High dimensional model representation (HDMR) with clustering for image retrieval
Karcılı, Ayşegül; Tunga, Burcu
2017-01-01
Image retrieval continues to hold an important place in today's extremely fast growing technology. In this field, the accurate image retrieval with high speed is critical. In this study, to achieve this important issue we developed a novel method with the help of High Dimensional Model Representation (HDMR) philosophy. HDMR is a decomposition method used to solve different scientific problems. To test the performance of the new method we used Columbia Object Image Library (COIL100) and obtained the encouraging results. These results are given in the findings section.
Cut-HDMR-based fully equivalent operational model for analysis of unreinforced masonry structures
Indian Academy of Sciences (India)
D Mukherjee; B N Rao; A M Prasad
2012-10-01
Mesoscale models are highly competent for understanding behaviour of unreinforced masonry structures. Their only limitation is large computational expense. Fully Equivalent Operational Model forms an equivalent mathematical model to represent a particular phenomenon where explicit relationship between inputs and outputs are unknown. This paper explores the ability of a major variant of High Dimensional Model Representation (HDMR) technique, namely Cut-HDMR, to construct the most efﬁcient Fully Equivalent Operational Model for nonlinear ﬁnite element analysis of mesoscale model of an unreinforced masonry structure. Conclusions are reached on various aspects such as, suitability of interpolation schemes and order of Cut-HDMR approximation.
HDMR methods to assess reliability in slope stability analyses
Kozubal, Janusz; Pula, Wojciech; Vessia, Giovanna
2014-05-01
Stability analyses of complex rock-soil deposits shall be tackled considering the complex structure of discontinuities within rock mass and embedded soil layers. These materials are characterized by a high variability in physical and mechanical properties. Thus, to calculate the slope safety factor in stability analyses two issues must be taken into account: 1) the uncertainties related to structural setting of the rock-slope mass and 2) the variability in mechanical properties of soils and rocks. High Dimensional Model Representation (HDMR) (Chowdhury et al. 2009; Chowdhury and Rao 2010) can be used to carry out the reliability index within complex rock-soil slopes when numerous random variables with high coefficient of variations are considered. HDMR implements the inverse reliability analysis, meaning that the unknown design parameters are sought provided that prescribed reliability index values are attained. Such approach uses implicit response functions according to the Response Surface Method (RSM). The simple RSM can be efficiently applied when less than four random variables are considered; as the number of variables increases, the efficiency in reliability index estimation decreases due to the great amount of calculations. Therefore, HDMR method is used to improve the computational accuracy. In this study, the sliding mechanism in Polish Flysch Carpathian Mountains have been studied by means of HDMR. The Southern part of Poland where Carpathian Mountains are placed is characterized by a rather complicated sedimentary pattern of flysh rocky-soil deposits that can be simplified into three main categories: (1) normal flysch, consisting of adjacent sandstone and shale beds of approximately equal thickness, (2) shale flysch, where shale beds are thicker than adjacent sandstone beds, and (3) sandstone flysch, where the opposite holds. Landslides occur in all flysch deposit types thus some configurations of possible unstable settings (within fractured rocky
Efficient stochastic EMC/EMI analysis using HDMR-generated surrogate models
Yücel, Abdulkadir C.
2011-08-01
Stochastic methods have been used extensively to quantify effects due to uncertainty in system parameters (e.g. material, geometrical, and electrical constants) and/or excitation on observables pertinent to electromagnetic compatibility and interference (EMC/EMI) analysis (e.g. voltages across mission-critical circuit elements) [1]. In recent years, stochastic collocation (SC) methods, especially those leveraging generalized polynomial chaos (gPC) expansions, have received significant attention [2, 3]. SC-gPC methods probe surrogate models (i.e. compact polynomial input-output representations) to statistically characterize observables. They are nonintrusive, that is they use existing deterministic simulators, and often cost only a fraction of direct Monte-Carlo (MC) methods. Unfortunately, SC-gPC-generated surrogate models often lack accuracy (i) when the number of uncertain/random system variables is large and/or (ii) when the observables exhibit rapid variations. © 2011 IEEE.
Yucel, Abdulkadir C.
2015-05-05
An efficient method for statistically characterizing multiconductor transmission line (MTL) networks subject to a large number of manufacturing uncertainties is presented. The proposed method achieves its efficiency by leveraging a high-dimensional model representation (HDMR) technique that approximates observables (quantities of interest in MTL networks, such as voltages/currents on mission-critical circuits) in terms of iteratively constructed component functions of only the most significant random variables (parameters that characterize the uncertainties in MTL networks, such as conductor locations and widths, and lumped element values). The efficiency of the proposed scheme is further increased using a multielement probabilistic collocation (ME-PC) method to compute the component functions of the HDMR. The ME-PC method makes use of generalized polynomial chaos (gPC) expansions to approximate the component functions, where the expansion coefficients are expressed in terms of integrals of the observable over the random domain. These integrals are numerically evaluated and the observable values at the quadrature/collocation points are computed using a fast deterministic simulator. The proposed method is capable of producing accurate statistical information pertinent to an observable that is rapidly varying across a high-dimensional random domain at a computational cost that is significantly lower than that of gPC or Monte Carlo methods. The applicability, efficiency, and accuracy of the method are demonstrated via statistical characterization of frequency-domain voltages in parallel wire, interconnect, and antenna corporate feed networks.
KRIGING-HDMR METAMODELING TECHNIQUE FOR NONLINEAR PROBLEMS%Kriging-HDMR非线性近似模型方法
Institute of Scientific and Technical Information of China (English)
汤龙; 李光耀; 王琥
2011-01-01
Some large-scale structural engineering problems need to be solved by metamodels.With the increasing of complexity and dimensionality,metamodeling techniques confront two major challenges.First, the size of sample points should be increase exponentially as the number of design variables increases.Second, it is difficult to give the explicit correlation relationships amongst design variables by popular metamodeling techniques.Therefore,a new high-dimension model representation（HDMR） based on the Kriging interpolation, Kriging-HDMR,is suggested in this paper.The most remarkable advantage of this method is its capacity to exploit relationships among variables of the underlying function.Furthermore,Kriging-HDMR can reduce the corresponding computational cost from exponential growth to polynomial level.Thus,the essence of the assigned problem could be presented efficiently.To prove the feasibility of this method,several high dimensional and nonlinear functions are tested.The algorithm is also applied to a simple engineering problem.Compared with the classical metamodeling techniques,the efficiency and accuracy are improved.%提出基于克里金（Kriging）插值的高维模型表示（high dimensional model representation,HDMR）方法,即Kriging-HDMR方法.Kriging-HDMR方法的最大优势在于：能够明确输入参数的耦合特性,将构造模型复杂度由指数级增长降阶为多项式级增长,进而用有限样本确定待求问题的物理实质.为了验证算法的建模性能,采用高维非线性函数成功地验证了该算法的可行性,并将该算法初步应用于简单的非线性工程问题,同传统算法相比,其精度和效率都得到了明显提升.
Taşkin Kaya, Gülşen
2013-10-01
Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input
Standard model of knowledge representation
Yin, Wensheng
2016-09-01
Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.
Taşkin, Gülşen
2016-05-01
Recently, information extraction from hyperspectral images (HI) has become an attractive research area for many practical applications in earth observation due to the fact that HI provides valuable information with a huge number of spectral bands. In order to process such a huge amount of data in an effective way, traditional methods may not fully provide a satisfactory performance because they do not mostly consider high dimensionality of the data which causes curse of dimensionality also known as Hughes phenomena. In case of supervised classification, a poor generalization performance is achieved as a consequence resulting in availability of limited training samples. Therefore, advance methods accounting for the high dimensionality need to be developed in order to get a good generalization capability. In this work, a method of High Dimensional Model Representation (HDMR) was utilized for dimensionality reduction, and a novel feature selection method was introduced based on global sensitivity analysis. Several implementations were conducted with hyperspectral images in comparison to state-of-art feature selection algorithms in terms of classification accuracy, and the results showed that the proposed method outperforms the other feature selection methods even with all considered classifiers, that are support vector machines, Bayes, and decision tree j48.
Digital models for architectonical representation
Directory of Open Access Journals (Sweden)
Stefano Brusaporci
2011-12-01
Full Text Available Digital instruments and technologies enrich architectonical representation and communication opportunities. Computer graphics is organized according the two phases of visualization and construction, that is modeling and rendering, structuring dichotomy of software technologies. Visualization modalities give different kinds of representations of the same 3D model and instruments produce a separation between drawing and image’s creation. Reverse modeling can be related to a synthesis process, ‘direct modeling’ follows an analytic procedure. The difference between interactive and not interactive applications is connected to the possibilities offered by informatics instruments, and relates to modeling and rendering. At the same time the word ‘model’ describes different phenomenon (i.e. files: mathematical model of the building and of the scene; raster representation and post-processing model. All these correlated different models constitute the architectonical interpretative model, that is a simulation of reality made by the model for improving the knowledge.
Stochastic sensitivity analysis using HDMR and score function
Indian Academy of Sciences (India)
Rajib Chowdhury; B N Rao; A Meher Prasad
2009-12-01
Probabilistic sensitivities provide an important insight in reliability analysis and often crucial towards understanding the physical behaviour underlying failure and modifying the design to mitigate and manage risk. This article presents a new computational approach for calculating stochastic sensitivities of mechanical systems with respect to distribution parameters of random variables. The method involves high dimensional model representation and score functions associated with probability distribution of a random input. The proposed approach facilitates first-and second-order approximation of stochastic sensitivity measures and statistical simulation. The formulation is general such that any simulation method can be used for the computation such as Monte Carlo, importance sampling, Latin hypercube, etc. Both the probabilistic response and its sensitivities can be estimated from a single probabilistic analysis, without requiring gradients of performance function. Numerical results indicate that the proposed method provides accurate and computationally efﬁcient estimates of sensitivities of statistical moments or reliability of structural system.
Balakrishnan, Suhrid; Roy, Amit; Ierapetritou, Marianthi G.; Flach, Gregory P.; Georgopoulos, Panos G.
2005-06-01
This work presents a comparative assessment of efficient uncertainty modeling techniques, including Stochastic Response Surface Method (SRSM) and High Dimensional Model Representation (HDMR). This assessment considers improvement achieved with respect to conventional techniques of modeling uncertainty (Monte Carlo). Given that traditional methods for characterizing uncertainty are very computationally demanding, when they are applied in conjunction with complex environmental fate and transport models, this study aims to assess how accurately these efficient (and hence viable) techniques for uncertainty propagation can capture complex model output uncertainty. As a part of this effort, the efficacy of HDMR, which has primarily been used in the past as a model reduction tool, is also demonstrated for uncertainty analysis. The application chosen to highlight the accuracy of these new techniques is the steady state analysis of the groundwater flow in the Savannah River Site General Separations Area (GSA) using the subsurface Flow And Contaminant Transport (FACT) code. Uncertain inputs included three-dimensional hydraulic conductivity fields, and a two-dimensional recharge rate field. The output variables under consideration were the simulated stream baseflows and hydraulic head values. Results show that the uncertainty analysis outcomes obtained using SRSM and HDMR are practically indistinguishable from those obtained using the conventional Monte Carlo method, while requiring orders of magnitude fewer model simulations.
A geometric representation for the Proca model
Camacaro, J; Leal, L C; Camacaro, Jaime; Gaitan, Rolando; Leal, Lorenzo
1996-01-01
The Proca model is quantized in an open-path dependent representation that generalizes the Loop Representation of gauge theories. The starting point is a gauge invariant Lagrangian that reduces to the Proca Lagrangian when certain gauge is selected.
Advanced Geometric Modeler with Hybrid Representation
Institute of Scientific and Technical Information of China (English)
杨长贵; 陈玉健; 等
1996-01-01
An advanced geometric modeler GEMS4.0 has been developed,in which feature representation is used at the highest level abstraction of a product model.Boundary representation is used at the bottom level,while CSG model is adopted at the median level.A BRep data structure capable of modeling non-manifold is adopted.UNRBS representation is used for all curved surfaces,Quadric surfaces have dual representations consisting of their geometric data such as radius,center point,and center axis.Boundary representation of free form surfaces is easily built by sweeping and skinning method with NURBS geometry.Set operations on curved solids with boundary representation are performed by an evaluation process consisting of four steps.A file exchange facility is provided for the conversion between product data described by STEP and product information generated by GEMS4.0.
Minimal Model Semantics for Sorted Constraint Representation
Institute of Scientific and Technical Information of China (English)
廖乐健; 史忠植
1995-01-01
Sorted constraint representation is a very useful representation in AI which combines class hierarchies and constraint networks.For such sorted constraint representation,a problem is how to generalize the idea of default inheritance to constraint network,where the attributes in a class or between different classes interact with each other via the network.To give a formal account for the defeasible reasoning in such representation,a general sorted constraint logic is proposed,and a minimal-model semantics for the logic is presented.
Geometric Algebra Model of Distributed Representations
Patyk, Agnieszka
2010-01-01
Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.
Improving Representational Competence with Concrete Models
Stieff, Mike; Scopelitis, Stephanie; Lira, Matthew E.; DeSutter, Dane
2016-01-01
Representational competence is a primary contributor to student learning in science, technology, engineering, and math (STEM) disciplines and an optimal target for instruction at all educational levels. We describe the design and implementation of a learning activity that uses concrete models to improve students' representational competence and…
Graphical representations of Ising and Potts models
Björnberg, Jakob E
2010-01-01
We study graphical representations for two related models. The first model is the transverse field quantum Ising model, an extension of the original Ising model which was introduced by Lieb, Schultz and Mattis in the 1960's. The second model is the space-time percolation process, which is closely related to the contact model for the spread of disease. We consider a `space-time' random-cluster model and explore a range of useful probabilistic techniques for studying it. The space-time Potts model emerges as a natural generalization of the quantum Ising model. The basic properties of the phase transitions in these models are treated, such as the fact that there is at most one unbounded FK-cluster, and the resulting lower bound on the critical value in $\\ZZ$. We also develop an alternative graphical representation of the quantum Ising model, called the random-parity representation. This representation is based on the random-current representation of the classical Ising model, and allows us to study in much great...
General regression and representation model for classification.
Directory of Open Access Journals (Sweden)
Jianjun Qian
Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.
Probabilistic graphical model representation in phylogenetics.
Höhna, Sebastian; Heath, Tracy A; Boussau, Bastien; Landis, Michael J; Ronquist, Fredrik; Huelsenbeck, John P
2014-09-01
Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis-Hastings or Gibbs sampling of the posterior distribution.
Energy Technology Data Exchange (ETDEWEB)
Davis JE, Eddy MJ, Sutton TM, Altomari TJ
2007-03-01
Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces--a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation.
Alternative time representation in dopamine models.
Rivest, François; Kalaska, John F; Bengio, Yoshua
2010-02-01
Dopaminergic neuron activity has been modeled during learning and appetitive behavior, most commonly using the temporal-difference (TD) algorithm. However, a proper representation of elapsed time and of the exact task is usually required for the model to work. Most models use timing elements such as delay-line representations of time that are not biologically realistic for intervals in the range of seconds. The interval-timing literature provides several alternatives. One of them is that timing could emerge from general network dynamics, instead of coming from a dedicated circuit. Here, we present a general rate-based learning model based on long short-term memory (LSTM) networks that learns a time representation when needed. Using a naïve network learning its environment in conjunction with TD, we reproduce dopamine activity in appetitive trace conditioning with a constant CS-US interval, including probe trials with unexpected delays. The proposed model learns a representation of the environment dynamics in an adaptive biologically plausible framework, without recourse to delay lines or other special-purpose circuits. Instead, the model predicts that the task-dependent representation of time is learned by experience, is encoded in ramp-like changes in single-neuron activity distributed across small neural networks, and reflects a temporal integration mechanism resulting from the inherent dynamics of recurrent loops within the network. The model also reproduces the known finding that trace conditioning is more difficult than delay conditioning and that the learned representation of the task can be highly dependent on the types of trials experienced during training. Finally, it suggests that the phasic dopaminergic signal could facilitate learning in the cortex.
Designing and evaluating representations to model pedagogy
Directory of Open Access Journals (Sweden)
Elizabeth Masterman
2013-08-01
Full Text Available This article presents the case for a theory-informed approach to designing and evaluating representations for implementation in digital tools to support Learning Design, using the framework of epistemic efficacy as an example. This framework, which is rooted in the literature of cognitive psychology, is operationalised through dimensions of fit that attend to: (1 the underlying ontology of the domain, (2 the purpose of the task that the representation is intended to facilitate, (3 how best to support the cognitive processes of the users of the representations, (4 users’ differing needs and preferences, and (5 the tool and environment in which the representations are constructed and manipulated.Through showing how epistemic efficacy can be applied to the design and evaluation of representations, the article presents the Learning Designer, a constructionist microworld in which teachers can both assemble their learning designs and model their pedagogy in terms of students’ potential learning experience. Although the activity of modelling may add to the cognitive task of design, the article suggests that the insights thereby gained can additionally help a lecturer who wishes to reuse a particular learning design to make informed decisions about its value to their practice.
[Representation models and clinical psychology].
Traube, P
1993-01-01
Clinical psychology often borrows vocabulary from medicine as well as its analysis schemes and explanation models. This survey will deal with all analysis schemes used by the clinical psychologist, explicitly or implicitly, to make it possible to understand the psychological functioning, and work on it as soon as a problem arises.
SU (N ) Heisenberg model with multicolumn representations
Okubo, Tsuyoshi; Harada, Kenji; Lou, Jie; Kawashima, Naoki
2015-10-01
The SU (N ) symmetric antiferromagnetic Heisenberg model with multicolumn representations on the two-dimensional square lattice is investigated by quantum Monte Carlo simulations. For the representation of a Young diagram with two columns, we confirm that a valence-bond solid (VBS) order appears as soon as the Néel order disappears at N =10 , indicating no intermediate phase. In the case of the representation with three columns, there is no evidence for either the Néel or the VBS ordering for N ≥15 . This is actually consistent with the large-N theory, which predicts that the VBS state immediately follows the Néel state, because the expected spontaneous order is too weak to be detected.
Three representations of the Ising model
Kruis, Joost; Maris, Gunter
2016-01-01
Statistical models that analyse (pairwise) relations between variables encompass assumptions about the underlying mechanism that generated the associations in the observed data. In the present paper we demonstrate that three Ising model representations exist that, although each proposes a distinct theoretical explanation for the observed associations, are mathematically equivalent. This equivalence allows the researcher to interpret the results of one model in three different ways. We illustrate the ramifications of this by discussing concepts that are conceived as problematic in their traditional explanation, yet when interpreted in the context of another explanation make immediate sense. PMID:27698356
Goodwin, Amanda P.; Gilbert, Jennifer K.; Cho, Sun-Joo; Kearns, Devin M.
2014-01-01
The current study models reader, item, and word contributions to the lexical representations of 39 morphologically complex words for 172 middle school students using a crossed random-effects item response model with multiple outcomes. We report 3 findings. First, results suggest that lexical representations can be characterized by separate but…
Goodwin, Amanda P.; Gilbert, Jennifer K.; Cho, Sun-Joo; Kearns, Devin M.
2014-01-01
The current study models reader, item, and word contributions to the lexical representations of 39 morphologically complex words for 172 middle school students using a crossed random-effects item response model with multiple outcomes. We report 3 findings. First, results suggest that lexical representations can be characterized by separate but…
Representations used by mathematics student teachers in mathematical modeling process
Directory of Open Access Journals (Sweden)
Aytuğ Özaltun
2014-02-01
Full Text Available The purpose of this study is to determine representations used by mathematics student teachers in steps of mathematical modeling process based on their solutions of problems formed in the context of different classification of modeling. The study was conducted with fifteen secondary mathematics student teachers given a Mathematical Modeling course. The participants were separated into five collaboration groups of three students. Data were collected with the detailed written papers given by the groups for the problems and GeoGebra solution files. The groups benefited from verbal, algebraic, figural, tabular and dynamic representations while they were solving the problems. Considering all steps of the process, groups at most used verbal and algebraic representations. While they used only verbal representation in analyzing the problem, they benefited from at most verbal representation and then figural representation in establishing the systematic structure. The most used is algebraic and then verbal representations in the steps of mathematization, meta-mathematization, and mathematical analysis. In the steps of interpretation/evaluation and the model verification, the groups mainly benefited from verbal and then algebraic representations. Further researches towards why representations are preferred in the specific steps of the mathematical modeling process are suggested.Key Words: Mathematical modeling, modeling problems, mathematics student teachers, representations.
An integral representation of functions in gas-kinetic models
Perepelitsa, Misha
2016-08-01
Motivated by the theory of kinetic models in gas dynamics, we obtain an integral representation of lower semicontinuous functions on {{{R}}^d,} {d≥1}. We use the representation to study the problem of compactness of a family of the solutions of the discrete time BGK model for the compressible Euler equations. We determine sufficient conditions for strong compactness of moments of kinetic densities, in terms of the measures from their integral representations.
Character recognition using a neural network model with fuzzy representation
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
Knowledge Representation Using Multilevel Flow Model in Expert System
Energy Technology Data Exchange (ETDEWEB)
Wang, Wenlin; Yang, Ming [Harbin Engineering University, Harbin (China)
2015-05-15
As for the knowledge representation, of course, there are a great many methods available for knowledge representation. These include frames, causal models, and many others. This paper presents a novel method called Multilevel Flow Model (MFM), which is used for knowledge representation in G2 expert system. Knowledge representation plays a vital role in constructing knowledge bases. Moreover, it also has impact on building of generic fault model as well as knowledge bases. The MFM is particularly useful to describe system knowledge concisely as domain map in expert system when domain experts are not available.
Vector space model for document representation in information retrieval
Directory of Open Access Journals (Sweden)
Dan MUNTEANU
2007-12-01
Full Text Available This paper presents the basics of information retrieval: the vector space model for document representation with Boolean and term weighted models, ranking methods based on the cosine factor and evaluation measures: recall, precision and combined measure.
Representational Translation with Concrete Models in Organic Chemistry
Stull, Andrew T.; Hegarty, Mary; Dixon, Bonnie; Stieff, Mike
2012-01-01
In representation-rich domains such as organic chemistry, students must be facile and accurate when translating between different 2D representations, such as diagrams. We hypothesized that translating between organic chemistry diagrams would be more accurate when concrete models were used because difficult mental processes could be augmented by…
Promoting Representational Competence with Molecular Models in Organic Chemistry
Stull, Andrew T.; Gainer, Morgan; Padalkar, Shamin; Hegarty, Mary
2016-01-01
Mastering the many different diagrammatic representations of molecules used in organic chemistry is challenging for students. This article summarizes recent research showing that manipulating 3-D molecular models can facilitate the understanding and use of these representations. Results indicate that students are more successful in translating…
Promoting Representational Competence with Molecular Models in Organic Chemistry
Stull, Andrew T.; Gainer, Morgan; Padalkar, Shamin; Hegarty, Mary
2016-01-01
Mastering the many different diagrammatic representations of molecules used in organic chemistry is challenging for students. This article summarizes recent research showing that manipulating 3-D molecular models can facilitate the understanding and use of these representations. Results indicate that students are more successful in translating…
Designing and Evaluating Representations to Model Pedagogy
Masterman, Elizabeth; Craft, Brock
2013-01-01
This article presents the case for a theory-informed approach to designing and evaluating representations for implementation in digital tools to support Learning Design, using the framework of epistemic efficacy as an example. This framework, which is rooted in the literature of cognitive psychology, is operationalised through dimensions of fit…
Higher-dimensional Higgs Representations in SGUT models
Aranda, Alfredo; Rojas, Alma D
2010-01-01
Supersymmetric Grand Unified Theories (SGUTs) have achieved some degree of success, already present in the minimal models (with SU(5) or SO(10)). However, there are open problems that suggest the need to incorporate more elaborate constructions, specifically the use of higher-dimensional representations in the Higgs sector. For example, a $45$ representation of SU(5) is often included to obtain correct mass relations for the first and second families of d-type quarks and leptons. When one adds these higher-dimensional Higgs representations one must verify the cancellation of anomalies associated to their fermionic partners. One possible choice, free of anomalies, include both $45,\\overline{45}$ representations to cancel anomalies. We review the necessary conditions for the cancellation of anomalies and discuss the different possibilities for supersymmetric SU(5) models. Alternative anomaly-free combinations of Higgs representations, beyond the usual vectorlike choice, are identified, and it is shown that thei...
Efﬁcient explicit formulation for practical fuzzy structural analysis
Indian Academy of Sciences (India)
A S Balu; B N Rao
2011-08-01
This paper presents a practical approach based on High Dimensional Model Representation (HDMR) for analysing the response of structures with fuzzy parameters. The proposed methodology involves integrated ﬁnite element modelling, HDMR based response surface generation, and explicit fuzzy analysis procedures. The uncertainties in the material, geometric, loading and structural parameters are represented using fuzzy sets. To facilitate efﬁcient computation, a HDMR based response surface generation is employed for the approximation of the fuzzy ﬁnite element response quantity.
A Knowledge Representation Model for Video—Based Animation
Institute of Scientific and Technical Information of China (English)
劳志强; 潘云鹤
1998-01-01
In this paper,a brief survey on knowledge-based animation techniques is given.Then a VideoStream-based Knowledge Representation Model(VSKRM)for Joint Objects is presented which includes the knowledge representation of :Graphic Object,Action and VideoStream.Next a general description of the UI framework of a system is given based on the VSKRM model.Finally,a conclusion is reached.
Visual texture accurate material appearance measurement, representation and modeling
Haindl, Michal
2013-01-01
This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural info
Crystal Structure Representations for Machine Learning Models of Formation Energies
Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard
2015-01-01
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an Ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix by using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a data set of 3938 crystal structures obtained from the Materials Project. For training sets consi...
Cognition and procedure representational requirements for predictive human performance models
Corker, K.
1992-01-01
Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods
A Semantic Model Faced on the Uniform Product Knowledge Representation
Institute of Scientific and Technical Information of China (English)
JIAN Chengfeng; ZHANG Meiyu
2006-01-01
In order to realize the uniform knowledge representation including STEP and SGML, aimed at the defects of current methods, a new semantic model that is named XOEM+OWL is put forward. And then the correspondent mapping between STEP Schema Graph and OWL Schema Graph are build as Cos(sc,oc),so we can get the semantic pattern matching degree for the semantic representation on the product information. At last the example is presented.
Robust speech features representation based on computational auditory model
Institute of Scientific and Technical Information of China (English)
LU Xugang; JIA Chuan; DANG Jianwu
2004-01-01
A speech signal processing and features extracting method based on computational auditory model is proposed. The computational model is based on psychological, physiological knowledge and digital signal processing methods. In each stage of a hearing perception system, there is a corresponding computational model to simulate its function. Based on this model, speech features are extracted. In each stage, the features in different kinds of level are extracted. A further processing for primary auditory spectrum based on lateral inhibition is proposed to extract much more robust speech features. All these features can be regarded as the internal representations of speech stimulation in hearing system. The robust speech recognition experiments are conducted to test the robustness of the features. Results show that the representations based on the proposed computational auditory model are robust representations for speech signals.
A Robust Sparse Representation Model for Hyperspectral Image Classification.
Huang, Shaoguang; Zhang, Hongyan; Pižurica, Aleksandra
2017-09-12
Sparse representation has been extensively investigated for hyperspectral image (HSI) classification and led to substantial improvements in the performance over the traditional methods, such as support vector machine (SVM). However, the existing sparsity-based classification methods typically assume Gaussian noise, neglecting the fact that HSIs are often corrupted by different types of noise in practice. In this paper, we develop a robust classification model that admits realistic mixed noise, which includes Gaussian noise and sparse noise. We combine a model for mixed noise with a prior on the representation coefficients of input data within a unified framework, which produces three kinds of robust classification methods based on sparse representation classification (SRC), joint SRC and joint SRC on a super-pixels level. Experimental results on simulated and real data demonstrate the effectiveness of the proposed method and clear benefits from the introduced mixed-noise model.
A Description Logic Based Knowledge Representation Model for Concept Understanding
DEFF Research Database (Denmark)
Badie, Farshad
2018-01-01
This research employs Description Logics in order to focus on logical description and analysis of the phenomenon of ‘concept understanding’. The article will deal with a formal-semantic model for figuring out the underlying logical assumptions of ‘concept understanding’ in knowledge representation...... systems. In other words, it attempts to describe a theoretical model for concept understanding and to reflect the phenomenon of ‘concept understanding’ in terminological knowledge representation systems. Finally, it will design an ontology that schemes the structure of concept understanding based...
[Citizen constitution and social representations: reflecting about health care models].
da Silva, Sílvio Eder Dias; Ramos, Flávia Regina Souza; Martins, Cleusa Rios; Padilha, Maria Itayra; Vasconcelos, Esleane Vilela
2010-12-01
This article presents a reflection on the meaning of the terms citizenship and health, addressing the Theory of Social Representations as a strategy for implementing and evaluating health care models in Brazil. First, a brief history about the concept of citizenship is presented; then the article addresses the principles of freedom and equality according to Kant; the third section of the article shows that health is as a right of the citizen and a duty of the state. Finally, the Theory of Social Representations is emphasized as a strategy to evaluate and implement the health services provided to citizens by the current health care models in Brazil.
On the representation of capsizing in iceberg models
Wagner, Till J. W.; Stern, Alon A.; Dell, Rebecca W.; Eisenman, Ian
2017-01-01
Although iceberg models have been used for decades, they have received far more widespread attention in recent years, in part due to efforts to explicitly represent icebergs in climate models. This calls for increased scrutiny of all aspects of typical iceberg models. An important component of iceberg models is the representation of iceberg capsizing, or rolling. Rolling occurs spontaneously when the ratio of iceberg width to height falls below a critical threshold. Here we examine previously...
3D Modeling Engine Representation Summary Report
Energy Technology Data Exchange (ETDEWEB)
Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang
2014-09-01
Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.
A multidimensional representation model of geographic features
Usery, E. Lynn; Timson, George; Coletti, Mark
2016-01-28
A multidimensional model of geographic features has been developed and implemented with data from The National Map of the U.S. Geological Survey. The model, programmed in C++ and implemented as a feature library, was tested with data from the National Hydrography Dataset demonstrating the capability to handle changes in feature attributes, such as increases in chlorine concentration in a stream, and feature geometry, such as the changing shoreline of barrier islands over time. Data can be entered directly, from a comma separated file, or features with attributes and relationships can be automatically populated in the model from data in the Spatial Data Transfer Standard format.
Emotion in Music: representation and computational modeling
Aljanaki, A.|info:eu-repo/dai/nl/34570956X
2016-01-01
Music emotion recognition (MER) deals with music classification by emotion using signal processing and machine learning techniques. Emotion ontology for music is not well established yet. Musical emotion can be conceptualized through various emotional models: categorical, dimensional, or
Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations
Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus
2017-01-01
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509
Emotion in Music: representation and computational modeling
Aljanaki, A.
2016-01-01
Music emotion recognition (MER) deals with music classification by emotion using signal processing and machine learning techniques. Emotion ontology for music is not well established yet. Musical emotion can be conceptualized through various emotional models: categorical, dimensional, or domain-spec
Representation of the Conceptual Change Model in Science Teacher Education.
Thorley, N. Richard; Stofflett, Rene T.
1996-01-01
Analyzes key concepts of the conceptual change model: intelligibility, plausibility, and fruitfulness, together with conceptions of learning as conceptual change and the nature of conceptual change teaching. Organizes representations of these around a framework developed for representing scientific conceptions in terms of verbal and symbolic…
Multiscale geometric modeling of macromolecules II: Lagrangian representation.
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-09-15
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics, and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR, and cryo-electron microscopy, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation, and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger's functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, whereas our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions.
Formal representation of 3D structural geological models
Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle
2016-05-01
The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.
Representation of the Alpine snowpack in CMIP5 models
Terzago, Silvia; Palazzi, Elisa; von Hardenberg, Jost; Provenzale, Antonello
2016-04-01
Global Climate Models (GCMs) still have too coarse spatial resolution to adequately reproduce the small-scale variability of precipitation and snowpack in orographically complex areas but increasingly higher resolutions are currently being introduced for the next generation of models. As a preliminary step a comparative assessment of the performances of the current, state-of-art GCMs in the representation of the snowpack characteristics is needed. Our study investigates how the GCMs participating in the Coupled Models Intercomparison Project phase 5 (CMIP5) represent the snow water equivalent and snow depth climatology over the Greater Alpine Region (4-19°E, 43-49°N) during the historical period 1980-2005. We compare the CMIP5 model outputs to the available satellite and reanalysis products, including Global Monthly EASE-Grid Snow Water Equivalent Climatology, Climate Forecast System Reanalysis, Modern Era-Retrospective analysis for Research and Applications, ERA-Interim/Land and 20th Century reanalyses, highlighting common features and discrepancies. We also explore the models spread in the representation of the snow seasonal cycle and its projected changes for the XXI century in RCP4.5 and RCP8.5 scenarios, discussing the results in the frame of the latest literature studies. The present analysis aims at providing a comprehensive picture of the current uncertainties in the representation of snowpack by the major gridded snow datasets derived from remote sensing, reanalyses and model simulations, in condition of complex orography.
Reduced Noise Effect in Nonlinear Model Estimation Using Multiscale Representation
Directory of Open Access Journals (Sweden)
Mohamed N. Nounou
2010-01-01
Full Text Available Nonlinear process models are widely used in various applications. In the absence of fundamental models, it is usually relied on empirical models, which are estimated from measurements of the process variables. Unfortunately, measured data are usually corrupted with measurement noise that degrades the accuracy of the estimated models. Multiscale wavelet-based representation of data has been shown to be a powerful data analysis and feature extraction tool. In this paper, these characteristics of multiscale representation are utilized to improve the estimation accuracy of the linear-in-the-parameters nonlinear model by developing a multiscale nonlinear (MSNL modeling algorithm. The main idea in this MSNL modeling algorithm is to decompose the data at multiple scales, construct multiple nonlinear models at multiple scales, and then select among all scales the model which best describes the process. The main advantage of the developed algorithm is that it integrates modeling and feature extraction to improve the robustness of the estimated model to the presence of measurement noise in the data. This advantage of MSNL modeling is demonstrated using a nonlinear reactor model.
Systematic improvement of molecular representations for machine learning models
Huang, Bing
2016-01-01
The predictive accuracy of Machine Learning (ML) models of molecular properties depends on the choice of the molecular representation. We introduce a hierarchy of representations based on uniqueness and target similarity criteria. To systematically control target similarity, we rely on interatomic many body expansions including Bonding, Angular, and higher order terms (BA). Addition of higher order contributions systematically increases similarity to the potential energy function as well as predictive accuracy of the resulting ML models. Numerical evidence is presented for the performance of BAML models trained on molecular properties pre-calculated at electron-correlated and density functional theory level of theory for thousands of small organic molecules. Properties studied include enthalpies and free energies of atomization, heatcapacity, zero-point vibrational energies, dipole-moment, polarizability, HOMO/LUMO energies and gap, ionization potential, electron affinity, and electronic excitations. After tr...
IMPLICIT REPRESENTATION FOR THE MODELLING OF HYBRID DYNAMIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Hybrid systems can be represented by a discrete event model interacting with a continuous model, and the interface by ideal switching components which modify the topology of a system at the switching time. This paper deals with the modelling of such systems using the bond graph approach. The paper shows the interest of the implicit representation: to derive a unique state equation with jumping parameters, to derive the implicit state equation with index of nilpotency one corresponding to each configuration, to analyze the properties of those models and to compute the discontinuity.
BIM-enabled Conceptual Modelling and Representation of Building Circulation
Directory of Open Access Journals (Sweden)
Jin Kook Lee
2014-08-01
Full Text Available This paper describes how a building information modelling (BIM-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs, which follow an object-oriented data modelling methodology. Advances in BIM authoring tools, using space objects and their relations defined in an IFC’s schema, have made it possible to model, visualize and analyse circulation within buildings prior to their construction. Agent-based circulation has long been an interdisciplinary topic of research across several areas, including design computing, computer science, architectural morphology, human behaviour and environmental psychology. Such conventional approaches to building circulation are centred on navigational knowledge about built environments, and represent specific circulation paths and regulations. This paper, however, places emphasis on the use of ‘space objects’ in BIM-enabled design processes rather than on circulation agents, the latter of which are not defined in the IFCs’ schemas. By introducing and reviewing some associated research and projects, this paper also surveys how such a circulation representation is applicable to the analysis of building circulation-related rules.
Large Representation Recurrences in Large N Random Unitary Matrix Models
Karczmarek, Joanna L
2011-01-01
In a random unitary matrix model at large N, we study the properties of the expectation value of the character of the unitary matrix in the rank k symmetric tensor representation. We address the problem of whether the standard semiclassical technique for solving the model in the large N limit can be applied when the representation is very large, with k of order N. We find that the eigenvalues do indeed localize on an extremum of the effective potential; however, for finite but sufficiently large k/N, it is not possible to replace the discrete eigenvalue density with a continuous one. Nonetheless, the expectation value of the character has a well-defined large N limit, and when the discreteness of the eigenvalues is properly accounted for, it shows an intriguing approximate periodicity as a function of k/N.
A Fuzzy Knowledge Representation Model for Student Performance Assessment
DEFF Research Database (Denmark)
Badie, Farshad
Knowledge representation models based on Fuzzy Description Logics (DLs) can provide a foundation for reasoning in intelligent learning environments. While basic DLs are suitable for expressing crisp concepts and binary relationships, Fuzzy DLs are capable of processing degrees of truth/completene....../completeness about vague or imprecise information. This paper tackles the issue of representing fuzzy classes using OWL2 in a dataset describing Performance Assessment Results of Students (PARS)....
Sparse representation based image interpolation with nonlocal autoregressive modeling.
Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming
2013-04-01
Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.
Adaptive modelling of structured molecular representations for toxicity prediction
Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Tiné, Maria Rosaria
2012-12-01
We investigated the possibility of modelling structure-toxicity relationships by direct treatment of the molecular structure (without using descriptors) through an adaptive model able to retain the appropriate structural information. With respect to traditional descriptor-based approaches, this provides a more general and flexible way to tackle prediction problems that is particularly suitable when little or no background knowledge is available. Our method employs a tree-structured molecular representation, which is processed by a recursive neural network (RNN). To explore the realization of RNN modelling in toxicological problems, we employed a data set containing growth impairment concentrations (IGC50) for Tetrahymena pyriformis.
Improving the representation of hydrologic processes in Earth System Models
Energy Technology Data Exchange (ETDEWEB)
Clark, Martyn P. [National Center for Atmospheric Research, Boulder Colorado USA; Fan, Ying [Department of Earth and Planetary Sciences, Rutgers University, New Brunswick New Jersey USA; Lawrence, David M. [National Center for Atmospheric Research, Boulder Colorado USA; Adam, Jennifer C. [Department of Civil and Environmental Engineering, Washington State University, Pullman Washington USA; Bolster, Diogo [Department of Civil & Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend Indiana USA; Gochis, David J. [National Center for Atmospheric Research, Boulder Colorado USA; Hooper, Richard P. [The Consortium of Universities for the Advancement of Hydrologic Science, Inc.; Kumar, Mukesh [Nichols Schools of Environment, Duke University, Durham North Carolina USA; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland Washington USA; Mackay, D. Scott [Department of Geography, University at Buffalo, State University of New York, Buffalo New York USA; Maxwell, Reed M. [Department of Geology and Geological Engineering, Colorado School of Mines, Golden Colorado USA; Shen, Chaopeng [Department of Civil and Environmental Engineering, Pennsylvania State University, State College Pennsylvania USA; Swenson, Sean C. [National Center for Atmospheric Research, Boulder Colorado USA; Zeng, Xubin [Department of Atmospheric Sciences, University of Arizona, Tucson Arizona USA
2015-08-21
Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.
The cell representation of the three-band Hubbard model
Moskalenko, V A; Marinaro, M; Digor, D F; Grecu, D
2002-01-01
The d-p model is reformulated in the representation of the Wannier orthogonalized copper and oxygen orbitals. The exact account of the holes hybridization on the oxygen ions is accomplished in this work in contrast to the other ones. Two diagonalized fermion cells of the oxygen holes mode are used for this purpose alongside with the copper holes mode. These diagonalized modes are characterized by essentially different local energies, that noticeably affects the theory results. The noncommutation of the oxygen Hamiltonian diagonalization operation and the Wannier orbitals orthogonalization by the copper lattice nodes is noted. The cell orbital of the oxygen holes, related to the CuO sub 4 ion complex, proves to be the superposition of these two diagonalized orbitals on our approach. The obtained Hamiltonian constitutes the components sum, the members whereof have the different number of the copper lattice nodes indices. The local component is the high set one. All main states of the cluster representation are ...
Chaos game representation walk model for the protein sequences
Institute of Scientific and Technical Information of China (English)
Gao Jie; Jiang Li-Li; Xu Zhen-Yuan
2009-01-01
A new chaos game representation of protein sequences based on the detailed hydrophobic-hydrophilic(HP)model has been proposed by Yu et al(Physica A 337(2004)171). A CGR-walk model is proposed based on the new CGR coordinates for the protein sequences from complete genomes in the present paper. The new CGR coordinates based on the detailed HP model are converted into a time series, and a long-memory ARFIMA(p, d, q)model is introduced into the protein sequence analysis. This model is applied to simulating real CGR-walk sequence data of twelve protein sequences. Remarkably long-range correlations are uncovered in the data and the results obtained from these models are reasonably coneistent with those available from the ARFIMA(p, d, q)model.
An electric-field representation of the harmonic XY model
Faulkner, Michael F.; Bramwell, Steven T.; Holdsworth, Peter C. W.
2017-03-01
The two-dimensional harmonic XY (HXY) model is a spin model in which the classical spins interact via a piecewise parabolic potential. We argue that the HXY model should be regarded as the canonical classical lattice spin model of phase fluctuations in two-dimensional condensates, as it is the simplest model that guarantees the modular symmetry of the experimental systems. Here we formulate a lattice electric-field representation of the HXY model and contrast this with an analogous representation of the Villain model and the two-dimensional Coulomb gas with a purely rotational auxiliary field. We find that the HXY model is a spin-model analogue of a lattice electric-field model of the Coulomb gas with an auxiliary field, but with a temperature-dependent vacuum (electric) permittivity that encodes the coupling of the spin vortices to their background spin-wave medium. The spin vortices map to the Coulomb charges, while the spin-wave fluctuations correspond to auxiliary-field fluctuations. The coupling explains the striking differences in the high-temperature asymptotes of the specific heats of the HXY model and the Coulomb gas with an auxiliary field. Our results elucidate the propagation of effective long-range interactions throughout the HXY model (whose interactions are purely local) by the lattice electric fields. They also imply that global spin-twist excitations (topological-sector fluctuations) generated by local spin dynamics are ergodically excluded in the low-temperature phase. We discuss the relevance of these results to condensate physics.
Time representation in reinforcement learning models of the basal ganglia
Directory of Open Access Journals (Sweden)
Samuel Joseph Gershman
2014-01-01
Full Text Available Reinforcement learning models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between reinforcement learning models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both reinforcement learning and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.
Sparse Representation Based Binary Hypothesis Model for Hyperspectral Image Classification
Directory of Open Access Journals (Sweden)
Yidong Tang
2016-01-01
Full Text Available The sparse representation based classifier (SRC and its kernel version (KSRC have been employed for hyperspectral image (HSI classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based binary hypothesis (SRBBH model is established in this paper. In this model, a query pixel is represented in two ways, which are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive multiclass classification problem, where only the number of desired classes is required. Furthermore, the kernel method is employed to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching pursuit (KOMP algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction are used for validation and classification. It enhances the discrimination and hence improves the performance.
Procedures and Methods of Digital Modeling in Representation Didactics
La Mantia, M.
2011-09-01
At the Bachelor degree course in Engineering/Architecture of the University "La Sapienza" of Rome, the courses of Design and Survey, in addition to considering the learning of methods of representation, the application of descriptive geometry and survey, in order to expand the vision and spatial conception of the student, pay particular attention to the use of information technology for the preparation of design and survey drawings, achieving their goals through an educational path of "learning techniques, procedures and methods of modeling architectural structures." The fields of application involved two different educational areas: the analysis and that of survey, both from the acquisition of the given metric (design or survey) to the development of three-dimensional virtual model.
Enhancement of Solar Energy Representation in the GCAM Model
Energy Technology Data Exchange (ETDEWEB)
Smith, Steven J.; Volke, April C.; Delgado Arias, Sabrina
2010-02-01
The representation of solar technologies in a research version of the GCAM (formerly MiniCAM) integrated assessment model have been enhanced to add technologies, improve the underlying data, and improve the interaction with the rest of the model. We find that the largest potential impact from the inclusion of thermal Concentrating Solar Power plants, which supply a substantial portion of electric generation in sunny regions of the world. Drawing on NREL research, domestic Solar Hot Water technologies have also been added in the United States region where this technology competes with conventional electric and gas technologies. PV technologies are as implemented in the CCTP scenarios, drawing on NREL cost curves for the United States, extrapolated to other world regions using a spatial analysis of population and solar resources.
Integer Representations towards Efficient Counting in the Bit Probe Model
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Greve, Mark; Pandey, Vineet
2011-01-01
Abstract We consider the problem of representing numbers in close to optimal space and supporting increment, decrement, addition and subtraction operations efficiently. We study the problem in the bit probe model and analyse the number of bits read and written to perform the operations, both...... in the worst-case and in the average-case. A counter is space-optimal if it represents any number in the range [0,...,2 n − 1] using exactly n bits. We provide a space-optimal counter which supports increment and decrement operations by reading at most n − 1 bits and writing at most 3 bits in the worst...... of the counter as the ratio between L + 1 and 2 n . We present various representations that achieve different trade-offs between the read and write complexities and the efficiency. We also give another representation of integers that uses n + O(logn ) bits to represent integers in the range [0,...,2 n − 1...
Representation of an open repository in groundwater flow models
Energy Technology Data Exchange (ETDEWEB)
Painter, Scott; Sun, Alexander [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses
2005-08-01
The effect of repository tunnels on groundwater flow has been identified as a potential issue for the nuclear waste repository being considered by SKB for a fractured granite formation in Sweden. In particular, the following pre-closure and post-closure processes have been identified as being important: inflows into open tunnels as functions of estimated grouting efficiencies, drawdown of the water table in the vicinity of the repository, upcoming of saline water, 'turnover' of surface water in the upper bedrock, and resaturation of backfilled tunnels following repository closure. The representation of repository tunnels within groundwater models is addressed in this report. The primary focus is on far-field flow that is modeled with a continuum porous medium approximation. Of particular interest are the consequences of the tunnel representation on the transient response of the groundwater system to repository operations and repository closure, as well as modeling issues such as how the water-table free surface and the coupling to near-surface hydrogeology should be handled. The overall objectives are to understand the consequences of current representations and to identify appropriate approximations for representing open tunnels in future groundwater modeling studies. The following conclusions can be drawn from the results of the simulations: 1. Two-phase flow may be induced in the vicinity of repository tunnels during repository pre-closure operations, but the formation of a two-phase flow region will not significantly affect far-field flow or inflows into tunnels. 2. The water table will be drawn down to the repository horizon and tunnel inflows will reach a steady-state value within about 5 years. 3. Steady-state inflows at the repository edge are estimated to be about 250 m{sup 3}/year per meter of tunnel. Inflows will be greater during the transient de-watering period and less for tunnel locations closer to the repository center. 4. Significant
Vertical spectral representation in primitive equation models of the atmosphere
Energy Technology Data Exchange (ETDEWEB)
Mizzi, A.; Tribbia, J. [National Center for Atmospheric Research, Boulder, CO (United States); Curry, J. [Univ. of Colorado, Boulder, CO (United States)
1995-08-01
Attempts to represent the vertical structure in primitive equation models of the atmosphere with the spectral method have been unsuccessful to date. Linear stability analysis showed that small time steps were required for computational stability near the upper boundary with a vertical spectral representation and found it necessary to use an artificial constraint to force temperature to zero when pressure was zero to control the upper-level horizontal velocities. This ad hoc correction is undesirable, and an analysis that shows such a correction is unnecessary is presented. By formulating the model in terms of velocity and geopotential and then using the hydrostatic equation to calculate temperature from geopotential, temperature is necessarily zero when pressure is zero. The authors applied this technique to the dry-adiabatic primitive equations on the equatorial {beta} and tropical f planes. Vertical and horizontal normal modes were used as the spectral basis functions. The vertical modes are based on vertical normal modes, and the horizontal modes are normal modes for the primitive equations on a {beta} or f plane. The results show that the upper-level velocities do not necessarily increase, total energy is conserved, and kinetic energy is bounded. The authors found an upper-level temporal oscillation in the horizontal domain integral of the horizontal velocity components that is related to mass and velocity field imbalances in the initial conditions or introduced during the integration. Through nonlinear normal-mode initialization, the authors effectively removed the initial condition imbalance and reduced the amplitude of this oscillation. It is hypothesized that the vertical spectral representation makes the model more sensitive to initial condition imbalances, or it introduces imbalance during the integration through vertical spectral truncation. 20 refs., 12 figs.
Lee, Silvia Wen-Yu; Chang, Hsin-Yi; Wu, Hsin-Kai
2017-04-01
The aim of this study was to examine the potential impact of the representational characteristics of models and students' educational levels on students' views of scientific models and modeling (VSMM). An online multimedia questionnaire was designed to address three major aspects of VSMM, namely the nature of models, the nature of modeling, and the purpose of models. The three scales of representational characteristics included modality, dimensionality, and dynamics. A total of 102 eighth graders and 87 eleventh graders were surveyed. Both quantitative data and written responses were analyzed. The influence of the representational characteristics seemed to be more salient on the nature of models and the purpose of models. Some interactions between the educational levels and the representational characteristics showed that the high school students were more likely to recognize textual representations and pictorial representations as models, while also being more likely to appreciate the differences between 2D and 3D models. However, some other differences between educational levels did not necessarily suggest that the high school students attained more sophisticated VSMM. For instance, in considering what information should be included in a model, students' attention to particular affordances of the representation can lead to a more naive view of modeling. Implications for developing future questionnaires and for teaching modeling are suggested in this study.
Lumiproxy: A Hybrid Representation of Image-Based Models
Institute of Scientific and Technical Information of China (English)
Bin Sheng; Jian Zhu; En-Hua; Yan-Ci Zhang
2009-01-01
In this paper, we present a hybrid representation of image-based models combining the textured planes and the hierarchical points. Taking a set of depth images as input, our method starts from classifying input pixels into two categories, indicating the planar and non-planar surfaces respectively. For the planar surfaces, the geometric coefficients are reconstructed to form the uniformly sampled textures. For nearly planar surfaces, some textured planes, called lumiproxies,are constructed to represent the equivalent visual appearance. The Hough transform is used to find the positions of these textured planes, and optic flow measures are used to determine their textures. For remaining pixels corresponding to the non-planar geometries, the point primitive is applied, reorganized as the OBB-tree structure. Then, texture mapping and point splatting are employed together to render the novel views, with the hardware acceleration.
The Ponzano-Regge model and parametric representation
Li, Dan
2011-01-01
We give a parametric representation of the effective noncommutative field theory derived from a $\\kappa$-deformation of the Ponzano-Regge model and define a generalized Kirchhoff polynomial with $\\kappa$-correction terms, obtained in a $\\kappa$-linear approximation. We then consider the corresponding graph hypersurfaces and the question of how the presence of the correction term affects their motivic nature. We look in particular at the tetrahedron graph, which is the basic case of relevance to quantum gravity. With the help of computer calculations, we verify that the number of points over finite fields of the corresponding hypersurface does not fit polynomials with integer coefficients, hence the hypersurface of the tetrahedron is not polynomially countable. This shows that the correction term can change significantly the motivic properties of the hypersurfaces, with respect to the classical case.
Geological and hydrological visualization models for Digital Earth representation
Ziolkowska, Jadwiga R.; Reyes, Reuben
2016-09-01
This paper presents techniques and interactive models for multi-dimensional analyses and geospatial visualization in virtual globes based on three application examples: (1) earthquakes around the world, (2) groundwater well levels in Texas, and (3) geothermal subsurface heat indexes in Texas. While studies are known that represent multi-dimensional geospatial data points, we develop and suggest multi-dimensional models for virtual globes using KML and KMZ (compressed KML files) with a complete and static time series data set. The benefit of this approach for the user is the ability to view and analyze time-based correlations interactively over the entire time span in one instance, which is not possible with animated (dynamic) models. The methods embedded in our models include: (a) depth layered cueing within subsurface Earth visualization for a better orientation when maneuvering below the ground, (b) a technique with Ternary Visual Shape Logic (TVSL) as a quick indicator of change over time, and (c) different visual representations of multiple dimensions for the addressed case study examples. The models can be applied to a variety of problems in different disciplines, especially to support decision-making processes.
Chaos game representation (CGR)-walk model for DNA sequences
Institute of Scientific and Technical Information of China (English)
Gao Jie; Xu Zhen-Yuan
2009-01-01
Chaos game representation (CGR) is an iterative mapping technique that processes sequences of units, such as nucleotides in a DNA sequence or amino acids in a protein, in order to determine the coordinates of their positions in a continuous space. This distribution of positions has two features: one is unique, and the other is source sequence that can be recovered from the coordinates so that the distance between positions may serve as a measure of similarity between the corresponding sequences. A CGR-walk model is proposed based on CGR coordinates for the DNA sequences. The CGR coordinates are converted into a time series, and a long-memory ARFIMA (p, d, q) model, where ARFIMA stands for autoregressive fractionally integrated moving average, is introduced into the DNA sequence analysis. This model is applied to simulating real CGR-walk sequence data of ten genomic sequences. Remarkably long-range correlations are uncovered in the data, and the results from these models are reasonably fitted with those from the ARFIMA (p, d, q) model.
2016-01-05
Computer-aided transformation of PDE models: languages, representations, and a calculus of operations A domain-specific embedded language called...languages, representations, and a calculus of operations Report Title A domain-specific embedded language called ibvp was developed to model initial...Computer-aided transformation of PDE models: languages, representations, and a calculus of operations 1 Vision and background Physical and engineered systems
The Linked Dual Representation model of vocal perception and production
Directory of Open Access Journals (Sweden)
Sean eHutchins
2013-11-01
Full Text Available The voice is one of the most important media for communication, yet there is a wide range of abilities in both the perception and production of the voice. In this article, we review this range of abilities, focusing on pitch accuracy as a particularly informative case, and look at the factors underlying these abilities. Several classes of models have been posited describing the relationship between vocal perception and production, and we review the evidence for and against each class of model. We look at how the voice is different from other musical instruments and review evidence about both the association and the dissociation between vocal perception and production abilities. Finally, we introduce the Linked Dual Representation model, a new approach which can account for the broad patterns in prior findings, including trends in the data which might seem to be countervailing. We discuss how this model interacts with higher-order cognition and examine its predictions about several aspects of vocal perception and production.
Deep supervised, but not unsupervised, models may explain IT cortical representation.
Directory of Open Access Journals (Sweden)
Seyed-Mahdi Khaligh-Razavi
2014-11-01
Full Text Available Inferior temporal (IT cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total, testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network. We compared the representational dissimilarity matrices (RDMs of the model representations with the RDMs obtained from human IT (measured with fMRI and monkey IT (measured with cell recording for the same set of stimuli (not used in training the models. Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining
Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation
Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus
2014-01-01
Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total), testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining IT requires
Multiscale geometric modeling of macromolecules I: Cartesian representation.
Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo Wei
2014-01-01
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the
Visualization Through Knowledge Representation Model for Social Networks
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Athar Javed, Muhammad; Ahmed, Zaki
2011-01-01
the process of knowing, learning and creating knowledge is the relevant aspect (Nonaka and Takeuchi 1995). In this paper knowledge representation is presented in 3D style for the understanding and visualization of dynamics of complex social networks by developing a TANetworkTool (Task Analysis Network Tool......). The standard or normal representation of a typical social network is through a graph data structure in 2D. The dynamics of larger social networks is so complex some time it becomes difficult to understand the various levels of interactions and dependencies just by mere representation through a tree or graph...... of complex social networks and complimenting the analytical results. This representation can also help authorities not necessarily having specific scientific background to understand and perhaps take preventive actions required in certain specific scenarios for example dealing with terrorist/covert networks....
A propositional representation model of anatomical and functional brain data.
Maturana, Pablo; Batrancourt, Bénédicte
2011-01-01
Networks can represent a large number of systems. Recent advances in the domain of networks have been transferred to the field of neuroscience. For example, the graph model has been used in neuroscience research as a methodological tool to examine brain networks organization, topology and complex dynamics, as well as a framework to test the structure-function hypothesis using neuroimaging data. In the current work we propose a graph-theoretical framework to represent anatomical, functional and neuropsychological assessment instruments information. On the one hand, interrelationships between anatomic elements constitute an anatomical graph. On the other hand, a functional graph contains several cognitive functions and their more elementary cognitive processes. Finally, the neuropsychological assessment instruments graph includes several neuropsychological tests and scales linked with their different sub-tests and variables. The two last graphs are connected by relations of type "explore" linking a particular instrument with the cognitive function it explores. We applied this framework to a sample of patients with focal brain damage. Each patient was related to: (i) the cerebral entities injured (assessed with structural neuroimaging data) and (ii) the neusopsychological assessment tests carried out (weight by performance). Our model offers a suitable platform to visualize patients' relevant information, facilitating the representation, standardization and sharing of clinical data. At the same time, the integration of a large number of patients in this framework will make possible to explore relations between anatomy (injured entities) and function (performance in different tests assessing different cognitive functions) and the use of neurocomputational tools for graph analysis may help diagnostic and contribute to the comprehension of neural bases of cognitive functions.
Stull, Andrew T.; Hegarty, Mary
2016-01-01
This study investigated the development of representational competence among organic chemistry students by using 3D (concrete and virtual) models as aids for teaching students to translate between multiple 2D diagrams. In 2 experiments, students translated between different diagrams of molecules and received verbal feedback in 1 of the following 3…
Computational modeling of the mind: what role for mental representation?
Rescorla, Michael
2015-01-01
The classical computational theory of mind (CTM) holds that many important mental processes are computations similar to those executed by Turing machines. This article compares two alternative frameworks through which one can develop CTM: formal-syntactic computationalism and content-involving computationalism. According to formal-syntactic computationalism, computation is sensitive to syntax but not semantics. Mental computation manipulates formal-syntactic items without regard to any representational properties those items may have. According to content-involving computationalism, certain computational descriptions characterize mental states through their representational properties rather than any alleged formal-syntactic properties. The article examines strengths and weaknesses of each framework.
Lee, Silvia Wen-Yu; Chang, Hsin-Yi; Wu, Hsin-Kai
2017-01-01
The aim of this study was to examine the potential impact of the representational characteristics of models and students' educational levels on students' views of scientific models and modeling (VSMM). An online multimedia questionnaire was designed to address three major aspects of VSMM, namely the "nature of models," the "nature…
2009-09-01
and performance modelling. While we are still a long way from turnkey models of operators, the consensus that various modelling approaches are...we are a long way from turnkey applications of HBR and that there is no cookbook for abstraction; abstraction and modelling is an art and a skill...and lock the doors. • The Air Force would take out a three-year lease with an option to buy the building. The RSM discussion covered two points
Shell-model representations of the proton-neutron symplectic model
Energy Technology Data Exchange (ETDEWEB)
Ganev, H.G. [Joint Institute for Nuclear Research, Dubna (Russian Federation)
2015-07-15
The representation theory of the recently introduced proton-neutron symplectic model in the many-particle Hilbert space is considered. The relation of the Sp(12, R) irreducible representations (irreps) with the shell-model classification of the basis states is considered by extending of the state space to the direct product space of SU{sub p} (3) x SU{sub n} (3) irreps, generalizing in this way the Elliott's SU(3) model for the case of two-component system. The Sp(12, R) model appears then as a natural multi-major-shell extension of the generalized proton-neutron SU(3) scheme, which takes into account the core collective excitations of monopole and quadrupole, as well as dipole type associated with the giant resonance vibrational degrees of freedom. Each Sp(12, R) irreducible representation is determined by a symplectic bandhead or an intrinsic U(6) space which can be fixed by the underlying proton-neutron shell-model structure, so the theory becomes completely compatible with the Pauli principle. It is shown that this intrinsic U(6) structure is of vital importance for the appearance of the low-lying collective bands without involving a mixing of different symplectic irreps. The full range of low-lying collective states can then be described by the microscopically based intrinsic U(6) structure, renormalized by coupling to the giant resonance vibrations. (orig.)
Improving the Representation of Soluble Iron in Climate Models
Energy Technology Data Exchange (ETDEWEB)
Perez Garcia-Pando, Carlos [Columbia Univ., New York, NY (United States)
2016-03-13
attached to aggregates of other minerals. This is another challenge that has been tackled by the project. The project has produced a major step forward on our understanding of the key processes needed to predict the mineral composition of dust aerosols by connecting theory, modeling and observations. The project has produced novel semi-empirical and theoretical methods to estimate the emitted size distribution and mineral composition of dust aerosols. These methods account for soil aggregates that are potentially emitted from the original undisturbed soil but are destroyed during wet sieving. The methods construct the emitted size distribution of individual minerals building upon brittle fragmentation theory, reconstructions of wet-sieved soil mineral size distributions, and/or characteristic mineral size distributions estimated from observations at times of high concentration. Based on an unprecedented evaluation with a new global compilation of observations produced with the project support, we showed that the new methods remedy some key deficiencies compared to the previous state-of-the-art. This includes the correct representation of Fe-bearing phyllosilicates at silt sizes, where they are abundant according to observations. In addition, the quartz fraction of silt particles is in better agreement with measured values. In addition, we represent an additional class of iron oxide aerosol that is a small impurity embedded within other minerals, allowing it to travel farther than in its pure crystalline state. We assume that these impurities are least frequent in soils rich in iron oxides (as a result of the assumed effect of weathering that creates pure iron oxide crystals). The mineral composition of dust is also important to other interaction with climate - through shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, and the heterogeneous formation of sulfates and nitrates - and to its impacts upon human health. Despite the
Finite Lattice Hamiltonian Computations in the P-Representation the Schwinger Model
Aroca, J M; Alvarez-Campot, G; Alvarez-Campot, Gonzalo
1999-01-01
The Schwinger model is studied in a finite lattice by means of the P-representation. The vacuum energy, mass gap and chiral condensate are evaluated showing good agreement with the expected values in the continuum limit.
Finite Lattice Hamiltonian Computations in the P-Representation: the Schwinger Model
1997-01-01
The Schwinger model is studied in a finite lattice by means of the P-representation. The vacuum energy, mass gap and chiral condensate are evaluated showing good agreement with the expected values in the continuum limit.
Energy Technology Data Exchange (ETDEWEB)
Hong, J.H. [Kyungwon University, Songnam (Korea, Republic of)
1995-07-01
This paper describes a method of obtaining transmission network equivalents from the network`s response to a impulse excitation signal. Proposed method is based on the modal decomposition representation for the large-scale interconnected system. For this framework we use Prony analysis to identify the network function of the system and to decompose the large system into a parallel combination of simple first-order systems. As a result, rational network function of optimal low order can be obtained in a direct and simple way. And Thevenin-type of discrete-time filter model can be generated. It can reproduce the driving-point impedance characteristic of the network. Furthermore proposed model can be implemented into the EMTP in a direct manner. The simulation results with the full system representation and the developed equivalent system showed a good agreement. (author). 14 refs., 11 figs.
Cheng, Hong
2015-01-01
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen
Energy Technology Data Exchange (ETDEWEB)
Bryan, Frank [Univ. of Washington, Seattle, WA (United States); Dennis, John [Univ. of Washington, Seattle, WA (United States); MacCready, Parker [Univ. of Washington, Seattle, WA (United States); Whitney, Michael [Univ. of Washington, Seattle, WA (United States)
2016-10-20
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
Energy Technology Data Exchange (ETDEWEB)
Bryan, Frank [Univ. of Connecticut, Storrs, CT (United States); Dennis, John [Univ. of Connecticut, Storrs, CT (United States); MacCready, Parker [Univ. of Connecticut, Storrs, CT (United States); Whitney, Michael M. [Univ. of Connecticut, Storrs, CT (United States)
2016-09-30
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
2009-09-01
aspects of Effects Based Operations and non-kinetic warfare. The second keynote presentation, by Mr. Mike Greenley , CAE Inc. provided an industry...faite par Mr. Mike Greenley , de CAE Inc., a donné le point de vue industriel, en indiquant le besoin pour une approche des bons usages de la...Drive Suite 200 Kanata, Ontario K2K 3G7 CANADA Presenter: Mr. Mike Greenley Vice President Modelling and Simulation CAE Inc. 8585 Côte de
Polynomial Representations for a Wavelet Model of Interest Rates
Directory of Open Access Journals (Sweden)
Dennis G. Llemit
2015-12-01
Full Text Available In this paper, we approximate a non – polynomial function which promises to be an essential tool in interest rates forecasting in the Philippines. We provide two numerical schemes in order to generate polynomial functions that approximate a new wavelet which is a modification of Morlet and Mexican Hat wavelets. The first is the Polynomial Least Squares method which approximates the underlying wavelet according to desired numerical errors. The second is the Chebyshev Polynomial approximation which generates the required function through a sequence of recursive and orthogonal polynomial functions. We seek to determine the lowest order polynomial representations of this wavelet corresponding to a set of error thresholds.
Visualization Through Knowledge Representation Model for Social Networks
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Athar Javed, Muhammad; Ahmed, Zaki
2011-01-01
the process of knowing, learning and creating knowledge is the relevant aspect (Nonaka and Takeuchi 1995). In this paper knowledge representation is presented in 3D style for the understanding and visualization of dynamics of complex social networks by developing a TANetworkTool (Task Analysis Network Tool....... Although, many analytical methods provide relationship dependencies, role of different nodes and their importance in the network. In this paper we are presenting a visualization of networks by rotating the network through various dimensions to provide a more realistic view to understand the dynamics...
A knowledge representation meta-model for rule-based modelling of signalling networks
Directory of Open Access Journals (Sweden)
Adrien Basso-Blandin
2016-03-01
Full Text Available The study of cellular signalling pathways and their deregulation in disease states, such as cancer, is a large and extremely complex task. Indeed, these systems involve many parts and processes but are studied piecewise and their literatures and data are consequently fragmented, distributed and sometimes—at least apparently—inconsistent. This makes it extremely difficult to build significant explanatory models with the result that effects in these systems that are brought about by many interacting factors are poorly understood. The rule-based approach to modelling has shown some promise for the representation of the highly combinatorial systems typically found in signalling where many of the proteins are composed of multiple binding domains, capable of simultaneous interactions, and/or peptide motifs controlled by post-translational modifications. However, the rule-based approach requires highly detailed information about the precise conditions for each and every interaction which is rarely available from any one single source. Rather, these conditions must be painstakingly inferred and curated, by hand, from information contained in many papers—each of which contains only part of the story. In this paper, we introduce a graph-based meta-model, attuned to the representation of cellular signalling networks, which aims to ease this massive cognitive burden on the rule-based curation process. This meta-model is a generalization of that used by Kappa and BNGL which allows for the flexible representation of knowledge at various levels of granularity. In particular, it allows us to deal with information which has either too little, or too much, detail with respect to the strict rule-based meta-model. Our approach provides a basis for the gradual aggregation of fragmented biological knowledge extracted from the literature into an instance of the meta-model from which we can define an automated translation into executable Kappa programs.
Veloz, Tomas; Desjardins, Sylvie
2015-01-01
Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations. PMID:26617556
Combinatorics of solvable lattice models, and modular representations of Hecke algebras
Foda, O E; Okado, M; Thibon, J Y; Welsh, Trevor A; Foda, Omar; Leclerc, Bernard; Okado, Masato; Thibon, Jean-Yves; Welsh, Trevor A.
1997-01-01
We review and motivate recently-observed relationships between exactly solvable lattice models and modular representations of Hecke algebras. Firstly, we describe how the set of $n$-regular partitions label both of the following classes of objects: 1. The spectrum of unrestricted solid-on-solid lattice models based on level-1 representations of the affine algebras $\\sl_n$, 2. The irreducible representations of type-A Hecke algebras at roots of unity: $H_m(\\sqrt[n]{1})$. Secondly, we show that a certain subset of the $n$-regular partitions label both of the following classes of objects: 1. The spectrum of restricted solid-on-solid lattice models based on cosets of affine algebras $(sl(n)^_1 \\times sl(n)^_1)/ sl(n)^_2$. 2. Jantzen-Seitz (JS) representations of $H_m(\\sqrt[n]{1})$: irreducible representations that remain irreducible under restriction to $H_{m-1}(\\sqrt[n]{1})$. Using the above relationships, we characterise the JS representations of $H_m(\\sqrt[n]{1})$ and show that the generating series that count...
Energy Technology Data Exchange (ETDEWEB)
Belgiorno, Francesco [Politecnico di Milano, Dipartimento di Matematica, Milano (Italy); INdAM-GNFM, Milano (Italy); Cacciatori, Sergio L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN sezione di Milano, Milano (Italy); Dalla Piazza, Francesco [Universita ' ' La Sapienza' ' , Dipartimento di Matematica, Roma (Italy); Doronzo, Michele [Universita dell' Insubria, Department of Science and High Technology, Como (Italy)
2016-06-15
We investigate the quantisation in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field φ and the role of the polarisation field is played by a further scalar field ψ. The model, which is quadratic in the fields, is still characterised by a non-trivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered. (orig.)
Belgiorno, F; Piazza, F Dala; Doronzo, M
2015-01-01
We investigate the quantization in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field $\\phi$ and the role of the polarization field is played by a further scalar field $\\psi$. The model, which is quadratic in the fields, is still characterized by a nontrivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered.
Cook-Cottone, Catherine
2006-01-01
The Attuned Representation Model of eating-disorder etiology and symptom maintenance is a comprehensive model that can effectively guide prevention and treatment efforts by addressing individual, cultural, and interactive issues. The model integrates the risk factors related to the onset of eating-disordered behaviors (i.e., biological,…
Sphalerons and the Electroweak Phase Transition in Models with Higher Scalar Representations
Ahriche, Amine; Nasri, Salah
2014-01-01
In this work we investigate the sphaleron solution in a $SU(2)\\times U(1)_X$ gauge theory, which also encompasses the Standard Model, with higher scalar representation(s) ($J^{(i)},X^{(i)}$). We show that the field profiles describing the sphaleron in higher scalar multiplet, have similar trends like the doublet case with respect to the radial distance. We compute the sphaleron energy and find that it scales linearly with the vacuum expectation value of the scalar field and its slope depends on the representation. We also investigate the effect of $U(1)$ gauge field and find that it is small for the physical value of the mixing angle, $\\theta_{W}$ and resembles the case for the doublet. For higher representations, we show that the criterion for strong first order phase transition, $v_{c}/T_{c}>\\eta$, is relaxed with respect to the doublet case, i.e. $\\eta<1$.
Interactive Shape Modeling using a Skeleton-Mesh Co-Representation
DEFF Research Database (Denmark)
Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan
2014-01-01
We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology...... of a shape is uniquely embedded in the mesh connectivity of a PAM, enabling both surface and skeletal modeling operations, interchangeably and directly on the mesh itself. We develop an algorithm to convert arbitrary triangle meshes into PAMs as well as techniques to simplify PAMs and a method to convert...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....
A Gloss Composition and Context Clustering Based Distributed Word Sense Representation Model
Directory of Open Access Journals (Sweden)
Tao Chen
2015-08-01
Full Text Available In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Energy Technology Data Exchange (ETDEWEB)
Ceppi, Paulo [Department of Meteorology, University of Reading, Reading UK; Brient, Florent [Centre National de Recherches M?t?orologiques, M?t?o-France/CNRS, Toulouse France; Zelinka, Mark D. [Cloud Processes Research Group, Lawrence Livermore National Laboratory, Livermore CA USA; Hartmann, Dennis L. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA
2017-05-11
Cloud feedback—the change in top-of-atmosphere radiative flux resulting from the cloud response to warming—constitutes by far the largest source of uncertainty in the climate response to CO2 forcing simulated by global climate models (GCMs). We review the main mechanisms for cloud feedbacks, and discuss their representation in climate models and the sources of intermodel spread. Global-mean cloud feedback in GCMs results from three main effects: (1) rising free-tropospheric clouds (a positive longwave effect); (2) decreasing tropical low cloud amount (a positive shortwave [SW] effect); (3) increasing high-latitude low cloud optical depth (a negative SW effect). These cloud responses simulated by GCMs are qualitatively supported by theory, high-resolution modeling, and observations. Rising high clouds are consistent with the fixed anvil temperature (FAT) hypothesis, whereby enhanced upper-tropospheric radiative cooling causes anvil cloud tops to remain at a nearly fixed temperature as the atmosphere warms. Tropical low cloud amount decreases are driven by a delicate balance between the effects of vertical turbulent fluxes, radiative cooling, large-scale subsidence, and lower-tropospheric stability on the boundary-layer moisture budget. High-latitude low cloud optical depth increases are dominated by phase changes in mixed-phase clouds. The causes of intermodel spread in cloud feedback are discussed, focusing particularly on the role of unresolved parameterized processes such as cloud microphysics, turbulence, and convection.
Research on system-of-systems combat simulation model formal specification and representation
Institute of Scientific and Technical Information of China (English)
Liu Chen
2006-01-01
To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.
Jeong, Sungmoon; Lee, Minho
2012-01-01
This paper presents an adaptive object recognition model based on incremental feature representation and a hierarchical feature classifier that offers plasticity to accommodate additional input data and reduces the problem of forgetting previously learned information. The incremental feature representation method applies adaptive prototype generation with a cortex-like mechanism to conventional feature representation to enable an incremental reflection of various object characteristics, such as feature dimensions in the learning process. A feature classifier based on using a hierarchical generative model recognizes various objects with variant feature dimensions during the learning process. Experimental results show that the adaptive object recognition model successfully recognizes single and multiple-object classes with enhanced stability and flexibility.
Delice, Ali; Kertil, Mahmut
2015-01-01
This article reports the results of a study that investigated pre-service mathematics teachers' modelling processes in terms of representational fluency in a modelling activity related to a cassette player. A qualitative approach was used in the data collection process. Students' individual and group written responses to the mathematical modelling…
Sunyono; Yuanita, L.; Ibrahim, M.
2015-01-01
The aim of this research is identify the effectiveness of a multiple representation-based learning model, which builds a mental model within the concept of atomic structure. The research sample of 108 students in 3 classes is obtained randomly from among students of Mathematics and Science Education Studies using a stratified random sampling…
Potts Model with Invisible Colors : Random-Cluster Representation and Pirogov–Sinai Analysis
Enter, Aernout C.D. van; Iacobelli, Giulio; Taati, Siamak
We study a recently introduced variant of the ferromagnetic Potts model consisting of a ferromagnetic interaction among q “visible” colors along with the presence of r non-interacting “invisible” colors. We introduce a random-cluster representation for the model, for which we prove the existence of
Tzeng, Yuhtsuen; van den Broek, Paul; Kendeou, Panayiota; Lee, Chengyuan
2005-05-01
The complexity of text comprehension demands a computational approach to describe the cognitive processes involved. In this article, we present the computational implementation of the landscape model of reading. This model captures both on-line comprehension processes during reading and the off-line memory representation after reading is completed, incorporating both memory-based and coherence-based mechanisms of comprehension. The overall architecture and specific parameters of the program are described, and a running example is provided. Several studies comparing computational and behavioral data indicate that the implemented model is able to account for cycle-by-cycle comprehension processes and memory for a variety of text types and reading situations.
Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.
Cross-model convolutional neural network for multiple modality data representation
Wu, Yanbin; Wang, Li; Cui, Fan; Zhai, Hongbin; Dong, Baoming; Wang, Jim Jing-Yan
2016-01-01
A novel data representation method of convolutional neural net- work (CNN) is proposed in this paper to represent data of different modalities. We learn a CNN model for the data of each modality to map the data of differ- ent modalities to a common space, and regularize the new representations in the common space by a cross-model relevance matrix. We further impose that the class label of data points can also be predicted from the CNN representa- tions in the common space. The learning proble...
Knowledge representation and rule-based solution system for dynamic programming model
Institute of Scientific and Technical Information of China (English)
胡祥培; 王旭茵
2003-01-01
A knowledge representation has been proposed using the state-space theory of Artificial Intelligencefor Dynamic Programming Model, in which a model can be defined as a six-tuple M = (I,G,O,T,D,S). Abuilding block modeling method uses the modules of a six-tuple to form a rule-based solution model. Moreover,a rule-based system has been designed and set up to solve the Dynamic Programming Model. This knowledge-based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynam-ic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Program-ming Model can also be conveniently realized in computer.
Representation of planetary magnetospheric environment with the paraboloid model
Kalegaev, V. V.; Alexeev, I. I.; Belenkaya, E. S.; Mukhametdinova, L. R.; Khodachenko, M. L.; Génot, V.; Kallio, E. J.; Al-Ubaidi, T.; Modolo, R.
2013-09-01
Paraboloid model of the Earth's magnetosphere has been developed at Moscow State University to represent correctly the electrodynamics processes in the near-Earth's space [1]. This model is intended to calculate the magnetic field generated by a variety of current systems located on the boundaries and within the boundaries of the Earth's magnetosphere under a wide range of environmental conditions, quiet and disturbed, affected by Solar-Terrestrial interactions simulated by Solar activity such as Solar Flares and related phenomena which induce terrestrial magnetic disturbances such as Magnetic Storms. The model depends on a small set of physical input parameters, which characterize the intensity of large-scale magnetospheric current systems and their location. Among these parameters are a geomagnetic dipole tilt angle, distance to the subsolar point of the magnetosphere, etc. The input parameters depend on real- or quasi-real- time Empirical Data that include solar wind and IMF data as well as geomagnetic indices. A generalized paraboloid model was implemented to represent the magnetospheres of some magnetized planets, e.g. Saturn [2], Jupiter [3], Mercury [4]. Interactive models of the Earth's, Kronian and Mercury's magnetospheres, which take into account specific features of the modeled objects have been realized at Space Monitoring Data Center of SINP MSU [5]. The real-time model of the Earth's magnetosphere is currently working at SINP MSU Space Weather Web-site [6]. Data from different sources (satellite measurements, simulation data bases and online services) are accumulated inside a digital framework developed within the FP7 project IMPEx. Paraboloid model of the magnetospheres (PMM) is part of this infrastructure. A set of Webservices to provide the access to PMM calculations and to enable the modeling data post-processing under SOAP protocol have been created. These will be implemented for easy data exchange within IMPEx infrastructure.
MODELING OF DYNAMIC SYSTEMS WITH MODULATION BY MEANS OF KRONECKER VECTOR-MATRIX REPRESENTATION
Directory of Open Access Journals (Sweden)
A. S. Vasilyev
2015-09-01
Full Text Available The paper deals with modeling of dynamic systems with modulation by the possibilities of state-space method. This method, being the basis of modern control theory, is based on the possibilities of vector-matrix formalism of linear algebra and helps to solve various problems of technical control of continuous and discrete nature invariant with respect to the dimension of their “input-output” objects. Unfortunately, it turned its back on the wide group of control systems, which hardware environment modulates signals. The marked system deficiency is partially offset by this paper, which proposes Kronecker vector-matrix representations for purposes of system representation of processes with signal modulation. The main result is vector-matrix representation of processes with modulation with no formal difference from continuous systems. It has been found that abilities of these representations could be effectively used in research of systems with modulation. Obtained model representations of processes with modulation are best adapted to the state-space method. These approaches for counting eigenvalues of Kronecker matrix summaries, that are matrix basis of model representations of processes described by Kronecker vector products, give the possibility to use modal direction in research of dynamics for systems with modulation. It is shown that the use of controllability for eigenvalues of general matrixes applied to Kronecker structures enabled to divide successfully eigenvalue spectrum into directed and not directed components. Obtained findings including design problems for models of dynamic processes with modulation based on the features of Kronecker vector and matrix structures, invariant with respect to the dimension of input-output relations, are applicable in the development of alternate current servo drives.
Directory of Open Access Journals (Sweden)
T. Koch
2010-01-01
Full Text Available Satellite retrievals for column CO2 with better spatial and temporal sampling are expected to improve the current surface flux estimates of CO2 via inverse techniques. However, the spatial scale mismatch between remotely sensed CO2 and current generation inverse models can induce representation errors, which can cause systematic biases in flux estimates. This study is focused on estimating these representation errors associated with utilization of satellite measurements in global models with a horizontal resolution of about 1 degree or less. For this we used simulated CO2 from the high resolution modeling framework WRF-VPRM, which links CO2 fluxes from a diagnostic biosphere model to a weather forecasting model at 10×10 km2 horizontal resolution. Sub-grid variability of column averaged CO2, i.e. the variability not resolved by global models, reached up to 1.2 ppm with a median value of 0.4 ppm. Statistical analysis of the simulation results indicate that orography plays an important role. Using sub-grid variability of orography and CO2 fluxes as well as resolved mixing ratio of CO2, a linear model can be formulated that could explain about 50% of the spatial patterns in the systematic (bias or correlated error component of representation error in column and near-surface CO2 during day- and night-times. These findings give hints for a parameterization of representation error which would allow for the representation error to taken into account in inverse models or data assimilation systems.
Linear Characteristic Graphical Models: Representation, Inference and Applications
Bickson, Danny
2010-01-01
Heavy-tailed distributions naturally occur in many real life problems. Unfortunately, it is typically not possible to compute inference in closed-form in graphical models which involve such heavy-tailed distributions. In this work, we propose a novel simple linear graphical model for independent latent random variables, called linear characteristic model (LCM), defined in the characteristic function domain. Using stable distributions, a heavy-tailed family of distributions which is a generalization of Cauchy, L\\'evy and Gaussian distributions, we show for the first time, how to compute both exact and approximate inference in such a linear multivariate graphical model. LCMs are not limited to stable distributions, in fact LCMs are always defined for any random variables (discrete, continuous or a mixture of both). We provide a realistic problem from the field of computer networks to demonstrate the applicability of our construction. Other potential application is iterative decoding of linear channels with non-...
Novel mixture model for the representation of potential energy surfaces
Pham, Tien Lam; Kino, Hiori; Terakura, Kiyoyuki; Miyake, Takashi; Dam, Hieu Chi
2016-10-01
We demonstrate that knowledge of chemical physics on a materials system can be automatically extracted from first-principles calculations using a data mining technique; this information can then be utilized to construct a simple empirical atomic potential model. By using unsupervised learning of the generative Gaussian mixture model, physically meaningful patterns of atomic local chemical environments can be detected automatically. Based on the obtained information regarding these atomic patterns, we propose a chemical-structure-dependent linear mixture model for estimating the atomic potential energy. Our experiments show that the proposed mixture model significantly improves the accuracy of the prediction of the potential energy surface for complex systems that possess a large diversity in their local structures.
Information analysis for modeling and representation of meaning
Uda, Norihiko
1994-01-01
In this dissertation, information analysis and an information model called the Semantic Structure Model based on information analysis are explained for semantic processing. Methods for self organization of information are also described. In addition, Information-Base Systems for thinking support of research and development in non linear optical materials are explained. As a result of information analysis, general properties of information and structural properties of concepts become clear. Ge...
Loops, Surfaces and Grassmann Representation in Two- and Three-Dimensional Ising Models
Gattringer, C R; Semenoff, Gordon W
1999-01-01
Starting from the known representation of the partition function of the 2- and 3-D Ising models as an integral over Grassmann variables, we perform a hopping expansion of the corresponding Pfaffian. We show that this expansion is an exact, algebraic representation of the loop- and surface expansions (with intrinsic geometry) of the 2- and 3-D Ising models. Such an algebraic calculus is much simpler to deal with than working with the geometrical objects. For the 2-D case we show that the algebra of hopping generators allows a simple algebraic treatment of the geometry factors and counting problems, and as a result we obtain the corrected loop expansion of the free energy. We compute the radius of convergence of this expansion and show that it is determined by the critical temperature. In 3-D the hopping expansion leads to the surface representation of the Ising model in terms of surfaces with intrinsic geometry. Based on a representation of the 3-D model as a product of 2-D models coupled to an auxiliary field...
Sensitivity experiments to mountain representations in spectral models
Directory of Open Access Journals (Sweden)
U. Schlese
2000-06-01
Full Text Available This paper describes a set of sensitivity experiments to several formulations of orography. Three sets are considered: a "Standard" orography consisting of an envelope orography produced originally for the ECMWF model, a"Navy" orography directly from the US Navy data and a "Scripps" orography based on the data set originally compiled several years ago at Scripps. The last two are mean orographies which do not use the envelope enhancement. A new filtering technique for handling the problem of Gibbs oscillations in spectral models has been used to produce the "Navy" and "Scripps" orographies, resulting in smoother fields than the "Standard" orography. The sensitivity experiments show that orography is still an important factor in controlling the model performance even in this class of models that use a semi-lagrangian formulation for water vapour, that in principle should be less sensitive to Gibbs oscillations than the Eulerian formulation. The largest impact can be seen in the stationary waves (asymmetric part of the geopotential at 500 mb where the differences in total height and spatial pattern generate up to 60 m differences, and in the surface fields where the Gibbs removal procedure is successful in alleviating the appearance of unrealistic oscillations over the ocean. These results indicate that Gibbs oscillations also need to be treated in this class of models. The best overall result is obtained using the "Navy" data set, that achieves a good compromise between amplitude of the stationary waves and smoothness of the surface fields.
Ontology and modeling patterns for state-based behavior representation
Castet, Jean-Francois; Rozek, Matthew L.; Ingham, Michel D.; Rouquette, Nicolas F.; Chung, Seung H.; Kerzhner, Aleksandr A.; Donahue, Kenneth M.; Jenkins, J. Steven; Wagner, David A.; Dvorak, Daniel L.; Karban, Robert
2015-01-01
This paper provides an approach to capture state-based behavior of elements, that is, the specification of their state evolution in time, and the interactions amongst them. Elements can be components (e.g., sensors, actuators) or environments, and are characterized by state variables that vary with time. The behaviors of these elements, as well as interactions among them are represented through constraints on state variables. This paper discusses the concepts and relationships introduced in this behavior ontology, and the modeling patterns associated with it. Two example cases are provided to illustrate their usage, as well as to demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight electrical model and a more complex spacecraft model involving instruments, power and data behaviors. Finally, an implementation in a SysML profile is provided.
Ontology and modeling patterns for state-based behavior representation
Castet, Jean-Francois; Rozek, Matthew L.; Ingham, Michel D.; Rouquette, Nicolas F.; Chung, Seung H.; Kerzhner, Aleksandr A.; Donahue, Kenneth M.; Jenkins, J. Steven; Wagner, David A.; Dvorak, Daniel L.;
2015-01-01
This paper provides an approach to capture state-based behavior of elements, that is, the specification of their state evolution in time, and the interactions amongst them. Elements can be components (e.g., sensors, actuators) or environments, and are characterized by state variables that vary with time. The behaviors of these elements, as well as interactions among them are represented through constraints on state variables. This paper discusses the concepts and relationships introduced in this behavior ontology, and the modeling patterns associated with it. Two example cases are provided to illustrate their usage, as well as to demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight electrical model and a more complex spacecraft model involving instruments, power and data behaviors. Finally, an implementation in a SysML profile is provided.
Dynamic Model and Control of a Photovoltaic Generation System using Energetic Macroscopic Representation
Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan
2016-10-01
This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.
Representation of Ethiopian Wet Spells in Global and Nested Models
Directory of Open Access Journals (Sweden)
Mark R. Jury
2014-01-01
Full Text Available Weather forecast and reanalysis models exhibit different performance in daily rainfall estimation over the Ethiopian highlands, 2000–2012, with ECMWF closer to observations than other models. Background is given to illustrate the Hadley circulation and easterly jets over Ethiopia, using sections on 37°E in July–August 2011. ECMWF reanalysis has a narrow band of rainfall >15 mm/day on 10°N, consistent with TRMM satellite estimates, associated with a steep gradient in meridional wind. MERRA and GFS models have a wider band of rainfall and weaker gradients in meridional winds. The contrasting background states influence a nested WRF model simulation of heavy rain in the upper Nile Valley on 29 July, 2011. The GFS (ECMWF initialization yields stronger northerly (southerly winds north (south of Ethiopia, while aircraft observations are southerly at 850 mb and northerly at 700 mb. ECMWF produces heavy and widespread rainfall consistent with observations, with a potentially more realistic simulation of the Hadley circulation.
Deliyianni, Eleni; Gagatsis, Athanasios; Elia, Iliada; Panaoura, Areti
2016-01-01
The aim of this study was to propose and validate a structural model in fraction and decimal number addition, which is founded primarily on a synthesis of major theoretical approaches in the field of representations in Mathematics and also on previous research on the learning of fractions and decimals. The study was conducted among 1,701 primary…
Amory, Alan; Molomo, Bolepo; Blignaut, Seugnet
2011-01-01
In this paper, the collaborative development, instantiation, expansion and re-representation as research instrument of the Game Object Model (GOM) are explored from a Cultural Historical Activity Theory perspective. The aim of the paper is to develop insights into the design, integration, evaluation and use of video games in learning and teaching.…
Determinant representation for a quantum correlation function of the lattice sine-Gordon model
Essler, F H L; Korepin, V E
1995-01-01
We consider a completely integrable lattice regularization of the sine--Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields.
Directory of Open Access Journals (Sweden)
Engels Rajangam
2016-02-01
Full Text Available —Reasoning is the fundamental capability which requires knowledge. Various graph models have proven to be very valuable in knowledge representation and reasoning. Recently, explosive data generation and accumulation capabilities have paved way for Big Data and Data Intensive Systems. Knowledge Representation and Reasoning with large and growing data is extremely challenging but crucial for businesses to predict trends and support decision making. Any contemporary, reasonably complex knowledge based system will have to consider this onslaught of data, to use appropriate and sufficient reasoning for semantic processing of information by machines. This paper surveys graph based knowledge representation and reasoning, various graph models such as Conceptual Graphs, Concept Graphs, Semantic Networks, Inference Graphs and Causal Bayesian Networks used for representation and reasoning, common and recent research uses of these graph models, typically in Big Data environment, and the near future needs and challenges for graph based KRR in computing systems. Observations are presented in a table, highlighting suitability of the surveyed graph models for contemporary scenarios.
Deliyianni, Eleni; Gagatsis, Athanasios; Elia, Iliada; Panaoura, Areti
2016-01-01
The aim of this study was to propose and validate a structural model in fraction and decimal number addition, which is founded primarily on a synthesis of major theoretical approaches in the field of representations in Mathematics and also on previous research on the learning of fractions and decimals. The study was conducted among 1,701 primary…
A Semantic-Driven Knowledge Representation Model for the Materials Engineering Application
Directory of Open Access Journals (Sweden)
Xin Cheng
2014-04-01
Full Text Available A Materials Engineering Application (MEA has been presented as a solution for the problems of materials design, solutions simulation, production and processing, and service evaluation. Large amounts of data are generated in the MEA distributed and heterogeneous environment. As the demand for intelligent engineering information applications increases, the challenge is to effectively organize these complex data and provide timely and accurate on-demand services. In this paper, based on the supporting environment of Open Cloud Services Architecture (OCSA and Virtual DataSpace (VDS, a new semantic-driven knowledge representation model for MEA information is proposed. Faced with the MEA constantly changing user requirements, this model elaborates the semantic representation of data, services and their relationships to support the construction of domain knowledge ontology. Then, based on the ontology modeling in VDS, the semantic representations of association mapping, rule-based reasoning, and evolution tracking are analyzed to support MEA knowledge acquisition. Finally, an application example of knowledge representation in the field of materials engineering is given to illustrate the proposed model, and some experimental comparisons are discussed for evaluating and verifying the effectiveness of this method.
Strickland, Amanda M.; Kraft, Adam; Bhattacharyya, Gautam
2010-01-01
As part of our investigations into the development of representational competence, we report results from a study in which we elicited sixteen graduate students' expressed mental models of commonly-used terms for describing organic reactions--functional group, nucleophile/electrophile, acid/base--and for diagrams of transformations and their…
RSOS models and Jantzen-Seitz representations of Hecke algebras at roots of unity
Foda, O E; Okado, M; Thibon, J Y; Welsh, Trevor A; Foda, Omar; Leclerc, Bernard; Okado, Masato; Thibon, Jean-Yves; Welsh, Trevor A.
1997-01-01
A special family of partitions occurs in two apparently unrelated contexts: the evaluation of 1-dimensional configuration sums of certain RSOS models, and the modular representation theory of symmetric groups or their Hecke algebras $H_m$. We provide an explanation of this coincidence by showing how the irreducible $H_m$-modules which remain irreducible under restriction to $H_{m-1}$ (Jantzen-Seitz modules) can be determined from the decomposition of a tensor product of representations of affine $\\sl_n$.
Can representational trajectory reveal the nature of an internal model of gravity?
De Sá Teixeira, Nuno; Hecht, Heiko
2014-05-01
The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.
Product Representation of Dyon Partition Function in CHL Models
David, J R; Sen, A; David, Justin R.; Jatkar, Dileep P.; Sen, Ashoke
2006-01-01
A formula for the exact partition function of 1/4 BPS dyons in a class of CHL models has been proposed earlier. The formula involves inverse of Siegel modular forms of subgroups of Sp(2,Z). In this paper we propose product formulae for these modular forms. This generalizes the result of Gritsenko and Nikulin for the weight 10 cusp form of the full Sp(2,Z) group.
Product representation of dyon partition function in CHL models
David, Justin R.; Jatkar, Dileep P.; Sen, Ashoke
2006-06-01
A formula for the exact partition function of 1/4 BPS dyons in a class of CHL models has been proposed earlier. The formula involves inverse of Siegel modular forms of subgroups of Sp(2,Bbb Z). In this paper we propose product formulae for these modular forms. This generalizes the result of Borcherds and Gritsenko and Nikulin for the weight 10 cusp form of the full Sp(2,Bbb Z) group.
Multi-scale representations of virtual 3D city models
Glander, Tassilo
2013-01-01
Virtual 3D city and landscape models are the main subject investigated in this thesis. They digitally represent urban space and have many applications in different domains, e.g., simulation, cadastral management, and city planning. Visualization is an elementary component of these applications. Photo-realistic visualization with an increasingly high degree of detail leads to fundamental problems for comprehensible visualization. A large number of highly detailed and textured objects within a ...
Improving the Representation of Estuarine Processes in Earth System Models
Sun, Q.; Whitney, M. M.; Bryan, F.; Tseng, Y. H.
2016-12-01
The exchange of freshwater between the rivers and estuaries and the open ocean represents a unique form of scale-interaction in the climate system. The local variability in the terrestrial hydrologic cycle is integrated by rivers over potentially large drainage basins (up to semi-continental scales), and is then imposed on the coastal ocean at the scale of a river mouth. Appropriately treating riverine freshwater discharge into the oceans in Earth system models is a challenging problem. Commonly, the river runoff is discharged into the ocean models with zero salinity and arbitrarily distributed either horizontally or vertically over several grid cells. Those approaches entirely neglect estuarine physical processes that modify river inputs before they reach the open ocean. A physically based Estuary Box Model (EBM) is developed to parameterize the mixing processes in estuaries. The EBM has a two-layer structure representing the mixing processes driven by tides and shear flow within the estuaries. It predicts the magnitude of the mixing driven exchange flow, bringing saltier lower-layer shelf water into the estuary to mix with river water prior to discharge to the upper-layer open ocean. The EBM has been tested against observations and high-resolution three-dimensional simulations of the Columbia River estuary, showing excellent agreement in the predictions of the strength of the exchange flow and the salinity of the discharged water, including modulation with the spring-neap tidal cycle. The EBM is implemented globally at every river discharge point of the Community Earth System Model (CESM). In coupled ocean-sea ice experiments driven by CORE surface forcing, the sea surface salinity (SSS) in the coastal ocean is increased globally compared to the standard model, contributing to a decrease in coastal stratification. The SSS near the mouths of some of the largest rivers is decreased due to the reduction in the area over which riverine fresh water is discharged. The
Stochastic representations of seismic anisotropy: transversely isotropic effective media models
Song, Xin; Jordan, Thomas H.
2017-06-01
We apply Jordan's self-consistent, second-order Born theory to compute the effective stiffness tensor for spatially stationary, stochastic models of 3-D elastic heterogeneity. The effects of local anisotropy can be separated from spatially extended geometric anisotropy by factoring the covariance of the moduli into a one-point variance tensor and a two-point correlation function. The latter is incorporated into the rescaled Kneer tensor, which is contracted against the one-point variance tensor to yield a second-order perturbation to the Voigt average. The theory can handle heterogeneity with orthotropic stochastic symmetry, but the calculations presented here are restricted to media with transversely isotropic (TI) statistics. We thoroughly investigate TI stochastic media that are locally isotropic. If the heterogeneity aspect ratio η is unity, the effective medium is isotropic, and the main effect of the scattering is to reduce the moduli. The two limiting regimes are a 2-D vertical stochastic bundle (η → 0), where the P and S anisotropy ratios are negative, and a 1-D horizontal stochastic laminate (η → ∞), where they are positive. The effective-medium equations for the latter yield the second-order approximation to Backus's exact solution, demonstrating the connection between Backus theory and self-consistent effective-media theory. Comparisons of the exact and second-order results for non-Gaussian laminates indicate that the approximation should be adequate for moduli heterogeneities less than about 30 per cent and thus valid for most seismological purposes. We apply the locally isotropic theory to data from the Los Angeles Basin to illustrate how it can be used to explain shallow seismic anisotropy. To assess the relative contributions of geometric and local anisotropy to the effective anisotropy, we consider a rotational model for stochastic anisotropic variability proposed by Jordan. In this model, the axis of a hexagonally symmetric stiffness
Influence of input matrix representation on topic modelling performance
CSIR Research Space (South Africa)
De Waal, A
2010-11-01
Full Text Available model, perplexity is an appropriate measure. It provides an indication of the model’s ability to generalise by measuring the exponent of the mean log-likelihood of words in a held-out test set of the corpus. The exploratory abilities of the latent.... The phrases are clearly more intelligible than only single word phrases in many cases, thus demonstrating the qualitative advantage of the proposed method. 1For the CRAN corpus, each subset of chunks includes the top 1000 chunks with the highest...
Realistic Representation of Trees in an Urban Canopy Model
Ryu, Young-Hee; Bou-Zeid, Elie; Wang, Zhi-Hua; Smith, James A.
2016-05-01
A single-layer urban canopy model that captures sub-facet heterogeneity and various hydrological processes is further developed to explicitly incorporate trees within the urban canyon. The physical processes associated with trees are shortwave/longwave radiation exchange, including mutual interception and shading by trees and buildings and multiple reflections, sensible heat and latent heat (through transpiration) exchange, and root water uptake. A computationally-efficient geometric approach is applied to the radiation exchanges, requiring a priori knowledge of view factors. These view factors are first obtained from independent Monte Carlo ray-tracing simulations, and subsequently simple relations, which are functions of canyon aspect ratio and tree-crown ratio, are proposed to estimate them. The developed model is evaluated against field observations at two urban sites and one suburban site, showing improved performance for latent heat flux compared to the previous version that only includes ground vegetation. The trees in the urban canopy act to considerably decrease sensible heat flux and increase latent heat flux, and these effects are found to be more significant in the more dense urban site. Sensitivity tests are then performed to examine the effects of tree geometry relative to canyon geometry. The results indicate that the tree-crown size relative to canyon width is the most influential parameter to decrease sensible heat flux and increase latent heat flux, resulting in cooling of the urban area.
Representation of nucleation mode microphysics in global aerosol microphysics models
Directory of Open Access Journals (Sweden)
Y. H. Lee
2013-02-01
Full Text Available In models, nucleation mode (1 nm Dp J10 and the burdens and lifetimes of ultrafine mode (10 nm Dp J10 and shorter coagulation lifetimes of ultrafine mode particles than the model with explicit dynamics (i.e. 1 nm boundary. The spatial distributions of CN10 (Dp > 10 nm and CCN(0.2% (i.e. CCN concentrations at 0.2% supersaturation are moderately affected, especially CN10 predictions above ~ 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries can be explained by the overprediction of J10 or J3 with the parameterized microphysics possibly due to the instantaneous growth rate assumption in the survival and growth parameterization. The errors in CN10 predictions are sensitive to the choice of the lower size boundary but not to the choice of the time step applied to the microphysical processes. The spatial distribution of CCN(0.2% with the 3 nm boundary is almost identical to that with the 1 nm boundary, but that with the 10 nm boundary can differ more than 10–40% in some areas. We found that the deviation in the 10 nm simulations is partly due to the longer time step (i.e. 1-h time step used in the 10 nm simulations compared to 10-min time step used in the benchmark simulations but, even with the same time step, the 10 nm cutoff showed noticeably higher errors than the 3 nm cutoff. In conclusion, we generally recommend using a lower diameter boundary of 3 nm for studies focused on aerosol indirect effects but down to 1 nm boundary for studies focused on CN10 predictions or nucleation.
Duclos, C; Venot, A
2000-03-01
No standardized representation of drug indications is currently available that could be used in drug knowledge bases. We describe an object-oriented representation of indications that should make it possible to develop new tools for selecting drugs and checking prescriptions in computerized drug prescription systems. The model was developed using the results of a lexical and semantic analysis of drug indications, collected into a single file and processed using natural language processing software. It distinguishes both the diseases for which the drug may be given and the efficiency of the drug for a given indication. Two aspects of the model were evaluated: the differences if two independent evaluators filled the attributes independently and the loss of information induced by the use of the model. A system based on this model, making it possible for the physician to select all the drugs satisfying various criteria, is also presented.
Improving the representation of soluble iron in climate models
Energy Technology Data Exchange (ETDEWEB)
Mahowald, Natalie [Cornell Univ., Ithaca, NY (United States)
2016-11-29
Funding from this grant supported Rachel Sanza, Yan Zhang and partially Samuel Albani. Substantial progress has been made on inclusion of mineralogy, showing the quality of the simulations, and the impact on radiation in the CAM4 and CAM5 (Scanza et al., 2015). In addition, the elemental distribution has been evaluated (and partially supported by this grant) (Zhang et al., 2015), showing that using spatial distributions of mineralogy, improved resperentation of Fe, Ca and Al are possible, compared to the limited available data. A new intermediate complexity soluble iron scheme was implemented in the Bulk Aerosol Model (BAM), which was completed as part of Rachel Scanza’s PhD thesis. Currently Rachel is writing up at least two first author papers describing the general methods and comparison to observations (Scanza et al., in prep.), as well as papers describing the sensitivity to preindustrial conditions and interannual variability. This work lead to the lead PI being asked to write a commentary in Nature (Mahowald, 2013) and two review papers (Mahowald et al., 2014, Mahowald et al., submitted) and contributed to related papers (Albani et al., 2016, Albani et al., 2014, Albani et al., 2015).
Representation Modeling Persona by using Ontologies: Vocabulary Persona
Directory of Open Access Journals (Sweden)
GAOU Salma
2013-09-01
Full Text Available Semantic Web is then to add to all these resources semantics that allow computer systems to "understand" the meaning by accessing structured collections of information and inference rules that can be used to drive reasoning automated to better satisfy user requirements. Standard description of Web resources proposed by the W3C, as the name implies, RDF (Resource Description Framework is a meta-data used to guide the description of resources, to make it more "structured" information necessary for engines research and, more generally, to all necessary computer automated tool for analyzing web pages. The web is a new web sematique or all Web resources are described by metadata, which allows machines better use of these resources. Considering as a foundation specification FOAF (Friend Of A Friend, we use semantic structures (RDFa to create an ontology and technologies in which it is implemented.Create a conceptual model (eg, an ontology for personas and their uses in the context of human-computer interaction we will present some screenshots of execution of application.
Energy Technology Data Exchange (ETDEWEB)
Bonnet, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1961-07-01
When studying the behaviour of a magnetic resonance transducer formed by the association of an electrical network and of a set of nuclear spins, it is possible to bring about a representation that is analytically equivalent by means of an entirely electrical model, available for transients as well as steady-state. A detailed study of the validity conditions justifies its use in most cases. Also proposed is a linearity criterion of Bloch's equations in transient state that is simply the prolongation of the well-known condition of non-saturation in the steady-state. (author) [French] L'etude du comportement d'un transducteur a resonance magnetique forme de l'association d'un reseau electrique et d'un ensemble de noyaux dotes de spin, montre qu'il est possible d'en deduire une representation analytiquement equivalente au moyen d'un modele entierement electrique utilisable pour un regime transitoire aussi bien que pour un regime permanent. Une etude detaillee des conditions de validite permet d'en justifier l'emploi dans la majorite des cas. On propose enfin un critere de linearite des equations de Bloch en regime transitoire, qui constitue un prolongement de la condition connue de non-saturation en regime stationnaire. (auteur)
Model-experiment interaction to improve representation of phosphorus limitation in land models
Norby, R. J.; Yang, X.; Cabugao, K. G. M.; Childs, J.; Gu, L.; Haworth, I.; Mayes, M. A.; Porter, W. S.; Walker, A. P.; Weston, D. J.; Wright, S. J.
2015-12-01
Carbon-nutrient interactions play important roles in regulating terrestrial carbon cycle responses to atmospheric and climatic change. None of the CMIP5 models has included routines to represent the phosphorus (P) cycle, although P is commonly considered to be the most limiting nutrient in highly productive, lowland tropical forests. Model simulations with the Community Land Model (CLM-CNP) show that inclusion of P coupling leads to a smaller CO2 fertilization effect and warming-induced CO2 release from tropical ecosystems, but there are important uncertainties in the P model, and improvements are limited by a dearth of data. Sensitivity analysis identifies the relative importance of P cycle parameters in determining P availability and P limitation, and thereby helps to define the critical measurements to make in field campaigns and manipulative experiments. To improve estimates of P supply, parameters that describe maximum amount of labile P in soil and sorption-desorption processes are necessary for modeling the amount of P available for plant uptake. Biochemical mineralization is poorly constrained in the model and will be improved through field observations that link root traits to mycorrhizal activity, phosphatase activity, and root depth distribution. Model representation of P demand by vegetation, which currently is set by fixed stoichiometry and allometric constants, requires a different set of data. Accurate carbon cycle modeling requires accurate parameterization of the photosynthetic machinery: Vc,max and Jmax. Relationships between the photosynthesis parameters and foliar nutrient (N and P) content are being developed, and by including analysis of covariation with other plant traits (e.g., specific leaf area, wood density), we can provide a basis for more dynamic, trait-enabled modeling. With this strong guidance from model sensitivity and uncertainty analysis, field studies are underway in Puerto Rico and Panama to collect model-relevant data on P
Pavlick, R.; Reu, B.; Bohn, K.; Dyke, J.; Kleidon, A.
2010-12-01
The terrestrial biosphere is a complex, self-organizing system which is continually both adapting to and altering its global environment. It also exhibits a vast diversity of vegetation forms and functioning. However, the terrestrial biosphere components within current state-of-the-art Earth System Models abstract this diversity in to a handful of relatively static plant functional types. These coarse and static representations of functional diversity might contribute to overly pessimistic projections regarding terrestrial ecosystem responses to scenarios of global change (e.g. Amazonian and boreal forest diebacks). In the Jena Diversity (JeDi) model, we introduce a new approach to vegetation modelling with a richer representation of functional diversity, based not on plant functional types, but on unavoidable plant ecophysiological trade-offs, which we hypothesize should be more stable in time. The JeDi model tests a large number of plant growth strategies. Each growth strategy is simulated using a set of randomly generated parameter values, which characterize its functioning in terms of carbon allocation, ecophysiology, and phenology, which are then linked to the growing conditions at the land surface. The model is constructed in such a way that these parameters inherently lead to ecophysiological trade-offs, which determine whether a growth strategy is able to survive and reproduce under the prevalent climatic conditions. Kleidon and Mooney (2000) demonstrated that this approach is capable of reproducing the geographic distribution of species richness. More recently, we have shown the JeDi model can explain other biogeographical phenomena including the present-day global pattern of biomes (Reu et al., accepted), ecosystem evenness (Kleidon et al. 2009), and possible mechanisms for biome shifts and biodiversity changes under scenarios of global warming (Reu et al., submitted). We have also evaluated the simulated biogeochemical fluxes from JeDi against a variety
Gerhards, Helene; Jongsma, Karin; Schicktanz, Silke
2017-07-11
Trust within organizations is important for ensuring members' acceptance of the organization's activities and to expand their scope of action. Remarkably, Patient Organizations (POs) that often both function as a forum for self-help and represent patients on the health-political level, have been understudied in this respect. This paper analyzes the relation between trust and representation in POs. We distinguish between two models of representation originating from political theory: the trustee and delegate model and between two types of trust: horizontal and vertical trust. Our theoretical approach is illustrated with an analysis of 13 interviews with representatives of German POs. We have found that the delegate model requires horizontal trust and the trustee model vertical trust. Both models: horizontal/delegate and vertical/trustee exist within single POs. The representation process within POs demands a balancing act between inclusion of affected persons and strategically aggregating a clear-cut political claim. Trust plays in that process of coming from individual wishes to collective and political standpoints a major role both in terms of horizontal as well as vertical trust. Horizontal trust serves the communication between affected members, and vertical trust allows representatives to be decisive.
Cherkasskaya, Eugenia; Rosario, Margaret
2017-01-24
The etiology of low female sexual desire, the most prevalent sexual complaint in women, is multi-determined, implicating biological and psychological factors, including women's early parent-child relationships and bodily self-representations. The current study evaluated a model that hypothesized that sexual body self-representations (sexual subjectivity, self-objectification, genital self-image) explain (i.e., mediate) the relation between internalized working models of parent-child relationships (attachment, separation-individuation, parental identification) and sexual desire in heterosexual women. We recruited 614 young, heterosexual women (M = 25.5 years, SD = 4.63) through social media. The women completed an online survey. Structural equation modeling was used. The hypotheses were supported in that the relation between internalized working models of parent-child relationships (attachment and separation-individuation) and sexual desire was mediated by sexual body self-representations (sexual body esteem, self-objectification, genital self-image). However, parental identification was not related significantly to sexual body self-representations or sexual desire in the model. Current findings demonstrated that understanding female sexual desire necessitates considering women's internalized working models of early parent-child relationships and their experiences of their bodies in a sexual context. Treatment of low or absent desire in women would benefit from modalities that emphasize early parent-child relationships as well as interventions that foster mind-body integration.
Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions
Fierce, Laura; McGraw, Robert
2016-04-01
Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.
Energy Technology Data Exchange (ETDEWEB)
Niccoli, G.
2009-12-15
In an earlier paper (G. Niccoli and J. Teschner, 2009), the spectrum (eigenvalues and eigenstates) of a lattice regularizations of the Sine-Gordon model has been completely characterized in terms of polynomial solutions with certain properties of the Baxter equation. This characterization for cyclic representations has been derived by the use of the Separation of Variables (SOV) method of Sklyanin and by the direct construction of the Baxter Q-operator family. Here, we reconstruct the Baxter Q-operator and the same characterization of the spectrum by only using the SOV method. This analysis allows us to deduce the main features required for the extension to cyclic representations of other integrable quantum models of this kind of spectrum characterization. (orig.)
Integration of MHD load models with circuit representations the Z generator.
Energy Technology Data Exchange (ETDEWEB)
Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.
2013-03-01
MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.
Phase Structure of the Non-Linear σ-MODEL with Oscillator Representation Method
Mishchenko, Yuriy; Ji, Chueng-R.
2004-03-01
Non-Linear σ-model plays an important role in many areas of theoretical physics. Been initially uintended as a simple model for chiral symmetry breaking, this model exhibits such nontrivial effects as spontaneous symmetry breaking, asymptotic freedom and sometimes is considered as an effective field theory for QCD. Besides, non-linear σ-model can be related to the strong-coupling limit of O(N) ϕ4-theory, continuous limit of N-dim. system of quantum spins, fermion gas and many others and takes important place in undertanding of how symmetries are realized in quantum field theories. Because of this variety of connections, theoretical study of the critical properties of σ-model is interesting and important. Oscillator representation method is a theoretical tool for studying the phase structure of simple QFT models. It is formulated in the framework of the canonical quantization and is based on the view of the unitary non-equivalent representations as possible phases of a QFT model. Successfull application of the ORM to ϕ4 and ϕ6 theories in 1+1 and 2+1 dimensions motivates its study in more complicated models such as non-linear σ-model. In our talk we introduce ORM, establish its connections with variational approach in QFT. We then present results of ORM in non-linear σ-model and try to interprete them from the variational point of view. Finally, we point out possible directions for further research in this area.
2012-09-01
different decisions as com- pared to an unmanned aerial vehicle (UAV) mission reconfig- uration based on prognostics indication on power train fail- ures...Degradation Modeling Training Trajectories Test Trajectory Parameter Estimation State-space Representation Prognostics Dynamic System Realization Health...and ASME. Kai Goebel received the degree of Diplom-Ingenieur from the Technische University Munchen, Germany in 1990. He received the M.S. and Ph.D
Boundary coupling of Lie algebroid Poisson sigma models and representations up to homotopy
Velez, Alexander Quintero
2011-01-01
A general form for the boundary coupling of a Lie algebroid Poisson sigma model is proposed. The approach involves using the Batalin-Vilkovisky formalism in the AKSZ geometrical version, to write a BRST-invariant coupling for a representation up to homotopy of the target Lie algebroid or its subalgebroids. These considerations lead to a conjectural description of topological D-branes on generalized complex manifolds, which includes A-branes and B-branes as special cases.
A CONCEPTUAL MODEL FOR THE REPRESENTATION OF LANDFORMS USING ONTOLOGY DESIGN PATTERNS
Guilbert, Eric; Moulin, Bernard; Cortés Murcia, Andrés
2016-01-01
A landform is an area of a terrain with its own recognisable shape. Its definition is often qualitative and inherently vague. Hence landforms are difficult to formalise in view of their extraction from a DTM. This paper presents a two-level framework for the representation of landforms. The objective is to provide a structure where landforms can be conceptually designed according to a common model which can be implemented. It follows the principle that landforms are not defined by ge...
Fock model and Segal-Bargmann transform for minimal representations of Hermitian Lie groups
DEFF Research Database (Denmark)
Hilgert, Joachim; Kobayashi, Toshiyuki; Möllers, Jan;
2012-01-01
For any Hermitian Lie group G of tube type we construct a Fock model of its minimal representation. The Fock space is defined on the minimal nilpotent K_C-orbit X in p_C and the L^2-inner product involves a K-Bessel function as density. Here K is a maximal compact subgroup of G, and g_C=k_C+p_C i...... intertwines the Schroedinger and Fock model. Its kernel involves the same I-Bessel function. Using the Segal--Bargmann transform we also determine the integral kernel of the unitary inversion operator in the Schroedinger model which is given by a J-Bessel function....
Reactivity modeling of the visbreaking of Athabasca bitumen using molecular representations
Energy Technology Data Exchange (ETDEWEB)
McCaffrey, W.C.; Gray, M.R. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Dettman, H.D. [Natural Resources Canada, Devon, AB (Canada). CANMET Energy Technology Centre
2008-07-01
The visbreaking of an Athabasca bitumen feedstock was modeled using a Monte Carlo approach. A rule based construction algorithm was then used to create a molecular representation for the Athabasca bitumen. The molecular representation was consistent with many types of data, including 13C-NMR spectroscopy, 1H-NMR spectroscopy, elemental analysis, vapor pressure osmometry, and simulated distillation. Molecular representations that contained a minimum number of molecules were produced using sequential optimization. Each feed molecule was represented using connection and structural matrices. Model compound reactivity studies published in the literature were used to determine the probability of cracking of various C-C and CS bonds. These probabilities were used in a continuous reaction algorithm that used matrix transformations to react feed molecules into product molecules. The reaction simulations were broken down into reaction steps. At each reaction step, molecules were first stochastically chosen to react, and then specific bonds were stochastically chosen to crack. The boiling point of each molecule in the feed and product fractions was calculated using the group contribution theory. The aromaticity, molecular weight, and sulfur content of the cracked liquid product were found to be consistent with the experimental properties.
Models, truth and realism: assessing Bas van Fraassen's views on scientific representation
Directory of Open Access Journals (Sweden)
Michel Ghins
2011-06-01
Full Text Available This paper is devoted to an analysis of some aspects of Bas van Fraassen's views on representation. While I agree with most of his claims, I disagree on the following three issues. Firstly, I contend that some isomorphism (or at least homomorphism between the representor and what is represented is a universal necessary condition for the success of any representation, even in the case of misrepresentation. Secondly, I argue that the so-called "semantic" or "model-theoretic" construal of theories does not give proper due to the role played by true propositions in successful representing practices. Thirdly, I attempt to show that the force of van Fraassen's pragmatic - and antirealist - "dissolution" of the "loss of reality objection" loses its bite when we realize that our cognitive contact with real phenomena is achieved not by representing but by expressing true propositions about them.
Institute of Scientific and Technical Information of China (English)
HU Zhao-yong
2005-01-01
Engineering diagnosis is essential to the operation of industrial equipment. The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesian network is a powerful tool for it. This paper utilizes the Bayesian network to represent and reason diagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologic structure based on operating conditions, possible faults and corresponding symptoms. The paper also discusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gas turbine diagnosis is constructed on a platform developed under a Visual C++ environment. It shows that the Bayesian network is a powerful model for representation and reasoning of diagnostic knowledge. The three-layer structure and the approximate algorithm are effective also.
Knowledge representation model for systems-level analysis of signal transduction networks.
Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang-Yup; Hanisch, Daniel; Park, Sunwon
2004-01-01
A Petri-net based model for knowledge representation has been developed to describe as explicitly and formally as possible the molecular mechanisms of cell signaling and their pathological implications. A conceptual framework has been established for reconstructing and analyzing signal transduction networks on the basis of the formal representation. Such a conceptual framework renders it possible to qualitatively understand the cell signaling behavior at systems-level. The mechanisms of the complex signaling network are explored by applying the established framework to the signal transduction induced by potent proinflammatory cytokines, IL-1beta and TNF-alpha The corresponding expert-knowledge network is constructed to evaluate its mechanisms in detail. This strategy should be useful in drug target discovery and its validation.
An exemplar model of performance in the artificial grammar task: holographic representation.
Jamieson, Randall K; Hauri, Brian R
2012-06-01
We apply a multitrace model of memory to explain performance in the artificial grammar task. The model blends the convolution method for representation from Jones and Mewhort's BEAGLE model (Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. Psychological Review, 114, 1-37) of semantic memory with the multitrace storage and retrieval model from Hintzman's MINERVA 2 model (Hintzman, D. L. (1986). "Schema abstraction" in a multiple-trace memory model. Psychological Review, 93, 411-428) of episodic memory. We report an artificial grammar experiment, and we fit the model to those data at the level of individual items. We argue that performance in the artificial grammar task is best understood as a process of retrospective inference from memory.
An Approach to Improve the Representation of the User Model in the Web-Based Systems
Directory of Open Access Journals (Sweden)
Yasser A. Nada
2011-12-01
Full Text Available A major shortcoming of content-based approaches exists in the representation of the user model. Content-based approaches often employ term vectors to represent each user’s interest. In doing so, they ignore the semantic relations between terms of the vector space model in which indexed terms are not orthogonal and often have semantic relatedness between one another. In this paper, we improve the representation of a user model during building user model in content-based approaches by performing these steps. First is the domain concept filtering in which concepts and items of interests are compared to the domain ontology to check the relevant items to our domain using ontology based semantic similarity. Second, is incorporating semantic content into the term vectors. We use word definitions and relations provided by WordNet to perform word sense disambiguation and employ domain-specific concepts as category labels for the semantically enhanced user models. The implicit information pertaining to the user behavior was extracted from click stream data or web usage sessions captured within the web server logs. Also, our proposed approach aims to update user model, we should analysis user's history query keywords. For a certain keyword, we extract the words which have the semantic relationships with the keyword and add them into the user interest model as nodes according to semantic relationships in the WordNet.
Digital representations of the real world how to capture, model, and render visual reality
Magnor, Marcus A; Sorkine-Hornung, Olga; Theobalt, Christian
2015-01-01
Create Genuine Visual Realism in Computer Graphics Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality explains how to portray visual worlds with a high degree of realism using the latest video acquisition technology, computer graphics methods, and computer vision algorithms. It explores the integration of new capture modalities, reconstruction approaches, and visual perception into the computer graphics pipeline.Understand the Entire Pipeline from Acquisition, Reconstruction, and Modeling to Realistic Rendering and ApplicationsThe book covers sensors fo
Unconscious fantasy as a special class of mental representation: a contribution to a model of mind.
Erreich, Anne
2015-04-01
Philosophers of mind and cognitive psychologists have proposed that "mind" consists of myriad mental representations, namely, conscious and unconscious representations of belief/desire intentions. It is argued here that unconscious fantasies constitute a subset of the domain of mental representations, those concerned with conflicting wishes, affects, and defensive maneuvers. This proposal anchors the unconscious fantasy construct in a model of mind that accords with contemporary academic views in cognitive and developmental psychology and philosophy of mind, thus allowing psychoanalysts to enter into dialogue with those disciplines. Given this formulation, unconscious fantasy might well serve as a theoretical construct that applies to a large group of theories that share certain criteria regarding mentation. An analyst would then be at liberty to commingle insights from a menu of different theories without committing metatheoretical malpractice, resulting in a principled version of theoretical pluralism. Published case material from Kleinian, close process monitoring, and self psychological perspectives demonstrates how this redefined unconscious fantasy construct can encompass two major types of interventions that analysts make: content and process interpretations.
Energy Technology Data Exchange (ETDEWEB)
Bryan, Frank [National Center for Atmospheric Research, Boulder, CO (United States); Dennis, John [National Center for Atmospheric Research, Boulder, CO (United States); MacCready, Parker [Univ. of Washington, Seattle, WA (United States); Whitney, Michael [Univ. of Connecticut
2015-11-20
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. To develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.
Representation of the Antarctic circumpolar vortex mixing barrier in a Global Climate Model
Cameron, Chris; Conway, Jono; Bodeker, Greg; Renwick, James
2017-04-01
Dynamical processes that occur in the stratosphere between 15 and 50 km above Earth's surface can affect circulation in the troposphere and have an impact on weather and climate. The Antarctic Circumpolar Vortex (ACV) forms each winter and spring as a zone of strong stratospheric westerly winds surrounding Antarctica. The ACV presents a barrier to transport of air masses between middle and high-latitudes, and contributes to stratospheric temperatures above the polar region dropping sufficiently low in spring to allow for ozone loss. The processes controlling the permeability of the ACV, and how they are likely to respond to a changing climate and a recovering ozone hole, have not been well studied, and as a result are not well simulated in Global Climate Models, particularly in terms of sub-grid scale turbulent diffusion which is parameterized in the models. The UK Met Office Unified Model (UM) is used to examine vortex permeability using both the "New Dynamics" and the upgraded "ENDGame" dynamical cores. Results are compared against reanalysis representations of vortex permeability using the MERRA-2 and ERA-Interim reanalyses data sets, which have been shown to have superior performance in the Southern Hemisphere stratosphere when compared against NCEP-CFSR, and MERRA reanalyses. Results are expected to lead to improved representation of ACV transport process in Global Climate Models and subsequent improvements in climate modelling.
Directory of Open Access Journals (Sweden)
Andrej Ficko
2015-03-01
Full Text Available Underuse of nonindustrial private forests in developed countries has been interpreted mostly as a consequence of the prevailing noncommodity objectives of their owners. Recent empirical studies have indicated a correlation between the harvesting behavior of forest owners and the specific conceptualization of appropriate forest management described as "nonintervention" or "hands-off" management. We aimed to fill the huge gap in knowledge of social representations of forest management in Europe and are the first to be so rigorous in eliciting forest owner representations in Europe. We conducted 3099 telephone interviews with randomly selected forest owners in Slovenia, asking them whether they thought they managed their forest efficiently, what the possible reasons for underuse were, and what they understood by forest management. Building on social representations theory and applying a series of structural equation models, we tested the existence of three latent constructs of forest management and estimated whether and how much these constructs correlated to the perception of resource efficiency. Forest owners conceptualized forest management as a mixture of maintenance and ecosystem-centered and economics-centered management. None of the representations had a strong association with the perception of resource efficiency, nor could it be considered a factor preventing forest owners from cutting more. The underuse of wood resources was mostly because of biophysical constraints in the environment and not a deep-seated philosophical objection to harvesting. The difference between our findings and other empirical studies is primarily explained by historical differences in forestland ownership in different parts of Europe and the United States, the rising number of nonresidential owners, alternative lifestyle, and environmental protectionism, but also as a consequence of our high methodological rigor in testing the relationships between the constructs
Oyesiku-Blakemore, Joseph; Verrot, Lucile; Geris, Josie; Zhang, Ganlin; Peng, Xinhua; Hallett, Paul; Smith, Jo
2017-04-01
Soil carbon and nitrogen processing are strongly influenced by the hydrology of soils. When simulating these processes models represent soil hydrology in some way. The hydrological components of soil carbon and nitrogen models vary greatly in their complexity, as does the burden of simulation time and data requirements. Hydrology specific models, such as Hydrus, have more detailed representations of soil hydrology than those used in some soil carbon and nitrogen models, such as ECOSSE, and can provide a more accurate and precise description of the movement and content of water in soil. Moisture content is one of the key variables controlling the processing of carbon and nitrogen in soil models. A higher soil moisture content results in increased methane production through the anaerobic decomposition of soil carbon pools. It also alters the rate at which aerobic decomposition occurs, with low and high soil moisture contents limiting the decomposition of SOC. An inaccurate estimate of soil moisture will introduce errors in the estimated rates of model SOC transformations, which would result in errors in the simulated SOC. In order to shed light on this uncertainty we use the same input data to simulate soil moisture contents in a Red Soil region of China, using both the ECOSSE model and Hydrus 2D. We compare the simulations of both models with measurements of soil moisture at the site and each other. We highlight where the models differ and identify the conditions under which errors are likely to occur. We then simulate SOC dynamics using the ECOSSE model and its original hydrology with the ECOSSE model simulations using the Hydrus 2D simulations. This shows the importance of including a detailed representation of soil moisture when simulating soil organic matter dynamics.
Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling
Harouna, S Kadri
2016-01-01
We explore the potential of a formulation of the Navier-Stokes equations incorporating a random description of the small-scale velocity component. This model, established from a version of the Reynolds transport theorem adapted to a stochastic representation of the flow, gives rise to a large-scale description of the flow dynamics in which emerges an anisotropic subgrid tensor, reminiscent to the Reynolds stress tensor, together with a drift correction due to an inhomogeneous turbulence. The corresponding subgrid model, which depends on the small scales velocity variance, generalizes the Boussinesq eddy viscosity assumption. However, it is not anymore obtained from an analogy with molecular dissipation but ensues rigorously from the random modeling of the flow. This principle allows us to propose several subgrid models defined directly on the resolved flow component. We assess and compare numerically those models on a standard Green-Taylor vortex flow at Reynolds 1600. The numerical simulations, carried out w...
Energy Technology Data Exchange (ETDEWEB)
Johnson, J. D. (Prostat, Mesa, AZ); Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ); Storlie, Curtis B. (North Carolina State University, Raleigh, NC)
2006-10-01
Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.
Improving Conceptual Understanding and Representation Skills Through Excel-Based Modeling
Malone, Kathy L.; Schunn, Christian D.; Schuchardt, Anita M.
2017-08-01
The National Research Council framework for science education and the Next Generation Science Standards have developed a need for additional research and development of curricula that is both technologically model-based and includes engineering practices. This is especially the case for biology education. This paper describes a quasi-experimental design study to test the effectiveness of a model-based curriculum focused on the concepts of natural selection and population ecology that makes use of Excel modeling tools (Modeling Instruction in Biology with Excel, MBI-E). The curriculum revolves around the bio-engineering practice of controlling an invasive species. The study takes place in the Midwest within ten high schools teaching a regular-level introductory biology class. A post-test was designed that targeted a number of common misconceptions in both concept areas as well as representational usage. The results of a post-test demonstrate that the MBI-E students significantly outperformed the traditional classes in both natural selection and population ecology concepts, thus overcoming a number of misconceptions. In addition, implementing students made use of more multiple representations as well as demonstrating greater fascination for science.
Alharbi, Basma Mohammed
2017-02-07
Location-Based Social Networks (LBSNs) capture individuals whereabouts for a large portion of the population. To utilize this data for user (location)-similarity based tasks, one must map the raw data into a low-dimensional uniform feature space. However, due to the nature of LBSNs, many users have sparse and incomplete check-ins. In this work, we propose to overcome this issue by leveraging the network of friends, when learning the new feature space. We first analyze the impact of friends on individuals\\'s mobility, and show that individuals trajectories are correlated with thoseof their friends and friends of friends (2-hop friends) in an online setting. Based on our observation, we propose a mixed-membership model that infers global mobility patterns from users\\' check-ins and their network of friends, without impairing the model\\'s complexity. Our proposed model infers global patterns and learns new representations for both usersand locations simultaneously. We evaluate the inferred patterns and compare the quality of the new user representation against baseline methods on a social link prediction problem.
Time-domain compressive dictionary of attributed scattering center model for sparse representation
Institute of Scientific and Technical Information of China (English)
ZHONG Jin-rong; WEN Gong-jian
2016-01-01
Parameter estimation of the attributed scattering center (ASC) model is significant for automatic target recognition (ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary (TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary (FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar (SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD.
Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web
Huang, Hong; Gong, Jianya
2008-12-01
GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.
Löpprich, Martin; Jones, Jennifer; Meinecke, Marie-Claire; Goldschmidt, Hartmut; Knaup, Petra
2014-01-01
Integration and analysis of clinical data collected in multiple data sources over a long period of time is a major challenge even when data warehouses and metadata registries are used. Since most metadata registries focus on describing data elements to establish domain consistent data definition and providing item libraries, hierarchical and temporal dependencies cannot be mapped. Therefore we developed and validated a reference data model, based on ISO/IEC 11179, which allows revision and branching control of conceptually similar data elements with heterogeneous definitions and representations.
The Polyakov Loop of Anti-symmetric Representations as a Quantum Impurity Model
Mueck, Wolfgang
2010-01-01
The Polyakov loop of an operator in the anti-symmetric representation in N=4 SYM theory is calculated, to leading order in 1/N and at large 't Hooft coupling, by solving the saddle point equations of the corresponding quantum impurity model. Agreement is found with previous results from the supergravity dual, which is given by a D5-brane embedded in a Schwarzschild-AdS_5 x S^5 background. It is shown that the azimuth angle, at which the dual D5-brane wraps the S^5, is related to the spectral asymmetry angle in the spectral density associated with the Green's function of the impurity fermions.
Determinant representation for a quantum correlation function of the lattice sine-Gordon model
Energy Technology Data Exchange (ETDEWEB)
Essler, Fabian H.L. [Department of Physics, Theoretical Physics, Oxford (United Kingdom); Frahm, Holger [Institut fuer Theoretische Physik, Universitaet Hannover, Hannover (Germany); Its, Alexander R. [Department of Mathematical Sciences, Indiana University-Purdue University at Indianapolis (IUPUI), Indianapolis, IN (United States); Korepin, Vladimir E. [Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY (United States); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto (Japan); St. Petersburg Department of Mathematical Institute of Academy of Sciences of Russia, St. Petersburg (Russian Federation)
1997-01-07
We consider a completely integrable lattice regularization of the sine-Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields. The determinant is then embedded into a system of integrable integro-differential equations. The leading asymptotic behaviour of the correlation function is described in terms of the solution of a Riemann-Hilbert Problem (RHP) related to the system of integro-differential equations. The leading term in the asymptotical decomposition of the solution of the RHP is obtained. (author)
The representation of boundary currents in a finite element shallow water model
Düben, Peter D
2015-01-01
We evaluate the influence of local resolution, eddy viscosity, coastline structure, and boundary conditions on the numerical representation of boundary currents in a finite element shallow-water model. The use of finite element discretization methods offers a higher flexibility compared to finite difference and finite volume methods, that are mainly used in previous publications. This is true for the geometry of the coast lines and for the realization of boundary conditions. For our investigations we simulate steady separation of western boundary currents from idealized and realistic coast lines. The use of grid refinement allows a detailed investigation of boundary separation at reasonable numerical cost.
The Coulomb gas representation of critical RSOS models on the sphere and the torus
Energy Technology Data Exchange (ETDEWEB)
Foda, O. (Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica); Nienhuis, B. (Rijksuniversiteit Leiden (Netherlands). Inst. Lorentz voor Theoretische Natuurkunde)
1989-10-02
We derive the Coulomb gas formulation of the c<1 discrete unitary series, on the sphere and the torus, starting from the corresponding regime-III RSOS models on a square lattice with appropriate topology. We clarify the origin of the background charge, the screening charges, and the choice of operator representations in a correlation function. In the scaling limit, we obtain a bosonic action coupled to the background curvature in addition to topological terms that vanish on the Riemann sphere. Its Virasoro algebra has the central charge expected on the basis of comparing conformal dimensions. As an application, we derive general expressions for the correlation functions on the torus. (orig.).
A Semiotic Model of Destination Representations Applied to Cultural and Heritage Tourism Marketing
DEFF Research Database (Denmark)
Pennington, Jody; Thomsen, Robert Chr.
2010-01-01
; and potential tourists’ comprehension of the sign as interpretants. Three formal analyses of selected photographs used by convention and visitor bureaus (VISIT FLORIDA, Destination Halifax and VisitDenmark) illustrate how the sign-object relationship is always characterized by a combination of iconic, indexical......, and symbolic qualities, each of which destination marketers should consider in choosing representations because of the influence those qualities exert on reception. It is argued that the semiotic model can help marketers make informed decisions about the relevance and probable impact of the iconicity...
Synthetic–schematic representation of the model of clinical diagnostic-therapeutic method
Directory of Open Access Journals (Sweden)
Luis Alberto Corona Martínez
2007-04-01
Full Text Available The use of a systemic approach in the theoretical analysis of the clinical method has allowed the elaboration of an schematic and synthetic representation of the new model of clinical diagnostic- therapeutic method developed from the conception of the medical assistance as a taking decisions process. The identification of the main components of the clinical method system, as well as of the interrelations established among these, facilitate the understanding of the medical attention process, and also allows the establishment of some of the regularities whose knowledge by the student is of great importance for the learning and application of the method by our Medicine students.
a Conceptual Model for the Representation of Landforms Using Ontology Design Patterns
Guilbert, Eric; Moulin, Bernard; Cortés Murcia, Andrés
2016-06-01
A landform is an area of a terrain with its own recognisable shape. Its definition is often qualitative and inherently vague. Hence landforms are difficult to formalise in view of their extraction from a DTM. This paper presents a two-level framework for the representation of landforms. The objective is to provide a structure where landforms can be conceptually designed according to a common model which can be implemented. It follows the principle that landforms are not defined by geometrical characteristics but by salient features perceived by people. Hence, these salient features define a skeleton around which the landform is built. The first level of our model defines general concepts forming a landform prototype while the second level provides a model for the translation of these concepts and landform extraction on a DTM. The model is still under construction and preliminary results together with current developments are also presented.
Spin Coherent State Representation of the Crow-Kimura and Eigen Models of Quasispecies Theory
Ancliff, Mark; Park, Jeong-Man
2011-05-01
We present a spin coherent state representation of the Crow-Kimura and Eigen models of biological evolution. We deal with quasispecies models where the fitness is a function of Hamming distances from one or more reference sequences. In the limit of large sequence length N, we find exact expressions for the mean fitness and magnetization of the asymptotic quasispecies distribution in symmetric fitness landscapes. The results are obtained by constructing a path integral for the propagator on the coset SU(2)/ U(1) and taking the classical limit. The classical limit gives a Hamiltonian function on a circle for one reference sequence, and on the product of 2 m -1 circles for m reference sequences. We apply our representation to study the Schuster-Swetina phenomena, where a wide lower peak is selected over a narrow higher peak. The quadratic landscape with two reference sequences is also analyzed specifically and we present the phase diagram on the mutation-fitness parameter phase space. Furthermore, we use our method to investigate more biologically relevant system, a model of escape from adaptive conflict through gene duplication, and find three different phases for the asymptotic population distribution.
Structure-reactivity modeling using mixture-based representation of chemical reactions
Polishchuk, Pavel; Madzhidov, Timur; Gimadiev, Timur; Bodrov, Andrey; Nugmanov, Ramil; Varnek, Alexandre
2017-07-01
We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.
Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie
2016-04-01
The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate
Le Lay, M.; Saulnier, G.-M.; Galle, S.; Seguis, L.; Métadier, M.; Peugeot, Ch.
2008-12-01
SummaryDuring the AMMA (African Monsoon Multidisciplinary Analysis) program, intensive field experiments were conducted on the Donga catchment (586 km 2), which is part of the Ouémé surveyed hydrological watershed (14,400 km 2). Based on these studies, a number of general hydrological assumptions were derived to explain the hydrological functioning of catchments located in the Sudanian hydrological area of West Africa. To take advantage of this field-acquired knowledge in the study of the impacts of climate and anthropogenic changes in these catchments, a model (TOPAMMA) was derived based on these hydrological assumptions. Subsurface lateral fluxes were described in the model using the TOPMODEL framework. The recharge of the deep water table was also modelled, taking into account its disconnection from the river network. Simple geomorphologic approaches were used to estimate the time-transfer of both surface and subsurface water fluxes. Finally, to be consistent with the available meteorological data, a simple parameterization of evapotranspiration was added to the model. This paper details this modelisation as well as its corroboration on the Donga catchment. The data collected over the catchment during the 2002-2004 periods was therefore used at different scales, within either a quantitative or qualitative perspective. The results show that the model representation of the water cycle is quite realistic, which allows the AMMA community to have a useful tool available for water balance studies on the Sudanian region. However, further field investigations are necessary to confirm main model assumptions. Finally, the process representation in the model is now improved, especially with regard to the description of spatial land-surface heterogeneities and surface-atmosphere interactions.
Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models
Energy Technology Data Exchange (ETDEWEB)
Walko, Robert [Univ. of Miami, Coral Gables, FL (United States)
2016-11-07
The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of the atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.
Hongyang, Yu; Zhengang, Lu; Xi, Yang
2017-05-01
Modular Multilevel Converter is more and more widely used in high voltage DC transmission system and high power motor drive system. It is a major topological structure for high power AC-DC converter. Due to the large module number, the complex control algorithm, and the high power user’s back ground, the MMC model used for simulation should be as accurate as possible to simulate the details of how MMC works for the dynamic testing of the MMC controller. But so far, there is no sample simulation MMC model which can simulate the switching dynamic process. In this paper, one curve embedded full-bridge MMC modeling method with detailed representation of IGBT characteristics is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the simulation comparison test under Matlab/Simulink, the proposed method is proved to be correct.
Hutsalyuk, A.; Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.
2017-01-01
We study integrable models with gl(2|1) symmetry and solvable by nested algebraic Bethe ansatz. We obtain a determinant representation for scalar products of Bethe vectors, when the Bethe parameters obey some relations weaker than the Bethe equations. This representation allows us to find the norms of on-shell Bethe vectors and obtain determinant formulas for form factors of the diagonal entries of the monodromy matrix. Dedicated to the memory of Petr Petrovich Kulish.
Hutsalyuk, A; Pakuliak, S Z; Ragoucy, E; Slavnov, N A
2016-01-01
We study integrable models with $\\mathfrak{gl}(2|1)$ symmetry and solvable by nested algebraic Bethe ansatz. We obtain a determinant representation for scalar products of Bethe vectors, when the Bethe parameters obey some relations weaker than the Bethe equations. This representation allows us to find the norms of on-shell Bethe vectors and obtain determinant formulas for form factors of the diagonal entries of the monodromy matrix.
Christensen, H. M.; Moroz, I.; Palmer, T.
2015-12-01
It is now acknowledged that representing model uncertainty in atmospheric simulators is essential for the production of reliable probabilistic ensemble forecasts, and a number of different techniques have been proposed for this purpose. Stochastic convection parameterization schemes use random numbers to represent the difference between a deterministic parameterization scheme and the true atmosphere, accounting for the unresolved sub grid-scale variability associated with convective clouds. An alternative approach varies the values of poorly constrained physical parameters in the model to represent the uncertainty in these parameters. This study presents new perturbed parameter schemes for use in the European Centre for Medium Range Weather Forecasts (ECMWF) convection scheme. Two types of scheme are developed and implemented. Both schemes represent the joint uncertainty in four of the parameters in the convection parametrisation scheme, which was estimated using the Ensemble Prediction and Parameter Estimation System (EPPES). The first scheme developed is a fixed perturbed parameter scheme, where the values of uncertain parameters are changed between ensemble members, but held constant over the duration of the forecast. The second is a stochastically varying perturbed parameter scheme. The performance of these schemes was compared to the ECMWF operational stochastic scheme, Stochastically Perturbed Parametrisation Tendencies (SPPT), and to a model which does not represent uncertainty in convection. The skill of probabilistic forecasts made using the different models was evaluated. While the perturbed parameter schemes improve on the stochastic parametrisation in some regards, the SPPT scheme outperforms the perturbed parameter approaches when considering forecast variables that are particularly sensitive to convection. Overall, SPPT schemes are the most skilful representations of model uncertainty due to convection parametrisation. Reference: H. M. Christensen, I
Sanzana, Pedro; Gironas, Jorge; Braud, Isabelle; Branger, Flora; Rodriguez, Fabrice; Vargas, Ximena; Hitschfeld, Nancy; Francisco Munoz, Jose
2016-04-01
In addition to land use changes, the process of urbanization can modify the direction of the surface and sub-surface flows, generating complex environments and increasing the types of connectivity between pervious and impervious areas. Thus, hydrological pathways in urban and periurban areas are significantly affected by artificial elements like channels, pipes, streets and other elements of storm water systems. This work presents Geo-PUMMA, a new GIS toolbox to generate vectorial meshes for distributed hydrological modeling and extract the drainage network in urban and periurban terrain. Geo-PUMMA gathers spatial information maps (e.g. cadastral, soil types, geology and digital elevation models) to produce Hydrological Response Units (HRU) and Urban Hydrological Elements (UHE). Geo-PUMMA includes tools to improve the initial mesh derived from GIS layers intersection in order to respect geometrical constraints, which ensures numerical stability while preserving the shape of the initial HRUs and minimizing the small elements to lower computing times. The geometrical constraints taken into account include: elements convexity, limitation of the number of sliver elements (e.g. roads) and of very small or very large elements. This toolbox allows the representation of basins at small scales (0.1-10km2), as it takes into account the hydrological connectivity of the main elements explicitly, and improves the representation of water pathways compared with classical raster approaches. Geo-PUMMA also allows the extraction of basin morphologic properties such as the width function, the area function and the imperviousness function. We applied this new toolbox to two periurban catchments: the Mercier catchment located near Lyon, France, and the Estero El Guindo catchment located in the Andean piedmont in the Maipo River, Chile. We use the capability of Geo-PUMMA to generate three different meshes. The first one is the initial mesh derived from the direct intersection of GIS
Karvounis, E C; Exarchos, T P; Fotiou, E; Sakellarios, A I; Iliopoulou, D; Koutsouris, D; Fotiadis, D I
2013-01-01
With an ever increasing number of biological models available on the internet, a standardized modelling framework is required to allow information to be accessed and visualized. In this paper we propose a novel Extensible Markup Language (XML) based format called ART-ML that aims at supporting the interoperability and the reuse of models of geometry, blood flow, plaque progression and stent modelling, exported by any cardiovascular disease modelling software. ART-ML has been developed and tested using ARTool. ARTool is a platform for the automatic processing of various image modalities of coronary and carotid arteries. The images and their content are fused to develop morphological models of the arteries in 3D representations. All the above described procedures integrate disparate data formats, protocols and tools. ART-ML proposes a representation way, expanding ARTool, for interpretability of the individual resources, creating a standard unified model for the description of data and, consequently, a format for their exchange and representation that is machine independent. More specifically, ARTool platform incorporates efficient algorithms which are able to perform blood flow simulations and atherosclerotic plaque evolution modelling. Integration of data layers between different modules within ARTool are based upon the interchange of information included in the ART-ML model repository. ART-ML provides a markup representation that enables the representation and management of embedded models within the cardiovascular disease modelling platform, the storage and interchange of well-defined information. The corresponding ART-ML model incorporates all relevant information regarding geometry, blood flow, plaque progression and stent modelling procedures. All created models are stored in a model repository database which is accessible to the research community using efficient web interfaces, enabling the interoperability of any cardiovascular disease modelling software
DEFF Research Database (Denmark)
Knudsen, Hans
1995-01-01
in the stator. A consistent method is developed to determine model parameters from standard machine data. A phasor model of the line commutated converter is presented. The converter model includes not only the fundamental frequency, but also any chosen number of harmonics without a representation of the single...
Experience-driven formation of parts-based representations in a model of layered visual memory
Directory of Open Access Journals (Sweden)
Jenia Jitsev
2009-09-01
Full Text Available Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.
Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto
2015-04-01
The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits
Kantzas, E. P.; Quegan, S.; Lomas, M.
2015-03-01
Fire provides an impulsive and stochastic pathway for carbon from the terrestrial biosphere to enter the atmosphere. Despite fire emissions being of similar magnitude to Net Ecosystem Exchange in many biomes, even the most complex Dynamic Vegetation Models (DVMs) embedded in General Circulation Models contain poor representations of fire behaviour and dynamics such as propagation and distribution of fire sizes. A model-independent methodology is developed which addresses this issue. Its focus is on the Arctic where fire is linked to permafrost dynamics and on occasion can release great amounts of carbon from carbon-rich organic soils. Connected Component Labeling is used to identify individual fire events across Canada and Russia from daily, low-resolution burned area satellite products, and the results are validated against historical data. This allows the creation of a fire database holding information on area burned and temporal evolution of fires in space and time. A method of assimilating the statistical distribution of fire area into a DVM whilst maintaining its Fire Return Interval is then described. The algorithm imposes a regional scale spatially dependent fire regime on a sub-scale spatially independent model (point model); the fire regime is described by large scale statistical distributions of fire intensity and spatial extent, and the temporal dynamics (fire return intervals) are determined locally. This permits DVMs to estimate many aspects of post-fire dynamics that cannot occur under their current representations of fire, as is illustrated by considering the evolution of land cover, biomass and Net Ecosystem Exchange after a fire.
Directory of Open Access Journals (Sweden)
E. P. Kantzas
2015-03-01
Full Text Available Fire provides an impulsive and stochastic pathway for carbon from the terrestrial biosphere to enter the atmosphere. Despite fire emissions being of similar magnitude to Net Ecosystem Exchange in many biomes, even the most complex Dynamic Vegetation Models (DVMs embedded in General Circulation Models contain poor representations of fire behaviour and dynamics such as propagation and distribution of fire sizes. A model-independent methodology is developed which addresses this issue. Its focus is on the Arctic where fire is linked to permafrost dynamics and on occasion can release great amounts of carbon from carbon-rich organic soils. Connected Component Labeling is used to identify individual fire events across Canada and Russia from daily, low-resolution burned area satellite products, and the results are validated against historical data. This allows the creation of a fire database holding information on area burned and temporal evolution of fires in space and time. A method of assimilating the statistical distribution of fire area into a DVM whilst maintaining its Fire Return Interval is then described. The algorithm imposes a regional scale spatially dependent fire regime on a sub-scale spatially independent model (point model; the fire regime is described by large scale statistical distributions of fire intensity and spatial extent, and the temporal dynamics (fire return intervals are determined locally. This permits DVMs to estimate many aspects of post-fire dynamics that cannot occur under their current representations of fire, as is illustrated by considering the evolution of land cover, biomass and Net Ecosystem Exchange after a fire.
Musselman, K. N.; Pomeroy, J. W.; Essery, R.; Leroux, N.
2013-12-01
Despite advances in alpine snow modelling there remain two fundamental areas of divergent scientific thought in estimating alpine snow mass balances: i) blowing snow sublimation losses, and ii) wind flow representation. Sublimation calculations have poorly understood humidity feedbacks that vary considerably and mathematical representations of alpine windflow vary in complexity - these differences introduce uncertainty. To better estimate and restrain this uncertainty, a variety of physically based, spatially distributed snowmelt models that consider the physics of wind redistribution and sublimation of blowing snow were evaluated for their ability to simulate seasonal snow distribution and melt patterns in a windy alpine environment in the Canadian Rockies. The primary difference in the snow models was their calculation of blowing snow sublimation losses which ranged from large to small estimates. To examine the uncertainty introduced by windflow calculations on the snow model simulations, each model was forced with output from windflow models of varying computational complexity and physical realism from a terrain-based empirical interpolation of station observations to a simple turbulence model to a computational fluid dynamics model that solves for the Navier-Stokes equations. The high-resolution snow simulations were run over a 1 km2 spatial extent centred on a ridgetop meteorological station within the Marmot Creek Research basin, Alberta, Canada. The three windflow simulations all produced reasonable results compared to wind speeds measured on two opposing slopes (bias better than ×0.3 m s-1; RMSE errors were greatest when forced with output from the empirical wind model and smallest using output from either of the two turbulence models. Simulations with higher blowing snow sublimation rates tended to better match measured SWE at multiple scales, confirming that alpine blowing snow sublimation is an important component of the snow mass balance in this region
An analysis of the educational value of low-fidelity anatomy models as external representations.
Chan, Lap Ki; Cheng, Maurice M W
2011-01-01
Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the literature on cognition, learning, and external representations. A literature search on these physical models in three popular anatomy journals published over a 10-year period from 2001 to 2010 found that all of them have low fidelity: they oftentimes do not closely resemble the regions of the human body they are representing. They include only a small number of the structures that exist in these regions of the human body and do not accurately represent the shape and surface details of these structures. However, these models strongly correspond to the human body in the spatial relationship of the represented structures, which is crucial to achieving their educational purpose of teaching three-dimensional comprehension and anatomical reasoning. The educational value of these models includes acting as memory aids, reducing cognitive overload, facilitating problem solving, and arousing students' enthusiasm and participation. Because these models often lack a close resemblance to the human body, their use in anatomy teaching should always be accompanied by adequate explanations to the students to establish the correspondence between the models and the parts of the human body they are representing. Copyright © 2011 American Association of Anatomists.
A self-organizing model of the visual development of hand-centred representations.
Galeazzi, Juan M; Mender, Bedeho M W; Paredes, Mariana; Tromans, James M; Evans, Benjamin D; Minini, Loredana; Stringer, Simon M
2013-01-01
We show how hand-centred visual representations could develop in the primate posterior parietal and premotor cortices during visually guided learning in a self-organizing neural network model. The model incorporates trace learning in the feed-forward synaptic connections between successive neuronal layers. Trace learning encourages neurons to learn to respond to input images that tend to occur close together in time. We assume that sequences of eye movements are performed around individual scenes containing a fixed hand-object configuration. Trace learning will then encourage individual cells to learn to respond to particular hand-object configurations across different retinal locations. The plausibility of this hypothesis is demonstrated in computer simulations.
A self-organizing model of the visual development of hand-centred representations.
Directory of Open Access Journals (Sweden)
Juan M Galeazzi
Full Text Available We show how hand-centred visual representations could develop in the primate posterior parietal and premotor cortices during visually guided learning in a self-organizing neural network model. The model incorporates trace learning in the feed-forward synaptic connections between successive neuronal layers. Trace learning encourages neurons to learn to respond to input images that tend to occur close together in time. We assume that sequences of eye movements are performed around individual scenes containing a fixed hand-object configuration. Trace learning will then encourage individual cells to learn to respond to particular hand-object configurations across different retinal locations. The plausibility of this hypothesis is demonstrated in computer simulations.
Power transformer fault diagnosis model based on rough set theory with fuzzy representation
Institute of Scientific and Technical Information of China (English)
Li Minghua; Dong Ming; Yan Zhang
2007-01-01
Objective Due to the incompleteness and complexity of fault diagnosis for power transformers, a comprehensive rough-fuzzy scheme for solving fault diagnosis problems is presented. Fuzzy set theory is used both for representation of incipient faults' indications and producing a fuzzy granulation of the feature space. Rough set theory is used to obtain dependency rules that model indicative regions in the granulated feature space. The fuzzy membership functions corresponding to the indicative regions, modelled by rules, are stored as cases. Results Diagnostic conclusions are made using a similarity measure based on these membership functions. Each case involves only a reduced number of relevant features making this scheme suitable for fault diagnosis. Conclusion Superiority of this method in terms of classification accuracy and case generation is demonstrated.
Crossover and thermodynamic representation in the extended η model for fractal growth
Nagatani, Takashi; Stanley, H. Eugene
1990-10-01
The η model for the dielectric breakdown is extended to the case where double power laws apply. It is shown that a crossover phenomenon between the diffusion-limited aggregation (DLA) fractal and the η fractal occurs in the extended η model. Through the use of the dimensional analysis, a dimensionless parameter is found to govern the crossover. It is shown that when η1 the inverse crossover from the η fractal to the DLA fractal appears. It is also shown that the crossover radius is controlled by changing the applied field. The global flow diagram in the two-parameter space is obtained by using a two-parameter position-space renormalization-group approach. The crossover exponent and the crossover radius are calculated. The crossover phenomenon is described in terms of a thermodynamic representation of the two-phase equilibrium.
Hierarchy of correlations for the Ising model in the Majorana representation
Gómez-León, Álvaro
2017-08-01
We study the quantum Ising model in D dimensions with the equation-of-motion technique and the Majorana representation for spins. The decoupling scheme used for the Green's functions is based on the hierarchy of correlations in position space. To lowest order, this method reproduces the well-known mean field phase diagram and critical exponents. When correlations between spins are included, we show how the appearance of thermal fluctuations and magnons strongly affects the physical properties. In one dimension and for B =0 we demonstrate that, to first order in correlations, thermal fluctuations completely destroy the ordered phase. For nonvanishing transverse field we show that the model exhibits different behavior than its classical counterpart, especially near the quantum critical point. We discuss the connection with the Dyson's equation formalism and the explicit form of the self-energies.
Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis
Zhong, Ming
In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with
Spectrum recovery method based on sparse representation for segmented multi-Gaussian model
Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan
2016-09-01
Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.
On process model representation and AlF{sub 3} dynamics of aluminium electrolysis cells
Energy Technology Data Exchange (ETDEWEB)
Drengstig, Tormod
1997-12-31
This thesis develops a formal graphical based process representation scheme for modelling complex, non-standard unit processes. The scheme is based on topological and phenomenological decompositions. The topological decomposition is the modularization of processes into modules representing volumes and boundaries, whereas the phenomenological decomposition focuses on physical phenomena and characteristics inside these topological modules. This defines legal and illegal connections between components at all levels and facilitates a full implementation of the methodology into a computer aided modelling tool that can interpret graphical symbols and guide modelers towards a consistent mathematical model of the process. The thesis also presents new results on the excess AlF{sub 3} and bath temperature dynamics of an aluminium electrolysis cell. A dynamic model of such a cell is developed and validated against known behaviour and real process data. There are dynamics that the model does not capture and this is further discussed. It is hypothesized that long-term prediction of bath temperature and excess AlF{sub 3} is impossible with a current efficiency model considering only bath composition and temperature. A control strategy for excess AlF{sub 3} and bath temperature is proposed based on an almost constant AlF{sub 3} input close to average consumption and energy manipulations to compensate for the disturbances. 96 refs., 135 figs., 22 tabs.
Li, Ming; Wang, Q. J.; Bennett, James C.; Robertson, David E.
2016-09-01
This study develops a new error modelling method for ensemble short-term and real-time streamflow forecasting, called error reduction and representation in stages (ERRIS). The novelty of ERRIS is that it does not rely on a single complex error model but runs a sequence of simple error models through four stages. At each stage, an error model attempts to incrementally improve over the previous stage. Stage 1 establishes parameters of a hydrological model and parameters of a transformation function for data normalization, Stage 2 applies a bias correction, Stage 3 applies autoregressive (AR) updating, and Stage 4 applies a Gaussian mixture distribution to represent model residuals. In a case study, we apply ERRIS for one-step-ahead forecasting at a range of catchments. The forecasts at the end of Stage 4 are shown to be much more accurate than at Stage 1 and to be highly reliable in representing forecast uncertainty. Specifically, the forecasts become more accurate by applying the AR updating at Stage 3, and more reliable in uncertainty spread by using a mixture of two Gaussian distributions to represent the residuals at Stage 4. ERRIS can be applied to any existing calibrated hydrological models, including those calibrated to deterministic (e.g. least-squares) objectives.
A two-level generative model for cloth representation and shape from shading.
Han, Feng; Zhu, Song-Chun
2007-07-01
In this paper, we present a two-level generative model for representing the images and surface depth maps of drapery and clothes. The upper level consists of a number of folds which will generate the high contrast (ridge) areas with a dictionary of shading primitives (for 2D images) and fold primitives (for 3D depth maps). These primitives are represented in parametric forms and are learned in a supervised learning phase using 3D surfaces of clothes acquired through photometric stereo. The lower level consists of the remaining flat areas which fill between the folds with a smoothness prior (Markov random field). We show that the classical ill-posed problem-shape from shading (SFS) can be much improved by this two-level model for its reduced dimensionality and incorporation of middle-level visual knowledge, i.e., the dictionary of primitives. Given an input image, we first infer the folds and compute a sketch graph using a sketch pursuit algorithm as in the primal sketch [10], [11]. The 3D folds are estimated by parameter fitting using the fold dictionary and they form the "skeleton" of the drapery/cloth surfaces. Then, the lower level is computed by conventional SFS method using the fold areas as boundary conditions. The two levels interact at the final stage by optimizing a joint Bayesian posterior probability on the depth map. We show a number of experiments which demonstrate more robust results in comparison with state-of-the-art work. In a broader scope, our representation can be viewed as a two-level inhomogeneous MRF model which is applicable to general shape-from-X problems. Our study is an attempt to revisit Marr's idea [23] of computing the 2(1/2)D sketch from primal sketch. In a companion paper [2], we study shape from stereo based on a similar two-level generative sketch representation.
Prospects for improving the representation of coastal and shelf seas in global ocean models
Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard
2017-02-01
Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape.We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1/12°, and still reasonably well resolved at 1/4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1/12° global model resolves the first baroclinic Rossby radius for only ˜ 8 % of regions state of the art.We quantify the benefit of improved resolution and process representation using 1/12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ɛ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones.To explore the balance between the size of a globally
Dickenson, Joshua A; Sansalone, John J
2009-11-01
Modeling the separation of dilute particulate matter (PM) has been a topic of interest since the introduction of unit operations for clarification of rainfall-runoff. One consistent yet controversial issue is the representation of PM and PM separation mechanisms for treatment. While Newton's Law and surface overflow rate were utilized, many historical models represented PM as a lumped gravimetric index largely out of economy and lack of particle analysis methods. As a result such models did not provide information about particle fate in or through a unit operation. In this study, PM discrete phase modeling (DPM) and computational fluid dynamics (CFD) are applied to model PM fate as a function of particle size and flow rate in two common types of hydrodynamic separator (HS) units. The study examines the discretization requirements (as a discretization number, DN) and errors for particle size distributions (PSDs) that range from the common heterodisperse to a monodisperse PSD. PSDs are categorized based on granulometric indices. Results focus on ensuring modeling accuracy while examining the role of size dispersivity and overall PM fineness on DN requirements. The fate of common heterodisperse PSDs is accurately predicted for a DN of 16, whereas a single particle size index, commonly the d(50m), is limited to monodisperse PSDs in order to achieve similar accuracy.
Fatichi, Simone; Manzoni, Stefano; Or, Dani; Paschalis, Athanasios
2016-04-01
The potential of a given ecosystem to store and release carbon is inherently linked to soil biogeochemical processes. These processes are deeply connected to the water, energy, and vegetation dynamics above and belowground. Recently, it has been advocated that a mechanistic representation of soil biogeochemistry require: (i) partitioning of soil organic carbon (SOC) pools according to their functional role; (ii) an explicit representation of microbial dynamics; (iii) coupling of carbon and nutrient cycles. While some of these components have been introduced in specialized models, they have been rarely implemented in terrestrial biosphere models and tested in real cases. In this study, we combine a new soil biogeochemistry model with an existing model of land-surface hydrology and vegetation dynamics (T&C). Specifically the soil biogeochemistry component explicitly separates different litter pools and distinguishes SOC in particulate, dissolved and mineral associated fractions. Extracellular enzymes and microbial pools are explicitly represented differentiating the functional roles of bacteria, saprotrophic and mycorrhizal fungi. Microbial activity depends on temperature, soil moisture and litter or SOC stoichiometry. The activity of macrofauna is also modeled. Nutrient dynamics include the cycles of nitrogen, phosphorous and potassium. The model accounts for feedbacks between nutrient limitations and plant growth as well as for plant stoichiometric flexibility. In turn, litter input is a function of the simulated vegetation dynamics. Root exudation and export to mycorrhiza are computed based on a nutrient uptake cost function. The combined model is tested to reproduce respiration dynamics and nitrogen cycle in few sites where data were available to test plausibility of results across a range of different metrics. For instance in a Swiss grassland ecosystem, fine root, bacteria, fungal and macrofaunal respiration account for 40%, 23%, 33% and 4% of total belowground
Microstructure representation of snow in coupled snowpack and microwave emission models
Sandells, Melody; Essery, Richard; Rutter, Nick; Wake, Leanne; Leppänen, Leena; Lemmetyinen, Juha
2017-01-01
will be achieved primarily through improvements in the snowpack microstructure representation, followed by improvements in the emission models. Other snowpack parameterisations in the snowpack model, mainly densification, led to a mean brightness temperature difference of 11 K at 36.5 GHz H-pol and 18 K at V-pol when the Jules Investigation Model ensemble was applied to the MOSES microstructure and empirical MEMLS emission model for the 2011-2012 season. The impact of snowpack parameterisation increases as the microwave scattering increases. Consistency between snowpack microstructure and microwave emission models, and the choice of snowpack densification algorithms should be considered in the design of snow mass retrieval systems and microwave data assimilation systems.
SETOR: hardware-lighted three-dimensional solid model representations of macromolecules.
Evans, S V
1993-06-01
SETOR is designed to exploit the hardware lighting capabilities of the IRIS-4D series graphics workstations to render high-quality raster images of macromolecules that can undergo rotation and translation interactively. SETOR can render standard all-atom and backbone models of proteins or nucleic acids, but focuses on displaying protein molecules by highlighting elements of secondary structure. The program has a very friendly user interface that minimizes the number of input files by allowing the user to interactively edit parameters, such as colors, lighting coefficients, and descriptions of secondary structure via mouse activated dialogue boxes. The choice of polymer chain representation can be varied from standard vector models and van der Waal models, to a B-spline fit of polymer backbones that yields a smooth ribbon that approximates the polymer chain, to strict Cardinal splines that interpolate the smoothest curve possible that will precisely follow the polymer chain. The program provides a photograph mode, save/restore facilities, and efficient generation of symmetry-related molecules and packing diagrams. Additionally, SETOR is designed to accept commands and model coordinates from the standard input stream, and to control standard output. Ancillary programs provide a method to interactively edit hardcopy plots of all vector and many solid models generated by SETOR, and to produce standard HPGL or PostScript files. Examples of figures rendered by SETOR of a number of macromolecules of various classes are presented.
Accurate representation of organized convection in CFSv2 via a stochastic lattice model
Goswami, B. B.; Khouider, B.; Krishna, R. P. M. M.; Mukhopadhyay, P.; Majda, A.
2016-12-01
General circulation models (GCM) show limitations of various sorts in their representation of synoptic and intra-seasonal variability associated with tropical convective systems apart from the success of superparameterization and cloud system permitting global models. This systematic deficiency is believed to be due to the inadequate treatment of organized convection by the underlying cumulus parameterizations, which have the quasi-equilibrium assumption as a common denominator. By its nature, this assumption neglects the continuous interactions across scales between convection and the large scale dynamics. By design, the stochastic multicloud model (SMCM) mimics the interactions between the three cloud types, congestus, deep, and stratiform, that are observed to play a central role across multiple scales in the dynamics and physical structure of tropical convective systems. It is based on a stochastic lattice model, overlaid over each GCM grid box, where an order parameter taking the values 0,1,2,3 at each lattice site according to whether the site is clear sky or occupied by a congestus, deep, or stratiform cloud, respectively. As such the SMCM mimics the unresolved variability due to cumulus convection and the interactions across multiple scales of organized convective systems, following the philosophy of superparameterization. Here, we discuss the implementation of the SMCM in NCEP Climate Forecast System model (CFS), version-2, through the use of a simple parametrization of adiabatic heating and moisture sink due to cumulus clouds based on their observed vertical profiles (a.k.a Q1 and Q2). Much like the success of superparameterization but without the burden of high computational cost, a 20 year run showed tremendous improvements in the ability of the CFS-SMCM model to represent synoptic and intraseasonal variability associated with organized convection as well as a few minor improvements in the simulated climatology when compared to the control CFSv2 model
A Better Representation of European Croplands into a Global Biosphere Model
Gervois, S.; de Noblet, N.; Viovy, N.; Ciais, P.; Brisson, N.; Seguin, B.
2002-12-01
Croplands cover a quarter of Europe's surface (about an hundred million hectares), their impact on carbon and water fluxes must therefore be estimated. Global biosphere models such as ORCHIDEE (http://www.ipsl.jussieu.fr/~ssipsl/) were conceived to simulate natural ecosystems only, so croplands are often described as grasslands. Not only cropland productivity depends on climate and soil conditions but also on irrigations, fertilisers impact, date of sowing... In addition crop species are usually selected genetically to shorten and accelerate their growth. Agronomic models such as STICS (Brisson et al. 1998) give a more realistic picture of croplands as they are especially designed to account for this human forcing. On the other hand they can be used at the local scale only. First we evaluate the ability of the two models to reproduce the seasonal behaviour the leaf area index (LAI), the aerial biomass, and the exchanges of water vapour and CO2 with the atmosphere. For that we compare the model outputs with measurements performed at five sites that are representative of most common European crops (wheat, corn, soybean). As expected the agronomic STICS better behaves than the generic model ORCHIDEE in representing the seasonal cycle of the above variables. In order to get a realistic representation of croplands areas at the regional scale, we decided to couple ORCHIDEE with STICS. First we present the main steps of the coupling procedure. The principle consists in forcing ORCHIDEE with five more realistic outputs of STICS: LAI, date of harvest, nitrogen stress, root profile, and vegetation height. On the other hand, ORCHIDEE computes its own carbon and water balance. The allocation scheme was also modified in ORCHIDEE in order to conserve the coherence between LAI and leaf biomass, and we added a harvest module into ORCHIDEE. The coupled model was validated against carbon and water fluxes observed respectively at two fields (wheat and corn) in the US. We also
Directory of Open Access Journals (Sweden)
Su Yang
Full Text Available Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1 Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2 The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3 The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.
Representation as the representation of experience
Ankersmit, FR
This essay deals, mainly, with the notion of representation. Representation is associated with texts and, as such, is contrasted to the true singular statement. It is argued that the relationship between the text and what the text represents can never be modeled on the relationship between the true
Ghimire, B.; Riley, W. J.; Koven, C.
2013-12-01
Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.
Energy Technology Data Exchange (ETDEWEB)
Niyogi, Devdutta S. [Purdue
2013-06-07
The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.
One of Us: Multilevel Models Examining the Impact of Descriptive Representation on Civic Engagement
Norris, Pippa; Krook, Mona Lena
2009-01-01
This paper examines the impact of descriptive representation in comparative perspective. The goals are to establish (1) whether descriptive representation mobilizes attitudinal and behavioral indicators of civic engagement; (2) whether the strength of any such relationship differs for women and young people; and (3) whether this relationship is evident cross-nationally. The first section provides an overview of existing research on descriptive representation and the civic engagement of women ...
A state space representation of VAR models with sparse learning for dynamic gene networks.
Kojima, Kaname; Yamaguchi, Rui; Imoto, Seiya; Yamauchi, Mai; Nagasaki, Masao; Yoshida, Ryo; Shimamura, Teppei; Ueno, Kazuko; Higuchi, Tomoyuki; Gotoh, Noriko; Miyano, Satoru
2010-01-01
We propose a state space representation of vector autoregressive model and its sparse learning based on L1 regularization to achieve efficient estimation of dynamic gene networks based on time course microarray data. The proposed method can overcome drawbacks of the vector autoregressive model and state space model; the assumption of equal time interval and lack of separation ability of observation and systems noises in the former method and the assumption of modularity of network structure in the latter method. However, in a simple implementation the proposed model requires the calculation of large inverse matrices in a large number of times during parameter estimation process based on EM algorithm. This limits the applicability of the proposed method to a relatively small gene set. We thus introduce a new calculation technique for EM algorithm that does not require the calculation of inverse matrices. The proposed method is applied to time course microarray data of lung cells treated by stimulating EGF receptors and dosing an anticancer drug, Gefitinib. By comparing the estimated network with the control network estimated using non-treated lung cells, perturbed genes by the anticancer drug could be found, whose up- and down-stream genes in the estimated networks may be related to side effects of the anticancer drug.
Yankovskaya, A.; Cherepanov, D.; Selivanikova, O.
2016-08-01
An extended matrix model of data and knowledge representation on the investigated area, as well as a matrix model of data representation on the territory under investigation, are proposed for the intelligent system of road-climatic zoning of territories (RCZT) - the main information technology of RCZT. A part of the West Siberian region has been selected as the investigated territory. The extended matrix model of knowledge representation is filled out by knowledge engineers with participation of highly qualified experts in the field of RCZT. The matrix model of data representation on the territory under investigation is filled out by persons concerned in RCZT of the motor-roads management system.
Evaluation of the Surface Representation of the Greenland Ice Sheet in a General Circulation Model
Cullather, Richard I.; Nowicki, Sophie M. J.; Zhao, Bin; Suarez, Max J.
2014-01-01
Simulated surface conditions of the Goddard Earth Observing System model, version 5 (GEOS 5) atmospheric general circulation model (AGCM) are examined for the contemporary Greenland Ice Sheet (GrIS). A surface parameterization that explicitly models surface processes including snow compaction, meltwater percolation and refreezing, and surface albedo is found to remedy an erroneous deficit in the annual net surface energy flux and provide an adequate representation of surface mass balance (SMB) in an evaluation using simulations at two spatial resolutions. The simulated 1980-2008 GrIS SMB average is 24.7+/-4.5 cm yr(- 1) water-equivalent (w.e.) at.5 degree model grid spacing, and 18.2+/-3.3 cm yr(- 1) w.e. for 2 degree grid spacing. The spatial variability and seasonal cycle of the simulation compare favorably to recent studies using regional climate models, while results from 2 degree integrations reproduce the primary features of the SMB field. In comparison to historical glaciological observations, the coarser resolution model overestimates accumulation in the southern areas of the GrIS, while the overall SMB is underestimated. These changes relate to the sensitivity of accumulation and melt to the resolution of topography. The GEOS-5 SMB fields contrast with available corresponding atmospheric models simulations from the Coupled Model Intercomparison Project (CMIP5). It is found that only a few of the CMIP5 AGCMs examined provide significant summertime runoff, a dominant feature of the GrIS seasonal cycle. This is a condition that will need to be remedied if potential contributions to future eustatic change from polar ice sheets are to be examined with GCMs.
Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R
2017-06-20
This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.
Representation of Dissolved Organic Carbon in the JULES Dynamic Global Vegetation Model
Nakhavali, Mahdi; Friedlingstein, Pierre; Guenet, Bertrand; Ciais, Philip
2017-04-01
Current global models of the carbon cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, hence not considering lateral transport of carbon from the continent to the oceans. This also means that such models implicitly consider that all the CO2 which is not respired to the atmosphere is stored on land, hence overestimating the land sink of carbon. Moving toward a boundless carbon cycle that is integrating the whole continuum from land to ocean to atmosphere is needed in order to better understand Earth's carbon cycle and to make more reliable projection of its future. Here we present an original representation of Dissolved Organic Carbon (DOC) processes in the Joint UK Land Environment Simulator (JULES). The standard version of JULES represent energy, water and carbon cycles and exchanges with the atmosphere, but only account for water run-off, not including export of carbon from terrestrial ecosystems to the aquatic environments. The aim of the project is to include in JULES a representation of DOC production in terrestrial soils, due to incomplete decomposition of organic matter, its decomposition to the atmosphere, and its export to the river network by leaching. In new developed version of JULES (JULES-DOCM), DOC pools, based on their decomposition rate, are classified into labile and recalcitrant within 3 meters of soil. Based on turnover rate, DOC coming from plant material pools and microbial biomass is directed to labile pool, while DOC from humus is directed to recalcitrant pool. Both of these pools have free (dissolved) and locked (adsorbed) form where just the free pool is subjected to decomposition and leaching. DOC production and decomposition are controlled by rate modifiers (moisture, temperature, vegetation fraction and decomposition rate) at each soil layer. Decomposed DOC is released to the atmosphere following a fixed carbon use efficiency. Leaching accounts for both surface (runoff) and
Palacios-Peña, Laura; Baró, Rocío; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Brunner, Dominik; Jiménez-Guerrero, Pedro
2017-01-01
The effects of atmospheric aerosol particles on the Earth's climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget. The aerosol radiative effects can be divided into direct and semi-direct effects, produced by the aerosol-radiation interactions (ARIs), and indirect effects, produced by aerosol-cloud interactions (ACIs). In this sense the objective of this work is to assess whether the inclusion of aerosol radiative feedbacks in the online coupled WRF-Chem model improves the modelling outputs over the Iberian Peninsula (IP) and surrounding water areas. For this purpose, the methodology is based on the evaluation of modelled aerosol optical properties under different simulation scenarios. The evaluated data come from two WRF-Chem simulations for the IP differing in the inclusion/no-inclusion of ARIs and ACIs (RF/NRF simulations). The case studies cover two episodes with different aerosol types over the IP in 2010, namely a Saharan dust outbreak and a forest fire episode. The evaluation uses observational data from AERONET (Aerosol Robotic Network) stations and MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, including aerosol optical depth (AOD) and Ångström exponent (AE). Experimental data of aerosol vertical distribution from the EARLINET (European Aerosol Research Lidar Network) Granada station are used for checking the models. The results indicate that for the spatial distribution the best-represented variable is AOD and the largest improvements when including the aerosol radiative feedbacks are found for the vertical distribution. In the case of the dust outbreak, a slight improvement (worsening) is produced over the areas with medium (high/low) levels of AOD(-9 % / +12 % of improvement) when including the aerosol radiative feedbacks. For the wildfire episode, improvements of AOD representation (up to 11 %) over areas further away from emission sources are estimated, which
Blind 3D Model Watermarking Based on Multi-Resolution Representation and Fuzzy Logic
Tamane, Sharvari C
2012-01-01
Insertion of a text message, audio data or/and an image into another image or 3D model is called as a watermarking process. Watermarking has variety of applications like: Copyright Protection, Owner Identification, Copy Protection and Data Hiding etc., depending upon the type of watermark insertion algorithm. Watermark remains in the content after applying various attacks without any distortions. The blind watermarking method used in the system is based on a wavelet transform, a fuzzy inference system and a multi-resolution representation (MRR) of the 3d model. The watermark scrambled by Arnold Transform is embedded in the wavelet coefficients at third resolution level of the MRR. Fuzzy logic approach used in the method makes it to approximate the best possible gain with an accurate scaling factor so that the watermark remains invisible. The fuzzy input variables are computed for each wavelet coefficient in the 3D model. The output of the fuzzy system is a single value which is a perceptual value for each cor...
Kristek, Jozef; Moczo, Peter; Chaljub, Emmanuel; Kristekova, Miriam
2017-02-01
The possibility of applying one explicit finite-difference (FD) scheme to all interior grid points (points not lying on a grid border) no matter what their positions are with respect to the material interface is one of the key factors of the computational efficiency of the FD modelling. Smooth or discontinuous heterogeneity of the medium is accounted for only by values of the effective grid moduli and densities. Accuracy of modelling thus very much depends on how these effective grid parameters are evaluated. We present an orthorhombic representation of a heterogeneous medium for the FD modelling. We numerically demonstrate its superior accuracy. Compared to the harmonic-averaging representation the orthorhombic representation is more accurate mainly in the case of strong surface waves that are especially important in local surface sedimentary basins. The orthorhombic representation is applicable to modelling seismic wave propagation and earthquake motion in isotropic models with material interfaces and smooth heterogeneities using velocity-stress, displacement-stress and displacement FD schemes on staggered, partly staggered, Lebedev and collocated grids.
Representations in Dynamical Embodied Agents: Re-Analyzing a Minimally Cognitive Model Agent
Mirolli, Marco
2012-01-01
Understanding the role of "representations" in cognitive science is a fundamental problem facing the emerging framework of embodied, situated, dynamical cognition. To make progress, I follow the approach proposed by an influential representational skeptic, Randall Beer: building artificial agents capable of minimally cognitive behaviors and…
Space-Filling Curves as a Novel Crystal Structure Representation for Machine Learning Models
Jasrasaria, Dipti; Rappoport, Dmitrij; Aspuru-Guzik, Alan
2016-01-01
A fundamental problem in applying machine learning techniques for chemical problems is to find suitable representations for molecular and crystal structures. While the structure representations based on atom connectivities are prevalent for molecules, two-dimensional descriptors are not suitable for describing molecular crystals. In this work, we introduce the SFC-M family of feature representations, which are based on Morton space-filling curves, as an alternative means of representing crystal structures. Latent Semantic Indexing (LSI) was employed in a novel setting to reduce sparsity of feature representations. The quality of the SFC-M representations were assessed by using them in combination with artificial neural networks to predict Density Functional Theory (DFT) single point, Ewald summed, lattice, and many-body dispersion energies of 839 organic molecular crystal unit cells from the Cambridge Structural Database that consist of the elements C, H, N, and O. Promising initial results suggest that the S...
Evaluation and Sensitivity of Climate Model Representation of Upper Arctic Hydrography
DiMaggio, D.; Maslowski, W.; Osinski, R.; Roberts, A.; Clement Kinney, J. L.; Frants, M.
2016-12-01
The satellite-derived rate of Arctic sea ice extent decline for the past decades is faster than those simulated by the models participating in the Coupled Model Intercomparison Project (CMIP5). In addition, time-varying Arctic sea ice concentration and thickness distribution in those models are often poorly represented, suggesting that predicted sea ice decline might be modeled in the wrong place or time and for the wrong reasons. We hypothesize that these limitations are in part the result of an inadequate representation of critical high-latitude processes controlling the accumulation and distribution of sub-surface oceanic heat content and its interaction with the sea ice cover, especially in the western Arctic. For the purpose of this study, we define the sub-surface ocean as that below the surface mixed layer and above the Atlantic layer. Those limitations are evidenced in the CMIP5 multi-model mean exhibiting a cold temperature bias near the surface and a warm bias at intermediate depths. In particular, CMIP5 models are found to be inadequately representing the key features of the upper ocean hydrography in the Canada Basin, including the near-surface temperature maximum (NSTM) and the secondary temperature maximum associated with Pacific Summer Water (PSW). To identify the sensitivity of upper Arctic Ocean hydrography to physical processes and model configurations, a series of experiments are performed using the Regional Arctic System Model (RASM), a high-resolution, fully-coupled regional climate model. Analysis of RASM output suggests that surface momentum coupling (air-ice, ice-ocean, and air-ocean) and brine-rejection parameterization strongly influence thermohaline structure down to 700 m. The implementation of elastic anisotropic plastic sea ice rheology improves mixed layer properties, which is also sensitive to changes in numerical convective viscosity and diffusivity. Sea ice formation during model spin-up essentially destroys the initial
Collins, Tom; Tillmann, Barbara; Barrett, Frederick S; Delbé, Charles; Janata, Petr
2014-01-01
Listeners' expectations for melodies and harmonies in tonal music are perhaps the most studied aspect of music cognition. Long debated has been whether faster response times (RTs) to more strongly primed events (in a music theoretic sense) are driven by sensory or cognitive mechanisms, such as repetition of sensory information or activation of cognitive schemata that reflect learned tonal knowledge, respectively. We analyzed over 300 stimuli from 7 priming experiments comprising a broad range of musical material, using a model that transforms raw audio signals through a series of plausible physiological and psychological representations spanning a sensory-cognitive continuum. We show that RTs are modeled, in part, by information in periodicity pitch distributions, chroma vectors, and activations of tonal space--a representation on a toroidal surface of the major/minor key relationships in Western tonal music. We show that in tonal space, melodies are grouped by their tonal rather than timbral properties, whereas the reverse is true for the periodicity pitch representation. While tonal space variables explained more of the variation in RTs than did periodicity pitch variables, suggesting a greater contribution of cognitive influences to tonal expectation, a stepwise selection model contained variables from both representations and successfully explained the pattern of RTs across stimulus categories in 4 of the 7 experiments. The addition of closure--a cognitive representation of a specific syntactic relationship--succeeded in explaining results from all 7 experiments. We conclude that multiple representational stages along a sensory-cognitive continuum combine to shape tonal expectations in music.
Yakubova, Gulnoza; Hughes, Elizabeth M.; Shinaberry, Megan
2016-01-01
The purpose of this study was to determine the effectiveness of a video modeling intervention with concrete-representational-abstract instructional sequence in teaching mathematics concepts to students with autism spectrum disorder (ASD). A multiple baseline across skills design of single-case experimental methodology was used to determine the…
Towards realistic representation of hydrological processes in integrated WRF-urban modeling system
Yang, Jiachuan; Wang, Zhi-hua; Chen, Fei; Miao, Shiguang; Tewari, Mukul; Georgescu, Matei
2014-05-01
To meet the demand of the ever-increasing urbanized global population, substantial conversion of natural landscapes to urban terrains is expected in the next few decades. The landscape modification will emerge as the source of many adverse effects that challenge the environmental sustainability of cities under changing climatic patterns. To address these adverse effects and to develop corresponding adaptation/mitigation strategies, physically-based single layer urban canopy model (SLUCM) has been developed and implemented into the Weather Research and Forecasting (WRF) platform. However, due to the lack of realistic representation of urban hydrological processes, simulation of urban climatology by current coupled WRF/SLUCM is inevitably inadequate. Aiming at improving the accuracy of simulations, in this study we implement physically-based parameterization of urban hydrological processes into the model, including (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation over water-holding engineered pavements, (4) urban oasis effect, and (5) green roof. In addition, we use an advanced Monte Carlo approach to quantify the sensitivity of urban hydrological modeling to parameter uncertainties. Evaluated against field observations at four major metropolitan areas, results show that the enhanced model is significantly improved in accurately predicting turbulent fluxes arising from built surfaces, especially the latent heat flux. Case studies show that green roof is capable of reducing urban surface temperature and sensible heat flux effectively, and modifying local and regional hydroclimate. Meanwhile, it is efficient in decreasing energy loading of buildings, not only cooling demand in summers but also heating demand in winters, through the combined evaporative cooling and insulation effect. Effectiveness of green roof is found to be limited by availability of water resources and highly sensitive to surface roughness heights. The enhanced WRF/SLUCM model
Klevers, Denis; Taylor, Washington
2016-06-01
We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimen-sion two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g = 3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q = 3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G 2 × SU(2) models with more conventional matter content or SU(2)3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass realization in the general form found by Morrison-Park, suggesting that a generalization of that form may be needed to incorporate models with arbitrary matter representations and gauge groups localized on singular divisors.
Energy Technology Data Exchange (ETDEWEB)
Klevers, Denis [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Taylor, Washington [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue Cambridge, MA 02139 (United States)
2016-06-29
We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by “unHiggsing” a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G{sub 2}×SU(2) models with more conventional matter content or SU(2){sup 3} models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass realization in the general form found by Morrison-Park, suggesting that a generalization of that form may be needed to incorporate models with arbitrary matter representations and gauge groups localized on singular divisors.
Directory of Open Access Journals (Sweden)
Ezzat G. Bakhoum
2015-01-01
Full Text Available This study presents an alternating coordinate-momentum representation for propagation and transition of associated wave function, based on Bopp operators and on a certain symbolic determinant corresponding to a set of two linear equations with null free terms. It is shown that this alternating representation can justify in a good manner the patterns created through reflection/refraction of waves on nonperfectly smooth interfaces and phase correspondence of diffracted beams without the need of supplementary support functions. Correlations with Lorentz transformation of wave functions by interaction with a certain material medium (the space-time origin of a wave-train being adjusted are also presented, and supplementary aspects regarding the use of electromagnetic scalar and vector potentials for modelling evolution within this alternating representation are added.
Anderson, Andrew James; Zinszer, Benjamin D; Raizada, Rajeev D S
2016-03-01
Patterns of neural activity are systematically elicited as the brain experiences categorical stimuli and a major challenge is to understand what these patterns represent. Two influential approaches, hitherto treated as separate analyses, have targeted this problem by using model-representations of stimuli to interpret the corresponding neural activity patterns. Stimulus-model-based-encoding synthesizes neural activity patterns by first training weights to map between stimulus-model features and voxels. This allows novel model-stimuli to be mapped into voxel space, and hence the strength of the model to be assessed by comparing predicted against observed neural activity. Representational Similarity Analysis (RSA) assesses models by testing how well the grand structure of pattern-similarities measured between all pairs of model-stimuli aligns with the same structure computed from neural activity patterns. RSA does not require model fitting, but also does not allow synthesis of neural activity patterns, thereby limiting its applicability. We introduce a new approach, representational similarity-encoding, that builds on the strengths of RSA and robustly enables stimulus-model-based neural encoding without model fitting. The approach therefore sidesteps problems associated with overfitting that notoriously confront any approach requiring parameter estimation (and is consequently low cost computationally), and importantly enables encoding analyses to be incorporated within the wider Representational Similarity Analysis framework. We illustrate this new approach by using it to synthesize and decode fMRI patterns representing the meanings of words, and discuss its potential biological relevance to encoding in semantic memory. Our new similarity-based encoding approach unites the two previously disparate methods of encoding models and RSA, capturing the strengths of both, and enabling similarity-based synthesis of predicted fMRI patterns.
Snow on Arctic sea ice: model representation and last decade changes
Directory of Open Access Journals (Sweden)
K. Castro-Morales
2015-10-01
-ice models to improve the snow representations.
Enhancing the representation of subgrid land surface characteristics in land surface models
Directory of Open Access Journals (Sweden)
Y. Ke
2013-03-01
Full Text Available Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types. In this study, we developed a new subgrid classification method (SGC that accounts for the topographic variability of the vegetation cover. Each model grid cell was represented with a number of elevation classes and each elevation class was further described by a number of vegetation types. The numbers of elevation classes and vegetation types were variable and optimized for each model grid so that the spatial variability of both elevation and vegetation can be reasonably explained given a pre-determined total number of classes. The subgrid structure of the Community Land Model (CLM was used as an example to illustrate the newly developed method in this study. With similar computational burden as the current subgrid vegetation representation in CLM, the new method is able to explain at least 80% of the total subgrid Plant Functional Types (PFTs and greatly reduced the variations of elevation within each subgrid class compared to the baseline method where a single elevation class is assigned to each subgrid PFT. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2 that assigned fixed numbers of elevation and vegetation classes for each model grid with different perspectives of surface cover classification. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0° and 2.0° with three maximum-allowed total number of classes Nclass of 24, 18 and 12 representing different computational burdens over the North America (NA continent, the new method showed variable performances compared to the SGC1 and SGC2 methods. However, the advantage of the SGC method over the other two methods clearly emerged at coarser model resolutions and with moderate computational
Yen, Y. N.; Weng, K. H.; Huang, H. Y.
2013-07-01
After over 30 years of practise and development, Taiwan's architectural conservation field is moving rapidly into digitalization and its applications. Compared to modern buildings, traditional Chinese architecture has considerably more complex elements and forms. To document and digitize these unique heritages in their conservation lifecycle is a new and important issue. This article takes the caisson ceiling of the Taipei Confucius Temple, octagonal with 333 elements in 8 types, as a case study for digitization practise. The application of metadata representation and 3D modelling are the two key issues to discuss. Both Revit and SketchUp were appliedin this research to compare its effectiveness to metadata representation. Due to limitation of the Revit database, the final 3D models wasbuilt with SketchUp. The research found that, firstly, cultural heritage databasesmustconvey that while many elements are similar in appearance, they are unique in value; although 3D simulations help the general understanding of architectural heritage, software such as Revit and SketchUp, at this stage, could onlybe used tomodel basic visual representations, and is ineffective indocumenting additional critical data ofindividually unique elements. Secondly, when establishing conservation lifecycle information for application in management systems, a full and detailed presentation of the metadata must also be implemented; the existing applications of BIM in managing conservation lifecycles are still insufficient. Results of the research recommends SketchUp as a tool for present modelling needs, and BIM for sharing data between users, but the implementation of metadata representation is of the utmost importance.
Jorgensen, PET
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
Christensen, Noel C.; Emery, James D.; Smith, Maurice L.
1988-04-05
A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object.
Do convection-permitting models improve the representation of the impact of LUC?
Vanden Broucke, Sam; Van Lipzig, Nicole
2016-12-01
In this study we assess the added value of convection permitting scale (CPS) simulations in studies using regional climate models to quantify the bio-geophysical climate impact of land-use change (LUC). To accomplish this, a comprehensive model evaluation methodology is applied to both non-CPS and CPS simulations. The main characteristics of the evaluation methodology are (1) the use of paired eddy-covariance site observations (forest vs open land) and (2) a simultaneous evaluation of all surface energy budget components. Results show that although generally satisfactory, non-CPS simulations fall short of completely reproducing the observed LUC signal because of three key biases. CPS scale simulations succeed at significantly reducing two of these biases, namely, those in daytime shortwave radiation and daytime sensible heat flux. Also, CPS slightly reduces a third bias in nighttime incoming longwave radiation. The daytime improvements can be attributed partially to the switch from parameterized to explicit convection, the associated improvement in the simulation of afternoon convective clouds, and resulting surface energy budget and atmospheric feedbacks. Also responsible for the improvements during daytime is a better representation of surface heterogeneity and thus, surface roughness. Meanwhile, the modest nighttime longwave improvement can be attributed to increased vertical atmospheric resolution. However, the model still fails at reproducing the magnitude of the observed nighttime longwave difference. One possible explanation for this persistent bias is the nighttime radiative effect of biogenic volatile organic compound emissions over the forest site. A correlation between estimated emission rates and the observed nighttime longwave difference, as well as the persistence of the longwave bias provide support for this hypothesis. However, more research is needed to conclusively determine if the effect indeed exists.
Willberg, Martin; Lieb, Verena; Pail, Roland; Schmidt, Michael
2017-04-01
The analysis of the Earth's gravity field plays an important role in various disciplines of geosciences. While modern satellite gravity missions make it possible to define a globally consistent geoid with centimeter accuracy and a spatial resolution of 80-100km, it stays a major challenge to consistently combine global low-resolution data with regional high-resolution gravity information. Therefore, a variety of different regional gravity field modelling methods have been established during the last decades. In our analysis, we investigate the spectral combination of heterogeneous gravity data within two different calculation methods: First, the statistical approach of Least Squares Collocation (LSC) which uses the covariance information of input and output data to result in a full variance-covariance matrix. Second, the Multi-Resolution Representation (MRR) based on spherical radial basis functions. The MRR combines a low-pass filtered global geopotential model with satellite gradiometer and/or terrestrial gravity data by means of band-pass filtering. We examine the theoretical concepts and the computational differences and similarities between both approaches. Through fast changing topography, mountains as well as oceanic regions, our study area in the South American Andes is challenging and perfectly suitable for this examination. The use of synthetic data in closed-loop tests enables us to a very detailed investigation of predicted and actual accuracies of geoid determination. Furthermore, we point out respective advantages and disadvantages and link them to the calculation concepts of the two methods. The results contribute to the project "Optimally combined regional geoid models for the realization of height systems in developing countries (ORG4heights)" and, thus, aim to finally integrate the regional solutions into a global vertical reference frame.
Pseudospin representation of the two-site Anderson-Hubbard model
Wortis, Rachel; Kennett, Malcolm
The state of an Anderson localized system can be described in terms of the occupation of a set of single-particle wave functions which are localized in space. When interactions are added, single-particle wave functions are no longer well defined, so what is a useful description of the state of a many-body localized system and what about it is localized? Given that any system with Hilbert-space dimension 2N may be described by an Ising-type Hamiltonian, it has been proposed that in a fully many-body localized system the Ising pseudospins in this representation may be chosen to be local. Actually constructing these spins is non-trivial. While a number of approaches have been proposed, few explicit examples exist and almost all work has been on spin systems. Here we present the Hamiltonian of a two-site Hubbard model with disorder and nearest-neighbor interactions written in terms of pseudospins, and we explore the form of these pseudospins and their evolution as a function of hopping amplitude. Supported by NSERC of Canada.
Kalegaev, Vladimir; Kallio, Esa; Belenkaya, Elena; Alexeev, Igor; Ronan Modolo, M.; Khodachenko, Maxim; Tarek Al-Ubaidi, Di.; Mukhametdinova, Ludmila; Genot, Vincent
Data from different sources (satellite measurements, simulation data bases and online services) are accumulated inside a digital framework developed within the FP7 project IMPEx. Paraboloid model of the planetary magnetospheres (PMM) is a part of this infrastructure. A generalized paraboloid model was developed to represent correctly the electrodynamics processes in the magnetospheres of some magnetized planets: Earth, Saturn, Jupiter and Mercury. This model is intended to calculate the magnetic field generated by a variety of current systems located on the boundaries and within the boundaries of the planetary magnetosphere under a wide range of environmental conditions, quiet and disturbed, affected by Solar activity such as Solar Flares and related phenomena. A set of Web-services to provide an access to PMM calculations and to enable the modeling data processing under SOAP protocol have been created. These will be implemented for easy data exchange within IMPEx infrastructure. Interactive models of the Earth's, Kronian and Mercury's magnetospheres, which take into account specific features of the modeled objects have been realized at Space Monitoring Data Center of SINP MSU (http://smdc.sinp.msu.ru/). The real-time model of the Earth's magnetosphere is currently working at SINP MSU Space Weather Web-site (http://swx.sinp.msu.ru/?lang=en).
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
For a special use a new modelling method of evaluating external disturbing potential is presented in this paper. Being different from classical methods in physical geodesy this method is grounded upon the theory of unified representation of gravitational field. The models created in this way are particularly satisfactory for a high-speed computation of gravitational field in low altitude because they take account of topographic effects and have their kernel functions with simple structure and weak singularity.
Tilmes, Simone; Lamarque, Jean-Francois; Emmons, Louisa K.; Kinnison, Doug E.; Marsh, Dan; Garcia, Rolando R.; Smith, Anne K.; Neely, Ryan R.; Conley, Andrew; Vitt, Francis; Martin, Maria Val; Tanimoto, Hiroshi; Simpson, Isobel; Blake, Don R.; Blake, Nicola
2016-05-01
The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance of the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. All experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.
Mehta, Piyush M.; Kubicek, Martin; Minisci, Edmondo; Vasile, Massimiliano
2017-01-01
Well-known tools developed for satellite and debris re-entry perform break-up and trajectory simulations in a deterministic sense and do not perform any uncertainty treatment. The treatment of uncertainties associated with the re-entry of a space object requires a probabilistic approach. A Monte Carlo campaign is the intuitive approach to performing a probabilistic analysis, however, it is computationally very expensive. In this work, we use a recently developed approach based on a new derivation of the high dimensional model representation method for implementing a computationally efficient probabilistic analysis approach for re-entry. Both aleatoric and epistemic uncertainties that affect aerodynamic trajectory and ground impact location are considered. The method is applicable to both controlled and un-controlled re-entry scenarios. The resulting ground impact distributions are far from the typically used Gaussian or ellipsoid distributions.
Rasmussen, Jorgen
2011-01-01
We construct new Yang-Baxter integrable boundary conditions in the lattice approach to the logarithmic minimal model WLM(1,p) giving rise to reducible yet indecomposable representations of rank 1 in the continuum scaling limit. We interpret these W-extended Kac representations as finitely-generated W-extended Feigin-Fuchs modules over the triplet W-algebra W(p). The W-extended fusion rules of these representations are inferred from the recently conjectured Virasoro fusion rules of the Kac representations in the underlying logarithmic minimal model LM(1,p). We also introduce the modules contragredient to the W-extended Kac modules and work out the correspondingly-extended fusion algebra. Our results are in accordance with the Kazhdan-Lusztig dual of tensor products of modules over the restricted quantum universal enveloping algebra $\\bar{U}_q(sl_2)$ at $q=e^{\\pi i/p}$. Finally, polynomial fusion rings isomorphic with the various fusion algebras are determined, and the corresponding Grothendieck ring of charact...
Tian, Zhen; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-01-01
Monte Carlo (MC) simulation is considered as the most accurate method for radiation dose calculations. Accuracy of a source model for a linear accelerator is critical for the overall dose calculation accuracy. In this paper, we presented an analytical source model that we recently developed for GPU-based MC dose calculations. A key concept called phase-space-ring (PSR) was proposed. It contained a group of particles that are of the same type and close in energy and radial distance to the center of the phase-space plane. The model parameterized probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. For a primary photon PSRs, the particle direction is assumed to be from the beam spot. A finite spot size is modeled with a 2D Gaussian distribution. For a scattered photon PSR, multiple Gaussian components were used to model the particle direction. The direction distribution of an electron PSRs was also modeled as a 2D Gaussian distributi...
Huber, Stefan; Klein, Elise; Willmes, Klaus; Nuerk, Hans-Christoph; Moeller, Korbinian
2014-01-01
Decimal fractions comply with the base-10 notational system of natural Arabic numbers. Nevertheless, recent research suggested that decimal fractions may be represented differently than natural numbers because two number processing effects (i.e., semantic interference and compatibility effects) differed in their size between decimal fractions and natural numbers. In the present study, we examined whether these differences indeed indicate that decimal fractions are represented differently from natural numbers. Therefore, we provided an alternative explanation for the semantic congruity effect, namely a string length congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal fractions compared to natural numbers was driven by differences in processing strategy (sequential vs. parallel). To evaluate this claim, we manipulated the tenth and hundredth digits in a magnitude comparison task with participants' eye movements recorded, while the unit digits remained identical. In addition, we evaluated whether our empirical findings could be simulated by an extended version of our computational model originally developed to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking study, we found evidence that participants processed decimal fractions more sequentially than natural numbers because of the identical leading digit. Importantly, our model was able to account for the smaller compatibility effect found for decimal fractions. Moreover, string length congruity was an alternative account for the prolonged reaction times for incongruent decimal pairs. Consequently, we suggest that representations of natural numbers and decimal fractions do not differ.
Directory of Open Access Journals (Sweden)
Stefan eHuber
2014-04-01
Full Text Available Decimal fractions comply with the base-10 notational system of natural Arabic numbers. Nevertheless, recent research suggested that decimal fractions may be represented differently than natural numbers because two number processing effects (i.e., semantic interference and compatibility effects differed in their size between decimal fractions and natural numbers. In the present study, we examined whether these differences indeed indicate that decimal fractions are represented differently from natural numbers. Therefore, we provided an alternative explanation for the semantic congruity effect, namely a string length congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal fractions compared to natural numbers was driven by differences in processing strategy (sequential vs. parallel.To evaluate this claim, we manipulated the tenth and hundredth digits in a magnitude comparison task with participants' eye movements recorded, while the unit digits remained identical. In addition, we evaluated whether our empirical findings could be simulated by an extended version of our computational model originally developed to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking study, we found evidence that participants processed decimal fractions more sequentially than natural numbers because of the identical leading digit. Importantly, our model was able to account for the smaller compatibility effect found for decimal fractions. Moreover, string length congruity was an alternative account for the prolonged reaction times for incongruent decimal pairs. Consequently, we suggest that representations of natural numbers and decimal fractions do not differ.
Regional Densification of a Global VTEC Model Based on B-Spline Representations
Erdogan, Eren; Schmidt, Michael; Dettmering, Denise; Goss, Andreas; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bothmer, Volker; Hinrichs, Johannes; Mrotzek, Niclas
2017-04-01
The project OPTIMAP is a joint initiative of the Bundeswehr GeoInformation Centre (BGIC), the German Space Situational Awareness Centre (GSSAC), the German Geodetic Research Institute of the Technical University Munich (DGFI-TUM) and the Institute for Astrophysics at the University of Göttingen (IAG). The main goal of the project is the development of an operational tool for ionospheric mapping and prediction (OPTIMAP). Two key features of the project are the combination of different satellite observation techniques (GNSS, satellite altimetry, radio occultations and DORIS) and the regional densification as a remedy against problems encountered with the inhomogeneous data distribution. Since the data from space-geoscientific mission which can be used for modeling ionospheric parameters, such as the Vertical Total Electron Content (VTEC) or the electron density, are distributed rather unevenly over the globe at different altitudes, appropriate modeling approaches have to be developed to handle this inhomogeneity. Our approach is based on a two-level strategy. To be more specific, in the first level we compute a global VTEC model with a moderate regional and spectral resolution which will be complemented in the second level by a regional model in a densification area. The latter is a region characterized by a dense data distribution to obtain a high spatial and spectral resolution VTEC product. Additionally, the global representation means a background model for the regional one to avoid edge effects at the boundaries of the densification area. The presented approach based on a global and a regional model part, i.e. the consideration of a regional densification is called the Two-Level VTEC Model (TLVM). The global VTEC model part is based on a series expansion in terms of polynomial B-Splines in latitude direction and trigonometric B-Splines in longitude direction. The additional regional model part is set up by a series expansion in terms of polynomial B-splines for
Uncertainty analysis in 3D global models: Aerosol representation in MOZART-4
Gasore, J.; Prinn, R. G.
2012-12-01
The Probabilistic Collocation Method (PCM) has been proven to be an efficient general method of uncertainty analysis in atmospheric models (Tatang et al 1997, Cohen&Prinn 2011). However, its application has been mainly limited to urban- and regional-scale models and chemical source-sink models, because of the drastic increase in computational cost when the dimension of uncertain parameters increases. Moreover, the high-dimensional output of global models has to be reduced to allow a computationally reasonable number of polynomials to be generated. This dimensional reduction has been mainly achieved by grouping the model grids into a few regions based on prior knowledge and expectations; urban versus rural for instance. As the model output is used to estimate the coefficients of the polynomial chaos expansion (PCE), the arbitrariness in the regional aggregation can generate problems in estimating uncertainties. To address these issues in a complex model, we apply the probabilistic collocation method of uncertainty analysis to the aerosol representation in MOZART-4, which is a 3D global chemical transport model (Emmons et al., 2010). Thereafter, we deterministically delineate the model output surface into regions of homogeneous response using the method of Principal Component Analysis. This allows the quantification of the uncertainty associated with the dimensional reduction. Because only a bulk mass is calculated online in Mozart-4, a lognormal number distribution is assumed with a priori fixed scale and location parameters, to calculate the surface area for heterogeneous reactions involving tropospheric oxidants. We have applied the PCM to the six parameters of the lognormal number distributions of Black Carbon, Organic Carbon and Sulfate. We have carried out a Monte-Carlo sampling from the probability density functions of the six uncertain parameters, using the reduced PCE model. The global mean concentration of major tropospheric oxidants did not show a
Impact of improved representation of horizontal and vertical cloud structure in a climate model
Energy Technology Data Exchange (ETDEWEB)
Shonk, Jonathan K.P.; Hogan, Robin J. [University of Reading, Department of Meteorology, Reading, Berkshire (United Kingdom); Manners, James [Met Office, Exeter, Devon (United Kingdom)
2012-06-15
Many studies have investigated the effects that misrepresentation of sub-grid cloud structure can have on the radiation budget. In this study, we perform 20-year simulations of the current climate using an atmosphere-only version of the Met Office Unified Model to investigate the effects of cloud approximation on model climate. We apply the ''Tripleclouds'' scheme for representing horizontal cloud inhomogeneity and ''exponential-random'' overlap, both separately and in combination, in place of a traditional plane-parallel representation with maximum-random overlap, to the clouds within the radiation scheme. The resulting changes to both the radiation budget and other meteorological variables, averaged over the 20 years, are compared. The combined global effect of the parameterizations on top-of-atmosphere short-wave and long-wave radiation budget is less than 1 W m{sup -2}, but changes of up to 10 W m{sup -2} are identified in marine stratocumulus regions. A cooling near the surface over the winter polar regions of up to 3 C is also identified when horizontal cloud inhomogeneity is represented, and a warming of similar magnitude is found when exponential-random overlap is implemented. Corresponding changes of the same sign are also found in zonally averaged temperature, with maximum changes in the upper tropical troposphere of up to 0.5 C. Changes in zonally averaged cloud fraction in this location were of opposite sign and up to 0.02. The individual effects on tropospheric temperature of improving the two components of cloud structure are of similar magnitudes to about 2% of the warming created by a quadrupling of carbon dioxide. (orig.)
Institute of Scientific and Technical Information of China (English)
LI Chunxiang; ZHOU Dai
2004-01-01
The polynomial matrix using the block coefficient matrix representation auto-regressive moving average (referred to as the PM-ARMA) model is constructed in this paper for actively controlled multi-degree-of-freedom (MDOF) structures with time-delay through equivalently transforming the preliminary state space realization into the new state space realization. The PM-ARMA model is a more general formulation with respect to the polynomial using the coefficient representation auto-regressive moving average (ARMA) model due to its capability to cope with actively controlled structures with any given structural degrees of freedom and any chosen number of sensors and actuators. (The sensors and actuators are required to maintain the identical number.) under any dimensional stationary stochastic excitation.
Directory of Open Access Journals (Sweden)
Akihiro T Sasaki
2012-08-01
Full Text Available Automatic mimicry is based on the tight linkage between motor and perception action representations in which internal models play a key role. Based on the anatomical connection, we hypothesized that the direct effective connectivity from the posterior superior temporal sulcus (pSTS to the ventral premotor area (PMv formed an inverse internal model, converting visual representation into a motor plan, and that reverse connectivity formed a forward internal model, converting the motor plan into a sensory outcome of action. To test this hypothesis, we employed dynamic causal-modeling analysis with functional magnetic-resonance imaging. Twenty-four normal participants underwent a change-detection task involving two visually-presented balls that were either manually rotated by the investigator’s right hand (‘Hand’ or automatically rotated. The effective connectivity from the pSTS to the PMv was enhanced by hand observation and suppressed by execution, corresponding to the inverse model. Opposite effects were observed from the PMv to the pSTS, suggesting the forward model. Additionally, both execution and hand observation commonly enhanced the effective connectivity from the pSTS to the inferior parietal lobule (IPL, the IPL to the primary sensorimotor cortex (S/M1, the PMv to the IPL, and the PMv to the S/M1. Representation of the hand action therefore was implemented in the motor system including the S/M1. During hand observation, effective connectivity toward the pSTS was suppressed whereas that toward the PMv and S/M1 was enhanced. Thus the action-representation network acted as a dynamic feedback-control system during action observation.
Richardson, A. D.; Nacp Interim Site Synthesis Participants
2010-12-01
Phenology represents a critical intersection point between organisms and their growth environment. It is for this reason that phenology is a sensitive and robust integrator of the biological impacts of year-to-year climate variability and longer-term climate change on natural systems. However, it is perhaps equally important that phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating ecosystem processes, competitive interactions, and feedbacks to the climate system. Unfortunately, the phenological sub-models implemented in most state-of-the-art ecosystem models and land surface schemes are overly simplified. We quantified model errors in the representation of the seasonal cycles of leaf area index (LAI), gross ecosystem photosynthesis (GEP), and net ecosystem exchange of CO2. Our analysis was based on site-level model runs (14 different models) submitted to the North American Carbon Program (NACP) Interim Synthesis, and long-term measurements from 10 forested (5 evergreen conifer, 5 deciduous broadleaf) sites within the AmeriFlux and Fluxnet-Canada networks. Model predictions of the seasonality of LAI and GEP were unacceptable, particularly in spring, and especially for deciduous forests. This is despite an historical emphasis on deciduous forest phenology, and the perception that controls on spring phenology are better understood than autumn phenology. Errors of up to 25 days in predicting “spring onset” transition dates were common, and errors of up to 50 days were observed. For deciduous sites, virtually every model was biased towards spring onset being too early, and autumn senescence being too late. Thus, models predicted growing seasons that were far too long for deciduous forests. For most models, errors in the seasonal representation of deciduous forest LAI were highly correlated with errors in the seasonality of both GPP and NEE, indicating the importance of getting the underlying
Ankersmit, F.R.
2010-01-01
This essay focuses on the historical text as a whole. It does so by conceiving of the historical text as representation - in the way the we may say of a photo or a painting that it represents the person depicted on it. It is argued that representation cannot be properly understood by modelling it on
Impacts of the representation of riverine freshwater input in the community earth system model
Tseng, Yu-heng; Bryan, Frank O.; Whitney, Michael M.
2016-09-01
The impacts of the representation of riverine freshwater input on the simulated ocean state are investigated through comparison of a suite of experiments with the Community Earth System Model (CESM). The aspects of river and estuary processes investigated include lateral spreading of runoff, runoff contribution to the surface buoyancy flux within the K-Profile Parameterization (KPP), the use of a local salinity in the virtual salt flux (VSF) formulation, and the vertical redistribution of runoff. The horizontal runoff spreading distribution plays an important role in the regional salinity distribution and significantly changes the vertical stratification and mixing. When runoff is considered to be a contribution to the surface buoyancy flux, the calculation of turbulent length and velocity scales in the KPP can be significantly impacted near larger discharge rivers, resulting in local surface salinity changes of up to 12 ppt. Using the local surface salinity instead of a globally constant reference salinity in the conversion of riverine freshwater flux to VSF can reduce biases in the simulated salinity near river mouths but leads to drift in global mean salinity. This is remedied through a global correction approach. We also explore the sensitivity to the vertical redistribution of runoff, which partially mimics the impacts of vertical mixing process within estuaries and coastal river plumes. The impacts of the vertical redistribution of runoff are largest when the runoff effective mixing depth is comparable with the mixed layer depth, resulting from the enhanced vertical mixing and the increase of the available potential energy. The impacts in all sensitivity experiments are predominantly local, but the regional circulation can advect the influences downstream.
Hanken, Katrin; Eling, Paul; Hildebrandt, Helmut
2014-01-01
In multiple sclerosis (MS) patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of pro-inflammatory cytokines, may contribute to subjective fatigue in MS patients. Pro-inflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling, which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review, we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate, and the hypothalamus. We first present studies demonstrating a relationship between pro-inflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review, we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives.
Castagnoli, G C
1999-01-01
In former work, quantum computation has been shown to be a problem solving process essentially affected by both the reversible dynamics leading to the state before measurement, and the logical-mathematical constraints introduced by quantum measurement (in particular, the constraint that there is only one measurement outcome). This dual influence, originated by independent initial and final conditions, justifies the quantum computation speed-up and is not representable inside dynamics, namely as a one-way propagation. In this work, we reformulate von Neumann's model of quantum measurement at the light of above findings. We embed it in a broader representation based on the quantum logic gate formalism and capable of describing the interplay between dynamical and non-dynamical constraints. The two steps of the original model, namely (1) dynamically reaching a complete entanglement between pointer and quantum object and (2) enforcing the one-outcome-constraint, are unified and reversed. By representing step (2) r...
Representation of the West African Monsoon System in the aerosol-climate model ECHAM6-HAM2
Stanelle, Tanja; Lohmann, Ulrike; Bey, Isabelle
2017-04-01
The West African Monsoon (WAM) is a major component of the global monsoon system. The temperature contrast between the Saharan land surface in the North and the sea surface temperature in the South dominates the WAM formation. The West African region receives most of its precipitation during the monsoon season between end of June and September. Therefore the existence of the monsoon is of major social and economic importance. We discuss the ability of the climate model ECHAM6 as well as the coupled aerosol climate model ECHAM6-HAM2 to simulate the major features of the WAM system. The north-south temperature gradient is reproduced by both model versions but all model versions fail in reproducing the precipitation amount south of 10° N. A special focus is on the representation of the nocturnal low level jet (NLLJ) and the corresponding enhancement of low level clouds (LLC) at the Guinea Coast, which are a crucial factor for the regional energy budget. Most global climate models have difficulties to represent these features. The pure climate model ECHAM6 is able to simulate the existence of the NLLJ and LLC, but the model does not represent the pronounced diurnal cycle. Overall, the representation of LLC is worse in the coupled model. We discuss the model behaviors on the basis of outputted temperature and humidity tendencies and try to identify potential processes responsible for the model deficiencies.
Free field representation of the ZF algebra of the SU(N) × SU(N) PCF model
Frolov, Sergey
2017-09-01
A free field representation of the Zamolodchikov-Faddeev algebra of the SU(N) × SU(N) principal chiral field model is constructed, and used to derive an integral representation for form factors of a multi-parameter family of exponential fields. Dedicated to the memory of Petr Petrovich Kulish
Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics
Lee, Y. H.; Pierce, J. R.; Adams, P. J.
2013-01-01
In models, nucleation mode (1 nmrepresentation of nucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively.We also investigate the impact of the time step for aerosol microphysical processes (a 10 min versus a 1 h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e., 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e., 1 nm boundary) with the 10 min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafinemode (10 nm=Dp =70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e., 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine-mode particles than the model with explicit dynamics (i.e., 1 nm boundary). The spatial distributions of CN10 (Dp =10 nm) and CCN(0.2 %) (i.e., CCN concentrations at 0.2%supersaturation) are moderately affected, especially CN10 predictions above 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost-layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm) in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries
Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory
Directory of Open Access Journals (Sweden)
Georgi G. Grahovski
2010-06-01
Full Text Available The algebraic structure and the spectral properties of a special class of multi-component NLS equations, related to the symmetric spaces of BD.I-type are analyzed. The focus of the study is on the spectral theory of the relevant Lax operators for different fundamental representations of the underlying simple Lie algebra g. Special attention is paid to the structure of the dressing factors in spinor representation of the orthogonal simple Lie algebras of B_r simeq so(2r+1,C type.
Elfaki, Abdelrahman Osman; Aik, Kevin Loo Teow; Fong, Sim Liew; Bachok, Ruzi
2011-01-01
Nowadays, E-learning system is considered as one of the main pillars in the learning system. Mainly, E-Learning system is designed to serve different types of students. Thus, providing different learning pathways are a must. In this paper, we introduce the variability technique to represent the knowledge in E-learning system. This representation provides different learning pathways which supports the students' diversity. Moreover, we validate the selection of learning pathway by introducing First Order Logic (FOL) rules. Keywords Learning Pathway ; Variability and knowledge representation ; IJCSI
DEFF Research Database (Denmark)
Mullins, Michael
elements into the process of design. Through its immersive properties, virtual reality allows access to a spatial experience of a computer model very different to both screen based simulations as well as traditional forms of architectural representation. The dissertation focuses on processes of the current......Contemporary communicational and informational processes contribute to the shaping of our physical environment by having a powerful influence on the process of design. Applications of virtual reality (VR) are transforming the way architecture is conceived and produced by introducing dynamic...... by ‘professionals’ to ‘laypeople’. The thesis articulates problems in VR’s current application, specifically the CAVE and Panorama theatres, and seeks an understanding of how these problems may be addressed. The central questions that have motivated this research project are thus: What is architectural VR...
Dual lattice representations for O(N and CP(N−1 models with a chemical potential
Directory of Open Access Journals (Sweden)
Falk Bruckmann
2015-10-01
Full Text Available We derive dual representations for O(N and CP(N−1 models on the lattice. In terms of the dual variables the partition sums have only real and positive contributions also at finite chemical potential. Thus the complex action problem of the conventional formulation is overcome and using the dual variables Monte Carlo simulations are possible at arbitrary chemical potential.
Zeng, Tieyong
2006-01-01
Sparse representations of images have revoked remarkable interest recently. The assumption that natural images admit a sparse decomposition over a redundant dictionary leads to efficient algorithm for image processing. In particular, the K-SVD method has been recently proposed and shown to perform very well for gray-scale and color image denoising task (\\cite{elada},\\cite{melada}). Meanwhile, the $TV-l^{\\infty}$ model with special choice of dictionary has been proved to be very effective for ...
Directory of Open Access Journals (Sweden)
DONG Jian
2017-06-01
Full Text Available After having analyzed the application deficiency of positive direction rolling ball transform according to the safety principle, and concerned essentially with the evaluation principles of depth precision, depth order isomorphism and hierarchical nesting of terrain information for morphologic fidelity of digital depth model (DDM for short multi-scale representation, a reality principle-compliant algorithm for DDM multi-scale representation had been proposed based on double direction rolling ball transform. Firstly, by the analysis of the variation tendency of sea floor relief feature point throughout the procedure of double direction rolling ball transform, and combined with the scale dependence character of positive direction rolling ball transform, both the traverse distribution range and the vertical distribution height of sea floor reliefs of a certain scale had been calculated. Secondly, based on the statistic characteristics of DDM grid point undulation extent, a rule of identifying detail (skeleton reliefs had been established. Finally, by preserving the skeleton reliefs of specific scale factor, the overall trend of the changes of marine topography had been kept to meet the requirement of depth precision principle of DDM multi-scale representation. Besides, the paper demonstrated the ordered isomorphism characteristic of equidistant surface transform, and by extracting equidistant surface through double direction rolling ball transform of detail reliefs, the local undulation morphology of marine topography had been maintained to fulfill the depth order isomorphism principle of DDM multi-scale representation. Furthermore, the hierarchical nesting characteristic of terrain information in the process of double direction rolling ball transform had been demonstrated. The experiment results showed that this algorithm overcomed positive direction rolling ball transform's inability to reserve concave skeleton reliefs and preserve undulating
Energy Technology Data Exchange (ETDEWEB)
Lee, Jung Woon; Park, Young Tack [Soongsil University, Seoul (Korea, Republic of)
1996-07-01
The main objective of this project is modeling of human operator in a main control room of Nuclear Power Plant. For this purpose, we carried out research on knowledge representation and inference method based on Rasmussen`s decision ladder structure. And we have developed SACOM(Simulation= Analyzer with a Cognitive Operator Model) using G2 shell on Sun workstations. SACOM consists of Operator Model, Interaction Analyzer, Situation Generator. Cognitive model aims to build a more detailed model of human operators in an effective way. SACOM is designed to model knowledge-based behavior of human operators more easily. The followings are main research topics carried out this year. First, in order to model knowledge-based behavior of human operators, more detailed scenarios are constructed. And, knowledge representation and inference methods are developed to support the scenarios. Second, meta knowledge structures are studied to support human operators 4 types of diagnoses. This work includes a study on meta and scheduler knowledge structures for generate-and-test, topographic, decision tree and case-based approaches. Third, domain knowledge structure are improved to support meta knowledge. Especially, domain knowledge structures are developed to model topographic diagnosis model. Fourth, more applicable interaction analyzer and situation generator are designed and implemented. The new version is implemented in G2 on Sun workstations. 35 refs., 49 figs. (author)
Directory of Open Access Journals (Sweden)
A. Mahmud
2013-07-01
regions and Malaysian Borneo (Southeast Asia during certain months of the year, and under-predicted in most sites in Asia; relative to those regions, the model performed better for sites in North America. Overall, with the inclusion of additional SOA precursors (MZ4-C2, namely isoprene, MOZART-4 showed consistently better skill (NMB (normalized mean bias of −11 vs. −26% in predicting total OA levels and spatial distributions of SOA as compared with unmodified MOZART-4. Treatment of SOA formation by these known precursors (isoprene, propene and lumped alkenes may be particularly important when MOZART-4 output is used to generate boundary conditions for regional air quality simulations that require more accurate representation of SOA concentrations and distributions.
Mahmud, A.; Barsanti, K.
2013-07-01
(Southeast Asia) during certain months of the year, and under-predicted in most sites in Asia; relative to those regions, the model performed better for sites in North America. Overall, with the inclusion of additional SOA precursors (MZ4-C2), namely isoprene, MOZART-4 showed consistently better skill (NMB (normalized mean bias) of -11 vs. -26%) in predicting total OA levels and spatial distributions of SOA as compared with unmodified MOZART-4. Treatment of SOA formation by these known precursors (isoprene, propene and lumped alkenes) may be particularly important when MOZART-4 output is used to generate boundary conditions for regional air quality simulations that require more accurate representation of SOA concentrations and distributions.
Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation
Burzlaff, Jürgen
1984-11-01
We study finite-energy configurations in SO( N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.
Noncontractible hyperloops in gauge models with Higgs fields in the fundamental representation
Energy Technology Data Exchange (ETDEWEB)
Burzlaff, J. (Dublin Inst. for Advanced Studies (Ireland). School of Theoretical Physics)
1984-11-01
We study finite-energy configurations in SO(N) gauge theories with Higgs fields in the fundamental representation. For all winding numbers, noncontractible hyperloops are constructed. The corresponding energy density is spherically symmetric, and the configuration with maximal energy on each hyperloop can be determined. Noncontractible hyperloops with an arbitrary winding number for SU(2) gauge theory are also given.
Towards a Representational Model of Social Affordances from an Institutional Perspective
Sileno, G.; Boer, A.; van Engers, T.
2014-01-01
The paper investigates the connection of the concept of affordance with the concept of institution, fundamental in social sciences and in legal theory, with the purpose of delineating a working definition of social affordance. This hybrid concept enriches the representation tools to be used with age
Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Starita, Antonina; Solaro, Roberto; Tiné, Maria R.
2009-08-01
We report here a recent study on the prediction by recursive neural network of the glass transition temperature of (meth)acrylic copolymers, for which appropriate structured representations are proposed. It is shown that the flexibility of such description allows for simultaneously treating different classes of compounds as well as accounting for different average properties such as tacticity and molar composition.
Towards a Representational Model of Social Affordances from an Institutional Perspective
Sileno, G.; Boer, A.; van Engers, T.
2014-01-01
The paper investigates the connection of the concept of affordance with the concept of institution, fundamental in social sciences and in legal theory, with the purpose of delineating a working definition of social affordance. This hybrid concept enriches the representation tools to be used with
DEFF Research Database (Denmark)
Antich, Jose Luis Diez; Paterna, Mattia; Marxer, Richard
2016-01-01
A method is proposed that extracts a structural representation of percussive audio in an unsupervised manner. It consists of two parts: 1) The input signal is segmented into blocks of approximately even duration, aligned to a metrical grid, using onset and timbre feature extraction, agglomerative...
Directory of Open Access Journals (Sweden)
Ashley M. Matheny
2017-02-01
Full Text Available Land surface models and dynamic global vegetation models typically represent vegetation through coarse plant functional type groupings based on leaf form, phenology, and bioclimatic limits. Although these groupings were both feasible and functional for early model generations, in light of the pace at which our knowledge of functional ecology, ecosystem demographics, and vegetation-climate feedbacks has advanced and the ever growing demand for enhanced model performance, these groupings have become antiquated and are identified as a key source of model uncertainty. The newest wave of model development is centered on shifting the vegetation paradigm away from plant functional types (PFTs and towards flexible trait-based representations. These models seek to improve errors in ecosystem fluxes that result from information loss due to over-aggregation of dissimilar species into the same functional class. We advocate the importance of the inclusion of plant hydraulic trait representation within the new paradigm through a framework of the whole-plant hydraulic strategy. Plant hydraulic strategy is known to play a critical role in the regulation of stomatal conductance and thus transpiration and latent heat flux. It is typical that coexisting plants employ opposing hydraulic strategies, and therefore have disparate patterns of water acquisition and use. Hydraulic traits are deterministic of drought resilience, response to disturbance, and other demographic processes. The addition of plant hydraulic properties in models may not only improve the simulation of carbon and water fluxes but also vegetation population distributions.
Klevers, Denis
2016-01-01
We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G_2xSU(2) models with more conventional matter content or SU(2)^3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass real...
Directory of Open Access Journals (Sweden)
A. Mahmud
2012-12-01
reasonable agreement with comparable modeling studies and observations. Concentrations of estimated organic aerosol (OA at the surface, however, showed under-prediction in Europe and over-prediction in the Amazonian regions and Malaysian Borneo during certain months of the year. Overall, the updated version of MOZART-4, MZ4-v2, showed consistently better skill in predicting SOA and OA levels and spatial distributions as compared with unmodified MOZART-4. The MZ4-v2 updates may be particularly important when MOZART-4 output is used to generate boundary conditions for regional air quality simulations that require more accurate representation of SOA concentrations and distributions.
Pons, Xavier; Sevillano, Eva; Moré, Gerard; Serra, Pere; Cornford, Dan; Ninyerola, Miquel
2013-04-01
The usage of remote sensing imagery combined with statistical classifiers to obtain categorical cartography is now common practice. As in many other areas of geographic information quality assessment, knowing the accuracy of these maps is crucial, and the spatialization of quality information is becoming ever more important for a large range of applications. Whereas some classifiers (e.g., maximum likelihood, linear discriminant analysis, naive Bayes, etc) permit the estimation and spatial representation of the uncertainty through a pixel level probabilistic estimator (and, from that, to compute a global accuracy estimator for the whole map), for other methods such a direct estimator does not exist. Regardless of the classification method applied, ground truth data is almost always available (to train the classifier and/or to compute the global accuracy and, usually, a confusion matrix). Our research is devoted to the development of a protocol to spatialize the error on a general framework based on the classifier parameters, and some ground truth reference data. In the methodological experiment presented here we provide an insight into uncertainty modelling for a hybrid classifier that combines unsupervised and supervised stages (implemented in the MiraMon GIS). In this work we describe what we believe is the first attempt to characterise pixel level uncertainty in a two stage classification process. We describe the model setup, show the preliminary results and identify future work that will be undertaken. The study area is a Landsat full frame located at the North-eastern region of the Iberian Peninsula. The six non-thermal bands + NDVI of a multi-temporal set of six geometrically and radiometrically corrected Landsat-5 images (between 2005 and 2007) were submitted to a hybrid classification process, together with some ancillary data (climate, slopes, etc). Training areas were extracted from the Land Cover Map of Catalonia (MCSC), a 0.5 m resolution map created by
Tao, Cui; Jiang, Guoqian; Oniki, Thomas A; Freimuth, Robert R; Zhu, Qian; Sharma, Deepak; Pathak, Jyotishman; Huff, Stanley M; Chute, Christopher G
2013-05-01
The clinical element model (CEM) is an information model designed for representing clinical information in electronic health records (EHR) systems across organizations. The current representation of CEMs does not support formal semantic definitions and therefore it is not possible to perform reasoning and consistency checking on derived models. This paper introduces our efforts to represent the CEM specification using the Web Ontology Language (OWL). The CEM-OWL representation connects the CEM content with the Semantic Web environment, which provides authoring, reasoning, and querying tools. This work may also facilitate the harmonization of the CEMs with domain knowledge represented in terminology models as well as other clinical information models such as the openEHR archetype model. We have created the CEM-OWL meta ontology based on the CEM specification. A convertor has been implemented in Java to automatically translate detailed CEMs from XML to OWL. A panel evaluation has been conducted, and the results show that the OWL modeling can faithfully represent the CEM specification and represent patient data.
National Aeronautics and Space Administration — This article presented a discussion on uncertainty representation and management for model-based prog- nostics methodologies based on the Bayesian tracking framework...
A mathematical modeling applied to the study of two forms of artistic representation
Directory of Open Access Journals (Sweden)
Henrique Marins de Carvalho
2015-01-01
Full Text Available The cultural manifestation of the Arican indigenous people from Chile, through the designs found in their garments was analyzed. Comparing their techniques of mosaic formation, using geometric transformations (bijection plans in itself, it was investigated whether, mathematically, its evolution could be explained.The mosaics, as well as the known works of Escher, are constructed from the application of translations, rotations, reflections or slip reflections of an initial motif (a rosette. The archaeological clothing pieces of the Arican people were then analyzed in the same evolutionary perspective of such applications.With similar purpose - understanding the relationship between music and the evolution and complexity of a possible mathematical representation - were analyzed the geometric transformations and excerpts from three works of Johann Sebastian Bach, exponent German composer of the Baroque period.It was possible to see the link between the improvement and refinement of musical composition mathematics, particularly in the geometry necessary to translate the musical representation into a graphic symbol.It is concluded, then, the existence of a possible line between artistic evolution (the artistic culture of a people or the work of a musician and mathematical representation / geometry of such manifestations. In other words, it was possible to formulate conjectures in a search to find a possible relationship between the development degree of a given culture or musical piece and the development of a science, if mathematics, able to explain it.
Günther, Fritz; Marelli, Marco
2016-01-01
Noun compounds, consisting of two nouns (the head and the modifier) that are combined into a single concept, differ in terms of their plausibility: school bus is a more plausible compound than saddle olive. The present study investigates which factors influence the plausibility of attested and novel noun compounds. Distributional Semantic Models (DSMs) are used to obtain formal (vector) representations of word meanings, and compositional methods in DSMs are employed to obtain such representations for noun compounds. From these representations, different plausibility measures are computed. Three of those measures contribute in predicting the plausibility of noun compounds: The relatedness between the meaning of the head noun and the compound (Head Proximity), the relatedness between the meaning of modifier noun and the compound (Modifier Proximity), and the similarity between the head noun and the modifier noun (Constituent Similarity). We find non-linear interactions between Head Proximity and Modifier Proximity, as well as between Modifier Proximity and Constituent Similarity. Furthermore, Constituent Similarity interacts non-linearly with the familiarity with the compound. These results suggest that a compound is perceived as more plausible if it can be categorized as an instance of the category denoted by the head noun, if the contribution of the modifier to the compound meaning is clear but not redundant, and if the constituents are sufficiently similar in cases where this contribution is not clear. Furthermore, compounds are perceived to be more plausible if they are more familiar, but mostly for cases where the relation between the constituents is less clear. PMID:27732599
Born, Jannis; Galeazzi, Juan M; Stringer, Simon M
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning
Energy Technology Data Exchange (ETDEWEB)
Kollias, Pavlos [McGill Univ., Montreal, QC (Canada
2016-09-06
This the final report for the DE-SC0007096 - Advancing Clouds Lifecycle Representation in Numerical Models Using Innovative Analysis Methods that Bridge ARM Observations and Models Over a Breadth of Scales - PI: Pavlos Kollias. The final report outline the main findings of the research conducted using the aforementioned award in the area of cloud research from the cloud scale (10-100 m) to the mesoscale (20-50 km).
A new representation of orientable 2-manifold polygonal surfaces for geometric modelling
Institute of Scientific and Technical Information of China (English)
LIU Yong-jin; TANG Kai; JOENJA Ajay
2006-01-01
Many graphics and computer-aided design applications require that the polygonal meshes used in geometric computing have the properties of not only 2-manifold but also are orientable. In this paper, by collecting previous work scattered in the topology and geometry literature, we rigorously present a theoretical basis for orientable polygonal surface representation from a modern point of view. Based on the presented basis, we propose a new combinatorial data structure that can guarantee the property of orientable 2-manifolds and is primal/dual efficient. Comparisons with other widely used data structures are also presented in terms of time and space efficiency.
Energy Technology Data Exchange (ETDEWEB)
Augustine, C.
2011-10-01
The U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) tasked the National Renewable Energy Laboratory (NREL) with conducting the annual geothermal supply curve update. This report documents the approach taken to identify geothermal resources, determine the electrical producing potential of these resources, and estimate the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs from these geothermal resources at present and future timeframes under various GTP funding levels. Finally, this report discusses the resulting supply curve representation and how improvements can be made to future supply curve updates.
Strauss, Y
1999-01-01
We apply the quantum Lax-Phillips scattering theory to a relativistically covariant quantum field theoretical form of the (soluble) Lee model. We construct the translation representations with the help of the wave operators, and show that the resulting Lax-Phillips $S$-matrix is an inner function (the Lax-Phillips theory is essentially a theory of translation invariant subspaces). We then discuss the non-relativistic limit of this theory, and show that the resulting kinematic relations coincide with the conditions required for the Galilean description of a decaying system.
Energy Technology Data Exchange (ETDEWEB)
Xiaoqing Wu
2008-07-31
Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations.
Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B; Robinson, Terry E; Khamassi, Mehdi
2014-02-01
Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself - a lever - more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in computational
Directory of Open Access Journals (Sweden)
Florian Lesaint
2014-02-01
Full Text Available Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US, some rats (sign-trackers come to approach and engage the conditioned stimulus (CS itself - a lever - more and more avidly, whereas other rats (goal-trackers learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in
Indian Academy of Sciences (India)
Long Zhang; Guoliang Xiong; Hesheng Liu; Huijun Zou; Weizhong Guo
2010-04-01
A parametric time-frequency representation is presented based on timevarying autoregressive model (TVAR), followed by applications to non-stationary vibration signal processing. The identiﬁcation of time-varying model coefﬁcients and the determination of model order, are addressed by means of neural networks and genetic algorithms, respectively. Firstly, a simulated signal which mimic the rotor vibration during run-up stages was processed for a comparative study on TVAR and other non-parametric time-frequency representations such as Short Time Fourier Transform, Continuous Wavelet Transform, Empirical Mode Decomposition, Wigner–Ville Distribution and Choi–Williams Distribution, in terms of their resolutions, accuracy, cross term suppression as well as noise resistance. Secondly, TVAR was applied to analyse non-stationary vibration signals collected from a rotor test rig during run-up stages, with an aim to extract fault symptoms under non-stationary operating conditions. Simulation and experimental results demonstrate that TVAR is an effective solution to non-stationary signal analysis and has strong capability in signal time-frequency feature extraction.
Moore, Gaye; Hepworth, Graham; Weiland, Tracey; Manias, Elizabeth; Gerdtz, Marie Frances; Kelaher, Margaret; Dunt, David
2012-02-01
To prospectively evaluate the accuracy of a predictive model to identify homeless people at risk of representation to an emergency department. A prospective cohort analysis utilised one month of data from a Principal Referral Hospital in Melbourne, Australia. All visits involving people classified as homeless were included, excluding those who died. Homelessness was defined as living on the streets, in crisis accommodation, in boarding houses or residing in unstable housing. Rates of re-presentation, defined as the total number of visits to the same emergency department within 28 days of discharge from hospital, were measured. Performance of the risk screening tool was assessed by calculating sensitivity, specificity, positive and negative predictive values and likelihood ratios. Over the study period (April 1, 2009 to April 30, 2009), 3298 presentations from 2888 individuals were recorded. The homeless population accounted for 10% (n=327) of all visits and 7% (n=211) of all patients. A total of 90 (43%) homeless people re-presented to the emergency department. The predictive model included nine variables and achieved 98% (CI, 0.92-0.99) sensitivity and 66% (CI, 0.57-0.74) specificity. The positive predictive value was 68% and the negative predictive value was 98%. The positive likelihood ratio 2.9 (CI, 2.2-3.7) and the negative likelihood ratio was 0.03 (CI, 0.01-0.13). The high emergency department re-presentation rate for people who were homeless identifies unresolved psychosocial health needs. The emergency department remains a vital access point for homeless people, particularly after hours. The risk screening tool is key to identify medical and social aspects of a homeless patient's presentation to assist early identification and referral. Copyright Â© 2012 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Perzyński Konrad
2015-06-01
Full Text Available The developed numerical model of a local nanoindentation test, based on the digital material representation (DMR concept, has been presented within the paper. First, an efficient algorithm describing the pulsed laser deposition (PLD process was proposed to realistically recreate the specific morphology of a nanolayered material in an explicit manner. The nanolayered Ti/TiN composite was selected for the investigation. Details of the developed cellular automata model of the PLD process were presented and discussed. Then, the Ti/TiN DMR was incorporated into the finite element software and numerical model of the nanoindentation test was established. Finally, examples of obtained results presenting capabilities of the proposed approach were highlighted.
Directory of Open Access Journals (Sweden)
Carlo Bianchini
2016-06-01
Full Text Available It’s established that in the design and construc- tion of new buildings, BIM is a fundamental refe- rence especially when the standardization is the typical character of the project. As Architecture, with the management of the entire building pro- cess, requires standardization for greater eco- nomy, thanks to BIM tools the building process seems to have actually moved to a 2.0 phase; on the contrary, when BIM is applied to historical bu- ildings it still reveals not so adequate. In this framework, this paper will not discuss the differences between CAD and BIM or the un- doubted potential of BIM software from a tech- nical or operational standpoint; we would focus instead on the implication of BIM referring to the Representation disciplines and to the issues con- nected with its application to the existing built stock and especially to historic buildings.
Schiffler, Ralf
2014-01-01
This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.
Modeling mechanical response of heterogeneous materials
Pal, Siladitya
developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.
Persad, G. G.; Menon, S.; Sednev, I.
2008-12-01
Aerosol indirect effects are known to have a significant impact on the evolution of the climate system. However, their representation via cloud/aerosol microphysics remains a major source of uncertainty in climate models. This study assesses uncertainties in the NASA Goddard Institute for Space Studies (GISS) ModelE global climate model produced by different representations of the cloud/aerosol interaction scheme. By varying the complexity of the cloud microphysics scheme included in the model and analyzing the range of results against cloud properties obtained from satellite retrievals, we evaluate the effect of the different schemes on climate. We examine four sets of simulations with the GISS ModelE: (1) using a new aerosol/cloud microphysics package implemented in ModelE (based on the two-moment cloud microphysics scheme recently implemented in CCSM), (2) using a version of the microphysics scheme previously included in ModelE, (3) using prescribed aerosol concentrations and fixed cloud droplet number (the main link between aerosols and the cloud microphysics scheme), and (4) varying the environment conditions with which the new aerosol/cloud microphysics package is run. The global mean cloud properties are analyzed and compared to global mean ranges as obtained from satellite retrievals. Results show that important climate parameters, such as total cloud cover, can be underestimated by 8-15% using the new aerosol/cloud microphysics scheme. Liquid water path (LWP) is particularly affected by variations to the aerosol/cloud microphysics representation, exhibiting both global mean variations of ~20% and strong regional differences. Significant variability in LWP between the various simulations may be attributed to differences in the autoconversion scheme used in the differing representations of aerosol/cloud interactions. These LWP differences significantly affect radiative parameters, such as cloud optical depth and net cloud forcing (used to evaluate the
Geloun, Joseph Ben
2014-01-01
We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank $d$ Tensorial Group Field Theory. These models are called Abelian because their fields live on $U(1)^D$. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. New dimensional regularization and renormalization schemes are introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models $\\phi^{2n}$ over $U(1)$, and a matrix model over $U(1)^2$. For all divergent amplitudes, we identify a domain of meromorphicity in a strip determined by the real part of the group dimension $D$. From this point, the ordinary subtraction program is applied and leads to convergent and analytic renormalized integrals. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank $d$ Abelian models. We find that these polynomials do not satisfy the ord...
Ben Geloun, Joseph; Toriumi, Reiko
2015-09-01
We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank d tensorial group field theory. These models are called Abelian because their fields live on copies of U(1)D. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. A new dimensional regularization is introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models ϕ2n over U(1), and a matrix model over U(1)2. We prove that all divergent amplitudes are meromorphic functions in the complexified group dimension D ∈ ℂ. From this point, a standard subtraction program yielding analytic renormalized integrals could be applied. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank d Abelian models. We find that these polynomials do not satisfy the ordinary Tutte's rules (contraction/deletion). By scrutinizing the "face"-structure of these polynomials, we find a generalized polynomial which turns out to be stable only under contraction.
Kuznetsov, V B
1996-01-01
Using the Baker-Akhiezer function technique we construct a separation of variables for the classical trigonometric 3-particle Ruijsenaars model (relativistic generalization of Calogero-Moser-Suthe rland model). In the quantum case, an integral operator M is constructed from the Askey-Wilson contour integral. The operator M transforms the eigenfunctions of the commuting Hamiltonians (Macdonald polynomials for the root sytem A2) into the factorized form S(y1)S(y2) where S(y) is a Laurent polynomial of one variable expressed in terms of the 3phi2(y) basic hypergeometric series. The inversion of M produces a new integral representation for the A2 Macdonald polynomials. We also present some results and conjectures for general n-particle case.
Directory of Open Access Journals (Sweden)
A. Nazemi
2014-07-01
Full Text Available Human water use has significantly increased during the recent past. Water allocation from surface and groundwater sources has altered terrestrial discharge and storage, with large variability in time and space. Water supply and allocation, therefore, should be considered with water demand and appropriately included in large-scale models to address various online and offline implications, with or without considering possible climate interactions. Here, we review the algorithms developed to represent the elements of water supply and allocation in large-scale models, in particular Land Surface Schemes and Global Hydrologic Models. We noted that some potentially-important online implications, such as the effects of large reservoirs on land-atmospheric feedbacks, have not yet been addressed. Regarding offline implications, we find that there are important elements, such as groundwater availability and withdrawals, and the representation of large reservoirs, which should be improved. Major sources of uncertainty in offline simulations include data support, water allocation algorithms and host large-scale models. Considering these findings with those highlighted in our companion paper, we note that advancements in computation, host models, system identification algorithms as well as remote sensing and data assimilation products can facilitate improved representations of water resource management at larger scales. We further propose a modular development framework to consider and test multiple datasets, algorithms and host models in a unified model diagnosis and uncertainty assessment framework. We suggest that such a framework is required to systematically improve current representations of water resource management in Earth System models. A key to this development is the availability of regional scale data. We argue that the time is right for a global initiative, based on regional case studies, to move this agenda forward.
Vanuytrecht, Eline; Thorburn, Peter J
2017-01-30
Elevated atmospheric CO2 concentrations ([CO2 ]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom-up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO2 ] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO2 ] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO2 responses within models should be prioritized.
DEFF Research Database (Denmark)
Wulf-Andersen, Trine Østergaard
2012-01-01
This article is based on a Danish research project with young people in vulnerable positions. Young people are involved throughout the research process, including the interpretation of material produced through interviews, and discussions on how reflections and conclusions from the research should......, and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social...
DEFF Research Database (Denmark)
Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves
2011-01-01
Stereotypic presumptions about gender affect the design process, both in relation to how users are understood and how products are designed. As a way to decrease the influence of stereotypic presumptions in design process, we propose not to disregard the aspect of gender in the design process......, as the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...
Zhu, Q.; Riley, W. J.; Chambers, J. Q.; Tang, J.
2014-12-01
It is widely accepted that terrestrial ecosystem carbon dynamics are strongly coupled and controlled by soil nutrients status. Nutrient availability serves as an indicator of aboveground carbon productivity and ecosystem stability, especially when soils are infertile. In these conditions, plants have to outcompete microorganism and mineral surfaces to acquire nutrients required for photosynthesis, respiration, seed production, defense, etc. It is usually hypothesized that microbes are short-term winners but long-term losers in nutrient competition. Microbes quickly trap available soil nitrogen and phosphorous, thereby preventing nutrient inaccessibility through hydrological leaching and mineral surface adsorption. Over longer temporal scales, nutrients are released into the soil and become available for plant uptake. Despite its ecological significance, nutrient competition is either absent or over-simplified (e.g., assuming all consumers are equally competitive) in terrestrial biogeochemistry models. Here, we aim to test the representation of different competitive strategies and to investigate their ecological consequences with a newly developed biogeochemical model structure. The new model includes three major soil nutrients (ammonia, nitrate, and phosphate) and multiple consumers (plants, microbes, mineral surfaces, nitrifiers, and denitrifiers). We analyze predicted soil carbon, nitrogen, and phosphorus dynamics with three different competitive strategies: (1) plants compete poorly against microorganisms; (2) all consumers are equally competitive; and (3) an explicit Equilibrium Chemical Approximation (ECA; Tang and Riley (2013)) treatment. We find that very different ecosystem states are predicted when assuming different competitive structures, and that the ECA approach provides the best match with a large suite of observational constraints from tropical experimental and transect studies. We conclude that terrestrial biogeochemical models should represent a
Energy Technology Data Exchange (ETDEWEB)
Mishra, Umakant; Drewniak, B.; Jastrow, J.D.; Matamala, R.; Vitharana, Wellewatte
2017-08-08
Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation data for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing
2014-12-01
Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.
Djurfeldt, Mikael
2012-07-01
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
Frank, Laurence Emmanuelle
2006-01-01
Feature Network Models (FNM) are graphical structures that represent proximity data in a discrete space with the use of features. A statistical inference theory is introduced, based on the additivity properties of networks and the linear regression framework. Considering features as predictor variab
DEFF Research Database (Denmark)
Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager
to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...
Hydrological processes and model representation: impact of soft data on calibration
J.G. Arnold; M.A. Youssef; H. Yen; M.J. White; A.Y. Sheshukov; A.M. Sadeghi; D.N. Moriasi; J.L. Steiner; Devendra Amatya; R.W. Skaggs; E.B. Haney; J. Jeong; M. Arabi; P.H. Gowda
2015-01-01
Hydrologic and water quality models are increasingly used to determine the environmental impacts of climate variability and land management. Due to differing model objectives and differences in monitored data, there are currently no universally accepted procedures for model calibration and validation in the literature. In an effort to develop accepted model calibration...
Tuning of methods for offset free MPC based on ARX model representations
DEFF Research Database (Denmark)
Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay;
2010-01-01
In this paper we investigate model predictive control (MPC) based on ARX models. ARX models can be identified from data using convex optimization technologies and is linear in the system parameters. Compared to other model parameterizations this feature is an advantage in embedded applications fo...... is extended with a disturbance model state. The relation between the base case and the two extended methods are illustrated which provides good understanding and a platform for discussing tuning for good closed loop performance....
Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.
2016-09-01
CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.
Richer, E.; Modolo, R.; Chanteur, G. M.; Hess, S.; Leblanc, F.
2012-10-01
The interaction of the solar wind (SW) with the magnetic field of Mercury is investigated by means of a three dimensional parallelized multispecies hybrid model. A comparison between two mathematical representations of Mercury's intrinsic magnetic field is studied. The first model is an Offset Dipole (OD) having the offset and dipolar moment reported by Anderson et al. (2011). The second model is a combination of a Dipole and a Quadrupole (DQ), the total field is fitted to the offset dipolar field, for northern latitudes greater than 50°. Simulations reproduce the features which characterize Mercury's interaction with the SW, encompassing the Bow Shock (BS), the magnetosheath, the magnetotail, the “cusps” region and the neutral current sheet. Global hybrid simulations of the Hermean magnetosphere run for the OD and DQ models demonstrate that the southern parts of the magnetospheres produced by the OD and DQ models differ greatly in topology and volume meanwhile their northern parts-are quite similar. In particular the DQ model exhibits a dome of closed field lines around the south pole in contrast to the OD. Without further information on the intrinsic magnetic field of the planet in the southern region which should be provided by BepiColombo after year 2020, we can only speculate on the influence of the different magnetic topologies on the magnetospheric dynamics.
Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.
2015-12-01
Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes
Cognitive/emotional models for human behavior representation in 3D avatar simulations
Peterson, James K.
2004-08-01
Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.
An object-oriented forest landscape model and its representation of tree species
Hong S. He; David J. Mladenoff; Joel Boeder
1999-01-01
LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...
Tangible Models and Haptic Representations Aid Learning of Molecular Biology Concepts
Johannes, Kristen; Powers, Jacklyn; Couper, Lisa; Silberglitt, Matt; Davenport, Jodi
2016-01-01
Can novel 3D models help students develop a deeper understanding of core concepts in molecular biology? We adapted 3D molecular models, developed by scientists, for use in high school science classrooms. The models accurately represent the structural and functional properties of complex DNA and Virus molecules, and provide visual and haptic…
An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations
Chan, Lap Ki; Cheng, Maurice M. W.
2011-01-01
Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…
Federici, Stefano; Meloni, Fabio; Catarinella, Antonio; Mazzeschi, Claudia
2017-01-01
Play is a natural mode of children's expression and constitutes a fundamental aspect of their life. Cognitive, affective, and social aspects can be assessed through play, considered as a "window" to observe a child's functioning. According to Russ's model, cognitive and affective components and their reciprocal connections can be assessed through the Affect in Play Scale (APS). The aim of the present study was to investigate children's representations of the three main models of disability (medical, social, and biopsychosocial) and how these models affected cognitive and affective components of children's play. Sixty-three children, aged 6-10 years, were assessed by means of the APS. Participants were randomly assigned to one of two APS task orders: the standard APS task followed by the modified APS task (including a wheelchair toy), or vice versa. The standard and modified APS sessions were coded according to the APS system. The modified APS sessions were also coded for the model of disability expressed by children. A one-way ANOVA conducted on the APS affective and cognitive indexes revealed an effect of condition on the affective components of play and no effect on cognitive components and variety of affect as assessed by the APS. In addition, when children are involved in pretend play from which concepts of disability emerge, these concepts are almost exclusively related to the medical model of disability. Results suggested implications for intervention with children in educational contexts that aim to teach children about disability.
Directory of Open Access Journals (Sweden)
Juan Manuel Galeazzi
2015-12-01
Full Text Available Neurons that respond to visual targets in a hand-centred frame of reference have been found within various areas of the primate brain. We investigate how hand-centred visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organisation. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localised receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localised receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centred receptive fields decreased their shape selectivity and started responding to a localised region of hand-centred space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localised, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.
Galeazzi, Juan M; Minini, Loredana; Stringer, Simon M
2015-01-01
Neurons that respond to visual targets in a hand-centered frame of reference have been found within various areas of the primate brain. We investigate how hand-centered visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organization. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localized receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localized receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centered receptive fields decreased their shape selectivity and started responding to a localized region of hand-centered space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localized, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.
Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport
Directory of Open Access Journals (Sweden)
C. R. Hoyle
2011-08-01
Full Text Available The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP, chemical transport, and chemistry-climate models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short-lived tracers (with a lifetime of 6 h within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to be different between the models, even among those which source their forcing data from the same NWP model (ECMWF. The differences are less pronounced for longer lived tracers, however they could have implications for modelling the halogen burden of the lowermost stratosphere through transport of species such as bromoform, or short-lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are strongly influenced by the convective transport parameterisations, and different boundary layer mixing parameterisations also have a large impact on the modelled tracer profiles. Preferential locations for rapid transport from the surface into the upper troposphere are similar in all models, and are mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, models do not indicate that upward transport is highest over western Africa.
Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.
SCALABLE PERCEPTUAL AUDIO REPRESENTATION WITH AN ADAPTIVE THREE TIME-SCALE SINUSOIDAL SIGNAL MODEL
Institute of Scientific and Technical Information of China (English)
Al-Moussawy Raed; Yin Junxun; Song Shaopeng
2004-01-01
This work is concerned with the development and optimization of a signal model for scalable perceptual audio coding at low bit rates. A complementary two-part signal model consisting of Sines plus Noise (SN) is described. The paper presents essentially a fundamental enhancement to the sinusoidal modeling component. The enhancement involves an audio signal scheme based on carrying out overlap-add sinusoidal modeling at three successive time scales,large, medium, and small. The sinusoidal modeling is done in an analysis-by-synthesis overlapadd manner across the three scales by using a psychoacoustically weighted matching pursuits.The sinusoidal modeling residual at the first scale is passed to the smaller scales to allow for the modeling of various signal features at appropriate resolutions. This approach greatly helps to correct the pre-echo inherent in the sinusoidal model. This improves the perceptual audio quality upon our previous work of sinusoidal modeling while using the same number of sinusoids. The most obvious application for the SN model is in scalable, high fidelity audio coding and signal modification.
ENSO and annual cycle interaction: the combination mode representation in CMIP5 models
Ren, Hong-Li; Zuo, Jinqing; Jin, Fei-Fei; Stuecker, Malte F.
2016-06-01
Recent research demonstrated the existence of a combination mode (C-mode) originating from the atmospheric nonlinear interaction between the El Niño-Southern Oscillation (ENSO) and the Pacific warm pool annual cycle. In this paper, we show that the majority of coupled climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are able to reproduce the observed spatial pattern of the C-mode in terms of surface wind anomalies reasonably well, and about half of the coupled models are able to reproduce spectral power at the combination tone periodicities of about 10 and/or 15 months. Compared to the CMIP5 historical simulations, the CMIP5 Atmospheric Model Intercomparison Project (AMIP) simulations can generally exhibit a more realistic simulation of the C-mode due to prescribed lower boundary forcing. Overall, the multi-model ensemble average of the CMIP5 models tends to capture the C-mode better than the individual models. Furthermore, the models with better performance in simulating the ENSO mode tend to also exhibit a more realistic C-mode with respect to its spatial pattern and amplitude, in both the CMIP5 historical and AMIP simulations. This study shows that the CMIP5 models are able to simulate the proposed combination mode mechanism to some degree, resulting from their reasonable performance in representing the ENSO mode. It is suggested that the main ENSO periods in the current climate models needs to be further improved for making the C-mode better.
Energy Technology Data Exchange (ETDEWEB)
Ehleringer, James [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Biology; Randerson, James [Univ. of California, Irvine, CA (United States); Lai, Chun-Ta [San Diego State Univ., CA (United States)
2016-02-16
The objective of the proposed research was to collect data and develop models to improve our understanding of the role of drought and fire impacts on the terrestrial carbon cycle in the western US, including impacts associated with urban systems as they impacted regional carbon cycles. Using data we collected and a synthesis of other measurements, we developed new ways (a) to evaluate the representation of drought stress and fire emissions in the Community Land Model, (b) to model net ecosystem exchange combining ground level atmospheric observations with boundary layer theory, (c) to model upstream impacts of fire and fossil fuel emissions on atmospheric carbon dioxide observations, and (d) to model carbon dioxide observations within urban systems and at the urban-wildland interfaces of forest ecosystems.
A Perceptual Audio Representation for Low Rate Coding Based on Sines＋Noise Modeling
Institute of Scientific and Technical Information of China (English)
AL-MoussawyRaed; YINJunxun; HUANGJiancheng
2003-01-01
This work is concerned with the develop-ment and optimization of an efficient (which allows high compression ratios) and flexible (which allows scalability)signal model for perceptual audio coding at low bitrates.A novel, complementary two-part model for audio consist-ing of sines+ noise (SN) is presented. The SN model uses a sinusoidal model that explicitly takes into account the human hearing system by using psychoacoustically based matching pursuits. This technique iteratively extracts si-nusoidal components according to their perceptually im-portant signal-to-mask ratio (SMR). The second modeling stage is for noise-like components. The SN model uses the equivalent rectangular bandwidth (ERB) noise model;that is based on observations that for noise-like signals,energy in the ERBs describes the underlying signal with perceptual accuracy. The SN model has an intuitive inter-pretation in terms of discrete fourier transform (DFT) and can be efficiently implemented via the fast fourier trans-form (FFT). Informal listening tests demonstrate that the synthesized (sines + noise) signal is almost perceptually identical to the original. A compression ratio of typically 16 to 19.5 can be readily reached with SN model.
Directory of Open Access Journals (Sweden)
Martin Gugat
2012-05-01
Full Text Available Compressible squeeze film damping is a phenomenon of great importance for micromachines. For example, for the optimal design of an electrostatically actuated micro-cantilever mass sensor that operates in air, it is essential to have a model for the system behavior that can be evaluated efficiently. An analytical model that is based upon a solution of the linearized Reynolds equation has been given by R.B. Darling. In this paper we explain how some infinite sums that appear in Darling’s model can be evaluated analytically. As an example of applications of these closed form representations, we compute an approximation for the critical frequency where the spring component of the reaction force on the microplate, due to the motion through the air, is equal to a certain given multiple of the damping component. We also show how some double series that appear in the model can be reduced to a single infinite series that can be approximated efficiently.
Energy Technology Data Exchange (ETDEWEB)
X. Wu, G. J. Zhang
2008-04-23
Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations. • The project resulted in nine peer-reviewed publications and numerous scientific presentations that directly address the CCPP’s scientific objective of improving climate models. • We developed a package of improved convection parameterization that includes improved closure, trigger condition for convection, and comprehensive treatment of convective momentum transport. • We implemented the new convection parameterization package into several versions of the NCAR models (both coupled and uncoupled). This has led to 1) Improved simulation of seasonal migration of ITCZ; 2) Improved shortwave cloud radiative forcing response to El Niño in CAM3; 3) Improved MJO simulation in both uncoupled and coupled model; and 4) Improved simulation of ENSO in coupled model. • Using the dynamic core of CCM3, we isolated the dynamic effects of convective momentum transport. • We implemented mosaic treatment of subgrid-scale cloud-radiation interaction in CCM3.
On the representability of complete genomes by multiple competing finite-context (Markov models.
Directory of Open Access Journals (Sweden)
Armando J Pinho
Full Text Available A finite-context (Markov model of order k yields the probability distribution of the next symbol in a sequence of symbols, given the recent past up to depth k. Markov modeling has long been applied to DNA sequences, for example to find gene-coding regions. With the first studies came the discovery that DNA sequences are non-stationary: distinct regions require distinct model orders. Since then, Markov and hidden Markov models have been extensively used to describe the gene structure of prokaryotes and eukaryotes. However, to our knowledge, a comprehensive study about the potential of Markov models to describe complete genomes is still lacking. We address this gap in this paper. Our approach relies on (i multiple competing Markov models of different orders (ii careful programming techniques that allow orders as large as sixteen (iii adequate inverted repeat handling (iv probability estimates suited to the wide range of context depths used. To measure how well a model fits the data at a particular position in the sequence we use the negative logarithm of the probability estimate at that position. The measure yields information profiles of the sequence, which are of independent interest. The average over the entire sequence, which amounts to the average number of bits per base needed to describe the sequence, is used as a global performance measure. Our main conclusion is that, from the probabilistic or information theoretic point of view and according to this performance measure, multiple competing Markov models explain entire genomes almost as well or even better than state-of-the-art DNA compression methods, such as XM, which rely on very different statistical models. This is surprising, because Markov models are local (short-range, contrasting with the statistical models underlying other methods, where the extensive data repetitions in DNA sequences is explored, and therefore have a non-local character.
A Model for the representation of Speech Signals in Normal and Impaired Ears
DEFF Research Database (Denmark)
Christiansen, Thomas Ulrich
2004-01-01
A model of human auditory periphery, ranging from the outer ear to the auditory nerve, was developed. The model consists of the following components: outer ear transfer function, middle ear transfer function, basilar membrane velocity, inner hair cell receptor potential, inner hair cell probabili...
Assessing Argumentative Representation with Bayesian Network Models in Debatable Social Issues
Zhang, Zhidong; Lu, Jingyan
2014-01-01
This study seeks to obtain argumentation models, which represent argumentative processes and an assessment structure in secondary school debatable issues in the social sciences. The argumentation model was developed based on mixed methods, a combination of both theory-driven and data-driven methods. The coding system provided a combing point by…
Energy Technology Data Exchange (ETDEWEB)
Kolstad, C.D.
1997-12-31
The objective of the project is to enhance capabilities for integrated-assessment modeling in two major areas: learning/R and D/information acquisition and the nexus between climate dynamics and climate impacts. In the first of these areas, the author`s objective is to improve the way in which economic models deal with learning (endogenous and/or exogenous) within an economy. This would obviously include the R and D process, whereby knowledge about climate change (and many other things) is acquired over time and influences regulatory actions. The work in climate dynamics is focused in part on incorporating the regional climate-change results from equilibrium and transient general circulation model (GCM) simulations in the simplified integrated-assessment model. While the work is generic and therefore applicable to any integrated-assessment model, it is done in the context of a standard Ramsey growth model. Thus, the work involves theoretical conceptualization, empirical implementation in an integrated-assessment model, and analysis using that model.
Multi-dimensional digital human models for ergonomic analysis based on natural data representations
Moes, C.C.M.
2015-01-01
Digital human models are often used for ergonomic analysis of product designs, before physical prototypes are available. However, existing digital human models cannot be used to simultaneously: 1) consider the tissue loads and the physiological effects of the tissue loads; 2) optimise the product pr
Visual representations of the idealized cognitive model of anger in the Asterix album 'La Zizanie'
C. Forceville
2005-01-01
The conceptual metaphor program launched by Lakoff and Johnson [Metaphors We Live By, Chicago, University of Chicago Press, 1980] attempts to chart and describe the Idealized Cognitive Models (ICMs) that govern human thinking. The manifestations of these models studied hitherto, however, are almost
Agricultural activities that are both temporally and spatially variable, such as tillage and harvesting, can be challenging to represent as sources in air quality dispersion modeling. Existing models were mainly developed to predict concentrations resulting from a stationary and continuous source wi...
Room acoustics modeling using a point-cloud representation of the room geometry
DEFF Research Database (Denmark)
Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte
2013-01-01
within the room is simulated using a 3D point-cloud model to define a room geometry and a discrete ray-tracing method to calculate sound propagation paths within the enclosure. Based on a 3D point-cloud room model a voxel grid is created and each voxel has been assigned certain properties...
Multi-dimensional digital human models for ergonomic analysis based on natural data representations
Moes, C.C.M.
2015-01-01
Digital human models are often used for ergonomic analysis of product designs, before physical prototypes are available. However, existing digital human models cannot be used to simultaneously: 1) consider the tissue loads and the physiological effects of the tissue loads; 2) optimise the product
Subramanian, Aneesh C.; Palmer, Tim N.
2017-06-01
Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Superparameterization is a promising alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). In this paper, we compare the impact of initial random perturbations in embedded CRMs, within the ECMWF ensemble prediction system, with stochastically perturbed physical tendency (SPPT) scheme as a way to represent model uncertainty in medium-range tropical weather forecasts. We especially focus on forecasts of tropical convection and dynamics during MJO events in October-November 2011. These are well-studied events for MJO dynamics as they were also heavily observed during the DYNAMO field campaign. We show that a multiscale ensemble modeling approach helps improve forecasts of certain aspects of tropical convection during the MJO events, while it also tends to deteriorate certain large-scale dynamic fields with respect to stochastically perturbed physical tendencies approach that is used operationally at ECMWF.type="synopsis">type="main">Plain Language SummaryProbabilistic weather forecasts, especially for tropical weather, is still a significant challenge for global weather forecasting systems. Expressing uncertainty along with weather forecasts is important for informed decision making. Hence, we explore the use of a relatively new approach in using super-parameterization, where a cloud resolving model is embedded within a global
Towards a simple representation of chalk hydrology in land surface modelling
Rahman, Mostaquimur; Rosolem, Rafael
2017-01-01
Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a porous medium with fractures, is important to optimize water resource assessment and management practices in the United Kingdom (UK). However, incorporating the processes governing water movement through a chalk unsaturated zone in a numerical model is complicated mainly due to the fractured nature of chalk that creates high-velocity preferential flow paths in the subsurface. In general, flow through a chalk unsaturated zone is simulated using the dual-porosity concept, which often involves calibration of a relatively large number of model parameters, potentially undermining applications to large regions. In this study, a simplified parameterization, namely the Bulk Conductivity (BC) model, is proposed for simulating hydrology in a chalk unsaturated zone. This new parameterization introduces only two additional parameters (namely the macroporosity factor and the soil wetness threshold parameter for fracture flow activation) and uses the saturated hydraulic conductivity from the chalk matrix. The BC model is implemented in the Joint UK Land Environment Simulator (JULES) and applied to a study area encompassing the Kennet catchment in the southern UK. This parameterization is further calibrated at the point scale using soil moisture profile observations. The performance of the calibrated BC model in JULES is assessed and compared against the performance of both the default JULES parameterization and the uncalibrated version of the BC model implemented in JULES. Finally, the model performance at the catchment scale is evaluated against independent data sets (e.g. runoff and latent heat flux). The results demonstrate that the inclusion of the BC model in JULES improves simulated land surface mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple approach described in this study may be used to incorporate the flow processes through a chalk unsaturated
Directory of Open Access Journals (Sweden)
Timothy Lynam
2016-12-01
In this paper I describe the methods and results of applying topic modeling to 660 micronarratives collected from Australian academics / researchers, government employees, and members of the public in 2010-2011. The narrative fragments focused on adaptation to climate change (CC and hence provide an example of Australian society making sense of an emerging and conflict ridden phenomena. The results of the topic modeling reflect elements of SRs of adaptation to CC that are consistent with findings in the literature as well as being reasonably robust predictors of classes of action in response to CC. Bayesian Network (BN modeling was used to identify relationships among the topics (SR elements and in particular to identify relationships among topics, sentiment, and action. Finally the resulting model and topic modeling results are used to highlight differences in the salience of SR elements among social groups. The approach of linking topic modeling and BN modeling offers a new and encouraging approach to analysis for ongoing research on SRs.
Wang, Q. J.; Robertson, D. E.; Haines, C. L.
2009-02-01
Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.
Kantzas, Euripides; Quegan, Shaun
2015-04-01
Fire constitutes a violent and unpredictable pathway of carbon from the terrestrial biosphere into the atmosphere. Despite fire emissions being in many biomes of similar magnitude to that of Net Ecosystem Exchange, even the most complex Dynamic Vegetation Models (DVMs) embedded in IPCC General Circulation Models poorly represent fire behavior and dynamics, a fact which still remains understated. As DVMs operate on a deterministic, grid cell-by-grid cell basis they are unable to describe a host of important fire characteristics such as its propagation, magnitude of area burned and stochastic nature. Here we address these issues by describing a model-independent methodology which assimilates Earth Observation (EO) data by employing image analysis techniques and algorithms to offer a realistic fire disturbance regime in a DVM. This novel approach, with minimum model restructuring, manages to retain the Fire Return Interval produced by the model whilst assigning pragmatic characteristics to its fire outputs thus allowing realistic simulations of fire-related processes such as carbon injection into the atmosphere and permafrost degradation. We focus our simulations in the Arctic and specifically Canada and Russia and we offer a snippet of how this approach permits models to engage in post-fire dynamics hitherto absent from any other model regardless of complexity.
Tritzant-Martinez, Yalina; Zeng, Tao; Broom, Aron; Meiering, Elizabeth; Le Roy, Robert J.; Roy, Pierre-Nicholas
2013-06-01
We investigate the analytical representation of potentials of mean force (pmf) using the Morse/long-range (MLR) potential approach. The MLR method had previously been used to represent potential energy surfaces, and we assess its validity for representing free-energies. The advantage of the approach is that the potential of mean force data only needs to be calculated in the short to medium range region of the reaction coordinate while the long range can be handled analytically. This can result in significant savings in terms of computational effort since one does not need to cover the whole range of the reaction coordinate during simulations. The water dimer with rigid monomers whose interactions are described by the commonly used TIP4P model [W. Jorgensen and J. Madura, Mol. Phys. 56, 1381 (1985)], 10.1080/00268978500103111 is used as a test case. We first calculate an "exact" pmf using direct Monte Carlo (MC) integration and term such a calculation as our gold standard (GS). Second, we compare this GS with several MLR fits to the GS to test the validity of the fitting procedure. We then obtain the water dimer pmf using metadynamics simulations in a limited range of the reaction coordinate and show how the MLR treatment allows the accurate generation of the full pmf. We finally calculate the transition state theory rate constant for the water dimer dissociation process using the GS, the GS MLR fits, and the metadynamics MLR fits. Our approach can yield a compact, smooth, and accurate analytical representation of pmf data with reduced computational cost.
A representation theory for a class of vector autoregressive models for fractional processes
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
Based on an idea of Granger (1986), we analyze a new vector autoregressive model defined from the fractional lag operator 1-(1-L)^{d}. We first derive conditions in terms of the coefficients for the model to generate processes which are fractional of order zero. We then show that if there is a unit...... root, the model generates a fractional process X(t) of order d, d>0, for which there are vectors ß so that ß'X(t) is fractional of order d-b, 0...
Dehnen, H; Melnikov, V N
2003-01-01
Multidimensional cosmological-type model with n Einstein factor spaces in the theory with l scalar fields and multiple exponential potential is considered. The dynamics of the model near the singularity is reduced to a billiard on the (N-1)-dimensional Lobachevsky space H^{N-1}, N = n+l. It is shown that for n > 1 the oscillating behaviour near the singularity is absent and solutions have an asymptotical Kasner-like behavior. For the case of one scale factor (n =1) billiards with finite volumes (e.g. coinciding with that of the Bianchi-IX model) are described and oscillating behaviour of scalar fields near the singularity is obtained.
Path integral representation of spin foam models of 4d gravity
Conrady, Florian
2008-01-01
We give a unified description of all recent spin foam models introduced by Engle, Livine, Pereira and Rovelli (ELPR) and by Freidel and Krasnov (FK). We show that the FK models are, for all values of the Immirzi parameter, equivalent to path integrals of a discrete theory and we provide an explicit formula for the associated actions. We discuss the relation between the FK and ELPR models and also study the corresponding boundary states. For general Immirzi parameter, these are given by Alexandrov's and Livine's SO(4) projected states. For 0 <= gamma < 1, the states can be restricted to SU(2) spin networks.
Energy Technology Data Exchange (ETDEWEB)
Huang, Hsin-Yuan; Hall, Alex
2013-07-24
Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while
National Aeronautics and Space Administration — This article discusses several aspects of uncertainty represen- tation and management for model-based prognostics method- ologies based on our experience with Kalman...
Generic process model structures: towards a standard notation for abstract representations
CSIR Research Space (South Africa)
Van Der Merwe, A
2007-10-01
Full Text Available The identification of process model structures is usually complex and costly. If these structures can be reused across boundaries, this could not only benefit the internal structure of one application domain, but could also benefit organizations...
Room acoustics modeling using a point-cloud representation of the room geometry
DEFF Research Database (Denmark)
Markovic, Milos; Olesen, Søren Krarup; Hammershøi, Dorte
2013-01-01
Room acoustics modeling is usually based on the room geometry that is parametrically described prior to a sound transmission calculation. This is a highly room-specific task and rather time consuming if a complex geometry is to be described. Here, a run time generic method for an arbitrary room...... geometry acquisition is presented. The method exploits a depth sensor of the Kinect device that provides a point based information of a scanned room interior. After post-processing of the Kinect output data, a 3D point-cloud model of the room is obtained. Sound transmission between two selected points...... within the room is simulated using a 3D point-cloud model to define a room geometry and a discrete ray-tracing method to calculate sound propagation paths within the enclosure. Based on a 3D point-cloud room model a voxel grid is created and each voxel has been assigned certain properties...
Multiple integral representation for the trigonometric SOS model with domain wall boundaries
Galleas, W
2011-01-01
Using the dynamical Yang-Baxter algebra we derive a functional equation for the partition function of the trigonometric SOS model with domain wall boundary conditions. The solution of the equation is given in terms of a multiple contour integral.
Framework based on MDA and ontology for the representation and validation of components model
Directory of Open Access Journals (Sweden)
Nemury Silega-Martínez
2014-05-01
Full Text Available Model Driven Architecture is one of the most prominent proposals in the area of software development, accepted by both the research community and software development industry. Moreover, in recent years have shown the potential of ontologies for representing a particular domain, example of this are the results in the semantic web. In this paper we present a proposal based on Model Driven Architecture paradigm and is complemented with ontology to represent and validate component models. This component model is restricted to the development of business management systems, so it includes concepts from that domain. The use of the framework will reduce the number of errors made during the development of the system architecture, will increase standardization and productivity at this stage.
Representation of extreme precipitation events in Nepal in CMIP5 models
Jung, Woosung; Ryu, Byeong; Yun, Myong
2016-04-01
Nepal is highly vulnerable to of extreme climate events due in part to its mountainous terrain and lack of infrastructure. Climate change is projected to increase the frequency and magnitude of extreme temperature and precipitation events worldwide, with particularly severe impacts likely in Nepal. In this study we analyze the performance of general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) at simulating temperature and precipitation in Nepal relative to the NCEP Reanalysis II and observational data, and we project how extreme events may change during the 21st century. We analyze the uncertainty in our projections, and compare the current generation of models in CMIP5 to prior results in this region using older climate models. Finally, we consider the impact of our projections on Nepal's society and economy.
The Aggregate Representation of Terrestrial Land Covers Within Global Climate Models (GCM)
Shuttleworth, W. James; Sorooshian, Soroosh
1996-01-01
This project had four initial objectives: (1) to create a realistic coupled surface-atmosphere model to investigate the aggregate description of heterogeneous surfaces; (2) to develop a simple heuristic model of surface-atmosphere interactions; (3) using the above models, to test aggregation rules for a variety of realistic cover and meteorological conditions; and (4) to reconcile biosphere-atmosphere transfer scheme (BATS) land covers with those that can be recognized from space; Our progress in meeting these objectives can be summarized as follows. Objective 1: The first objective was achieved in the first year of the project by coupling the Biosphere-Atmosphere Transfer Scheme (BATS) with a proven two-dimensional model of the atmospheric boundary layer. The resulting model, BATS-ABL, is described in detail in a Masters thesis and reported in a paper in the Journal of Hydrology Objective 2: The potential value of the heuristic model was re-evaluated early in the project and a decision was made to focus subsequent research around modeling studies with the BATS-ABL model. The value of using such coupled surface-atmosphere models in this research area was further confirmed by the success of the Tucson Aggregation Workshop. Objective 3: There was excellent progress in using the BATS-ABL model to test aggregation rules for a variety of realistic covers. The foci of attention have been the site of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) in Kansas and one of the study sites of the Anglo-Brazilian Amazonian Climate Observational Study (ABRACOS) near the city of Manaus, Amazonas, Brazil. These two sites were selected because of the ready availability of relevant field data to validate and initiate the BATS-ABL model. The results of these tests are given in a Masters thesis, and reported in two papers. Objective 4: Progress far exceeded original expectations not only in reconciling BATS land covers with those that can be
De Brún, Aoife; McCarthy, Mary; McKenzie, Kenneth; McGloin, Aileen
2015-01-01
This study examined the Irish media discourse on obesity by employing the Common Sense Model of Illness Representations. A media sample of 368 transcripts was compiled from newspaper articles (n = 346), radio discussions (n = 5), and online news articles (n = 17) on overweight and obesity from the years 2005, 2007, and 2009. Using the Common Sense Model and framing theory to guide the investigation, a thematic analysis was conducted on the media sample. Analysis revealed that the behavioral dimensions of diet and activity levels were the most commonly cited causes of and interventions in obesity. The advertising industry was blamed for obesity, and there were calls for increased government action to tackle the issue. Physical illness and psychological consequences of obesity were prevalent in the sample, and analysis revealed that the economy, regardless of its state, was blamed for obesity. These results are discussed in terms of expectations of audience understandings of the issue and the implications of these dominant portrayals and framings on public support for interventions. The article also outlines the value of a qualitative analytical framework that combines the Common Sense Model and framing theory in the investigation of illness narratives.
Wienhöfer, J.; Zehe, E.
2012-04-01
Rapid lateral flow processes via preferential flow paths are widely accepted to play a key role for rainfall-runoff response in temperate humid headwater catchments. A quantitative description of these processes, however, is still a major challenge in hydrological research, not least because detailed information about the architecture of subsurface flow paths are often impossible to obtain at a natural site without disturbing the system. Our study combines physically based modelling and field observations with the objective to better understand how flow network configurations influence the hydrological response of hillslopes. The system under investigation is a forested hillslope with a small perennial spring at the study area Heumöser, a headwater catchment of the Dornbirnerach in Vorarlberg, Austria. In-situ points measurements of field-saturated hydraulic conductivity and dye staining experiments at the plot scale revealed that shrinkage cracks and biogenic macropores function as preferential flow paths in the fine-textured soils of the study area, and these preferential flow structures were active in fast subsurface transport of artificial tracers at the hillslope scale. For modelling of water and solute transport, we followed the approach of implementing preferential flow paths as spatially explicit structures of high hydraulic conductivity and low retention within the 2D process-based model CATFLOW. Many potential configurations of the flow path network were generated as realisations of a stochastic process informed by macropore characteristics derived from the plot scale observations. Together with different realisations of soil hydraulic parameters, this approach results in a Monte Carlo study. The model setups were used for short-term simulation of a sprinkling and tracer experiment, and the results were evaluated against measured discharges and tracer breakthrough curves. Although both criteria were taken for model evaluation, still several model setups
Sociocognitive Perspectives on Representation.
Jacob, Elin K.; Shaw, Debora
1998-01-01
Discusses research dealing with the cognitive aspects of formal systems of knowledge representation. Highlights include the origins and theoretical foundations of the cognitive viewpoint; cognition and information science; cognitivism, mentalism, and subjective individualism; categorization; mental models; and sociocognitive approaches to indexing…
Sociocognitive Perspectives on Representation.
Jacob, Elin K.; Shaw, Debora
1998-01-01
Discusses research dealing with the cognitive aspects of formal systems of knowledge representation. Highlights include the origins and theoretical foundations of the cognitive viewpoint; cognition and information science; cognitivism, mentalism, and subjective individualism; categorization; mental models; and sociocognitive approaches to indexing…
Miguel, Isabel; Valentim, Joaquim Pires; Carugati, Felice
2013-01-01
Within the theoretical framework of social representations theory, a substantial body of literature has advocated and shown that, as interpretative systems and forms of knowledge concurring in the construction of a social reality, social representations are guides for action, influencing behaviours and social relations. Based on this assumption,…
Miguel, Isabel; Valentim, Joaquim Pires; Carugati, Felice
2013-01-01
Within the theoretical framework of social representations theory, a substantial body of literature has advocated and shown that, as interpretative systems and forms of knowledge concurring in the construction of a social reality, social representations are guides for action, influencing behaviours and social relations. Based on this assumption,…
Energy Technology Data Exchange (ETDEWEB)
Campos, Tarcisio P.R.; Andrade, Joao Paulo Lopes de; Costa, Igor Temponi; Teixeira, Cleuza H. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg
2005-07-01
Animal models have been used in experimentation with ionizing radiation. The evaluation of the energy absorbed per unit tissue mass in vivo transported by nuclear particles is a task to be performed before experimentation. Stochastic or deterministic methodology can be applied, however the dosimetric protocols applied in radiotherapy center cannot be applied directly due to the inherent small geometry and chemical composition of the animal distinct from human. The present article addresses a method in development that will predict the dose distribution into the rabbit thorax based on the solution of the transport phenomena in a voxel model. The model will be applied to simulate a seed implant experiment on a rabbit. Herein, the construction of the three-dimensional voxel model anthropomorphic -anthropometrics to the rabbit is presented. The model is assembling from a set of computer tomography of the rabbit. The computational phantom of the thorax starts at the digitalisation of the CT images, tissue definition, and color image representation of each tissue and organ. The chemical composition and mass density of each tissue is evaluated as similar date presented by ICRU-44. To treat the images, a code namely SISCODES, developed in house, was used. The in vivo experiment that will be simulated is also described. That is a implant of five seeds of 1.6x2 mm performed in a rabbit's liver. The perspective of this work is the application of the model in dosimetric studies predicting the dose distribution around the seed's implanted in vivo experiments. (author)
Energy Technology Data Exchange (ETDEWEB)
McKone, T.E.; Bennett, D.H.
2002-08-01
In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.
Towards Multimodal Content Representation
Bunt, Harry
2009-01-01
Multimodal interfaces, combining the use of speech, graphics, gestures, and facial expressions in input and output, promise to provide new possibilities to deal with information in more effective and efficient ways, supporting for instance: - the understanding of possibly imprecise, partial or ambiguous multimodal input; - the generation of coordinated, cohesive, and coherent multimodal presentations; - the management of multimodal interaction (e.g., task completion, adapting the interface, error prevention) by representing and exploiting models of the user, the domain, the task, the interactive context, and the media (e.g. text, audio, video). The present document is intended to support the discussion on multimodal content representation, its possible objectives and basic constraints, and how the definition of a generic representation framework for multimodal content representation may be approached. It takes into account the results of the Dagstuhl workshop, in particular those of the informal working group...
Multi-resolution representation of digital terrain models with terrain features preservation
Institute of Scientific and Technical Information of China (English)
2008-01-01
multi-resolution TIN model is an important issue in the contexts of visu-alization,virtual reality (VR),and geographic information systems (GIS). This paper proposes a new method for constructing multi-resolution TIN models with multi-scale topographic features preservation. The proposed method is driven by a half-edge collapse operation in a greedy framework and employs a new quadric error metric to efficiently measure geometric errors. We define topographic features in a multi-scale manner using a center-surround operator on Gaussian-weighted mean curvatures. Experimental results demonstrate that the proposed method performs better than previous methods in terms of topographic features preservation,and is able to achieve multi-resolution TIN models with a higher accuracy.
Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves
Directory of Open Access Journals (Sweden)
Christof Wehmeyer
2014-08-01
Full Text Available The rising demand for renewable energy solutions is forcing the established industries to expand and continue evolving. For the wind energy sector, the vast resources in deep sea locations have encouraged research towards the installation of turbines in deeper waters. One of the most promising technologies able to solve this challenge is the floating wind turbine foundation. For the ultimate limit state, where higher order wave loads have a significant influence, a design tool that couples non-linear excitations with structural dynamics is required. To properly describe the behavior of such a structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial software, where the need for the coupled higher order dynamics proposed in this paper becomes evident.
Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model
Energy Technology Data Exchange (ETDEWEB)
Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.
2014-03-01
An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.
Umakanth, U.
2015-11-07
The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40–50 day scale is captured by all models with a slight change in amplitude, however, the 40–50 day peak in precipitation is completely absent in RegCM-EG. The space–time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period <20 days) whereas little higher periods (>30 days) along with dominated low periods (<20 days) observed during WM years. During SM, RegCM-EE is dominated with high frequency oscillations (period <20 days) whereas in WM, RegCM-EE is dominated with periods >20
Umakanth, U.; Kesarkar, Amit P.; Raju, Attada; Vijaya Bhaskar Rao, S.
2016-08-01
The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40-50 day scale is captured by all models with a slight change in amplitude, however, the 40-50 day peak in precipitation is completely absent in RegCM-EG. The space-time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period 30 days) along with dominated low periods (20 days. Except RegCM-EE, all other models fail to capture the observed spectral features for SM and WM years.
Clothing evaporative heat resistance - Proposal for improved representation in standards and models
Havenith, G.; Holmér, I.; Hartog, E.A. den; Parsons, K.C.
1999-01-01
Clothing heat and vapour resistances are important inputs for standards and models dealing with thermal comfort, heat- and cold-stress. A vast database of static clothing heat resistance values is available, and this was recently expanded with correction equations to account for effects of movement
Clothing evaporative heat resistance - Proposal for improved representation in standards and models
Havenith, G.; Holmér, I.; Hartog, E.A. den; Parsons, K.C.
1999-01-01
Clothing heat and vapour resistances are important inputs for standards and models dealing with thermal comfort, heat- and cold-stress. A vast database of static clothing heat resistance values is available, and this was recently expanded with correction equations to account for effects of movement
Simulations Of Field Theories In World Line Representation (higgs Model, Phase Transition)
Pap, A L
1998-01-01
We have studied phase transition of systems of random paths numerically. Random paths have generated considerable interest for three reasons. First: Random paths play a central role in the investigation of polymers and proteins. Second: They also serve as a model for the more complicated surfaces and higher dimensional manifolds which are necessary ingredients of string theories and quantum gravity...
An alternative eddy-viscosity representation and its implication to turbulence modeling
Jakirlic, Suad; Jovanovic, Jovan; Basara, Branislav
2013-11-01
Large majority of turbulence models in the RANS framework (it holds also in the case of the LES method) is based on the eddy-viscosity rationale. The principle task of modeling the Reynolds stress tensor reduces to modeling the eddy-viscosity, representing, according to Boussinesq (1877), the ``coefficient of proportionality'' between the Reynolds stress and mean rate of strain tensors. In the present contribution an extended formulation based on the least square approach applied to the Boussinesq's correlation is presented. Furthermore, a Taylor-microscale-based formulation is derived originating from the equilibrium assumption related to the equality between the production and dissipation rates of kinetic energy of turbulence. Finally, an expression is proposed reflecting the Reynolds stress anisotropy influence on the eddy-viscosity damping by approaching the solid wall as well as including an appropriate length-scale switch accounting for the viscosity effects through inclusion of the Kolmogorov scales blended with those of the energy-containing eddies. The latter formulation is successfully applied in the framework of an instability-sensitive Reynolds stress model of turbulence. The afore-mentioned eddy-viscosity definitions are comparatively assessed in a series of wall-bounded flow configurations (including separation) in a Reynolds number range.
Fan, Jiang-Ping
2006-01-01
In this article, the author demonstrates that the semiotic model proposed by Charles Morris enables us to optimize our understanding of technical communication practices and provides a good point of inquiry. To illustrate this point, the author exemplifies the semiotic approaches by scholars in technical communication and elaborates Morris's model…
Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory
Muthen, Bengt; Asparouhov, Tihomir
2012-01-01
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…
Directory of Open Access Journals (Sweden)
Ashish Kumari
2012-01-01
Full Text Available Extended Finite State Machine uses the formal description language to model the requirement specification of the system. The system models are frequently changed because of the specification changes. We can show the changes in specification by changing the model represented using finite state machine. To test the modified parts of the model the selective test generation techniques are used. However, the regression test suits still may be very large according to the size. In this paper, we have discussed the method whichdefine the test suits reduction and the requirement specification that used for testing the main system after the modifications in the requirements and implementation. Extended finite state machine uses the state transition diagram for representing the requirement specification. It shows how system changes states and action and variable used during each transition. After that data dependency andcontrol dependency are find out among the transitions of state transition diagram. After these dependencies we can find out the affecting and affected portion in the system introduced by the modification. The main condition is: “If two test cases generate same affecting and affected pattern, it means it is enough to implement only one test case rather than two.” So using this approach we can substantially reduce the size of original test suite.
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, B.; Karambiri, H. [Institut International d' Ingenierie de l' Eau et de l' Environnement (2iE), Ouagadougou 01 (Burkina Faso); Polcher, J. [Laboratoire de Meteorologie Dynamique du CNRS, Institut Pierre Simon Laplace, Paris Cedex 05 (France); Rockel, B. [Helmholtz-Zentrum Geesthacht Institute of Coastal Research/Group Regional Atmospheric Modeling, Geesthacht (Germany)
2012-09-15
West African monsoon is one of the most challenging climate components to model. Five regional climate models (RCMs) were run over the West African region with two lateral boundary conditions, ERA-Interim re-analysis and simulations from two general circulation models (GCMs). Two sets of daily rainfall data were generated from these boundary conditions. These simulated rainfall data are analyzed here in comparison to daily rainfall data collected over a network of ten synoptic stations in Burkina Faso from 1990 to 2004. The analyses are based on a description of the rainy season throughout a number of it's characteristics. It was found that the two sets of rainfall data produced with the two driving data present significant biases. The RCMs generally produce too frequent low rainfall values (between 0.1 and 5 mm/day) and too high extreme rainfalls (more than twice the observed values). The high frequency of low rainfall events in the RCMs induces shorter dry spells at the rainfall thresholds of 0.1-1 mm/day. Altogether, there are large disagreements between the models on the simulate season duration and the annual rainfall amounts but most striking are their differences in representing the distribution of rainfall intensity. It is remarkable that these conclusions are valid whether the RCMs are driven by re-analysis or GCMs. In none of the analyzed rainy season characteristics, a significant improvement of their representation can be found when the RCM is forced by the re-analysis, indicating that these deficiencies are intrinsic to the models. (orig.)
Schmid, P. J.; Sayadi, T.
2017-03-01
The dynamics of coherent structures near the wall of a turbulent boundary layer is investigated with the aim of a low-dimensional representation of its essential features. Based on a triple decomposition into mean, coherent and incoherent motion and a dynamic mode decomposition to recover statistical information about the incoherent part of the flow field, a driven linear system coupling first- and second-order moments of the coherent structures is derived and analysed. The transfer function for this system, evaluated for a wall-parallel plane, confirms a strong bias towards streamwise elongated structures, and is proposed as an `impedance' boundary condition which replaces the bulk of the transport between the coherent velocity field and the coherent Reynolds stresses, thus acting as a wall model for large-eddy simulations (LES). It is interesting to note that the boundary condition is non-local in space and time. The extracted model is capable of reproducing the principal Reynolds stress components for the pretransitional, transitional and fully turbulent boundary layer.
Watson, Laura; Michou, Martine; Nabat, Pierre; Saint-Martin, David
2017-04-01
Aerosol radiative forcing is one of the greatest sources of uncertainty when projecting future climate change. Aerosols vary in time and in space and alter the Earth's radiative balance directly, by absorbing and scattering radiation, and indirectly, by interacting with clouds and altering cloud microphysics. A series of sensitivity tests were performed using the coupled ocean-atmosphere general circulation model CNRM-CM in order to investigate how the representation of aerosols within the model can affect climate. These tests included looking at the difference between using constant emissions versus using emissions that evolve over a period of thirty years; examining the impacts of including indirect effects from sea salt and organics; altering the aerosol optical properties; altering the vertical distribution of aerosols, and using an interactive aerosol scheme versus using 2-D climatologies. The results of these sensitivity tests show how modifying certain aspects of the aerosol scheme can significantly affect radiative flux, the cloud radiative effect and global surface temperatures. Of particular note is the importance of the indirect effect of sea salt aerosols, which has more of a significant impact upon climate than the direct radiative forcing of sea salt aerosols; and the impact of using an interactive aerosol scheme instead of 2-D climatologies, which results in more net radiative flux at the top of the atmosphere and slightly warmer temperatures at land surfaces.
Document Representation and Clustering with WordNet Based Similarity Rough Set Model
Directory of Open Access Journals (Sweden)
Koichi Yamada
2011-09-01
Full Text Available Most studies on document clustering till date use Vector Space Model (VSM to represent documents in the document space, where documents are denoted by a vector in a word vector space. The standard VSM does not take into account the semantic relatedness between terms. Thus, terms with some semantic similarity are dealt with in the same way as terms with no semantic relatedness. Since this unconcern about semantics reduces the quality of clustering results, many studies have proposed various approaches to introduce knowledge of semantic relatedness into VSM model. Those approaches give better results than the standard VSM. However they still have their own issues. We propose a new approach as a combination of two approaches, one of which uses Rough Sets theory and co-occurrence of terms, and the other uses WordNet knowledge to solve these issues. Experiments for its evaluation show advantage of the proposed approach over the others.
Road Surface Modeling and Representation from Point Cloud Based on Fuzzy Clustering
Institute of Scientific and Technical Information of China (English)
ZHANG Yi; YAN Li
2007-01-01
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances.This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface.
Beyond the detection of students´ mental models. An integrative representational approach
Directory of Open Access Journals (Sweden)
Ileana Maria Greca
2002-01-01
Full Text Available In this paper we initially discuss some limitations of the mental model theoretical framework for research in science education. Then, after an analysis of Vergnaud´s conceptual fields theory we propose an approach that integrating elements of both theoretical frameworks could provide a better understanding of some cognitive processes involved in the learning of scientific concepts. Finally, we suggest possible implications of this approach for science teaching as well as for research in this area.
A lattice-model representation of continuous-time random walks
Energy Technology Data Exchange (ETDEWEB)
Campos, Daniel [School of Mathematics, Department of Applied Mathematics, University of Manchester, Manchester M60 1QD (United Kingdom); Mendez, Vicenc [Grup de Fisica Estadistica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)], E-mail: daniel.campos@uab.es, E-mail: vicenc.mendez@uab.es
2008-02-29
We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied.
Using GOMS models and hypertext to create representations of medical procedures for online display
Gugerty, Leo; Halgren, Shannon; Gosbee, John; Rudisill, Marianne
1991-01-01
This study investigated two methods to improve organization and presentation of computer-based medical procedures. A literature review suggested that the GOMS (goals, operators, methods, and selecton rules) model can assist in rigorous task analysis, which can then help generate initial design ideas for the human-computer interface. GOMS model are hierarchical in nature, so this study also investigated the effect of hierarchical, hypertext interfaces. We used a 2 x 2 between subjects design, including the following independent variables: procedure organization - GOMS model based vs. medical-textbook based; navigation type - hierarchical vs. linear (booklike). After naive subjects studies the online procedures, measures were taken of their memory for the content and the organization of the procedures. This design was repeated for two medical procedures. For one procedure, subjects who studied GOMS-based and hierarchical procedures remembered more about the procedures than other subjects. The results for the other procedure were less clear. However, data for both procedures showed a 'GOMSification effect'. That is, when asked to do a free recall of a procedure, subjects who had studies a textbook procedure often recalled key information in a location inconsistent with the procedure they actually studied, but consistent with the GOMS-based procedure.
Energy Technology Data Exchange (ETDEWEB)
Elsworth, Derek [Pennsylvania State Univ., State College, PA (United States); Izadi, Ghazal [Pennsylvania State Univ., State College, PA (United States); Gan, Quan [Pennsylvania State Univ., State College, PA (United States); Fang, Yi [Pennsylvania State Univ., State College, PA (United States); Taron, Josh [US Geological Survey, Menlo Park, CA (United States); Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-07-28
This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing and severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.
Cho, Sun-Joo; Gilbert, Jennifer K; Goodwin, Amanda P
2013-10-01
This paper presents an explanatory multidimensional multilevel random item response model and its application to reading data with multilevel item structure. The model includes multilevel random item parameters that allow consideration of variability in item parameters at both item and item group levels. Item-level random item parameters were included to model unexplained variance remaining when item related covariates were used to explain variation in item difficulties. Item group-level random item parameters were included to model dependency in item responses among items having the same item stem. Using the model, this study examined the dimensionality of a person's word knowledge, termed lexical representation, and how aspects of morphological knowledge contributed to lexical representations for different persons, items, and item groups.
Pike, Richard J.
2002-01-01
Terrain modeling, the practice of ground-surface quantification, is an amalgam of Earth science, mathematics, engineering, and computer science. The discipline is known variously as geomorphometry (or simply morphometry), terrain analysis, and quantitative geomorphology. It continues to grow through myriad applications to hydrology, geohazards mapping, tectonics, sea-floor and planetary exploration, and other fields. Dating nominally to the co-founders of academic geography, Alexander von Humboldt (1808, 1817) and Carl Ritter (1826, 1828), the field was revolutionized late in the 20th Century by the computer manipulation of spatial arrays of terrain heights, or digital elevation models (DEMs), which can quantify and portray ground-surface form over large areas (Maune, 2001). Morphometric procedures are implemented routinely by commercial geographic information systems (GIS) as well as specialized software (Harvey and Eash, 1996; Köthe and others, 1996; ESRI, 1997; Drzewiecki et al., 1999; Dikau and Saurer, 1999; Djokic and Maidment, 2000; Wilson and Gallant, 2000; Breuer, 2001; Guth, 2001; Eastman, 2002). The new Earth Surface edition of the Journal of Geophysical Research, specializing in surficial processes, is the latest of many publication venues for terrain modeling. This is the fourth update of a bibliography and introduction to terrain modeling (Pike, 1993, 1995, 1996, 1999) designed to collect the diverse, scattered literature on surface measurement as a resource for the research community. The use of DEMs in science and technology continues to accelerate and diversify (Pike, 2000a). New work appears so frequently that a sampling must suffice to represent the vast literature. This report adds 1636 entries to the 4374 in the four earlier publications1. Forty-eight additional entries correct dead Internet links and other errors found in the prior listings. Chronicling the history of terrain modeling, many entries in this report predate the 1999 supplement
Representation of horizontal strain due to tidal bending by observation and modeling
Rack, Wolfgang; King, Matt; Marsh, Oliver; Wild, Christian; Floricioiu, Dana
2017-04-01
An important control of ice sheet mass balance is the ice dynamics in the grounding zones around Antarctica. On many outflow glaciers a large temporal variability in ice flow has been observed, which is at least partly related to tides. Here we investigate the tide induced short term ice deformation in an ice shelf grounding zone and the related bending stresses and strain. We make use of the arguably most precise measurement method, differential SAR interferometry, in combination with ground based measurements and model assumptions for tidal bending. Ground validation and satellite data have been acquired within a dedicated field campaign. The Southern McMurdo Ice Shelf in the Western Ross Ice Shelf region was chosen as the experiment site. This area is optimal for the data interpretation because of a simple grounding line configuration, small ice flux, and favourable satellite imaging geometry. It is also a safe area which allowed the installation of tiltmeters and GPS stations, and glaciological measurements such as ice thickness and snow accumulation. From November 2014 to January 2015 the tidal movement was recorded over a period of 2.5 months. TerrSAR-X radar images have been acquired over the same period as a basis to derive ice shelf flexure maps. Despite the viscoelastic effects in ice shelf bending a simple elastic bending model for a beam of finite ice thickness can largely explain the GPS-observed surface strain. Using the same model and taking into account the viewing geometry of the satellite radar, it is now possible to separate horizontal and vertical displacement components in the satellite data. As a result we can obtain more realistic ice shelf flexure profiles from the interferometric SAR measurement. The newly derived flexure profiles are therefore more suitable to recover viscoelastic effects of tidal bending in grounding zones of ice shelves and outlet glaciers. These effects would have otherwise remained unnoticed.
Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin
2015-09-22
Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1
Modelling the Noise-Robustness of Infants' Word Representations: The Impact of Previous Experience.
Directory of Open Access Journals (Sweden)
Christina Bergmann
Full Text Available During language acquisition, infants frequently encounter ambient noise. We present a computational model to address whether specific acoustic processing abilities are necessary to detect known words in moderate noise--an ability attested experimentally in infants. The model implements a general purpose speech encoding and word detection procedure. Importantly, the model contains no dedicated processes for removing or cancelling out ambient noise, and it can replicate the patterns of results obtained in several infant experiments. In addition to noise, we also addressed the role of previous experience with particular target words: does the frequency of a word matter, and does it play a role whether that word has been spoken by one or multiple speakers? The simulation results show that both factors affect noise robustness. We also investigated how robust word detection is to changes in speaker identity by comparing words spoken by known versus unknown speakers during the simulated test. This factor interacted with both noise level and past experience, showing that an increase in exposure is only helpful when a familiar speaker provides the test material. Added variability proved helpful only when encountering an unknown speaker. Finally, we addressed whether infants need to recognise specific words, or whether a more parsimonious explanation of infant behaviour, which we refer to as matching, is sufficient. Recognition involves a focus of attention on a specific target word, while matching only requires finding the best correspondence of acoustic input to a known pattern in the memory. Attending to a specific target word proves to be more noise robust, but a general word matching procedure can be sufficient to simulate experimental data stemming from young infants. A change from acoustic matching to targeted recognition provides an explanation of the improvements observed in infants around their first birthday. In summary, we present a
Directory of Open Access Journals (Sweden)
P. Mathiot
2017-07-01
Full Text Available Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface, inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.
Mathiot, Pierre; Jenkins, Adrian; Harris, Christopher; Madec, Gurvan
2017-07-01
Ice-shelf-ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean-sea ice model NEMO (Nucleus for European Modelling of the Ocean) currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface), inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.
Sammartano, G.; Spanò, A.
2017-05-01
It is important nowadays to underline some relevant topics concerning the effective contribution of 3D high detailed products derived from innovation and integration of Geomatics technologies, allowing a remarkable development in descriptive metric capabilities, supporting and improving the material recording, representation, analysis and characterization about alteration of the constructive systems. Considering the relevance of the complex interdisciplinary research of these issues that move around the Cultural Heritage safeguard and due to its extreme vulnerability, these models must give a response to different problems. Primarily they has to provide complete models on which to pursue accurate morpho-dimensional documentation, and to base structural assessment, decay investigations, and consequently to underpin restoration practices and support operational workflow in CH assets monitoring. Some peculiarities of new methods for semi-automatic processing algorithms are thus evidenced, advantaging their proficiency to behave as tools for a more sustainable approach in the general process of preservation and protection. Specifically about the ancient masonries documentation, the chance of using digital products derived from very high scale models, as the detailed orthoimages projection and surfaces development offers many opportunities. Here, a late-medieval stratified dovecote tower in Verolengo (TO) with a particular trunk-conical shape had been analysed in order to reconstruct an identity and a historical and architectural framework, de facto not recognized yet. A 3D reconstruction by dense matching techniques will be presented, in the complex context that are the vertical high buildings, presenting one of the highest level of vulnerability. The importance of the 3D model availability, closely connected to dense radiometric information, has been particularly expressed in two main direction for the diagnosis both of volumetric structure assessment and the material
Directory of Open Access Journals (Sweden)
G. Sammartano
2017-05-01
Full Text Available It is important nowadays to underline some relevant topics concerning the effective contribution of 3D high detailed products derived from innovation and integration of Geomatics technologies, allowing a remarkable development in descriptive metric capabilities, supporting and improving the material recording, representation, analysis and characterization about alteration of the constructive systems. Considering the relevance of the complex interdisciplinary research of these issues that move around the Cultural Heritage safeguard and due to its extreme vulnerability, these models must give a response to different problems. Primarily they has to provide complete models on which to pursue accurate morpho-dimensional documentation, and to base structural assessment, decay investigations, and consequently to underpin restoration practices and support operational workflow in CH assets monitoring. Some peculiarities of new methods for semi-automatic processing algorithms are thus evidenced, advantaging their proficiency to behave as tools for a more sustainable approach in the general process of preservation and protection. Specifically about the ancient masonries documentation, the chance of using digital products derived from very high scale models, as the detailed orthoimages projection and surfaces development offers many opportunities. Here, a late-medieval stratified dovecote tower in Verolengo (TO with a particular trunk-conical shape had been analysed in order to reconstruct an identity and a historical and architectural framework, de facto not recognized yet. A 3D reconstruction by dense matching techniques will be presented, in the complex context that are the vertical high buildings, presenting one of the highest level of vulnerability. The importance of the 3D model availability, closely connected to dense radiometric information, has been particularly expressed in two main direction for the diagnosis both of volumetric structure
Directory of Open Access Journals (Sweden)
Soldatova S.
2015-12-01
Full Text Available This article addresses the task of creating a regional Social Accounting Matrix (SAM in the Kaliningrad region. Analyzing the behavior of economic systems of national and sub-national levels in the changing environment is one of the main objectives of macroeconomic research. Matrices are used in examining the flow of financial resources, which makes it possible to conduct a comprehensive analysis of commodity and cash flows at the regional level. The study identifies key data sources for matrix development and presents its main results: the data sources for the accounts development and filling the social accounting matrix are identified, regional accounts consolidated, the structure of regional matrix devised, and the multiplier of the regional social accounting matrix calculated. An important aspect of this approach is the set target, which determines the composition of matrix accounts representing different aspects of regional performance. The calculated multiplier suggests the possibility of modelling of a socioeconomic system for the region using a social accounting matrix. The regional modelling approach ensures the matrix compliance with the methodological requirements of the national system.
Directory of Open Access Journals (Sweden)
Soldatova S.
2015-08-01
Full Text Available This article addresses the task of creating a regional Social Accounting Matrix (SAM in the Kaliningrad region. Analyzing the behavior of economic systems of national and sub-national levels in the changing environment is one of the main objectives of macroeconomic research. Matrices are used in examining the flow of financial resources, which makes it possible to conduct a comprehensive analysis of commodity and cash flows at the regional level. The study identifies key data sources for matrix development and presents its main results: the data sources for the accounts development and filling the social accounting matrix are identified, regional accounts consolidated, the structure of regional matrix devised, and the multiplier of the regional social accounting matrix calculated. An important aspect of this approach is the set target, which determines the composition of matrix accounts representing different aspects of regional performance. The calculated multiplier suggests the possibility of modelling of a socioeconomic system for the region using a social accounting matrix. The regional modelling approach ensures the matrix compliance with the methodological requirements of the national system
Directory of Open Access Journals (Sweden)
Soldatova Svetlana
2015-09-01
Full Text Available This article addresses the task of creating a regional Social Accounting Matrix (SAM in the Kaliningrad region. Analyzing the behavior of economic systems of national and sub-national levels in the changing environment is one of the main objectives of macroeconomic research. Matrices are used in examining the flow of financial resources, which makes it possible to conduct a comprehensive analysis of commodity and cash flows at the regional level. The study identifies key data sources for matrix development and presents its main results: the data sources for the accounts development and filling the social accounting matrix are identified, regional accounts consolidated, the structure of regional matrix devised, and the multiplier of the regional social accounting matrix calculated. An important aspect of this approach is the set target, which determines the composition of matrix accounts representing different aspects of regional performance. The calculated multiplier suggests the possibility of modelling of a socioeconomic system for the region using a social accounting matrix. The regional modelling approach ensures the matrix compliance with the methodological requirements of the national system
Morchid, M.; Josselin, D.; Portilla, Y.; Dufour, R.; Altman, E.; Linarès, G.
2015-09-01
Social Networks became a major actor in information propagation. Using the Twitter popular platform, mobile users post or relay messages from different locations. The tweet content, meaning and location, show how an event-such as the bursty one "JeSuisCharlie", happened in France in January 2015, is comprehended in different countries. This research aims at clustering the tweets according to the co-occurrence of their terms, including the country, and forecasting the probable country of a non-located tweet, knowing its content. First, we present the process of collecting a large quantity of data from the Twitter website. We finally have a set of 2,189 located tweets about "Charlie", from the 7th to the 14th of January. We describe an original method adapted from the Author-Topic (AT) model based on the Latent Dirichlet Allocation (LDA) method. We define an homogeneous space containing both lexical content (words) and spatial information (country). During a training process on a part of the sample, we provide a set of clusters (topics) based on statistical relations between lexical and spatial terms. During a clustering task, we evaluate the method effectiveness on the rest of the sample that reaches up to 95% of good assignment. It shows that our model is pertinent to foresee tweet location after a learning process.
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Quasi-static tests have been performed on triaxially braided carbon fiber composite materials with large unit cell sizes. The effects of different fibers and matrix materials on the failure mode were investigated. Simulations of the tests have been performed using the transient dynamic finite element code, LS-DYNA. However, the wide range of failure modes observed for the triaxial braided carbon fiber composites during tests could not be simulated using composite material models currently available within LS-DYNA. A macroscopic approach has been developed that provides better simulation of the material response in these materials. This approach uses full-field optical measurement techniques to measure local failures during quasi-static testing. Information from these experiments is then used along with the current material models available in LS-DYNA to simulate the influence of the braided architecture on the failure process. This method uses two-dimensional shell elements with integration points through the thickness of the elements to represent the different layers of braid along with a new analytical method for the import of material stiffness and failure data directly. The present method is being used to examine the effect of material properties on the failure process. The experimental approaches used to obtain the required data will be described, and preliminary results of the numerical analysis will be presented.
Yang, Shanshan; Cai, Suxian; Zheng, Fang; Wu, Yunfeng; Liu, Kaizhi; Wu, Meihong; Zou, Quan; Chen, Jian
2014-10-01
This article applies advanced signal processing and computational methods to study the subtle fluctuations in knee joint vibroarthrographic (VAG) signals. Two new features are extracted to characterize the fluctuations of VAG signals. The fractal scaling index parameter is computed using the detrended fluctuation analysis algorithm to describe the fluctuations associated with intrinsic correlations in the VAG signal. The averaged envelope amplitude feature measures the difference between the upper and lower envelopes averaged over an entire VAG signal. Statistical analysis with the Kolmogorov-Smirnov test indicates that both of the fractal scaling index (p=0.0001) and averaged envelope amplitude (p=0.0001) features are significantly different between the normal and pathological signal groups. The bivariate Gaussian kernels are utilized for modeling the densities of normal and pathological signals in the two-dimensional feature space. Based on the feature densities estimated, the Bayesian decision rule makes better signal classifications than the least-squares support vector machine, with the overall classification accuracy of 88% and the area of 0.957 under the receiver operating characteristic (ROC) curve. Such VAG signal classification results are better than those reported in the state-of-the-art literature. The fluctuation features of VAG signals developed in the present study can provide useful information on the pathological conditions of degenerative knee joints. Classification results demonstrate the effectiveness of the kernel feature density modeling method for computer-aided VAG signal analysis.
Graphical representation of life paths to better convey results of decision models to patients.
Rubrichi, Stefania; Rognoni, Carla; Sacchi, Lucia; Parimbelli, Enea; Napolitano, Carlo; Mazzanti, Andrea; Quaglini, Silvana
2015-04-01
The inclusion of patients' perspectives in clinical practice has become an important matter for health professionals, in view of the increasing attention to patient-centered care. In this regard, this report illustrates a method for developing a visual aid that supports the physician in the process of informing patients about a critical decisional problem. In particular, we focused on interpretation of the results of decision trees embedding Markov models implemented with the commercial tool TreeAge Pro. Starting from patient-level simulations and exploiting some advanced functionalities of TreeAge Pro, we combined results to produce a novel graphical output that represents the distributions of outcomes over the lifetime for the different decision options, thus becoming a more informative decision support in a context of shared decision making. The training example used to illustrate the method is a decision tree for thromboembolism risk prevention in patients with nonvalvular atrial fibrillation.
A Transferrable Belief Model Representation for Physical Security of Nuclear Materials
Energy Technology Data Exchange (ETDEWEB)
David Gerts
2010-07-01
This work analyzed various probabilistic methods such as classic statistics, Bayesian inference, possibilistic theory, and Dempster-Shafer theory of belief functions for the potential insight offered into the physical security of nuclear materials as well as more broad application to nuclear non-proliferation automated decision making theory. A review of the fundamental heuristic and basic limitations of each of these methods suggested that the Dempster-Shafer theory of belief functions may offer significant capability. Further examination of the various interpretations of Dempster-Shafer theory, such as random set, generalized Bayesian, and upper/lower probability demonstrate some limitations. Compared to the other heuristics, the transferrable belief model (TBM), one of the leading interpretations of Dempster-Shafer theory, can improve the automated detection of the violation of physical security using sensors and human judgment. The improvement is shown to give a significant heuristic advantage over other probabilistic options by demonstrating significant successes for several classic gedanken experiments.
Boué, Gwenaël
2014-01-01
The non-resonant secular dynamics of compact planetary systems are modeled by a perturbing function which is usually expanded in eccentricity and absolute inclination with respect to the invariant plane. Here, the expressions are given in a vectorial form which naturally leads to an expansion in eccentricity and mutual inclination. The two approaches are equivalent in most cases, but the vectorial one is specially designed for those where a quasi-coplanar system tilts as a whole by a large amount. Moreover, the vectorial expressions of the Hamiltonian and of the equations of motion are slightly simpler than those given in terms of the usual elliptical elements. We also provide the secular perturbing function in vectorial form expanded in semimajor axis ratio allowing for arbitrary eccentricities and inclinations. The interaction between the equatorial bulge of a central star and its planets is also provided, as is the relativistic periapse precession of any planet induced by the central star. We illustrate th...
Recchia, Gabriel; Sahlgren, Magnus; Kanerva, Pentti; Jones, Michael N
2015-01-01
Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, "noisy" permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics.
Directory of Open Access Journals (Sweden)
Gabriel Recchia
2015-01-01
Full Text Available Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics.
Liu, X.; Easter, R. C.; Ghan, S. J.; Zaveri, R.; Rasch, P.; Shi, X.; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, F.; Conley, A.; Park, S.; Neale, R.; Hannay, C.; Ekman, A. M. L.; Hess, P.; Mahowald, N.; Collins, W.; Iacono, M. J.; Bretherton, C. S.; Flanner, M. G.; Mitchell, D.
2011-12-01
A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most (~90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that much of the freshly emitted POM and BC is wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical
Modeling colliding beams with an element by element representation of the storage ring guide field
Directory of Open Access Journals (Sweden)
D. L. Rubin
2006-01-01
Full Text Available A detailed model of the Cornell Electron Storage Ring (CESR guide field, including beam-beam interaction computed in the weak-strong regime, is the basis for a multiturn simulation of luminosity. The simulation reproduces the dependence of luminosity on bunch current that is measured in the storage ring, at both high-energy (5.3 GeV/beam and in the wiggler-dominated low energy (CESR-c configuration (1.9 GeV/beam. Dynamics are determined entirely by the physics of propagation through the individual guide field elements with no free parameters. Energy dependence of the compensation of the transverse coupling introduced by the experimental solenoid is found to significantly degrade specific luminosity. The simulation also indicates a strong dependence of limiting beam-beam tune shift parameter on the geometric mean of synchrotron tune and bunch length.
Energy Technology Data Exchange (ETDEWEB)
Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kvarfordt, Kellie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sampath, Ram [Idaho National Lab. (INL), Idaho Falls, ID (United States); Larson, Katie [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
Early in 2013, researchers at the Idaho National Laboratory outlined a technical framework to support the implementation of state-of-the-art probabilistic risk assessment to predict the safety performance of advanced small modular reactors. From that vision of the advanced framework for risk analysis, specific tasks have been underway in order to implement the framework. This report discusses the current development of a several tasks related to the framework implementation, including a discussion of a 3D physics engine that represents the motion of objects (including collision and debris modeling), cloud-based analysis tools such as a Bayesian-inference engine, and scenario simulations. These tasks were performed during 2015 as part of the technical work associated with the Advanced Reactor Technologies Program.
Effects of the Representation of Convection on the Modelling of Hurricane Tomas (2010
Directory of Open Access Journals (Sweden)
Irene Marras
2017-01-01
Full Text Available The cumulus parameterization is widely recognised as a crucial factor in tropical meteorology: this paper intends to shed further light on the effects of convection parameterization on tropical cyclones’ numerical predictions in the “grey zone” (10–1 km grid spacing. Ten experiments are devised by combining five different convection treatments over the innermost, 5 km grid spacing, domain, and two different global circulation model datasets (IFS and ERA-Interim. All ten experiments are finally analysed and compared to observations provided by the National Hurricane Center’s best track record and multisatellite rainfall measurements. Results manifestly point to the superiority of employing no convective parameterization at the scale of 5 km versus the usage of any of those provided by WRF to reproduce the case study of Hurricane Tomas, which hit the Lesser Antilles and Greater Antilles in late October and early November 2010.
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
Directory of Open Access Journals (Sweden)
A. A. Shevtsov
2015-01-01
Full Text Available Spray drying of solutions and suspensions is among the most common methods of producing a wide range of powdered products in chemical, food and pharmaceutical industries. For the drying of heat-sensitive materials, which is fully applicable to the distillery stillage filtrate continuous-flow type of contact of drying agent and the solution droplets is examined. Two-phase simulation method of computational hydrodynamics in a stationary state for studying the process of drying of the distillery stillage filtrate in the pilot spray dryer under the following assumptions was used. The components form an ideal mixture, the properties of which are calculated directly from the properties of the components and their proportions. The droplets were presented in spherical form. The density and specific heat of the solution and the coefficient of vapors diffusion in the gas phase remained unchanged. To solve the heat exchange equations between the drying agent and the drops by the finite volume method the software package ANSYS CFX was used. The bind between the two phases was established by Navier-Stokes equations. The continuous phase (droplets of the distillery stillage filtrate was described by the k-ε turbulence model. The results obtained showed that the interaction of "drop-wall" causes a significant change of velocity, temperature and humidity both of a drying agent and the product particles. The behavior of the particles by spraying, collision with walls and deposition of the finished product allowed to determine the dependence of physical parameters of the drying process, of the geometric dimensions of the dryer. Comparison of simulation results with experimental data showed satisfactory convergence of the results: for the temperature of the powder 10% its humidity of 12% and temperature of the spent drying agent at the outlet from the drier of 13%. The possibility of using the model in the spray dryers designing, and control of the drying process
Mohamed-Salah, Boukhechem; Alain, Dumon
2016-01-01
This study aims to assess whether the handling of concrete ball-and-stick molecular models promotes translation between diagrammatic representations and a concrete model (or vice versa) and the coordination of the different types of structural representations of a given molecular structure. Forty-one Algerian undergraduate students were requested…
The field representation language.
Tsafnat, Guy
2008-02-01
The complexity of quantitative biomedical models, and the rate at which they are published, is increasing to a point where managing the information has become all but impossible without automation. International efforts are underway to standardise representation languages for a number of mathematical entities that represent a wide variety of physiological systems. This paper presents the Field Representation Language (FRL), a portable representation of values that change over space and/or time. FRL is an extensible mark-up language (XML) derivative with support for large numeric data sets in Hierarchical Data Format version 5 (HDF5). Components of FRL can be reused through unified resource identifiers (URI) that point to external resources such as custom basis functions, boundary geometries and numerical data. To demonstrate the use of FRL as an interchange we present three models that study hyperthermia cancer treatment: a fractal model of liver tumour microvasculature; a probabilistic model simulating the deposition of magnetic microspheres throughout it; and a finite element model of hyperthermic treatment. The microsphere distribution field was used to compute the heat generation rate field around the tumour. We used FRL to convey results from the microsphere simulation to the treatment model. FRL facilitated the conversion of the coordinate systems and approximated the integral over regions of the microsphere deposition field.
Towards a better representation of the solar cycle in general circulation models
Directory of Open Access Journals (Sweden)
K. M. Nissen
2007-10-01
Full Text Available We introduce the improved Freie Universität Berlin (FUB high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB. Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction of the solar SW heating rate signal by about 20%.
The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal.
Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60–70 km indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account.
The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy.
Towards a better representation of the solar cycle in general circulation models
Nissen, K. M.; Matthes, K.; Langematz, U.; Mayer, B.
2007-10-01
We introduce the improved Freie Universität Berlin (FUB) high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB). Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction) of the solar SW heating rate signal by about 20%. The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal. Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60-70 km) indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account. The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy).
A new kinematic approach for the Danakil block using a Digital Elevation Model representation
Collet, B.; Taud, H.; Parrot, J. F.; Bonavia, F.; Chorowicz, J.
2000-01-01
Data from the literature are integrated in a regional Digital Elevation Model (DEM) in order to analyse the motion of the Danakil block with regard to the Arabian and Somalian plates. The application of the poles and angles of rotation taken from the literature, induces a superposition of the Danakil block on the Arabian plate, and the formation of a gap in the Afar region. The determination of new poles of rotation using a best-fitting procedure allows one to avoid these drawbacks. In all cases, calculations are carried out keeping the Nubian plate stationary. The present approach shows that the Danakil block is an independent entity and is not related to the Nubian and Arabian plates. Between the Oligocene and the Miocene, it has been submitted to a N20°E sinistral strike-slip motion anterior to the rotation itself that was started in the middle Miocene. This rotation is directed by a mechanical couple due to the combination of the Red Sea and North Afar extensions.
The Use of Remotely Sensed Data to Improve the Surface Representation in the Operational WRF Model
Barlage, M.; Zeng, X.; Mitchell, K.
2006-12-01
Several input surface datasets currently used in operational weather forecasting are outdated and based on low resolution original datasets. Using higher resolution MODIS and AVHRR satellite data, the datasets of green vegetation fraction(GVF) and maximum snow albedo(MSA) are calculated and updated. The MSA dataset is obtained from 0.05 degree albedo and reflectance from the MODIS instrument onboard Terra and Aqua. Datasets of GVF are calculated from 1km and 2km MODIS, and 0.144 degree AVHRR NDVI data. The new datasets are tested and validated in the operational version of WRF used at NCEP. The use of this higher resolution input data provides an increased land surface heterogeneity needed at the current operational model resolution. It also progresses toward real-time updating of land surface states in operational forecasting. The goals of this work are to 1) improve near-surface temperature prediction in snow-covered regions and 2) derive the algorithm to provide real-time inclusion of satellite-derived NDVI into current operational weather forecasts.
Directory of Open Access Journals (Sweden)
Ming Li
2012-01-01
Full Text Available Quality function deployment (QFD is a customer-driven approach for product design and development. A QFD analysis process includes a series of subprocesses, such as determination of the importance of customer requirements (CRs, the correlation among engineering characteristics (ECs, and the relationship between CRs and ECs. Usually more than group of one decision makers are involved in the subprocesses to make the decision. In most decision making problems, they often provide their evaluation information in the linguistic form. Moreover, because of different knowledge, background, and discrimination ability, decision makers may express their linguistic preferences in multigranularity linguistic information. Therefore, an effective approach to deal with the multi-granularity linguistic information in QFD analysis process is highly needed. In this study, the QFD methodology is extended with 2-tuple linguistic representation model under multi-granularity linguistic environment. The extended QFD methodology can cope with multi-granularity linguistic evaluation information and avoid the loss of information. The applicability of the proposed approach is demonstrated with a numerical example.
Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye
2017-03-25
Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Husain, Syed Zahid; Bélair, Stéphane; Mailhot, Jocelyn; Leroyer, Sylvie
2013-06-01
A new approach to improve the representation of surface processes in the Global Environmental Multiscale (GEM) atmospheric model associated with the exchanges between the urban canopy and the atmosphere is presented. Effects of the urban canopy on the evolution of surface-layer wind, temperature, moisture, and turbulence are directly parametrized in order to allow realistic interactions between the canopy elements (i.e., roofs, roads, and walls) and the atmosphere at GEM's multiple vertical levels that are positioned inside the canopy. Surface energy budgets as implemented in the Town Energy Balance (TEB) scheme have been used to determine temperatures of the urban canopy elements for the proposed multilayer scheme. Performance of the multilayer scheme is compared against standard implementations of the TEB scheme for one nighttime intensive observation period of the Joint Urban 2003 experiment held in Oklahoma City, USA. Although the new approach is found to have a negligible impact on urban surface-layer wind profiles, it improves the prediction of near-neutral nocturnal profiles of potential temperature close to the surface. The urban heat island effect is simulated with a better accuracy by the multilayer approach. The horizontal temperature gradient across the central business district of the city along the direction of flow is also reasonably well captured by the proposed scheme.
Ryan, Casey M; Williams, Mathew; Grace, John; Woollen, Emily; Lehmann, Caroline E R
2017-01-01
Tree phenology mediates land-atmosphere mass and energy exchange and is a determinant of ecosystem structure and function. In the dry tropics, including African savannas, many trees grow new leaves during the dry season - weeks or months before the rains typically start. This syndrome of pre-rain green-up has long been recognized at small scales, but the high spatial and interspecific variability in leaf phenology has precluded regional generalizations. We used remote sensing data to show that this precocious phenology is ubiquitous across the woodlands and savannas of southern tropical Africa. In 70% of the study area, green-up preceded rain onset by > 20 d (42% > 40 d). All the main vegetation formations exhibited pre-rain green-up, by as much as 53 ± 18 d (in the wet miombo). Green-up showed low interannual variability (SD between years = 11 d), and high spatial variability (> 100 d). These results are consistent with a high degree of local phenological adaptation, and an insolation trigger of green-up. Tree-tree competition and niche separation may explain the ubiquity of this precocious phenology. The ubiquity of pre-rain green-up described here challenges existing model representations and suggests resistance (but not necessarily resilience) to the delay in rain onset predicted under climate change.
Bittner, S.; Priesack, E.
2012-04-01
We apply a functional-structural model of tree water flow to single old-growth trees in a temperate broad-leaved forest stand. Roots, stems and branches are represented by connected porous cylinder elements further divided into the inner heartwood cylinders surrounded by xylem and phloem. Xylem water flow is simulated by applying a non-linear Darcy flow in porous media driven by the water potential gradient according to the cohesion-tension theory. The flow model is based on physiological input parameters such as the hydraulic conductivity, stomatal response to leaf water potential and root water uptake capability and, thus, can reflect the different properties of tree species. The actual root water uptake is calculated using also a non-linear Darcy law based on the gradient between root xylem water potential and rhizosphere soil water potential and by the simulation of soil water flow applying Richards equation. A leaf stomatal conductance model is combined with the hydrological tree and soil water flow model and a spatially explicit three-dimensional canopy light model. The structure of the canopy and the tree architectures are derived by applying an automatic tree skeleton extraction algorithm from point clouds obtained by use of a terrestrial laser scanner allowing an explicit representation of the water flow path in the stem and branches. The high spatial resolution of the root and branch geometry and their connectivity makes the detailed modelling of the water use of single trees possible and allows for the analysis of the interaction between single trees and the influence of the canopy light regime (including different fractions of direct sunlight and diffuse skylight) on the simulated sap flow and transpiration. The model can be applied at various sites and to different tree species, enabling the up-scaling of the water usage of single trees to the total transpiration of mixed stands. Examples are given to reveal differences between diffuse- and ring
Representation of Boundary Layer Moisture Transport in Cloud-Resolving Models
Moeng, C. L.; Arakawa, A.
2012-12-01
One of the important roles of the PBL is to transport moisture from the surface to the cloud layer. However, how this transport process can be accounted for in cloud-resolving models (CRMs) is not sufficiently clear and has rarely been examined. A typical CRM can resolve the bulk feature of large convection systems but not the small-scale convection and turbulence motions that carry a large portion of the moisture fluxes. We use a large-eddy simulation of a tropical deep convection system as a benchmark to examine the subgrid-scale (SGS) moisture transport into a cloud system. First we show that most of the PBL moisture transport to the cloud layer occurs in small areas under low-level updrafts, with rain, or under thick clouds. To represent this spatial distribution of the moisture transport in CRMs, we propose and (a priori) test an updraft-downdraft scheme, which expresses the SGS flux in terms of the differences between the mean SGS updraft-downdraft properties. We show that this SGS scheme works extremely well for CRMs with a 1 to 10 km horizontal grid spacing. The closure issue is to estimate the mean SGS updraft-downdraft properties in terms of the CRM resolved flow field.he figure shows the contours of SGS latent heat fluxes at z~300m with a cutoff width of 4 km. The top panel is retrieved from a LES of a tropical deep convection system and bottom panel calculated from the updraft-downdraft scheme with A1=0.4 and the mean SGS updraft-downdraft properties diagnosed from the LES.
Vos, de N.J.; Rientjes, T.H.M.
2005-01-01
The application of Artificial Neural Networks (ANNs) in rainfall-runoff modelling needs to be researched more extensively in order to appreciate and fulfil the potential of this modelling approach. This paper reports on the application of multi-layer feedforward ANNs for rainfall-runoff modelling of
Sakti, Apurba; Gallagher, Kevin G.; Sepulveda, Nestor; Uckun, Canan; Vergara, Claudio; de Sisternes, Fernando J.; Dees, Dennis W.; Botterud, Audun
2017-02-01
We develop three novel enhanced mixed integer-linear representations of the power limit of the battery and its efficiency as a function of the charge and discharge power and the state of charge of the battery, which can be directly implemented in large-scale power systems models and solved with commercial optimization solvers. Using these battery representations, we conduct a techno-economic analysis of the performance of a 10 MWh lithium-ion battery system testing the effect of a 5-min vs. a 60-min price signal on profits using real time prices from a selected node in the MISO electricity market. Results show that models of lithium-ion batteries where the power limits and efficiency are held constant overestimate profits by 10% compared to those obtained from an enhanced representation that more closely matches the real behavior of the battery. When the battery system is exposed to a 5-min price signal, the energy arbitrage profitability improves by 60% compared to that from hourly price exposure. These results indicate that a more accurate representation of li-ion batteries as well as the market rules that govern the frequency of electricity prices can play a major role on the estimation of the value of battery technologies for power grid applications.
Rogers, A.; Xu, C.; McDowell, N. G.; Sloan, V. L.; Norby, R. J.
2012-12-01
The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry model of photosynthesis, and most ESMs use a derivation of this model. One of the key parameters required by the Farquhar, von Caemmerer and Berry model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT) and often estimated from the empirical relationship between leaf N content and Vc,max. However, uncertainty in the estimation of Vc,max has been shown to account for significant variation in model estimation of gross primary production, particularly in the Arctic. As part of a new multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we have begun to characterize photosynthetic parameters and N acquisition in the key Arctic PFTs. We measured the response of photosynthesis (A) to internal CO2 concentration (ci) in situ in two sedges (Carex aquatilis, Eriophorum angustifolium), a grass (Dupontia fisheri) and a forb (Petasites frigidus) growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max (normalized to 25oC) currently used to represent Arctic PFTs in ESMs are approximately half of the values we measured in these species in July, 2012, on the coastal tundra in Barrow. We hypothesize that these plants have a greater fraction of leaf N invested in Rubisco (FLNR) than is assumed by the models. The parameter Vc,max is used directly as a driver for respiration in some ESMs, and in other ESMs Vc,max is linked to leaf N content and N acquisition through FLNR. Therefore, these results have implications for ESMs beyond photosynthesis, and suggest that
Computer representation of molecular surfaces
Energy Technology Data Exchange (ETDEWEB)
Max, N.L.
1981-07-06
This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered.
The representation of low-level clouds during the West African monsoon in weather and climate models
Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas
2016-04-01
The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and
Energy Technology Data Exchange (ETDEWEB)
Morrison, PI Hugh
2012-09-21
This is the first meeting of the whole new GEWEX (Global Energy and Water Cycle Experiment) Atmospheric System Study (GASS) project that has been formed from the merger of the GEWEX Cloud System Study (GCSS) Project and the GEWEX Atmospheric Boundary Layer Studies (GABLS). As such, this meeting will play a major role in energizing GEWEX work in the area of atmospheric parameterizations of clouds, convection, stable boundary layers, and aerosol-cloud interactions for the numerical models used for weather and climate projections at both global and regional scales. The representation of these processes in models is crucial to GEWEX goals of improved prediction of the energy and water cycles at both weather and climate timescales. This proposal seeks funds to be used to cover incidental and travel expenses for U.S.-based graduate students and early career scientists (i.e., within 5 years of receiving their highest degree). We anticipate using DOE funding to support 5-10 people. We will advertise the availability of these funds by providing a box to check for interested participants on the online workshop registration form. We will also send a note to our participants' mailing lists reminding them that the funds are available and asking senior scientists to encourage their more junior colleagues to participate. All meeting participants are encouraged to submit abstracts for oral or poster presentations. The science organizing committee (see below) will base funding decisions on the relevance and quality of these abstracts, with preference given to under-represented populations (especially women and minorities) and to early career scientists being actively mentored at the meeting (e.g. students or postdocs attending the meeting with their advisor).
Directory of Open Access Journals (Sweden)
George eAzzopardi
2014-07-01
Full Text Available The remarkable abilities of the primate visual cortex have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 -> V4 -> TEO. Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. A S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms.
Iqbal, W.; Syed, F. S.; Sajjad, H.; Nikulin, G.; Kjellström, E.; Hannachi, A.
2017-07-01
A number of simulations with the fourth release of the Rossby Center Regional Climate Model (RCA4) conducted within the COordinated Regional climate Downscaling EXperiment (CORDEX) framework for South Asia at 50 km horizontal resolution are evaluated for mean winter (December-March) and summer (June-September) climate during 1980-2005. The two driving data sets ERA-Interim reanalysis and the general circulation model EC-Earth have been analyzed besides the RCA4 simulations to address the added value. RCA4 successfully captures the mean climate in both the seasons. The biases in RCA4 appear to come from the driving data sets which are amplified after downscaling. The jet streams influencing the seasonal precipitation variability in both seasons are also analyzed. The spatial and quantitative analysis over CORDEX South Asia generally revealed the ability of RCA4 to capture the mean seasonal climate as well as the position and strength of the jet streams despite weak/strong jet representation in the driving data. The EC-Earth downscaled with RCA4 exhibited cold biases over the domain and a weak Somali jet over the Arabian Sea. Moreover, the moisture transport from the Arabian Sea during summer is pronounced in RCA4 simulations resulting in enhanced monsoon rainfall over northwestern parts of India. Both the Somali jet and the tropical easterly jet become stronger during strong summer monsoon years. However, there is robust impact of wet years in summer over the Somali jet. Wet-minus-dry composites in winter indicate strengthening (weakening) of the subtropical jet in RCA4 run by ERA-Interim (EC-Earth). The driving data have clear reflections on the RCA4 simulations.
Shagi, Charles; Vallely, Andrew; Kasindi, Stella; Chiduo, Betty; Desmond, Nicola; Soteli, Selephina; Kavit, Natujwa; Vallely, Lisa; Lees, Shelley; Hayes, Richard; Ross, David
2008-10-01
Actively engaging communities in effective partnerships for the design and implementation of HIV prevention research is vital to the successful conduct of ethically robust, locally-appropriate clinical trials in developing countries. This is especially true in vulnerable at-risk sub-populations, where definitions of "community", "participation" and "representation" can be difficult to apply. This study was conducted to investigate the feasibility of a participatory model of community liaison among an occupational cohort of women at high-risk of HIV and sexually-transmitted infections in Mwanza City, northwest Tanzania in preparation for a Phase III vaginal microbicide trial. This approach was rooted in participatory action-orientated research and used tools adapted from participatory learning and action techniques. During the feasibility study, a mobile community-based sexual and reproductive health service for women working as informal food vendors or in traditional and modern bars, restaurants, hotels and guesthouses was established in 10 city wards. Participatory mapping was carried out by project fieldworkers and wards divided into 78 geographical clusters of facilities in consultation with community members and study participants. Representatives at cluster and ward level were elected in a process facilitated by the site Community Liaison Officer and a site-level Community Advisory Committee established. A logical framework was used to guide the implementation, monitoring and evaluation of the community liaison system (CLS) within the broader feasibility study. The CLS was essential to the successful conduct of the feasibility study and has now been consolidated and expanded as part of the on-going MDP301 Phase III microbicide trial in Mwanza. The participatory model presented in this paper is likely to be generalisable to other vulnerable, stigmatised, at-risk study populations in resource-limited settings.
Revealing children's implicit spelling representations.
Critten, Sarah; Pine, Karen J; Messer, David J
2013-06-01
Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned by increasingly explicit levels of spelling representation. However, their proposal that implicit representations may underlie early 'visually based' spelling remains unresolved. Children (N = 101, aged 4-6 years) were given a recognition task (Critten et al., 2007) and a novel production task, both involving verbal justifications of why spellings are correct/incorrect, strategy use and word pattern similarity. Results for both tasks supported an implicit level of spelling characterized by the ability to correctly recognize/produce words but the inability to explain operational strategies or generalize knowledge. Explicit levels and multiple representations were also in evidence across the two tasks. Implications for cognitive mechanisms underlying spelling development are discussed.
Directory of Open Access Journals (Sweden)
G. Tang
2015-12-01
with very tight relative update tolerance. As some biogeochemical processes (e.g., methane and nitrous oxide production and consumption involve very low half saturation and threshold concentrations, this work provides insights for addressing nonphysical negativity issues and facilitates the representation of a mechanistic biogeochemical description in earth system models to reduce climate prediction uncertainty.
Sharifi, Amirreza; Lang, Megan W.; McCarty, Gregory W.; Sadeghi, Ali M.; Lee, Sangchul; Yen, Haw; Rabenhorst, Martin C.; Jeong, Jaehak; Yeo, In-Young
2016-10-01
Process based, distributed watershed models possess a large number of parameters that are not directly measured in field and need to be calibrated, in most cases through matching modeled in-stream fluxes with monitored data. Recently, concern has been raised regarding the reliability of this common calibration practice, because models that are deemed to be adequately calibrated based on commonly used metrics (e.g., Nash Sutcliffe efficiency) may not realistically represent intra-watershed responses or fluxes. Such shortcomings stem from the use of an evaluation criteria that only concerns the global in-stream responses of the model without investigating intra-watershed responses. In this study, we introduce a modification to the Soil and Water Assessment Tool (SWAT) model, and a new calibration technique that collectively reduce the chance of misrepresenting intra-watershed responses. The SWAT model was modified to better represent NO3 cycling in soils with various degrees of water holding capacity. The new calibration tool has the capacity to calibrate paired watersheds simultaneously within a single framework. It was found that when both proposed methodologies were applied jointly to two paired watersheds on the Delmarva Peninsula, the performance of the models as judged based on conventional metrics suffered, however, the intra-watershed responses (e.g., mass of NO3 lost to denitrification) in the two models automatically converged to realistic sums. This approach also demonstrates the capacity to spatially distinguish areas of high denitrification potential, an ability that has implications for improved management of prior converted wetlands under crop production and for identifying prominent areas for wetland restoration.
Friedrich, Johannes; Fetzer, Ingo; Cornell, Sarah
2016-04-01
The planetary boundaries framework is an approach to global sustainability that emphasises non-linear threshold behavior in anthropogenically perturbed Earth system processes. However, knowledge about the characteristics and positions of thresholds, and the scope for management of the boundaries is not well established. Global integrated models can help to improve this understanding, by reflecting the complex feedbacks between human and environmental systems. This study analyses the current state of integrated models with regard to the main processes identified as 'critical Earth system processes' in the planetary boundaries framework, and identifies gaps and suggests priorities for future improvements. Our approach involves creating a common ontology of model descriptions, and performing a network analysis on the state of system integration in models. The distinct clusters of specific biophysical and social-economic systems obviously has enabled progress in those specific areas of global change, but it now constrains analysis of important human-driven Earth system dynamics. The modeling process therefore has to be improved through technical integration, scientific gap-filling, and also changes in scientific institutional dynamics. Combined, this can advance model potentials that may help us to find sustainable pathways within planetary boundaries.
Fishman, Yonatan I; Steinschneider, Mitchell; Micheyl, Christophe
2014-09-10
The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate "auditory objects" with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the "object-related negativity" recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch.
Directory of Open Access Journals (Sweden)
H. Petetin
2015-09-01
Full Text Available Secondary inorganic compounds represent a major fraction of fine aerosol in the Paris megacity. The thermodynamics behind their formation is now relatively well constrained, but due to sparse direct measurements of their precursors (in particular NH3 and HNO3, uncertainties remain on their concentrations and variability as well as the formation regime of ammonium nitrate (in terms of limited species, among NH3 and HNO3 in urban environments such as Paris. This study presents the first urban background measurements of both inorganic aerosol compounds and their gaseous precursors during several months within the city of Paris. Intense agriculture-related NH3 episodes are observed in spring/summer while HNO3 concentrations remain relatively low, even during summer, which leads to a NH3-rich regime in Paris. The local formation of ammonium nitrate within the city appears low, despite high NOx emissions. The dataset is also used to evaluate the CHIMERE chemistry-transport model (CTM. Interestingly, the rather good results obtained on ammonium nitrates hide significant errors on gaseous precursors (e.g. mean bias of −75 and +195 % for NH3 and HNO3, respectively. It thus leads to a mis-representation of the nitrate formation regime through a highly underestimated Gas Ratio metric (introduced by Ansari and Pandis, 1998 and a much higher sensitivity of nitrate concentrations to ammonia changes. Several uncertainty sources are investigated, pointing out the importance of better assessing both NH3 emissions and OH concentrations in the future. These results finally remind the caution required in the use of CTMs for emission scenario analysis, highlighting the importance of prior diagnostic and dynamic evaluations.
Directory of Open Access Journals (Sweden)
Katrin eHanken
2014-12-01
Full Text Available In multiple sclerosis (MS patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of proinflammatory cytokines, may contribute to subjective fatigue in MS patients. Proinflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate and the hypothalamus. We first present studies demonstrating a relationship between proinflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives.
Hanken, Katrin; Eling, Paul; Hildebrandt, Helmut
2014-01-01
In multiple sclerosis (MS) patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of pro-inflammatory cytokines, may contribute to subjective fatigue in MS patients. Pro-inflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling, which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review, we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate, and the hypothalamus. We first present studies demonstrating a relationship between pro-inflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review, we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives. PMID:25566171
Energy Technology Data Exchange (ETDEWEB)
Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.; Xu, Kuan-Man; Ghan, Steven J.
2015-04-27
Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the mid-latitude continental and the tropical regions are conducted and evaluated, we examine the scale-dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of 38 mid-latitude continental convection. We show that the single updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as 3 updrafts can account for the internal variability of updrafts well. Based on evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.
Lang, Benjamin; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas
2016-04-01
The climate research program "Medium-range Climate Predictions" (MiKlip), funded by the Federal Ministry of Education and Research in Germany (BMBF), has the aim to improve a climate model system (MPI-ESM) in such a way that it can provide reliable decadal predictions of climate, including extreme weather events. A substantial part of the development process is a comprehensive model validation. Within MiKlip, it includes comparisons of model simulations and observations in order to allow statements about the performance of the model and to give particular recommendations for the further development of the model. The research project "Validation of Atmospheric Dynamics" (VADY), conducted by the cooperation partners "Institute of Geography at the University of Augsburg" (IGUA) and the "German Aerospace Centre" (DLR), contributes to model validation within MiKlip with a special focus on atmospheric waves (DLR) and circulation dynamics (IGUA). Within the framework of VADY, DLR validates the representation of atmospheric waves on different levels and scales based on suitable activity indices (e.g. the so-called large-scale dynamical activity index (LDAI), which is a measure for the activity of planetary waves). The focus of IGUA is on the model validation with respect to the representation of atmospheric circulation types, dynamical modes and the teleconnectivity of the atmospheric circulation. The present contribution provides results of the model validation concerning circulation types/dynamical modes. Results are shown for both the frequency of occurrence and internal characteristics (e. g. persistence or intensity), and for different classification methods (e. g. based on PCA or clustering techniques). The representation of circulation types/dynamical modes will be compared for different generations of the MPI-ESM decadal-prediction model (baseline0, baseline1, prototype) in order to clarify both advances and limitations in the development of the model. Furthermore
Schumacher, Maike; Forootan, Ehsan; Van Dijk, Albert I. J. M.; Müller Schmied, Hannes; Crosbie, Russell S.; Kusche, Jürgen; Döll, Petra
2016-04-01
The Murray-Darling Basin, one of the largest and driest river basins over the world, experienced a long-term drought (over 2003-2009), the so-called Millennium Drought. As a result, the terrestrial water storage in the region decreased, which was attributed to dry meteorological conditions and extensive irrigation for agriculture. We used simulations of the WaterGAP Global Hydrology Model (WGHM) driven by monthly climate fields from the Climate Research Unit's Time Series (CRU TS 3.2) and precipitation data from the Global Precipitation Climatology Center (GPCC) to estimate linear trends in soil, surface and groundwater compartments, as well as total water storage changes (TWSC). However, the model was not able to capture the effect of the Millennium Drought on the storage compartments likely due to missing processes in dry regions or climate forcing uncertainties. Particularly, TWSC simulated by standard WGHM did not reproduce the negative trend during 2003-2009. Therefore, in this study, we investigate whether assimilating TWSC from the Gravity Recovery And Climate Experiment (GRACE) satellite mission into WGHM enables a more realistic representation of the Millennium Drought on the basin hydrology. Firstly, the quality of monthly GRACE TWSC and its post-processing over the Murray-Darling Basin was assessed. An improved calibration and data assimilation (C/DA) approach (Schumacher et al., JoG-2016) was then applied to integrate GRACE TWSC along with its full error covariance information into WGHM during 2003-2009. Independent observations of soil moisture, groundwater and surface water extent were used to validate the model outputs after C/DA. Our investigations indicate that the integration of GRACE data indeed introduces a negative trend to TWSC simulations of WGHM, which occurred predominantly in the south (Murray Basin). The trend was found to be associated with the changes in groundwater storage, which was confirmed through validation with in
Thinking together with material representations
DEFF Research Database (Denmark)
Stege Bjørndahl, Johanne; Fusaroli, Riccardo; Østergaard, Svend
2014-01-01
How do material representations such as models, diagrams and drawings come to shape and aid collective, epistemic processes? This study investigated how groups of participants spontaneously recruited material objects (in this case LEGO blocks) to support collective creative processes in the context......, the material representations were experimented on and physical attributes were explored resulting in discoveries of new meaning potentials and creative solutions. We discuss these different ways in which material representations do their work in collective reasoning processes in relation to ideas about top...
Ferguson, I. M.; Parker, N.; Draper, A.; Dogrul, E. C.; Condon, L. E.
2012-12-01
Water resources planners and managers rely on a broad range of data analysis and modeling tools. Data analysis, statistical models, and physical hydrology models are used to estimate water supply, while systems-based planning and operations models are used to simulate system operation with respect to competing objectives—e.g., water supply vs. flood control vs. in-stream flows—under physical and regulatory constraints. In general, physical hydrology models neglect water operations, while planning and operations models lack physically-based representation hydrologic processes. Accurate assessment of climate change impacts on water resources requires modeling tools that integrate physical hydrology and water resources operations. This presentation will discuss recent efforts to improve representation of physical hydrology in water resources planning and operations models, focusing on key challenges, trade-offs between various approaches, and implications for climate change risk assessment and adaptation studies. Discussion will focus on recent model development by the US Bureau of Reclamation, California Department of Water Resources, and collaborators for the Sacramento-San Joaquin watershed in California.
Kojima, Kaname; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Yamauchi, Mai; Gotoh, Noriko; Miyano, Satoru
2012-01-01
In the analysis of effects by cell treatment such as drug dosing, identifying changes on gene network structures between normal and treated cells is a key task. A possible way for identifying the changes is to compare structures of networks estimated from data on normal and treated cells separately. However, this approach usually fails to estimate accurate gene networks due to the limited length of time series data and measurement noise. Thus, approaches that identify changes on regulations by using time series data on both conditions in an efficient manner are demanded. We propose a new statistical approach that is based on the state space representation of the vector autoregressive model and estimates gene networks on two different conditions in order to identify changes on regulations between the conditions. In the mathematical model of our approach, hidden binary variables are newly introduced to indicate the presence of regulations on each condition. The use of the hidden binary variables enables an efficient data usage; data on both conditions are used for commonly existing regulations, while for condition specific regulations corresponding data are only applied. Also, the similarity of networks on two conditions is automatically considered from the design of the potential function for the hidden binary variables. For the estimation of the hidden binary variables, we derive a new variational annealing method that searches the configuration of the binary variables maximizing the marginal likelihood. For the performance evaluation, we use time series data from two topologically similar synthetic networks, and confirm that our proposed approach estimates commonly existing regulations as well as changes on regulations with higher coverage and precision than other existing approaches in almost all the experimental settings. For a real data application, our proposed approach is applied to time series data from normal Human lung cells and Human lung cells treated by
Directory of Open Access Journals (Sweden)
M. V. Serzhantova
2016-05-01
Full Text Available Subject of Research. We analyze the problems of finite Markov chains apparatus application for simulating a human operator activity in the quasi-static functional environment. It is shown that the functional environment stochastic nature is generated by a factor of interval character of human operator properties. Method. The problem is solved in the class of regular (recurrent finite Markov chains with three states of the human operator: with a favorable, median and unfavorable combination of the values of mathematical model parameters of the human operator in a quasi-static functional environment. The finite Markov chain is designed taking into account the factors of human operator tiredness and interval character of parameters of the model representation of his properties. The device is based on the usage of mathematical approximation of the standard curve of the human operator activity performance during work shift. The standard curve of the human operator activity performance is based on the extensive research experience of functional activity of the human operator with the help of photos of the day, his action timing and ergonomic generalizations. Main Results. The apparatus of regular finite Markov chains gave the possibility to evaluate correctly the human operator activity performance in a quasi-static functional environment with the use of the main information component of these chains as a vector of final probabilities. In addition, we managed to build an algorithmic basis for estimating the stationary time (time study for transit of human operator from arbitrary initial functional state into a state corresponding to a vector of final probabilities for a used chain after it reaches the final state based on the analysis of the eigenvalues spectrum of the matrix of transition probabilities for a regular (recurrent finite Markov chain. Practical Relevance. Obtained theoretical results are confirmed by illustrative examples, which
Panaoura, Areti; Gagatsis, Athanasios; Deliyianni, Eleni; Elia, Iliada
2010-01-01
In a previous article of the same journal, we have discussed the interrelations of students' beliefs and self-efficacy beliefs for the use of representations and their respective cognitive performance on the learning of fraction addition. In the present paper, we confirm a similar structure of cognitive and affective factors on using…
Panaoura, Areti; Gagatsis, Athanasios; Deliyianni, Eleni; Elia, Iliada
2010-01-01
In a previous article of the same journal, we have discussed the interrelations of students' beliefs and self-efficacy beliefs for the use of representations and their respective cognitive performance on the learning of fraction addition. In the present paper, we confirm a similar structure of cognitive and affective factors on using…
Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio
2012-12-07
We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.
Zampieri, Matteo
2012-02-01
Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions and the ecosystem dynamics. In regional-scale climate applications land surface models (LSMs) are commonly coupled to atmospheric models to close the surface energy, mass and carbon balance. LSMs in these applications are used to resolve the momentum, heat, water and carbon vertical fluxes, accounting for the effect of vegetation, soil type and other surface parameters, while lack of adequate resolution prevents using them to resolve horizontal sub-grid processes. Specifically, LSMs resolve the large-scale runoff production associated with infiltration excess and sub-grid groundwater convergence, but they neglect the effect from loosing streams to groundwater. Through the analysis of observed data of soil moisture obtained from the Oklahoma Mesoscale Network stations and land surface temperature derived from MODIS we provide evidence that the regional scale soil moisture and surface temperature patterns are affected by the rivers. This is demonstrated on the basis of simulations from a land surface model (i.e., Community Land Model - CLM, version 3.5). We show that the model cannot reproduce the features of the observed soil moisture and temperature spatial patterns that are related to the underlying mechanism of reinfiltration of river water to groundwater. Therefore, we implement a simple parameterization of this process in CLM showing the ability to reproduce the soil moisture and surface temperature spatial variabilities that relate to the river distribution at regional scale. The CLM with this new parameterization is used to evaluate impacts of the improved representation of river-groundwater interactions on the simulated water cycle parameters and the surface energy budget at the regional scale. © 2011 Elsevier B.V.
Tiwari, P. R.; Kar, S. C.; Mohanty, U. C.; Dey, S.; Sinha, P.; Shekhar, M. S.
2017-02-01
The role of the Himalayan orography representation in a Regional Climate Model (RegCM4) nested in NCMRWF global spectral model is examined in simulating the winter circulation and associated precipitation over the Northwest India (NWI; 23°-37.5°N and 69°-85°E) region. For this purpose, nine different set of orography representations for nine distinct precipitation years (three years each for wet, normal and dry) have been considered by increasing (decreasing) 5, 10, 15, and 20% from the mean height (CNTRL) of the Himalaya in RegCM4 model. Validation with various observations revealed a good improvement in reproducing the precipitation intensity and distribution with increased model height compared to the results obtained from CNTRL and reduced orography experiments. Further it has been found that, increase in height by 10% (P10) increases seasonal precipitation about 20%, while decrease in height by 10% (M10) results around 28% reduction in seasonal precipitation as compared to CNTRL experiment over NWI region. This improvement in precipitation simulation comes due to better representation of vertical pressure velocity and moisture transport as these factors play an important role in wintertime precipitation processes over NWI region. Furthermore, a comparison of model-simulated precipitation with observed precipitation at 17 station locations has been also carried out. Overall, the results suggest that when the orographic increment of 10% (P10) is applied on RegCM4 model, it has better skill in simulating the precipitation over the NWI region and this model is a useful tool for further regional downscaling studies.
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David
2012-05-21
A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and
Faribault, Alexandre; Tschirhart, Hugo; Muller, Nicolas
2016-05-01
In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N-1 spins \\frac{1}{2}, contains one arbitrarily large spin S. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly nonlinear Bethe equations. It can therefore offer significant gains in stability and computation speed.
Noël, Marie-Pascale; Rousselle, Laurence
2011-01-01
Studies on developmental dyscalculia (DD) have tried to identify a basic numerical deficit that could account for this specific learning disability. The first proposition was that the number magnitude representation of these children was impaired. However, Rousselle and Noël (2007) brought data showing that this was not the case but rather that these children were impaired when processing the magnitude of symbolic numbers only. Since then, incongruent results have been published. In this paper, we will propose a developmental perspective on this issue. We will argue that the first deficit shown in DD regards the building of an exact representation of numerical value, thanks to the learning of symbolic numbers, and that the reduced acuity of the approximate number magnitude system appears only later and is secondary to the first deficit.
1992-03-01
PINKER , STEVEN . 1989. Learnability and cognition: The acquisition of argument structure. Cambridge, MA: MIT Press. POLLARD, CARL & IVAN A. SAG. 1987...subregularities which Wilensky (1990) has proposed for the representation of lexical semantics and the broad-range rules which Pinker (1989) has...structures of verbs, have been proposed by Pinker (1989). Lexical rules, however, are not used in CIG. Recall that the use of lexical rules is ruled out by
Directory of Open Access Journals (Sweden)
Fabio Boschetti
2015-11-01
Full Text Available Utilising a fleet of commercial airliners, MOZAIC/IAGOS provides atmospheric composition data on a regular basis that are widely used for modelling applications. Due to the specific operational context of the platforms, such observations are collected close to international airports and hence in an environment characterised by high anthropogenic emissions. This provides opportunities for assessing emission inventories of major metropolitan areas around the world, but also challenges in representing the observations in typical chemical transport models. We assess here the contribution of different sources of error to overall model–data mismatch using the example of MOZAIC/IAGOS carbon monoxide (CO profiles collected over the European regional domain in a time window of 5 yr (2006–2011. The different sources of error addressed in the present study are: 1 mismatch in modelled and observed mixed layer height; 2 bias in emission fluxes and 3 spatial representation error (related to unresolved spatial variations in emissions. The modelling framework combines a regional Lagrangian transport model (STILT with EDGARv4.3 emission inventory and lateral boundary conditions from the MACC reanalysis. The representation error was derived by coupling STILT with emission fluxes aggregated to different spatial resolutions. We also use the MACC reanalysis to assess uncertainty related to uncertainty sources 2 and 3. We treat the random and the bias components of the uncertainty separately and found that 1 and 3 have a comparable impact on the random component for both models, while 2 is far less important. On the other hand, the bias component shows comparable impacts from each source of uncertainty, despite both models being affected by a low bias of a factor of 2–2.5 in the emission fluxes. In addition, we suggested methods to correct for biases in emission fluxes and in mixing heights. Lastly, the evaluation of the spatial representation error against
Hamilton-West, Kate E; Milne, Alisoun J; Chenery, Alison; Tilbrook, Carolyn
2010-10-01
Despite the importance of early diagnosis of dementia, little is known about the factors underlying help-seeking in relation to signs of the condition. In this pilot study, we aimed to examine the potential utility of the common sense model (CSM) of illness representations for understanding lay perceptions of dementia and predicting intentions to seek help in relation to possible signs and symptoms. A secondary aim was to develop a measure of (dementia-related) illness representations as a tool for future research. After reading a vignette describing a "relative" with mild or moderate dementia, participants (N = 118) completed measures of illness representations and help-seeking intentions. Analyses compared perceptions of the mild and moderate vignettes and determined the extent to which illness perceptions differentiated between alternative forms of help-seeking (e.g. seeking professional help vs. help from family members). Results indicated that cognitive deficits were more readily identified as dementia than non-cognitive symptoms; these were commonly attributed to stress or depression. Participants were more likely to indicate an intention to seek professional help if they identified the problem in the vignette as dementia, perceived symptoms as severe, as having serious consequences and as likely to be permanent, but less likely to do so if they identified the problem as stress or attributed symptoms to psychological causes. Our preliminary data suggests that help-seeking may be prevented by inaccurate illness representations or misattribution of symptoms. The CSM may provide a useful framework for understanding perceptions of dementia symptoms and for informing help-seeking pathways.
Octree Representation and Its Applications in CAD
Institute of Scientific and Technical Information of China (English)
唐泽圣
1992-01-01
In this paper,a survey of octree representation and its applications in CAD is presented.The octree representation may be categorized as pure octree representation and polytree(or extended octree),and the latter is actually a boundary representation decomposed by octree.Linear octree which is a variant of regular octree representation has the advantage of saving memory space.The mapping between Cartesian coordinates and node addresses in linear octree is discussed.Then,algorithms for converting a boundary representation of 3D object into an octree are investiged and major approaches for transforming an octree encoded object are presented.After that,some of the applications of octree representation in CAD are listed,in particular,the applications in solid modeling,in accelerating ray tracing and in generating meshes for FEM.
Cheng, Anning; Xu, Kuan-Man
2014-03-01
In this study, an explicit representation of vertical momentum transport by convective cloud systems, including mesoscale convective systems (MCSs), is proposed and tested in a multiscale modeling framework (MMF). The embedded cloud-resolving model (CRM) provides vertical momentum transport in one horizontal direction. The vertical momentum transport in the other direction is assumed to be proportional to the vertical mass flux diagnosed from the CRM in addition to the effects of entrainment and detrainment. In order to represent both upgradient and downgradient vertical momentum transports, the orientation of the embedded CRM must change with time instead of being stationary typically in MMFs. The orientation is determined by the stratification of the lower troposphere and environmental wind shear. Introducing the variation of the orientations of the embedded CRM is responsible for reducing the stationary anomalous precipitation and many improvements. Improvements are strengthened when the CRM simulated vertical momentum transport is allowed to modify the large-scale circulation simulated by the host general circulation model. These include an improved spatial distribution, amplitude, and intraseasonal variability of the surface precipitation in the tropics, more realistic zonal mean diabatic heating and drying patterns, more reasonable zonal mean large-scale circulations and the East Asian summer monsoon circulation, and an improved, annual mean implied meridional ocean transport in the Southern Hemisphere. Further tests of this convective momentum transport parameterization scheme will be performed with a higher-resolution MMF to further understand its roles in the intraseasonal oscillation and tropical waves, monsoon circulation, and zonal mean large-scale circulations.
Residual Representations of Spacetime
Saller, H
2001-01-01
Spacetime is modelled by binary relations - by the classes of the automorphisms $\\GL(\\C^2)$ of a complex 2-dimensional vector space with respect to the definite unitary subgroup $\\U(2)$. In extension of Feynman propagators for particle quantum fields representing only the tangent spacetime structure, global spacetime representations are given, formulated as residues using energy-momentum distributions with the invariants as singularities. The associatated quantum fields are characterized by two invariant masses - for time and position - supplementing the one mass for the definite unitary particle sector with another mass for the indefinite unitary interaction sector without asymptotic particle interpretation.
Representations Of The Super-virasoro Algebra fock Representations
Polychronidis, V J
1999-01-01
In this dissertation the complete classification of the Super- Virasoro modules M (h, c) of the Neveu-Schwarz and Ramond algebras is constructed. A family of representations F p, po of the Neveu- Schwarz and Ramond algebras, which generalize the Fock representations of the Virasoro algebra, is constructed. The Felder's construction of Fock space resolutions for the Virasoro minimal models is generalized in the Super-Virasoro minimal models case. In particular, a two-sided resolution of the irreducible Super-Verma module L( h, c) of the Neveu- Schwarz algebra is provided. --- 8 --- AN
Energy Technology Data Exchange (ETDEWEB)
Mitchell, David L. [Desert Research Institute, Reno, NV (United States)
2013-09-05
It is well known that cirrus clouds play a major role in regulating the earth’s climate, but the details of how this works are just beginning to be understood. This project targeted the main property of cirrus clouds that influence climate processes; the ice fall speed. That is, this project improves the representation of the mass-weighted ice particle fall velocity, V_{m}, in climate models, used to predict future climate on global and regional scales. Prior to 2007, the dominant sizes of ice particles in cirrus clouds were poorly understood, making it virtually impossible to predict how cirrus clouds interact with sunlight and thermal radiation. Due to several studies investigating the performance of optical probes used to measure the ice particle size distribution (PSD), as well as the remote sensing results from our last ARM project, it is now well established that the anomalously high concentrations of small ice crystals often reported prior to 2007 were measurement artifacts. Advances in the design and data processing of optical probes have greatly reduced these ice artifacts that resulted from the shattering of ice particles on the probe tips and/or inlet tube, and PSD measurements from one of these improved probes (the 2-dimensional Stereo or 2D-S probe) are utilized in this project to parameterize V_{m} for climate models. Our original plan in the proposal was to parameterize the ice PSD (in terms of temperature and ice water content) and ice particle mass and projected area (in terms of mass- and area-dimensional power laws or m-D/A-D expressions) since these are the microphysical properties that determine V_{m}, and then proceed to calculate V_{m} from these parameterized properties. But the 2D-S probe directly measures ice particle projected area and indirectly estimates ice particle mass for each size bin. It soon became apparent that the original plan would introduce more uncertainty in the V_{m} calculations
Energy Technology Data Exchange (ETDEWEB)
Mitchell, David L. [Desert Research Institute, Reno, NV (United States)
2013-09-05
It is well known that cirrus clouds play a major role in regulating the earth’s climate, but the details of how this works are just beginning to be understood. This project targeted the main property of cirrus clouds that influence climate processes; the ice fall speed. That is, this project improves the representation of the mass-weighted ice particle fall velocity, V_{m}, in climate models, used to predict future climate on global and regional scales. Prior to 2007, the dominant sizes of ice particles in cirrus clouds were poorly understood, making it virtually impossible to predict how cirrus clouds interact with sunlight and thermal radiation. Due to several studies investigating the performance of optical probes used to measure the ice particle size distribution (PSD), as well as the remote sensing results from our last ARM project, it is now well established that the anomalously high concentrations of small ice crystals often reported prior to 2007 were measurement artifacts. Advances in the design and data processing of optical probes have greatly reduced these ice artifacts that resulted from the shattering of ice particles on the probe tips and/or inlet tube, and PSD measurements from one of these improved probes (the 2-dimensional Stereo or 2D-S probe) are utilized in this project to parameterize V_{m} for climate models. Our original plan in the proposal was to parameterize the ice PSD (in terms of temperature and ice water content) and ice particle mass and projected area (in terms of mass- and area-dimensional power laws or m-D/A-D expressions) since these are the microphysical properties that determine V_{m}, and then proceed to calculate V_{m} from these parameterized properties. But the 2D-S probe directly measures ice particle projected area and indirectly estimates ice particle mass for each size bin. It soon became apparent that the original plan would introduce more uncertainty in the V_{m} calculations
Directory of Open Access Journals (Sweden)
Ian eFuelscher
2016-02-01
Full Text Available We investigated the purported association between developmental changes in grip selection planning and improvements in an individual’s capacity to represent action at an internal level (i.e., motor imagery. Participants were groups of healthy children aged 6-7 years and 8-12 years respectively, while a group of adolescents (13-17 years and adults (18-34 years allowed for consideration of childhood development in the broader context of motor maturation. A group of children aged 8-12 years with probable DCD (pDCD was included as a reference group for atypical motor development. Participants’ proficiency to generate and/or engage internal action representations was inferred from performance on the hand rotation task, a well-validated measure of motor imagery. A grip selection task designed to elicit the end-state comfort (ESC effect provided a window into the integrity of grip selection planning. Consistent with earlier accounts, the efficiency of grip selection planning followed a non-linear developmental progression in neurotypical individuals. As expected, analysis confirmed that these developmental improvements were predicted by an increased capacity to generate and/or engage internal action representations. The profile of this association remained stable throughout the (typical developmental spectrum. These findings are consistent with computational accounts of action planning that argue that internal action representations are associated with the expression and development of grip selection planning across typical development. However, no such association was found for our sample of children with pDCD, suggesting that individuals with atypical motor skill may adopt an alternative, sub-optimal strategy to plan their grip selection compared to their same-age control peers.
Fuelscher, Ian; Williams, Jacqueline; Wilmut, Kate; Enticott, Peter G.; Hyde, Christian
2016-01-01
We investigated the purported association between developmental changes in grip selection planning and improvements in an individual’s capacity to represent action at an internal level [i.e., motor imagery (MI)]. Participants were groups of healthy children aged 6–7 years and 8–12 years respectively, while a group of adolescents (13–17 years) and adults (18–34 years) allowed for consideration of childhood development in the broader context of motor maturation. A group of children aged 8–12 years with probable DCD (pDCD) was included as a reference group for atypical motor development. Participants’ proficiency to generate and/or engage internal action representations was inferred from performance on the hand rotation task, a well-validated measure of MI. A grip selection task designed to elicit the end-state comfort (ESC) effect provided a window into the integrity of grip selection planning. Consistent with earlier accounts, the efficiency of grip selection planning followed a non-linear developmental progression in neurotypical individuals. As expected, analysis confirmed that these developmental improvements were predicted by an increased capacity to generate and/or engage internal action representations. The profile of this association remained stable throughout the (typical) developmental spectrum. These findings are consistent with computational accounts of action planning that argue that internal action representations are associated with the expression and development of grip selection planning across typical development. However, no such association was found for our sample of children with pDCD, suggesting that individuals with atypical motor skill may adopt an alternative, sub-optimal strategy to plan their grip selection compared to their same-age control peers. PMID:26903915
Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam
2017-02-01
The aim of the study was to test the cross-language generative capability of a model that predicts neural activation patterns evoked by sentence reading, based on a semantic characterization of the sentence. In a previous study on English monolingual speakers (Wang et al., submitted), a computational model performed a mapping from a set of 42 concept-level semantic features (Neurally Plausible Semantic Features, NPSFs) as well as 6 thematic role markers to neural activation patterns (assessed with fMRI), to predict activation levels in a network of brain locations. The model used two types of information gained from the English-based fMRI data to predict the activation for individual sentences in Portuguese. First, it used the mapping weights from NPSFs to voxel activation levels derived from the model for English reading. Second, the brain locations for which the activation levels were predicted were derived from a factor analysis of the brain activation patterns during English reading. These meta-language locations were defined by the clusters of voxels with high loadings on each of the four main dimensions (factors), namely people, places, actions and feelings, underlying the neural representations of the stimulus sentences. This cross-language model succeeded in predicting the brain activation patterns associated with the reading of 60 individual Portuguese sentences that were entirely new to the model, attaining accuracies reliably above chance level. The prediction accuracy was not affected by whether the Portuguese speaker was monolingual or Portuguese-English bilingual. The model's confusion errors indicated an accurate capture of the events or states described in the sentence at a conceptual level. Overall, the cross-language predictive capability of the model demonstrates the neural commonality between speakers of different languages in the representations of everyday events and states, and provides an initial characterization of the common meta
Energy Technology Data Exchange (ETDEWEB)
Greg M. McFarquhar
2010-02-22
In our research we proposed to use data collected during the 2004 Mixed-Phase Arctic Cloud Experiment (MPACE) and the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) to improve retrievals of ice and mixed-phase clouds, to improve our understanding of how cloud and radiative processes affect cloud life cycles, and to develop and test methods for using ARM data more effectively in model. In particular, we proposed to: 1) use MPACE in-situ data to determine how liquid water fraction and cloud ice and liquid effective radius (r{sub ei} and r{sub ew}) vary with temperature, normalized cloud altitude and other variables for Arctic mixed-phase clouds, and to use these data to evaluate the performance of model parameterization schemes and remote sensing retrieval algorithms; 2) calculate rei and size/shape distributions using TWP-ICE in-situ data, investigate their dependence on cirrus type (oceanic or continental anvils or cirrus not directly traced to convection), and develop and test representations for MICROBASE; 3) conduct fundamental research enhancing our understanding of cloud/radiative interactions, concentrating on effects of small crystals and particle shapes and sizes on radiation; and 4) improve representations of microphysical processes for models (fall-out, effective density, mean scattering properties, rei and rew) and provide them to ARM PIs. In the course of our research, we made substantial progress on all four goals.
Numerical Proportion Representation: A Neurocomputational Account.
Chen, Qi; Verguts, Tom
2017-01-01
Proportion representation is an emerging subdomain in numerical cognition. However, its nature and its correlation with simple number representation remain elusive, especially at the theoretical level. To fill this gap, we propose a gain-field model of proportion representation to shed light on the neural and computational basis of proportion representation. The model is based on two well-supported neuroscientific findings. The first, gain modulation, is a general mechanism for information integration in the brain; the second relevant finding is how simple quantity is neurally represented. Based on these principles, the model accounts for recent relevant proportion representation data at both behavioral and neural levels. The model further addresses two key computational problems for the cognitive processing of proportions: invariance and generalization. Finally, the model provides pointers for future empirical testing.
Directory of Open Access Journals (Sweden)
S. Metzger
2012-06-01
Full Text Available Water activity is a key factor in aerosol thermodynamics and hygroscopic growth. We introduce a new representation of water activity (a_{w}, which is empirically related to the solute molality (μ_{s} through a single solute specific constant, ν_{i}. Our approach is widely applicable, considers the Kelvin effect and covers ideal solutions at high relative humidity (RH, including cloud condensation nuclei (CCN activation. It also encompasses concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD. The constant ν_{i} can thus be used to parameterize the aerosol hygroscopic growth over a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. In contrast to other a_{w}-representations, our ν_{i} factor corrects the solute molality both linearly and in exponent form x · a^{x}. We present four representations of our basic a_{w}-parameterization at different levels of complexity for different a_{w}-ranges, e.g. up to 0.95, 0.98 or 1. ν_{i} is constant over the selected a_{w}-range, and in its most comprehensive form, the parameterization describes the entire a_{w} range (0–1. In this work we focus on single solute solutions. ν_{i} can be pre-determined with a root-finding method from our water activity representation using an a_{w}−μ_{s} data pair, e.g. at solute saturation using RHD and solubility measurements. Our a_{w} and supersaturation (Köhler-theory results compare well with the thermodynamic reference model E-AIM for the key compounds NaCl and (NH_{4}_{2}SO_{4} relevant for CCN modeling and calibration studies. Envisaged applications include regional and global atmospheric chemistry and
Knowledge representation with SOA
Directory of Open Access Journals (Sweden)
Daniela Gotseva
2013-01-01
Full Text Available This paper addresses the problem of supporting the software development process through the artificial intelligence. The expert systems could advise the Domain Engineer in programming without the detailed experience in programming languages. He will use and integrate, with the help of deductive database and domain knowledge, the previously developed software components to new complex functionalities. The objective of this document is to provide the knowledge representation about atomic Web Services which will be registered as the facts in the deductive database. The author proposes to use the decision rules in decision tables for representing the service model which consists of semantic specification, interface description, service quality (QoS, non-functional properties. Also the use of Domain Specific Languages (DSL for modeling Domain Engineers re-quests to the expert system will be considered within this document. As the illustrative use case for described knowledge representation the author proposes the domain of SOA-based geographic information systems (GIS which represent a new branch of information and communication technologies.
Han, Jing-Cheng; Huang, Guohe; Huang, Yuefei; Zhang, Hua; Li, Zhong; Chen, Qiuwen
2015-08-15
Lack of hydrologic process representation at the short time-scale would lead to inadequate simulations in distributed hydrological modeling. Especially for complex mountainous watersheds, surface runoff simulations are significantly affected by the overland flow generation, which is closely related to the rainfall characteristics at a sub-time step. In this paper, the sub-daily variability of rainfall intensity was considered using a probability distribution, and a chance-constrained overland flow modeling approach was proposed to capture the generation of overland flow within conceptual distributed hydrologic simulations. The integrated modeling procedures were further demonstrated through a watershed of China Three Gorges Reservoir area, leading to an improved SLURP-TGR hydrologic model based on SLURP. Combined with rainfall thresholds determined to distinguish various magnitudes of daily rainfall totals, three levels of significance were simultaneously employed to examine the hydrologic-response simulation. Results showed that SLURP-TGR could enhance the model performance, and the deviation of runoff simulations was effectively controlled. However, rainfall thresholds were so crucial for reflecting the scaling effect of rainfall intensity that optimal levels of significance and rainfall threshold were 0.05 and 10 mm, respectively. As for the Xiangxi River watershed, the main runoff contribution came from interflow of the fast store. Although slight differences of overland flow simulations between SLURP and SLURP-TGR were derived, SLURP-TGR was found to help improve the simulation of peak flows, and would improve the overall modeling efficiency through adjusting runoff component simulations. Consequently, the developed modeling approach favors efficient representation of hydrological processes and would be expected to have a potential for wide applications.
Paired structures in knowledge representation
DEFF Research Database (Denmark)
Montero, J.; Bustince, H.; Franco de los Ríos, Camilo;
2016-01-01
In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is clai......In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here...... of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis...
Ocak, Mahir E
2012-01-01
Firstly, a sequential symmetry adaptation procedure is derived for semidirect product groups. Then, this sequential symmetry adaptation procedure is used in the development of new method named Monomer Basis Representation (MBR) for calculating the vibration-rotation-tunneling (VRT) spectra of molecular clusters. The method is based on generation of optimized bases for each monomer in the cluster as a linear combination of some primitive basis functions and then using the sequential symmetry adaptation procedure for generating a small symmetry adapted basis for the solution of the full problem. It is seen that given an optimized basis for each monomer the application of the sequential symmetry adaptation procedure leads to a generalized eigenvalue problem instead of a standard eigenvalue problem if the procedure is used as it is. In this paper, MBR method will be developed as a solution of that problem such that it leads to generation of an orthogonal optimized basis for the cluster being studied regardless of...
Directory of Open Access Journals (Sweden)
Talía Tijero Neyra
2009-06-01
construct mental representations and according to the discipline in which these mental representations have been proposed, they receive different names, such as “framework” (Minsky, 1974, “script” (Schank y Abelson, 1987, and “mental model” (Johnson-Laird, 1990, among others. Studies of reading comprehension have not abandoned this assumption that individuals construct representations in their minds. Within this framework, in the late twentieth century, van Dijk and Kintsch (1983 propose that readers (of oral and written texts processed textual information in three levels of representation: surface code, text-base and situation model. In this article, the focus of interest is this last level because of its impact and acceptance on becoming, along with the other two levels, a “non-controversial assumption” (Graesser, Singer y Trabasso, 1994. More specifically, the discussion will present Kintsch’s conception of the situation model (1988, 1998 and will underpin its value for the studies of understanding text. To achieve this goal we focus on the treatment of this mental representation in the construction-integration model (Kintsch, 1988; Kintsch, 1999. Finally, we review, in the light of various experiments (McNamara, 2004; Zwaan y Taylor, 2006; etc., the psychological validity of situation models. This will reaffirm its value not only for the studies of reading comprehension but also for education and, in general, for cognition (Kintsch, 2004.
Digital Image Representation and Access.
Mostafa, Javed
1994-01-01
Reviews the literature relating to the development and application of modern imaging technology between 1987 and 1993. Highlights include image representation, including image data, compression, and image formats; and image access, including indexing and modeling, user interface design, and distributed access. (143 references) (LRW)
Building Hierarchical Representations for Oracle Character and Sketch Recognition.
Jun Guo; Changhu Wang; Roman-Rangel, Edgar; Hongyang Chao; Yong Rui
2016-01-01
In this paper, we study oracle character recognition and general sketch recognition. First, a data set of oracle characters, which are the oldest hieroglyphs in China yet remain a part of modern Chinese characters, is collected for analysis. Second, typical visual representations in shape- and sketch-related works are evaluated. We analyze the problems suffered when addressing these representations and determine several representation design criteria. Based on the analysis, we propose a novel hierarchical representation that combines a Gabor-related low-level representation and a sparse-encoder-related mid-level representation. Extensive experiments show the effectiveness of the proposed representation in both oracle character recognition and general sketch recognition. The proposed representation is also complementary to convolutional neural network (CNN)-based models. We introduce a solution to combine the proposed representation with CNN-based models, and achieve better performances over both approaches. This solution has beaten humans at recognizing general sketches.