiltrative areas are underestimated by current diagnostic imaging. In the second case, tumor spreading predictions were shown to be more accurate than those derived from previous models in the literature. Our results suggest that the inclusion of differential migration in glioma growth models constitutes another step towards a better prediction of tumor infiltration at the moment of surgical or radiosurgical target definition. Also, the addition of physiological/psychological considerations to classical anatomical models will provide a better and integral understanding of the patient disease at the moment of deciding therapeutic options, taking into account not only survival but also life quality.

  4. Clinical exchange: one model to achieve culturally sensitive care.

    Science.gov (United States)

    Scholes, J; Moore, D

    2000-03-01

    This paper reports on a clinical exchange programme that formed part of a pre-registration European nursing degree run by three collaborating institutions in England, Holland and Spain. The course included: common and shared learning including two summer schools; and the development of a second language before the students went on a three-month clinical placement in one of the other base institutions' clinical environments. The aim of the course was to enable students to become culturally sensitive carers. This was achieved by developing a programme based on transcultural nursing principles in theory and practice. Data were gathered by interview, focus groups, and questionnaires from 79 exchange students, fostering the strategies of illuminative evaluation. The paper examines: how the aims of the course were met; the factors that inhibited the attainment of certain goals; and how the acquisition of a second language influenced the students' learning about nursing. A model is presented to illustrate the process of transformative learning from the exchange experience.

  5. A conceptual model for translating omic data into clinical action

    Directory of Open Access Journals (Sweden)

    Timothy M Herr

    2015-01-01

    Full Text Available Genomic, proteomic, epigenomic, and other "omic" data have the potential to enable precision medicine, also commonly referred to as personalized medicine. The volume and complexity of omic data are rapidly overwhelming human cognitive capacity, requiring innovative approaches to translate such data into patient care. Here, we outline a conceptual model for the application of omic data in the clinical context, called "the omic funnel." This model parallels the classic "Data, Information, Knowledge, Wisdom pyramid" and adds context for how to move between each successive layer. Its goal is to allow informaticians, researchers, and clinicians to approach the problem of translating omic data from bench to bedside, by using discrete steps with clearly defined needs. Such an approach can facilitate the development of modular and interoperable software that can bring precision medicine into widespread practice.

  6. Clinical CVVH model removes endothelium-derived microparticles from circulation

    Directory of Open Access Journals (Sweden)

    Abdelhafeez H. Abdelhafeez

    2014-02-01

    Full Text Available Background: Endothelium-derived microparticles (EMPs are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH reduces serum EMP levels and may be adapted as a potential therapeutic intervention. Materials and methods: EMPs were generated from plasminogen activation inhibitor-1 (PAI-1-stimulated human umbilical vein endothelial cells (HUVECs. Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs. Results: A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration. Conclusion: These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI.

  7. Study of Clinical Practical Model of Urinary System Injury

    Institute of Scientific and Technical Information of China (English)

    Gang Li; Yuan-Yi Wu; Wei-Jun Fu; Ying-Xin Jia; Bing-Hong Zhang; Yong-De Xu; Zhong-Xin Wang

    2015-01-01

    Background:In order to improve the clinical treatment level of urinary system injury,it is necessary to build up an animal model of urinary system wound,which is not only analogous to real clinical practice,but also simple and practical.Methods:We have developed the third generation of firearm fragment wound generator based on the first and the second producer.The best explosive charge of the blank cartridge was selected by gradient powder loading experiments.The firearm fragment injuries were made to the bulbous urethra of 10 New Zealand male rabbits.One week preoperatively and 2,4 and 8 weeks postoperatively,all the animals underwent urethroscopy and urethrography.At 2,4 and 8 weeks postoperatively,two animals were randomly selected and killed,and the urethra was cut off for pathological examination.Results:The shooting distance of the third generation of firearm fragment wound generator is 2 cm.The best explosive charge of the blank cartridge is 1 g of nitrocotton.All rabbits survived the procedures and stayed alive until they were killed.Injuries were limited to bulbous urethra and distal urethra.Round damaged areas,1-1.5 cm in length,on the ventral wall were observed.Ureteroscopy results showed that canal diameter gradually shrank by over 50% in 9 rabbits.The rate of success was 90%.Urethrography result noted that a 1-1.3 cm stricture was formed at the bulbous urethra.Histology results of injured stricture urethra showed that fibrous connective tissue hyperplasia and hyaline degeneration caused further stricture in the canal.Conclusions:The third generation of firearm fragment wound generator imitates the bullet firing process and is more accurate and repeatable.The corresponding rabbit model of traumatic complex urethral stricture simulates the real complex clinical conditions.This animal model provides a standardized platform for clinical researches on treating traumatic injuries to the urinary system.

  8. Representing properties locally.

    Science.gov (United States)

    Solomon, K O; Barsalou, L W

    2001-09-01

    Theories of knowledge such as feature lists, semantic networks, and localist neural nets typically use a single global symbol to represent a property that occurs in multiple concepts. Thus, a global symbol represents mane across HORSE, PONY, and LION. Alternatively, perceptual theories of knowledge, as well as distributed representational systems, assume that properties take different local forms in different concepts. Thus, different local forms of mane exist for HORSE, PONY, and LION, each capturing the specific form that mane takes in its respective concept. Three experiments used the property verification task to assess whether properties are represented globally or locally (e.g., Does a PONY have mane?). If a single global form represents a property, then verifying it in any concept should increase its accessibility and speed its verification later in any other concept. Verifying mane for PONY should benefit as much from having verified mane for LION earlier as from verifying mane for HORSE. If properties are represented locally, however, verifying a property should only benefit from verifying a similar form earlier. Verifying mane for PONY should only benefit from verifying mane for HORSE, not from verifying mane for LION. Findings from three experiments strongly supported local property representation and ruled out the interpretation that object similarity was responsible (e.g., the greater overall similarity between HORSE and PONY than between LION and PONY). The findings further suggest that property representation and verification are complicated phenomena, grounded in sensory-motor simulations.

  9. Automatic generation of computable implementation guides from clinical information models.

    Science.gov (United States)

    Boscá, Diego; Maldonado, José Alberto; Moner, David; Robles, Montserrat

    2015-06-01

    Clinical information models are increasingly used to describe the contents of Electronic Health Records. Implementation guides are a common specification mechanism used to define such models. They contain, among other reference materials, all the constraints and rules that clinical information must obey. However, these implementation guides typically are oriented to human-readability, and thus cannot be processed by computers. As a consequence, they must be reinterpreted and transformed manually into an executable language such as Schematron or Object Constraint Language (OCL). This task can be difficult and error prone due to the big gap between both representations. The challenge is to develop a methodology for the specification of implementation guides in such a way that humans can read and understand easily and at the same time can be processed by computers. In this paper, we propose and describe a novel methodology that uses archetypes as basis for generation of implementation guides. We use archetypes to generate formal rules expressed in Natural Rule Language (NRL) and other reference materials usually included in implementation guides such as sample XML instances. We also generate Schematron rules from NRL rules to be used for the validation of data instances. We have implemented these methods in LinkEHR, an archetype editing platform, and exemplify our approach by generating NRL rules and implementation guides from EN ISO 13606, openEHR, and HL7 CDA archetypes.

  10. Serving transgender people: clinical care considerations and service delivery models in transgender health.

    Science.gov (United States)

    Wylie, Kevan; Knudson, Gail; Khan, Sharful Islam; Bonierbale, Mireille; Watanyusakul, Suporn; Baral, Stefan

    2016-07-23

    The World Professional Association for Transgender Health (WPATH) standards of care for transsexual, transgender, and gender non-conforming people (version 7) represent international normative standards for clinical care for these populations. Standards for optimal individual clinical care are consistent around the world, although the implementation of services for transgender populations will depend on health system infrastructure and sociocultural contexts. Some clinical services for transgender people, including gender-affirming surgery, are best delivered in the context of more specialised facilities; however, the majority of health-care needs can be delivered by a primary care practitioner. Across high-income and low-income settings alike, there often remains a dearth of educational programming for health-care professionals in transgender health, although the best evidence supports introducing modules on transgender health early during clinical education of clinicians and allied health professionals. While these challenges remain, we review the increasing evidence and examples of the defined roles of the mental health professional in transgender health-care decisions, effective models of health service provision, and available surgical interventions for transgender people.

  11. Overcoming challenges to initiating cell therapy clinical trials in rapidly developing countries: India as a model.

    Science.gov (United States)

    Viswanathan, Sowmya; Rao, Mahendra; Keating, Armand; Srivastava, Alok

    2013-08-01

    Increasingly, a number of rapidly developing countries, including India, China, Brazil, and others, are becoming global hot spots for the development of regenerative medicine applications, including stem cell-based therapies. Identifying and overcoming regulatory and translational research challenges and promoting scientific and ethical clinical trials with cells will help curb the growth of stem cell tourism for unproven therapies. It will also enable academic investigators, local regulators, and national and international biotechnology and biopharmaceutical companies to accelerate stem cell-based clinical research that could lead to effective innovative treatments in these regions. Using India as a model system and obtaining input from regulators, clinicians, academics, and industry representatives across the stem cell field in India, we reviewed the role of key agencies and processes involved in this field. We have identified areas that need attention and here provide solutions from other established and functioning models in the world to streamline and unify the regulatory and ethics approval processes for cell-based therapies. We also make recommendations to check the growth and functioning of clinics offering unproven treatments. Addressing these issues will remove considerable hurdles to both local and international investigators, accelerate the pace of research and development, and create a quality environment for reliable products to emerge. By doing so, these countries would have taken one important step to move to the forefront of stem cell-based therapeutics.

  12. Polycyclic aromatic hydrocarbons from the pyrolysis of catechol (ortho-dihydroxybenzene), a model fuel representative of entities in tobacco, coal, and lignin

    Energy Technology Data Exchange (ETDEWEB)

    Wornat, M.J.; Ledesma, E.B.; Marsh, N.D. [Princeton University, Princeton, NJ (United States). Dept. of Mechanical and Aerospace Engineering

    2001-10-09

    In order to better understand the formation of polycyclic aromatic hydrocarbons (PAH) from complex fuels, we have performed pyrolysis experiments in a laminar-flow reactor, using the model fuel catechol (Ortho-dihydroxybenzene), a phenol-type compound representative of structural entities in tobacco, coal and wood. Employing high pressure liquid chromatography with diode-array ultraviolet-visible (UV) detection, we have unequivocally identified 59 individual species among the condensed-phase products of catechol pyrolysis at a temperature of 1000{degree}C and a residence time of 0.4 s. Also identified are two oxygen-containing compounds that are produced only at pyrolysis temperatures lower than 900{degree}C. Of the total 61 species, fifty have never before been identified as pyrolysis products of any pure phenol type compound. Two of the catechol pyrolysis products, 5-ethynylacenaphthylene and 3-ethynylphenanthrene, have never before been identified as products of any fuel. Ranging in size from one to eight fused aromatic rings, the catechol pyrolysis products comprise several compound classes: bi-aryls, indene benzologues, benzenoid PAH, alkylated aromatics, fluoranthene benzologues, cyclopenta-fused PAH, ethynyl-substituted aromatics, polyacetylenes, and oxygen-containing aromatics. The catechol pyrolysis products bear remarkable compositional similarity to the products of bituminous coal volatiles pyrolyzed at the same temperature - demonstrating the relevance of these catechol model compound experiments to the study of complex fuels such as coal, wood and tobacco. The UV spectra, establishing compound identity, are presented for several of the identified catechol product components. 70 refs., 13 figs., 6 tabs.

  13. Implementation of virtual medical record object model for a standards-based clinical decision support rule engine.

    Science.gov (United States)

    Huang, Christine; Noirot, Laura A; Heard, Kevin M; Reichley, Richard M; Dunagan, Wm Claiborne; Bailey, Thomas C

    2006-01-01

    The Virtual Medical Record (vMR) is a structured data model for representing individual patient informations. Our implementation of vMR is based on HL7 Reference Information Model (RIM) v2.13 from which a minimum set of objects and attributes are selected to meet the requirement of a clinical decision support (CDS) rule engine. Our success of mapping local patient data to the vMR model and building a vMR adaptor middle layer demonstrate the feasibility and advantages of implementing a vMR in a portable CDS solution.

  14. Bridging the Gap between Clinical Practice Guidelines and Archetype-Based Electronic Health Records: A Novel Model Proposal.

    Science.gov (United States)

    Garcia, Diego; Moro, Claudia Maria C; Cintho, Lilian Mie M

    2015-01-01

    The lack of a unique, standardized format for representing data and knowledge is one of the existing difficulties to integrating decision support into Electronic Health Records (EHRs). Propose an archetype-based model to allow the integration of Clinical Practice Guidelines (CPG) and EHRs; design and implement this proposed model. A generic model was designed for the integration of CPG into EHRs, and an archetype-based EHR for Chronic Kidney Disease Prevention based on rules from CPGs, was made as a proof of concept of this novel integration.

  15. Modeling Staphylococcus epidermidis-Induced Non-Unions: Subclinical and Clinical Evidence in Rats

    Science.gov (United States)

    Lovati, Arianna Barbara; Romanò, Carlo Luca; Bottagisio, Marta; Monti, Lorenzo; De Vecchi, Elena; Previdi, Sara; Accetta, Riccardo; Drago, Lorenzo

    2016-01-01

    S. epidermidis is one of the leading causes of orthopaedic infections associated with biofilm formation on implant devices. Open fractures are at risk of S. epidermidis transcutaneous contamination leading to higher non-union development compared to closed fractures. Although the role of infection in delaying fracture healing is well recognized, no in vivo models investigated the impact of subclinical low-grade infections on bone repair and non-union. We hypothesized that the non-union rate is directly related to the load of this commonly retrieved pathogen and that a low-grade contamination delays the fracture healing without clinically detectable infection. Rat femurs were osteotomized and stabilized with plates. Fractures were infected with a characterized clinical-derived methicillin-resistant S. epidermidis (103, 105, 108 colony forming units) and compared to uninfected controls. After 56 days, bone healing and osteomyelitis were clinically assessed and further evaluated by micro-CT, microbiological and histological analyses. The biofilm formation was visualized by scanning electron microscopy. The control group showed no signs of infection and a complete bone healing. The 103 group displayed variable response to infection with a 67% of altered bone healing and positive bacterial cultures, despite no clinical signs of infection present. The 105 and 108 groups showed severe signs of osteomyelitis and a non-union rate of 83–100%, respectively. The cortical bone reaction related to the periosteal elevation in the control group and the metal scattering detected by micro-CT represented limitations of this study. Our model showed that an intra-operative low-grade S. epidermidis contamination might prevent the bone healing, even in the absence of infectious signs. Our findings also pointed out a dose-dependent effect between the S. epidermidis inoculum and non-union rate. This pilot study identifies a relevant preclinical model to assess the role of subclinical

  16. [Clinical research XXII. From clinical judgment to Cox proportional hazards model].

    Science.gov (United States)

    Pérez-Rodríguez, Marcela; Rivas-Ruiz, Rodolfo; Palacios-Cruz, Lino; Talavera, Juan O

    2014-01-01

    Survival analyses are commonly used to determine the time of an event (for example, death). However, they can be used also for other clinical outcomes on the condition that these are dichotomous, for example healing time. These analyses only consider the relationship of one variable. However, Cox proportional hazards model is a multivariate analysis of the survival analysis, in which other potentially confounding covariates of the effect of the main maneuver studied, such as age, gender or disease stage, are taken into account. This analysis can include both quantitative and qualitative variables in the model. The measure of association used is called hazard ratio (HR) or relative risk ratio, which is not the same as the relative risk or odds ratio (OR). The difference is that the HR refers to the possibility that one of the groups develops the event before it is compared with the other group. The proportional hazards multivariate model of Cox is the most widely used in medicine when the phenomenon is studied in two dimensions: time and event.

  17. Business Models, Vaccination Services, and Public Health Relationships of Retail Clinics: A Qualitative Study.

    Science.gov (United States)

    Arthur, Bayo C; Fisher, Allison Kennedy; Shoemaker, Sarah J; Pozniak, Alyssa; Stokley, Shannon

    2015-01-01

    Despite the rapid growth of retail clinics (RCs), literature is limited in terms of how these facilities offer preventive services, particularly vaccination services. The purpose of this study was to obtain an in-depth understanding of the RC business model pertaining to vaccine offerings, profitability, and decision making. From March to June 2009, we conducted 15 interviews with key individuals from three types of organizations: 12 representatives of RC corporations, 2 representatives of retail hosts (i.e., stores in which the RCs are located), and 1 representative of an industry association. We analyzed interview transcripts qualitatively. Our results indicate that consumer demand and profitability were the main drivers in offering vaccinations. RCs in this sample primarily offered vaccinations to adults and adolescents, and they were not well integrated with local public health and immunization registries. Our findings demonstrate the potential for stronger linkages with public health in these settings. The findings also may help inform future research to increase patient access to vaccination services at RCs.

  18. Modelling and mapping the local distribution of representative species on the Le Danois Bank, El Cachucho Marine Protected Area (Cantabrian Sea)

    Science.gov (United States)

    García-Alegre, Ana; Sánchez, Francisco; Gómez-Ballesteros, María; Hinz, Hilmar; Serrano, Alberto; Parra, Santiago

    2014-08-01

    The management and protection of potentially vulnerable species and habitats require the availability of detailed spatial data. However, such data are often not readily available in particular areas that are challenging for sampling by traditional sampling techniques, for example seamounts. Within this study habitat modelling techniques were used to create predictive maps of six species of conservation concern for the Le Danois Bank (El Cachucho Marine Protected Area in the South of the Bay of Biscay). The study used data from ECOMARG multidisciplinary surveys that aimed to create a representative picture of the physical and biological composition of the area. Classical fishing gear (otter trawl and beam trawl) was used to sample benthic communities that inhabit sedimentary areas, and non-destructive visual sampling techniques (ROV and photogrammetric sled) were used to determine the presence of epibenthic macrofauna in complex and vulnerable habitats. Multibeam echosounder data, high-resolution seismic profiles (TOPAS system) and geological data from box-corer were used to characterize the benthic terrain. ArcGIS software was used to produce high-resolution maps (75×75 m2) of such variables in the entire area. The Maximum Entropy (MAXENT) technique was used to process these data and create Habitat Suitability maps for six species of special conservation interest. The model used seven environmental variables (depth, rugosity, aspect, slope, Bathymetric Position Index (BPI) in fine and broad scale and morphosedimentary characteristics) to identify the most suitable habitats for such species and indicates which environmental factors determine their distribution. The six species models performed highly significantly better than random (p<0.0001; Mann-Whitney test) when Area Under the Curve (AUC) values were tested. This indicates that the environmental variables chosen are relevant to distinguish the distribution of these species. The Jackknife test estimated depth

  19. New, strategic outsourcing models to meet changing clinical development needs

    Directory of Open Access Journals (Sweden)

    Janet Jones

    2010-01-01

    Full Text Available The impact of increasing clinical costs and the need for more data to support higher efficacy demands and overcome regulatory hurdles for market entry means that every Company is faced with the challenge of how to do more with a smaller budget. As budgets get squeezed the pharmaceutical Industry has been looking at how to contain or reduce cost and support an increased number of projects. With the growing sophistication of outsourcing, this is an increasingly important area of focus. Some Pharmaceutical Companies have moved from tactical, case by case, outsourcing to new, more strategic relationships, which involve outsourcing functions that were historically held as core pharmaceutical functions. An increasing number of Sponsors are looking at strategic relationships which are based on more creative outsourcing approaches. As the need and sophistication of these outsourcing models and the sponsors / CROs involved in them, these approaches are becoming more transformational and need to be based on a strong partnership. Lessons learned from working with sponsors in a partnership model have been examined and two key challenges addressed in detail: the need for bilateral central control though a strong governance model and the importance of early planning and commitment.

  20. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  1. Partitioning a Steady State Sediment Budget to Represent Long tailed Distributions of Contaminant Residence Times: A Modeling Approach for Routing Tracers Through Alluvial Storage Reservoirs

    Science.gov (United States)

    Pizzuto, J. E.; Ackerman, T. R.

    2012-12-01

    Mercury (Hg) was released into the South River, VA, from an industrial source from 1929-1950. Because of mercury's affinity for fine grained particles, a budget for fine sediment can be used to model the trajectories of Hg through the alluvial valley. We adopt Malmon's (2002) model, which requires each storage compartment to be "well-mixed". Our sediment budget quantifies residence times, exchange rates, and sediment storage volumes in the floodplain (FP), hyporheic zone, and in fine-grained channel margin (FGCM) deposits that form in the lee of obstructions (chiefly downed trees) along the sides of the wetted perimeter of the channel. This simple model with only 3 storage compartments fails to fit Hg concentration histories in the FGCM and under predicts contemporary mercury loading to the channel from bank erosion. We speculate that the FP and FGCM deposits are not well-mixed. Mercury is preferentially stored and remobilized from frequently-inundated, low elevation floodplain areas near the stream channel. Radiometric dates from FGCM deposits suggest that most sediments are reworked within a few years, but a small fraction of the deposits remains in storage for decades. We therefore partition the FP and FGCM deposits into multiple reservoirs, each with a different residence time. We divide the FGCM deposits into two sub-reservoirs with characteristic exchange rates and masses that represent the observed age distribution. Sediment accumulation rates on the FP follow an exponential distribution of FP relief, and we divide the floodplain into 5 reservoirs with inundation frequencies of 0.3, 2, 5, 62, and 100 years. Since erosion is assumed to be evenly distributed across each reservoir, FP area as a function of age decreases exponentially. With time, the elevation of floodplains increases through sedimentation, so a portion of each reservoir evolves into a less frequently inundated category every year, creating a unidirectional mass flux from each FP reservoir into

  2. A fingerprinting mixing model approach to generate uniformly representative solutions for distributed contributions of sediment sources in a Pyrenean drainage basin

    Science.gov (United States)

    Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana

    2014-05-01

    Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment

  3. Clinic expert information extraction based on domain model and block importance model.

    Science.gov (United States)

    Zhang, Yuanpeng; Wang, Li; Qian, Danmin; Geng, Xingyun; Yao, Dengfu; Dong, Jiancheng

    2015-11-01

    To extract expert clinic information from the Deep Web, there are two challenges to face. The first one is to make a judgment on forms. A novel method based on a domain model, which is a tree structure constructed by the attributes of query interfaces is proposed. With this model, query interfaces can be classified to a domain and filled in with domain keywords. Another challenge is to extract information from response Web pages indexed by query interfaces. To filter the noisy information on a Web page, a block importance model is proposed, both content and spatial features are taken into account in this model. The experimental results indicate that the domain model yields a precision 4.89% higher than that of the rule-based method, whereas the block importance model yields an F1 measure 10.5% higher than that of the XPath method.

  4. Realistic modeling of clinical laboratory operation by computer simulation.

    Science.gov (United States)

    Vogt, W; Braun, S L; Hanssmann, F; Liebl, F; Berchtold, G; Blaschke, H; Eckert, M; Hoffmann, G E; Klose, S

    1994-06-01

    An important objective of laboratory management is to adjust the laboratory's capability to the needs of patients' care as well as economy. The consequences of management may be changes in laboratory organization, equipment, or personnel planning. At present only one's individual experience can be used for making such decisions. We have investigated whether the techniques of operations research could be transferred to a clinical laboratory and whether an adequate simulation model of the laboratory could be realized. First we listed and documented the system design and the process flow for each single laboratory request. These input data were linked by the simulation model (programming language SIMSCRIPT II.5). The output data (turnaround times, utilization rates, and analysis of queue length) were validated by comparison with the current performance data obtained by tracking specimen flow. Congruence of the data was excellent (within +/- 4%). In planning experiments we could study the consequences of changes in order entry, staffing, and equipment on turnaround times, utilization, and queue lengths. We conclude that simulation can be a valuable tool for better management decisions.

  5. Imaging of a clinically relevant stroke model: glucose hypermetabolism revisited.

    Science.gov (United States)

    Arnberg, Fabian; Grafström, Jonas; Lundberg, Johan; Nikkhou-Aski, Sahar; Little, Philip; Damberg, Peter; Mitsios, Nicholas; Mulder, Jan; Lu, Li; Söderman, Michael; Stone-Elander, Sharon; Holmin, Staffan

    2015-03-01

    Ischemic stroke has been shown to cause hypermetabolism of glucose in the ischemic penumbra. Experimental and clinical data indicate that infarct-related systemic hyperglycemia is a potential therapeutic target in acute stroke. However, clinical studies aiming for glucose control in acute stroke have neither improved functional outcome nor reduced mortality. Thus, further studies on glucose metabolism in the ischemic brain are warranted. We used a rat model of stroke that preserves collateral flow. The animals were analyzed by [2-(18)F]-2-fluoro-2-deoxy-d-glucose positron emission tomography or magnetic resonance imaging during 90-minute occlusion of the middle cerebral artery and during 60 minutes after reperfusion. Results were correlated to magnetic resonance imaging of cerebral blood flow, diffusion of water, lactate formation, and histological data on cell death and blood-brain barrier breakdown. We detected an increased [2-(18)F]-2-fluoro-2-deoxy-d-glucose uptake within ischemic regions succumbing to infarction and in the peri-infarct region. Magnetic resonance imaging revealed impairment of blood flow to ischemic levels in the infarct and a reduction of cerebral blood flow in the peri-infarct region. Magnetic resonance spectroscopy revealed lactate in the ischemic region and absence of lactate in the peri-infarct region. Immunohistochemical analyses revealed apoptosis and blood-brain barrier breakdown within the infarct. The increased uptake of [2-(18)F]-2-fluoro-2-deoxy-d-glucose in cerebral ischemia most likely reflects hypermetabolism of glucose meeting increased energy needs of ischemic and hypoperfused brain tissue, and it occurs under both anaerobic and aerobic conditions measured by local lactate production. Infarct-related systemic hyperglycemia could serve to facilitate glucose supply to the ischemic brain. Glycemic control by insulin treatment could negatively influence this mechanism. © 2015 American Heart Association, Inc.

  6. Information Model for Reusability in Clinical Trial Documentation

    Science.gov (United States)

    Bahl, Bhanu

    2013-01-01

    In clinical research, New Drug Application (NDA) to health agencies requires generation of a large number of documents throughout the clinical development life cycle, many of which are also submitted to public databases and external partners. Current processes to assemble the information, author, review and approve the clinical research documents,…

  7. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors

    Science.gov (United States)

    Schütte, Moritz; Risch, Thomas; Abdavi-Azar, Nilofar; Boehnke, Karsten; Schumacher, Dirk; Keil, Marlen; Yildiriman, Reha; Jandrasits, Christine; Borodina, Tatiana; Amstislavskiy, Vyacheslav; Worth, Catherine L.; Schweiger, Caroline; Liebs, Sandra; Lange, Martin; Warnatz, Hans- Jörg; Butcher, Lee M.; Barrett, James E.; Sultan, Marc; Wierling, Christoph; Golob-Schwarzl, Nicole; Lax, Sigurd; Uranitsch, Stefan; Becker, Michael; Welte, Yvonne; Regan, Joseph Lewis; Silvestrov, Maxine; Kehler, Inge; Fusi, Alberto; Kessler, Thomas; Herwig, Ralf; Landegren, Ulf; Wienke, Dirk; Nilsson, Mats; Velasco, Juan A.; Garin-Chesa, Pilar; Reinhard, Christoph; Beck, Stephan; Schäfer, Reinhold; Regenbrecht, Christian R. A.; Henderson, David; Lange, Bodo; Haybaeck, Johannes; Keilholz, Ulrich; Hoffmann, Jens; Lehrach, Hans; Yaspo, Marie-Laure

    2017-01-01

    Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I–IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab. PMID:28186126

  8. Representing distance, consuming distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    to mobility and its social context. Such an understanding can be approached through representations, as distance is being represented in various ways, most noticeably in maps and through the notions of space and Otherness. The question this talk subsequently asks is whether these representations of distance...... are being consumed in the contemporary society, in the same way as places, media, cultures and status are being consumed (Urry 1995, Featherstone 2007). An exploration of distance and its representations through contemporary consumption theory could expose what role distance plays in forming...... are present in theoretical and empirical elaborations on mobility, but these remain largely implicit and unchallenged (Bauman 1998). This talk will endeavour to unmask distance as a theoretical entity by exploring ways in which distance can be understood and by discussing distance through its representations...

  9. Decadal application of WRF/Chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 1: Model evaluation and impact of downscaling

    Science.gov (United States)

    Yahya, Khairunnisa; Wang, Kai; Campbell, Patrick; Chen, Ying; Glotfelty, Timothy; He, Jian; Pirhalla, Michael; Zhang, Yang

    2017-03-01

    An advanced online-coupled meteorology-chemistry model, i.e., the Weather Research and Forecasting Model with Chemistry (WRF/Chem), is applied for current (2001-2010) and future (2046-2055) decades under the representative concentration pathways (RCP) 4.5 and 8.5 scenarios to examine changes in future climate, air quality, and their interactions. In this Part I paper, a comprehensive model evaluation is carried out for current decade to assess the performance of WRF/Chem and WRF under both scenarios and the benefits of downscaling the North Carolina State University's (NCSU) version of the Community Earth System Model (CESM_NCSU) using WRF/Chem. The evaluation of WRF/Chem shows an overall good performance for most meteorological and chemical variables on a decadal scale. Temperature at 2-m is overpredicted by WRF (by ∼0.2-0.3 °C) but underpredicted by WRF/Chem (by ∼0.3-0.4 °C), due to higher radiation from WRF. Both WRF and WRF/Chem show large overpredictions for precipitation, indicating limitations in their microphysics or convective parameterizations. WRF/Chem with prognostic chemical concentrations, however, performs much better than WRF with prescribed chemical concentrations for radiation variables, illustrating the benefit of predicting gases and aerosols and representing their feedbacks into meteorology in WRF/Chem. WRF/Chem performs much better than CESM_NCSU for most surface meteorological variables and O3 hourly mixing ratios. In addition, WRF/Chem better captures observed temporal and spatial variations than CESM_NCSU. CESM_NCSU performance for radiation variables is comparable to or better than WRF/Chem performance because of the model tuning in CESM_NCSU that is routinely made in global models.

  10. Standardizing data exchange for clinical research protocols and case report forms: An assessment of the suitability of the Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model (ODM).

    Science.gov (United States)

    Huser, Vojtech; Sastry, Chandan; Breymaier, Matthew; Idriss, Asma; Cimino, James J

    2015-10-01

    Efficient communication of a clinical study protocol and case report forms during all stages of a human clinical study is important for many stakeholders. An electronic and structured study representation format that can be used throughout the whole study life-span can improve such communication and potentially lower total study costs. The most relevant standard for representing clinical study data, applicable to unregulated as well as regulated studies, is the Operational Data Model (ODM) in development since 1999 by the Clinical Data Interchange Standards Consortium (CDISC). ODM's initial objective was exchange of case report forms data but it is increasingly utilized in other contexts. An ODM extension called Study Design Model, introduced in 2011, provides additional protocol representation elements. Using a case study approach, we evaluated ODM's ability to capture all necessary protocol elements during a complete clinical study lifecycle in the Intramural Research Program of the National Institutes of Health. ODM offers the advantage of a single format for institutions that deal with hundreds or thousands of concurrent clinical studies and maintain a data warehouse for these studies. For each study stage, we present a list of gaps in the ODM standard and identify necessary vendor or institutional extensions that can compensate for such gaps. The current version of ODM (1.3.2) has only partial support for study protocol and study registration data mainly because it is outside the original development goal. ODM provides comprehensive support for representation of case report forms (in both the design stage and with patient level data). Inclusion of requirements of observational, non-regulated or investigator-initiated studies (outside Food and Drug Administration (FDA) regulation) can further improve future revisions of the standard.

  11. Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Lei Tan

    Full Text Available BACKGROUND: Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4, regulatory genes (BMI1, GLI1, and GLI2 and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155 in holoclones were also highlighted. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones

  12. An ontology-driven, case-based clinical decision support model for removable partial denture design

    Science.gov (United States)

    Chen, Qingxiao; Wu, Ji; Li, Shusen; Lyu, Peijun; Wang, Yong; Li, Miao

    2016-06-01

    We present the initial work toward developing a clinical decision support model for specific design of removable partial dentures (RPDs) in dentistry. We developed an ontological paradigm to represent knowledge of a patient’s oral conditions and denture component parts. During the case-based reasoning process, a cosine similarity algorithm was applied to calculate similarity values between input patients and standard ontology cases. A group of designs from the most similar cases were output as the final results. To evaluate this model, the output designs of RPDs for 104 randomly selected patients were compared with those selected by professionals. An area under the curve of the receiver operating characteristic (AUC-ROC) was created by plotting true-positive rates against the false-positive rate at various threshold settings. The precision at position 5 of the retrieved cases was 0.67 and at the top of the curve it was 0.96, both of which are very high. The mean average of precision (MAP) was 0.61 and the normalized discounted cumulative gain (NDCG) was 0.74 both of which confirmed the efficient performance of our model. All the metrics demonstrated the efficiency of our model. This methodology merits further research development to match clinical applications for designing RPDs. This paper is organized as follows. After the introduction and description of the basis for the paper, the evaluation and results are presented in Section 2. Section 3 provides a discussion of the methodology and results. Section 4 describes the details of the ontology, similarity algorithm, and application.

  13. Time series analysis as input for clinical predictive modeling: Modeling cardiac arrest in a pediatric ICU

    Directory of Open Access Journals (Sweden)

    Kennedy Curtis E

    2011-10-01

    Full Text Available Abstract Background Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. Methods We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Results Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1 selecting candidate variables; 2 specifying measurement parameters; 3 defining data format; 4 defining time window duration and resolution; 5 calculating latent variables for candidate variables not directly measured; 6 calculating time series features as latent variables; 7 creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8

  14. Longitudinal modeling of appearance and shape and its potential for clinical use.

    Science.gov (United States)

    Gerig, Guido; Fishbaugh, James; Sadeghi, Neda

    2016-10-01

    Clinical assessment routinely uses terms such as development, growth trajectory, degeneration, disease progression, recovery or prediction. This terminology inherently carries the aspect of dynamic processes, suggesting that single measurements in time and cross-sectional comparison may not sufficiently describe spatiotemporal changes. In view of medical imaging, such tasks encourage subject-specific longitudinal imaging. Whereas follow-up, monitoring and prediction are natural tasks in clinical diagnosis of disease progression and of assessment of therapeutic intervention, translation of methodologies for calculation of temporal profiles from longitudinal data to clinical routine still requires significant research and development efforts. Rapid advances in image acquisition technology with significantly reduced acquisition times and with increase of patient comfort favor repeated imaging over the observation period. In view of serial imaging ranging over multiple years, image acquisition faces the challenging issue of scanner standardization and calibration which is crucial for successful spatiotemporal analysis. Longitudinal 3D data, represented as 4D images, capture time-varying anatomy and function. Such data benefits from dedicated analysis methods and tools that make use of the inherent correlation and causality of repeated acquisitions of the same subject. Availability of such data spawned progress in the development of advanced 4D image analysis methodologies that carry the notion of linear and nonlinear regression, now applied to complex, high-dimensional data such as images, image-derived shapes and structures, or a combination thereof. This paper provides examples of recently developed analysis methodologies for 4D image data, primarily focusing on progress in areas of core expertise of the authors. These include spatiotemporal shape modeling and growth trajectories of white matter fiber tracts demonstrated with examples from ongoing longitudinal

  15. Modeling and validating Bayesian accrual models on clinical data and simulations using adaptive priors.

    Science.gov (United States)

    Jiang, Yu; Simon, Steve; Mayo, Matthew S; Gajewski, Byron J

    2015-02-20

    Slow recruitment in clinical trials leads to increased costs and resource utilization, which includes both the clinic staff and patient volunteers. Careful planning and monitoring of the accrual process can prevent the unnecessary loss of these resources. We propose two hierarchical extensions to the existing Bayesian constant accrual model: the accelerated prior and the hedging prior. The new proposed priors are able to adaptively utilize the researcher's previous experience and current accrual data to produce the estimation of trial completion time. The performance of these models, including prediction precision, coverage probability, and correct decision-making ability, is evaluated using actual studies from our cancer center and simulation. The results showed that a constant accrual model with strongly informative priors is very accurate when accrual is on target or slightly off, producing smaller mean squared error, high percentage of coverage, and a high number of correct decisions as to whether or not continue the trial, but it is strongly biased when off target. Flat or weakly informative priors provide protection against an off target prior but are less efficient when the accrual is on target. The accelerated prior performs similar to a strong prior. The hedging prior performs much like the weak priors when the accrual is extremely off target but closer to the strong priors when the accrual is on target or only slightly off target. We suggest improvements in these models and propose new models for future research. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Pilot study: Nursing students' perceptions of the environment in two different clinical models

    Directory of Open Access Journals (Sweden)

    Robert D. Perry

    2016-09-01

    Conclusion: A definitive and inferential relationship between sub-scales and clinical models, namely, block and non-block dispersed models, could not be determined because of the small sample size of the block clinical model. Hence, further research should be performed.

  17. An instructional model for training competence in solving clinical problems

    NARCIS (Netherlands)

    Ramaekers, S.P.J.; van Beukelen, P.; Kremer, W.D.J.; van Keulen, J.; Pilot, A.

    2011-01-01

    We examined the design of a course that aims to ease the transition from pre-clinical learning into clinical work. This course is based on the premise that many of the difficulties with which students are confronted in this transition result from a lack of experience in applying knowledge in real pr

  18. A Model for Ethical Practices in Clinical Phonetics and Linguistics

    Science.gov (United States)

    Powell, Thomas W.

    2007-01-01

    The emergence of clinical phonetics and linguistics as an area of scientific inquiry gives rise to the need for guidelines that define ethical and responsible conduct. The diverse membership of the International Clinical Phonetics and Linguistics Association (ICPLA) and the readership of this journal are uniquely suited to consider ethical issues…

  19. Benefits of Non-Linear Mixed Effect Modeling and Optimal Design : Pre-Clinical and Clinical Study Applications

    OpenAIRE

    Ernest II, Charles Steven

    2013-01-01

    Despite the growing promise of pharmaceutical research, inferior experimentation or interpretation of data can inhibit breakthrough molecules from finding their way out of research institutions and reaching patients. This thesis provides evidence that better characterization of pre-clinical and clinical data can be accomplished using non-linear mixed effect modeling (NLMEM) and more effective experiments can be conducted using optimal design (OD).  To demonstrate applicability of NLMEM and OD...

  20. k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction.

    Science.gov (United States)

    Parry, R M; Jones, W; Stokes, T H; Phan, J H; Moffitt, R A; Fang, H; Shi, L; Oberthuer, A; Fischer, M; Tong, W; Wang, M D

    2010-08-01

    In the clinical application of genomic data analysis and modeling, a number of factors contribute to the performance of disease classification and clinical outcome prediction. This study focuses on the k-nearest neighbor (KNN) modeling strategy and its clinical use. Although KNN is simple and clinically appealing, large performance variations were found among experienced data analysis teams in the MicroArray Quality Control Phase II (MAQC-II) project. For clinical end points and controls from breast cancer, neuroblastoma and multiple myeloma, we systematically generated 463,320 KNN models by varying feature ranking method, number of features, distance metric, number of neighbors, vote weighting and decision threshold. We identified factors that contribute to the MAQC-II project performance variation, and validated a KNN data analysis protocol using a newly generated clinical data set with 478 neuroblastoma patients. We interpreted the biological and practical significance of the derived KNN models, and compared their performance with existing clinical factors.

  1. Modeling Staphylococcus epidermidis-Induced Non-Unions: Subclinical and Clinical Evidence in Rats.

    Directory of Open Access Journals (Sweden)

    Arianna Barbara Lovati

    Full Text Available S. epidermidis is one of the leading causes of orthopaedic infections associated with biofilm formation on implant devices. Open fractures are at risk of S. epidermidis transcutaneous contamination leading to higher non-union development compared to closed fractures. Although the role of infection in delaying fracture healing is well recognized, no in vivo models investigated the impact of subclinical low-grade infections on bone repair and non-union. We hypothesized that the non-union rate is directly related to the load of this commonly retrieved pathogen and that a low-grade contamination delays the fracture healing without clinically detectable infection. Rat femurs were osteotomized and stabilized with plates. Fractures were infected with a characterized clinical-derived methicillin-resistant S. epidermidis (10(3, 10(5, 10(8 colony forming units and compared to uninfected controls. After 56 days, bone healing and osteomyelitis were clinically assessed and further evaluated by micro-CT, microbiological and histological analyses. The biofilm formation was visualized by scanning electron microscopy. The control group showed no signs of infection and a complete bone healing. The 10(3 group displayed variable response to infection with a 67% of altered bone healing and positive bacterial cultures, despite no clinical signs of infection present. The 10(5 and 10(8 groups showed severe signs of osteomyelitis and a non-union rate of 83-100%, respectively. The cortical bone reaction related to the periosteal elevation in the control group and the metal scattering detected by micro-CT represented limitations of this study. Our model showed that an intra-operative low-grade S. epidermidis contamination might prevent the bone healing, even in the absence of infectious signs. Our findings also pointed out a dose-dependent effect between the S. epidermidis inoculum and non-union rate. This pilot study identifies a relevant preclinical model to assess the

  2. Modeling Staphylococcus epidermidis-Induced Non-Unions: Subclinical and Clinical Evidence in Rats.

    Science.gov (United States)

    Lovati, Arianna Barbara; Romanò, Carlo Luca; Bottagisio, Marta; Monti, Lorenzo; De Vecchi, Elena; Previdi, Sara; Accetta, Riccardo; Drago, Lorenzo

    2016-01-01

    S. epidermidis is one of the leading causes of orthopaedic infections associated with biofilm formation on implant devices. Open fractures are at risk of S. epidermidis transcutaneous contamination leading to higher non-union development compared to closed fractures. Although the role of infection in delaying fracture healing is well recognized, no in vivo models investigated the impact of subclinical low-grade infections on bone repair and non-union. We hypothesized that the non-union rate is directly related to the load of this commonly retrieved pathogen and that a low-grade contamination delays the fracture healing without clinically detectable infection. Rat femurs were osteotomized and stabilized with plates. Fractures were infected with a characterized clinical-derived methicillin-resistant S. epidermidis (10(3), 10(5), 10(8) colony forming units) and compared to uninfected controls. After 56 days, bone healing and osteomyelitis were clinically assessed and further evaluated by micro-CT, microbiological and histological analyses. The biofilm formation was visualized by scanning electron microscopy. The control group showed no signs of infection and a complete bone healing. The 10(3) group displayed variable response to infection with a 67% of altered bone healing and positive bacterial cultures, despite no clinical signs of infection present. The 10(5) and 10(8) groups showed severe signs of osteomyelitis and a non-union rate of 83-100%, respectively. The cortical bone reaction related to the periosteal elevation in the control group and the metal scattering detected by micro-CT represented limitations of this study. Our model showed that an intra-operative low-grade S. epidermidis contamination might prevent the bone healing, even in the absence of infectious signs. Our findings also pointed out a dose-dependent effect between the S. epidermidis inoculum and non-union rate. This pilot study identifies a relevant preclinical model to assess the role of

  3. Statistical properties of fluctuations of time series representing the appearance of words in nationwide blog data and their applications: An example of observations and the modelling of fluctuation scalings of nonstationary time series

    CERN Document Server

    Watanabe, Hayafumi; Takayasu, Hideki; Takayasu, Misako

    2016-01-01

    To elucidate the non-trivial empirical statistical properties of fluctuations of a typical non-steady time series representing the appearance of words in blogs, we investigated approximately five billion Japanese blogs over a period of six years and analyse some corresponding mathematical models. First, we introduce a solvable non-steady extension of the random diffusion model, which can be deduced by modelling the behaviour of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuati...

  4. A generic concept for the development of model-guided clinical decision support systems

    Directory of Open Access Journals (Sweden)

    Denecke Kerstin

    2015-09-01

    Full Text Available Disease development and progression are very complex processes which make clinical decision making non-trivial. On the one hand, examination results that are stored in multiple formats and data types in clinical information systems need to be considered. Beyond, biological or molecular-biological processes can influence clinical decision making. So far, biological knowledge and patient data is separated from each other. This complicates inclusion of all relevant knowledge and information into the decision making. In this paper, we describe a concept of model-based decision support that links knowledge about biological processes, treatment decisions and clinical data. It consists of three models: 1 a biological model, 2 a decision model encompassing medical knowledge about the treatment workflow and decision parameters, and 3 a patient data model generated from clinical data. Requirements and future steps for realizing the concept will be presented and it will be shown how the concept can support the clinical decision making.

  5. An Integrative Pathway-based Clinical-genomic Model for Cancer Survival Prediction.

    Science.gov (United States)

    Chen, Xi; Wang, Lily; Ishwaran, Hemant

    2010-09-01

    Prediction models that use gene expression levels are now being proposed for personalized treatment of cancer, but building accurate models that are easy to interpret remains a challenge. In this paper, we describe an integrative clinical-genomic approach that combines both genomic pathway and clinical information. First, we summarize information from genes in each pathway using Supervised Principal Components (SPCA) to obtain pathway-based genomic predictors. Next, we build a prediction model based on clinical variables and pathway-based genomic predictors using Random Survival Forests (RSF). Our rationale for this two-stage procedure is that the underlying disease process may be influenced by environmental exposure (measured by clinical variables) and perturbations in different pathways (measured by pathway-based genomic variables), as well as their interactions. Using two cancer microarray datasets, we show that the pathway-based clinical-genomic model outperforms gene-based clinical-genomic models, with improved prediction accuracy and interpretability.

  6. A formal statistical approach to representing uncertainty in rainfall-runoff modelling with focus on residual analysis and probabilistic output evaluation - Distinguishing simulation and prediction

    Science.gov (United States)

    Breinholt, Anders; Møller, Jan Kloppenborg; Madsen, Henrik; Mikkelsen, Peter Steen

    2012-11-01

    SummaryWhile there seems to be consensus that hydrological model outputs should be accompanied with an uncertainty estimate the appropriate method for uncertainty estimation is not agreed upon and a debate is ongoing between advocators of formal statistical methods who consider errors as stochastic and GLUE advocators who consider errors as epistemic, arguing that the basis of formal statistical approaches that requires the residuals to be stationary and conform to a statistical distribution is unrealistic. In this paper we take a formal frequentist approach to parameter estimation and uncertainty evaluation of the modelled output, and we attach particular importance to inspecting the residuals of the model outputs and improving the model uncertainty description. We also introduce the probabilistic performance measures sharpness, reliability and interval skill score for model comparison and for checking the reliability of the confidence bounds. Using point rainfall and evaporation data as input and flow measurements from a sewer system for model conditioning, a state space model is formulated that accounts for three different flow contributions: wastewater from households, and fast rainfall-runoff from paved areas and slow rainfall-dependent infiltration-inflow from unknown sources. We consider two different approaches to evaluate the model output uncertainty, the output error method that lumps all uncertainty into the observation noise term, and a method based on Stochastic Differential Equations (SDEs) that separates input and model structure uncertainty from observation uncertainty and allows updating of model states in real-time. The results show that the optimal simulation (off-line) model is based on the output error method whereas the optimal prediction (on-line) model is based on the SDE method and the skill scoring criterion proved that significant predictive improvements of the output can be gained from updating the states continuously. In an effort to

  7. Feasibility of using Clinical Element Models (CEM to standardize phenotype variables in the database of genotypes and phenotypes (dbGaP.

    Directory of Open Access Journals (Sweden)

    Ko-Wei Lin

    Full Text Available The database of Genotypes and Phenotypes (dbGaP contains various types of data generated from genome-wide association studies (GWAS. These data can be used to facilitate novel scientific discoveries and to reduce cost and time for exploratory research. However, idiosyncrasies and inconsistencies in phenotype variable names are a major barrier to reusing these data. We addressed these challenges in standardizing phenotype variables by formalizing their descriptions using Clinical Element Models (CEM. Designed to represent clinical data, CEMs were highly expressive and thus were able to represent a majority (77.5% of the 215 phenotype variable descriptions. However, their high expressivity also made it difficult to directly apply them to research data such as phenotype variables in dbGaP. Our study suggested that simplification of the template models makes it more straightforward to formally represent the key semantics of phenotype variables.

  8. Feasibility of using Clinical Element Models (CEM) to standardize phenotype variables in the database of genotypes and phenotypes (dbGaP).

    Science.gov (United States)

    Lin, Ko-Wei; Tharp, Melissa; Conway, Mike; Hsieh, Alexander; Ross, Mindy; Kim, Jihoon; Kim, Hyeon-Eui

    2013-01-01

    The database of Genotypes and Phenotypes (dbGaP) contains various types of data generated from genome-wide association studies (GWAS). These data can be used to facilitate novel scientific discoveries and to reduce cost and time for exploratory research. However, idiosyncrasies and inconsistencies in phenotype variable names are a major barrier to reusing these data. We addressed these challenges in standardizing phenotype variables by formalizing their descriptions using Clinical Element Models (CEM). Designed to represent clinical data, CEMs were highly expressive and thus were able to represent a majority (77.5%) of the 215 phenotype variable descriptions. However, their high expressivity also made it difficult to directly apply them to research data such as phenotype variables in dbGaP. Our study suggested that simplification of the template models makes it more straightforward to formally represent the key semantics of phenotype variables.

  9. Why Don’t More Farmers Go Organic? Using A Stakeholder-Informed Exploratory Agent-Based Model to Represent the Dynamics of Farming Practices in the Philippines

    Directory of Open Access Journals (Sweden)

    Laura Schmitt Olabisi

    2015-10-01

    Full Text Available In spite of a growing interest in organic agriculture; there has been relatively little research on why farmers might choose to adopt organic methods, particularly in the developing world. To address this shortcoming, we developed an exploratory agent-based model depicting Philippine smallholder farmer decisions to implement organic techniques in rice paddy systems. Our modeling exercise was novel in its combination of three characteristics: first, agent rules were based on focus group data collected in the system of study. Second, a social network structure was built into the model. Third, we utilized variance-based sensitivity analysis to quantify model outcome variability, identify influential drivers, and suggest ways in which further modeling efforts could be focused and simplified. The model results indicated an upper limit on the number of farmers adopting organic methods. The speed of information spread through the social network; crop yields; and the size of a farmer’s plot were highly influential in determining agents’ adoption rates. The results of this stylized model indicate that rates of organic farming adoption are highly sensitive to the yield drop after switchover to organic techniques, and to the speed of information spread through existing social networks. Further research and model development should focus on these system characteristics.

  10. Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment

    NARCIS (Netherlands)

    Svensson, G.; Holtslag, A.A.M.; Kumar, V.; Mauritsen, T.; Steeneveld, G.J.; Angevine, W.M.; Bazile, E.; Beljaars, A.; Bruijn, de E.I.F.; Cheng, A.

    2011-01-01

    We present the main results from the second model intercomparison within the GEWEX (Global Energy andWater cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today’s numerical weather prediction and climate models for operational and r

  11. A model for harmonizing flow cytometry in clinical trials.

    Science.gov (United States)

    Maecker, Holden T; McCoy, J Philip; Amos, Michael; Elliott, John; Gaigalas, Adolfas; Wang, Lili; Aranda, Richard; Banchereau, Jacques; Boshoff, Chris; Braun, Jonathan; Korin, Yael; Reed, Elaine; Cho, Judy; Hafler, David; Davis, Mark; Fathman, C Garrison; Robinson, William; Denny, Thomas; Weinhold, Kent; Desai, Bela; Diamond, Betty; Gregersen, Peter; Di Meglio, Paola; DiMeglio, Paola; Nestle, Frank O; Nestle, Frank; Peakman, Mark; Villanova, Federica; Villnova, Federica; Ferbas, John; Field, Elizabeth; Kantor, Aaron; Kawabata, Thomas; Komocsar, Wendy; Lotze, Michael; Nepom, Jerry; Ochs, Hans; O'Lone, Raegan; Phippard, Deborah; Plevy, Scott; Rich, Stephen; Roederer, Mario; Rotrosen, Dan; Yeh, Jung-Hua

    2010-11-01

    Complexities in sample handling, instrument setup and data analysis are barriers to the effective use of flow cytometry to monitor immunological parameters in clinical trials. The novel use of a central laboratory may help mitigate these issues.

  12. An evaluation of three representative multimedia models used to support cleanup decision-making at hazardous, mixed, and radioactive waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-04-01

    The decision process involved in cleaning sites contaminated with hazardous, mixed, and radioactive materials is supported often by results obtained from computer models. These results provide limits within which a decision-maker can judge the importance of individual transport and fate processes, and the likely outcome of alternative cleanup strategies. The transport of hazardous materials may occur predominately through one particular pathway but, more often, actual or potential transport must be evaluated across several pathways and media. Multimedia models are designed to simulate the transport of contaminants from a source to a receptor through more than one environmental pathway. Three such multimedia models are reviewed here: MEPAS, MMSOILS, and PRESTO-EPA-CPG. The reviews are based on documentation provided with the software, on published reviews, on personal interviews with the model developers, and on model summaries extracted from computer databases and expert systems. The three models are reviewed within the context of specific media components: air, surface water, ground water, and food chain. Additional sections evaluate the way that these three models calculate human exposure and dose and how they report uncertainty. Special emphasis is placed on how each model handles radionuclide transport within specific media. For the purpose of simulating the transport, fate and effects of radioactive contaminants through more than one pathway, both MEPAS and PRESTO-EPA-CPG are adequate for screening studies; MMSOILS only handles nonradioactive substances and must be modified before it can be used in these same applications. Of the three models, MEPAS is the most versatile, especially if the user needs to model the transport, fate, and effects of hazardous and radioactive contaminants. 44 refs., 2 tabs.

  13. Representing culture in interstellar messages

    Science.gov (United States)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages art_science/2003>. Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological and cultural models.

  14. Developing computational model-based diagnostics to analyse clinical chemistry data

    NARCIS (Netherlands)

    Schalkwijk, D.B. van; Bochove, K. van; Ommen, B. van; Freidig, A.P.; Someren, E.P. van; Greef, J. van der; Graaf, A.A. de

    2010-01-01

    This article provides methodological and technical considerations to researchers starting to develop computational model-based diagnostics using clinical chemistry data.These models are of increasing importance, since novel metabolomics and proteomics measuring technologies are able to produce large

  15. Isolation and characterization of Magnetospirillum sp strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model

    DEFF Research Database (Denmark)

    Meyer-Cifuentes, Ingrid; Lavanchy, Paula Maria Martinez; Marin-Cevada, Vianey

    2017-01-01

    Previously, Planted Fixed-Bed Reactors (PFRs) have been used to investigate microbial toluene removal in the rhizosphere of constructed wetlands. Aerobic toluene degradation was predominant in these model systems although bulk redox conditions were hypoxic to anoxic. However, culture...

  16. A formal statistical approach to representing uncertainty in rainfall-runoff modelling with focus on residual analysis and probabilistic output evaluation - Distinguishing simulation and prediction

    DEFF Research Database (Denmark)

    Breinholt, Anders; Møller, Jan Kloppenborg; Madsen, Henrik

    2012-01-01

    and GLUE advocators who consider errors as epistemic, arguing that the basis of formal statistical approaches that requires the residuals to be stationary and conform to a statistical distribution is unrealistic. In this paper we take a formal frequentist approach to parameter estimation and uncertainty...... evaluation of the modelled output, and we attach particular importance to inspecting the residuals of the model outputs and improving the model uncertainty description. We also introduce the probabilistic performance measures sharpness, reliability and interval skill score for model comparison...... on the SDE method and the skill scoring criterion proved that significant predictive improvements of the output can be gained from updating the states continuously. In an effort to attain residual stationarity for both the output error method and the SDE method transformation of the observations were...

  17. An evaluation of uncertainty in the aerosol optical properties as represented by satellites and an ensemble of chemistry-climate coupled models over Europe

    Science.gov (United States)

    Palacios-Peña, Laura; Baró, Rocío; Jiménez-Guerrero, Pedro

    2016-04-01

    The changes in Earth's climate are produced by forcing agents such as greenhouse gases, clouds and atmospheric aerosols. The latter modify the Earth's radiative budget due to their optical, microphysical and chemical properties, and are considered to be the most uncertain forcing agent. There are two main approaches to the study of aerosols: (1) ground-based and remote sensing observations and (2) atmospheric modelling. With the aim of characterizing the uncertainties associated with these approaches, and estimating the radiative forcing caused by aerosols, the main objective of this work is to assess the representation of aerosol optical properties by different remote sensing sensors and online-coupled chemistry-climate models and to determine whether the inclusion of aerosol radiative feedbacks in this type of models improves the modelling outputs over Europe. Two case studies have been selected under the framework of the EuMetChem COST Action ES1004, when important aerosol episodes during 2010 over Europe took place: a Russian wildfires episode and a Saharan desert dust outbreak covering most of Europe. Model data comes from an ensemble of regional air quality-climate simulations performed by the working group 2 of EuMetChem, that investigates the importance of different processes and feedbacks in on-line coupled chemistry-climate models. These simulations are run for three different configurations for each model, differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The remote sensing data comes from three different sensors, MODIS (Moderate Resolution Imaging Spectroradiometer), OMI (Ozone Monitoring Instrument) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor). The evaluation has been performed by using classical statistical metrics, comparing modelled and remotely sensed data versus a ground-based instrument network (AERONET). The evaluated variables are aerosol optical depth (AOD) and the Angström exponent (AE) at

  18. The Prime Diabetes Model: Novel Methods for Estimating Long-Term Clinical and Cost Outcomes in Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Valentine, William J; Pollock, Richard F; Saunders, Rhodri; Bae, Jay; Norrbacka, Kirsi; Boye, Kristina

    Recent publications describing long-term follow-up from landmark trials and diabetes registries represent an opportunity to revisit modeling options in type 1 diabetes mellitus (T1DM). To develop a new product-independent model capable of predicting long-term clinical and cost outcomes. After a systematic literature review to identify clinical trial and registry data, a model was developed (the PRIME Diabetes Model) to simulate T1DM progression and complication onset. The model runs as a patient-level simulation, making use of covariance matrices for cohort generation and risk factor progression, and simulating myocardial infarction, stroke, angina, heart failure, nephropathy, retinopathy, macular edema, neuropathy, amputation, hypoglycemia, ketoacidosis, mortality, and risk factor evolution. Several approaches novel to T1DM modeling were used, including patient characteristics and risk factor covariance, a glycated hemoglobin progression model derived from patient-level data, and model averaging approaches to evaluate complication risk. Validation analyses comparing modeled outcomes with published studies demonstrated that the PRIME Diabetes Model projects long-term patient outcomes consistent with those reported for a number of long-term studies. Macrovascular end points were reliably reproduced across five different populations and microvascular complication risk was accurately predicted on the basis of comparisons with landmark studies and published registry data. The PRIME Diabetes Model is product-independent, available online, and has been developed in line with good practice guidelines. Validation has indicated that outcomes from long-term studies can be reliably reproduced. The model offers new approaches to long-standing challenges in diabetes modeling and may become a valuable tool for informing health care policy. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  19. Using simulation modeling to improve patient flow at an outpatient orthopedic clinic.

    Science.gov (United States)

    Rohleder, Thomas R; Lewkonia, Peter; Bischak, Diane P; Duffy, Paul; Hendijani, Rosa

    2011-06-01

    We report on the use of discrete event simulation modeling to support process improvements at an orthopedic outpatient clinic. The clinic was effective in treating patients, but waiting time and congestion in the clinic created patient dissatisfaction and staff morale issues. The modeling helped to identify improvement alternatives including optimized staffing levels, better patient scheduling, and an emphasis on staff arriving promptly. Quantitative results from the modeling provided motivation to implement the improvements. Statistical analysis of data taken before and after the implementation indicate that waiting time measures were significantly improved and overall patient time in the clinic was reduced.

  20. Development and Application of an Integrated Model for Representing Hydrologic Processes and Irrigation at Residential Scale in Semiarid and Mediterranean Regions

    Science.gov (United States)

    Herrera, J. B.; Gironas, J. A.; Bonilla, C. A.; Vera, S.; Reyes, F. R.

    2015-12-01

    Urbanization alters physical and biological processes that take place in natural environments. New impervious areas change the hydrological processes, reducing infiltration and evapotranspiration and increasing direct runoff volumes and flow discharges. To reduce these effects at local scale, sustainable urban drainage systems, low impact development and best management practices have been developed and implemented. These technologies, which typically consider some type of green infrastructure (GI), simulate natural processes of capture, retention and infiltration to control flow discharges from frequent events and preserve the hydrological cycle. Applying these techniques in semiarid regions requires accounting for aspects related to the maintenance of green areas, such as the irrigation needs and the selection of the vegetation. This study develops the Integrated Hydrological Model at Residential Scale, IHMORS, which is a continuous model that simulates the most relevant hydrological processes together with irrigation processes of green areas. In the model contributing areas and drainage control practices are modeled by combining and connecting differents subareas subjected to surface processes (i.e. interception, evapotranspiration, infiltration and surface runoff) and sub-surface processes (percolation, redistribution and subsurface runoff). The model simulates these processes and accounts for the dynamics of the water content in different soil layers. The different components of the model were first tested using laboratory and numerical experiments, and then an application to a case study was carried out. In this application we assess the long-term performance in terms of runoff control and irrigation needs of green gardens with different vegetation, under different climate and irrigation practices. The model identifies significant differences in the performance of the alternatives and provides a good insight for the maintenance needs of GI for runoff control.

  1. Combined field/modelling approaches to represent the air-vegetation distribution of benzo[a]pyrene using different vegetation species

    Science.gov (United States)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2015-04-01

    A strategy designed to combine the features of field-based experiments and modelling approaches is presented in this work to assess air-vegetation distribution of benzo(a)pyrene (BaP) in the Iberian Peninsula (IP). Given the lack of simultaneous data in both environmental matrices, a methodology with two main steps was employed. First, evaluating the simulations with the chemistry transport model (CTM) WRF (Weather Research and Forecasting) + CHIMERE data against the European Monitoring and Evaluation Programme (EMEP) network, to test the aptitude of the CTM to replicate the respective atmospheric levels. Then, using modelled concentrations and a method to estimate air levels of BaP from biomonitoring data to compare the performance of different pine species (Pinus pinea, Pinus pinaster, Pinus nigra and Pinus halepensis) to describe the atmospheric evidences. The comparison of modelling vs. biomonitoring has a higher dependence on the location of the sampling points, rather than on the pine species, as some tend to overestimate and others to underestimate BaP concentrations, in most cases regardless of the season. The climatology of the canopy levels of BaP was successfully validated with the concentrations in pine needles (most biases below 26%), however, the model was unable to distinguish between species. This should be taken into consideration in future studies, as biases can rise up to 48%, especially in summer and autumn, the. The comparison with biomonitoring data showed a similar pattern, but with the best results in the warmer months.

  2. A Clinical model to identify patients with high-risk coronary artery disease

    NARCIS (Netherlands)

    Y. Yang (Yelin); L. Chen (Li); Y. Yam (Yeung); S. Achenbach (Stephan); M. Al-Mallah (Mouaz); D.S. Berman (Daniel); M.J. Budoff (Matthew); F. Cademartiri (Filippo); T.Q. Callister (Tracy); H.-J. Chang (Hyuk-Jae); V.Y. Cheng (Victor); K. Chinnaiyan (Kavitha); R.C. Cury (Ricardo); A. Delago (Augustin); A. Dunning (Allison); G.M. Feuchtner (Gudrun); M. Hadamitzky (Martin); J. Hausleiter (Jörg); R.P. Karlsberg (Ronald); P.A. Kaufmann (Philipp); Y.-J. Kim (Yong-Jin); J. Leipsic (Jonathon); T.M. LaBounty (Troy); F.Y. Lin (Fay); E. Maffei (Erica); G.L. Raff (Gilbert); L.J. Shaw (Leslee); T.C. Villines (Todd); J.K. Min (James K.); B.J.W. Chow (Benjamin)

    2015-01-01

    textabstractObjectives This study sought to develop a clinical model that identifies patients with and without high-risk coronary artery disease (CAD). Background Although current clinical models help to estimate a patient's pre-test probability of obstructive CAD, they do not accurately identify th

  3. A Clinical model to identify patients with high-risk coronary artery disease

    NARCIS (Netherlands)

    Y. Yang (Yelin); L. Chen (Li); Y. Yam (Yeung); S. Achenbach (Stephan); M. Al-Mallah (Mouaz); D.S. Berman (Daniel); M.J. Budoff (Matthew); F. Cademartiri (Filippo); T.Q. Callister (Tracy); H.-J. Chang (Hyuk-Jae); V.Y. Cheng (Victor); K. Chinnaiyan (Kavitha); R.C. Cury (Ricardo); A. Delago (Augustin); A. Dunning (Allison); G.M. Feuchtner (Gudrun); M. Hadamitzky (Martin); J. Hausleiter (Jörg); R.P. Karlsberg (Ronald); P.A. Kaufmann (Philipp); Y.-J. Kim (Yong-Jin); J. Leipsic (Jonathon); T.M. LaBounty (Troy); F.Y. Lin (Fay); E. Maffei (Erica); G.L. Raff (Gilbert); L.J. Shaw (Leslee); T.C. Villines (Todd); J.K. Min (James K.); B.J.W. Chow (Benjamin)

    2015-01-01

    textabstractObjectives This study sought to develop a clinical model that identifies patients with and without high-risk coronary artery disease (CAD). Background Although current clinical models help to estimate a patient's pre-test probability of obstructive CAD, they do not accurately identify th

  4. A factor analytic investigation of the Tripartite model of affect in a clinical sample of young Australians

    Directory of Open Access Journals (Sweden)

    Cosgrave Elizabeth M

    2008-09-01

    Full Text Available Abstract Background The Mood and Anxiety Symptom Questionnaire (MASQ was designed to specifically measure the Tripartite model of affect and is proposed to offer a delineation between the core components of anxiety and depression. Factor analytic data from adult clinical samples has shown mixed results; however no studies employing confirmatory factor analysis (CFA have supported the predicted structure of distinct Depression, Anxiety and General Distress factors. The Tripartite model has not been validated in a clinical sample of older adolescents and young adults. The aim of the present study was to examine the validity of the Tripartite model using scale-level data from the MASQ and correlational and confirmatory factor analysis techniques. Methods 137 young people (M = 17.78, SD = 2.63 referred to a specialist mental health service for adolescents and young adults completed the MASQ and diagnostic interview. Results All MASQ scales were highly inter-correlated, with the lowest correlation between the depression- and anxiety-specific scales (r = .59. This pattern of correlations was observed for all participants rating for an Axis-I disorder but not for participants without a current disorder (r = .18. Confirmatory factor analyses were conducted to evaluate the model fit of a number of solutions. The predicted Tripartite structure was not supported. A 2-factor model demonstrated superior model fit and parsimony compared to 1- or 3-factor models. These broad factors represented Depression and Anxiety and were highly correlated (r = .88. Conclusion The present data lend support to the notion that the Tripartite model does not adequately explain the relationship between anxiety and depression in all clinical populations. Indeed, in the present study this model was found to be inappropriate for a help-seeking community sample of older adolescents and young adults.

  5. Non-point Source Pollution Modeling Using Geographic Information System (GIS for Representing Best Management Practices (BMP in the Gorganrood Watershed

    Directory of Open Access Journals (Sweden)

    Z. Pasandidehfard

    2014-09-01

    Full Text Available The most important pollutants that cause water pollution are nitrogen and phosphorus from agricultural runoff called Non-Point Source Pollution (NPS. To solve this problem, management practices known as BMPs or Best Management Practices are applied. One of the common methods for Non-Point Source Pollution prediction is modeling. By modeling, efficiency of many practices can be tested before application. In this study, land use changes were studied from the years 1984 till 2010 that showed an increase in agricultural lands from 516908.52 to 630737.19 ha and expansion of cities from 5237.87 to 15487.59 ha and roads from 9666.07 to 11430.24 ha. Using L-THIA model (from nonpoint source pollution models for both land use categories, the amount of pollutant and the volume of runoff were calculated that showed high growth. Then, the seventh sub-basin was recognized as a critical zone in terms of pollution among the sub-basins. In the end, land use change was considered as a BMP using Multi-Criteria Evaluation (MCE based on which a more suitable land use map was produced. After producing the new land use map, L-THIA model was run again and the result of the model was compared to the actual land use to show the effect of this BMP. Runoff volume decreased from 367.5 to 308.6 M3/ha and nitrogen in runoff was reduced from 3.26 to 1.58 mg/L and water BOD from 3.61 to 2.13 mg/L. Other pollutants also showed high reduction. In the end, land use change is confirmed as an effective BMP for Non-Point Source Pollution reduction.

  6. Bonding and vibrations of CH xO and CH x species ( x = 1-3) on a palladium nanoparticle representing model catalysts

    Science.gov (United States)

    Kozlov, Sergey M.; Cabeza, Gabriela F.; Neyman, Konstantin M.

    2011-04-01

    This computational study deals with the adsorption of CH3, CH2, CH, CH2OH, CH3O, CH2O and CHO species on a nanoparticle Pd79 that mimics experimentally investigated model Pd catalysts. We quantify structural, energetic and vibrational parameters of these adsorption complexes and analyse their dependence on the adsorption site. Most of the considered low coordinated adsorption sites are found to be favoured by 20-50 kJ/mol over the sites on (1 1 1) facets. Some of the studied species have distinguishable vibrational parameters at different adsorption sites of the model nanoparticle, making possible spectroscopic characterization of respective adsorption complexes.

  7. Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Part II: identification from tests under heterogeneous stress field

    CERN Document Server

    Kucerova, A; Ibrahimbegovic, A; Zeman, J; Bittnar, Z

    2009-01-01

    In Part I of this paper we have presented a simple model capable of describing the localized failure of a massive structure. In this part, we discuss the identification of the model parameters from two kinds of experiments: a uniaxial tensile test and a three-point bending test. The former is used only for illustration of material parameter response dependence, and we focus mostly upon the latter, discussing the inverse optimization problem for which the specimen is subjected to a heterogeneous stress field.

  8. Integrating Zakat, Waqf and Sadaqah: Myint Myat Phu Zin Clinic Model in Myanmar

    Directory of Open Access Journals (Sweden)

    Sheila Nu Nu Htay

    2014-03-01

    Full Text Available Objective –The main objective of this paper is to present a Myint Myat Phu Zin Clinic Model that integrates three traditional Islamic tools such as waqf, zakat and sadaqah. It is the first clinic in Myanmar which is established based on the combination of these three concepts for Muslims and non-Muslims. Methods – Case study method and interview technique are used to collect the data and to evaluate the operating clinic model and its management.Result–The findings explain how this clinic model is operating from the funding of waqf, zakat and sadaqah and illustrate the operating model from the sources of fund until how they are utilized for the beneficiaries. The clinic is depending on four sources of income, which are the contribution from Muslims and non-Muslims. The types of income received from Muslims are zakat and sadaqah. The income received from non-Muslims is only the charity.Conclusion –It can be concluded that this clinic model can be used as a model in any other non-Muslim countries with minority Muslim population. The clinic is drastically helping patients although the expenditures become higher. Therefore, researchers suggest introducing cash waqf to make sure the clinic is economically stronger.Keywords: Waqf, Zakat, Sadaqah, Health and Clinic

  9. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: From cognitive maps to agent-based models

    NARCIS (Netherlands)

    Elsawah, Sondoss; Guillaume, Joseph H.A.; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J.

    2015-01-01

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation mode

  10. Predicting Student Grade Point Average at a Community College from Scholastic Aptitude Tests and from Measures Representing Three Constructs in Vroom's Expectancy Theory Model of Motivation.

    Science.gov (United States)

    Malloch, Douglas C.; Michael, William B.

    1981-01-01

    This study was designed to determine whether an unweighted linear combination of community college students' scores on standardized achievement tests and a measure of motivational constructs derived from Vroom's expectance theory model of motivation was predictive of academic success (grade point average earned during one quarter of an academic…

  11. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: From cognitive maps to agent-based models

    NARCIS (Netherlands)

    El-Sawah, Sondoss; Guillaume, Joseph H.A.; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J.

    2015-01-01

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation

  12. Predicting Student Grade Point Average at a Community College from Scholastic Aptitude Tests and from Measures Representing Three Constructs in Vroom's Expectancy Theory Model of Motivation.

    Science.gov (United States)

    Malloch, Douglas C.; Michael, William B.

    1981-01-01

    This study was designed to determine whether an unweighted linear combination of community college students' scores on standardized achievement tests and a measure of motivational constructs derived from Vroom's expectance theory model of motivation was predictive of academic success (grade point average earned during one quarter of an academic…

  13. From Desktop Toy to Educational Aid: Neo Magnets as an Alternative to Ball-and-Stick Models in Representing Carbon Fullerenes

    Science.gov (United States)

    Kao, Jacqueline Y.; Yang, Min-Han; Lee, Chi-Young

    2015-01-01

    Neo magnets are neodymium magnet beads that have been marketed as a desktop toy. We proposed using neo magnets as an alternative building block to traditional ball-and-stick models to construct carbon allotropes, such as fullerene and various nanocone structures. Due to the lack of predetermined physical connections, the versatility of carbon…

  14. Understanding Clinical Anger and Violence: The Anger Avoidance Model

    Science.gov (United States)

    Gardner, Frank L.; Moore, Zella E.

    2008-01-01

    Although anger is a primary emotion and holds clear functional necessities, the presence of anger and its behavioral manifestations of aggression/violence can have serious emotional, health, and social consequences. Despite such consequences, the construct of clinical anger has to date suffered from few theoretical and treatment advancements and…

  15. Long‐Term Post‐CABG Survival: Performance of Clinical Risk Models Versus Actuarial Predictions

    Science.gov (United States)

    Carr, Brendan M.; Romeiser, Jamie; Ruan, Joyce; Gupta, Sandeep; Seifert, Frank C.; Zhu, Wei

    2015-01-01

    Abstract Background/aim Clinical risk models are commonly used to predict short‐term coronary artery bypass grafting (CABG) mortality but are less commonly used to predict long‐term mortality. The added value of long‐term mortality clinical risk models over traditional actuarial models has not been evaluated. To address this, the predictive performance of a long‐term clinical risk model was compared with that of an actuarial model to identify the clinical variable(s) most responsible for any differences observed. Methods Long‐term mortality for 1028 CABG patients was estimated using the Hannan New York State clinical risk model and an actuarial model (based on age, gender, and race/ethnicity). Vital status was assessed using the Social Security Death Index. Observed/expected (O/E) ratios were calculated, and the models' predictive performances were compared using a nested c‐index approach. Linear regression analyses identified the subgroup of risk factors driving the differences observed. Results Mortality rates were 3%, 9%, and 17% at one‐, three‐, and five years, respectively (median follow‐up: five years). The clinical risk model provided more accurate predictions. Greater divergence between model estimates occurred with increasing long‐term mortality risk, with baseline renal dysfunction identified as a particularly important driver of these differences. Conclusions Long‐term mortality clinical risk models provide enhanced predictive power compared to actuarial models. Using the Hannan risk model, a patient's long‐term mortality risk can be accurately assessed and subgroups of higher‐risk patients can be identified for enhanced follow‐up care. More research appears warranted to refine long‐term CABG clinical risk models. doi: 10.1111/jocs.12665 (J Card Surg 2016;31:23–30) PMID:26543019

  16. Application of a Judgment Model toward Measurement of Clinical Judgment in Senior Nursing Students

    Science.gov (United States)

    Pongmarutai, Tiwaporn

    2010-01-01

    Clinical judgment, defined as "the application of the nurse's knowledge and experience in making decisions about client care" (The National Council of State Boards of Nursing, 2005, p. 2), has been recognized as a vital and essential skill for healthcare providers when caring for clients. Undisputedly, nurses represent the largest…

  17. Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA.

    Science.gov (United States)

    Yang, Xian; Han, Rui; Guo, Yike; Bradley, Jeremy; Cox, Benita; Dickinson, Robert; Kitney, Richard

    2012-01-01

    Hospitals nowadays have to serve numerous patients with limited medical staff and equipment while maintaining healthcare quality. Clinical pathway informatics is regarded as an efficient way to solve a series of hospital challenges. To date, conventional research lacks a mathematical model to describe clinical pathways. Existing vague descriptions cannot fully capture the complexities accurately in clinical pathways and hinders the effective management and further optimization of clinical pathways. Given this motivation, this paper presents a clinical pathway management platform, the Imperial Clinical Pathway Analyzer (ICPA). By extending the stochastic model performance evaluation process algebra (PEPA), ICPA introduces a clinical-pathway-specific model: clinical pathway PEPA (CPP). ICPA can simulate stochastic behaviours of a clinical pathway by extracting information from public clinical databases and other related documents using CPP. Thus, the performance of this clinical pathway, including its throughput, resource utilisation and passage time can be quantitatively analysed. A typical clinical pathway on stroke extracted from a UK hospital is used to illustrate the effectiveness of ICPA. Three application scenarios are tested using ICPA: 1) redundant resources are identified and removed, thus the number of patients being served is maintained with less cost; 2) the patient passage time is estimated, providing the likelihood that patients can leave hospital within a specific period; 3) the maximum number of input patients are found, helping hospitals to decide whether they can serve more patients with the existing resource allocation. ICPA is an effective platform for clinical pathway management: 1) ICPA can describe a variety of components (state, activity, resource and constraints) in a clinical pathway, thus facilitating the proper understanding of complexities involved in it; 2) ICPA supports the performance analysis of clinical pathway, thereby assisting

  18. The model of back-flow mixed tanks-in-series used for representing the liquid flow in a reciprocating plate column

    Directory of Open Access Journals (Sweden)

    Nikolić Ljubiša B.

    2003-01-01

    Full Text Available The influence of different working parameters (vibration intensity superficial gas and liquid rate and content of the solid phase on liquid flow in a multiphase (gas-liquid: RPC-II and gas-liquid-solid: RPC-III reciprocating plate column was analyzed using step-response methods and sorbic acid as a tracer. The liquid flow was determined using a model of N-tanks in series followed by back mixing of the liquid phase between the tanks. The parameters of this model N, a and x were calculated by applying several methods: calculation of the moments of the residence time distribution function for a constant number of tanks in series (N=const analysis of a set of linear equations for N *const and determination of the minimum of defined goal function using the optimization technique leastsq.m of MATLAB software.

  19. A method to represent ozone response to large changes in precursor emissions using high-order sensitivity analysis in photochemical models

    Directory of Open Access Journals (Sweden)

    G. Yarwood

    2013-09-01

    Full Text Available Photochemical grid models (PGMs are used to simulate tropospheric ozone and quantify its response to emission changes. PGMs are often applied for annual simulations to provide both maximum concentrations for assessing compliance with air quality standards and frequency distributions for assessing human exposure. Efficient methods for computing ozone at different emission levels can improve the quality of ozone air quality management efforts. This study demonstrates the feasibility of using the decoupled direct method (DDM to calculate first- and second-order sensitivity of ozone to anthropogenic NOx and VOC emissions in annual PGM simulations at continental scale. Algebraic models are developed that use Taylor series to produce complete annual frequency distributions of hourly ozone at any location and any anthropogenic emission level between zero and 100%, adjusted independently for NOx and VOC. We recommend computing the sensitivity coefficients at the midpoint of the emissions range over which they are intended to be applied, in this case with 50% anthropogenic emissions. The algebraic model predictions can be improved by combining sensitivity coefficients computed at 10 and 50% anthropogenic emissions. Compared to brute force simulations, algebraic model predictions tend to be more accurate in summer than winter, at rural than urban locations, and with 100% than zero anthropogenic emissions. Equations developed to combine sensitivity coefficients computed with 10 and 50% anthropogenic emissions are able to reproduce brute force simulation results with zero and 100% anthropogenic emissions with a mean bias of less than 2 ppb and mean error of less than 3 ppb averaged over 22 US cities.

  20. A method to represent ozone response to large changes in precursor emissions using high-order sensitivity analysis in photochemical models

    OpenAIRE

    G. Yarwood; Emery, C; Jung, J.; U. Nopmongcol; T. Sakulyanotvittaya

    2013-01-01

    Photochemical grid models (PGMs) are used to simulate tropospheric ozone and quantify its response to emission changes. PGMs are often applied for annual simulations to provide both maximum concentrations for assessing compliance with air quality standards and frequency distributions for assessing human exposure. Efficient methods for computing ozone at different emission levels can improve the quality of ozone air quality management efforts. This study demonstrates the feasibility of using t...

  1. A method to represent ozone response to large changes in precursor emissions using high-order sensitivity analysis in photochemical models

    OpenAIRE

    G. Yarwood; Emery, C; Jung, J.; U. Nopmongcol; Sakulyanontvittaya, T.

    2013-01-01

    Photochemical grid models (PGMs) are used to simulate tropospheric ozone and quantify its response to emission changes. PGMs are often applied for annual simulations to provide both maximum concentrations for assessing compliance with air quality standards and frequency distributions for assessing human exposure. Efficient methods for computing ozone at different emission levels can improve the quality of ozone air quality management efforts. This study demonstrates the feas...

  2. A method to represent ozone response to large changes in precursor emissions using high-order sensitivity analysis in photochemical models

    Directory of Open Access Journals (Sweden)

    G. Yarwood

    2013-04-01

    Full Text Available Photochemical grid models (PGMs are used to simulate tropospheric ozone and quantify its response to emission changes. PGMs are often applied for annual simulations to provide both maximum concentrations for assessing compliance with air quality standards and frequency distributions for assessing human exposure. Efficient methods for computing ozone at different emission levels can improve the quality of ozone air quality management efforts. This study demonstrates the feasibility of using the decoupled direct method (DDM to calculate first- and second-order sensitivity of ozone to anthropogenic NOx and VOC emissions in annual PGM simulations at continental scale. Algebraic models are developed that use Taylor series to produce complete annual frequency distributions of hourly ozone at any location and any anthropogenic emission level between zero and 100%, adjusted independently for NOx and VOC. We recommend computing the sensitivity coefficients at the mid-point of the emissions range over which they are intended to be applied, in this case with 50% anthropogenic emissions. The algebraic model predictions can be improved by combining sensitivity coefficients computed at 10% and 50% anthropogenic emissions. Compared to brute force simulations, algebraic model predictions tend to be more accurate in summer than winter, at rural than urban locations, and with 100% than zero anthropogenic emissions. Equations developed to combine sensitivity coefficients computed with 10% and 50% anthropogenic emissions are able to reproduce brute force simulation results with zero and 100% anthropogenic emissions with mean bias less than 2 ppb and mean error less than 3 ppb averaged over 22 US cities.

  3. Evaluation of pharmacokinetic/pharmacodynamic relationships of PD-0162819, a biotin carboxylase inhibitor representing a new class of antibacterial compounds, using in vitro infection models.

    Science.gov (United States)

    Ogden, Adam; Kuhn, Michael; Dority, Michael; Buist, Susan; Mehrens, Shawn; Zhu, Tong; Xiao, Deqing; Miller, J Richard; Hanna, Debra

    2012-01-01

    The present study investigated the pharmacokinetic/pharmacodynamic (PK/PD) relationships of a prototype biotin carboxylase (BC) inhibitor, PD-0162819, against Haemophilus influenzae 3113 in static concentration time-kill (SCTK) and one-compartment chemostat in vitro infection models. H. influenzae 3113 was exposed to PD-0162819 concentrations of 0.5 to 16× the MIC (MIC = 0.125 μg/ml) and area-under-the-curve (AUC)/MIC ratios of 1 to 1,100 in SCTK and chemostat experiments, respectively. Serial samples were collected over 24 h. For efficacy driver analysis, a sigmoid maximum-effect (E(max)) model was fitted to the relationship between bacterial density changes over 24 h and corresponding PK/PD indices. A semimechanistic PK/PD model describing the time course of bacterial growth and death was developed. The AUC/MIC ratio best explained efficacy (r(2) = 0.95) compared to the peak drug concentration (C(max))/MIC ratio (r(2) = 0.76) and time above the MIC (T>MIC) (r(2) = 0.88). Static effects and 99.9% killing were achieved at AUC/MIC values of 500 and 600, respectively. For time course analysis, the net bacterial growth rate constant, maximum bacterial density, and maximum kill rate constant were similar in SCTK and chemostat studies, but PD-0162819 was more potent in SCTK than in the chemostat (50% effective concentration [EC(50)] = 0.046 versus 0.34 μg/ml). In conclusion, basic PK/PD relationships for PD-0162819 were established using in vitro dynamic systems. Although the bacterial growth parameters and maximum drug effects were similar in SCTK and the chemostat system, PD-0162819 appeared to be more potent in SCTK, illustrating the importance of understanding the differences in preclinical models. Additional studies are needed to determine the in vivo relevance of these results.

  4. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    Science.gov (United States)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-01

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolved fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June-September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998-2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.

  5. Effects of ray profile modeling on resolution recovery in clinical CT

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Christian [Institute of Medical Physics, Friedrich–Alexander University (FAU), Erlangen, Bavaria 91052 (Germany); Knaup, Michael [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz-heidelberg.de [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany and Institute of Medical Physics, Friedrich–Alexander University (FAU), Erlangen, Bavaria 91052 (Germany)

    2014-02-15

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. However, among vendors and researchers, there is no consensus of how to best achieve these goals. The authors are focusing on the aspect of geometric ray profile modeling, which is realized by some algorithms, while others model the ray as a straight line. The authors incorporate ray-modeling (RM) in nonregularized iterative reconstruction. That means, instead of using one simple single needle beam to represent the x-ray, the authors evaluate the double integral of attenuation path length over the finite source distribution and the finite detector element size in the numerical forward projection. Our investigations aim at analyzing the resolution recovery (RR) effects of RM. Resolution recovery means that frequencies can be recovered beyond the resolution limit of the imaging system. In order to evaluate, whether clinical CT images can benefit from modeling the geometrical properties of each x-ray, the authors performed a 2D simulation study of a clinical CT fan-beam geometry that includes the precise modeling of these geometrical properties. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and a Forbild thorax phantom with circular resolution patterns representing calcifications in the heart region are simulated. An FBP reconstruction with a Ram–Lak kernel is used as a reference reconstruction. The FBP is compared to iterative reconstruction techniques with and without RM: An ordered subsets convex (OSC) algorithm without any RM (OSC), an OSC where the forward projection is modeled concerning the finite focal spot and detector size (OSC-RM) and an OSC with RM and with a matched forward and backprojection pair (OSC-T-RM, T for transpose). In all cases, noise was matched to

  6. The fiduciary relationship model for managing clinical genomic "incidental" findings.

    Science.gov (United States)

    Lázaro-Muñoz, Gabriel

    2014-01-01

    This paper examines how the application of legal fiduciary principles (e.g., physicians' duty of loyalty and care, duty to inform, and duty act within the scope of authority), can serve as a framework to promote management of clinical genomic "incidental" or secondary target findings that is patient-centered and consistent with recognized patient autonomy rights. The application of fiduciary principles to the clinical genomic testing context gives rise to at least four physician fiduciary duties in conflict with recent recommendations by the American College of Medical Genetics and Genomics (ACMG). These recommendations have generated much debate among lawyers, clinicians, and bioethicists hence I believe this publication will be of value and interest to your readership. © 2014 American Society of Law, Medicine & Ethics, Inc.

  7. Animal models of major depression and their clinical implications.

    Science.gov (United States)

    Czéh, Boldizsár; Fuchs, Eberhard; Wiborg, Ove; Simon, Mária

    2016-01-04

    Major depressive disorder is a common, complex, and potentially life-threatening mental disorder that imposes a severe social and economic burden worldwide. Over the years, numerous animal models have been established to elucidate pathophysiology that underlies depression and to test novel antidepressant treatment strategies. Despite these substantial efforts, the animal models available currently are of limited utility for these purposes, probably because none of the models mimics this complex disorder fully. It is presumable that psychiatric illnesses, such as affective disorders, are related to the complexity of the human brain. Here, we summarize the animal models that are used most commonly for depression, and discuss their advantages and limitations. We discuss genetic models, including the recently developed optogenetic tools and the stress models, such as the social stress, chronic mild stress, learned helplessness, and early-life stress paradigms. Moreover, we summarize briefly the olfactory bulbectomy model, as well as models that are based on pharmacological manipulations and disruption of the circadian rhythm. Finally, we highlight common misinterpretations and often-neglected important issues in this field.

  8. Increasing the spatial scale of process-based agricultural systems models by representing heterogeneity: The case of urine patches in grazed pastures

    DEFF Research Database (Denmark)

    Snow, Val O.; Cichota, R; McAuliffe, John

    2017-01-01

    We sought to extend the spatial scale of soil-plant models by including, rather than ignoring, heterogeneity using the deposition of urine patches as an example. Our “pseudo-patches” approach preserves the most important biophysical effects but is computationally-tractable within a multi......-paddock simulation. It explicitly preserves the soil carbon and nitrogen heterogeneity but does not require independent simulation of soil water and plant processes and is temporal in that the patches of heterogeneity can appear and disappear during the simulation. The approach was tested through comparison...

  9. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)

    2014-10-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

  10. Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward

    Science.gov (United States)

    Bezada, M. J.; Faccenda, M.; Toomey, D. R.

    2016-08-01

    Despite the widely known fact that mantle flow in and around subduction zones produces the development of considerable seismic anisotropy, most P-wave tomography efforts still rely on the assumption of isotropy. In this study, we explore the potential effects of erroneous assumption on tomographic images and explore an alternative approach. We conduct a series of synthetic tomography tests based on a geodynamic simulation of subduction and rollback. The simulation results provide a self-consistent distribution of isotropic (thermal) anomalies and seismic anisotropy which we use to calculate synthetic delay times for a number of realistic and hypothetical event distributions. We find that anisotropy-induced artifacts are abundant and significant for teleseismic, local and mixed event distributions. The occurrence of artifacts is not reduced, and indeed can be exacerbated, by increasing richness in ray-path azimuths and incidence angles. The artifacts that we observe are, in all cases, important enough to significantly impact the interpretation of the images. We test an approach based on prescribing the anisotropy field as an a priori constraint and find that even coarse approximations to the true anisotropy field produce useful results. Using approximate anisotropy, fields can result in reduced RMS misfit to the travel time delays and reduced abundance and severity of imaging artifacts. We propose that the use of anisotropy fields derived from geodynamic modeling and constrained by seismic observables may constitute a viable alternative to isotropic tomography that does not require the inversion for anisotropy parameters in each node of the model.

  11. Predictive in vivo animal models and translation to clinical trials.

    Science.gov (United States)

    Cook, Natalie; Jodrell, Duncan I; Tuveson, David A

    2012-03-01

    Vast resources are expended during the development of new cancer therapeutics, and selection of optimal in vivo models should improve this process. Genetically engineered mouse models (GEMM) of cancer have progressively improved in technical sophistication and, accurately recapitulating the human cognate condition, have had a measureable impact on our knowledge of tumourigenesis. However, the application of GEMMs to facilitate the development of innovative therapeutic and diagnostic approaches has lagged behind. GEMMs that recapitulate human cancer offer an additional opportunity to accelerate drug development, and should complement the role of the widely used engraftment tumour models.

  12. Possession as a clinical phenomenon: a critique of the medical model

    Directory of Open Access Journals (Sweden)

    Owe Wikström

    1982-01-01

    Full Text Available The focus of this article is on the individual's specific experience of his personality being possessed, either partially or completely, momentarily or for an extended period of time, by evil spirits. It must be seen as necessary to supplement the narrow medical model for interpreting states of possession. The clinically interested psychologist of religion, in particular, needs consider aspects of the phenomenology of religion and clinical psychology in order to gain a broader understanding of this phenomenon. To declare that possession experiences are "nothing but psychosis, mania, epilepsy or schizophrenia, are examples of this type of over-simplification. The structure of possession can above all be understood as an interaction between a cognitive, linguistic level, and an emotional, affective level. Only if one unites these two levels can one attain a deeper understanding of the individual's possession experience. It is, in other words, important to remember that to increase understanding of the structure of possession, we must relate the individual's (bio-chemically conditioned intensive feeling experience to the surrounding subculture's way of defining these intensive feelings. Religious language provides one way of dealing verbally with the unstructured and terrifying aspects of a developing psychosis. It is, for example, possible to describe the personal transformation as a dynamic relationship between the verbal representatives for evil or the Evil One in the world of mythological language, and the intrapsychic, anxiety-filled emotive state, regardless of whether this inner state is considered to be the result of neurosis, psycho-sis, or the consequence of intensive suggestion.

  13. Anti-VEGF therapy in the management of retinopathy of prematurity: what we learn from representative animal models of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Wang H

    2016-05-01

    Full Text Available Haibo Wang Department of Ophthalmology, John A Moran Eye Center, The University of Utah, Salt Lake City, UT, USA Abstract: Retinopathy of prematurity (ROP remains a leading cause of childhood blindness, affecting infants born prematurely. ROP is characterized by the onset of delayed physiological retinal vascular development (PRVD and followed by pathologic neovascularization into the vitreous instead of the retina, called intravitreal neovascularization (IVNV. Therefore, the therapeutic strategy for treating ROP is to promote PRVD and inhibit or prevent IVNV. Vascular endothelial growth factor (VEGF plays an important role in the pathogenesis of ROP. There is a growing body of studies testing the use of anti-VEGF agents as a treatment for ROP. Intravitreal anti-VEGF treatment for ROP has potential advantages compared with laser photocoagulation, the gold standard for the treatment of severe ROP; however, intravitreal anti-VEGF treatment has been associated with reactivation of ROP and suppression of systemic VEGF that may affect body growth and organ development in preterm infants. Therefore, it is important to understand the role of VEGF in PRVD and IVNV. This review includes the current knowledge of anti-VEGF treatment for ROP from animal models of oxygen-induced retinopathy (OIR, highlighting the importance of VEGF inhibition by targeting retinal Müller cells, which inhibits IVNV and permits PRVD. The signaling events involved in mediating VEGF expression and promoting VEGF-mediated angiogenesis, including hypoxia-dependent signaling, erythropoietin/erythropoietin receptor-, oxidative stress-, beta-adrenergic receptor-, integrin-, Notch/Delta-like ligand 4- and exon guidance molecules-mediated signaling pathways, are also discussed. Keywords: vascular endothelial growth factor, retinopathy of prematurity, intravitreal neovascularization, oxygen-induced retinopathy model, physiological retinal vascular development

  14. Morphine glucuronidation and glucosidation represent complementary metabolic pathways that are both catalyzed by UDP-glucuronosyltransferase 2B7: kinetic, inhibition, and molecular modeling studies.

    Science.gov (United States)

    Chau, Nuy; Elliot, David J; Lewis, Benjamin C; Burns, Kushari; Johnston, Martin R; Mackenzie, Peter I; Miners, John O

    2014-04-01

    Morphine 3-β-D-glucuronide (M3G) and morphine 6-β-D-glucuronide (M6G) are the major metabolites of morphine in humans. More recently, morphine-3-β-d-glucoside (M-3-glucoside) was identified in the urine of patients treated with morphine. Kinetic and inhibition studies using human liver microsomes (HLM) and recombinant UGTs as enzyme sources along with molecular modeling were used here to characterize the relationship between morphine glucuronidation and glucosidation. The M3G to M6G intrinsic clearance (C(Lint)) ratio (∼5.5) from HLM supplemented with UDP-glucuronic acid (UDP-GlcUA) alone was consistent with the relative formation of these metabolites in humans. The mean C(Lint) values observed for M-3-glucoside by incubations of HLM with UDP-glucose (UDP-Glc) as cofactor were approximately twice those for M6G formation. However, although the M3G-to-M6G C(Lint) ratio remained close to 5.5 when human liver microsomal kinetic studies were performed in the presence of a 1:1 mixture of cofactors, the mean C(Lint) value for M-3-glucoside formation was less than that of M6G. Studies with UGT enzyme-selective inhibitors and recombinant UGT enzymes, along with effects of BSA on morphine glycosidation kinetics, were consistent with a major role of UGT2B7 in both morphine glucuronidation and glucosidation. Molecular modeling identified key amino acids involved in the binding of UDP-GlcUA and UDP-Glc to UGT2B7. Mutagenesis of these residues abolished morphine glucuronidation and glucosidation. Overall, the data indicate that morphine glucuronidation and glucosidation occur as complementary metabolic pathways catalyzed by a common enzyme (UGT2B7). Glucuronidation is the dominant metabolic pathway because the binding affinity of UDP-GlcUA to UGT2B7 is higher than that of UDP-Glc.

  15. Author: MA du Plessis CLINICAL LEGAL EDUCATION MODELS ...

    African Journals Online (AJOL)

    21892687

    methodology;. To promote, encourage and support published research by clinicians. .... Student pairs also have to attend compulsory 45-minute tutorials weekly with their ... client teaching model, plenary lectures, tutorials and simulations.

  16. Blood transcriptomic markers for major depression: from animal models to clinical settings.

    Science.gov (United States)

    Redei, Eva E; Mehta, Neha S

    2015-05-01

    Depression is a heterogeneous disorder and, similar to other spectrum disorders, its manifestation varies by age of onset, severity, comorbidity, treatment responsiveness, and other factors. A laboratory blood test based on specific biomarkers for major depressive disorder (MDD) and its subgroups could increase diagnostic accuracy and expedite the initiation of treatment. We identified candidate blood biomarkers by examining genome-wide expression differences in the blood of animal models representing both the genetic and environmental/stress etiologies of depression. Human orthologs of the resulting transcript panel were tested in pilot studies. Transcript abundance of 11 blood markers differentiated adolescent subjects with early-onset MDD from adolescents with no disorder (ND). A set of partly overlapping transcripts distinguished adolescent patients who had comorbid anxiety disorders from those with only MDD. In adults, blood levels of nine transcripts discerned subjects with MDD from ND controls. Even though cognitive behavioral therapy (CBT) resulted in remission of some patients, the levels of three transcripts consistently signaled prior MDD status. A coexpression network of transcripts seems to predict responsiveness to CBT. Thus, our approach can be developed into clinically valid diagnostic panels of blood transcripts for different manifestations of MDD, potentially reducing diagnostic heterogeneity and advancing individualized treatment strategies.

  17. Models of wound healing: an emphasis on clinical studies.

    Science.gov (United States)

    Wilhelm, K-P; Wilhelm, D; Bielfeldt, S

    2017-02-01

    The healing of wounds has always provided challenges for the medical community whether chronic or acute. Understanding the processes which enable wounds to heal is primarily carried out by the use of models, in vitro, animal and human. It is generally accepted that the use of human models offers the best opportunity to understand the factors that influence wound healing as well as to evaluate efficacy of treatments applied to wounds. The objective of this article is to provide an overview of the different methodologies that are currently used to experimentally induce wounds of various depths in human volunteers and examines the information that may be gained from them. There is a number of human volunteer healing models available varying in their invasiveness to reflect the different possible depth levels of wounds. Currently available wound healing models include sequential tape stripping, suction blister, abrasion, laser, dermatome, and biopsy techniques. The various techniques can be utilized to induce wounds of variable depth, from removing solely the stratum corneum barrier, the epidermis to even split-thickness or full thickness wounds. Depending on the study objective, a number of models exist to study wound healing in humans. These models provide efficient and reliable results to evaluate treatment modalities. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures

    Directory of Open Access Journals (Sweden)

    Liu Yufeng

    2011-01-01

    Full Text Available Abstract Background Multiple breast cancer gene expression profiles have been developed that appear to provide similar abilities to predict outcome and may outperform clinical-pathologic criteria; however, the extent to which seemingly disparate profiles provide additive prognostic information is not known, nor do we know whether prognostic profiles perform equally across clinically defined breast cancer subtypes. We evaluated whether combining the prognostic powers of standard breast cancer clinical variables with a large set of gene expression signatures could improve on our ability to predict patient outcomes. Methods Using clinical-pathological variables and a collection of 323 gene expression "modules", including 115 previously published signatures, we build multivariate Cox proportional hazards models using a dataset of 550 node-negative systemically untreated breast cancer patients. Models predictive of pathological complete response (pCR to neoadjuvant chemotherapy were also built using this approach. Results We identified statistically significant prognostic models for relapse-free survival (RFS at 7 years for the entire population, and for the subgroups of patients with ER-positive, or Luminal tumors. Furthermore, we found that combined models that included both clinical and genomic parameters improved prognostication compared with models with either clinical or genomic variables alone. Finally, we were able to build statistically significant combined models for pathological complete response (pCR predictions for the entire population. Conclusions Integration of gene expression signatures and clinical-pathological factors is an improved method over either variable type alone. Highly prognostic models could be created when using all patients, and for the subset of patients with lymph node-negative and ER-positive breast cancers. Other variables beyond gene expression and clinical-pathological variables, like gene mutation status or DNA

  19. Effect of patient location on the performance of clinical models to predict pulmonary embolism.

    Science.gov (United States)

    Ollenberger, Glenn P; Worsley, Daniel F

    2006-01-01

    Current clinical likelihood models for predicting pulmonary embolism (PE) are used to categorize outpatients into low, intermediate and high clinical pre-test likelihood of PE. Since these clinical prediction rules were developed using outpatients it is not known if they can be applied universally to both inpatients and outpatients with suspected PE. Thus, the purpose of this study was to determine the effect of patient location on the performance of clinical models to predict PE. Two clinical models (Wells and Wicki) were applied to data from the multi-centered PIOPED study. The Wells score was applied to 1359 patients and the Wicki score was applied to 998 patients. 361 patients (27%) from the PIOPED study did not have arterial gas measurement and were excluded from the Wicki score patient group. Patients were stratified by their location at the time of entry into the PIOPED study as follows: outpatient/emergency, surgical ward, medicine/coronary care unit or intensive care unit. The diagnostic performance of the two clinical models was applied to the various patient locations and the performance was evaluated using the area under a fitted receiver operating characteristic curve (AUC). The prevalence of PE in the three clinical probability categories were similar for the two scoring methods. Both clinical models yielded the lowest diagnostic performance in patients referred from surgical wards. The AUC for both clinical prediction rules decreased significantly when applied to inpatients in comparison to outpatients. Current clinical prediction rules for determining the pre-test likelihood of PE yielded different diagnostic performances depending upon patient location. The performance of the clinical prediction rules decreased significantly when applied to inpatients. In particular, the rules performed least well when applied to patients referred from surgical wards suggesting these rules should not be used in this patient group. As expected the clinical

  20. Study on Nursing Clinical Teachers' Comprehensive Quality Evaluation Model on the Basis of Fuzzy Mathematics

    Directory of Open Access Journals (Sweden)

    Zhijuan Liu

    2013-04-01

    Full Text Available In this study, we study on the nursing clinical teachers' comprehensive quality evaluation model on the basis of fuzzy mathematics. First, it obtains the nursing clinical teachers' comprehensive quality evaluation index framework by making use of Delphi method. Then, it constructs the comprehensive quality evaluation hierarchy model by applying the analytic hierarchy process, to obtain the weight for each index, based on which to establish fuzzy comprehensive evaluation model, thus acquiring new method for nursing clinical teachers' comprehensive quality evaluation. Examples have proven the feasibility and effectiveness of this method.

  1. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    Science.gov (United States)

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  2. Development of the Computerized Model of Performance-Based Measurement System to Measure Nurses' Clinical Competence.

    Science.gov (United States)

    Liou, Shwu-Ru; Liu, Hsiu-Chen; Tsai, Shu-Ling; Cheng, Ching-Yu; Yu, Wei-Chieh; Chu, Tsui-Ping

    2016-04-01

    Critical thinking skills and clinical competence are for providing quality patient care. The purpose of this study is to develop the Computerized Model of Performance-Based Measurement system based on the Clinical Reasoning Model. The system can evaluate and identify learning needs for clinical competency and be used as a learning tool to increase clinical competency by using computers. The system includes 10 high-risk, high-volume clinical case scenarios coupled with questions testing clinical reasoning, interpersonal, and technical skills. Questions were sequenced to reflect patients' changing condition and arranged by following the process of collecting and managing information, diagnosing and differentiating urgency of problems, and solving problems. The content validity and known-groups validity was established. The Kuder-Richardson Formula 20 was 0.90 and test-retest reliability was supported (r = 0.78). Nursing educators can use the system to understand students' needs for achieving clinical competence, and therefore, educational plans can be made to better prepare students and facilitate their smooth transition to a future clinical environment. Clinical nurses can use the system to evaluate their performance-based abilities and weakness in clinical reasoning. Appropriate training programs can be designed and implemented to practically promote nurses' clinical competence and quality of patient care.

  3. Isolation and characterization of Magnetospirillum sp. strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model.

    Science.gov (United States)

    Meyer-Cifuentes, Ingrid; Martinez-Lavanchy, Paula M; Marin-Cevada, Vianey; Böhnke, Stefanie; Harms, Hauke; Müller, Jochen A; Heipieper, Hermann J

    2017-01-01

    Previously, Planted Fixed-Bed Reactors (PFRs) have been used to investigate microbial toluene removal in the rhizosphere of constructed wetlands. Aerobic toluene degradation was predominant in these model systems although bulk redox conditions were hypoxic to anoxic. However, culture-independent approaches indicated also that microbes capable of anaerobic toluene degradation were abundant. Therefore, we aimed at isolating anaerobic-toluene degraders from one of these PFRs. From the obtained colonies which consisted of spirilli-shaped bacteria, a strain designated 15-1 was selected for further investigations. Analysis of its 16S rRNA gene revealed greatest similarity (99%) with toluene-degrading Magnetospirillum sp. TS-6. Isolate 15-1 grew with up to 0.5 mM of toluene under nitrate-reducing conditions. Cells reacted to higher concentrations of toluene by an increase in the degree of saturation of their membrane fatty acids. Strain 15-1 contained key genes for the anaerobic degradation of toluene via benzylsuccinate and subsequently the benzoyl-CoA pathway, namely bssA, encoding for the alpha subunit of benzylsuccinate synthase, bcrC for subunit C of benzoyl-CoA reductase and bamA for 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase. Finally, most members of a clone library of bssA generated from the PFR had highest similarity to bssA from strain 15-1. Our study provides insights about the physiological capacities of a strain of Magnetospirillum isolated from a planted system where active rhizoremediation of toluene is taking place.

  4. Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety.

    Science.gov (United States)

    Rafiq, Muhammad T; Aziz, Rukhsanda; Yang, Xiaoe; Xiao, Wendan; Rafiq, Muhammad K; Ali, Basharat; Li, Tingqiang

    2014-05-01

    Food chain contamination by cadmium (Cd) is globally a serious health concern resulting in chronic abnormalities. Rice is a major staple food of the majority world population, therefore, it is imperative to understand the relationship between the bioavailability of Cd in soils and its accumulation in rice grain. Objectives of this study were to establish environment quality standards for seven different textured soils based on human dietary toxicity, total Cd content in soils and bioavailable portion of Cd in soil. Cadmium concentrations in polished rice grain were best related to total Cd content in Mollisols and Udic Ferrisols with threshold levels of 0.77 and 0.32mgkg(-1), respectively. Contrastingly, Mehlich-3-extractable Cd thresholds were more suitable for Calcaric Regosols, Stagnic Anthrosols, Ustic Cambosols, Typic Haplustalfs and Periudic Argosols with thresholds values of 0.36, 0.22, 0.17, 0.08 and 0.03mgkg(-1), respectively. Stepwise multiple regression analysis indicated that phytoavailability of Cd to rice grain was strongly correlated with Mehlich-3-extractable Cd and soil pH. The empirical model developed in this study explains the combined effects of soil properties and extractable soil Cd content on the phytoavailability of Cd to polished rice grain. This study indicates that accumulation of Cd in rice is influenced greatly by soil type, which should be considered in assessment of soil safety for Cd contamination in rice. This investigation concluded that the selection of proper soil type for food crop production can help us to avoid the toxicity of Cd in our daily diet.

  5. Isolation and characterization of Magnetospirillum sp. strain 15-1 as a representative anaerobic toluene-degrader from a constructed wetland model

    Science.gov (United States)

    Meyer-Cifuentes, Ingrid; Martinez-Lavanchy, Paula M.; Marin-Cevada, Vianey; Böhnke, Stefanie; Harms, Hauke; Müller, Jochen A.

    2017-01-01

    Previously, Planted Fixed-Bed Reactors (PFRs) have been used to investigate microbial toluene removal in the rhizosphere of constructed wetlands. Aerobic toluene degradation was predominant in these model systems although bulk redox conditions were hypoxic to anoxic. However, culture-independent approaches indicated also that microbes capable of anaerobic toluene degradation were abundant. Therefore, we aimed at isolating anaerobic-toluene degraders from one of these PFRs. From the obtained colonies which consisted of spirilli-shaped bacteria, a strain designated 15–1 was selected for further investigations. Analysis of its 16S rRNA gene revealed greatest similarity (99%) with toluene-degrading Magnetospirillum sp. TS-6. Isolate 15–1 grew with up to 0.5 mM of toluene under nitrate-reducing conditions. Cells reacted to higher concentrations of toluene by an increase in the degree of saturation of their membrane fatty acids. Strain 15–1 contained key genes for the anaerobic degradation of toluene via benzylsuccinate and subsequently the benzoyl-CoA pathway, namely bssA, encoding for the alpha subunit of benzylsuccinate synthase, bcrC for subunit C of benzoyl-CoA reductase and bamA for 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase. Finally, most members of a clone library of bssA generated from the PFR had highest similarity to bssA from strain 15–1. Our study provides insights about the physiological capacities of a strain of Magnetospirillum isolated from a planted system where active rhizoremediation of toluene is taking place. PMID:28369150

  6. Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials.

    Science.gov (United States)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R; Young, Kenneth C; Cooke, Victoria; Wilkinson, Louise; Given-Wilson, Rosalind M; Wallis, Matthew G; Wells, Kevin

    2017-04-07

    A novel method has been developed for generating quasi-realistic voxel phantoms which simulate the compressed breast in mammography and digital breast tomosynthesis (DBT). The models are suitable for use in virtual clinical trials requiring realistic anatomy which use the multiple alternative forced choice (AFC) paradigm and patches from the complete breast image. The breast models are produced by extracting features of breast tissue components from DBT clinical images including skin, adipose and fibro-glandular tissue, blood vessels and Cooper's ligaments. A range of different breast models can then be generated by combining these components. Visual realism was validated using a receiver operating characteristic (ROC) study of patches from simulated images calculated using the breast models and from real patient images. Quantitative analysis was undertaken using fractal dimension and power spectrum analysis. The average areas under the ROC curves for 2D and DBT images were 0.51  ±  0.06 and 0.54  ±  0.09 demonstrating that simulated and real images were statistically indistinguishable by expert breast readers (7 observers); errors represented as one standard error of the mean. The average fractal dimensions (2D, DBT) for real and simulated images were (2.72  ±  0.01, 2.75  ±  0.01) and (2.77  ±  0.03, 2.82  ±  0.04) respectively; errors represented as one standard error of the mean. Excellent agreement was found between power spectrum curves of real and simulated images, with average β values (2D, DBT) of (3.10  ±  0.17, 3.21  ±  0.11) and (3.01  ±  0.32, 3.19  ±  0.07) respectively; errors represented as one standard error of the mean. These results demonstrate that radiological images of these breast models realistically represent the complexity of real breast structures and can be used to simulate patches from mammograms and DBT images that are indistinguishable from

  7. Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials

    Science.gov (United States)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Cooke, Victoria; Wilkinson, Louise; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Wells, Kevin

    2017-04-01

    A novel method has been developed for generating quasi-realistic voxel phantoms which simulate the compressed breast in mammography and digital breast tomosynthesis (DBT). The models are suitable for use in virtual clinical trials requiring realistic anatomy which use the multiple alternative forced choice (AFC) paradigm and patches from the complete breast image. The breast models are produced by extracting features of breast tissue components from DBT clinical images including skin, adipose and fibro-glandular tissue, blood vessels and Cooper’s ligaments. A range of different breast models can then be generated by combining these components. Visual realism was validated using a receiver operating characteristic (ROC) study of patches from simulated images calculated using the breast models and from real patient images. Quantitative analysis was undertaken using fractal dimension and power spectrum analysis. The average areas under the ROC curves for 2D and DBT images were 0.51  ±  0.06 and 0.54  ±  0.09 demonstrating that simulated and real images were statistically indistinguishable by expert breast readers (7 observers); errors represented as one standard error of the mean. The average fractal dimensions (2D, DBT) for real and simulated images were (2.72  ±  0.01, 2.75  ±  0.01) and (2.77  ±  0.03, 2.82  ±  0.04) respectively; errors represented as one standard error of the mean. Excellent agreement was found between power spectrum curves of real and simulated images, with average β values (2D, DBT) of (3.10  ±  0.17, 3.21  ±  0.11) and (3.01  ±  0.32, 3.19  ±  0.07) respectively; errors represented as one standard error of the mean. These results demonstrate that radiological images of these breast models realistically represent the complexity of real breast structures and can be used to simulate patches from mammograms and DBT images that are indistinguishable from

  8. Abacavir and the altered peptide repertoire model: clinical implications

    Directory of Open Access Journals (Sweden)

    Mallal S

    2012-11-01

    Full Text Available Structural and biochemical studies showing that abacavir binds non-covalently to the floor of the peptide binding groove of HLA-B*5701 with exquisite specificity to alter the self-peptides that load on the molecule to be presented to the immune system have recently been published [1–4]. This precise mechanistic explanation of why abacavir binds to HLA-B*5701 and no other allele accounts for the 100% negative predictive value of HLA-B*5701 testing for hypersensitivity which underpins its utility as a screening test. The specificity of the interaction between abacavir, peptide and HLA-B*5701 provides strong evidence that abacavir will not cause any off-target, HLA restricted immune-mediated side effects in HLA-B*5701 negative individuals. The rapid and direct non-covalent binding of abacavir to HLA-B*5701 without the requirement for metabolism of the drug explain the clinical symptoms of hypersensitivity including dose-related escalation of symptoms and rapid offset of symptoms following drug cessation. Importantly, if abacavir were being developed today its propensity to bind HLA-B*5701, alter the peptide repertoire presented, and the functional consequences of this interaction between HLA-B*5701 and abacavir could be determined in vitro and before use in man. This provides an important pre-clinical screening strategy to identify compounds in development that bind HLA and alter peptide presentation which could then be structurally modified to abrogate this property to avert hypersensitivity while retaining on-target effects.

  9. Influenza Vaccinations, Fall 2009: Model School-Located Vaccination Clinics

    Science.gov (United States)

    Herl Jenlink, Carolyn; Kuehnert, Paul; Mazyck, Donna

    2010-01-01

    The 2009 H1N1 influenza virus presented a major challenge to health departments, schools, and other community partners to effectively vaccinate large numbers of Americans, primarily children. The use of school-located vaccination (SLV) programs to address this challenge led health departments and schools to become creative in developing models for…

  10. Influenza Vaccinations, Fall 2009: Model School-Located Vaccination Clinics

    Science.gov (United States)

    Herl Jenlink, Carolyn; Kuehnert, Paul; Mazyck, Donna

    2010-01-01

    The 2009 H1N1 influenza virus presented a major challenge to health departments, schools, and other community partners to effectively vaccinate large numbers of Americans, primarily children. The use of school-located vaccination (SLV) programs to address this challenge led health departments and schools to become creative in developing models for…

  11. Building trust and diversity in patient-centered oncology clinical trials: An integrated model.

    Science.gov (United States)

    Hurd, Thelma C; Kaplan, Charles D; Cook, Elise D; Chilton, Janice A; Lytton, Jay S; Hawk, Ernest T; Jones, Lovell A

    2017-04-01

    Trust is the cornerstone of clinical trial recruitment and retention. Efforts to decrease barriers and increase clinical trial participation among diverse populations have yielded modest results. There is an urgent need to better understand the complex interactions between trust and clinical trial participation. The process of trust-building has been a focus of intense research in the business community. Yet, little has been published about trust in oncology clinical trials or the process of building trust in clinical trials. Both clinical trials and business share common dimensions. Business strategies for building trust may be transferable to the clinical trial setting. This study was conducted to understand and utilize contemporary thinking about building trust to develop an Integrated Model of Trust that incorporates both clinical and business perspectives. A key word-directed literature search of the PubMed, Medline, Cochrane, and Google Search databases for entries dated between 1 January 1985 and 1 September 2015 was conducted to obtain information from which to develop an Integrated Model of Trust. Successful trial participation requires both participants and clinical trial team members to build distinctly different types of interpersonal trust to effect recruitment and retention. They are built under conditions of significant emotional stress and time constraints among people who do not know each other and have never worked together before. Swift Trust and Traditional Trust are sequentially built during the clinical trial process. Swift trust operates during the recruitment and very early active treatment phases of the clinical trial process. Traditional trust is built over time and operates during the active treatment and surveillance stages of clinical trials. The Psychological Contract frames the participants' and clinical trial team members' interpersonal trust relationship. The "terms" of interpersonal trust are negotiated through the psychological

  12. Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics

    Science.gov (United States)

    Chabiniok, Radomir; Wang, Vicky Y.; Hadjicharalambous, Myrianthi; Asner, Liya; Lee, Jack; Sermesant, Maxime; Kuhl, Ellen; Young, Alistair A.; Moireau, Philippe; Nash, Martyn P.; Chapelle, Dominique

    2016-01-01

    With heart and cardiovascular diseases continually challenging healthcare systems worldwide, translating basic research on cardiac (patho)physiology into clinical care is essential. Exacerbating this already extensive challenge is the complexity of the heart, relying on its hierarchical structure and function to maintain cardiovascular flow. Computational modelling has been proposed and actively pursued as a tool for accelerating research and translation. Allowing exploration of the relationships between physics, multiscale mechanisms and function, computational modelling provides a platform for improving our understanding of the heart. Further integration of experimental and clinical data through data assimilation and parameter estimation techniques is bringing computational models closer to use in routine clinical practice. This article reviews developments in computational cardiac modelling and how their integration with medical imaging data is providing new pathways for translational cardiac modelling. PMID:27051509

  13. Clinical Interdisciplinary Collaboration Models and Frameworks From Similarities to Differences: A Systematic Review

    Science.gov (United States)

    Mahdizadeh, Mousa; Heydari, Abbas; Moonaghi, Hossien Karimi

    2015-01-01

    Introduction: So far, various models of interdisciplinary collaboration in clinical nursing have been presented, however, yet a comprehensive model is not available. The purpose of this study is to review the evidences that had presented model or framework with qualitative approach about interdisciplinary collaboration in clinical nursing. Methods: All the articles and theses published from 1990 to 10 June 2014 which in both English and Persian models or frameworks of clinicians had presented model or framework of clinical collaboration were searched using databases of Proquest, Scopus, pub Med, Science Direct, and Iranian databases of Sid, Magiran, and Iranmedex. In this review, for published articles and theses, keywords according with MESH such as nurse-physician relations, care team, collaboration, interdisciplinary relations and their Persian equivalents were used. Results: In this study contexts, processes and outcomes of interdisciplinary collaboration as findings were extracted. One of the major components affecting on collaboration that most of the models had emphasized was background of collaboration. Most of studies suggested that the outcome of collaboration were improved care, doctors and nurses’ satisfaction, controlling costs, reducing clinical errors and patient’s safety. Conclusion: Models and frameworks had different structures, backgrounds, and conditions, but the outcomes were similar. Organizational structure, culture and social factors are important aspects of clinical collaboration. So it is necessary to improve the quality and effectiveness of clinical collaboration these factors to be considered. PMID:26153158

  14. Viral hepatitis: A new HCV cell culture model for the next clinical challenges.

    Science.gov (United States)

    Colpitts, Che C; Baumert, Thomas F

    2015-11-01

    Despite advances in hepatitis C treatment, substantial clinical hurdles remain to achieve universal cure and global control of infection. Saeed et al. identified SEC14L2 as a host factor permitting replication of clinical HCV isolates in cell culture, providing a novel system to model infection of patient-derived viruses.

  15. Stimulating Healthy Aging with a Model Nurse-Managed Free Clinic in a Senior Center.

    Science.gov (United States)

    Franklin, Ruth H.

    As part of a Geriatric Education and Health Management program, a model nurse-managed free clinic has been established at an urban senior center by faculty and students of the University of New Mexico College of Nursing. Funded by a 3-year grant from the Department of Health and Human Services, the weekly clinic is based on Orem's self-care theory…

  16. Clinical oncology and palliative medicine as a combined specialty--a unique model in Hong Kong.

    Science.gov (United States)

    Yeung, Rebecca; Wong, Kam-Hung; Yuen, Kwok-Keung; Wong, Ka-Yan; Yau, Yvonne; Lo, Sing-Hung; Liu, Rico

    2015-07-01

    The importance of early integration of palliative care (PC) into oncology treatment is increasingly being recognized. However, there is no consensus on what is the optimal way of integration. This article describes a unique model in Hong Kong where clinical oncology and palliative medicine (PM) is integrated through the development of PM as a subspecialty under clinical oncology.

  17. A Four- and Five-Factor Structural Model for Wechsler Tests: Does It Really Matter Clinically?

    Science.gov (United States)

    Schwartz, David M.

    2013-01-01

    The purpose of this commentary is to focus on the clinical utility of the four- and five-factor structural models for the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) and Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). It provides a discussion of important considerations when evaluating the clinical utility of the…

  18. A Four- and Five-Factor Structural Model for Wechsler Tests: Does It Really Matter Clinically?

    Science.gov (United States)

    Schwartz, David M.

    2013-01-01

    The purpose of this commentary is to focus on the clinical utility of the four- and five-factor structural models for the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) and Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). It provides a discussion of important considerations when evaluating the clinical utility of the…

  19. Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets.

    Science.gov (United States)

    Chen, Jonathan H; Goldstein, Mary K; Asch, Steven M; Mackey, Lester; Altman, Russ B

    2017-05-01

    Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% ( P  < 10 -20 ) by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics yield natural clinical interpretations (e.g., "critical care," "pneumonia," "neurologic evaluation"). Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support.

  20. Rasch-modeling the Portuguese SOCRATES in a clinical sample.

    Science.gov (United States)

    Lopes, Paulo; Prieto, Gerardo; Delgado, Ana R; Gamito, Pedro; Trigo, Hélder

    2010-06-01

    The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES) assesses motivation for treatment in the drug-dependent population. The development of adequate measures of motivation is needed in order to properly understand the role of this construct in rehabilitation. This study probed the psychometric properties of the SOCRATES in the Portuguese population by means of the Rasch Rating Scale Model, which allows the conjoint measurement of items and persons. The participants were 166 substance abusers under treatment for their addiction. Results show that the functioning of the five response categories is not optimal; our re-analysis indicates that a three-category system is the most appropriate one. By using this response category system, both model fit and estimation accuracy are improved. The discussion takes into account other factors such as item format and content in order to make suggestions for the development of better motivation-for-treatment scales.

  1. Clinical prediction model to identify vulnerable patients in ambulatory surgery: towards optimal medical decision-making

    NARCIS (Netherlands)

    H. Mijderwijk (Herjan); R.J. Stolker (Robert); H.J. Duivenvoorden (Hugo); M. Klimek (Markus); E.W. Steyerberg (Ewout)

    2016-01-01

    markdownabstract__Background:__ Ambulatory surgery patients are at risk of adverse psychological outcomes such as anxiety, aggression, fatigue, and depression. We developed and validated a clinical prediction model to identify patients who were vulnerable to these psychological outcome parameters.

  2. Brain Neuroendoscopy: Experience in Experimental Models and Clinical Application

    OpenAIRE

    Alvarez Peña, Carlos; Departamento de Neurocirugía Hospital Guillermo Almenara Irigoyen EsSALUD Lima, Perú; Rocca, Uldarico; Departamento de Neurocirugía Hospital Guillermo Almenara Irigoyen EsSALUD Lima, Perú; Rosell, Pío; Departamento de Neurocirugía Hospital Guillermo Almenara Irigoyen EsSALUD Lima, Perú; Ramos, Aurora; Departamento de Neurocirugía Hospital Guillermo Almenara Irigoyen EsSALUD Lima, Perú

    2014-01-01

    OBJECTIVE: Experimental models (EM) design to acquire brain neuroendoscopy (BNE) skill to be applied on patients. MATERIAL AND METHODS: Study performed in three phases. For the first two -design and training- we used bovine and human coipses randomly assigned to groups A and B according to physiological sodium chloride solution (SCS) volume needed to produce satisfactory hydrocephalus to perform BNE. During phase three, BNE was performed in 5 patients with brain pathology confirmed by CAT or ...

  3. Some insights for a relationship marketing model integrating SERVQUAL and customer loyalty in dental clinics

    OpenAIRE

    Vargas Perez, Ana Maria; Grijalvo Martin, Maria Mercedes; Mercado Idoeta, Carmelo

    2012-01-01

    The demand of new services, the emergence of new business models, insufficient innovation, underestimation of customer loyalty and reluctance to adopt new management are evidence of the deficiencies and the lack of research about the relations between patients and dental clinics. In this article we propose the structure of a model of Relationship Marketing (RM) in the dental clinic that integrates information from SERVQUAL, Customer Loyalty (CL) and activities of RM and combines the vision of...

  4. Development of Pain Endpoint Models for Use in Prostate Cancer Clinical Trials and Drug Approval

    Science.gov (United States)

    2015-10-01

    Award Number: W81XWH-11-1-0639 TITLE: Development of Pain Endpoint Models for Use in Prostate Cancer Clinical Trials and Drug Approval PRINCIPAL...SEP 2014 – 29 SEP 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0639 Development of Pain Endpoint Models for Use in Prostate Cancer...standard methods for measuring pain palliation and pain progression in prostate cancer clinical trials that are feasible, methodologically rigorous, and

  5. [Traditional Chinese medicine injection clinical use management model for evaluation].

    Science.gov (United States)

    Liu, Fang; Ma, Rong; Liao, Xing; Chai, Shi-Wei

    2012-09-01

    Discussion on assessment and intervention models to promote the rational use of medicines of Chinese medicine injection effect. Using systematic prescription assessment and intervention work mode, formed expert group guide established assessment standard, developed the prescription audit specification, and extracted all Chinese medicine injection prescription of outpatient 2010 first quarter (in front of intervention) and 2011 first quarter (behind intervention), respectively for 2 543 and 3 122. The percent of the non-indication of medication in front of intervention outpatient fell from 3.44% to behind intervention of 2.66% (PChinese medicine injections.

  6. Computational fluid dynamics modelling of perfusion measurements in dynamic contrast-enhanced computed tomography: development, validation and clinical applications

    Science.gov (United States)

    Peladeau-Pigeon, M.; Coolens, C.

    2013-09-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) is an imaging tool that aids in evaluating functional characteristics of tissue at different stages of disease management: diagnostic, radiation treatment planning, treatment effectiveness, and monitoring. Clinical validation of DCE-derived perfusion parameters remains an outstanding problem to address prior to perfusion imaging becoming a widespread standard as a non-invasive quantitative measurement tool. One approach to this validation process has been the development of quality assurance phantoms in order to facilitate controlled perfusion ex vivo. However, most of these systems fail to establish and accurately replicate physiologically relevant capillary permeability and exchange performance. The current work presents the first step in the development of a prospective suite of physics-based perfusion simulations based on coupled fluid flow and particle transport phenomena with the goal of enhancing the understanding of clinical contrast agent kinetics. Existing knowledge about a controllable, two-compartmental fluid exchange phantom was used to validate the computational fluid dynamics (CFD) simulation model presented herein. The sensitivity of CFD-derived contrast uptake curves to contrast injection parameters, including injection duration and flow rate, were quantified and found to be within 10% accuracy. The CFD model was employed to evaluate two commonly used clinical kinetic algorithms used to derive perfusion parameters: Fick's principle and the modified Tofts model. Neither kinetic model was able to capture the true transport phenomena it aimed to represent but if the overall contrast concentration after injection remained identical, then successive DCE-CT evaluations could be compared and could indeed reflect differences in regional tissue flow. This study sets the groundwork for future explorations in phantom development and pharmaco-kinetic modelling, as well as the development of novel contrast

  7. The Future of Clinical Pharmacy: Developing a Holistic Model

    Directory of Open Access Journals (Sweden)

    Patricia A. Shane

    2013-11-01

    Full Text Available This concept paper discusses the untapped promise of often overlooked humanistic skills to advance the practice of pharmacy. It highlights the seminal work that is, increasingly, integrated into medical and nursing education. The work of these educators and the growing empirical evidence that validates the importance of humanistic skills is raising questions for the future of pharmacy education and practice. To potentiate humanistic professional competencies, e.g., compassion, empathy, and emotional intelligence, how do we develop a more holistic model that integrates reflective and affective skills? There are many historical and current transitions in the profession and practice of pharmacy. If our education model is refocused with an emphasis on pharmacy’s therapeutic roots, the field has the opportunity to play a vital role in improving health outcomes and patient-centered care. Beyond the metrics of treatment effects, achieving greater patient-centeredness will require transformations that improve care processes and invest in patients’ experiences of the treatment and care they receive. Is layering on additional science sufficient to yield better health outcomes if we neglect the power of empathic interactions in the healing process?

  8. [Structural Equation Modeling of Quality of Work Life in Clinical Nurses based on the Culture-Work-Health Model].

    Science.gov (United States)

    Kim, Miji; Ryu, Eunjung

    2015-12-01

    The purpose of this study was to construct and test a structural equation model of quality of work life for clinical nurses based on Peterson and Wilson's Culture-Work-Health model (CWHM). A structured questionnaire was completed by 523 clinical nurses to analyze the relationships between concepts of CWHM-organizational culture, social support, employee health, organizational health, and quality of work life. Among these conceptual variables of CWHM, employee health was measured by perceived health status, and organizational health was measured by presenteeism. SPSS21.0 and AMOS 21.0 programs were used to analyze the efficiency of the hypothesized model and calculate the direct and indirect effects of factors affecting quality of work life among clinical nurses. The goodness-of-fit statistics of the final modified hypothetical model are as follows: χ²=586.03, χ²/df=4.19, GFI=.89, AGFI=.85, CFI=.91, TLI=.90, NFI=.89, and RMSEA=.08. The results revealed that organizational culture, social support, organizational health, and employee health accounted for 69% of clinical nurses' quality of work life. The major findings of this study indicate that it is essential to create a positive organizational culture and provide adequate organizational support to maintain a balance between the health of clinical nurses and the organization. Further repeated and expanded studies are needed to explore the multidimensional aspects of clinical nurses' quality of work life in Korea, including various factors, such as work environment, work stress, and burnout.

  9. Model for investigating the benefits of clinical supervision in psychiatric nursing

    DEFF Research Database (Denmark)

    Gonge, Henrik; Buus, Niels

    2011-01-01

    The objective of this study was to test a model for analysing the possible benefits of clinical supervision. The model suggested a pathway from participation to effectiveness to benefits of clinical supervision, and included possible influences of individual and workplace factors. The study sample...... was 136 nursing staff members in permanent employment on nine general psychiatric wards and at four community mental health centres at a Danish psychiatric university hospital. Data were collected by means of a set of questionnaires. Participation in clinical supervision was associated...... with the effectiveness of clinical supervision, as measured by the Manchester Clinical Supervision Scale (MCSS). Furthermore, MCSS scores were associated with benefits, such as increased job satisfaction, vitality, rational coping and less stress, emotional exhaustion, and depersonalization. Multivariate analyses...

  10. Lost in translation: animal models and clinical trials in cancer treatment.

    Science.gov (United States)

    Mak, Isabella Wy; Evaniew, Nathan; Ghert, Michelle

    2014-01-01

    Due to practical and ethical concerns associated with human experimentation, animal models have been essential in cancer research. However, the average rate of successful translation from animal models to clinical cancer trials is less than 8%. Animal models are limited in their ability to mimic the extremely complex process of human carcinogenesis, physiology and progression. Therefore the safety and efficacy identified in animal studies is generally not translated to human trials. Animal models can serve as an important source of in vivo information, but alternative translational approaches have emerged that may eventually replace the link between in vitro studies and clinical applications. This review summarizes the current state of animal model translation to clinical practice, and offers some explanations for the general lack of success in this process. In addition, some alternative strategies to the classic in vivo approach are discussed.

  11. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research?

    Science.gov (United States)

    Cook, J L; Rio, E; Purdam, C R; Docking, S I

    2016-10-01

    The pathogenesis of tendinopathy and the primary biological change in the tendon that precipitates pathology have generated several pathoaetiological models in the literature. The continuum model of tendon pathology, proposed in 2009, synthesised clinical and laboratory-based research to guide treatment choices for the clinical presentations of tendinopathy. While the continuum has been cited extensively in the literature, its clinical utility has yet to be fully elucidated. The continuum model proposed a model for staging tendinopathy based on the changes and distribution of disorganisation within the tendon. However, classifying tendinopathy based on structure in what is primarily a pain condition has been challenged. The interplay between structure, pain and function is not yet fully understood, which has partly contributed to the complex clinical picture of tendinopathy. Here we revisit and assess the merit of the continuum model in the context of new evidence. We (1) summarise new evidence in tendinopathy research in the context of the continuum, (2) discuss tendon pain and the relevance of a model based on structure and (3) describe relevant clinical elements (pain, function and structure) to begin to build a better understanding of the condition. Our goal is that the continuum model may help guide targeted treatments and improved patient outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. A clinical model for quality of life assessment in cancer patients receiving chemotherapy.

    Science.gov (United States)

    Klee, M C; King, M T; Machin, D; Hansen, H H

    2000-01-01

    The pattern of symptoms experienced by cancer patients during chemotherapy is very complex. Consequently, quality of life (QOL) assessment has to be carefully planned to capture clinically relevant changes. A clinical model of changes in symptoms experienced by symptomatic metastatic patients during several courses of chemotherapy has been developed. The model differentiates cancer-related symptoms, acute side-effects, chronic side-effects and s