WorldWideScience

Sample records for model relating volumetric

  1. Parametric model of volumetric scattering

    Science.gov (United States)

    Magarill, Simon; Cassarly, William J.; Jenkins, David R.; Yang, Yang; Yu, Xiaofeng; Liu, Guang

    2017-11-01

    We develop a method to determine volumetric scattering model parameter values based on measured BSDF characteristics. Example models often use Mie or Gegenbauer particles. The accuracy and flexibility of this approach are illustrated.

  2. Modeling and Representation of Human Hearts for Volumetric Measurement

    Directory of Open Access Journals (Sweden)

    Qiu Guan

    2012-01-01

    Full Text Available This paper investigates automatic construction of a three-dimensional heart model from a set of medical images, represents it in a deformable shape, and uses it to perform volumetric measurements. This not only significantly improves its reliability and accuracy but also makes it possible to derive valuable novel information, like various assessment and dynamic volumetric measurements. The method is based on a flexible model trained from hundreds of patient image sets by a genetic algorithm, which takes advantage of complete segmentation of the heart shape to form a geometrical heart model. For an image set of a new patient, an interpretation scheme is used to obtain its shape and evaluate some important parameters. Apart from automatic evaluation of traditional heart functions, some new information of cardiovascular diseases may be recognized from the volumetric analysis.

  3. Statistical volumetric model for characterization and visualization of prostate cancer

    Science.gov (United States)

    Lu, Jianping; Srikanchana, Rujirutana; McClain, Maxine A.; Wang, Yue J.; Xuan, Jian Hua; Sesterhenn, Isabell A.; Freedman, Matthew T.; Mun, Seong K.

    2000-04-01

    To reveal the spatial pattern of localized prostate cancer distribution, a 3D statistical volumetric model, showing the probability map of prostate cancer distribution, together with the anatomical structure of the prostate, has been developed from 90 digitally-imaged surgical specimens. Through an enhanced virtual environment with various visualization modes, this master model permits for the first time an accurate characterization and understanding of prostate cancer distribution patterns. The construction of the statistical volumetric model is characterized by mapping all of the individual models onto a generic prostate site model, in which a self-organizing scheme is used to decompose a group of contours representing multifold tumors into localized tumor elements. Next crucial step of creating the master model is the development of an accurate multi- object and non-rigid registration/warping scheme incorporating various variations among these individual moles in true 3D. This is achieved with a multi-object based principle-axis alignment followed by an affine transform, and further fine-tuned by a thin-plate spline interpolation driven by the surface based deformable warping dynamics. Based on the accurately mapped tumor distribution, a standard finite normal mixture is used to model the cancer volumetric distribution statistics, whose parameters are estimated using both the K-means and expectation- maximization algorithms under the information theoretic criteria. Given the desired number of tissue samplings, the prostate needle biopsy site selection is optimized through a probabilistic self-organizing map thus achieving a maximum likelihood of cancer detection. We describe the details of our theory and methodology, and report our pilot results and evaluation of the effectiveness of the algorithm in characterizing prostate cancer distributions and optimizing needle biopsy techniques.

  4. Mathematical Model Defining Volumetric Losses of Hydraulic Oil Compression in a Variable Capacity Displacement Pump

    Directory of Open Access Journals (Sweden)

    Paszota Zygmunt

    2015-01-01

    Full Text Available The objective of the work is to develop the capability of evaluating the volumetric losses of hydraulic oil compression in the working chambers of high pressure variable capacity displacement pump. Volumetric losses of oil compression must be determined as functions of the same parameters, which the volumetric losses due to leakage, resulting from the quality of design solution of the pump, are evaluated as dependent on and also as function of the oil aeration coefficient Ɛ. A mathematical model has been developed describing the hydraulic oil compressibility coefficient klc|Δppi;Ɛ;v as a relation to the ratio ΔpPi/pn of indicated increase ΔpPi of pressure in the working chambers and the nominal pressure pn, to the pump capacity coefficient bP, to the oil aeration coefficient  and to the ratio v/vnof oil viscosity v and reference viscosity vn. A mathematical model is presented of volumetric losses qpvc|ΔpPi;bp;;vof hydraulic oil compression in the pump working chambers in the form allowing to use it in the model of power of losses and energy efficiency

  5. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  6. Volumetric PIV behind mangrove-type root models

    Science.gov (United States)

    Kazemi, Amirkhosro; van de Riet, Keith; Curet, Oscar M.

    2017-11-01

    Mangrove trees form dense networks of prop roots in coastal intertidal zones. The interaction of mangroves with the tidal flow is fundamental in estuaries and shoreline by providing water filtration, protection against erosion and habitat for aquatic animals. In this work, we modeled the mangrove prop roots with a cluster of rigid circular cylinders (patch) to investigate its hydrodynamics. We conducted 2-D PIV and V3V in the near- and far-wake in the recirculating water channel. Two models were considered: (1) a rigid patch, and (2) a flexible patch modeled as rigid cylinders with a flexible hinge. We found that Strouhal number changes with porosity while the patch diameter is constant. Based on the wake signature, we defined an effective diameter length scale. The volumetric flow measurements revealed a regular shedding forming von Kármán vortices for the rigid patch while the flexible patch produced a less uniform wake where vortices were substantially distorted. We compare the wake structure between that 2-D PIV and V3V. This analysis of the hydrodynamics of mangrove-root like models can also be extended to understand other complex flows including bio-inspired coastal infrastructures, damping-wave systems, and energy harvesting devices.

  7. Effects of Prepolymerized Particle Size and Polymerization Kinetics on Volumetric Shrinkage of Dental Modeling Resins

    Directory of Open Access Journals (Sweden)

    Tae-Yub Kwon

    2014-01-01

    Full Text Available Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control. The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P>0.05 or significantly larger (P<0.05 than that of the control resin and were related to the polymerization kinetics (P<0.05 rather than the PMMA bead size (P=0.335. Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins.

  8. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...... real-time deformation using the methods developed in the paper....

  9. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  10. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    Science.gov (United States)

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  11. Applying volumetric weather radar data for rainfall runoff modeling: The importance of error correction.

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Uijlenhoet, R.; Delobbe, L.; Weerts, A.; Reggiani, P.

    2009-04-01

    In the current study half a year of volumetric radar data for the period October 1, 2002 until March 31, 2003 is being analyzed which was sampled at 5 minutes intervals by C-band Doppler radar situated at an elevation of 600 m in the southern Ardennes region, Belgium. During this winter half year most of the rainfall has a stratiform character. Though radar and raingauge will never sample the same amount of rainfall due to differences in sampling strategies, for these stratiform situations differences between both measuring devices become even larger due to the occurrence of a bright band (the point where ice particles start to melt intensifying the radar reflectivity measurement). For these circumstances the radar overestimates the amount of precipitation and because in the Ardennes bright bands occur within 1000 meter from the surface, it's detrimental effects on the performance of the radar can already be observed at relatively close range (e.g. within 50 km). Although the radar is situated at one of the highest points in the region, very close to the radar clutter is a serious problem. As a result both nearby and farther away, using uncorrected radar results in serious errors when estimating the amount of precipitation. This study shows the effect of carefully correcting for these radar errors using volumetric radar data, taking into account the vertical reflectivity profile of the atmosphere, the effects of attenuation and trying to limit the amount of clutter. After applying these correction algorithms, the overall differences between radar and raingauge are much smaller which emphasizes the importance of carefully correcting radar rainfall measurements. The next step is to assess the effect of using uncorrected and corrected radar measurements on rainfall-runoff modeling. The 1597 km2 Ourthe catchment lies within 60 km of the radar. Using a lumped hydrological model serious improvement in simulating observed discharges is found when using corrected radar

  12. 3D Volumetric Modeling and Microvascular Reconstruction of Irradiated Lumbosacral Defects after Oncologic Resection.

    Science.gov (United States)

    Garcia-Tutor, Emilio; Romeo, Marco; Chae, Michael P; Hunter-Smith, David J; Rozen, Warren Matthew

    2016-01-01

    Locoregional flaps are sufficient in most sacral reconstructions. However, large sacral defects due to malignancy necessitate a different reconstructive approach, with local flaps compromised by radiation and regional flaps inadequate for broad surface areas or substantial volume obliteration. In this report, we present our experience using free muscle transfer for volumetric reconstruction, in such cases, and demonstrate three-dimensional (3D) haptic models of the sacral defect to aid preoperative planning. Five consecutive patients with irradiated sacral defects secondary to oncologic resections were included, surface area ranging from 143-600 cm 2 . Latissimus dorsi (LD)-based free flap sacral reconstruction was performed in each case, between 2005 and 2011. Where the superior gluteal artery was compromised, the subcostal artery (SA) was used as a recipient vessel. Microvascular technique, complications, and outcomes are reported. The use of volumetric analysis and 3D printing is also demonstrated, with imaging data converted to 3D images suitable for 3D printing with Osirix software (Pixmeo, Geneva, Switzerland). An office-based, desktop 3D printer was used to print 3D models of sacral defects, used to demonstrate surface area and contour and produce a volumetric print of the dead space needed for flap obliteration. The clinical series of LD free flap reconstructions is presented, with successful transfer in all cases, and adequate soft-tissue cover and volume obliteration achieved. The original use of the SA as a recipient vessel was successfully achieved. All wounds healed uneventfully. 3D printing is also demonstrated as a useful tool for 3D evaluation of volume and dead space. Free flaps offer unique benefits in sacral reconstruction where local tissue is compromised by irradiation and tumor recurrence, and dead space requires accurate volumetric reconstruction. We describe for the first time the use of the SA as a recipient in free flap sacral

  13. Relating Linear and Volumetric Variables Through Body Scanning to Improve Human Interfaces in Space

    Science.gov (United States)

    Margerum, Sarah E.; Ferrer, Mike A.; Young, Karen S.; Rajulu, Sudhakar

    2010-01-01

    fit between similarly sized individuals is critical in providing a greater understanding of the human body's function within the suit. The third case study presented in this paper explores the development of a conformal seat pan using scanning techniques, and details the challenges of volumetric analyses that were overcome in order to develop a universal seat pan that can be utilized across the entire user population. The final case study explores expanding volumetric capabilities through generation of boundary manikins. Boundary manikins are representative individuals from the population of interest that represent the extremes of the population spectrum. The ABF developed a technique to take three-dimensional scans of individuals and manipulate the scans to reflect the boundary manikins' anthropometry. In essence, this process generates a representative three-dimensional scan of an individual from anthropometry, using another individual's scanned image. The results from this process can be used in design process modeling and initial suit sizing work as a three dimensional, realistic example of individuals from the population, maintaining the variability between and correlation to the relevant dimensions of interest.

  14. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems

    Science.gov (United States)

    Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-01-01

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results. PMID:29503722

  15. The importance of volumetric canopy morphology when modelling drag around riparian vegetation

    Science.gov (United States)

    Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Marjoribanks, Timothy

    2017-04-01

    Riparian vegetation has a significant impact on the hydraulic functioning of river systems. The bulk of past work concerned with modelling the influence of vegetation on flow has considered vegetation to be morphologically simple, and has generally neglected the complexity and porosity of natural plants, defined herein as the volumetric canopy morphology. However, the volumetric canopy morphology can influence the mean and turbulent properties of the flow, producing spatially heterogeneous downstream velocity fields. By explicitly accounting for this in a computational fluid dynamics (CFD) model, and representing the plant as a porous blockage, complex flow structures and drag can be modelled. For a riparian species, Hebe odora, good agreement with flume measurements are found. Plant shear layer turbulence is shown to be dominated by Kelvin-Helmholtz and Görtler-type vortices, generated through shear instability. Porous representations of the plants, that allow for flow to pass through the plant canopy interior, are compared against fully impermeable plant representations. Penetration of fluid through the canopy in the porous case resembles 'bleed-flow', and this results in a plant wake region that significantly differs from the impermeable case, which is characteristic of wake flow around a traditional bluff body. These results demonstrate the significant effect that the volumetric canopy morphology and porosity of natural plants has on the three-dimensional flow and in-stream drag, and enables a re-evaluation of vegetative flow resistance. The modelled results allow a species dependent Manning's n to be calculated, and this presents an opportunity to move away from the conventional methods of representing vegetation in hydraulic models, in favour of a more physically determined approach. Given the importance of vegetation in river corridor management, and the increasing application of UAV imagery to map riparian vegetation, the numerical scheme developed here

  16. Simplified model of a volumetric direct nuclear pumped He-3-Ar laser

    Science.gov (United States)

    Harries, W. L.; Wilson, J. W.

    1979-01-01

    A physical model for the volumetric nuclear pumped He-3-Ar laser is described and the source terms arising from the He-3(n, p)H-3 reaction as well as the rate equations are given. Steady state solutions are derived for the densities of the species vs the fraction of argon. The dominant pumping mechanism is found to be collisional radiative recombination of the argon atomic ions and subsequent cascading into the upper laser level. The reactions following recombination are described and an expression is derived for the difference in densities of the argon 3d and 4p levels. Comparison with experiments shows good agreement.

  17. Semi-automatic segmentation of vertebral bodies in volumetric MR images using a statistical shape+pose model

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Segmentation of vertebral structures in magnetic resonance (MR) images is challenging because of poor con­trast between bone surfaces and surrounding soft tissue. This paper describes a semi-automatic method for segmenting vertebral bodies in multi-slice MR images. In order to achieve a fast and reliable segmentation, the method takes advantage of the correlation between shape and pose of different vertebrae in the same patient by using a statistical multi-vertebrae anatomical shape+pose model. Given a set of MR images of the spine, we initially reduce the intensity inhomogeneity in the images by using an intensity-correction algorithm. Then a 3D anisotropic diffusion filter smooths the images. Afterwards, we extract edges from a relatively small region of the pre-processed image with a simple user interaction. Subsequently, an iterative Expectation Maximization tech­nique is used to register the statistical multi-vertebrae anatomical model to the extracted edge points in order to achieve a fast and reliable segmentation for lumbar vertebral bodies. We evaluate our method in terms of speed and accuracy by applying it to volumetric MR images of the spine acquired from nine patients. Quantitative and visual results demonstrate that the method is promising for segmentation of vertebral bodies in volumetric MR images.

  18. 3D Volumetric Modeling and Microvascular Reconstruction of Irradiated Lumbosacral Defects After Oncologic Resection

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Tutor

    2016-12-01

    Full Text Available Background: Locoregional flaps are sufficient in most sacral reconstructions. However, large sacral defects due to malignancy necessitate a different reconstructive approach, with local flaps compromised by radiation and regional flaps inadequate for broad surface areas or substantial volume obliteration. In this report, we present our experience using free muscle transfer for volumetric reconstruction in such cases, and demonstrate 3D haptic models of the sacral defect to aid preoperative planning.Methods: Five consecutive patients with irradiated sacral defects secondary to oncologic resections were included, surface area ranging from 143-600cm2. Latissimus dorsi-based free flap sacral reconstruction was performed in each case, between 2005 and 2011. Where the superior gluteal artery was compromised, the subcostal artery was used as a recipient vessel. Microvascular technique, complications and outcomes are reported. The use of volumetric analysis and 3D printing is also demonstrated, with imaging data converted to 3D images suitable for 3D printing with Osirix software (Pixmeo, Geneva, Switzerland. An office-based, desktop 3D printer was used to print 3D models of sacral defects, used to demonstrate surface area and contour and produce a volumetric print of the dead space needed for flap obliteration. Results: The clinical series of latissimus dorsi free flap reconstructions is presented, with successful transfer in all cases, and adequate soft-tissue cover and volume obliteration achieved. The original use of the subcostal artery as a recipient vessel was successfully achieved. All wounds healed uneventfully. 3D printing is also demonstrated as a useful tool for 3D evaluation of volume and dead-space.Conclusion: Free flaps offer unique benefits in sacral reconstruction where local tissue is compromised by irradiation and tumor recurrence, and dead-space requires accurate volumetric reconstruction. We describe for the first time the use of

  19. Mechanical model of human eye compliance for volumetric occlusion break surge measurements.

    Science.gov (United States)

    Dyk, David W; Miller, Kevin M

    2018-02-01

    To develop a mechanical model of human eye compliance for volumetric studies. Alcon Research, Ltd., Lake Forest, California, USA. Experimental study. Enucleated human eyes underwent pressurization and depressurization cycles with peak intraocular pressures (IOPs) of 60 to 100 mm Hg; anterior chamber pressure and volume changes were measured. Average net volume change curves were calculated as a function of IOP for each eye. Overall mean volumes were computed from each eye's average results at pressure points extrapolated over the range of 5 to 90 mm Hg. A 2-term exponential function was fit to these results. A fluid chamber with a displaceable piston was created as a mechanical model of this equation. A laser confocal displacement meter was used to measure piston displacement. A test bed incorporated the mechanical model with a mounted phacoemulsification probe and allowed for simulated occlusion breaks. Surge volume was calculated from piston displacement. An exponential function, V = C 1 × exp(C 2 × IOP) + C 3  × exp(C 4  × IOP) - V 0 , where V, the volume, was fit to the final depressurization curve obtained from 15 enucleated human eyes. The C 1 through C 4 values were -0.07141, -0.23055, -0.14972, and -0.02006, respectively. The equation was modeled using a piston system with 3 parallel springs that engaged serially. The mechanical model mimicked depressurization curves observed in human cadaver eyes. The resulting mechanical compliance model measured ocular volumetric changes and thus would be helpful in characterizing the postocclusion break surge response. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre...

  1. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses limit the load resistance of the product and may even lead to fracture during the built process. It is therefore of paramount importance to predict the level of part distortion and residual stress as a function of SLM process parameters which requires a reliable thermal modelling of the SLM process. Consequently, a key question arises which is how to describe the laser source appropriately. Reasonable simplification of the laser representation is crucial for the computational efficiency of the thermal model of the SLM process. In this paper, first a semi-analytical thermal modelling approach is described. Subsequently, the laser heating is modelled using point, surface and volumetric sources, in order to compare the influence of different laser source geometries on the thermal history prediction of the thermal model. The present work provides guidelines on appropriate representation of the laser source in the thermal modelling of the SLM process.

  2. Volumetric CT measurement of the ischial tuberosities for designing analytical models of decubitus ulcers

    Science.gov (United States)

    Holmes, David R., III; Robb, Richard A.

    2006-03-01

    Decubitus ulcers can have a deleterious effect on the quality of life for some patients, particularly those prone to chronic development of skin ulcerations. The bones of the pelvis are particularly relevant as nearly half of all ulcerations observed in the hospital are in the pelvic region. This research focuses on the development of methods to extract the ischium and adjacent anatomy from volumetric CT data of the pelvis which will be used for patient-specific modeling of high-pressure regions and the treatment of associated ulcers. Six volumetric CT scans were evaluated to determine the size and shape of the ischial tuberosities. Using oblique images computed from the CT data, cross-sectional measurements (approximately Superior-Inferior, Anterior-Posterior, and Left-Right) were made to estimate the size of the ischial tuberosities. Similar measurements were made on the ischial ramus. The mean length of the ischial tuberosities (S-I direction) is 12.35 cm. The mean dimension in the L-R and A-P directions are 2.97 cm and 3.78 cm, respectively. For the ischial ramus, the S-I, L-R, and A-P mean lengths are 6.57 cm, 1.72 cm, and 1.49 cm. Due to a limited field of view for the CT datasets, the thickness of the soft tissue (i.e. Gluteus Maximus and subcutaneous fat) could not be measured. Using the bony measurements and adjacent soft tissue measurements, an investigator would be able estimate the posterior pelvis forces for calculations of pressure on the proximal skin, which could then be used to predict ulcerations in patients, or to design new ulcer-inhibiting seating devices. Current efforts are focused on collecting a large cohort of data with both bony and soft tissue measurements. Future work will incorporate the physical properties of the soft tissue to specifically predict high-pressure regions.

  3. A method for mapping tissue volume model onto target volume using volumetric self-organizing deformable model

    Science.gov (United States)

    Miyauchi, Shoko; Morooka, Ken'ichi; Tsuji, Tokuo; Miyagi, Yasushi; Fukuda, Takaichi; Kurazume, Ryo

    2016-03-01

    This paper proposes a new method for mapping volume models of human tissues onto a target volume with simple shapes. The proposed method is based on our modified self-organizing deformable model (mSDM)1, 2 which finds the one-to-one mapping with no foldovers between arbitrary surface model and a target surface. By extending mSDM to apply to volume models, the proposed method, called volumetric SDM (vSDM), establishes the one-to-one correspondence between the tissue volume model and its target volume. At the same time, vSDM can preserve geometrical properties of the original model before and after mapping. This characteristic of vSDM makes it easy to find the correspondence between tissue models.

  4. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis

    International Nuclear Information System (INIS)

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Foote, Matthew; Lehman, Margot; Chan, Lawrence Wing Chi

    2017-01-01

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, following the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.

  5. Quantitative rainfall metrics for comparing volumetric rainfall retrievals to fine scale models

    Science.gov (United States)

    Collis, Scott; Tao, Wei-Kuo; Giangrande, Scott; Fridlind, Ann; Theisen, Adam; Jensen, Michael

    2013-04-01

    Precipitation processes play a significant role in the energy balance of convective systems for example, through latent heating and evaporative cooling. Heavy precipitation "cores" can also be a proxy for vigorous convection and vertical motions. However, comparisons between rainfall rate retrievals from volumetric remote sensors with forecast rain fields from high-resolution numerical weather prediction simulations are complicated by differences in the location and timing of storm morphological features. This presentation will outline a series of metrics for diagnosing the spatial variability and statistical properties of precipitation maps produced both from models and retrievals. We include existing metrics such as Contoured by Frequency Altitude Diagrams (Yuter and Houze 1995) and Statistical Coverage Products (May and Lane 2009) and propose new metrics based on morphology, cell and feature based statistics. Work presented focuses on observations from the ARM Southern Great Plains radar network consisting of three agile X-Band radar systems with a very dense coverage pattern and a C Band system providing site wide coverage. By combining multiple sensors resolutions of 250m2 can be achieved, allowing improved characterization of fine-scale features. Analyses compare data collected during the Midlattitude Continental Convective Clouds Experiment (MC3E) with simulations of observed systems using the NASA Unified Weather Research and Forecasting model. May, P. T., and T. P. Lane, 2009: A method for using weather radar data to test cloud resolving models. Meteorological Applications, 16, 425-425, doi:10.1002/met.150, 10.1002/met.150. Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Wea. Rev., 123, 1941-1963, doi:10.1175/1520-0493(1995)1232.0.CO;2.

  6. Volumetric breast density measurement: sensitivity analysis of a relative physics approach

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah

    2016-01-01

    Objective: To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. Methods: 3317 raw digital mammograms were processed with Volpara® (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Results: Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p < 0.0001). Maximum shifts in the mean (1.2%) and median (1.1%) VBD of the study population occurred when CBT was varied. Conclusion: Volpara was robust to expected clinical variations, with errors in most investigated parameters giving limited changes in results, although extreme variations in CBT and kVp could lead to greater errors. Advances in knowledge: Despite Volpara's robustness, rigorous quality control is essential to keep the parameter errors within reasonable bounds. Volpara appears robust within those bounds, albeit for more advanced applications such as tracking density change over time, it remains to be seen how accurate the measures need to be. PMID:27452264

  7. 2D Echocardiographic Evaluation of Right Ventricular Function Correlates With 3D Volumetric Models in Cardiac Surgery Patients.

    Science.gov (United States)

    Magunia, Harry; Schmid, Eckhard; Hilberath, Jan N; Häberle, Leo; Grasshoff, Christian; Schlensak, Christian; Rosenberger, Peter; Nowak-Machen, Martina

    2017-04-01

    The early diagnosis and treatment of right ventricular (RV) dysfunction are of critical importance in cardiac surgery patients and impact clinical outcome. Two-dimensional (2D) transesophageal echocardiography (TEE) can be used to evaluate RV function using surrogate parameters due to complex RV geometry. The aim of this study was to evaluate whether the commonly used visual evaluation of RV function and size using 2D TEE correlated with the calculated three-dimensional (3D) volumetric models of RV function. Retrospective study, single center, University Hospital. Seventy complete datasets were studied consisting of 2D 4-chamber view loops (2-3 beats) and the corresponding 4-chamber view 3D full-volume loop of the right ventricle. RV function and RV size of the 2D loops then were assessed retrospectively purely qualitatively individually by 4 clinician echocardiographers certified in perioperative TEE. Corresponding 3D volumetric models calculating RV ejection fraction and RV end-diastolic volumes then were established and compared with the 2D assessments. 2D assessment of RV function correlated with 3D volumetric calculations (Spearman's rho -0.5; pright ventricular function based on visual estimation as frequently used in clinical practice appeared to be a reliable method of RV functional evaluation. However, 2D assessment of RV size seemed unreliable and should be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Process conditions and volumetric composition in composites

    DEFF Research Database (Denmark)

    Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is linked to the gravimetric composition, and it is influenced by the conditions of the manufacturing process. A model for the volumetric composition is presented, where the volume fractions of fibers, matrix and porosity are calculated...... as a function of the fiber weight fraction, and where parameters are included for the composite microstructure, and the fiber assembly compaction behavior. Based on experimental data of composites manufactured with different process conditions, together with model predictions, different types of process related...... the fiber and matrix volume fractions are only slightly changed. Air entrapment in the matrix due to non-ideal process conditions is found to have a marked effect on the volumetric composition. For composites with such type of matrix porosity, the porosity content is decreased when the fiber content...

  9. Modelling of volumetric properties of binary and ternary mixtures by CEOS, CEOS/GE and empirical models

    Directory of Open Access Journals (Sweden)

    BOJAN D. DJORDJEVIC

    2007-12-01

    Full Text Available Although many cubic equations of state coupled with van der Waals-one fluid mixing rules including temperature dependent interaction parameters are sufficient for representing phase equilibria and excess properties (excess molar enthalpy HE, excess molar volume VE, etc., difficulties appear in the correlation and prediction of thermodynamic properties of complex mixtures at various temperature and pressure ranges. Great progress has been made by a new approach based on CEOS/GE models. This paper reviews the last six-year of progress achieved in modelling of the volumetric properties for complex binary and ternary systems of non-electrolytes by the CEOS and CEOS/GE approaches. In addition, the vdW1 and TCBT models were used to estimate the excess molar volume VE of ternary systems methanol + chloroform + benzene and 1-propanol + chloroform + benzene, as well as the corresponding binaries methanol + chloroform, chloroform + benzene, 1-propanol + chloroform and 1-propanol + benzene at 288.15–313.15 K and atmospheric pressure. Also, prediction of VE for both ternaries by empirical models (Radojković, Kohler, Jackob–Fitzner, Colinet, Tsao–Smith, Toop, Scatchard, Rastogi was performed.

  10. A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies

    Science.gov (United States)

    2012-12-01

    Fig. 1D). Then, at the demarcated middle third the TA muscle, the TA and extensor digitorum longus (EDL) mus- cles were bluntly separated and the medial...0.05). VML, volumetric muscle loss; BW, body weight; MW, muscle weight; TA, tibialis anterior; EDL, extensor digitorum longus ; Po, peak iso- metric...tenotomy of the extensor digito- rum longus muscle (Ablation). abcLetters indicate that the value is significantly different from any different letter

  11. Keratin Hydrogel Enhances In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss.

    Science.gov (United States)

    Passipieri, J A; Baker, H B; Siriwardane, Mevan; Ellenburg, Mary D; Vadhavkar, Manasi; Saul, Justin M; Tomblyn, Seth; Burnett, Luke; Christ, George J

    2017-06-01

    Volumetric muscle loss (VML) injuries exceed the considerable intrinsic regenerative capacity of skeletal muscle, resulting in permanent functional and cosmetic deficits. VML and VML-like injuries occur in military and civilian populations, due to trauma and surgery as well as due to a host of congenital and acquired diseases/syndromes. Current therapeutic options are limited, and new approaches are needed for a more complete functional regeneration of muscle. A potential solution is human hair-derived keratin (KN) biomaterials that may have significant potential for regenerative therapy. The goal of these studies was to evaluate the utility of keratin hydrogel formulations as a cell and/or growth factor delivery vehicle for functional muscle regeneration in a surgically created VML injury in the rat tibialis anterior (TA) muscle. VML injuries were treated with KN hydrogels in the absence and presence of skeletal muscle progenitor cells (MPCs), and/or insulin-like growth factor 1 (IGF-1), and/or basic fibroblast growth factor (bFGF). Controls included VML injuries with no repair (NR), and implantation of bladder acellular matrix (BAM, without cells). Initial studies conducted 8 weeks post-VML injury indicated that application of keratin hydrogels with growth factors (KN, KN+IGF-1, KN+bFGF, and KN+IGF-1+bFGF, n = 8 each) enabled a significantly greater functional recovery than NR (n = 7), BAM (n = 8), or the addition of MPCs to the keratin hydrogel (KN+MPC, KN+MPC+IGF-1, KN+MPC+bFGF, and KN+MPC+IGF-1+bFGF, n = 8 each) (p < 0.05). A second series of studies examined functional recovery for as many as 12 weeks post-VML injury after application of keratin hydrogels in the absence of cells. A significant time-dependent increase in functional recovery of the KN, KN+bFGF, and KN+IGF+bFGF groups was observed, relative to NR and BAM implantation, achieving as much as 90% of the maximum possible functional recovery. Histological findings from harvested

  12. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    Science.gov (United States)

    Liu, M.; Thygesen, A.; Meyer, AS; Madsen, B.

    2016-07-01

    The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre impregnation by the epoxy matrix, and the mechanical properties of the composites are thereby increased. The effective fibre stiffness and strength established from the modelling show that the enzymatic removal of pectin also leads to increased mechanical properties of the fibres. Among the investigated samples, the composites with hydrothermally pre-treated and enzymatically treated fibres have the lowest porosity factor of 0.08 and the highest mechanical properties. In these composites, the effective fibre stiffness and strength are determined to be 83 GPa and 667 MPa, respectively, when the porosity efficiency exponent is set equal to 2. Altogether, it is demonstrated that the applied models provide a concept to be used for the evaluation of performance of treated fibres in composites.

  13. Simulation of volumetrically heated pebble beds in solid breeding blankets for fusion reactors. Modelling, experimental validation and sensitivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Gonzalez, Francisco Alberto

    2016-10-14

    The Breeder Units contains pebble beds of lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder material and beryllium as neutron multiplier. In this dissertation a closed validation strategy for the thermo-mechanical validation of the Breeder Units has been developed. This strategy is based on the development of dedicated testing and modeling tools, which are needed for the qualification of the thermo-mechanical functionality of these components in an out-of-pile experimental campaign. The neutron flux in the Breeder Units induces a nonhomogeneous volumetric heating in the pebble beds that must be mimicked in an out-of-pile experiment with an external heating system minimizing the intrusion in the pebble beds. Therefore, a heater system that simulates this volumetric heating has been developed. This heater system is based on ohmic heating and linear heater elements, which approximates the point heat sources of the granular material by linear sources. These linear sources represent ''linear pebbles'' in discrete locations close enough to relatively reproduce the thermal gradients occurring in the functional materials. The heater concept has been developed for the Li{sub 4}SiO{sub 4} and it is based on a hexagonal matrix arrangement of linear and parallel heater elements of diameter 1 mm separated by 7 mm. A set of uniformly distributed thermocouples in the transversal and longitudinal direction in the pebble bed midplane allows a 2D temperature reconstruction of that measurement plane by means of biharmonic spline interpolation. This heating system has been implemented in a relevant Breeder Unit region and its proof-of-concept has been tested in a PRE-test Mock-Up eXperiment (PREMUX) that has been designed and constructed in the frame of this dissertation. The packing factor of the pebble bed with and without the heating system does not show significant differences, giving an indirect evidence of the low intrusion of the system. Such

  14. Modeling of the interaction of a volumetric metallic metamaterial structure with a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Xueying Lu

    2015-08-01

    Full Text Available We present the design of a volumetric metamaterial (MTM structure and its interaction with a relativistic electron beam. This novel structure has promising applications in particle beam diagnostics, acceleration, and microwave generation. The volumetric MTM has a cubic unit cell allowing structures of arbitrary size to be configured as an array of identical cells. This structure allows the exploration of the properties of a metamaterial structure without having to consider substrates or other supporting elements. The dispersion characteristics of the unit cell are obtained using eigenmode simulations in the hfss code and also using an effective medium theory with spatial dispersion. Good agreement is obtained between these two approaches. The lowest-order mode of the MTM structure is found to have a negative group velocity in all directions of propagation. The frequency spectrum of the radiation from a relativistic electron beam passing through the MTM structure is calculated analytically and also calculated with the cst code, with very good agreement. The radiation pattern from the relativistic electron beam is found to be backward Cherenkov radiation, which is a promising tool for particle diagnostics. Calculations are also presented for the application of a MTM-based wakefield accelerator as a possible all-metal replacement for the conventional dielectric wakefield structure. The proposed structure may also be useful for MTM-based vacuum electron devices for microwave generation and amplification.

  15. RBANS memory indices are related to medial temporal lobe volumetrics in healthy older adults and those with mild cognitive impairment.

    Science.gov (United States)

    England, Heather B; Gillis, M Meredith; Hampstead, Benjamin M

    2014-06-01

    The current study (i) determined whether NeuroQuant(®) volumetrics are reflective of differences in medial temporal lobe (MTL) volumes between healthy older adults and those with mild cognitive impairment (MCI) and (ii) examined the relationship between RBANS indices and MTL volumes. Forty-three healthy older adults and 57 MCI patients completed the RBANS and underwent structural MRI. Hippocampal and inferior lateral ventricle (ILV) volumes were obtained using NeuroQuant(®). Results revealed significantly smaller hippocampal and larger ILV volumes in MCI patients. MTL volumes were significantly related to the RBANS Immediate and Delayed Memory and Language indices but not the Attention or Visuoconstruction indices; findings that demonstrate anatomical specificity. Following discriminant function analysis, we calculated a cutpoint that may prove clinically useful for integrating MTL volumes into the diagnosis of MCI. These findings demonstrate the potential clinical utility of NeuroQuant(®) and are the first to document the relationship between RBANS indices and MTL volumes. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-01-01

    Full Text Available Segmentation of the left atrium (LA from cardiac magnetic resonance imaging (MRI datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs and active contour model (ACM approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC and average surface-to-surface distance (S2S, were computed as 0.9227±0.0598 and 1.14±1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively.

  17. Cannabis-related hippocampal volumetric abnormalities specific to subregions in dependent users.

    Science.gov (United States)

    Chye, Yann; Suo, Chao; Yücel, Murat; den Ouden, Lauren; Solowij, Nadia; Lorenzetti, Valentina

    2017-07-01

    Cannabis use is associated with neuroanatomical alterations in the hippocampus. While the hippocampus is composed of multiple subregions, their differential vulnerability to cannabis dependence remains unknown. The objective of the study is to investigate gray matter alteration in each of the hippocampal subregions (presubiculum, subiculum, cornu ammonis (CA) subfields CA1-4, and dentate gyrus (DG)) as associated with cannabis use and dependence. A total of 35 healthy controls (HC), 22 non-dependent (CB-nondep), and 39 dependent (CB-dep) cannabis users were recruited. We investigated group differences in hippocampal subregion volumes between HC, CB-nondep, and CB-dep users. We further explored the association between CB use variables (age of onset of regular use, monthly use, lifetime use) and hippocampal subregions in CB-nondep and CB-dep users separately. The CA1, CA2/3, CA4/DG, as well as total hippocampal gray matter were reduced in volume in CB-dep but not in CB-nondep users, relative to HC. The right CA2/3 and CA4/DG volumes were also negatively associated with lifetime cannabis use in CB-dep users. Our results suggest a regionally and dependence-specific influence of cannabis use on the hippocampus. Hippocampal alteration in cannabis users was specific to the CA and DG regions and confined to dependent users.

  18. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  19. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  20. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh A.

    2014-01-01

    Full Text Available An investigation has been made to use response surface methodology and central composite rotatable design for modeling and optimizing the effect of sintering variables on densification of prealloyed Cu28Zn brass powder during supersolidus liquid phase sintering. The mathematical equations were derived to predict sintered density, densification parameter, porosity percentage and volumetric change of samples using second order regression analysis. As well as the adequacy of models was evaluated by analysis of variance technique at 95% confidence level. Finally, the influence and interaction of sintering variables, on achieving any desired properties was demonstrated graphically in contour and three dimensional plots. In order to better analyze the samples, microstructure evaluation was carried out. It was concluded that response surface methodology based on central composite rotatable design, is an economical way to obtain arbitrary information with performing the fewest number of experiments in a short period of time.

  1. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    . An analytical model, previously established for conventional fibre composites, is used for the analysis of the volumetric composition. For the aluminosilicate/polylactate nanocomposites, based on the established linear relationship between the porosity content and the fibre volume content, the fibre correlated...... porosity factor is determined to be 0.18. Geometrical considerations of the packing of parallel nanofibres in a square array are used to make the assumption that the maximum obtainable fibre volume content in the nanocomposites will not exceed 6 % due to the small fibre spacing that restricts full matrix...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  2. Application of Volumetric Weather Radar Data and the Distributed Rainfall Runoff Model REW in the Ourthe Catchment

    Science.gov (United States)

    Hazenberg, P.; Leijnse, H.; Torfs, P.; Uijlenhoet, R.; Weerts, A.; Reggiani, P.; Delobbe, L.

    2008-12-01

    In the southern Ardennes region of Belgium near the border with Luxembourg, the Royal Meteorological Institute of Belgium (RMI) installed a C-band Doppler weather radar at an elevation of 600 m in the year 2001. This volumetric weather radar scans over multiple elevations at a temporal resolution of 5 minutes. The current study explores the possibility of using the volumetric information of the precipitation field to correct for the effects of the Vertical Profile of Reflectivity (VPR) over the period October 1, 2002 until March 31, 2003. During this winter half year storm events are mainly stratiform, giving rise to bright band effects which can decrease the performance of the radar. Previous studies have shown multiple drawbacks in applying a single estimated VPR profile to correct such reflectivity data. Therefore, the focus here is on the temporal variability of the VPR as measured by the radar and its variability over different spatial scales. This information is applied to generate a number of possible rainfall fields. These realizations are employed to try to quantify some of the discrepancies in precipitation intensities as estimated by the weather radar and those measured by a raingauge network. The final step then is to assess their potential within a distributed rainfall runoff model. The 1597 km2 Ourthe catchment lies within 60 km of the radar. Over this medium sized watershed ten raingauges measuring at an hourly interval are more or less equally distributed. Near the outlet discharge data are collected at the same time step. The distributed hydrological Representative Elementary Watershed (REW) model is applied to model the hydrological behavior of the Ourthe over the six month period. The benefits of the high spatial and temporal resolution of weather radar data compared to a conventional raingauge network plus the possibility of generating multiple realizations of the precipitation field are expected to yield more information about the hydrological

  3. Comparison of the radioiodinated serum albumin (RISA) dilution technique with direct volumetric measurements in animal models of peritoneal dialysis.

    Science.gov (United States)

    Van Biesen, Wim; De Vriese, An S; Carlsson, Ola; Van Landschoot, Mike; Dheuvaert, Tomy; Lameire, Norbert H; Devriese, An S

    2002-01-01

    Rat models of peritoneal dialysis (PD) are useful for studying the physiology of peritoneal transport and evaluating new osmotic agents. Intraperitoneal (IP) solute concentrations and their evolution over time are easy to measure, but IP volume (IPV) is not. Direct volumetric measurements are the "gold standard:" but they are expensive and do not allow for repetitive measurements in the same animal. The Indicator dilution technique is therefore used as an alternative. However, that technique is based on assumptions that are not always valid. The present study compares direct volume measurement with the Indicator dilution technique [radioiodinated serum albumin (RISA)] to determine the IPV over time curves In a rat model of PD. In series 1, 17 Sprague-Dawley rats were instilled IP with 25 mL 1.36% glucose dialysate through a Teflon catheter. In 9 animals, 0.35 mL dialysate was sampled and discarded at time points 0, 3,15, 30, 60, 180, and 240 minutes. In the other 8 animals, no sampling was performed. At 240 minutes, all 12 animals were humanely killed, and direct volumetric measurements of IPV were performed. In series 2, rats were instilled IP with 25 mL 1.36% glucose dialysate containing 18.5 kBq 1311 RISA. In 9 animals, dialysate was sampled at 0, 3, 15, 30, 60, 90, 120,180, and 240 minutes for the construction of the RISA concentration-over-time curve, and to calculate the elimination constant Ke. At 30, 60, 180, and 240 minutes, dialysate was sampled in 6 different animals (total n = 24) to calculate IPV using the RISA dilution technique. Immediately afterward, the animals were humanely killed, and direct volumetric measurements of IPV were performed. In series 1, after 240 minutes' dwell time, the IPV was lower in the sampled animals as compared with the non sampled animals (27.11 +/- 1.85 mL vs 30.75 +/- 0.59 mL, p = 0.001). In series 2, the evolution of RISA activity in the dialysate over time was described by piecewise linear regression, yielding 3

  4. A mixed C-vine copula model for hedging price and volumetric risk in wind power trading

    DEFF Research Database (Denmark)

    Pircalabu, Anca; Jung, Jesper

    2017-01-01

    correlation with the much more liquid German market to construct a proxy hedge. We propose a three-dimensional mixed vine copula to model the evolution of the Danish and German spot electricity prices and the Danish wind power production. We construct a realistic hedging portfolio by identifying various...... of not only forwards, but also a basket of e.g. call and put options. Illiquidity and an almost non-existent market for options challenge however the optimal hedging of joint price and volumetric risk in many market places. Here, we consider the case of the Danish power market, and exploit its strong positive...... instruments available in the market, such as real options in the form of the right to transfer electricity across the border and the right to convert electricity to heat. Using the proposed vine copula to determine optimal hedging decisions, we show that significant benefits are to be drawn by extending...

  5. 3D volumetric modeling of grapevine biomass using Tripod LiDAR

    Science.gov (United States)

    Keightley, K.E.; Bawden, G.W.

    2010-01-01

    Tripod mounted laser scanning provides the means to generate high-resolution volumetric measures of vegetation structure and perennial woody tissue for the calculation of standing biomass in agronomic and natural ecosystems. Other than costly destructive harvest methods, no technique exists to rapidly and accurately measure above-ground perennial tissue for woody plants such as Vitis vinifera (common grape vine). Data collected from grapevine trunks and cordons were used to study the accuracy of wood volume derived from laser scanning as compared with volume derived from analog measurements. A set of 10 laser scan datasets were collected for each of 36 vines from which volume was calculated using combinations of two, three, four, six and 10 scans. Likewise, analog volume measurements were made by submerging the vine trunks and cordons in water and capturing the displaced water. A regression analysis examined the relationship between digital and non-digital techniques among the 36 vines and found that the standard error drops rapidly as additional scans are added to the volume calculation process and stabilizes at the four-view geometry with an average Pearson's product moment correlation coefficient of 0.93. Estimates of digital volumes are systematically greater than those of analog volumes and can be explained by the manner in which each technique interacts with the vine tissue. This laser scanning technique yields a highly linear relationship between vine volume and tissue mass revealing a new, rapid and non-destructive method to remotely measure standing biomass. This application shows promise for use in other ecosystems such as orchards and forests. ?? 2010 Elsevier B.V.

  6. A volumetric CMUT-based ultrasound imaging system simulator with integrated reception and μ-beamforming electronics models.

    Science.gov (United States)

    Matrone, Giulia; Savoia, Alessandro S; Terenzi, Marco; Caliano, Giosuè; Quaglia, Fabio; Magenes, Giovanni

    2014-05-01

    In modern ultrasound imaging devices, two-dimensional probes and electronic scanning allow volumetric imaging of anatomical structures. When dealing with the design of such complex 3-D ultrasound (US) systems, as the number of transducers and channels dramatically increases, new challenges concerning the integration of electronics and the implementation of smart micro-beamforming strategies arise. Hence, the possibility to predict the behavior of the whole system is mandatory. In this paper, we propose and describe an advanced simulation tool for ultrasound system modeling and simulation, which conjugates the US propagation and scattering, signal transduction, electronic signal conditioning, and beamforming in a single environment. In particular, we present the architecture and model of an existing 16-channel integrated receiver, which includes an amplification and micro-beamforming stage, and validate it by comparison with circuit simulations. The developed model is then used in conjunction with the transducer and US field models to perform a system simulation, aimed at estimating the performance of an example 3-D US imaging system that uses a capacitive micromachined ultrasonic transducer (CMUT) 2-D phased-array coupled to the modeled reception front-end. Results of point spread function (PSF) calculations, as well as synthetic imaging of a virtual phantom, show that this tool is actually able to model the complete US image reconstruction process, and that it could be used to quickly provide valuable system-level feedback for an optimized tuning of electronic design parameters.

  7. RBANS Memory Indices Are Related to Medial Temporal Lobe Volumetrics in Healthy Older Adults and Those with Mild Cognitive Impairment

    OpenAIRE

    England, Heather B.; Gillis, M. Meredith; Hampstead, Benjamin M.

    2014-01-01

    The current study (i) determined whether NeuroQuant® volumetrics are reflective of differences in medial temporal lobe (MTL) volumes between healthy older adults and those with mild cognitive impairment (MCI) and (ii) examined the relationship between RBANS indices and MTL volumes. Forty-three healthy older adults and 57 MCI patients completed the RBANS and underwent structural MRI. Hippocampal and inferior lateral ventricle (ILV) volumes were obtained using NeuroQuant®. Results revealed sign...

  8. Fully-automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI by integrating a continuous max-flow model and a likelihood atlas

    Science.gov (United States)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Kontos, Despina

    2013-02-01

    Studies suggest that the relative amount of fibroglandular tissue in the breast as quantified in breast MRI can be predictive of the risk for developing breast cancer. Automated segmentation of the fibroglandular tissue from breast MRI data could therefore be an essential component in quantitative risk assessment. In this work we propose a new fullyautomated 3D segmentation algorithm, namely the continuous max-flow (CMF)-Atlas method, to estimate the volumetric amount of fibroglandular tissue in breast MRI. Our method goes through a first step of applying a continuous max-flow model in the MR image intensity space to produce an initial voxel-wise likelihood map of being fibroglandular tissue. Then we further incorporate an a-priori learned fibroglandular tissue likelihood atlas to refine the initial likelihood map to achieve enhanced segmentation, from which the relative (e.g., percent) volumetric amount of fibroglandular tissue (FT%) in the breast is computed. Our method is evaluated by a representative dataset of 16 3D bilateral breast MRI scans (32 breasts, 896 tomographic MR slices in total). A high correlation (r=0.95) is achieved in FT% estimation, and the overall averaged spatial segmentation agreement is 0.77 in terms of Dice's coefficient, between the automated segmentation and the manual segmentation obtained from an experienced breast imaging radiologist. The automated segmentation method also runs time-efficiently at ~1 minute for each 3D MR scan (56 slices), compared to ~15 minutes needed for manual segmentation. Our method can serve as an effective tool for processing large scale clinical breast MR datasets for quantitative fibroglandular tissue estimation.

  9. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  10. Characterizing Volumetric Strain at Brady Hot Springs, Nevada, USA Using Geodetic Data, Numerical Models, and Prior Information

    Science.gov (United States)

    Reinisch, E. C.; Feigl, K. L.; Cardiff, M. A.; Morency, C.; Kreemer, C.; Akerley, J.

    2017-12-01

    Time-dependent deformation has been observed at Brady Hot Springs using data from the Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) [e.g., Ali et al. 2016, http://dx.doi.org/10.1016/j.geothermics.2016.01.008]. We seek to determine the geophysical process governing the observed subsidence. As two end-member hypotheses, we consider thermal contraction and a decrease in pore fluid pressure. A decrease in temperature would cause contraction in the subsurface and subsidence at the surface. A decrease in pore fluid pressure would allow the volume of pores to shrink and also produce subsidence. To simulate these processes, we use a dislocation model that assumes uniform elastic properties in a half space [Okada, 1985]. The parameterization consists of many cubic volume elements (voxels), each of which contracts by closing its three mutually orthogonal bisecting square surfaces. Then we use linear inversion to solve for volumetric strain in each voxel given a measurement of range change. To differentiate between the two possible hypotheses, we use a Bayesian framework with geostatistical prior information. We perform inversion using each prior to decide if one leads to a more geophysically reasonable interpretation than the other. This work is part of a project entitled "Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology" and is supported by the Geothermal Technology Office of the U.S. Department of Energy [DE-EE0006760].

  11. Quantitative volumetric analysis of a retinoic acid induced hypoplastic model of chick thymus, using Image-J.

    Science.gov (United States)

    Haque, Ayesha; Khan, Muhammad Yunus

    2017-09-01

    To assess the total volume change in a retinoic acid-induced, hypoplastic model of a chick thymus using Image-J. This experimental study was carried out at the anatomy department of College of Physicians and Surgeons, Islamabad, Pakistan, from February 2009 to February 2010, and comprised fertilised chicken eggs. The eggs were divided into experimental group A and control group C. Group A was injected with 0.3µg of retinoic acid via yolk sac to induce a defective model of a thymus with hypoplasia. The chicks were sacrificed on embryonic day 15 and at hatching. The thymus of each animal was processed, serially sectioned and stained. The total area of each section of thymus was calculated using Image-J. This total area was summed and multiplied with the thickness of each section to obtain volume. Of the 120 eggs, there were 60(50%) in each group. Image analysis revealed a highly significant decrease in the volume of the chick thymus in the experimental group A than its matched control at the time of hatching (p=0.001). Moreover, volumetric depletion progressed with time, being substantially pronounced at hatching compared to the embryonic stage. The volume changes were significant and were effectively quantified using Image-J.

  12. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei

    2017-05-01

    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  13. A Bigraph Relational Model

    DEFF Research Database (Denmark)

    Beauquier, Maxime; Schürmann, Carsten

    2011-01-01

    In this paper, we present a model based on relations for bigraphical reactive system [Milner09]. Its defining characteristics are that validity and reaction relations are captured as traces in a multi-set rewriting system. The relational model is derived from Milner's graphical definition...

  14. Non-invasive volumetric optoacoustic imaging of cardiac cycles in acute myocardial infarction model in real-time

    Science.gov (United States)

    Lin, Hasiao-Chun Amy; Déan-Ben, Xosé Luís.; Kimm, Melanie; Kosanke, Katja; Haas, Helena; Meier, Reinhard; Lohöfer, Fabian; Wildgruber, Moritz; Razansky, Daniel

    2017-03-01

    Extraction of murine cardiac functional parameters on a beat-by-beat basis remains challenging with the existing imaging modalities. Novel methods enabling in vivo characterization of functional parameters at a high temporal resolution are poised to advance cardiovascular research and provide a better understanding of the mechanisms underlying cardiac diseases. We present a new approach based on analyzing contrast-enhanced optoacoustic (OA) images acquired at high volumetric frame rate without using cardiac gating or other approaches for motion correction. Acute myocardial infarction was surgically induced in murine models, and the method was modified to optimize for acquisition of artifact-free optoacoustic data. Infarcted hearts could be differentiated from healthy controls based on a significantly higher pulmonary transit time (PTT: infarct 2.07 s vs. healthy 1.34 s), while no statistically significant difference was observed in the heart rate (318 bpm vs. 309 bpm). In combination with the proven ability of optoacoustics to track targeted probes within the injured myocardium, our method is capable of depicting cardiac anatomy, function, and molecular signatures on a beat-by-beat basis, both with high spatial and temporal resolution, thus providing new insights into the study of myocardial ischemia.

  15. Models as Relational Categories

    Science.gov (United States)

    Kokkonen, Tommi

    2017-11-01

    Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.

  16. Gravity current model of the volumetric growth of volcanic clouds: remote assessment with satellite imagery and estimation of mass eruption rate

    Science.gov (United States)

    Pouget, S.; Bursik, M. I.; Sparks, R. S.; Hogg, A. J.; Johnson, C. G.; Singh, T.; Pavolonis, M. J.

    2013-12-01

    The eruption of Eyjafjallajökull, Iceland in April and May, 2010, brought to light the hazards of airborne volcanic ash and the importance of being able to estimate the concentration of ash with time. This can be done using Volcanic Ash Transport and Dispersion models (VATD). These models require Eruption Source Parameters (ESP) such as the mass eruption rate (MER), as input. MER can be estimated from volumetric flux assuming gravity current behavior of the atmospheric intrusion. We used a gravity current model for the umbrella cloud and downwind plume in which the predominantly horizontal spreading through the atmosphere is driven by buoyancy forces and wind drag. Ash is advected by these atmospheric motions and settles out relatively slowly under the action of gravity. Given the importance of knowing ESP for VATD, we explored the use of the gravity current model applied to satellite imagery, using the geometric characteristics of ash clouds. To test the gravity current model on the use of satellite imagery, we estimated ESP from five well-studied and well-characterized historical eruptions: Mount St. Helens, 1980; Pinatubo, 1991, Redoubt, 1990; Hekla, 2000 and Eyjafjallajökull, 2010. These tests show that the methodologies yield results comparable to currently accepted methodologies of ESP estimation. We then applied the methodology to umbrella clouds produced by the eruptions of Okmok, 12 July 2008, and Sarychev Peak, 12 June 2009, and to the downwind plume produced by the eruptions of Hekla, 2000; Kliuchevsko'i, 1 October 1994; Kasatochi 7-8 August 2008 and Bezymianny, 1 September 2012; none of which had previous estimates of MER.

  17. Real-time volumetric relative dosimetry for magnetic resonance—image-guided radiation therapy (MR-IGRT)

    Science.gov (United States)

    Lee, Hannah J.; Kadbi, Mo; Bosco, Gary; Ibbott, Geoffrey S.

    2018-02-01

    The integration of magnetic resonance imaging (MRI) with linear accelerators (linac) has enabled the use of 3D MR-visible gel dosimeters for real-time verification of volumetric dose distributions. Several iron-based radiochromic 3D gels were created in-house then imaged and irradiated in a pre-clinical 1.5 T-7 MV MR-Linac. MR images were acquired using a range of balanced-fast field echo (b-FFE) sequences during irradiation to assess the contrast and dose response in irradiated regions and to minimize the presence of MR artifacts. Out of four radiochromic 3D gel formulations, the FOX 3D gel was found to provide superior MR contrast in the irradiated regions. The FOX gels responded linearly with respect to real-time dose and the signal remained stable post-irradiation for at least 20 min. The response of the FOX gel also was found to be unaffected by the radiofrequency and gradient fields created by the b-FFE sequence during irradiation. A reusable version of the FOX gel was used for b-FFE sequence optimization to reduce artifacts by increasing the number of averages at the expense of temporal resolution. Regardless of the real-time MR sequence used, the FOX 3D gels responded linearly to dose with minimal magnetic field effects due to the strong 1.5 T field or gradient fields present during imaging. These gels can easily be made in-house using non-reusable and reusable formulations depending on the needs of the clinic, and the results of this study encourage further applications of 3D gels for MR-IGRT applications.

  18. WE-D-303-02: Applications of Volumetric Images Generated with a Respiratory Motion Model Based On An External Surrogate Signal

    International Nuclear Information System (INIS)

    Hurwitz, M; Williams, C; Dhou, S; Lewis, J; Mishra, P

    2015-01-01

    Purpose: Respiratory motion can vary significantly over the course of simulation and treatment. Our goal is to use volumetric images generated with a respiratory motion model to improve the definition of the internal target volume (ITV) and the estimate of delivered dose. Methods: Ten irregular patient breathing patterns spanning 35 seconds each were incorporated into a digital phantom. Ten images over the first five seconds of breathing were used to emulate a 4DCT scan, build the ITV, and generate a patient-specific respiratory motion model which correlated the measured trajectories of markers placed on the patients’ chests with the motion of the internal anatomy. This model was used to generate volumetric images over the subsequent thirty seconds of breathing. The increase in the ITV taking into account the full 35 seconds of breathing was assessed with ground-truth and model-generated images. For one patient, a treatment plan based on the initial ITV was created and the delivered dose was estimated using images from the first five seconds as well as ground-truth and model-generated images from the next 30 seconds. Results: The increase in the ITV ranged from 0.2 cc to 6.9 cc for the ten patients based on ground-truth information. The model predicted this increase in the ITV with an average error of 0.8 cc. The delivered dose to the tumor (D95) changed significantly from 57 Gy to 41 Gy when estimated using 5 seconds and 30 seconds, respectively. The model captured this effect, giving an estimated D95 of 44 Gy. Conclusion: A respiratory motion model generating volumetric images of the internal patient anatomy could be useful in estimating the increase in the ITV due to irregular breathing during simulation and in assessing delivered dose during treatment. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc. and Radiological Society of North America Research Scholar Grant #RSCH1206

  19. An investigation of the dose distribution effect related with collimator angle in volumetric arc therapy of prostate cancer

    Directory of Open Access Journals (Sweden)

    Bora Tas

    2016-01-01

    Full Text Available To investigate the dose-volume variations of planning target volume (PTV and organ at risks (OARs in eleven prostate cancer patients planned with single and double arc volumetric modulated arc therapy (VMAT when varying collimator angle. Single and double arc VMAT treatment plans were created using Monaco5.0® with collimator angle set to 0°. All plans were normalized 7600 cGy dose to the 95% of clinical target volume (CTV volume. The single arc VMAT plans were reoptimized with different collimator angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°, and for double arc VMAT plans (0–0°, 15°–345, 30–330°, 45–315°, 60–300°, 75–285°, 90–270° using the same optimization parameters. For the comparison the parameters of heterogeneity index (HI, dose-volume histogram and minimum dose to the 95% of PTV volume (D95 PTV calculated and analyzed. The best plans were verified using 2 dimensional ion chamber array IBA Matrixx® and three-dimensional IBA Compass® program. The comparison between calculation and measurement were made by the γ-index (3%/3 mm analysis. A higher D95 (PTV were found for single arc VMAT with 15° collimator angle. For double arc, VMAT with 60–300° and 75–285° collimator angles. However, lower rectum doses obtained for 75–285° collimator angles. There was no significant dose difference, based on other OARs which are bladder and femur head. When we compared single and double arc VMAT's D95 (PTV, we determined 2.44% high coverage and lower HI with double arc VMAT. All plans passed the γ-index (3%/3 mm analysis with more than 97% of the points and we had an average γ-index for CTV 0.36, for PTV 0.32 with double arc VMAT. These results were significant by Wilcoxon signed rank test statistically. The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of target and OARs. Based on the results we have decided to plan prostate

  20. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  1. A voxel-based technique to estimate volume and volumetric error of terrestrial photogrammetry-derived digital terrain models (DTM) of topographic depressions

    Science.gov (United States)

    Székely, Balázs; Raveloson, Andrea; Rasztovits, Sascha; Molnár, Gábor; Dorninger, Peter

    2013-04-01

    It is a common task in geoscience to determine the volume of a topographic depression (e.g., a valley, a crater, a gully, etc.) based on a digital terrain model (DTM). In case of DTMs based on laser scanned data this task can be fulfilled with a relatively high accuracy. However, if the DTM is generated using terrestrial photogrammetric methods, the limitations of the technology often makes geodetically inaccurate/biased models at forested or purely visible areas or if the landform has an ill-posed geometry (e.g. it is elongated). In these cases the inaccuracies may hamper the generation of a proper DTM. On the other hand if we are interested rather in the determination of the volume of the feature with a certain accuracy or we intend to carry out an order of magnitude volumetric estimation, a DTM having larger inaccuracies is tolerable. In this case the volume calculation can be still done by setting realistic assumptions about the errors of the DTM. In our approach two DTMs are generated to create top and bottom envelope surfaces that confine the "true" but unknown DTM. The varying accuracy of the photogrammetric DTM is considered via the varying deviation of these two surfaces: at problematic corners of the feature the deviation of the two surfaces will be larger, whereas at well-renderable domains the deviation of the surfaces remain minimal. Since such topographic depressions may have a complicated geometry, the error-prone areas may complicate the geometry of the aforementioned envelopes even more. The proper calculation of the volume may turn to be difficult. To reduce this difficulty, a voxel-based approach is used. The volumetric error is calculated based on the gridded envelopes using an appropriate voxel resolution. The method is applied for gully features termed lavakas existing in large numbers in Madagascar. These landforms are typically characterised by a complex shape, steep walls, they are often elongated, and have internal crests. All these

  2. Volumetric Combustion Diagnostics

    Science.gov (United States)

    2017-01-03

    Force Office of Scientific Research Submitted by: Lin Ma, PhD Professor Department of Aerospace and Ocean Engineering Department of Mechanical ...established PLIF (planar LIF [11, 12]) to volumetric measurement of species concentration, and have demonstrated single- shot VLIF measurements in both...Ikeda, J., Xu, W., Carter, C.D. Single Shot 3D Flame Diagnostic Based on Volumetric Laser Induced Fluorescence (VLIF), Proceedings of the

  3. Comparison of volumetric modulated arc therapy and intensity modulated radiation therapy for whole brain hippocampal sparing treatment plans based on radiobiological modeling

    Directory of Open Access Journals (Sweden)

    Ethan Kendall

    2018-01-01

    Full Text Available Introduction: In this article, we report the results of our investigation on comparison of radiobiological aspects of treatment plans with linear accelerator-based intensity-modulated radiation therapy and volumetric-modulated arc therapy for patients having hippocampal avoidance whole-brain radiation therapy. Materials and Methods: In this retrospective study using the dose-volume histogram, we calculated and compared biophysical indices of equivalent uniform dose, tumor control probability, and normal tissue complication probability (NTCP for 15 whole-brain radiotherapy patients. Results and Discussions: Dose-response models for tumors and critical structures were separated into two groups: mechanistic and empirical. Mechanistic models formulate mathematically with describable relationships while empirical models fit data through empirical observations to appropriately determine parameters giving results agreeable to those given by mechanistic models. Conclusions: Techniques applied in this manuscript could be applied to any other organs or types of cancer to evaluate treatment plans based on radiobiological modeling.

  4. Determination of ultra-trace amounts of prosthesis-related metals in whole blood using volumetric absorptive micro-sampling and tandem ICP - Mass spectrometry.

    Science.gov (United States)

    Bolea-Fernandez, Eduardo; Phan, Kim; Balcaen, Lieve; Resano, Martín; Vanhaecke, Frank

    2016-10-19

    This paper reports on an evaluation of the suitability of a novel sample collection approach, volumetric absorptive micro-sampling (VAMS), in the context of the determination of ultra-trace concentrations of prosthesis-related metals (Al, Ti, V, Co, Cr, Ni, Sr and Zr) in whole blood. In a first phase, a simple dilute-and-shoot approach (100-fold dilution) followed by tandem ICP - mass spectrometry (ICP-MS/MS) analysis was developed for the accurate and sensitive determination of the target elements. The ICP-MS/MS method relies on the use of mass shift reactions proceeding when pressurizing the collision/reaction cell (CRC) with CH 3 F/He for dealing with spectral overlap. Limits of detection (LoDs) between 0.3 and 30 ng L -1 were attained in a multi-element approach. The accuracy of the method was demonstrated via successful analysis of the reference materials Seronorm Whole Blood Levels 1 and 3, and real venous blood samples, spiked with the target elements at different concentration levels (5-50 μg L -1 ). Although the implementation of VAMS devices introduced contamination problems for Al, Cr and Ni, VAMS followed by ICP-MS/MS analysis shows potential for future real-life routine applications when assessing levels of Ti, V, Co, Sr and/or Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium.

    Directory of Open Access Journals (Sweden)

    Carolin Schubert

    Full Text Available To evaluate the performance of a model-based optimisation process for volumetric modulated arc therapy applied to prostate cancer in a multicentric cooperative group. The RapidPlan (RP knowledge-based engine was tested for the planning of Volumetric modulated arc therapy with RapidArc on prostate cancer patients. The study was conducted in the frame of the German RapidPlan Consortium (GRC.43 patients from one institute of the GRC were used to build and train a RP model. This was further shared with all members of the GRC plus an external site from a different country to increase the heterogeneity of the patient's sampling. An in silico multicentric validation of the model was performed at planning level by comparing RP against reference plans optimized according to institutional procedures. A total of 60 patients from 7 institutes were used.On average, the automated RP based plans resulted fully consistent with the manually optimised set with a modest tendency to improvement in the medium-to-high dose region. A per-site stratification allowed to identify different patterns of performance of the model with some organs at risk resulting better spared with the manual or with the automated approach but in all cases the RP data fulfilled the clinical acceptability requirements. Discrepancies in the performance were due to different contouring protocols or to different emphasis put in the optimization of the manual cases.The multicentric validation demonstrated that it was possible to satisfactorily optimize with the knowledge based model patients from all participating centres. In the presence of possibly significant differences in the contouring protocols, the automated plans, though acceptable and fulfilling the benchmark goals, might benefit from further fine tuning of the constraints. The study demonstrates that, at least for the case of prostate cancer patients, it is possibile to share models among different clinical institutes in a cooperative

  6. MR assessment of lumbar disk herniation treated with oxygen-ozone diskolysis: the role of DWI and related ADC versus intervertebral disk volumetric analysis for detecting treatment response.

    Science.gov (United States)

    Splendiani, A; Perri, M; Conchiglia, A; Fasano, F; Di Egidio, G; Masciocchi, C; Gallucci, M

    2013-06-01

    We prospectively assessed the diagnostic criteria of morphologic MRI study (MMS) and the accuracy of DWI and related ADC values (DWI-ADC) versus intervertebral disk volumetric analysis (IDVA) for predicting shrinkage of lumbar disk herniation treated with oxygen-ozone (O2-O3) diskolysis. Sixty-eight patients (36 men and 32 women; mean age 39) with lumbosciatica underwent O2-O3 diskolysis. The six-month MRI follow-up was performed with FSE-T2 and T2-fat, SE-T1 and DWI-weighted images. IDVA was determined using OsiriX(®). Diagnostic criteria and accuracy were evaluated with regards to DWI and related ADC in detecting response to ozone therapy. Fifty-eight of 68 patients had successful outcomes (responders), whereas ten patients showed unsatisfactory outcomes (non-responders). MMS showed that a centrally located herniated disk and grade 1 nerve root compression were more common in the responder group (p < 0.05). DWI-ADC and IDVA showed statistically significant shrinkage in the sixth month of follow-up (p < 0.05) with a mean ADC value reduction of 2.10 × 10(-3) mm(2)/s +/- 0.19 SD in the second month of follow-up (p < 0.05). DWI-ADC had an accuracy of 0.81 in detecting response to therapy around the second month of follow-up. DWI-ADC appear to be useful adjuncts to MMS in the follow-up of patients undergoing O2-O3 diskolysis.

  7. Volumetric integration model of the Stiles-Crawford effect of the first kind and its experimental verification.

    Science.gov (United States)

    Vohnsen, Brian; Carmichael, Alessandra; Sharmin, Najnin; Qaysi, Salihah; Valente, Denise

    2017-10-01

    The integrated Stiles-Crawford function is commonly used as apodization model for vision through the natural eye pupil. However, this method does not account for possible effects related to the retinal thickness, the large length-to-diameter aspect ratio of the photoreceptors, or the use of nonMaxwellian illumination. Here, we introduce a geometrical optics model to calculate the fraction of overlap between light at the retina and the photoreceptor outer segments where absorption triggers vision. The model, which does not account for photoreceptor waveguiding, is discussed for both Maxwellian and nonMaxwellian illumination. The integrated Stiles-Crawford effect is analyzed experimentally with a uniaxial pupil-size flicker methodology and we find that the psychophysical measurements match better to the geometrical optics predictions than direct integration of a Stiles-Crawford function.

  8. Performance of a Knowledge-Based Model for Optimization of Volumetric Modulated Arc Therapy Plans for Single and Bilateral Breast Irradiation.

    Directory of Open Access Journals (Sweden)

    Antonella Fogliata

    Full Text Available To evaluate the performance of a model-based optimisation process for volumetric modulated arc therapy, VMAT, applied to whole breast irradiation.A set of 150 VMAT dose plans with simultaneous integrated boost were selected to train a model for the prediction of dose-volume constraints. The dosimetric validation was done on different groups of patients from three institutes for single (50 cases and bilateral breast (20 cases.Quantitative improvements were observed between the model-based and the reference plans, particularly for heart dose. Of 460 analysed dose-volume objectives, 13% of the clinical plans failed to meet the constraints while the respective model-based plans succeeded. Only in 5 cases did the reference plans pass while the respective model-based failed the criteria. For the bilateral breast analysis, the model-based plans resulted in superior or equivalent dose distributions to the reference plans in 96% of the cases.Plans optimised using a knowledge-based model to determine the dose-volume constraints showed dosimetric improvements when compared to earlier approved clinical plans. The model was applicable to patients from different centres for both single and bilateral breast irradiation. The data suggests that the dose-volume constraint optimisation can be effectively automated with the new engine and could encourage its application to clinical practice.

  9. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tsung-Yuan; Lu, Tung-Wu; Chen, Chung-Ming; Kuo, Mei-Ying; Hsu, Horng-Chaung [Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10051, Taiwan (China); Institute of Biomedical Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei 10051, Taiwan (China) and Department of Physical Therapy, China Medical University, Taichung 40402, Taiwan (China); Department of Orthopaedic Surgery, China Medical University Hospital, Taichung 40447, Taiwan (China)

    2010-03-15

    Purpose: Accurate measurement of the three-dimensional (3D) rigid body and surface kinematics of the natural human knee is essential for many clinical applications. Existing techniques are limited either in their accuracy or lack more realistic experimental evaluation of the measurement errors. The purposes of the study were to develop a volumetric model-based 2D to 3D registration method, called the weighted edge-matching score (WEMS) method, for measuring natural knee kinematics with single-plane fluoroscopy to determine experimentally the measurement errors and to compare its performance with that of pattern intensity (PI) and gradient difference (GD) methods. Methods: The WEMS method gives higher priority to matching of longer edges of the digitally reconstructed radiograph and fluoroscopic images. The measurement errors of the methods were evaluated based on a human cadaveric knee at 11 flexion positions. Results: The accuracy of the WEMS method was determined experimentally to be less than 0.77 mm for the in-plane translations, 3.06 mm for out-of-plane translation, and 1.13 deg. for all rotations, which is better than that of the PI and GD methods. Conclusions: A new volumetric model-based 2D to 3D registration method has been developed for measuring 3D in vivo kinematics of natural knee joints with single-plane fluoroscopy. With the equipment used in the current study, the accuracy of the WEMS method is considered acceptable for the measurement of the 3D kinematics of the natural knee in clinical applications.

  10. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is of importance for the prediction of mechanical and physical properties, and in particular to assess the best possible (normally the highest) values for these properties. The volumetric model for the composition of (fibrous) composites gives...... guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  11. Green chemistry volumetric titration kit for pharmaceutical ...

    African Journals Online (AJOL)

    Stopcock SC and Spring Sp models of Econoburette (Calibrated, RTC (NR), Ministry of Small Scale Industries, Government of India), developed for semimicro volumetric titration of pharmaceutical formulations are reported. These are economized and risk free titration where pipette is replaced by an inbuilt pipette and ...

  12. Flexible Volumetric Structure

    Science.gov (United States)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  13. Volumetric reach comparison of possible end-effectors for the articulated transporter and manipulator system

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Babcock, S.M.; Hamel, W.R. (Oak Ridge National Lab., TN (USA)); Bills, K.C. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))

    1990-01-01

    The goal of this research was to investigate the performance of the Articulated Transporter and Manipulator System (ATMS) during various tasks relative to the choice of wrist/end-effector configuration. The approach taken was to generate computer graphics-aided three-dimensional interactive application (CATIA) system-based models of four wrist/end-effector combinations and consider the volumetric reach of each of these configurations based on the capacity of the ATMS. The results indicate that a simple, lightweight end-effector provides a greater volumetric reach. The greatest variation presented herein is {approximately}40% when comparing a 7-degree-of-freedom (DOF) dexterous arm with a simple 3-DOF arm; however, the benefit of increasing volumetric reach by only 40% by using a simple arm may be outweighed by the loss of dexterity. 10 refs., 5 figs., 3 tabs.

  14. Neuroimaging of a minipig model of Huntington's disease: Feasibility of volumetric, diffusion-weighted and spectroscopic assessments

    Czech Academy of Sciences Publication Activity Database

    Schubert, R.; Frank, F.; Nagelmann, N.; Liebsch, L.; Schuldenzucker, V.; Schramke, S.; Wirsig, M.; Johnson, H.; Young Kim, E.; Ott, S.; Hölzner, E.; Demokritov, S. O.; Motlík, Jan; Faber, C.; Reilmann, R.

    2016-01-01

    Roč. 265, S1 (2016), s. 46-55 ISSN 0165-0270 Institutional support: RVO:67985904 Keywords : animal models * minipig * MRI * brain atlas * preclinical research Subject RIV: FH - Neurology Impact factor: 2.554, year: 2016

  15. A variational model for propagation time, volumetric and synchronicity optimization in the spinal cord axon network, and a method for testing it

    Science.gov (United States)

    Mota, Bruno

    2014-03-01

    Most information in the central nervous system in general and the (simpler) spinal cord in particular, is transmitted along bundles of parallel axons. Each axon's transmission time increases linearly with length and decreases as a power law of caliber. Therefore, evolution must find a distribution of axonal numbers, lengths and calibers that balances the various tradeoffs between gains in propagation time, signal throughput and synchronicity, against volumetric and metabolic costs. Here I apply a variational method to calculate the distribution of axonal caliber in the spinal cord as a function of axonal length, that minimizes the average axonal signal propagation time, subject to the constraints of white matter total volume and the variance of propagation times, and allowing for arbitrary fiber priorities and end-points. The Lagrange multipliers obtained thereof can be naturally interpreted as 'exchange rates', e.g., how much evolution is willing to pay, in white matter added volume, per unit time decrease of propagation time. This is, to my knowledge, the first model that quantifies explicitly these evolutionary tradeoffs, and can obtain them empirically by measuring the distribution of axonal calibers. We are in the process of doing so using the isotropic fractionator method. I thank FAPERJ for financial support.

  16. Volumetric Analysis of Alveolar Bone Defect Using Three-Dimensional-Printed Models Versus Computer-Aided Engineering.

    Science.gov (United States)

    Du, Fengzhou; Li, Binghang; Yin, Ningbei; Cao, Yilin; Wang, Yongqian

    2017-03-01

    Knowing the volume of a graft is essential in repairing alveolar bone defects. This study investigates the 2 advanced preoperative volume measurement methods: three-dimensional (3D) printing and computer-aided engineering (CAE). Ten unilateral alveolar cleft patients were enrolled in this study. Their computed tomographic data were sent to 3D printing and CAE software. A simulated graft was used on the 3D-printed model, and the graft volume was measured by water displacement. The volume calculated by CAE software used mirror-reverses technique. The authors compared the actual volumes of the simulated grafts with the CAE software-derived volumes. The average volume of the simulated bone grafts by 3D-printed models was 1.52 mL, higher than the mean volume of 1.47 calculated by CAE software. The difference between the 2 volumes was from -0.18 to 0.42 mL. The paired Student t test showed no statistically significant difference between the volumes derived from the 2 methods. This study demonstrated that the mirror-reversed technique by CAE software is as accurate as the simulated operation on 3D-printed models in unilateral alveolar cleft patients. These findings further validate the use of 3D printing and CAE technique in alveolar defect repairing.

  17. Volumetric properties of some pharmaceutical binary mixtures at low temperatures and correlation with the jouyban-acree model

    OpenAIRE

    Rodriguez, Gerson

    2011-01-01

    Excess molar volumes and partial molar volumes were investigated from density values for a) ethanol (1) + water (2), b) 1,2-propanediol (1) + water (2), and c) ethanol (1) + 1,2-propanediol (2) mixtures, at temperatures from (278.15 to 288.15) K. Excess molar volumes were fitted by Redlich-Kister equation. The systems exhibit negative excess volumes probably due to increased interactions like hydrogen bonding and/ or large differences in molar volumes of components. The Jouyban-Acree model wa...

  18. Mathematical Modeling of Electrolyte Flow Dynamic Patterns and Volumetric Flow Penetrations in the Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Serpentine Flow Field Design

    OpenAIRE

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2016-01-01

    In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic fl...

  19. Development of a Modelling to Correlate Site and Diameter of Brain Metastases with Hippocampal Sparing Using Volumetric Modulated Arc Therapy

    Directory of Open Access Journals (Sweden)

    Silvia Chiesa

    2013-01-01

    Full Text Available Purpose. To correlate site and diameter of brain metastases with hippocampal sparing in patients treated by RapidArc (RA technique on whole brain with simultaneously integrated boost (SIB. Methods and Materials. An RA plan was calculated for brain metastases of 1-2-3 cm of diameter. The whole brain dose was 32.25 Gy (15 fractions, and SIB doses to brain metastases were 63 Gy (2 and 3 cm or 70.8 Gy (1 cm. Plans were optimized and evaluated for conformity, target coverage, prescription isodose to target volume, homogeneity index, and hippocampal sparing. Results. Fifteen brain lesions and RA plan were generated. Hippocampal volume was 4.09 cm3, and hippocampal avoidance volume was 17.50 cm3. Related to site of metastases, the mean hippocampal dose was 9.68 Gy2 for occipital lobe, 10.56 Gy2 for frontal lobe, 10.56 Gy2 for parietal lobe, 10.94 Gy2 for deep brain structures, and 40.44 Gy2 for temporal lobe. The mean hippocampal dose was 9.45 Gy2, 10.15 Gy2, and 11.70 Gy2 for diameter’s metastases of 1.2 and 3 cm, respectively, excluding results relative to temporal brain lesions. Conclusions. Location more than size of metastases can adversely influence the hippocampus sparing. Further investigation is necessary to meet definitive considerations.

  20. Spatio-volumetric hazard estimation in the Auckland volcanic field

    Science.gov (United States)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  1. Combined surface and volumetric occlusion shading

    KAUST Repository

    Schott, Matthias O.

    2012-02-01

    In this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. © 2012 IEEE.

  2. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  3. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    Cosmological models in general relativity. B B PAUL. Department of Physics, Nowgong College, Nagaon, Assam, India. MS received 4 October 2002; revised 6 March 2003; accepted 21 May 2003. Abstract. LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceler- ation parameter as variable.

  4. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury

    OpenAIRE

    Kesireddy, Venu

    2016-01-01

    Venu Kesireddy1,2 1Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Winston Salem, NC, USA; 2Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA Abstract: Volumetric muscle loss (VML) can occur from congenital defects, muscle wasting diseases, civilian or military injuries, and as a result of surgical removal of muscle tissue (eg, cancer), all of which can lead t...

  5. Epistemology and Rosen's Modeling Relation

    International Nuclear Information System (INIS)

    Dress, W.B.

    1999-01-01

    Rosen's modeling relation is embedded in Popper's three worlds to provide an heuristic tool for model building and a guide for thinking about complex systems. The utility of this construct is demonstrated by suggesting a solution to the problem of pseudo science and a resolution of the famous Bohr-Einstein debates. A theory of bizarre systems is presented by an analogy with entangled particles of quantum mechanics. This theory underscores the poverty of present-day computational systems (e.g., computers) for creating complex and bizarre entities by distinguishing between mechanism and organism

  6. Persuasion, Politeness and Relational Models

    Directory of Open Access Journals (Sweden)

    Jerzy Świątek

    2017-06-01

    Full Text Available Politeness Theory, just like Grice’s Cooperative Principle, points out that pragmatic analysis of language behaviour has to be grounded in extra-linguistic facts of social (or even biological nature. Additionally, despite the slightly misleading label, Politeness Theory provides a sound methodology to explain some persuasive as well as politeness phenomena. In the same vein, the so called Relational Model Theory provides another theoretical framework for the explanation of persuasive phenomena and persuasive language. Both Relational Model Theory and Politeness Theory show that persuasion is also to be understood as a rational response to not-so-rational social and biological needs. In the article an attempt is made to compare the two theories focusing on their explanatory power in reference to language choices aiming at enhancing the persuasive potential of a language message.

  7. A volumetric data system for environmental robotics

    International Nuclear Information System (INIS)

    Tourtellott, J.

    1994-01-01

    A three-dimensional, spatially organized or volumetric data system provides an effective means for integrating and presenting environmental sensor data to robotic systems and operators. Because of the unstructed nature of environmental restoration applications, new robotic control strategies are being developed that include environmental sensors and interactive data interpretation. The volumetric data system provides key features to facilitate these new control strategies including: integrated representation of surface, subsurface and above-surface data; differentiation of mapped and unmapped regions in space; sculpting of regions in space to best exploit data from line-of-sight sensors; integration of diverse sensor data (for example, dimensional, physical/geophysical, chemical, and radiological); incorporation of data provided at different spatial resolutions; efficient access for high-speed visualization and analysis; and geometric modeling tools to update a open-quotes world modelclose quotes of an environment. The applicability to underground storage tank remediation and buried waste site remediation are demonstrated in several examples. By integrating environmental sensor data into robotic control, the volumetric data system will lead to safer, faster, and more cost-effective environmental cleanup

  8. Volumetric models for tropical pine in pure stand in Rondônia State, Brazil Modelos volumétricos para Pinus tropicais, em povoamento homogêneo, no Estado de Rondônia

    Directory of Open Access Journals (Sweden)

    Allan Libanio Pelissari

    2011-09-01

    Full Text Available

    This study aimed to adjust volumetric models to tropical pines, in pure stand, in the municipality of Vilhena, Rondonia State.  The data came from 20 felled trees of Pinus caribaea var.  hondurensis and 10 Pinus tecunumanii trees with discs collected at fixed positions of 0.20 m, 0.70 m, 1.30 m and in distances of one meter along the stem, for later counting and measurement of the growth rings at ages from 4 to 12 years. Eight volumetric models were adjusted. The selection criteria used were: standard error of estimate, adjusted coefficient of  determination, F test, significance of regression coefficients,  mean deviation, standard deviation of the differences, sum of square of the relative residual, percentage of the residuals and graphic analysis of residuals. The models from Näslund  modified and from Spurr presented, respectively, best fit to estimate the volume for Pinus caribaea var. hondurensis submitted to the first thinning and for Pinus tecunumanii, with  ages between 4 and 12 years, in Vilhena, Rondonia State, Brazil.

    doi: 10.4336/2011.pfb.31.67.173

    Este trabalho teve como objetivo ajustar modelos volumétricos para Pinus tropicais, em povoamento homogêneo, no Município  de Vilhena, RO. Para a coleta de dados, foram derrubadas 20  árvores de Pinus caribaea var. hondurensis e 10 de Pinus  tecunumanii, sendo coletados discos em posições fixas de 0,20  m; 0,70 m; 1,30 m e em distâncias de um metro ao longo do  fuste, para a posterior contagem e mensuração dos anéis de crescimento nas idades de 4 a 12 anos. Foram ajustados oito modelos volumétricos e o critério de seleção considerou os  resultados do erro padrão da estimativa, coeficiente de determinação ajustado, teste F, significância dos coeficientes de regressão, desvio médio, desvio-padrão das diferenças, soma de quadrados do resíduo relativo, resíduo percentual

  9. Efficient threshold for volumetric segmentation

    Science.gov (United States)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  10. Clinical Implementation of a Model-Based In Vivo Dose Verification System for Stereotactic Body Radiation Therapy–Volumetric Modulated Arc Therapy Treatments Using the Electronic Portal Imaging Device

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, Peter M., E-mail: pmccowan@cancercare.mb.ca [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Asuni, Ganiyu [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Van Uytven, Eric [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); VanBeek, Timothy [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); McCurdy, Boyd M.C. [Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba (Canada); Loewen, Shaun K. [Department of Oncology, University of Calgary, Calgary, Alberta (Canada); Ahmed, Naseer; Bashir, Bashir; Butler, James B.; Chowdhury, Amitava; Dubey, Arbind; Leylek, Ahmet; Nashed, Maged [CancerCare Manitoba, Winnipeg, Manitoba (Canada)

    2017-04-01

    Purpose: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. Methods and Materials: From December 2013 to July 2016, 117 stereotactic body radiation therapy–volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in June 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB–predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. Results: The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Conclusions: Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors.

  11. The efficiency of a volumetric alcohol tax in Australia.

    Science.gov (United States)

    Byrnes, Joshua; Petrie, Dennis J; Doran, Christopher M; Shakeshaft, Anthony

    2012-01-01

    In Australia and elsewhere, fiscal measures such as alcohol taxation are a commonly used intervention and cost-effective strategy to reduce alcohol consumption and associated harm. However, alcohol taxation policies distort the market for alcohol, specifically increasing the marginal cost of alcohol. It is proposed that a volumetric tax, which taxes alcohol equally across all beverage types, is less distortive of consumer preferences and more efficient at reducing alcohol consumption than the current Australian tax model, where taxes are charged at varying amounts per litre of pure alcohol, depending on the beverage type. This paper quantifies the effect of four different alcohol taxation systems, relative to the current Australian system: two different types of volumetric taxation (deadweight loss neutral and tax revenue neutral); the recent strategy trialled in Australia of increasing the tax only on ready-to-drink alcoholic beverages (i.e. premixed spirits); and a tiered tax system, which may be more politically acceptable. A partial equilibrium approach was used to measure taxation revenue, consumer welfare and consumption in alcohol markets. Estimates of taxation revenue, consumer welfare and consumption were first calculated for 2008 and then compared with the four scenarios considered. Relative to the previous alcohol taxation scheme in Australia, the taxation strategy that increased the tax solely on ready-to-drink alcoholic beverages increased taxation revenue by 479 million Australian dollars ($A), reduced pure alcohol consumption by 754 000 litres and increased the net deadweight loss of taxation by $A62 million. For a tax-neutral approach, for the same level of taxation revenue as is currently generated, a volumetric tax could substantially reduce the cost of taxation (as described by the net loss in consumer welfare) by $A177 million and reduce pure alcohol consumption by 4 68 000 litres. Under a deadweight loss-neutral scenario, for the same

  12. Control and design of volumetric composition in pultruded hybrid fibre composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Hashemi, Fariborz; Tahir, Paridah

    2016-01-01

    Hybrid composites consist of two of more fibre phases in a common matrix phase. This is a challenge for the control and design of the volumetric composition and microstructural uniformity of such composites. In the present study, a model is presented for the prediction of the complete volumetric...

  13. Study of volumetric properties (PVT) of mixtures made of light hydrocarbons (C1-C4), carbon dioxide and hydrogen sulfide - Experimental measurements through a vibrating tube densimeter and modelling; Etude des proprietes volumetriques (PVT) d'hydrocarbures legers (C1-C4), du dioxyde de carbone et de l'hydrogene sulfure. Mesures par densimetrie a tube vibrant et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Rivollet, F.

    2005-12-15

    Various pollutant contents (i.e. carbon dioxide, hydrogen sulphide or other sulphur products) are found in produced oils. These latter must undergo a number of transformations and purifications. The design and dimensioning of the corresponding units can well be optimized only if one has reliable and accurate data about phase equilibria and volumetric properties and of course reliable and accurate modeling. This work was devoted partly to measurements of volumetric properties on three binary mixtures (ethane - hydrogen sulphide, ethane - propane and carbon dioxide - hydrogen sulphide). These measurements were carried out using equipment, comprising a vibrating tube densimeter (Paar, model DMA 512 P), which was especially designed and built for this work. The binary mixtures were studied in the 253 to 363 K temperature range from at pressures up to either 20 or 40 MPa. Two calibration methods of the vibrating tube were used: the FPMC method (Forced Path Mechanical Calibration) described in the literature and an original method containing neural network, developed herein. The study undertaken about the modeling of volumetric properties made it possible to highlight the inadequacy of the traditional use of cubic equations of state to represent simultaneously volumetric properties and phase equilibria. Among the equations of state investigated, a close attention however was paid to cubic equations of state because of their very great use in the oil field. A new tool was found to adapt cubic equations of state to the simultaneous and satisfactory representation of volumetric properties and phase equilibria. It concerns the coupling of the cubic Redlich-Kwong-Soave equation of state with volume correction through a neural network. This new model was tested successfully, it makes it possible to benefit from the existing work of representation of phase equilibria (mixing rules and interaction coefficients) while improving calculation of the volumetric data.

  14. Influence of pore pressure change on coseismic volumetric strain

    Science.gov (United States)

    Wang, C. Y.; Barbour, A. J.

    2017-12-01

    Coseismic strain is fundamentally important for understanding crustal response to transient changes of stress. The elastic dislocation model has been widely applied to interpreting observed shear deformation caused by earthquakes. The application of this model to interpreting volumetric strain, however, has met with difficulty, especially in the far field of earthquakes. Predicted volumetric strain with dislocation model often differs substantially, and sometimes of opposite signs, from observed coseismic volumetric strains. The disagreement suggests that some processes unaccounted for by the dislocation model may occur during earthquakes. Several hypotheses have been suggested, but none have been tested quantitatively. In this study we first assemble published data to highlight the significant difference between the measured and predicted coseismic volumetric strains from the dislocation theory. We then show that the disagreement may largely be explained by coseismic change of pore pressure in the shallow crust. We provide a quantitative test of the model with the assembled data, which allows us to conclude that coseismic change of pore pressure may be an important mechanism for coseismic crustal strain and, in the far field, may even be the controlling mechanism. Thus in the interpretation of observed coseismic crustal strain, one needs to account not only for the elastic strain due to fault rupture but also for the strain due to coseismic change of pore pressure.

  15. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  16. Influence of pore pressure change on coseismic volumetric strain

    Science.gov (United States)

    Wang, Chi-Yuen; Barbour, Andrew J.

    2017-01-01

    Coseismic strain is fundamentally important for understanding crustal response to changes of stress after earthquakes. The elastic dislocation model has been widely applied to interpreting observed shear deformation caused by earthquakes. The application of the same theory to interpreting volumetric strain, however, has met with difficulty, especially in the far field of earthquakes. Predicted volumetric strain with dislocation model often differs substantially, and sometimes of opposite signs, from observed coseismic volumetric strains. The disagreement suggests that some processes unaccounted for by the dislocation model may occur during earthquakes. Several hypotheses have been suggested, but none have been tested quantitatively. In this paper we first examine published data to highlight the difference between the measured and calculated static coseismic volumetric strains; we then use these data to provide quantitative test of the model that the disagreement may be explained by the change of pore pressure in the shallow crust. The test allows us to conclude that coseismic change of pore pressure may be an important mechanism for coseismic crustal strain and, in the far field, may even be the dominant mechanism. Thus in the interpretation of observed coseismic crustal strain, one needs to account not only for the elastic strain due to fault rupture but also for the strain due to coseismic change of pore pressure.

  17. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  18. Prototyping and Testing a New Volumetric Curvature Tool for Modeling Reservoir Compartments and Leakage Pathways in the Arbuckle Saline Aquifer: Reducing Uncertainty in CO2 Storage and Permanence

    Energy Technology Data Exchange (ETDEWEB)

    Rush, Jason [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Holubnyak, Yevhen [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Watney, Willard [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States)

    2016-12-09

    This DOE-funded project evaluates the utility of seismic volumetric curvature (VC) for predicting stratal and structural architecture diagnostic of paleokarst reservoirs. Of special interest are applications geared toward carbon capture, utilization, and storage (CCUS). VC has been championed for identifying faults (offset <¼ λ) that cannot be imaged by conventional 3-D seismic attributes such as coherence. The objective of this research was to evaluate VC-techniques for reducing uncertainties in reservoir compartmentalization studies and seal risk assessments especially for saline aquifers. A 2000-ft horizontal lateral was purposefully drilled across VC-imaged lineaments—interpreted to record a fractured and a fault-bounded doline—to physically confirm their presence. The 15-mi² study area is located in southeastern Bemis-Shutts Field, which is situated along the crest of the Central Kansas Uplift (CKU) in Ellis County, Kansas. The uppermost Arbuckle (200+ ft) has extensive paleokarst including collapsed paleocaverns and dolines related to exceedingly prolonged pre-Simpson (Sauk–Tippecanoe) and/or pre-Pennsylvanian subaerial exposure. A lateral borehole was successfully drilled across the full extent (~1100 ft) of a VC-inferred paleokarst doline. Triple combo (GR-neutron/density-resistivity), full-wave sonic, and borehole micro-imager logs were successfully run to TD on drill-pipe. Results from the formation evaluation reveal breccias (e.g., crackle, mosaic, chaotic), fractures, faults, vugs (1-6"), and unaffected host strata consistent with the pre-spud interpretation. Well-rounded pebbles were also observed on the image log. VC-inferred lineaments coincide with 20–80-ft wide intervals of high GR values (100+ API), matrix-rich breccias, and faults. To further demonstrate their utility, VC attributes are integrated into a geocellular modeling workflow: 1) to constrain the structural model; 2) to generate facies probability grids, and; 3) to collocate

  19. Volumetric Properties and Phase Relations of Binary H{sub 2}O-CO{sub 2}-CH{sub 4}-N{sub 2} Mixtures at 300 C and Pressures to 1000 Bars

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Blencoe, J.G.; Anovitz, M.

    1999-09-12

    The volumetric properties and phase relations of binary mixtures of H{sub 2}0, CO{sub 2}, CH{sub 4} and N{sub 2} were determined experimentally at 3OO C, 74.4--999.3 bars, using a custom-built vibrating-tube densimeter. Densities of all single-phase fluids increase steadily with increasing pressure. At a given pressure, CO{sub 2}-rich H{sub 2}O-CO{sub 2} mixtures show a pronounced nonlinear decrease in density with increasing mole fraction CO, in marked contrast to the densities of N{sub 2}-rich H{sub 2}O-N{sub 2} mixtures which are nearly independent of composition. At pressure up to 500 bars, non-aqueous mixtures have much smaller excess molar volumes than gas-rich aqueous mixtures. H{sub 2}O-rich mixtures at pressures ca.86 bars, and CO{sub 2}-poor non-aqueous mixtures at 99.4 bars, exhibit negative excess molar volumes. Excess molar volumes for aqueous mixtures peak at 86 bars, then decrease monotonically with increasing pressure above 86 bars. The H{sub 2}O-CO{sub 2} liquid-vapor field widens continuously from 86 to ca.400 bars, then narrows with increasing pressure, closing at ca.565 bars, in sharp contrast to the H{sub 2}O-N{sub 2} liquid-vapor field, which widens continuously with increasing pressure to at least 1000 bars.

  20. Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis.

    Science.gov (United States)

    Shinohara, R T; Oh, J; Nair, G; Calabresi, P A; Davatzikos, C; Doshi, J; Henry, R G; Kim, G; Linn, K A; Papinutto, N; Pelletier, D; Pham, D L; Reich, D S; Rooney, W; Roy, S; Stern, W; Tummala, S; Yousuf, F; Zhu, A; Sicotte, N L; Bakshi, R

    2017-08-01

    MR imaging can be used to measure structural changes in the brains of individuals with multiple sclerosis and is essential for diagnosis, longitudinal monitoring, and therapy evaluation. The North American Imaging in Multiple Sclerosis Cooperative steering committee developed a uniform high-resolution 3T MR imaging protocol relevant to the quantification of cerebral lesions and atrophy and implemented it at 7 sites across the United States. To assess intersite variability in scan data, we imaged a volunteer with relapsing-remitting MS with a scan-rescan at each site. All imaging was acquired on Siemens scanners (4 Skyra, 2 Tim Trio, and 1 Verio). Expert segmentations were manually obtained for T1-hypointense and T2 (FLAIR) hyperintense lesions. Several automated lesion-detection and whole-brain, cortical, and deep gray matter volumetric pipelines were applied. Statistical analyses were conducted to assess variability across sites, as well as systematic biases in the volumetric measurements that were site-related. Systematic biases due to site differences in expert-traced lesion measurements were significant ( P 90% of the variation (range, 13.0-16.4 mL in T1 and 15.9-20.1 mL in T2) in lesion volumes. Site also explained >80% of the variation in most automated volumetric measurements. Output measures clustered according to scanner models, with similar results from the Skyra versus the other 2 units. Even in multicenter studies with consistent scanner field strength and manufacturer after protocol harmonization, systematic differences can lead to severe biases in volumetric analyses. © 2017 by American Journal of Neuroradiology.

  1. SU-F-T-348: The Impact of Model Library Population On RapidPlan Based Dose-Volume Histograms (DVHs) Prediction for Rectal Cancer Patients Treated with Volumetric-Modulated Radiotherapy (VMAT)

    Energy Technology Data Exchange (ETDEWEB)

    Li, K; Zhou, L; Chen, Z; Peng, J; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China)

    2016-06-15

    Purpose: RapidPlan uses a library consisting of expert plans from different patients to create a model that can predict achievable dose-volume histograms (DVHs) for new patients. The goal of this study is to investigate the impacts of model library population (plan numbers) on the DVH prediction for rectal cancer patients treated with volumetric-modulated radiotherapy (VMAT) Methods: Ninety clinically accepted rectal cancer patients’ VMAT plans were selected to establish 3 models, named as Model30, Model60 and Model90, with 30,60, and 90 plans in the model training. All plans had sufficient target coverage and bladder and femora sparings. Additional 10 patients were enrolled to test the DVH prediction differences with these 3 models. The predicted DVHs from these 3 models were compared and analyzed. Results: Predicted V40 (Vx, percent of volume that received x Gy for the organs at risk) and Dmean (mean dose, cGy) of the bladder were 39.84±13.38 and 2029.4±141.6 for the Model30,37.52±16.00 and 2012.5±152.2 for the Model60, and 36.33±18.35 and 2066.5±174.3 for the Model90. Predicted V30 and Dmean of the left femur were 23.33±9.96 and 1443.3±114.5 for the Model30, 21.83±5.75 and 1436.6±61.9 for the Model60, and 20.31±4.6 and 1415.0±52.4 for the Model90.There were no significant differences among the 3 models for the bladder and left femur predictions. Predicted V40 and Dmean of the right femur were 19.86±10.00 and 1403.6±115.6 (Model30),18.97±6.19 and 1401.9±68.78 (Model60), and 21.08±7.82 and 1424.0±85.3 (Model90). Although a slight lower DVH prediction of the right femur was found on the Model60, the mean differences for V30 and mean dose were less than 2% and 1%, respectively. Conclusion: There were no significant differences among Model30, Model60 and Model90 for predicting DVHs on rectal patients treated with VMAT. The impact of plan numbers for model library might be limited for cancers with similar target shape.

  2. The Figure 8 Model of International Relations

    National Research Council Canada - National Science Library

    Sibayan, Jerome T

    2008-01-01

    .... The Figure 8 Model is presented first in a Cartesian format and then in geometrical form. This model is an intuitive idea based on a particular reading of history rather than a new international relations theory...

  3. Existing Model Metrics and Relations to Model Quality

    OpenAIRE

    Mohagheghi, Parastoo; Dehlen, Vegard

    2009-01-01

    This paper presents quality goals for models and provides a state-of-the-art analysis regarding model metrics. While model-based software development often requires assessing the quality of models at different abstraction and precision levels and developed for multiple purposes, existing work on model metrics do not reflect this need. Model size metrics are descriptive and may be used for comparing models but their relation to model quality is not welldefined. Code metrics are proposed to be ...

  4. A reduced volumetric expansion factor plot

    Science.gov (United States)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  5. Atlas-guided volumetric diffuse optical tomography enhanced by generalized linear model analysis to image risk decision-making responses in young adults.

    Science.gov (United States)

    Lin, Zi-Jing; Li, Lin; Cazzell, Mary; Liu, Hanli

    2014-08-01

    Diffuse optical tomography (DOT) is a variant of functional near infrared spectroscopy and has the capability of mapping or reconstructing three dimensional (3D) hemodynamic changes due to brain activity. Common methods used in DOT image analysis to define brain activation have limitations because the selection of activation period is relatively subjective. General linear model (GLM)-based analysis can overcome this limitation. In this study, we combine the atlas-guided 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with risk decision-making processes. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The Balloon Analog Risk Task (BART) is a valid experimental model and has been commonly used to assess human risk-taking actions and tendencies while facing risks. We have used the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making from 37 human participants (22 males and 15 females). Voxel-wise GLM analysis was performed after a human brain atlas template and a depth compensation algorithm were combined to form atlas-guided DOT images. In this work, we wish to demonstrate the excellence of using voxel-wise GLM analysis with DOT to image and study cognitive functions in response to risk decision-making. Results have shown significant hemodynamic changes in the dorsal lateral prefrontal cortex (DLPFC) during the active-choice mode and a different activation pattern between genders; these findings correlate well with published literature in functional magnetic resonance imaging (fMRI) and fNIRS studies. Copyright © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  6. Mathematical models to describe the volumetric shrinkage rate of red beans during drying Modelos matemáticos para descrever a taxa de contração volumétrica de feijão-vermelho durante a secagem

    Directory of Open Access Journals (Sweden)

    Paulo C. Corrêa

    2011-01-01

    Full Text Available The present study aimed to determine the volumetric shrinkage rate of bean (Phaseolus vulgaris L. seeds during air-drying under different conditions of air, temperature and relative humidity, and to adjust several mathematical models to the empiric values observed, and select the one that best represents the phenomenon. Six mathematical models were adjusted to the experimental values to represent the phenomenon. It was determined the degree of adjustment of each model from the value of the coefficient of determination, the behavior of the distribution of the residuals, and the magnitude of the average relative and estimated errors. The rate of volumetric shrinkage that occurred in bean seeds during drying is between 25 and 37%. It basically depends on the final moisture content, regardless of the air conditions during drying. The Modified Bala & Woods' model best represented the process.O objetivo deste trabalho foi determinar a taxa de contração volumétrica de sementes de feijão (Phaseolus vulgaris L. durante a secagem sob diferentes condições de ar, temperatura e umidade relativa, e ajustar vários modelos matemáticos para os valores empíricos observados, selecionando o que melhor representa este fenômeno. Foram ajustados seis modelos matemáticos aos dados experimentais para representar o fenômeno. Determinou-se o grau de ajuste de cada modelo através dos valores de coeficiente de determinação, do comportamento da distribuição dos resíduos e da magnitude dos erros médios relativos e estimados. A taxa de contração volumétrica que as sementes de feijão sofreram durante a secagem é em torno de 25 a 37%, e é basicamente em função do teor de água final e praticamente independente das condições do ar de secagem. O modelo de Bala e Woods modificado foi o que melhor representou o processo.

  7. Volumetric and viscometric properties of binary mixtures of {l_brace}methyl tert-butyl ether (MTBE) + alcohol{r_brace} at several temperatures and p = 0.1 MPa: Experimental results and application of the ERAS model

    Energy Technology Data Exchange (ETDEWEB)

    Hoga, H.E. [Departamento de Engenharia Quimica, Centro Universitario da FEI, Avenida Humberto de Alencar, Castelo Branco 3972, 09850-901 Sao Bernardo do Campo, Sao Paulo (Brazil); Torres, R.B., E-mail: belchior@fei.edu.br [Departamento de Engenharia Quimica, Centro Universitario da FEI, Avenida Humberto de Alencar, Castelo Branco 3972, 09850-901 Sao Bernardo do Campo, Sao Paulo (Brazil)

    2011-08-15

    Highlights: > Binary mixtures of MTBE + alcohol have been studied. > Volumetric and viscometric properties have been determined at several temperatures. > Excess molar volumes have been used to test the applicability of the ERAS model. > The results are discussed in terms of chemical and structural effects. - Abstract: Densities and viscosities of binary mixtures of {l_brace}methyl tert-butyl ether (MTBE) + methanol, or +ethanol, or +1-propanol, or +2-propanol, or +1-butanol, or +1-pentanol, or +1-hexanol{r_brace} have been determined as a function of composition at several temperatures and atmospheric pressure. The temperatures studied were (293.15, 298.15, 303.15, and 308.15) K. The experimental results have been used to calculate the excess molar volume (V{sub m}{sup E}) and viscosity deviation ({Delta}{eta}). Both V{sub m}{sup E} and {Delta}{eta} values were negative over the entire range of mole fraction for all temperatures and systems studied. Moreover, the V{sub m}{sup E} values have been used to test the applicability of the Extended Real Associated Solution (ERAS) model.

  8. Characterization of hydrological responses to rainfall and volumetric coefficients on the event scale in rural catchments of the Iberian Peninsula

    Science.gov (United States)

    Taguas, Encarnación; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Giménez, Rafael; Giráldez, Juan V.; Gómez-Macpherson, Helena; Gómez, José A.; González-Hidalgo, J. Carlos; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Susanne; Serrano-Muela, M. Pilar; Lana-Renault, Noemí; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2016-04-01

    Analysis of storm rainfall-runoff data is essential to improve our understanding of catchment hydrology and to validate models supporting hydrological planning. In a context of climate change, statistical and process-based models are helpful to explore different scenarios which might be represented by simple parameters such as volumetric runoff coefficient. In this work, rainfall-runoff event datasets collected at 17 rural catchments in the Iberian Peninsula were studied. The objectives were: i) to describe hydrological patterns/variability of the relation rainfall-runoff; ii) to explore different methodologies to quantify representative volumetric runoff coefficients. Firstly, the criteria used to define an event were examined in order to standardize the analysis. Linear regression adjustments and statistics of the rainfall-runoff relations were examined to identify possible common patterns. In addition, a principal component analysis was applied to evaluate the variability among catchments based on their physical attributes. Secondly, runoff coefficients at event temporal scale were calculated following different methods. Median, mean, Hawkinś graphic method (Hawkins, 1993), reference values for engineering project of Prevert (TRAGSA, 1994) and the ratio of cumulated runoff and cumulated precipitation of the event that generated runoff (Rcum) were compared. Finally, the relations between the most representative volumetric runoff coefficients with the physical features of the catchments were explored using multiple linear regressions. The mean volumetric runoff coefficient in the studied catchments was 0.18, whereas the median was 0.15, both with variation coefficients greater than 100%. In 6 catchments, rainfall-runoff linear adjustments presented coefficient of determination greater than 0.60 (p prensa. 513 p.

  9. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  10. The Influence of Water and Mineral Oil On Volumetric Losses in a Hydraulic Motor

    OpenAIRE

    Śliwiński Pawel

    2017-01-01

    In this paper volumetric losses in hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties) are described and compared. The experimental tests were conducted using an innovative hydraulic satellite motor, that is dedicated to work with different liquids, including water. The sources of leaks in this motor are also characterized and described. On this basis, a mathematical model of volumetric losses and model of effec...

  11. Multimodality comparison of quantitative volumetric analysis of the right ventricle.

    Science.gov (United States)

    Sugeng, Lissa; Mor-Avi, Victor; Weinert, Lynn; Niel, Johannes; Ebner, Christian; Steringer-Mascherbauer, Regina; Bartolles, Ralf; Baumann, Rolf; Schummers, Georg; Lang, Roberto M; Nesser, Hans-Joachim

    2010-01-01

    We undertook volumetric analysis of the right ventricle (RV) by real-time 3-dimensional echocardiography (RT3DE), cardiac magnetic resonance (CMR), and cardiac computed tomography (CCT) on images obtained in RV-shaped phantoms and in patients with a wide range of RV geometry. Assessment of the RV by 2-dimensional (2D) echocardiography remains challenging due to its unique geometry and limitations of the current analysis techniques. RT3DE, CMR, and CCT, which can quantify RV volumes, promise to overcome the limitations of 2D echocardiography. Images were analyzed using RV Analysis software. Volumes measured in vitro were compared with the true volumes. The human protocol included 28 patients who underwent RT3DE, CMR, and CT on the same day. Volumetric analysis of CMR images was used as a reference, against which RT3DE and CCT measurements were compared using linear regression and Bland-Altman analyses. To determine the reproducibility of the volumetric analysis, repeated measurements were performed for all 3 imaging modalities in 11 patients. The in vitro measurements showed that: 1) volumetric analysis of CMR images yielded the most accurate measurements; 2) CCT measurements showed slight (4%) but consistent overestimation; and 3) RT3DE measurements showed small underestimation, but considerably wider margins of error. In humans, both RT3DE and CCT measurements correlated highly with the CMR reference (r=0.79 to 0.89) and showed the same trends of underestimation and overestimation noted in vitro. All interobserver and intraobserver variability values were <14%, with those of CMR being the highest. Volumetric quantification of RV volume was performed on CMR, CCT, and RT3DE images. Eliminating analysis-related intermodality differences allowed fair comparisons and highlighted the unique limitations of each modality. Understanding these differences promises to aid in the functional assessment of the RV. Copyright (c) 2010 American College of Cardiology Foundation

  12. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2002-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  13. Volumetric velocimetry for fluid flows

    Science.gov (United States)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  14. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  15. Models and relations in economics and econometrics

    DEFF Research Database (Denmark)

    Juselius, Katarina

    1999-01-01

    Based on a money market analysis using the cointegrated VAR model the paper demonstrates some possible pitfalls in macroeconomic inference as a direct consequence of inadequate stochastic model formulation. A number of questions related to concepts such as empirical and theoretical steady-states,...

  16. Models and relations in economics and econometrics

    DEFF Research Database (Denmark)

    Juselius, Katarina

    1999-01-01

    Based on a money market analysis using the cointegrated VAR model the paper demonstrates some possible pitfalls in macroeconomic inference as a direct consequence of inadequate stochastic model formulation. A number of questions related to concepts such as empirical and theoretical steady...

  17. Relating business modelling and enterprise architecture

    NARCIS (Netherlands)

    Meertens, Lucas Onno

    2013-01-01

    This thesis proposes a methodology for creating business models, evaluating them, and relating them to enterprise architecture. The methodology consists of several steps, leading from an organization’s current situation to a target situation, via business models and enterprise architecture.

  18. Volumetric, viscometric, spectral studies and viscosity modelling of binary mixtures of esters and alcohols (diethyl succinate, or ethyl octanoate + isobutanol, or isopentanol) at varying temperatures

    International Nuclear Information System (INIS)

    Majstorović, Divna M.; Živković, Emila M.; Matija, Lidija R.; Kijevčanin, Mirjana Lj.

    2017-01-01

    Highlights: • Densitis and viscosities of four ester + alcohol binary mixtures were measured. • Excess and deviation functions were calculated. • Fourier transform infrared (FT-IR) spectroscopy analysis was conducted. • Molecular interactions present in the mixture were analyzed. • Viscosity modelling was performed. - Abstract: Density, viscosity and refractive index of four binary mixtures consisting of diethyl succinate or ethyl octanoate + 2-methyl-1-propanol or 3-methyl-1-butanol have been measured at atmospheric pressure and over the temperature range from 288.15 K to 323.15 K. Excess and deviation functions have been calculated from these data and fitted to the Redlich-Kister equation. The values of excess molar volume and deviation functions, with FT-IR study, were further used in the analysis of molecular interactions present in the mixture as well as the temperature influence on them. Molar excess Gibbs free energies of activation of viscous flow were additionally calculated from measured density and viscosity data for better understanding of present molecular interactions. Viscosity modelling was done with two approaches, predictive by group contribution models (UNIFAC-VISCO and ASOG-VISCO), and correlative by one to three-parameter models (Teja-Rice, Grunberg–Nissan, McAlister, Eyring-UNIQUAC and Eyring-NRTL). The obtained results were compared with experimental data and conclusions about applied approaches and models were made.

  19. Why Students Fail at Volumetric Analysis.

    Science.gov (United States)

    Pickering, Miles

    1979-01-01

    Investigates the reasons for students' failure in an introductory volumetric analysis course by analyzing test papers and judging them against a hypothetical ideal method of grading laboratory techniques. (GA)

  20. Thermodynamic and volumetric databases and software for magnesium alloys

    Science.gov (United States)

    Kang, Youn-Bae; Aliravci, Celil; Spencer, Philip J.; Eriksson, Gunnar; Fuerst, Carlton D.; Chartrand, Patrice; Pelton, Arthur D.

    2009-05-01

    Extensive databases for the thermodynamic and volumetric properties of magnesium alloys have been prepared by critical evaluation, modeling, and optimization of available data. Software has been developed to access the databases to calculate equilibrium phase diagrams, heat effects, etc., and to follow the course of equilibrium or Scheil-Gulliver cooling, calculating not only the amounts of the individual phases, but also of the microstructural constituents.

  1. Volumetric properties of (peg 400 + water) and (peg 400 + ethanol) mixtures at several temperatures and correlation with the jouyban-acree model

    OpenAIRE

    Rodríguez, Gerson A.; Holguín, Andrés R.; Martínez, Fleming; Khoubnasabjafari, Maryam; Jouyban, Abolghasem

    2012-01-01

    Molar volumes and excess molar volumes were investigated from density values for (PEG 400 + water) and (PEG 400 + ethanol) binary mixtures at temperatures from 283.15 K to 313.15 K. Both systems exhibit negative excess volumes probably due to increased interactions like hydrogen bonding and/or large differences in molar volumes of components. Volume thermal expansion coefficients were also calculated for binary mixtures and pure solvents. The Jouyban-Acree model was used for density and molar...

  2. Volumetric properties of binary mixtures of tributylamine with benzene derivatives and comparison with ERAS model results at temperatures from (293.15 to 333.15) K

    International Nuclear Information System (INIS)

    Behroozi, Mahboobe; Zarei, Hosseinali

    2012-01-01

    Highlights: ► The V m E values of tributylamine with aromatics were determined at (293.15 to 333.15) K. ► The values are positive (except nitrobenzene). ► Different behavior was observed at high temperatures. ► The results were correlated with Redlich–Kister equation and ERAS model. - Abstract: Binary mixtures of tributylamine with aromatics (toluene, ethylbenzene, o-xylene, m-xylene, p-xylene and nitrobenzene) were selected in order to investigate intermolecular interactions by calculation of their excess molar volume V m E , from density measurements. Thermal expansion coefficients α p , and their excess values of α E , were obtained from the density data. The V m E values were positive for all the mixtures except for the (tributylamine + nitrobenzene) binary mixture over the entire range of composition and lower temperatures and become more positive with rising temperature. At high temperatures, sigmoidal behavior was observed for the mixture of (tributylamine + o-xylene). The mixture of (tributylamine + nitrobenzene) shows negative values for V m E and become more negative with increasing temperature. The experimental data were correlated to Redlich–Kister equation. In order to characterize the V m E values, the extended real associated solution (ERAS) model was applied at different temperatures.

  3. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  4. Quantitative analysis of fish wake dynamics using volumetric PIV data

    Science.gov (United States)

    Mendelson, Leah; Techet, Alexandra

    2013-11-01

    In the study of swimming hydrodynamics, the fluid impulse in the wake is used to quantify the momentum transferred by the fish as it swims. This impulse is typically computed from planar PIV measurements of the wake circulation and geometry by assuming an axisymmetric vortex ring model. However, in many propulsive and maneuvering scenarios, three-dimensional effects are of substantial importance, and wake features are not often an isolated, symmetric vortex ring. Volumetric PIV data provides a complete measure of the vortex geometry and orientation, and circulation can be determined over multiple planar slices through the volume. Using sample datasets obtained from synthetic aperture PIV (SAPIV), we demonstrate how the availability of volumetric PIV data enables more detailed analysis of hydrodynamic impulse and characterize the uncertainty created by planar measurements. Special attention is paid to unsteady maneuvering behaviors that generate asymmetric and linked wake features.

  5. Volumetric PIV in Patient-Specific Cerebral Aneurysm

    Science.gov (United States)

    Brindise, Melissa; Dickerhoff, Ben; Saloner, David; Rayz, Vitaliy; Vlachos, Pavlos

    2016-11-01

    Cerebral aneurysms impose a unique challenge in which neurosurgeons must assess and decide between the risk of rupture and risk of treatment for each patient. Risk of rupture is often difficult to determine and most commonly assessed using geometric data including the size and shape of the aneurysm and parent vessel. Hemodynamics is thought to play a major role in the growth and rupture of a cerebral aneurysm, but its specific influence is largely unknown due to the inability of in vivo modalities to characterize detailed flow fields and limited in vitro studies. In this work, we use a patient-specific basilar tip aneurysm model and volumetric particle image velocimetry (PIV). In vivo, 4-D PC-MRI measurements were obtained for this aneurysm and the extracted pulsatile waveform was used for the in vitro study. Clinically relevant metrics including wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), 3-D pressure contours, and pressure wave speed were subsequently computed. This is the first study to investigate in vitro 3-D pressure fields within a cerebral aneurysm. The results of this study demonstrate how these metrics influence the biomechanics of the aneurysm and ultimately their affect on the risk of rupture.

  6. Determination of uranium by a gravimetric-volumetric titration method

    International Nuclear Information System (INIS)

    Krtil, J.

    1998-01-01

    A volumetric-gravimetric modification of a method for the determination of uranium based on the reduction of uranium to U (IV) in a phosphoric acid medium and titration with a standard potassium dichromate solution is described. More than 99% of the stoichiometric amount of the titrating solution is weighed and the remainder is added volumetrically by using the Mettler DL 40 RC Memotitrator. Computer interconnected with analytical balances collects continually the data on the analyzed samples and evaluates the results of determination. The method allows to determine uranium in samples of uranium metal, alloys, oxides, and ammonium diuranate by using aliquot portions containing 30 - 100 mg of uranium with the error of determination, expressed as the relative standard deviation, of 0.02 - 0.05%. (author)

  7. Predicting Soil-Water Characteristics from Volumetric Contents of Pore-Size Analogue Particle Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    *-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter......Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  8. 3D volumetric analysis for planning breast reconstructive surgery.

    Science.gov (United States)

    Chae, Michael P; Hunter-Smith, David J; Spychal, Robert T; Rozen, Warren Matthew

    2014-07-01

    Breast reconstruction plays an integral role in the holistic management of breast cancer, with assessment of breast volume, shape, and projection vital in planning breast reconstruction surgery. Current practice includes two-dimensional (2D) photography and visual estimation in selecting ideal volume and shape of breast implants or soft-tissue flaps. Other objective quantitative means of calculating breast volume have been reported, such as direct anthropomorphic measurements or three-dimensional (3D) photography, but none have proven reliably accurate. We describe a novel approach to volumetric analysis of the breast, through the creation of a haptic, tactile model, or 3D print of scan data. This approach comprises use of a single computed tomography (CT) or magnetic resonance imaging (MRI) scan for volumetric analysis, which we use to compare to simpler estimation techniques, create software-generated 3D reconstructions, calculate, and visualize volume differences, and produce biomodels of the breasts using a 3D printer for tactile appreciation of volume differential. Using the technique described, parenchymal volume was assessed and calculated using CT data. A case report was utilized in a pictorial account of the technique, in which a volume difference of 116 cm(3) was calculated, aiding reconstructive planning. Preoperative planning, including volumetric analysis can be used as a tool to aid esthetic outcomes and attempt to reduce operative times in post-mastectomy breast reconstruction surgery. The combination of accurate volume calculations and the production of 3D-printed haptic models for tactile feedback and operative guidance are evolving techniques in volumetric analysis and preoperative planning in breast reconstruction.

  9. Volumetric Optoacoustic Temperature Mapping in Photothermal Therapy.

    Science.gov (United States)

    Landa, Francisco Javier Oyaga; Deán-Ben, Xosé Luís; Sroka, Ronald; Razansky, Daniel

    2017-08-29

    Photothermal therapy and ablation are commonplace medical procedures employed for treatment of tumors, vascular and brain abnormalities as well as other disorders that require selective destruction of tissues. Yet, accurate mapping of the dynamic temperature field distribution in the treated region represents an unmet clinical need, strongly affecting the clinical outcome of these interventions. We introduce a fast three-dimensional temperature mapping method based on real-time optoacoustic sensing of the treated region coupled with a thermal-diffusion-based model of heat distribution in tissues. Deviations of the optoacoustic temperature readings provided at 40  ms intervals remained below 10% in tissue-mimicking phantom experiments for temperature elevations above 3 °C, as validated by simultaneous thermocouple measurements. Performance of the new method to dynamically estimate the volumetric temperature distribution was further showcased in post-mortem mouse imaging experiments. The newly discovered capacity to non-invasively measure the temperature map in an entire treated volume with both high spatial and temporal resolutions holds potential for improving safety and efficacy of light-based therapeutic interventions.

  10. Contrast-enhanced, real-time volumetric ultrasound imaging of tissue perfusion: preliminary results in a rabbit model of testicular torsion

    Science.gov (United States)

    Paltiel, H. J.; Padua, H. M.; Gargollo, P. C.; Cannon, G. M., Jr.; Alomari, A. I.; Yu, R.; Clement, G. T.

    2011-04-01

    Contrast-enhanced ultrasound (US) imaging is potentially applicable to the clinical investigation of a wide variety of perfusion disorders. Quantitative analysis of perfusion is not widely performed, and is limited by the fact that data are acquired from a single tissue plane, a situation that is unlikely to accurately reflect global perfusion. Real-time perfusion information from a tissue volume in an experimental rabbit model of testicular torsion was obtained with a two-dimensional matrix phased array US transducer. Contrast-enhanced imaging was performed in 20 rabbits during intravenous infusion of the microbubble contrast agent Definity® before and after unilateral testicular torsion and contralateral orchiopexy. The degree of torsion was 0° in 4 (sham surgery), 180° in 4, 360° in 4, 540° in 4, and 720° in 4. An automated technique was developed to analyze the time history of US image intensity in experimental and control testes. Comparison of mean US intensity rate of change and of ratios between mean US intensity rate of change in experimental and control testes demonstrated good correlation with testicular perfusion and mean perfusion ratios obtained with radiolabeled microspheres, an accepted 'gold standard'. This method is of potential utility in the clinical evaluation of testicular and other organ perfusion.

  11. Mechanical Models of Fault-Related Folding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  12. Modeling a Longitudinal Relational Research Data Systems

    Science.gov (United States)

    Olsen, Michelle D. Hunt

    2010-01-01

    A study was conducted to propose a research-based model for a longitudinal data research system that addressed recommendations from a synthesis of literature related to: (1) needs reported by the U.S. Department of Education, (2) the twelve mandatory elements that define federally approved state longitudinal data systems (SLDS), (3) the…

  13. Models of Man in Industrial Relations Research.

    Science.gov (United States)

    Kaufman, Bruce E.; And Others

    1989-01-01

    Kaufman attempts to identify essential characteristics that distinguish behavioral from nonbehavioral research in industrial relations. He argues that they are distinguished by the psychological model of man that is contained in the theoretical framework used to deduce or test hypotheses. Comments from Lewin, Mincer, and Cummings with Kaufman's…

  14. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2003-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on

  15. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as…

  16. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks.

    Science.gov (United States)

    Gómez-Gualdrón, Diego A; Wang, Timothy C; García-Holley, Paula; Sawelewa, Ruth M; Argueta, Edwin; Snurr, Randall Q; Hupp, Joseph T; Yildirim, Taner; Farha, Omar K

    2017-10-04

    Metal-organic frameworks (MOFs) are porous crystalline materials that are promising for adsorption-based, on-board storage of hydrogen in fuel-cell vehicles. Volumetric and gravimetric hydrogen capacities are the key factors that determine the size and weight of the MOF-filled tank required to store a certain amount of hydrogen for reasonable driving range. Therefore, they must be optimized so the tank is neither too large nor too heavy. Because the goals of maximizing MOF volumetric and gravimetric hydrogen adsorption loadings individually are incompatible, an in-depth understanding of the trade-off between MOF volumetric and gravimetric loadings is necessary to achieve the best compromise between these properties. Here we study, both experimentally and computationally, the trade-off between volumetric and gravimetric cryo-adsorbed hydrogen deliverable capacity by taking an isoreticular series of highly stable zirconium MOFs, NU-1101, NU-1102, and NU-1103 as a case study. These MOFs were studied under recently proposed operating conditions: 77 K/100 bar →160 K/5 bar. We found the difference between highest and lowest measured deliverable capacity in the MOF series to be ca. 40% gravimetrically, but only ca. 10% volumetrically. From our molecular simulation results, we found hydrogen "monolayer" adsorption to be proportional to the surface area, whereas hydrogen "pore filling" adsorption is proportional to the pore volume. Thus, we found that the higher variability in gravimetric deliverable capacity in contrast to the volumetric capacity, occurs due to the proportional relation between gravimetric surface area and pore volume in the NU-110x series in contrast to the inverse relation between volumetric surface area and void fraction. Additionally, we find better correlations with geometric surface areas than with BET areas. NU-1101 presents the highest measured volumetric performance with 46.6 g/L (9.1 wt %), whereas NU-1103 presents the highest gravimetric one

  17. Animal models of age related macular degeneration

    Science.gov (United States)

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  18. Constitutive relations for multiphase flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, H.; Vaeth, L.; Thurnay, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    The constitutive relations that are used in the three-field fluid dynamics code IVA-KA for determining the drag in three-phase mixtures and the heat transferred by radiation are described together with some comparisons of calculational results with experiments. In these experiments (QUEOS), large quantities of solid particles are injected into water. Potential deficiencies of the present drag model are discussed. (author)

  19. Learning Statistical Patterns in Relational Data Using Probabilistic Relational Models

    National Research Council Canada - National Science Library

    Koller, Daphne

    2005-01-01

    .... This effort focused on developing undirected probabilistic models for representing and learning graph patterns, learning patterns involving links between objects, learning discriminative models...

  20. Volumetric solar absorption in a channel with presence of phase change material in a carrier fluid

    International Nuclear Information System (INIS)

    Siddiqui, O.K.; Yilbas, Bekir S.; Shuja, S.Z.; Wang, E.

    2016-01-01

    Highlights: • Thermal energy gain over the solar heat input is high for absorber plate location at bottom surface of channel. • Phase change particles increases performance parameter as compared to water only case. • Pump power loss parameter behaves similar for absorbing plate location at top and at the bottom of channel. - Abstract: A channel flow with a presence of phase change particles in the carrier fluid (water) is investigated for various Reynolds numbers in relation to a solar volumetric absorption system. The absorber plate is considered in the channel to resemble the selective surface in the solar volumetric absorbing system. The absorbing plate, which composes of a ZrN film deposited onto a thin silver plate, is placed at three different locations in the channel to enhance the absorption of the incident solar radiation. The performance parameter is defined to quantify the heat storage capacity of the working fluid. The pump power loss parameter is introduced to predict the pump power loss due to the different locations of the absorber plate in the channel. A radiation model is incorporated to account for the absorption of the solar radiation by the working fluid and the absorber plate in the channel. It is found that the performance parameter improves considerably for the absorbing plate located at the channel bottom. The pump power loss parameter becomes the highest for the absorber plate location at the mid-height of the channel.

  1. Volumetric optoacoustic monitoring of endovenous laser treatments

    Science.gov (United States)

    Fehm, Thomas F.; Deán-Ben, Xosé L.; Schaur, Peter; Sroka, Ronald; Razansky, Daniel

    2016-03-01

    Chronic venous insufficiency (CVI) is one of the most common medical conditions with reported prevalence estimates as high as 30% in the adult population. Although conservative management with compression therapy may improve the symptoms associated with CVI, healing often demands invasive procedures. Besides established surgical methods like vein stripping or bypassing, endovenous laser therapy (ELT) emerged as a promising novel treatment option during the last 15 years offering multiple advantages such as less pain and faster recovery. Much of the treatment success hereby depends on monitoring of the treatment progression using clinical imaging modalities such as Doppler ultrasound. The latter however do not provide sufficient contrast, spatial resolution and three-dimensional imaging capacity which is necessary for accurate online lesion assessment during treatment. As a consequence, incidence of recanalization, lack of vessel occlusion and collateral damage remains highly variable among patients. In this study, we examined the capacity of volumetric optoacoustic tomography (VOT) for real-time monitoring of ELT using an ex-vivo ox foot model. ELT was performed on subcutaneous veins while optoacoustic signals were acquired and reconstructed in real-time and at a spatial resolution in the order of 200μm. VOT images showed spatio-temporal maps of the lesion progression, characteristics of the vessel wall, and position of the ablation fiber's tip during the pull back. It was also possible to correlate the images with the temperature elevation measured in the area adjacent to the ablation spot. We conclude that VOT is a promising tool for providing online feedback during endovenous laser therapy.

  2. Dual-gated volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Fahimian, Benjamin; Wu, Junqing; Wu, Huanmei; Geneser, Sarah; Xing, Lei

    2014-01-01

    Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging radiation therapy modality for treatment of tumors affected by respiratory motion. However, gating significantly prolongs the treatment time, as delivery is only activated during a single respiratory phase. To enhance the efficiency of gated VMAT delivery, a novel dual-gated VMAT (DG-VMAT) technique, in which delivery is executed at both exhale and inhale phases in a given arc rotation, is developed and experimentally evaluated. Arc delivery at two phases is realized by sequentially interleaving control points consisting of MUs, MLC sequences, and angles of VMAT plans generated at the exhale and inhale phases. Dual-gated delivery is initiated when a respiration gating signal enters the exhale window; when the exhale delivery concludes, the beam turns off and the gantry rolls back to the starting position for the inhale window. The process is then repeated until both inhale and exhale arcs are fully delivered. DG-VMAT plan delivery accuracy was assessed using a pinpoint chamber and diode array phantom undergoing programmed motion. DG-VMAT delivery was experimentally implemented through custom XML scripting in Varian’s TrueBeam™ STx Developer Mode. Relative to single gated delivery at exhale, the treatment time was improved by 95.5% for a sinusoidal breathing pattern. The pinpoint chamber dose measurement agreed with the calculated dose within 0.7%. For the DG-VMAT delivery, 97.5% of the diode array measurements passed the 3%/3 mm gamma criterion. The feasibility of DG-VMAT delivery scheme has been experimentally demonstrated for the first time. By leveraging the stability and natural pauses that occur at end-inspiration and end-exhalation, DG-VMAT provides a practical method for enhancing gated delivery efficiency by up to a factor of two

  3. Uncertainty quantification in volumetric Particle Image Velocimetry

    Science.gov (United States)

    Bhattacharya, Sayantan; Charonko, John; Vlachos, Pavlos

    2016-11-01

    Particle Image Velocimetry (PIV) uncertainty quantification is challenging due to coupled sources of elemental uncertainty and complex data reduction procedures in the measurement chain. Recent developments in this field have led to uncertainty estimation methods for planar PIV. However, no framework exists for three-dimensional volumetric PIV. In volumetric PIV the measurement uncertainty is a function of reconstructed three-dimensional particle location that in turn is very sensitive to the accuracy of the calibration mapping function. Furthermore, the iterative correction to the camera mapping function using triangulated particle locations in space (volumetric self-calibration) has its own associated uncertainty due to image noise and ghost particle reconstructions. Here we first quantify the uncertainty in the triangulated particle position which is a function of particle detection and mapping function uncertainty. The location uncertainty is then combined with the three-dimensional cross-correlation uncertainty that is estimated as an extension of the 2D PIV uncertainty framework. Finally the overall measurement uncertainty is quantified using an uncertainty propagation equation. The framework is tested with both simulated and experimental cases. For the simulated cases the variation of estimated uncertainty with the elemental volumetric PIV error sources are also evaluated. The results show reasonable prediction of standard uncertainty with good coverage.

  4. Volumetric, dashboard-mounted augmented display

    Science.gov (United States)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  5. Effect of capillary geometry on predicting electroosmotic volumetric flowrates in porous or fibrous media.

    Science.gov (United States)

    Pascal, Jennifer; Oyanader, Mario; Arce, Pedro

    2012-07-15

    Electrokinetic-based methods are used in a variety of applications including drug delivery and separation of biomolecules, among others. Many of these applications feature a fibrous or a porous medium that can be modeled by using capillary bundle models to predict the behavior of the electroosmotic flow within the particular system. The role of geometry in predicting volumetric flowrates in porous media is investigated by modeling the electroosmotic flow in idealized capillaries of rectangular, cylindrical, and annular geometries. This is achieved by the coupling of electrostatics and continuum hydrodynamics to obtain analytical expressions that govern the electrokinetically - driven volumetric flow within these idealized capillary geometries. A previous study developed a model to compare the cylindrical and annular capillary geometries by utilizing two methods that compare the areas of the two geometries. The methods used in this previous work will also be used in the present contribution to compare the volumetric flowrates in the cylindrical and annular capillaries with a rectangular capillary. Illustrative results will be presented to aid in the understanding of the influence of the various geometrical and electrostatic parameters that arise from the analysis of these volumetric flowrates. It was found that the electroosmotic volumetric flowrates are significantly affected by the capillary geometry. Copyright © 2012. Published by Elsevier Inc.

  6. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  7. Relating derived relations as a model of analogical reasoning: reaction times and event-related potentials.

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-11-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as chalk is to cheese") derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar-similar responding to be significantly faster than different-different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different-different waveforms were significantly more negative than similar-similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar-similar responding is relationally "simpler" than, and functionally distinct from, different-different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations.

  8. Pertanggungjawaban Sosial Universitas: Implementasi Model Cycle Relations

    Directory of Open Access Journals (Sweden)

    Lina Sinatra Wijaya

    2016-10-01

    Full Text Available The competition among Higher Education is getting tougher. They need to do their best in order to maintain their existence and getting more students coming to their institutions. One way to achieve that goal is through carrying out Corporate Social Responsibility (CSR programs or University Social Responsibility (USR for university. This study tries to investigate the implementation of ‘Cycle Relations’ model in CSR to increase the intake of Higher Education. This study involved seven Higher Educations and nineteen High schools in Central Java. In collecting the data, it used a depth-interview method with all the related parties in this study. The result showed that most of the Higher Education institutions have implemented Corporate Social Responsibility program in various ways. Their target audience included the high schools, society, and parents.  From the model implementation, it showed that the CSR program did have an impact towards the intake in their institution. However, one important thing to consider is that the role of the teachers at schools was quite significant in influencing the students to choose which university to go.  This reflects that although the Higher Education institution have planned and carried out CSR programs according to what the target audiences’ need, it does not guarantee that it will have direct impact towards their intake because the influence of teacher is quite significant. It may have a bigger impact in long term as the target audiences know the quality and contribution of the Higher Education institutions.

  9. Volumetric analysis of chronic maxillary atelectasis.

    Science.gov (United States)

    Lin, Giant C; Sedaghat, Ahmad R; Bleier, Benjamin S; Holbrook, Eric H; Busaba, Nicolas Y; Yoon, Michael K; Gray, Stacey T

    2015-01-01

    The relationship between orbit and maxillary sinus volumes in patients with chronic maxillary atelectasis (CMA), commonly known as silent sinus syndrome if enophthalmos is present, is poorly understood. A retrospective review of 22 patients who underwent endoscopic sinus surgery (ESS) for CMA from 2005 to 2013 was performed. Computed tomography (CT) images were analyzed using OsiriX 5.8.2 software for volumetric analysis of the orbit and maxillary sinus at presentation and after surgical treatment with ESS. Pretreatment mean orbit volumes on the diseased side (DS) and the contralateral side (CS) were 29.22 and 26.50 mL, respectively (p Volumetric analysis is a powerful and novel method for objectively demonstrating the degree of orbit expansion and maxillary sinus contraction seen with CMA. Spontaneous maxillary sinus expansion and a decrease in orbit volume can occur after ESS, but post-ESS volumes do not return to the normal volume of the CS.

  10. Risk considerations related to lung modeling

    International Nuclear Information System (INIS)

    Masse, R.; Cross, F.T.

    1989-01-01

    Improved lung models provide a more accurate assessment of dose from inhalation exposures and, therefore, more accurate dose-response relationships for risk evaluation and exposure limitation. Epidemiological data for externally irradiated persons indicate that the numbers of excess respiratory tract carcinomas differ in the upper airways, bronchi, and distal lung. Neither their histogenesis and anatomical location nor their progenitor cells are known with sufficient accuracy for accurate assessment of the microdosimetry. The nuclei of sensitive cells generally can be assumed to be distributed at random in the epithelium, beneath the mucus and tips of the beating cilia and cells. In stratified epithelia, basal cells may be considered the only cells at risk. Upper-airway tumors have been observed in both therapeutically irradiated patients and in Hiroshima-Nagasaki survivors. The current International Commission on Radiological Protection Lung-Model Task Group proposes that the upper airways and lung have a similar relative risk coefficient for cancer induction. The partition of the risk weighting factor, therefore, will be proportional to the spontaneous death rate from tumors, and 80% of the weighting factor for the respiratory tract should be attributed to the lung. For Weibel lung-model branching generations 0 to 16 and 17 to 23, the Task Group proposes an 80/20 partition of the risk, i.e., 64% and 16%, respectively, of the total risk. Regarding risk in animals, recent data in rats indicate a significantly lower effectiveness for lung-cancer induction at low doses from insoluble long-lived alpha-emitters than from Rn daughters. These findings are due, in part, to the fact that different regions of the lung are irradiated. Tumors in the lymph nodes are rare in people and animals exposed to radiation.44 references

  11. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  12. Volumetric and superficial characterization of carbon activated

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T.

    2000-01-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  13. Volumetric measurements of pulmonary nodules: variability in automated analysis tools

    Science.gov (United States)

    Juluru, Krishna; Kim, Woojin; Boonn, William; King, Tara; Siddiqui, Khan; Siegel, Eliot

    2007-03-01

    Over the past decade, several computerized tools have been developed for detection of lung nodules and for providing volumetric analysis. Incidentally detected lung nodules have traditionally been followed over time by measurements of their axial dimensions on CT scans to ensure stability or document progression. A recently published article by the Fleischner Society offers guidelines on the management of incidentally detected nodules based on size criteria. For this reason, differences in measurements obtained by automated tools from various vendors may have significant implications on management, yet the degree of variability in these measurements is not well understood. The goal of this study is to quantify the differences in nodule maximum diameter and volume among different automated analysis software. Using a dataset of lung scans obtained with both "ultra-low" and conventional doses, we identified a subset of nodules in each of five size-based categories. Using automated analysis tools provided by three different vendors, we obtained size and volumetric measurements on these nodules, and compared these data using descriptive as well as ANOVA and t-test analysis. Results showed significant differences in nodule maximum diameter measurements among the various automated lung nodule analysis tools but no significant differences in nodule volume measurements. These data suggest that when using automated commercial software, volume measurements may be a more reliable marker of tumor progression than maximum diameter. The data also suggest that volumetric nodule measurements may be relatively reproducible among various commercial workstations, in contrast to the variability documented when performing human mark-ups, as is seen in the LIDC (lung imaging database consortium) study.

  14. MR volumetric assessment of endolymphatic hydrops

    International Nuclear Information System (INIS)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E.; Dietrich, O.; Flatz, W.; Ertl-Wagner, B.; Keeser, D.

    2015-01-01

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  15. MR volumetric assessment of endolymphatic hydrops

    Energy Technology Data Exchange (ETDEWEB)

    Guerkov, R.; Berman, A.; Jerin, C.; Krause, E. [University of Munich, Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); Dietrich, O.; Flatz, W.; Ertl-Wagner, B. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); Keeser, D. [University of Munich, Institute of Clinical Radiology, Grosshadern Medical Centre, Munich (Germany); University of Munich, German Centre for Vertigo and Balance Disorders, Grosshadern Medical Centre, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psychiatry and Psychotherapy, Innenstadtkliniken Medical Centre, Munich (Germany)

    2014-10-16

    We aimed to volumetrically quantify endolymph and perilymph spaces of the inner ear in order to establish a methodological basis for further investigations into the pathophysiology and therapeutic monitoring of Meniere's disease. Sixteen patients (eight females, aged 38-71 years) with definite unilateral Meniere's disease were included in this study. Magnetic resonance (MR) cisternography with a T2-SPACE sequence was combined with a Real reconstruction inversion recovery (Real-IR) sequence for delineation of inner ear fluid spaces. Machine learning and automated local thresholding segmentation algorithms were applied for three-dimensional (3D) reconstruction and volumetric quantification of endolymphatic hydrops. Test-retest reliability was assessed by the intra-class coefficient; correlation of cochlear endolymph volume ratio with hearing function was assessed by the Pearson correlation coefficient. Endolymph volume ratios could be reliably measured in all patients, with a mean (range) value of 15 % (2-25) for the cochlea and 28 % (12-40) for the vestibulum. Test-retest reliability was excellent, with an intra-class coefficient of 0.99. Cochlear endolymphatic hydrops was significantly correlated with hearing loss (r = 0.747, p = 0.001). MR imaging after local contrast application and image processing, including machine learning and automated local thresholding, enable the volumetric quantification of endolymphatic hydrops. This allows for a quantitative assessment of the effect of therapeutic interventions on endolymphatic hydrops. (orig.)

  16. Temporal Coding of Volumetric Imagery

    Science.gov (United States)

    Llull, Patrick Ryan

    of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions. Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z ) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke. Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.

  17. Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures.

    Directory of Open Access Journals (Sweden)

    Luping Zhou

    Full Text Available Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging has been extensively studied in the past decades for prediction of Alzheimer's disease (AD and mild cognitive impairment (MCI. The volumes of gray matter (GM, white matter (WM and cerebrospinal fluid (CSF are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental

  18. Handbook of latent variable and related models

    CERN Document Server

    Lee, Sik-Yum

    2011-01-01

    This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables.- Covers a wide class of important models- Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data- Includes illustrative examples with real data sets from business, education, medicine, public health and sociology.- Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

  19. Volumetric verification of multiaxis machine tool using laser tracker.

    Science.gov (United States)

    Aguado, Sergio; Samper, David; Santolaria, Jorge; Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space.

  20. Scanners and drillers: Characterizing expert visual search through volumetric images

    Science.gov (United States)

    Drew, Trafton; Vo, Melissa Le-Hoa; Olwal, Alex; Jacobson, Francine; Seltzer, Steven E.; Wolfe, Jeremy M.

    2013-01-01

    Modern imaging methods like computed tomography (CT) generate 3-D volumes of image data. How do radiologists search through such images? Are certain strategies more efficient? Although there is a large literature devoted to understanding search in 2-D, relatively little is known about search in volumetric space. In recent years, with the ever-increasing popularity of volumetric medical imaging, this question has taken on increased importance as we try to understand, and ultimately reduce, errors in diagnostic radiology. In the current study, we asked 24 radiologists to search chest CTs for lung nodules that could indicate lung cancer. To search, radiologists scrolled up and down through a “stack” of 2-D chest CT “slices.” At each moment, we tracked eye movements in the 2-D image plane and coregistered eye position with the current slice. We used these data to create a 3-D representation of the eye movements through the image volume. Radiologists tended to follow one of two dominant search strategies: “drilling” and “scanning.” Drillers restrict eye movements to a small region of the lung while quickly scrolling through depth. Scanners move more slowly through depth and search an entire level of the lung before moving on to the next level in depth. Driller performance was superior to the scanners on a variety of metrics, including lung nodule detection rate, percentage of the lung covered, and the percentage of search errors where a nodule was never fixated. PMID:23922445

  1. Mapping Relational Operations onto Hypergraph Model

    Directory of Open Access Journals (Sweden)

    2010-10-01

    ="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>

    The relational model is the most commonly used data model for storing large datasets, perhaps due to the simplicity of the tabular format which had revolutionized database management systems. However, many real world objects are recursive and associative in nature which makes storage in the relational model difficult. The hypergraph model is a generalization of a graph model, where each hypernode can be made up of other nodes or graphs and each hyperedge can be made up of one or more edges. It may address the recursive and associative limitations of relational model

  2. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  3. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were...

  4. Relative Motion Modeling and Autonomous Navigation Accuracy

    Science.gov (United States)

    2016-11-15

    the use of nonsingular elements, this version of relative motion STM has singularities for reference orbits that lie in the equatorial plane ...improved by including the lunar orbit’s eccentricity and inclination in the studies presented in References [17-19]. Since the perturbed relative motion ...satellites are equipped with solar flaps or aerodynamic flaps. By appropriate rotation of these flaps, it is possible to influence the relative motion

  5. Maneuver Estimation Model for Relative Orbit Determination

    National Research Council Canada - National Science Library

    Storch, Tara R

    2005-01-01

    While the use of relative orbit determination has reduced the difficulties inherent in tracking geosynchronous satellites that are in close proximity, the problem is often compounded by stationkeeping...

  6. Modeling behavioral considerations related to information security.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Moyano, I. J.; Conrad, S. H.; Andersen, D. F. (Decision and Information Sciences); (SNL); (Univ. at Albany)

    2011-01-01

    The authors present experimental and simulation results of an outcome-based learning model for the identification of threats to security systems. This model integrates judgment, decision-making, and learning theories to provide a unified framework for the behavioral study of upcoming threats.

  7. Volumetrically controlled ultrafiltration. Current experiences and future prospects.

    Science.gov (United States)

    Roy, T; Ahrenholz, P; Falkenhagen, D; Klinkmann, H

    1982-05-01

    Exact control of ultrafiltration (UF) is a prerequisite for high flux dialysis and hemodiafiltration. Volumetric dialysate balancing is the best current method for the use of dialyzers with high water permeabilities. The precision of UF control by volumetric dialysate balancing is in agreement with all medical requirements. A positive influence of volumetric UF control on patients undergoing chronic hemodialysis can be shown by the frequencies of dialysis side effects. Volumetric UF control is only a first step towards an intelligent UF module to correlate water removal, solute removal and sodium balance.

  8. VASP: a volumetric analysis of surface properties yields insights into protein-ligand binding specificity.

    Directory of Open Access Journals (Sweden)

    Brian Y Chen

    2010-08-01

    Full Text Available Many algorithms that compare protein structures can reveal similarities that suggest related biological functions, even at great evolutionary distances. Proteins with related function often exhibit differences in binding specificity, but few algorithms identify structural variations that effect specificity. To address this problem, we describe the Volumetric Analysis of Surface Properties (VASP, a novel volumetric analysis tool for the comparison of binding sites in aligned protein structures. VASP uses solid volumes to represent protein shape and the shape of surface cavities, clefts and tunnels that are defined with other methods. Our approach, inspired by techniques from constructive solid geometry, enables the isolation of volumetrically conserved and variable regions within three dimensionally superposed volumes. We applied VASP to compute a comparative volumetric analysis of the ligand binding sites formed by members of the steroidogenic acute regulatory protein (StAR-related lipid transfer (START domains and the serine proteases. Within both families, VASP isolated individual amino acids that create structural differences between ligand binding cavities that are known to influence differences in binding specificity. Also, VASP isolated cavity subregions that differ between ligand binding cavities which are essential for differences in binding specificity. As such, VASP should prove a valuable tool in the study of protein-ligand binding specificity.

  9. Benchmark calculations for evaluation methods of gas volumetric leakage rate

    International Nuclear Information System (INIS)

    Asano, R.; Aritomi, M.; Matsuzaki, M.

    1998-01-01

    A containment function of radioactive materials transport casks is essential for safe transportation to prevent the radioactive materials from being released into environment. Regulations such as IAEA standard determined the limit of radioactivity to be released. Since is not practical for the leakage tests to measure directly the radioactivity release from a package, as gas volumetric leakages rates are proposed in ANSI N14.5 and ISO standards. In our previous works, gas volumetric leakage rates for several kinds of gas from various leaks were measured and two evaluation methods, 'a simple evaluation method' and 'a strict evaluation method', were proposed based on the results. The simple evaluation method considers the friction loss of laminar flow with expansion effect. The strict evaluating method considers an exit loss in addition to the friction loss. In this study, four worked examples were completed for on assumed large spent fuel transport cask (Type B Package) with wet or dry capacity and at three transport conditions; normal transport with intact fuels or failed fuels, and an accident in transport. The standard leakage rates and criteria for two kinds of leak test were calculated for each example by each evaluation method. The following observations are made based upon the calculations and evaluations: the choked flow model of ANSI method greatly overestimates the criteria for tests ; the laminar flow models of both ANSI and ISO methods slightly overestimate the criteria for tests; the above two results are within the design margin for ordinary transport condition and all methods are useful for the evaluation; for severe condition such as failed fuel transportation, it should pay attention to apply a choked flow model of ANSI method. (authors)

  10. Green chemistry volumetric titration kit for pharmaceutical formulations: Econoburette

    Directory of Open Access Journals (Sweden)

    Man Singh

    2009-08-01

    Full Text Available Stopcock SC and Spring Sp models of Econoburette (Calibrated, RTC (NR, Ministry of Small Scale Industries, Government of India, developed for semimicro volumetric titration of pharmaceutical formulations are reported. These are economized and risk free titration where pipette is replaced by an inbuilt pipette and conical flask by inbuilt bulb. A step of pipetting of stock solution by mouth is deleted. It is used to allow solution exposure to user’s body. This risk is removed and even volatile and toxic solutions are titrated with full proof safety. Econoburette minimizes use of materials and time by 90 % and prevent discharge of polluting effluent to environment. Few acid and base samples are titrated and an analysis of experimental expenditure is described in the papers.

  11. STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE ...

    African Journals Online (AJOL)

    Test

    deterministic in nature, and this has been a major constraint in achieving agricultural sustainability in most developing countries.To facilitate this study, 29 years information of the observed relative humidity of Ogun basin was obtained from the Federal ...

  12. Relational Model Conflicts in Knowledge Sharing Behavior

    NARCIS (Netherlands)

    P.J. van Baalen (Peter); J. van Dalen (Jan); J. van Malsen (Jorina)

    2013-01-01

    textabstractThe distributed nature of organizational knowledge makes that knowledge sharing an important factor for unlocking its potential value. In practice, however, people may have different motivations for not sharing knowledge with colleagues, which in part may be due to the relational

  13. Thermal expansion and volumetric changes during indium phosphide melting

    International Nuclear Information System (INIS)

    Glazov, V.M.; Davletov, K.; Nashel'skij, A.Ya.; Mamedov, M.M.

    1977-01-01

    The results of the measurements of a thermal expansion were summed up at various temperatures as a diagram in coordinates (Δ 1/1) approximately F(t). It was shown that an appreciable deviation of the relationship (Δ1/1) approximately f(t) from the linear law corresponded to a temperature of 500-550 deg C. It was noted that the said deviation was related to an appreciable thermal decomposition of indium phosphide as temperature increased. The strength of the inter-atomic bond of indium phosphide was calculated. Investigated were the volumetric changes of indium phosphide on melting. The resultant data were analyzed with the aid of the Clausius-Clapeyron equation

  14. Continuous assessment of carotid intima-media thickness applied to estimate a volumetric compliance using B-mode ultrasound sequences

    International Nuclear Information System (INIS)

    Pascaner, A F; Craiem, D; Casciaro, M E; Graf, S; Danielo, R; Guevara, E

    2015-01-01

    Recent reports have shown that the carotid artery wall had significant movements not only in the radial but also in the longitudinal direction during the cardiac cycle. Accordingly, the idea that longitudinal elongations could be systematically neglected for compliance estimations became controversial. Assuming a dynamic change in vessel length, the standard measurement of cross-sectional compliance can be revised. In this work, we propose to estimate a volumetric compliance based on continuous measurements of carotid diameter and intima-media thickness (IMT) from B-mode ultrasound sequences. Assuming the principle of conservation of the mass of wall volume (compressibility equals zero), a temporal longitudinal elongation can be calculated to estimate a volumetric compliance. Moreover, elongations can also be estimated allowing small compressibility factors to model some wall leakage. The cross-sectional and the volumetric compliance were estimated in 45 healthy volunteers and 19 asymptomatic patients. The standard measurement underestimated the volumetric compliance by 25% for young volunteers (p < 0.01) and 17% for patients (p < 0.05). When compressibility factors different from zero were allowed, volunteers and patients reached values of 9% and 4%, respectively. We conclude that a simultaneous assessment of carotid diameter and IMT can be employed to estimate a volumetric compliance incorporating a longitudinal elongation. The cross-sectional compliance, that neglects the change in vessel length, underestimates the volumetric compliance. (paper)

  15. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    Science.gov (United States)

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  16. Modeling patterns in count data using loglinear and related models

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1995-12-01

    This report explains the use of loglinear and logit models, for analyzing Poisson and binomial counts in the presence of explanatory variables. The explanatory variables may be unordered categorical variables or numerical variables, or both. The report shows how to construct models to fit data, and how to test whether a model is too simple or too complex. The appropriateness of the methods with small data sets is discussed. Several example analyses, using the SAS computer package, illustrate the methods

  17. Interactive stereoscopic rendering of volumetric environments.

    Science.gov (United States)

    Wan, Ming; Zhang, Nan; Qu, Huamin; Kaufman, Arie E

    2004-01-01

    We present an efficient stereoscopic rendering algorithm supporting interactive navigation through large-scale 3D voxel-based environments. In this algorithm, most of the pixel values of the right image are derived from the left image by a fast 3D warping based on a specific stereoscopic projection geometry. An accelerated volumetric ray casting then fills the remaining gaps in the warped right image. Our algorithm has been parallelized on a multiprocessor by employing effective task partitioning schemes and achieved a high cache coherency and load balancing. We also extend our stereoscopic rendering to include view-dependent shading and transparency effects. We have applied our algorithm in two virtual navigation systems, flythrough over terrain and virtual colonoscopy, and reached interactive stereoscopic rendering rates of more than 10 frames per second on a 16-processor SGI Challenge.

  18. Theoretical characterization of annular array as a volumetric optoacoustic ultrasound handheld probe

    Science.gov (United States)

    Kalkhoran, Mohammad Azizian; Vray, Didier

    2018-02-01

    Optoacoustic ultrasound (OPUS) is a promising hybridized technique for simultaneous acquisition of functional and morphological data. The optical specificity of optoacoustic leverages the diagnostic aptitude of ultrasonography beyond anatomy. However, this integration has been rarely practiced for volumetric imaging. The challenge lies in the effective imaging probes that preserve the functionality of both modalities. The potentials of a sparse annular array for volumetric OPUS imaging are theoretically investigated. In order to evaluate and optimize the performance characteristics of the probe, series of analysis in the framework of system model matrix was carried out. The two criteria of voxel crosstalk and eigenanalysis have been employed to unveil information about the spatial sensitivity, aliasing, and number of definable spatial frequency components. Based on these benchmarks, the optimal parameters for volumetric handheld probe are determined. In particular, the number, size, and the arrangement of the elements and overall aperture dimension were investigated. The result of the numerical simulation suggests that the segmented-annular array of 128 negatively focused elements with 1λ × 20λ size, operating at 5-MHz central frequency showcases a good agreement with the physical requirement of both imaging systems. We hypothesize that these features enable a high-throughput volumetric passive/active ultrasonic imaging system with great potential for clinical applications.

  19. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.

    Science.gov (United States)

    Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin

    2016-05-01

    Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45

  20. The semiotics of control and modeling relations in complex systems.

    Science.gov (United States)

    Joslyn, C

    2001-01-01

    We provide a conceptual analysis of ideas and principles from the systems theory discourse which underlie Pattee's semantic or semiotic closure, which is itself foundational for a school of theoretical biology derived from systems theory and cybernetics, and is now being related to biological semiotics and explicated in the relational biological school of Rashevsky and Rosen. Atomic control systems and models are described as the canonical forms of semiotic organization, sharing measurement relations, but differing topologically in that control systems are circularly and models linearly related to their environments. Computation in control systems is introduced, motivating hierarchical decomposition, hybrid modeling and control systems, and anticipatory or model-based control. The semiotic relations in complex control systems are described in terms of relational constraints, and rules and laws are distinguished as contingent and necessary functional entailments, respectively. Finally, selection as a meta-level of constraint is introduced as the necessary condition for semantic relations in control systems and models.

  1. Construction and calibration of TDR probes for volumetric water content estimation in a Distroferric Red Latosol

    OpenAIRE

    Soncela, Rosimaldo; Sampaio, Silvio C.; Vilas Boas, Marcio A.; Tavares, Maria H. F.; Smanhotto, Adriana

    2013-01-01

    The determination of volumetric water content of soils is an important factor in irrigation management. Among the indirect methods for estimating, the time-domain reflectometry (TDR) technique has received a significant attention. Like any other technique, it has advantages and disadvantages, but its greatest disadvantage is the need of calibration and high cost of acquisition. The main goal of this study was to establish a calibration model for the TDR equipment, Trase System Model 6050X1, t...

  2. Applying the social relations model to self and peer evaluations

    NARCIS (Netherlands)

    Greguras, G.J.; Robie, C.; Born, M.Ph.

    2001-01-01

    Peer evaluations of performance increasingly are being used to make organizational decisions and to provide individuals with performance related feedback. Using Kenny's social relations model (SRM), data from 14 teams of undergraduate students who completed performance ratings of themselves and

  3. Personality, relationship conflict, and teamwork-related mental models

    NARCIS (Netherlands)

    Vîrgă, D.; Curseu, P.L.; Maricuţoiu, L.; Sava, S.A.; Macsinga, I.; Măgurean, S.

    2014-01-01

    This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested

  4. Modeling Approaches and Systems Related to Structured Modeling.

    Science.gov (United States)

    1987-02-01

    Lasdon 򒾂> and Maturana 򒾃> for surveys of several modern systems. A -6- N NN- %0 CAMPS (Lucas and Mitra 򒾁>) -- Computer Assisted Mathe- %l...583-589. MATURANA , S. 򒾃>. "Comparative Analysis of Mathematical Modeling Systems," informal note, Graduate School of Manage- ment, UCLA, February

  5. Negotiation as a Model for Teaching Public Relations Professionalism.

    Science.gov (United States)

    Saunders, Martha Dunagin; Perrigo, Eileen

    1998-01-01

    Shows that negotiation provides an effective model for teaching public relations professionalism. Describes how two professors in a public relations class used a negotiation model to teach students to simultaneously balance the two components of professionalism: ethical considerations and pragmatic, problem-solving measures. (SR)

  6. Longitudinal models in the behavioral and related sciences

    NARCIS (Netherlands)

    Montfort, van K.; Satorra, A.; Oud, H.

    2007-01-01

    Longitudinal Models in the Behavioral and Related Sciences opens with the latest theoretical developments. In particular, the book addresses situations that arise due to the categorical nature of the data, issues related to state space modeling, and potential problems that may arise from network

  7. Neonatal handling enduringly decreases anxiety and stress responses and reduces hippocampus and amygdala volume in a genetic model of differential anxiety: Behavioral-volumetric associations in the Roman rat strains.

    Science.gov (United States)

    Río-Álamos, Cristóbal; Oliveras, Ignasi; Piludu, Maria Antonietta; Gerbolés, Cristina; Cañete, Toni; Blázquez, Gloria; Lope-Piedrafita, Silvia; Martínez-Membrives, Esther; Torrubia, Rafael; Tobeña, Adolf; Fernández-Teruel, Alberto

    2017-02-01

    The hippocampus and amygdala have been proposed as key neural structures related to anxiety. A more active hippocampus/amygdala system has been related to greater anxious responses in situations involving conflict/novelty. The Roman Low- (RLA) and High-avoidance (RHA) rat lines/strains constitute a genetic model of differential anxiety. Relative to RHA rats, RLA rats exhibit enhanced anxiety/fearfulness, augmented hippocampal/amygdala c-Fos expression following exposure to novelty/conflict, increased hippocampal neuronal density and higher endocrine responses to stress. Neonatal handling (NH) is an environmental treatment with long-lasting anxiety/stress-reducing effects in rodents. Since hippocampus and amygdala volume are supposed to be related to anxiety/fear, we hypothesized a greater volume of both areas in RLA than in RHA rats, as well as that NH treatment would reduce anxiety and the volume of both structures, in particular in the RLA strain. Adult untreated and NH-treated RHA and RLA rats were tested for anxiety, sensorimotor gating (PPI), stress-induced corticosterone and prolactin responses, two-way active avoidance acquisition and in vivo 7 T 1H-Magnetic resonance image. As expected, untreated RLA rats showed higher anxiety and post-stress hormone responses, as well as greater hippocampus and amygdala volumes than untreated RHA rats. NH decreased anxiety/stress responses, especially in RLA rats, and significantly reduced hippocampus and amygdala volumes in this strain. Dorsal striatum volume was not different between the strains nor it was affected by NH. Finally, there were positive associations (as shown by correlations, factor analysis and multiple regression) between anxiety and PPI and hippocampus/amygdala volumes. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  8. Radiofrequency volumetric reduction for masseteric hypertrophy.

    Science.gov (United States)

    Jin Park, Young; Woo Jo, Yong; Bang, Sa Ik; Kim, Hyung Joon; Lim, So Young; Mun, Goo Hyun; Hyon, Won Sok; Oh, Kap Sung

    2007-01-01

    Masseteric hypertrophy occurs frequently among Asians, including Koreans, because of racial characteristics and dietary habits. It is thought to be an unpleasant feature, especially because of its strong and masculine impression. Recently, the authors developed a method for the volumetric reduction of hypertrophied masseter muscles using radiofrequency energy to correct the squared facial appearance caused by the hypertrophy. This study was performed to investigate the effects of radiofrequency applied to reduce hypertrophied masseter muscles of patients who sought an aesthetic alternative for a slim, smooth, and feminine-looking lower facial contour. A total of 340 patients were treated. The patients usually recognized the volume change 3 to 6 weeks after treatment, and an objective volume reduction was observed within 3 months of the operation. The range of the reduction in the masseter thickness, as measured by ultrasonic examination at a 6-month postoperative follow-up visit, was 10% to 60% (mean, 27%). Most of the patients could eat a nearly normal diet after 4 weeks and were satisfied with the improved aesthetic contour lines of their lower face. Radiofrequency-induced coagulation tissue necrosis of the masseter did not cause any infections or limitations of mouth opening, and the clinical improvement was well maintained after the treatment.

  9. Iterative reconstruction of volumetric particle distribution

    International Nuclear Information System (INIS)

    Wieneke, Bernhard

    2013-01-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data. (paper)

  10. Normative biometrics for fetal ocular growth using volumetric MRI reconstruction.

    Science.gov (United States)

    Velasco-Annis, Clemente; Gholipour, Ali; Afacan, Onur; Prabhu, Sanjay P; Estroff, Judy A; Warfield, Simon K

    2015-04-01

    To determine normative ranges for fetal ocular biometrics between 19 and 38 weeks gestational age (GA) using volumetric MRI reconstruction. The 3D images of 114 healthy fetuses between 19 and 38 weeks GA were created using super-resolution volume reconstructions from MRI slice acquisitions. These 3D images were semi-automatically segmented to measure fetal orbit volume, binocular distance (BOD), interocular distance (IOD), and ocular diameter (OD). All biometry correlated with GA (Volume, Pearson's correlation coefficient (CC) = 0.9680; BOD, CC = 0.9552; OD, CC = 0.9445; and IOD, CC = 0.8429), and growth curves were plotted against linear and quadratic growth models. Regression analysis showed quadratic models to best fit BOD, IOD, and OD and a linear model to best fit volume. Orbital volume had the greatest correlation with GA, although BOD and OD also showed strong correlation. The normative data found in this study may be helpful for the detection of congenital fetal anomalies with more consistent measurements than are currently available. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  11. Characterization of three dimensional volumetric strain distribution during passive tension of the human tibialis anterior using Cine Phase Contrast MRI.

    Science.gov (United States)

    Jensen, Elisabeth R; Morrow, Duane A; Felmlee, Joel P; Murthy, Naveen S; Kaufman, Kenton R

    2016-10-03

    Intramuscular pressure correlates strongly with muscle tension and is a promising tool for quantifying individual muscle force. However, clinical application is impeded by measurement variability that is not fully understood. Previous studies point to regional differences in IMP, specifically increasing pressure with muscle depth. Based on conservation of mass, intramuscular pressure and volumetric strain distributions may be inversely related. Therefore, we hypothesized volumetric strain would decrease with muscle depth. To test this we quantified 3D volumetric strain in the tibialis anterior of 12 healthy subjects using Cine Phase Contrast Magnetic Resonance Imaging. Cine Phase Contrast data were collected while a custom apparatus rotated the subjects' ankle continuously between neutral and plantarflexion. A T2-weighted image stack was used to define the resting tibials anterior position. Custom and commercial post-processing software were used to quantify the volumetric strain distribution. To characterize regional strain changes, the muscle was divided into superior-inferior sections and either medial-lateral or anterior-posterior slices. Mean volumetric strain was compared across the sections and slices. As hypothesized, volumetric strain demonstrated regional differences with a decreasing trend from the anterior (superficial) to the posterior (deep) muscle regions. Statistical tests showed significant main effects and interactions of superior-inferior and anterior-posterior position as well as superior-inferior and medial-lateral position on regional strain. These data support our hypothesis and imply a potential relationship between regional volumetric strain and intramuscular pressure. This finding may advance our understanding of intramuscular pressure variability sources and lead to more reliable measurement solutions in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Discussion of various models related to cloud performance

    OpenAIRE

    Kande, Chaitanya Krishna

    2015-01-01

    This paper discusses the various models related to cloud computing. Knowing the metrics related to infrastructure is very critical to enhance the performance of cloud services. Various metrics related to clouds such as pageview response time, admission control and enforcing elasticity to cloud infrastructure are very crucial in analyzing the characteristics of the cloud to enhance the cloud performance.

  13. Hyperplanar Morphological Clustering of a Hippocampus by Using Volumetric Computerized Tomography in Early Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Sarawut Suksuphew

    2017-11-01

    Full Text Available Background: On diagnosing Alzheimer’s disease (AD, most existing imaging-based schemes have relied on analyzing the hippocampus and its peripheral structures. Recent studies have confirmed that volumetric variations are one of the primary indicators in differentiating symptomatic AD from healthy aging. In this study, we focused on deriving discriminative shape-based parameters that could effectively identify early AD from volumetric computerized tomography (VCT delineation, which was previously almost intangible. Methods: Participants were 63 volunteers of Thai nationality, whose ages were between 40 and 90 years old. Thirty subjects (age 68.51 ± 5.5 were diagnosed with early AD, by using Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV criteria and the National Institute of Neurological and Communicative Disorders and the Stroke and the Alzheimer’s disease and Related Disorders Association (NINCDS-ADRDA criteria, while the remaining 33 were in the healthy control group (age 67.93 ± 5.5. The structural imaging study was conducted by using VCT. Three uninformed readers were asked to draw left and right hippocampal outlines on a coronal section. The resultant shapes were aligned and then analyzed with statistical shape analysis to obtain the first few dominant variational parameters, residing in hyperplanes. A supervised machine learning, i.e., support vector machine (SVM was then employed to elucidate the proposed scheme. Results: Provided trivial delineations, relatively as low as 5 to 7 implicit model parameters could be extracted and used as discriminants. Clinical verification showed that the model could differentiate early AD from aging, with high sensitivity, specificity, accuracy and F-measure of 0.970, 0.968, 0.983 and 0.983, respectively, with no apparent effect of left-right asymmetry. Thanks to a less laborious task required, yet high discriminating capability, the proposed scheme is expected to be applicable in a

  14. Hyperspectral image classification based on volumetric texture and dimensionality reduction

    Science.gov (United States)

    Su, Hongjun; Sheng, Yehua; Du, Peijun; Chen, Chen; Liu, Kui

    2015-06-01

    A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural features were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covariance (MEAC) and linear prediction (LP)-based band selection, and a semi-supervised k-means (SKM) clustering method with deleting the worst cluster (SKMd) bandclustering algorithms. Moreover, four feature combination schemes were designed for hyperspectral image classification by using spectral and textural features. It has been proven that the proposed method using VGLCM outperforms the gray-level co-occurrence matrices (GLCM) method, and the experimental results indicate that the combination of spectral information with volumetric textural features leads to an improved classification performance in hyperspectral imagery.

  15. Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair

    OpenAIRE

    Ji Hyun Kim; In Kap Ko; Anthony Atala; James J. Yoo

    2016-01-01

    Reconstructing functional volumetric tissue in vivo following implantation remains a critical challenge facing cell-based approaches. Several pre-vascularization approaches have been developed to increase cell viability following implantation. Structural and functional restoration was achieved in a preclinical rodent tissue defect; however, the approach used in this model fails to repair larger (>mm) defects as observed in a clinical setting. We propose an effective cell delivery system utili...

  16. Increasing the volumetric efficiency of Diesel engines by intake pipes

    Science.gov (United States)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  17. A Technique for Volumetric CSG Based on Morphology

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2001-01-01

    In this paper, a new technique for volumetric CSG is presented. The technique requires the input volumes to correspond to solids which fulfill a voxelization suitability criterion. Assume the CSG operation is union. The volumetric union of two such volumes is defined in terms of the voxelization...... of the union of the two original solids. The theory behind the new technique is discussed, the algorithm and implementation are presented. Finally, we present images and timings....

  18. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai

    2011-09-01

    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  19. Relational grounding facilitates development of scientifically useful multiscale models.

    Science.gov (United States)

    Hunt, C Anthony; Ropella, Glen E P; Lam, Tai ning; Gewitz, Andrew D

    2011-09-27

    We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM). Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor) typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module) models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  20. Parkinson's disease: diagnostic utility of volumetric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Che; Chen, Meng-Hsiang [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); Chou, Kun-Hsien [National Yang-Ming University, Brain Research Center, Taipei (China); Lee, Pei-Lin [National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Tsai, Nai-Wen; Lu, Cheng-Hsien [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Neurology, Kaohsiung (China); Chen, Hsiu-Ling [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Diagnostic Radiology, Kaohsiung (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Hsu, Ai-Ling [National Taiwan University, Institute of Biomedical Electronics and Bioinformatics, Taipei (China); Huang, Yung-Cheng [Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Department of Nuclear Medicine, Kaohsiung (China); Lin, Ching-Po [National Yang-Ming University, Brain Research Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China)

    2017-04-15

    This paper aims to examine the effectiveness of structural imaging as an aid in the diagnosis of Parkinson's disease (PD). High-resolution T{sub 1}-weighted magnetic resonance imaging was performed in 72 patients with idiopathic PD (mean age, 61.08 years) and 73 healthy subjects (mean age, 58.96 years). The whole brain was parcellated into 95 regions of interest using composite anatomical atlases, and region volumes were calculated. Three diagnostic classifiers were constructed using binary multiple logistic regression modeling: the (i) basal ganglion prior classifier, (ii) data-driven classifier, and (iii) basal ganglion prior/data-driven hybrid classifier. Leave-one-out cross validation was used to unbiasedly evaluate the predictive accuracy of imaging features. Pearson's correlation analysis was further performed to correlate outcome measurement using the best PD classifier with disease severity. Smaller volume in susceptible regions is diagnostic for Parkinson's disease. Compared with the other two classifiers, the basal ganglion prior/data-driven hybrid classifier had the highest diagnostic reliability with a sensitivity of 74%, specificity of 75%, and accuracy of 74%. Furthermore, outcome measurement using this classifier was associated with disease severity. Brain structural volumetric analysis with multiple logistic regression modeling can be a complementary tool for diagnosing PD. (orig.)

  1. Volumetric graphics in liquid using holographic femtosecond laser pulse excitations

    Science.gov (United States)

    Kumagai, Kota; Hayasaki, Yoshio

    2017-06-01

    Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.

  2. Volumetric and MGMT parameters in glioblastoma patients: Survival analysis

    International Nuclear Information System (INIS)

    Iliadis, Georgios; Kotoula, Vassiliki; Chatzisotiriou, Athanasios; Televantou, Despina; Eleftheraki, Anastasia G; Lambaki, Sofia; Misailidou, Despina; Selviaridis, Panagiotis; Fountzilas, George

    2012-01-01

    In this study several tumor-related volumes were assessed by means of a computer-based application and a survival analysis was conducted to evaluate the prognostic significance of pre- and postoperative volumetric data in patients harboring glioblastomas. In addition, MGMT (O 6 -methylguanine methyltransferase) related parameters were compared with those of volumetry in order to observe possible relevance of this molecule in tumor development. We prospectively analyzed 65 patients suffering from glioblastoma (GBM) who underwent radiotherapy with concomitant adjuvant temozolomide. For the purpose of volumetry T1 and T2-weighted magnetic resonance (MR) sequences were used, acquired both pre- and postoperatively (pre-radiochemotherapy). The volumes measured on preoperative MR images were necrosis, enhancing tumor and edema (including the tumor) and on postoperative ones, net-enhancing tumor. Age, sex, performance status (PS) and type of operation were also included in the multivariate analysis. MGMT was assessed for promoter methylation with Multiplex Ligation-dependent Probe Amplification (MLPA), for RNA expression with real time PCR, and for protein expression with immunohistochemistry in a total of 44 cases with available histologic material. In the multivariate analysis a negative impact was shown for pre-radiochemotherapy net-enhancing tumor on the overall survival (OS) (p = 0.023) and for preoperative necrosis on progression-free survival (PFS) (p = 0.030). Furthermore, the multivariate analysis confirmed the importance of PS in PFS and OS of patients. MGMT promoter methylation was observed in 13/23 (43.5%) evaluable tumors; complete methylation was observed in 3/13 methylated tumors only. High rate of MGMT protein positivity (> 20% positive neoplastic nuclei) was inversely associated with pre-operative tumor necrosis (p = 0.021). Our findings implicate that volumetric parameters may have a significant role in the prognosis of GBM patients. Furthermore

  3. Volumetric and MGMT parameters in glioblastoma patients: Survival analysis

    Directory of Open Access Journals (Sweden)

    Iliadis Georgios

    2012-01-01

    Full Text Available Abstract Background In this study several tumor-related volumes were assessed by means of a computer-based application and a survival analysis was conducted to evaluate the prognostic significance of pre- and postoperative volumetric data in patients harboring glioblastomas. In addition, MGMT (O6-methylguanine methyltransferase related parameters were compared with those of volumetry in order to observe possible relevance of this molecule in tumor development. Methods We prospectively analyzed 65 patients suffering from glioblastoma (GBM who underwent radiotherapy with concomitant adjuvant temozolomide. For the purpose of volumetry T1 and T2-weighted magnetic resonance (MR sequences were used, acquired both pre- and postoperatively (pre-radiochemotherapy. The volumes measured on preoperative MR images were necrosis, enhancing tumor and edema (including the tumor and on postoperative ones, net-enhancing tumor. Age, sex, performance status (PS and type of operation were also included in the multivariate analysis. MGMT was assessed for promoter methylation with Multiplex Ligation-dependent Probe Amplification (MLPA, for RNA expression with real time PCR, and for protein expression with immunohistochemistry in a total of 44 cases with available histologic material. Results In the multivariate analysis a negative impact was shown for pre-radiochemotherapy net-enhancing tumor on the overall survival (OS (p = 0.023 and for preoperative necrosis on progression-free survival (PFS (p = 0.030. Furthermore, the multivariate analysis confirmed the importance of PS in PFS and OS of patients. MGMT promoter methylation was observed in 13/23 (43.5% evaluable tumors; complete methylation was observed in 3/13 methylated tumors only. High rate of MGMT protein positivity (> 20% positive neoplastic nuclei was inversely associated with pre-operative tumor necrosis (p = 0.021. Conclusions Our findings implicate that volumetric parameters may have a significant role in

  4. Subcortical volumetric abnormalities in bipolar disorder.

    Science.gov (United States)

    Hibar, D P; Westlye, L T; van Erp, T G M; Rasmussen, J; Leonardo, C D; Faskowitz, J; Haukvik, U K; Hartberg, C B; Doan, N T; Agartz, I; Dale, A M; Gruber, O; Krämer, B; Trost, S; Liberg, B; Abé, C; Ekman, C J; Ingvar, M; Landén, M; Fears, S C; Freimer, N B; Bearden, C E; Sprooten, E; Glahn, D C; Pearlson, G D; Emsell, L; Kenney, J; Scanlon, C; McDonald, C; Cannon, D M; Almeida, J; Versace, A; Caseras, X; Lawrence, N S; Phillips, M L; Dima, D; Delvecchio, G; Frangou, S; Satterthwaite, T D; Wolf, D; Houenou, J; Henry, C; Malt, U F; Bøen, E; Elvsåshagen, T; Young, A H; Lloyd, A J; Goodwin, G M; Mackay, C E; Bourne, C; Bilderbeck, A; Abramovic, L; Boks, M P; van Haren, N E M; Ophoff, R A; Kahn, R S; Bauer, M; Pfennig, A; Alda, M; Hajek, T; Mwangi, B; Soares, J C; Nickson, T; Dimitrova, R; Sussmann, J E; Hagenaars, S; Whalley, H C; McIntosh, A M; Thompson, P M; Andreassen, O A

    2016-12-01

    Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10 -7 ) and thalamus (d=-0.148; P=4.27 × 10 -3 ) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10 -5 ) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.

  5. Real-time volumetric scintillation dosimetry

    Science.gov (United States)

    Beddar, S.

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential.

  6. Note on off-shell relations in nonlinear sigma model

    International Nuclear Information System (INIS)

    Chen, Gang; Du, Yi-Jian; Li, Shuyi; Liu, Hanqing

    2015-01-01

    In this note, we investigate relations between tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, all odd-point currents vanish. We propose and prove a generalized U(1) identity for even-point currents. The off-shell U(1) identity given in http://dx.doi.org/10.1007/JHEP01(2014)061 is a special case of the generalized identity studied in this note. The on-shell limit of this identity is equivalent with the on-shell KK relation. Thus this relation provides the full off-shell correspondence of tree-level KK relation in nonlinear sigma model.

  7. Gratitude depends on the relational model of communal sharing.

    Science.gov (United States)

    Simão, Cláudia; Seibt, Beate

    2014-01-01

    We studied the relation between benefits, perception of social relationships and gratitude. Across three studies, we provide evidence that benefits increase gratitude to the extent to which one applies a mental model of a communal relationship. In Study 1, the communal sharing relational model, and no other relational models, predicted the amount of gratitude participants felt after imagining receiving a benefit from a new acquaintance. In Study 2, participants recalled a large benefit they had received. Applying a communal sharing relational model increased feelings of gratitude for the benefit. In Study 3, we manipulated whether the participant or another person received a benefit from an unknown other. Again, we found that the extent of communal sharing perceived in the relationship with the stranger predicted gratitude. An additional finding of Study 2 was that communal sharing predicted future gratitude regarding the relational partner in a longitudinal design. To conclude, applying a communal sharing model predicts gratitude regarding concrete benefits and regarding the relational partner, presumably because one perceives the communal partner as motivated to meet one's needs. Finally, in Study 3, we found in addition that being the recipient of a benefit without opportunity to repay directly increased communal sharing, and indirectly increased gratitude. These circumstances thus seem to favor the attribution of communal norms, leading to a communal sharing representation and in turn to gratitude. We discuss the importance of relational models as mental representations of relationships for feelings of gratitude.

  8. Comparison between model-predicted tumor oxygenation dynamics and vascular-/flow-related Doppler indices.

    Science.gov (United States)

    Belfatto, Antonella; Vidal Urbinati, Ailyn M; Ciardo, Delia; Franchi, Dorella; Cattani, Federica; Lazzari, Roberta; Jereczek-Fossa, Barbara A; Orecchia, Roberto; Baroni, Guido; Cerveri, Pietro

    2017-05-01

    Mathematical modeling is a powerful and flexible method to investigate complex phenomena. It discloses the possibility of reproducing expensive as well as invasive experiments in a safe environment with limited costs. This makes it suitable to mimic tumor evolution and response to radiotherapy although the reliability of the results remains an issue. Complexity reduction is therefore a critical aspect in order to be able to compare model outcomes to clinical data. Among the factors affecting treatment efficacy, tumor oxygenation is known to play a key role in radiotherapy response. In this work, we aim at relating the oxygenation dynamics, predicted by a macroscale model trained on tumor volumetric data of uterine cervical cancer patients, to vascularization and blood flux indices assessed on Ultrasound Doppler images. We propose a macroscale model of tumor evolution based on three dynamics, namely active portion, necrotic portion, and oxygenation. The model parameters were assessed on the volume size of seven cervical cancer patients administered with 28 fractions of intensity modulated radiation therapy (IMRT) (1.8 Gy/fraction). For each patient, five Doppler ultrasound tests were acquired before, during, and after the treatment. The lesion was manually contoured by an expert physician using 4D View ® (General Electric Company - Fairfield, Connecticut, United States), which automatically provided the overall tumor volume size along with three vascularization and/or blood flow indices. Volume data only were fed to the model for training purpose, while the predicted oxygenation was compared a posteriori to the measured Doppler indices. The model was able to fit the tumor volume evolution within 8% error (range: 3-8%). A strong correlation between the intrapatient longitudinal indices from Doppler measurements and oxygen predicted by the model (about 90% or above) was found in three cases. Two patients showed an average correlation value (50-70%) and the remaining

  9. Volumetric associations between uncinate fasciculus, amygdala, and trait anxiety

    Directory of Open Access Journals (Sweden)

    Baur Volker

    2012-01-01

    Full Text Available Abstract Background Recent investigations of white matter (WM connectivity suggest an important role of the uncinate fasciculus (UF, connecting anterior temporal areas including the amygdala with prefrontal-/orbitofrontal cortices, for anxiety-related processes. Volume of the UF, however, has rarely been investigated, but may be an important measure of structural connectivity underlying limbic neuronal circuits associated with anxiety. Since UF volumetric measures are newly applied measures, it is necessary to cross-validate them using further neural and behavioral indicators of anxiety. Results In a group of 32 subjects not reporting any history of psychiatric disorders, we identified a negative correlation between left UF volume and trait anxiety, a finding that is in line with previous results. On the other hand, volume of the left amygdala, which is strongly connected with the UF, was positively correlated with trait anxiety. In addition, volumes of the left UF and left amygdala were inversely associated. Conclusions The present study emphasizes the role of the left UF as candidate WM fiber bundle associated with anxiety-related processes and suggests that fiber bundle volume is a WM measure of particular interest. Moreover, these results substantiate the structural relatedness of UF and amygdala by a non-invasive imaging method. The UF-amygdala complex may be pivotal for the control of trait anxiety.

  10. Three-dimensional linear and volumetric analysis of maxillary sinus pneumatization

    Directory of Open Access Journals (Sweden)

    Reham M. Hamdy

    2014-05-01

    Full Text Available Considering the anatomical variability related to the maxillary sinus, its intimate relation to the maxillary posterior teeth and because of all the implications that pneumatization may possess, three-dimensional assessment of maxillary sinus pneumatization is of most usefulness. The aim of this study is to analyze the maxillary sinus dimensions both linearly and volumetrically using cone beam computed tomography (CBCT to assess the maxillary sinus pneumatization. Retrospective analysis of 30 maxillary sinuses belonging to 15 patients’ CBCT scans was performed. Linear and volumetric measurements were conducted and statistically analyzed. The maximum craniocaudal extension of the maxillary sinus was located around the 2nd molar in 93% of the sinuses, while the maximum mediolateral and antroposterior extensions of the maxillary sinus were located at the level of root of zygomatic complex in 90% of sinuses. There was a high correlation between the linear measurements of the right and left sides, where the antroposterior extension of the sinus at level of the nasal floor had the largest correlation (0.89. There was also a high correlation between the Simplant and geometric derived maxillary sinus volumes for both right and left sides (0.98 and 0.96, respectively. The relations of the sinus floor can be accurately assessed on the different orthogonal images obtained through 3D CBCT scan. The geometric method offered a much cheaper, easier, and less sophisticated substitute; therefore, with the availability of software, 3D volumetric measurements are more facilitated.

  11. PEMODELAN OBYEK TIGA DIMENSI DARI GAMBAR SINTETIS DUA DIMENSI DENGAN PENDEKATAN VOLUMETRIC

    Directory of Open Access Journals (Sweden)

    Rudy Adipranata

    2005-01-01

    Full Text Available In this paper, we implemented 3D object modeling from 2D input images. Modeling is performed by using volumetric reconstruction approaches by using volumetric reconstruction approaches, the 3D space is tesselated into discrete volumes called voxels. We use voxel coloring method to reconstruct 3D object from synthetic input images by using voxel coloring, we can get photorealistic result and also has advantage to solve occlusion problem that occur in many case of 3D reconstruction. Photorealistic 3D object reconstruction is a challenging problem in computer graphics and still an active area nowadays. Many applications that make use the result of reconstruction, include virtual reality, augmented reality, 3D games, and another 3D applications. Voxel coloring considered the reconstruction problem as a color reconstruction problem, instead of shape reconstruction problem. This method works by discretizing scene space into voxels, then traversed and colored those voxels in special order. The result is photorealitstic 3D object. Abstract in Bahasa Indonesia : Dalam penelitian ini dilakukan implementasi untuk pemodelan obyek tiga dimensi yang berasal dari gambar dua dimensi. Pemodelan ini dilakukan dengan menggunakan pendekatan volumetric. Dengan menggunakan pendekatan volumetric, ruang tiga dimensi dibagi menjadi bentuk diskrit yang disebut voxel. Kemudian pada voxel-voxel tersebut dilakukan metode pewarnaan voxel untuk mendapatkan hasil berupa obyek tiga dimensi yang bersifat photorealistic. Bagaimana memodelkan obyek tiga dimensi untuk menghasilkan hasil photorealistic merupakan masalah yang masih aktif di bidang komputer grafik. Banyak aplikasi lain yang dapat memanfaatkan hasil dari pemodelan tersebut seperti virtual reality, augmented reality dan lain-lain. Pewarnaan voxel merupakan pemodelan obyek tiga dimensi dengan melakukan rekonstruksi warna, bukan rekonstruksi bentuk. Metode ini bekerja dengan cara mendiskritkan obyek menjadi voxel dan

  12. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    Science.gov (United States)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  13. Computational Model for Internal Relative Humidity Distributions in Concrete

    Directory of Open Access Journals (Sweden)

    Wondwosen Ali

    2014-01-01

    Full Text Available A computational model is developed for predicting nonuniform internal relative humidity distribution in concrete. Internal relative humidity distribution is known to have a direct effect on the nonuniform drying shrinkage strains. These nonuniform drying shrinkage strains result in the buildup of internal stresses, which may lead to cracking of concrete. This may be particularly true at early ages of concrete since the concrete is relatively weak while the difference in internal relative humidity is probably high. The results obtained from this model can be used by structural and construction engineers to predict critical drying shrinkage stresses induced due to differential internal humidity distribution. The model uses finite elment-finite difference numerical methods. The finite element is used to space discretization while the finite difference is used to obtain transient solutions of the model. The numerical formulations are then programmed in Matlab. The numerical results were compared with experimental results found in the literature and demonstrated very good agreement.

  14. A Semi-Tychonic Model in General relativity

    Science.gov (United States)

    Murphy, George L.

    1998-10-01

    In the sixteenth century Tycho Brahe proposed a geocentric model of the solar system kinematically equivalent to the heliocentric Copernican model. There has been disagreement even among prominent relativists over whether or not relativity validates use of a geocentric model. Tycho's desire for a non-rotating earth cannot be satisfied, but we demonstrate here dynamical equivalence between a Copernican and a "semi-Tychonic" model by using an appropriate accelerated reference frame in general relativity. (The idea of absolute space in Newtonian mechanics makes use of Einstein's theory desirable even in the Newtonian approximation.) Optical questions are easily dealt with. Our treatment provides a satisfactory answer for the important historical question concerning geocentric and heliocentric models, and is also of pedagogic value. In addition, it gives insights into the real generality of general relativity, the nature of the relativistic equations of motion, and the analogy between coordinate and gauge transformations.

  15. Personality, Relationship Conflict, and Teamwork-Related Mental Models

    Science.gov (United States)

    Vîrgă, Delia; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A.; Macsinga, Irina; Măgurean, Silvia

    2014-01-01

    This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models. PMID:25372143

  16. Personality, relationship conflict, and teamwork-related mental models.

    Science.gov (United States)

    Vîrgă, Delia; Curşeu, Petru Lucian; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A; Macsinga, Irina; Măgurean, Silvia

    2014-01-01

    This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models.

  17. Tunable Gravimetric and Volumetric Hydrogen Storage Capacities in Polyhedral Oligomeric Silsesquioxane Frameworks.

    Science.gov (United States)

    Deshmukh, Amol; Chiu, Cheng-Chau; Chen, Yun-Wen; Kuo, Jer-Lai

    2016-09-28

    We study the hydrogen adsorption in porous frameworks composed of silsesquioxane cages linked via boron substituted aromatic structures by first-principles modeling. Such polyhedral oligomeric silsesquioxane (POSS) frameworks can be further modified by decorating them with metal atoms binding to the ring structures of the linkers. We have considered Sc- and Ti-doped frameworks which bind H2 via so-called Kubas interaction between hydrogen molecules and transition metal atoms. It will be demonstrated that the maximum H2 gravimetric capacity can be improved to more than 7.5 wt % by using longer linkers with more ring structures. However, the maximum H2 volumetric capacity can be tuned to more than 70 g/L by varying the size of silsesquioxane cages. We are optimistic that by varying the building blocks, POSS frameworks can be modified to meet the targets for the gravimetric and volumetric capacities set by the U.S. Department of Energy.

  18. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  19. Brain volumetric changes and cognitive ageing during the eighth decade of life

    Science.gov (United States)

    Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551

  20. Model experiments related to outdoor propagation over an earth berm

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1994-01-01

    A series of scale model experiments related to outdoor propagation over an earth berm is described. The measurements are performed with a triggered spark source. The results are compared with data from an existing calculation model based upon uniform diffraction theory. Comparisons are made...

  1. Relative effectiveness of assertive training, modelling and their ...

    African Journals Online (AJOL)

    The study investigated the Relative Effectiveness of Assertive Training (AT), modelling (M) and a combination of Assertive Training and Modelling (AT & M) techniques in improving the social skills of primary school isolates and consequently reduce their isolate behaviour. The study is a quasi experimental research that ...

  2. Bianchi type IX string cosmological model in general relativity

    Indian Academy of Sciences (India)

    Abstract. We have investigated Bianchi type IX string cosmological models in general relativity. To get a determinate solution, we have assumed a condition p = λ i.e. rest energy density for a cloud of strings is equal to the string tension density. The various physical and geometrical aspects of the models are also discussed.

  3. Bianchi type IX string cosmological model in general relativity

    Indian Academy of Sciences (India)

    We have investigated Bianchi type IX string cosmological models in general relativity. To get a determinate solution, we have assumed a condition ρ= i.e. rest energy density for a cloud of strings is equal to the string tension density. The various physical and geometrical aspects of the models are also discussed.

  4. What predicts early volumetric edema increase following stereotactic radiosurgery for brain metastases?

    Science.gov (United States)

    Hanna, Andrew; Boggs, D Hunter; Kwok, Young; Simard, Marc; Regine, William F; Mehta, Minesh

    2016-04-01

    A volumetric analysis of pre- and post-radiosurgery (PreSRS and PostSRS) edema in patients with cerebral metastases was performed to determine factors of a predictive model assessing the risk of developing increased edema relatively early after SRS. One-hundred-fourteen metastases in 55 patients were analyzed. Selection for this analysis required an MRI ≤ 30 days before SRS and an MRI ≤ 100 days after SRS. Tumor volumes were calculated on PreSRS, SRS, and PostSRS T1-weighted postgadolinium images while edema volumes were calculating using PreSRS and PostSRS fluid-attenuated inversion recovery MR images. An increase in edema was defined as an increase in measurable edema of at least 5%. We developed and evaluated a model predicting the relative risk (RR) of increased edema after SRS. Peritumoral edema increased in 18% (21/114) of the analyzed lesions. Melanoma/renal histology, recursive partitioning analysis class III, and prior WBRT carried RRs of developing postSRS edema increase of 2.45, 2.48, and 3.16, respectively (all P values edema/tumor ratio predicted for a RR of 1.007/ratio unit, and steroid dose at time of SRS predicted for a RR of 0.89/mg (all P values edema after SRS was developed based from these data and may be useful in identifying patients who might benefit from prophylactic anti-edema therapies before, during, or after SRS. This model could be used as the basis of inclusion criteria for prospective trials investigating novel anti-edema therapies.

  5. Volumetric analysis of complex lunar craters - Implications for basin ring formation

    Science.gov (United States)

    Hale, W. S.; Grieve, R. A. F.

    1982-01-01

    The crater to basin transition in complex lunar craters is characterized by combining morphological and volumetric analyses of their central peaks with subsurface data from terrestrial complex impact structures which suggest that the amount of uplifted material, as judged from its depth of origin, continues to increase with increasing rim diameter. This latter phenomenon implies that a redistribution of uplifted material away from a centralized peak may occur in the larger craters. The morphological and volumetric changes described occur over a rim diameter range of 51-80 km, which is considerably lower than the previously proposed range for the crater to basin transition of 140-175 km. Evidence is given in support of a crater to basin transition which begins at 51-80 km, and is characterized by a relative reduction in central peak volume and a development of rings of floor roughening which may be precursors of peak ring development.

  6. relative effectiveness of assertive training, modelling and their

    African Journals Online (AJOL)

    Elizabeth Egbochuku

    Imo State University. Owerri e-mail: timasy.ikenegbu@yahoo.com. Abstract. The study investigated the Relative Effectiveness of Assertive Training (AT), modelling (M) and ... conversation skills; assertiveness skills, play interaction skills; self-related ... possession of poor, inefficient or inadequate social skills, low self-esteem,.

  7. Applying the social relations model to self and peer evaluations

    NARCIS (Netherlands)

    G.J. Greguras; C. Robie; M.Ph. Born (Marise)

    2001-01-01

    textabstractPeer evaluations of performance increasingly are being used to make organizational decisions and to provide individuals with performance related feedback. Using Kenny’s social relations model (SRM), data from 14 teams of undergraduate students who completed performance ratings of

  8. Latent Stochastic Actor Oriented Models for Relational Event Data

    Science.gov (United States)

    2012-03-15

    L-SAOMs for Relational Events Latent Stochastic Actor Oriented Models for Relational Event Data J.A. Lospinoso12 J.H. Koskinen2 T.A.B. Snijders2......PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US

  9. The Social Relations Model in Family Studies: A Systematic Review

    Science.gov (United States)

    Eichelsheim, Veroni I.; Dekovic, Maja; Buist, Kirsten L.; Cook, William L.

    2009-01-01

    The Social Relations Model (SRM) allows for examination of family relations on three different levels: the individual level (actor and partner effects), the dyadic level (relationship effects), and the family level (family effect). The aim of this study was to present a systematic review of SRM family studies and identify general patterns in the…

  10. An MRI-based semiautomated volumetric quantification of hip osteonecrosis

    International Nuclear Information System (INIS)

    Malizos, K.N.; Siafakas, M.S.; Karachalios, T.S.; Fotiadis, D.I.; Soucacos, P.N.

    2001-01-01

    Objective: To objectively and precisely define the spatial distribution of osteonecrosis and to investigate the influence of various factors including etiology. Design: A volumetric method is presented to describe the size and spatial distribution of necrotic lesions of the femoral head, using MRI scans. The technique is based on the definition of an equivalent sphere model for the femoral head. Patients: The gender, age, number of hips involved, disease duration, pain intensity, limping disability and etiology were correlated with the distribution of the pathologic bone. Seventy-nine patients with 122 hips affected by osteonecrosis were evaluated. Results: The lesion size ranged from 7% to 73% of the sphere equivalent. The lateral octants presented considerable variability, ranging from wide lateral lesions extending beyond the lip of the acetabulum, to narrow medial lesions, leaving a lateral supporting pillar of intact bone. Patients with sickle cell disease and steroid administration presented the largest lesions. The extent of the posterior superior medial octant involvement correlated with the symptom intensity, a younger age and male gender. Conclusion: The methodology presented here has proven a reliable and straightforward imaging tool for precise assessment of necrotic lesions. It also enables us to target accurately the drilling and grafting procedures. (orig.)

  11. Volumetric Measurements of Amnioserosa Cells in Developing Drosophila

    Science.gov (United States)

    Mashburn, David; Jayasinghe, Aroshan; Hutson, Shane

    2013-03-01

    The behavior of cells in tissue in developing Drosophila melanogaster has become increasingly clearer over the past few decades, in large part due to advances in imaging techniques, genetic markers, predictive modeling, and micromanipulation (notably laser microsurgery). We now know apical contractions in amnioserosa cells are a significant factor in large scale processes like germ band retraction and dorsal closure. Also, laser microsurgery induces cellular recoil that strongly mimics a 2D elastic sheet. Still, what we know about these processes comes entirely from the apical surface where the standard fluorescent markers like cadherin are located, but many open questions exist concerning the remaining ``dark'' portion of cells. Does cell volume remain constant during contraction or do cells leak? Also, what shape changes do cells undergo? Do they bulge, wedge, contract prismatically, or something else? By using a marker that labels the entire membrane of amnioserosa cells (Resille, 117) and adapting our watershed segmentation routines for 4D datasets, we have been able to quantify the entire volumetric region of cells in tissue through time and compare changes in apical area and volume. Preliminary results suggest a fairly constant volume over the course of a contraction cycle.

  12. Keratoconus Detection Based on a New Corneal Volumetric Analysis.

    Science.gov (United States)

    Cavas-Martínez, Francisco; Bataille, Laurent; Fernández-Pacheco, Daniel G; Cañavate, Francisco J F; Alio, Jorge L

    2017-11-20

    There are numerous tomographic indices for the detection of keratoconus risk. When the indexes based on corneal volume are analyzed, two problems are presented: on the one hand, they are not very sensitive to the detection of incipient cases of keratoconus because they are not locally defined in the primary developmental region of the structural abnormalities; and on the other hand, they do not register the geometric decompensation driven by the asymmetry present during the disease progression. This work performed a morphogeometric modeling of the cornea by the aid of CAD tools and using raw topographic data (Sirius system, CSO, Firenze). For this method, four singular points present on the corneal surfaces were located and the following parameters based on corneal volume were calculated: VOL mct , defined by the points of minimal thickness; VOL aap , defined by the anterior corneal apex, and VOL pap , defined by the posterior corneal apex. The results demonstrate that a further reduction of corneal volume in keratoconus happens and significantly progresses along the disease severity level. The combination of optical and volumetric data, that collect the sensitivity of the asymmetry generated by the disease, allows an accurate detection of incipient cases and follow up of the disease progression.

  13. An MRI-based semiautomated volumetric quantification of hip osteonecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Malizos, K.N.; Siafakas, M.S.; Karachalios, T.S. [Dept. of Orthopaedics, Univ. of Thessalia, Larissa (Greece); Fotiadis, D.I. [Dept. of Computer Science, Univ. of Ioannina (Greece); Soucacos, P.N. [Dept. of Orthopaedic Surgery, Univ. of Ioannina (Greece)

    2001-12-01

    Objective: To objectively and precisely define the spatial distribution of osteonecrosis and to investigate the influence of various factors including etiology. Design: A volumetric method is presented to describe the size and spatial distribution of necrotic lesions of the femoral head, using MRI scans. The technique is based on the definition of an equivalent sphere model for the femoral head. Patients: The gender, age, number of hips involved, disease duration, pain intensity, limping disability and etiology were correlated with the distribution of the pathologic bone. Seventy-nine patients with 122 hips affected by osteonecrosis were evaluated. Results: The lesion size ranged from 7% to 73% of the sphere equivalent. The lateral octants presented considerable variability, ranging from wide lateral lesions extending beyond the lip of the acetabulum, to narrow medial lesions, leaving a lateral supporting pillar of intact bone. Patients with sickle cell disease and steroid administration presented the largest lesions. The extent of the posterior superior medial octant involvement correlated with the symptom intensity, a younger age and male gender. Conclusion: The methodology presented here has proven a reliable and straightforward imaging tool for precise assessment of necrotic lesions. It also enables us to target accurately the drilling and grafting procedures. (orig.)

  14. Volumetric modulated arc radiotherapy for esophageal cancer

    International Nuclear Information System (INIS)

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Syam Kumar, S.A.; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-01-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V 20Gy and V 30Gy dose levels (range, 4.62–17.98%) compared with IMRT plans. The mean dose and D 35% of heart for the RA plans were better than the IMRT by 0.5–5.8%. Mean V 10Gy and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15–20 Gy) in the range of 14–16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20–25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans.

  15. Volumetric Physics of Polypeptide Coil-Helix Transitions.

    Science.gov (United States)

    Krobath, Heinrich; Chen, Tao; Chan, Hue Sun

    2016-11-15

    Volumetric properties of proteins bear directly on their biological functions in hyperbaric environments and are useful in general as a biophysical probe. To gain insight into conformation-dependent protein volume, we developed an implicit-solvent atomic chain model that transparently embodies two physical origins of volume: (1) a fundamental geometric term capturing the van der Waals volume of the protein and the particulate, finite-size nature of the water molecules, modeled together by the volume encased by the protein's molecular surface, and (2) a physicochemical term for other solvation effects, accounted for by empirical proportionality relationships between experimental partial molar volumes and solvent-accessible surface areas of model compounds. We tested this construct by Langevin dynamics simulations of a 16-residue polyalanine. The simulated trajectories indicate an average volume decrease of 1.73 ± 0.1 Å 3 /residue for coil-helix transition, ∼80% of which is caused by a decrease in geometric void/cavity volume, and a robust positive activation volume for helical hydrogen bond formation originating from the transient void created by an approaching donor-acceptor pair and nearby atoms. These findings are consistent with prior experiments with alanine-rich peptides and offer an atomistic analysis of the observed overall volume changes. The results suggest, in general, that hydrostatic pressure likely stabilizes helical conformations of short peptides but slows the process of helix formation. In contrast, hydrostatic pressure is more likely to destabilize natural globular proteins because of the void volume entrapped in their folded structures. The conceptual framework of our model thus affords a coherent physical rationalization for experiments.

  16. Femoral head osteonecrosis: Volumetric MRI assessment and outcome

    International Nuclear Information System (INIS)

    Bassounas, Athanasios E.; Karantanas, Apostolos H.; Fotiadis, Dimitrios I.; Malizos, Konstantinos N.

    2007-01-01

    Effective treatment of femoral head osteonecrosis (FHON) requires early diagnosis and accurate assessment of the disease severity. The ability to predict in the early stages the risk of collapse is important for selecting a joint salvage procedure. The aim of the present study was to evaluate the outcome in patients treated with vascularized fibular grafts in relation to preoperative MR imaging volumetry. We studied 58 patients (87 hips) with FHON. A semi-automated octant-based lesion measurement method, previously described, was performed on the T1-w MR images. The mean time of postoperative follow-up was 7.8 years. Sixty-three hips were successful and 24 failed and converted to total hip arthroplasty within a period of 2-4 years after the initial operation. The rate of failures for hips of male patients was higher than in female patients. The mean lesion size was 28% of the sphere equivalent of the femoral head, 24 ± 12% for the successful hips and 37 ± 9% for the failed (p < 0.001). The most affected octants were antero-supero-medial (58 ± 26%) and postero-supero-medial (54 ± 31%). All but postero-infero-medial and postero-infero-lateral octants, showed statistically significant differences in the lesion size between patients with successful and failed hips. In conclusion, the volumetric analysis of preoperative MRI provides useful information with regard to a successful outcome in patients treated with vascularized fibular grafts

  17. Femoral head osteonecrosis: Volumetric MRI assessment and outcome

    Energy Technology Data Exchange (ETDEWEB)

    Bassounas, Athanasios E. [Department of Medical Physics, School of Medicine, University of Ioannina, GR 451 10 Ioannina (Greece); Karantanas, Apostolos H. [Department of Radiology, School of Medicine, University of Crete, Heraklion, GR 711 10 (Greece); Fotiadis, Dimitrios I. [Unit of Medical Technology and Intelligent Information Systems, Department of Computer Science, University of Ioannina and Biomedical Research Institute-FORTH, GR 451 10 Ioannina (Greece); Malizos, Konstantinos N. [Orthopaedic Department, Medical School, University of Thessalia, GR 412 22 Larissa (Greece)]. E-mail: kmalizos@otenet.gr

    2007-07-15

    Effective treatment of femoral head osteonecrosis (FHON) requires early diagnosis and accurate assessment of the disease severity. The ability to predict in the early stages the risk of collapse is important for selecting a joint salvage procedure. The aim of the present study was to evaluate the outcome in patients treated with vascularized fibular grafts in relation to preoperative MR imaging volumetry. We studied 58 patients (87 hips) with FHON. A semi-automated octant-based lesion measurement method, previously described, was performed on the T1-w MR images. The mean time of postoperative follow-up was 7.8 years. Sixty-three hips were successful and 24 failed and converted to total hip arthroplasty within a period of 2-4 years after the initial operation. The rate of failures for hips of male patients was higher than in female patients. The mean lesion size was 28% of the sphere equivalent of the femoral head, 24 {+-} 12% for the successful hips and 37 {+-} 9% for the failed (p < 0.001). The most affected octants were antero-supero-medial (58 {+-} 26%) and postero-supero-medial (54 {+-} 31%). All but postero-infero-medial and postero-infero-lateral octants, showed statistically significant differences in the lesion size between patients with successful and failed hips. In conclusion, the volumetric analysis of preoperative MRI provides useful information with regard to a successful outcome in patients treated with vascularized fibular grafts.

  18. Infinite Multiple Membership Relational Modeling for Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai

    Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...

  19. Automatic left and right lung separation using free-formed surface fitting on volumetric CT.

    Science.gov (United States)

    Lee, Youn Joo; Lee, Minho; Kim, Namkug; Seo, Joon Beom; Park, Joo Young

    2014-08-01

    This study presents a completely automated method for separating the left and right lungs using free-formed surface fitting on volumetric computed tomography (CT). The left and right lungs are roughly divided using iterative 3-dimensional morphological operator and a Hessian matrix analysis. A point set traversing between the initial left and right lungs is then detected with a Euclidean distance transform to determine the optimal separating surface, which is then modeled from the point set using a free-formed surface-fitting algorithm. Subsequently, the left and right lung volumes are smoothly and directly separated using the separating surface. The performance of the proposed method was estimated by comparison with that of a human expert on 44 CT examinations. For all data sets, averages of the root mean square surface distance, maximum surface distance, and volumetric overlap error between the results of the automatic and the manual methods were 0.032 mm, 2.418 mm, and 0.017 %, respectively. Our study showed the feasibility of automatically separating the left and right lungs by identifying the 3D continuous separating surface on volumetric chest CT images.

  20. Language Lateralization in Patients with Temporal Lobe Epilepsy : A Comparison between Volumetric Analysis and the Wada Test.

    Science.gov (United States)

    Oh, Young-Min; Koh, Eun-Jeong

    2009-06-01

    Determining language lateralization is important for the presurgical evaluation of patients with medically intractable epilepsy. The Wada test has been the gold standard for lateralization of language dominance before epilepsy surgery. However, it is an invasive test with risk, and have some limitations. We compared the volumetric analysis with Wada test, and studied the clinical potential of volumetric analysis to assess language laterality in large surgical candidates with temporal lobe epilepsy (TLE). To examine the efficacy of volumetric analysis to determine language lateralization during presurgical evaluation, we compared the volumetric analysis of the bilateral planum temporale with the results of Wada test in 59 patients with chronic intractable TLE (rTLE, n=32; lTLE, n=27) who underwent epilepsy surgery. We measured the gray matter volumes of planum temporale (PT) of each patients using the VoxelPlus2 program (Mevisys, Daejeon, Korea). Overall congruence of the volumetric analysis with the Wada test was 97.75% in rTLE patients and 81.5% in lTLE patients. There were more significant leftward asymmetry of the PT in rTLE patients than lTLE patients. In lTLE patients, relatively high proportion (37%) of the patients showed bilateral or right hemispheric language dominance. These results provide evidence that the volumetric analysis of the PT could be used as an alternatives in language lateralization. Also, the results of the Wada test suggested that there was considerable plasticity of language representation in the brains of patients with intractable TLE and it was associated with an earlier age of brain injury.

  1. Present status of the VMI and related models

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1980-05-01

    This article traces the evolution of the Variable Moment of Inertia model in its relation to the shell model, the Bohr-Mottelson model and the Interacting Boson Model. The discovery of a new type of spectrum, that of pseudomagic nuclei (isobars of doubly magic nuclei) is reported, and an explanation for their dynamics is suggested. The type of rotational motion underlying the ground state band of an e-e nucleus is shown to depend on whether the minimum number of valence nucleon pairs of one kind (neutrons or protons) is less than or equal to 2 or > 2. In the former case the alpha-dumbbell model holds; in the latter the two-fluid model

  2. Brain stem and cerebellum volumetric analysis of Machado Joseph disease patients

    Directory of Open Access Journals (Sweden)

    S T Camargos

    2011-01-01

    Full Text Available Machado-Joseph disease, or spinocerebellar ataxia type 3(MJD/SCA3, is the most frequent late onset spinocerebellar ataxia and results from a CAG repeat expansion in the ataxin-3 gene. Previous studies have found correlation between atrophy of cerebellum and brainstem with age and CAG repeats, although no such correlation has been found with disease duration and clinical manifestations. In this study we test the hypothesis that atrophy of cerebellum and brainstem in MJD/SCA3 is related to clinical severity, disease duration and CAG repeat length as well as to other variables such as age and ICARS (International Cooperative Ataxia Rating Scale. Whole brain high resolution MRI and volumetric measurement with cranial volume normalization were obtained from 15 MJD/SCA3 patients and 15 normal, age and sex-matchedcontrols. We applied ICARS and compared the score with volumes and CAG number, disease duration and age. We found significant correlation of both brain stem and cerebellar atrophy with CAG repeat length, age, disease duration and degree of disability. The Spearman rank correlation was stronger with volumetric reduction of the cerebellum than with brain stem. Our data allow us to conclude that volumetric analysis might reveal progressive degeneration after disease onset, which in turn is linked to both age and number of CAG repeat expansions in SCA 3.

  3. Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab

    Science.gov (United States)

    Ellingson, Benjamin M.; Cloughesy, Timothy F.; Lai, Albert; Nghiemphu, Phioanh L.; Mischel, Paul S.; Pope, Whitney B.

    2011-01-01

    Although the effects of bevacizumab on magnetic resonance images (MRIs) of recurrent glioblastoma multiforme (GBM) are well documented, to our knowledge, no studies have explicitly quantified the volumetric changes resulting from initial treatment, nor have there been studies examining the ability for volumetric changes in conventional MRI to predict progression-free survival (PFS) and overall survival (OS). In the current study, we retrospectively examined volumetric changes on conventional MRI scans in 84 patients with recurrent GBM. MRIs were obtained before (mean, 11 days) and after (mean, 42 days) treatment with bevacizumab. The volume of abnormal fluid-attenuated inversion recovery (FLAIR) signal intensity, the volume of contrast enhancement, and the ratio of the 2 were quantified for each patient before and after initial treatment. Results demonstrated that initial treatment with bevacizumab resulted in a significant decrease in both the volume of abnormal FLAIR signal and the volume of contrast enhancement. Initial, residual, and change in FLAIR volume were not predictive of PFS or OS. Initial contrast-enhancing volume was predictive of PFS but not OS. The pretreatment relative nonenhancing tumor ratio, defined as the ratio of FLAIR to contrast-enhancing volume, was found to be predictive of both PFS and OS. PMID:21324937

  4. A Study on the Applicability of Kinetic Models for Shenfu Coal Char Gasification with CO2 at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Jinsheng Gao

    2009-07-01

    Full Text Available In this paper, measurements of the CO2 gasification kinetics for two types of Shenfu coal chars, which were respectively prepared by slow and rapid pyrolysis at temperatures of 950 °C and 1,400 °C, were performed by an isothermal thermo-gravimetric analysis under ambient pressure and elevated temperature conditions. Simultaneously, the applicability of the kinetic model for the CO2 gasification reaction of Shenfu coal chars was discussed. The results showed: (i the shrinking un-reacted core model was not appropriate to describe the gasification reaction process of Shenfu coal chars with CO2 in the whole experimental temperature range; (ii at the relatively low temperatures, the modified volumetric model was as good as the random pore model to simulate the CO2 gasification reaction of Shenfu coal chars, while at the elevated temperatures, the modified volumetric model was superior to the random pore model for this process; (iii the integral expression of the modified volumetric model was more favorable than the differential expression of that for fitting the experimental data. Moreover, by simply introducing a function: A = A★exp(ft, it was found that the extensive model of the modified volumetric model could make much better predictions than the modified volumetric model. It was recommended as a convenient empirical model for comprehensive simulation of Shenfu coal char gasification with under conditions close to those of entrained flow gasification.

  5. Thermodynamics of Paint Related Systems with Engineering Models

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2001-01-01

    to solid surfaces and drying. Many engineering models have been applied over the last decades for solutions with commoditity polymers. In this work the performance of some of these models is investigated for paint-related systems, focusing on those drying by the so-called " lacquer mechanism " (evaporation......Paints are complex materials composed of polymers (binders) dissolved in one or more solvents, pigments, and other additives. The thermodynamics of such systems is essential, for example, for selecting improved solvents and understanding a number of phenomena related especially! to adhesion...... that, despite the uncertainties involved, several models yield reasonably accurate activity coefficients, even at infinite dilution. Thus, engineering models may be useful for solvent selection via semiempirical rules of thumb, which are based on thermodynamic considerations....

  6. Amplitudes, recursion relations and unitarity in the Abelian Higgs model

    Science.gov (United States)

    Kleiss, Ronald; Luna, Oscar Boher

    2017-12-01

    The Abelian Higgs model forms an essential part of the electroweak standard model: it is the sector containing only Z0 and Higgs bosons. We present a diagram-based proof of the tree-level unitarity of this model inside the unitary gauge, where only physical degrees of freedom occur. We derive combinatorial recursion relations for off-shell amplitudes in the massless approximation, which allows us to prove the cancellation of the first two orders in energy of unitarity-violating high-energy behaviour for any tree-level amplitude in this model. We describe a deformation of the amplitudes by extending the physical phase space to at least 7 spacetime dimensions, which leads to on-shell recursion relations à la BCFW. These lead to a simple proof that all on-shell tree amplitudes obey partial-wave unitarity.

  7. Relating mesocarnivore relative abundance to anthropogenic land-use with a hierarchical spatial count model

    Science.gov (United States)

    Crimmins, Shawn M.; Walleser, Liza R.; Hertel, Dan R.; McKann, Patrick C.; Rohweder, Jason J.; Thogmartin, Wayne E.

    2016-01-01

    There is growing need to develop models of spatial patterns in animal abundance, yet comparatively few examples of such models exist. This is especially true in situations where the abundance of one species may inhibit that of another, such as the intensively-farmed landscape of the Prairie Pothole Region (PPR) of the central United States, where waterfowl production is largely constrained by mesocarnivore nest predation. We used a hierarchical Bayesian approach to relate the distribution of various land-cover types to the relative abundances of four mesocarnivores in the PPR: coyote Canis latrans, raccoon Procyon lotor, red fox Vulpes vulpes, and striped skunk Mephitis mephitis. We developed models for each species at multiple spatial resolutions (41.4 km2, 10.4 km2, and 2.6 km2) to address different ecological and management-related questions. Model results for each species were similar irrespective of resolution. We found that the amount of row-crop agriculture was nearly ubiquitous in our best models, exhibiting a positive relationship with relative abundance for each species. The amount of native grassland land-cover was positively associated with coyote and raccoon relative abundance, but generally absent from models for red fox and skunk. Red fox and skunk were positively associated with each other, suggesting potential niche overlap. We found no evidence that coyote abundance limited that of other mesocarnivore species, as might be expected under a hypothesis of mesopredator release. The relationships between relative abundance and land-cover types were similar across spatial resolutions. Our results indicated that mesocarnivores in the PPR are most likely to occur in portions of the landscape with large amounts of agricultural land-cover. Further, our results indicated that track-survey data can be used in a hierarchical framework to gain inferences regarding spatial patterns in animal relative abundance.

  8. Dataflow-Driven Crowdsourcing: Relational Models and Algorithms

    OpenAIRE

    D. A. Ustalov

    2016-01-01

    Recently, microtask crowdsourcing has become a popular approach for addressing various data mining problems. Crowdsourcing workflows for approaching such problems are composed of several data processing stages which require consistent representation for making the work reproducible. This paper is devoted to the problem of reproducibility and formalization of the microtask crowdsourcing process. A computational model for microtask crowdsourcing based on an extended relational model and a dataf...

  9. Model, Materialism, and Immanent Utopia in Relational Aesthetics

    DEFF Research Database (Denmark)

    Degn Johansson, Troels

    is tied up with a principle of immanence which is crucial for the understanding of Bourriaud's and many of his related artists' sense of utopia and avant-garde. Setting off from an analysis of the concept of model in RA, I would like to demonstrate the relationship between relational form, model......, and utopia, and how this surprisingly lead to an ideal yet immanent conception of art. To contextualise and exemplify my analysis, I shall draw on my collaboration-based study of art collective Superflex as well as Bourriaud's later writings on post-production and alter-modernism....

  10. Salt marsh stability modelled in relation to sea level rise

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Bartholdy, Anders; Kroon, Aart

    2010-01-01

    Accretion on a natural backbarrier salt marsh was modeled as a function of high tide level, initial salt marsh level and distance to the source. Calibration of the model was based on up to ca 80 year old marker horizons, supplemented by 210Pb/137Cs datings and subsequent measurements of clay...... that mass depth down core can be directly related to the bulk dry density of the surface layer by means of a logarithmic function. The results allow for an evaluation of the use of marker horizons in the topmost layers and show that it is important to know the level of the marker in relation to the salt...

  11. A multistate additive relative survival semi-Markov model.

    Science.gov (United States)

    Gillaizeau, Florence; Dantan, Etienne; Giral, Magali; Foucher, Yohann

    2017-08-01

    Medical researchers are often interested to investigate the relationship between explicative variables and times-to-events such as disease progression or death. Such multiple times-to-events can be studied using multistate models. For chronic diseases, it may be relevant to consider semi-Markov multistate models because the transition intensities between two clinical states more likely depend on the time already spent in the current state than on the chronological time. When the cause of death for a patient is unavailable or not totally attributable to the disease, it is not possible to specifically study the associations with the excess mortality related to the disease. Relative survival analysis allows an estimate of the net survival in the hypothetical situation where the disease would be the only possible cause of death. In this paper, we propose a semi-Markov additive relative survival (SMRS) model that combines the multistate and the relative survival approaches. The usefulness of the SMRS model is illustrated by two applications with data from a French cohort of kidney transplant recipients. Using simulated data, we also highlight the effectiveness of the SMRS model: the results tend to those obtained if the different causes of death are known.

  12. Volumetric display using a roof mirror grid array

    Science.gov (United States)

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuuki; Ohno, Keisuke; Maekawa, Satoshi

    2010-02-01

    A volumetric display system using a roof mirror grid array (RMGA) is proposed. The RMGA consists of a two-dimensional array of dihedral corner reflectors and forms a real image at a plane-symmetric position. A two-dimensional image formed with a RMGA is moved at thigh speed by a mirror scanner. Cross-sectional images of a three-dimensional object are displayed in accordance with the position of the image plane. A volumetric image can be observed as a stack of the cross-sectional images by high-speed scanning. Image formation by a RMGA is free from aberrations. Moreover, a compact optical system can be constructed because a RMGA doesn't have a focal length. An experimental volumetric display system using a galvanometer mirror and a digital micromirror device was constructed. The formation of a three-dimensional image consisting of 1024 × 768 × 400 voxels is confirmed by the experimental system.

  13. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    Science.gov (United States)

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  14. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological......-average intensity for parallel beamforming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details...

  15. Experimental Models of Transfusion-Related Acute Lung Injury (TRALI)

    OpenAIRE

    Gilliss, Brian M.; Looney, Mark R.

    2011-01-01

    Transfusion-related acute lung injury (TRALI) is defined clinically as acute lung injury occurring within six hours of the transfusion of any blood product. It is the leading cause of transfusion-related death in the United States, but under-recognition and diagnostic uncertainty have limited clinical research to smaller case control studies. In this review we will discuss the contribution of experimental models to the understanding of TRALI pathophysiology and potential therapeutic approache...

  16. How Is Building Lego Models Related to Math Skills?

    OpenAIRE

    Murti, Swiya; Szucs, Denes

    2017-01-01

    Math is usually taught using a lot of words. But, is this the way the human brain learns math? We studied how math is related to memory, intelligence, and reading in 7-year-old children. We found that memory for visual information (things you can see) and spatial information (where things are located in relationship to each other) is related to math skills more than memory for words and verbal information. Interestingly, previous studies have found that building Lego models (construction play...

  17. Mathematical model II. Basic particle and special relativity

    OpenAIRE

    Nitin Ramchandra Gadre

    2011-01-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we try to find out the requirements of the special relativity and suggest a mathematical particle model which can satisfy these requirements. The basic presumption is that the particle should have some structu...

  18. Gradients estimation from random points with volumetric tensor in turbulence

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  19. Automated MRI Volumetric Analysis in Patients with Rasmussen Syndrome.

    Science.gov (United States)

    Wang, Z I; Krishnan, B; Shattuck, D W; Leahy, R M; Moosa, A N V; Wyllie, E; Burgess, R C; Al-Sharif, N B; Joshi, A A; Alexopoulos, A V; Mosher, J C; Udayasankar, U; Jones, S E

    2016-12-01

    Rasmussen syndrome, also known as Rasmussen encephalitis, is typically associated with volume loss of the affected hemisphere of the brain. Our aim was to apply automated quantitative volumetric MR imaging analyses to patients diagnosed with Rasmussen encephalitis, to determine the predictive value of lobar volumetric measures and to assess regional atrophy differences as well as monitor disease progression by using these measures. Nineteen patients (42 scans) with diagnosed Rasmussen encephalitis were studied. We used 2 control groups: one with 42 age- and sex-matched healthy subjects and the other with 42 epileptic patients without Rasmussen encephalitis with the same disease duration as patients with Rasmussen encephalitis. Volumetric analysis was performed on T1-weighted images by using BrainSuite. Ratios of volumes from the affected hemisphere divided by those from the unaffected hemisphere were used as input to a logistic regression classifier, which was trained to discriminate patients from controls. Using the classifier, we compared the predictive accuracy of all the volumetric measures. These ratios were used to further assess regional atrophy differences and correlate with epilepsy duration. Interhemispheric and frontal lobe ratios had the best prediction accuracy for separating patients with Rasmussen encephalitis from healthy controls and patient controls without Rasmussen encephalitis. The insula showed significantly more atrophy compared with all the other cortical regions. Patients with longitudinal scans showed progressive volume loss in the affected hemisphere. Atrophy of the frontal lobe and insula correlated significantly with epilepsy duration. Automated quantitative volumetric analysis provides accurate separation of patients with Rasmussen encephalitis from healthy controls and epileptic patients without Rasmussen encephalitis, and thus may assist the diagnosis of Rasmussen encephalitis. Volumetric analysis could also be included as part of

  20. Volumetric measurements of a spatially growing dust acoustic wave

    International Nuclear Information System (INIS)

    Williams, Jeremiah D.

    2012-01-01

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  1. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    David, Aurelien, E-mail: adavid@soraa.com; Hurni, Christophe A.; Aldaz, Rafael I.; Cich, Michael J.; Ellis, Bryan; Huang, Kevin; Steranka, Frank M.; Krames, Michael R. [Soraa Inc., 6500 Kaiser Dr., Fremont, California 94555 (United States)

    2014-12-08

    We report on the light extraction efficiency of III-Nitride violet light-emitting diodes with a volumetric flip-chip architecture. We introduce an accurate optical model to account for light extraction. We fabricate a series of devices with varying optical configurations and fit their measured performance with our model. We show the importance of second-order optical effects like photon recycling and residual surface roughness to account for data. We conclude that our devices reach an extraction efficiency of 89%.

  2. A Relational Model for Simulation Data to Promote Interdisciplinary Collaboration

    Science.gov (United States)

    Castronova, A. M.; Jones, A. S.; Horsburgh, J. S.

    2014-12-01

    Hydrologic modeling is an essential component to understanding the physical processes that govern water resources systems. The process representation, approach, and scale used in each model can vary greatly among scientific domains. In addition, many models use proprietary data input and output file formats making it difficult to share results among scientists. These factors limit the extent to which cross disciplinary models can grow, and as a result, restricts collaboration across academic disciplines. The heterogeneity of data formats among models also inhibits archival due to the lack of consistent metadata and the inability to quickly inspect file contents. This work investigates a method for archiving model simulation input and output time series data in an easily accessible manner. We present a relational data model for representing simulation-based data that extends the functionality of the Observations Data Model (version 2). We demonstrate its use by implementing a PostgreSQL database with geospatial support via PostGIS, and illustrate how it is used to store and retrieve data to facilitate sharing among models and scientists.

  3. Accuracy and Reliability of Cone-Beam Computed Tomography for Linear and Volumetric Mandibular Condyle Measurements. A Human Cadaver Study.

    Science.gov (United States)

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Hernández, Virginia; Serrano-Sánchez, Pedro; Guarinos, Juan; Paredes-Gallardo, Vanessa

    2017-09-20

    The accuracy of Cone-Beam Computed Tomography (CBCT) on linear and volumetric measurements on condyles has only been assessed on dry skulls. The aim of this study was to evaluate the reliability and accuracy of linear and volumetric measurements of mandibular condyles in the presence of soft tissues using CBCT. Six embalmed cadaver heads were used. CBCT scans were taken, followed by the extraction of the condyles. The water displacement technique was used to calculate the volumes of the condyles and three linear measurements were made using a digital caliper, these measurements serving as the gold standard. Surface models of the condyles were obtained using a 3D scanner, and superimposed onto the CBCT images. Condyles were isolated on the CBCT render volume using the surface models as reference and volumes were measured. Linear measurements were made on CBCT slices. The CBCT method was found to be reliable for both volumetric and linear measurements (CV  0.90). Highly accurate values were obtained for the three linear measurements and volume. CBCT is a reliable and accurate method for taking volumetric and linear measurements on mandibular condyles in the presence of soft tissue, and so a valid tool for clinical diagnosis.

  4. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  5. Global assemblages and structural models of International Relations

    DEFF Research Database (Denmark)

    Corry, Olaf

    2014-01-01

    Rather than consigning assemblages to the micro-politics of international relations, the chapter argues that assemblages can also be seen to play a role in the ‘grand’ structures of international relations. Structural IR theory normally only considers how subjects are ordered – hierarchically......, anarchically, in core-periphery relations or in terms of networks. However, not only subjects but also assemblages – the bringing together of previously unconnected elements into novel constellations – play a critical role in structuring international relations. More specifically, one sub......-category of assemblages – those constructed as malleable and governable which I call ‘governance-objects’ – is central to structure in international relations. The chapter begins with standard definitions of what structures are – patterns of interaction between elements – and briefly covers the range of models currently...

  6. Metabolism related toxicity of diclofenac in yeast as model system

    NARCIS (Netherlands)

    van Leeuwen, J.S.; Vredenburg, G.; Dragovic, S.; Tjong, T.F.; Vos, J.C.; Vermeulen, N.P.E.

    2010-01-01

    Diclofenac is a widely used drug that can cause serious hepatotoxicity, which has been linked to metabolism by cytochrome P450s (P450). To investigate the role of oxidative metabolites in diclofenac toxicity, a model for P450-related toxicity was set up in Saccharomyces cerevisiae. We expressed a

  7. Bianchi type-V string cosmological models in general relativity

    Indian Academy of Sciences (India)

    Abstract. Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein's field equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein's field equations are solvable for any arbitrary ...

  8. Bianchi type-V string cosmological models in general relativity

    Indian Academy of Sciences (India)

    Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein's field equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein's field equations are solvable for any arbitrary cosmic scale ...

  9. Dataflow-Driven Crowdsourcing: Relational Models and Algorithms

    Directory of Open Access Journals (Sweden)

    D. A. Ustalov

    2016-01-01

    Full Text Available Recently, microtask crowdsourcing has become a popular approach for addressing various data mining problems. Crowdsourcing workflows for approaching such problems are composed of several data processing stages which require consistent representation for making the work reproducible. This paper is devoted to the problem of reproducibility and formalization of the microtask crowdsourcing process. A computational model for microtask crowdsourcing based on an extended relational model and a dataflow computational model has been proposed. The proposed collaborative dataflow computational model is designed for processing the input data sources by executing annotation stages and automatic synchronization stages simultaneously. Data processing stages and connections between them are expressed by using collaborative computation workflows represented as loosely connected directed acyclic graphs. A synchronous algorithm for executing such workflows has been described. The computational model has been evaluated by applying it to two tasks from the computational linguistics field: concept lexicalization refining in electronic thesauri and establishing hierarchical relations between such concepts. The “Add–Remove–Confirm” procedure is designed for adding the missing lexemes to the concepts while removing the odd ones. The “Genus–Species–Match” procedure is designed for establishing “is-a” relations between the concepts provided with the corresponding word pairs. The experiments involving both volunteers from popular online social networks and paid workers from crowdsourcing marketplaces confirm applicability of these procedures for enhancing lexical resources. 

  10. Cardinal Direction Relations Query Modeling Based on Geo-Ontology

    Science.gov (United States)

    Zhu, X.; Chen, D.; Zhou, C.; Li, M.; Xiao, W.

    2012-08-01

    Direction relations, as an important spatial relationship, is simply expressed as object prosperity in traditional geo-ontology. The lacking of explicit specifications and reasoning rules of direction relations in geo-ontology result in the difficult or inflexible of spatial reasoning. Also, digital gazetteers provide information on named features, linking the feature's name with its location and its type. Although the location information is incomplete and not exact, the implicit spatial information, for example spatial relationships and spatial scale, can be extract using the appropriate models based on geo-ontology. In this paper, we proposed a novel conceptual framework of direction relations in order to formalize the semantics and implicit information of direction relations, and present an extraction algorithm of implicit information based on previous researches, which will produce a complete query instance of direction relations. At last, the most suitable direction physical model is recommended to calculation module according to relevant rules. And the experimental results show that this direction query model not only extracted the implicit information effectively, but also made a reasonable interpretation for the user's intention.

  11. Experimental models of transfusion-related acute lung injury.

    Science.gov (United States)

    Gilliss, Brian M; Looney, Mark R

    2011-01-01

    Transfusion-related acute lung injury (TRALI) is defined clinically as acute lung injury occurring within six hours of the transfusion of any blood product. It is the leading cause of transfusion-related death in the United States, but under-recognition and diagnostic uncertainty have limited clinical research to smaller case control studies. In this review we discuss the contribution of experimental models to the understanding of TRALI pathophysiology and potential therapeutic approaches. Experimental models suggest that TRALI occurs when a host, with a primed immune system, is exposed to an activating agent such as anti-leukocyte antibody or a biologic response modifier such as lysophosphatidylcholines. Recent work has suggested a critical role for platelets in antibody-based experimental models and identified potential therapeutic strategies for TRALI. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Experimental Models of Transfusion-Related Acute Lung Injury (TRALI)

    Science.gov (United States)

    Gilliss, Brian M.; Looney, Mark R.

    2010-01-01

    Transfusion-related acute lung injury (TRALI) is defined clinically as acute lung injury occurring within six hours of the transfusion of any blood product. It is the leading cause of transfusion-related death in the United States, but under-recognition and diagnostic uncertainty have limited clinical research to smaller case control studies. In this review we will discuss the contribution of experimental models to the understanding of TRALI pathophysiology and potential therapeutic approaches. Experimental models suggest that TRALI occurs when a host, with a primed immune system, is exposed to an activating agent such as anti-leukocyte antibody or a biologic response modifier such as lysophosphatidylcholines. Recent work has suggested a critical role for platelets in antibody-based experimental models and identified potential therapeutic strategies for TRALI. PMID:21134622

  13. Integrated petrophysical and sedimentological study of the Middle Miocene Nullipore Formation (Ras Fanar Field, Gulf of Suez, Egypt): An approach to volumetric analysis of reservoirs

    Science.gov (United States)

    Afife, Mohamed M.; Sallam, Emad S.; Faris, Mohamed

    2017-10-01

    This study aims to integrate sedimentological, log and core analyses data of the Middle Miocene Nullipore Formation at the Ras Fanar Field (west central Gulf of Suez, Egypt) to evaluate and reconstruct a robust petrophysical model for this reservoir. The Nullipore Formation attains a thickness ranging from 400 to 980 ft and represents a syn-rift succession of the Middle Miocene marine facies. It consists of coralline-algal-reefal limestone, dolomitic limestone and dolostone facies, with few clay and anhydrite intercalations. Petrographically, seven microfacies types (MF1 to MF7) have been recognized and assembled genetically into three related facies associations (FA1 to FA3). These associations accumulated in three depositional environments: 1) peritidal flat, 2) restricted lagoon, and 3) back-shoal environments situated on a shallow inner ramp (homoclinal) setting. The studied rocks have been influenced by different diagenetic processes (dolomitization, cementation, compaction, authigenesis and dissolution), which led to diminishing and/or enhancing the reservoir quality. Three superimposed 3rd-order depositional sequences are included in the Nullipore succession displaying both retrogradational and aggradational packages of facies. Given the hydrocarbon potential of the Nullipore Formation, conventional well logs of six boreholes and core analyses data from one of these wells (RF-B12) are used to identify electrofacies zones of the Nullipore Formation. The Nullipore Formation has been subdivided into three electrofacies zones (the Nullipore-I, Nullipore-II, and Nullipore-III) that are well-correlated with the three depositional sequences. Results of petrographical studies and log analyses data have been employed in volumetric calculations to estimate the amount of hydrocarbon-in-place and then the ultimate recovery of the Nullipore reservoir. The volumetric calculations indicate that the total volume of oil-in-place is 371 MMSTB at 50% probability (P50), whereas

  14. Dispersion Relations for Electroweak Observables in Composite Higgs Models

    CERN Document Server

    Contino, Roberto

    2015-12-14

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  15. Inventory of environmental impact models related to energy technologies

    International Nuclear Information System (INIS)

    Owen, P.T.; Dailey, N.S.; Johnson, C.A.; Martin, F.M.

    1979-02-01

    The purpose of this inventory is to identify and collect data on computer simulations and computational models related to the environmental effects of energy source development, energy conversion, or energy utilization. Information for 33 data fields was sought for each model reported. All of the information which could be obtained within the time alloted for completion of the project is presented for each model listed. Efforts will be continued toward acquiring the needed information. Readers who are interested in these particular models are invited to contact ESIC for assistance in locating them. In addition to the standard bibliographic information, other data fields of interest to modelers, such as computer hardware and software requirements, algorithms, applications, and existing model validation information, are included. Indexes are provided for contact person, acronym, keyword, and title. The models are grouped into the following categories: atmospheric transport, air quality, aquatic transport, terrestrial food chains, soil transport, aquatic food chains, water quality, dosimetry, and human effects, animal effects, plant effects, and generalized environmental transport. Within these categories, the models are arranged alphabetically by last name of the contact person

  16. Inventory of environmental impact models related to energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Dailey, N.S.; Johnson, C.A.; Martin, F.M. (eds.)

    1979-02-01

    The purpose of this inventory is to identify and collect data on computer simulations and computational models related to the environmental effects of energy source development, energy conversion, or energy utilization. Information for 33 data fields was sought for each model reported. All of the information which could be obtained within the time alloted for completion of the project is presented for each model listed. Efforts will be continued toward acquiring the needed information. Readers who are interested in these particular models are invited to contact ESIC for assistance in locating them. In addition to the standard bibliographic information, other data fields of interest to modelers, such as computer hardware and software requirements, algorithms, applications, and existing model validation information, are included. Indexes are provided for contact person, acronym, keyword, and title. The models are grouped into the following categories: atmospheric transport, air quality, aquatic transport, terrestrial food chains, soil transport, aquatic food chains, water quality, dosimetry, and human effects, animal effects, plant effects, and generalized environmental transport. Within these categories, the models are arranged alphabetically by last name of the contact person.

  17. Quantitative volumetric imaging of normal, neoplastic and hyperplastic mouse prostate using ultrasound.

    Science.gov (United States)

    Singh, Shalini; Pan, Chunliu; Wood, Ronald; Yeh, Chiuan-Ren; Yeh, Shuyuan; Sha, Kai; Krolewski, John J; Nastiuk, Kent L

    2015-09-21

    Genetically engineered mouse models are essential to the investigation of the molecular mechanisms underlying human prostate pathology and the effects of therapy on the diseased prostate. Serial in vivo volumetric imaging expands the scope and accuracy of experimental investigations of models of normal prostate physiology, benign prostatic hyperplasia and prostate cancer, which are otherwise limited by the anatomy of the mouse prostate. Moreover, accurate imaging of hyperplastic and tumorigenic prostates is now recognized as essential to rigorous pre-clinical trials of new therapies. Bioluminescent imaging has been widely used to determine prostate tumor size, but is semi-quantitative at best. Magnetic resonance imaging can determine prostate volume very accurately, but is expensive and has low throughput. We therefore sought to develop and implement a high throughput, low cost, and accurate serial imaging protocol for the mouse prostate. We developed a high frequency ultrasound imaging technique employing 3D reconstruction that allows rapid and precise assessment of mouse prostate volume. Wild-type mouse prostates were examined (n = 4) for reproducible baseline imaging, and treatment effects on volume were compared, and blinded data analyzed for intra- and inter-operator assessments of reproducibility by correlation and for Bland-Altman analysis. Examples of benign prostatic hyperplasia mouse model prostate (n = 2) and mouse prostate implantation of orthotopic human prostate cancer tumor and its growth (n =  ) are also demonstrated. Serial measurement volume of the mouse prostate revealed that high frequency ultrasound was very precise. Following endocrine manipulation, regression and regrowth of the prostate could be monitored with very low intra- and interobserver variability. This technique was also valuable to monitor the development of prostate growth in a model of benign prostatic hyperplasia. Additionally, we demonstrate accurate ultrasound image

  18. Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver

    International Nuclear Information System (INIS)

    Wang, P.; Li, J.B.; Bai, F.W.; Liu, D.Y.; Xu, C.; Zhao, L.; Wang, Z.F.

    2017-01-01

    In the present work, we carried out an experimental analysis on the thermal performance of a windowed volumetric solar receiver (WVSR). A prototype was designed and tested in a dish concentrator system. Three silicon carbide (SiC) absorber slabs with different typical pore structures were tested. A unified theoretical model adequately considering the overall heat transfer processes for the WVSR is first put forward. The key component, a windowed cavity incorporated with the irradiated surface of the absorber was modeled in a coupled radiative-convection boundary condition, which detailedly concerning the porous surface structure of the absorber under local thermal non-equilibrium conditions. Model authentication was achieved by comparing the experimental and theoretical results. The maximum temperature of the outlet air was over 1003 K, and the best thermal efficiency (solar to thermal) obtained was 63.61%. The maximum deviations in the results were 9.4% and 2.3% for the temperature of the back wall and the outlet air, respectively. In terms of the thermal efficiency, the maximum deviation was 5.35%. These results demonstrate the feasibility of our model applied to describe the overall transport process from solar to thermal energy in a receiver. - Highlights: • A prototype test is presented on a windowed volumetric solar receiver (WVSR). • A uniform theoretical heat transfer model for WVSR is first put forward. • Boundary condition coupling the porous absorber surface and window is developed. • Model validation is finished by comparing the experimental and numerical results.

  19. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  20. Animal Models of Hemophilia and Related Bleeding Disorders

    Science.gov (United States)

    Lozier, Jay N.; Nichols, Timothy C.

    2013-01-01

    Animal models of hemophilia and related diseases are important for development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and von Willebrand disease pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform pre-clinical assessments of standard protein replacement therapies as well as novel gene transfer technology. Both the differences between species and differences in underlying causative mutations must be considered in choosing the best animal for a specific scientific study PMID:23956467

  1. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  2. Relating Cortical Atrophy in Temporal Lobe Epilepsy with Graph Diffusion-Based Network Models

    Science.gov (United States)

    Abdelnour, Farras; Mueller, Susanne; Raj, Ashish

    2015-01-01

    Mesial temporal lobe epilepsy (TLE) is characterized by stereotyped origination and spread pattern of epileptogenic activity, which is reflected in stereotyped topographic distribution of neuronal atrophy on magnetic resonance imaging (MRI). Both epileptogenic activity and atrophy spread appear to follow white matter connections. We model the networked spread of activity and atrophy in TLE from first principles via two simple first order network diffusion models. Atrophy distribution is modeled as a simple consequence of the propagation of epileptogenic activity in one model, and as a progressive degenerative process in the other. We show that the network models closely reproduce the regional volumetric gray matter atrophy distribution of two epilepsy cohorts: 29 TLE subjects with medial temporal sclerosis (TLE-MTS), and 50 TLE subjects with normal appearance on MRI (TLE-no). Statistical validation at the group level suggests high correlation with measured atrophy (R = 0.586 for TLE-MTS, R = 0.283 for TLE-no). We conclude that atrophy spread model out-performs the hyperactivity spread model. These results pave the way for future clinical application of the proposed model on individual patients, including estimating future spread of atrophy, identification of seizure onset zones and surgical planning. PMID:26513579

  3. Hepatosplenic volumetric assessment at MDCT for staging liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Pickhardt, Perry J.; Malecki, Kyle; Hunt, Oliver F.; Beaumont, Claire; Kloke, John; Ziemlewicz, Timothy J.; Lubner, Meghan G. [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States)

    2017-07-15

    To investigate hepatosplenic volumetry at MDCT for non-invasive prediction of hepatic fibrosis. Hepatosplenic volume analysis in 624 patients (mean age, 48.8 years; 311 M/313 F) at MDCT was performed using dedicated software and compared against pathological fibrosis stage (F0 = 374; F1 = 48; F2 = 40; F3 = 65; F4 = 97). The liver segmental volume ratio (LSVR) was defined by Couinaud segments I-III over segments IV-VIII. All pre-cirrhotic fibrosis stages (METAVIR F1-F3) were based on liver biopsy within 1 year of MDCT. LSVR and total splenic volumes increased with stage of fibrosis, with mean(±SD) values of: F0: 0.26 ± 0.06 and 215.1 ± 88.5 mm{sup 3}; F1: 0.25 ± 0.08 and 294.8 ± 153.4 mm{sup 3}; F2: 0.331 ± 0.12 and 291.6 ± 197.1 mm{sup 3}; F3: 0.39 ± 0.15 and 509.6 ± 402.6 mm{sup 3}; F4: 0.56 ± 0.30 and 790.7 ± 450.3 mm{sup 3}, respectively. Total hepatic volumes showed poor discrimination (F0: 1674 ± 320 mm{sup 3}; F4: 1631 ± 691 mm{sup 3}). For discriminating advanced fibrosis (≥F3), the ROC AUC values for LSVR, total liver volume, splenic volume and LSVR/spleen combined were 0.863, 0.506, 0.890 and 0.947, respectively. Relative changes in segmental liver volumes and total splenic volume allow for non-invasive staging of hepatic fibrosis, whereas total liver volume is a poor predictor. Unlike liver biopsy or elastography, these CT volumetric biomarkers can be obtained retrospectively on routine scans obtained for other indications. (orig.)

  4. Volumetric studies of some amino acids in binary aqueous solutions ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 3. Volumetric studies of some amino acids in binary aqueous solutions of MgCl2.6H2O at 288.15, and 308.15 K. Amalendu Pal Suresh Kumar. Volume 117 Issue 3 May 2005 pp 267-273 ...

  5. Environmental Consequences of Volumetric Traffic Flow in Calabar ...

    African Journals Online (AJOL)

    Findings revealed that, Air pollutant such as carbon dioxide (C02) nitrogen oxides (N0) Sulphur dioxide (SO2), Carbon monoxide (C0) and particulate concentrations were above threshold level. With this result of analyses, it shows that there is a positive relationship between air pollutants concentration and volumetric traffic ...

  6. Volumetric studies of some amino acids in binary aqueous solutions

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 3. Volumetric studies of some amino acids in binary aqueous solutions of MgCl2.6H2O at 288.15, and 308.15 K. Amalendu Pal Suresh Kumar. Volume 117 Issue 3 May 2005 pp 267-273 ...

  7. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  8. Volumetric motion quantification by 3D tissue phase mapped CMR

    Directory of Open Access Journals (Sweden)

    Lutz Anja

    2012-10-01

    Full Text Available Abstract Background The objective of this study was the quantification of myocardial motion from 3D tissue phase mapped (TPM CMR. Recent work on myocardial motion quantification by TPM has been focussed on multi-slice 2D acquisitions thus excluding motion information from large regions of the left ventricle. Volumetric motion assessment appears an important next step towards the understanding of the volumetric myocardial motion and hence may further improve diagnosis and treatments in patients with myocardial motion abnormalities. Methods Volumetric motion quantification of the complete left ventricle was performed in 12 healthy volunteers and two patients applying a black-blood 3D TPM sequence. The resulting motion field was analysed regarding motion pattern differences between apical and basal locations as well as for asynchronous motion pattern between different myocardial segments in one or more slices. Motion quantification included velocity, torsion, rotation angle and strain derived parameters. Results All investigated motion quantification parameters could be calculated from the 3D-TPM data. Parameters quantifying hypokinetic or asynchronous motion demonstrated differences between motion impaired and healthy myocardium. Conclusions 3D-TPM enables the gapless volumetric quantification of motion abnormalities of the left ventricle, which can be applied in future application as additional information to provide a more detailed analysis of the left ventricular function.

  9. Uptake and Loss of Carbon Dioxide in Volumetric Analysis.

    Science.gov (United States)

    Macca, Carlo

    1986-01-01

    Discusses the use of ratio diagrams, which plot the calculations of equilibrium concentrations of the species of the carbonate system. Provides examples to describe how these diagrams can be used to illustrate the behavior systems of interest in volumetric analysis, where absorption or loss of carbon dioxide takes place. (TW)

  10. Three-dimensional volumetric analysis after sinus grafts.

    Science.gov (United States)

    Kim, Eun-Sik; Moon, Seong-Yong; Kim, Su-Gwan; Park, Hyun-Chun; Oh, Ji-Su

    2013-04-01

    The purpose of this study was to evaluate the augmentation volume of a sinus graft according to the time and graft materials based on cone-beam computed tomography (CBCT) scans and to assess efficacy of a bioabsorbable membrane. Fourteen patients were investigated, and volumetric analysis was performed using OnDemand 3DTM software (Cybermed, Seoul, Korea). CBCT scans were performed on patients before surgery, immediately after surgery, 6 months after surgery, and 1 year after surgery. Following this analysis, the volumetric data were compared with the actual grafted volumes. Bioabsorbable membranes were used in all patients to promote the protection of sinus membranes and to guide bone regeneration. Overall, the average percent volume of graft material that remained 6 months after implantation was 82.0%, and the average percent volume of graft material that remained 1 year after surgery was 60.4%. These reductions in the volume of graft material from immediately after surgery until 6 months or 1 year after surgery were shown to be statistically significant (P = 0.002 and P volumetric analysis performed using CBCT can provide highly accurate data. A significant difference was observed in volumetric change over time, but no significant differences were observed between materials. No significant relationship was observed between the resorption of grafted bone and the success rate.

  11. Volumetric and viscometric behaviour of soya bean and gram ...

    African Journals Online (AJOL)

    Volumetric and viscometric behaviour of soya bean and gram proteins in aqueous methotrexate (anticancer drug) solution at 298.15 to 308.15K. ... and viscosities (h) for 0.00005 to 0.0004 kg.mol-1 (50 to 400 mmol kg-1) aqueous methotrexate (MTX), gram (Gp) and soya bean (SBp) proteins, and similar compositions of Gp

  12. Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald

    Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.

  13. RBE and related modeling in carbon-ion therapy

    Science.gov (United States)

    Karger, Christian P.; Peschke, Peter

    2018-01-01

    Carbon ion therapy is a promising evolving modality in radiotherapy to treat tumors that are radioresistant against photon treatments. As carbon ions are more effective in normal and tumor tissue, the relative biological effectiveness (RBE) has to be calculated by bio-mathematical models and has to be considered in the dose prescription. This review (i) introduces the concept of the RBE and its most important determinants, (ii) describes the physical and biological causes of the increased RBE for carbon ions, (iii) summarizes available RBE measurements in vitro and in vivo, and (iv) describes the concepts of the clinically applied RBE models (mixed beam model, local effect model, and microdosimetric-kinetic model), and (v) the way they are introduced into clinical application as well as (vi) their status of experimental and clinical validation, and finally (vii) summarizes the current status of the use of the RBE concept in carbon ion therapy and points out clinically relevant conclusions as well as open questions. The RBE concept has proven to be a valuable concept for dose prescription in carbon ion radiotherapy, however, different centers use different RBE models and therefore care has to be taken when transferring results from one center to another. Experimental studies significantly improve the understanding of the dependencies and limitations of RBE models in clinical application. For the future, further studies investigating quantitatively the differential effects between normal tissues and tumors are needed accompanied by clinical studies on effectiveness and toxicity.

  14. Epistemology and Rosen's Modeling Relation

    Energy Technology Data Exchange (ETDEWEB)

    Dress, W.B.

    1999-11-07

    Rosen's modeling relation is embedded in Popper's three worlds to provide an heuristic tool for model building and a guide for thinking about complex systems. The utility of this construct is demonstrated by suggesting a solution to the problem of pseudo science and a resolution of the famous Bohr-Einstein debates. A theory of bizarre systems is presented by an analogy with entangled particles of quantum mechanics. This theory underscores the poverty of present-day computational systems (e.g., computers) for creating complex and bizarre entities by distinguishing between mechanism and organism.

  15. On autostability of almost prime models relative to strong constructivizations

    International Nuclear Information System (INIS)

    Goncharov, Sergey S

    2011-01-01

    Questions of autostability and algorithmic dimension of models go back to papers by A.I. Malcev and by A. Froehlich and J.C. Shepherdson in which the effect of the existence of computable presentations which are non-equivalent from the viewpoint of their algorithmic properties was first discovered. Today there are many papers by various authors devoted to investigations of such questions. The present paper deals with the question of inheritance of the properties of autostability and non-autostability relative to strong constructivizations under elementary extensions for almost prime models. Bibliography: 37 titles.

  16. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    International Nuclear Information System (INIS)

    Harris, W; Yin, F; Wang, C; Chang, Z; Cai, J; Zhang, Y; Ren, L

    2016-01-01

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution of VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI_MM-ROI_FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while

  17. Modeling of density and calculations of derived volumetric properties for n-hexane, toluene and dichloromethane at pressures 0.1-60 MPa and temperatures 288.15-413.15 K

    Directory of Open Access Journals (Sweden)

    Ivaniš Gorica R.

    2015-01-01

    Full Text Available Densities data of n-hexane, toluene and dichloromethane at temperatures 288.15-413.15 K and at pressures 0.1-60 MPa, determined in our previous work, were fitted to the modified Tait equation of state. The fitted temperature-pressure dependent density data were used to calculate the derived properties: the isothermal compressibility, the isobaric thermal expansivity, the difference between specific heat capacity at constant pressure and at constant volume and the internal pressure, over the entire temperature and pressure intervals specified above. In order to assess the proposed modeling procedure, a comparison of the obtained values for the isothermal compressibility and the isobaric thermal expansivity with the corresponding literature data were performed. The average absolute percentage deviations for isothermal compressibility were: for n-hexane 2.01-3.64%, for toluene 0.64-2.48% and for dichloromethane 1.81-3.20%; for the isobaric thermal expansivity: for n-hexane 1.31-4.17%, for toluene 0.71-2.45% and for dichloromethane 1.16-1.61%. By comparing the obtained deviations values with those found in the literature it can be concluded that the presented results agree good with the literature data. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  18. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  19. Mathematical model II. Basic particle and special relativity

    Directory of Open Access Journals (Sweden)

    Nitin Ramchandra Gadre

    2011-03-01

    Full Text Available The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we try to find out the requirements of the special relativity and suggest a mathematical particle model which can satisfy these requirements. The basic presumption is that the particle should have some structural characteristics which make the particle obey the postulates of these theories. As it is experimentally ‘difficult’ to find the structure of basic particle electron we make a mathematical attempt. We call this model as logically and mathematically probable structure of the basic particle, electron.

  20. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  1. Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry

    International Nuclear Information System (INIS)

    Xiao, Zheng; Xiang, Jing; Holowka, Stephanie; Chuang, Sylvester; Hunjan, Amrita; Sharma, Rohit; Otsubo, Hiroshi

    2006-01-01

    Magnetoencephalography (MEG) is a novel noninvasive technique for localizing epileptic zones. Tuberous sclerosis complex (TSC) is often associated with medically refractory epilepsy with multiple epileptic zones. Surgical treatment of TSC requires accurate localization of epileptogenic tubers. The objective of this study was to introduce a new MEG technique, synthetic aperture magnetometry (SAM), to volumetrically localize irritable zones and clarify the correlations between SAM, dipole modeling and anatomical tubers. Eight pediatric patients with TSC confirmed by clinical and neuroimaging findings were retrospectively studied. MEG data were recorded using a whole-cortex CTF OMEGA system. Sleep deprivation was employed to provoke epileptiform activity. Irritable zones were localized using both dipole modeling and SAM. MRI detected 42 tubers in the eight patients. Dipole modeling localized 28 irritable zones, and 19 out of the 28 zones were near tubers (19/42, 45%). SAM found 51 irritable zones, and 31 out of the 51 zones were near tubers (31/42, 74%). Among the 51 irritable zones determined by SAM, thirty-five zones were in 1-35 Hz, nine zones were in 35-60 Hz, and seven zones were in 60-120 Hz. The new method, SAM, yielded very plausible equivalent sources for patients who showed anatomical tubers on MRI. Compared to conventional dipole modeling, SAM appeared to offer increased detection of irritable zones and beneficial volumetric and frequency descriptions. (orig.)

  2. Volumetric Analysis of Nasopharyngectomy via Endoscopic Endonasal, Maxillary Transposition, and Lateral Temporal-Subtemporal Approaches.

    Science.gov (United States)

    Kapucu, Burak; Gun, Ramazan; Kirsch, Claudia; Meeks, Darlene; Otto, Bradley A; Prevedello, Daniel M; Carrau, Ricardo

    2015-10-01

    This project develops a computer model that allows volumetric analysis of the exposure afforded by an endonasal-endoscopic approach, maxillary transposition, and lateral temporal-subtemporal approaches during a nasopharyngectomy. The model will demonstrate idiosyncracies of these approaches, including sacrifice of normal tissues, ease of instrumentation, and gate of entry. Computed tomographic scans of an anatomic specimen were used to create computer simulations of the endoscopic endonasal, maxillary transposition, and lateral temporal-subtemporal approaches for T1and T4 nasopharyngeal carcinoma; therefore, allowing assessment of their surgical corridor using Intuition, a software that allows a semiautomated computerized segmented volumetric analysis. The smallest volumes of tissue mobilization or removal were observed during the endoscopic-endonasal nasopharyngectomy. The volumes of tissue mobilization for the maxillary transposition approach were higher than those of lateral temporal-subtemporal approaches. This model adds to our understanding of select surgical corridors to the nasopharynx. It suggests that an endoscopic-endonasal approach requires less manipulation or resection of smaller volumes of normal tissue to expose a nasopharyngeal tumor than the lateral temporal-subtemporal and maxillary transposition approaches. It also, however, requires instrumentation through a smaller entry gate implying greater difficulty. Nonetheless, these factors should not be construed as superiority of one approach over the other. Factors that are important in the choosing of the surgical approach, such as surgeon's training and experience, invasion of neurovascular structures and method of reconstruction are not considered in this model.

  3. Semiotic aspects of control and modeling relations in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, C.

    1996-08-01

    A conceptual analysis of the semiotic nature of control is provided with the goal of elucidating its nature in complex systems. Control is identified as a canonical form of semiotic relation of a system to its environment. As a form of constraint between a system and its environment, its necessary and sufficient conditions are established, and the stabilities resulting from control are distinguished from other forms of stability. These result from the presence of semantic coding relations, and thus the class of control systems is hypothesized to be equivalent to that of semiotic systems. Control systems are contrasted with models, which, while they have the same measurement functions as control systems, do not necessarily require semantic relations because of the lack of the requirement of an interpreter. A hybrid construction of models in control systems is detailed. Towards the goal of considering the nature of control in complex systems, the possible relations among collections of control systems are considered. Powers arguments on conflict among control systems and the possible nature of control in social systems are reviewed, and reconsidered based on our observations about hierarchical control. Finally, we discuss the necessary semantic functions which must be present in complex systems for control in this sense to be present at all.

  4. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults

    International Nuclear Information System (INIS)

    Hoi, Yiemeng; Xie, Yuanyuan J; Steinman, David A; Wasserman, Bruce A; Najjar, Samer S; Lakatta, Edward G; Ferruci, Luigi; Gerstenblith, Gary

    2010-01-01

    While it is widely appreciated that volumetric blood flow rate (VFR) dynamics change with age, there has been no detailed characterization of the typical shape of carotid bifurcation VFR waveforms of older adults. Toward this end, retrospectively gated phase contrast magnetic resonance imaging was used to measure time-resolved VFR waveforms proximal and distal to the carotid bifurcations of 94 older adults (age 68 ± 8 years) with little or no carotid artery disease, recruited from the BLSA cohort of the VALIDATE study of factors in vascular aging. Timings and amplitudes of well-defined feature points from these waveforms were extracted automatically and averaged to produce representative common, internal and external carotid artery (CCA, ICA and ECA) waveform shapes. Relative to young adults, waveforms from older adults were found to exhibit a significantly augmented secondary peak during late systole, resulting in significantly higher resistance index (RI) and flow augmentation index (FAI). Cycle-averaged VFR at the CCA, ICA and ECA were 389 ± 74, 245 ± 61 and 125 ± 49 mL min −1 , respectively, reflecting a significant cycle-averaged outflow deficit of 5%, which peaked at around 10% during systole. A small but significant mean delay of 13 ms between arrivals of ICA versus CCA/ECA peak VFR suggested differential compliance of these vessels. Sex and age differences in waveform shape were also noted. The characteristic waveforms presented here may serve as a convenient baseline for studies of VFR waveform dynamics or as suitable boundary conditions for models of blood flow in the carotid arteries of older adults

  5. Women's experiences of infertility - towards a relational model of care.

    Science.gov (United States)

    Cunningham, Nicola; Cunningham, Tom

    2013-12-01

    To consider the effectiveness of current models of patient-centred infertility care. Patient centredness is defined as one of six key dimensions of quality of care. In the field of infertility, a new interaction model of patient-centred infertility care is proposed. Despite positive moves, this model reveals shortcomings in knowledge about the lived experience of infertility and lacks the shift in attitudes and approach that effective patient-centred care requires. The study has a qualitative research design. Nine women living with and through infertility participated in online life-story interviews. Data were analysed using a layered strategy influenced by the voice-centred relational method, emphasising narrative content, form and function. Women reveal a complex experience. Three key themes were found: Approaching the clinic narratives are infused with personal expectations while deeply reflective of cultural expectations and social norms. Relatedness recognises women's experiences cannot be neatly separated into distinct domains. Liminality and infertility describes women's experiences lost in transition through and beyond infertility treatment. The current model of patient-centred infertility care requires further development. Women in this study found themselves lost in transition and irrespective of treatment failure or success. Conceptual development must embrace a relational understanding of patient's experience to ensure that patient-centred infertility care is realistic and relevant to patients, clinical staff and the system as a whole. Psychosocial skills are recognised as core competences for fertility nurses. A relational conceptualisation of patient's experiences, living with and through infertility, provides further information for the development of staff and enhanced knowledge and practice skills. © 2013 John Wiley & Sons Ltd.

  6. Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry

    Science.gov (United States)

    Freudenhammer, Daniel; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Jung, Bernd; Grundmann, Sven

    2014-05-01

    Magnetic resonance velocimetry (MRV) measurements are performed in a 1:1 scale model of a single-cylinder optical engine to investigate the volumetric flow within the intake and cylinder geometry during flow induction. The model is a steady flow water analogue of the optical IC-engine with a fixed valve lift of mm to simulate the induction flow at crank-angle bTDC. This setup resembles a steady flow engine test bench configuration. MRV measurements are validated with phase-averaged particle image velocimetry (PIV) measurements performed within the symmetry plane of the optical engine. Differences in experimental operating parameters between MRV and PIV measurements are well addressed. Comparison of MRV and PIV measurements is demonstrated using normalized mean velocity component profiles and showed excellent agreement in the upper portion of the cylinder chamber (i.e., mm). MRV measurements are further used to analyze the ensemble average volumetric flow within the 3D engine domain. Measurements are used to describe the 3D overflow and underflow behavior as the annular flow enters the cylinder chamber. Flow features such as the annular jet-like flows extending into the cylinder, their influence on large-scale in-cylinder flow motion, as well as flow recirculation zones are identified in 3D space. Inlet flow velocities are analyzed around the entire valve curtain perimeter to quantify percent mass flow rate entering the cylinder. Recirculation zones associated with the underflow are shown to reduce local mass flow rates up to 50 %. Recirculation zones are further analyzed in 3D space within the intake manifold and cylinder chamber. It is suggested that such recirculation zones can have large implications on cylinder charge filling and variations of the in-cylinder flow pattern. MRV is revealed to be an important diagnostic tool used to understand the volumetric induction flow within engine geometries and is potentially suited to evaluate flow changes due to intake

  7. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    International Nuclear Information System (INIS)

    Xu, Y; Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X; Zhou, L

    2014-01-01

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  8. Serial volumetric assessment of coronary fibroatheroma by optical frequency domain imaging: insights from the TROFI trial.

    Science.gov (United States)

    Campos, Carlos M; Garcia-Garcia, Hector M; Iqbal, Javaid; Muramatsu, Takashi; Nakatani, Shimpei; Dijkstra, Jouke; Onuma, Yoshinobu; Serruys, Patrick W

    2018-01-01

    Coronary lesions precursors of acute events remain elusive, since they undergo continuous changes and their temporal changes are not very well-characterized. In natural history studies, optical frequency domain imaging (OFDI) has been used only to assess fibroatheromas as a 2D structure and sometimes in a single frame fashion. We aim at describing the serial volumetric modifications of the fibrous cap (FC) of the fibroatheromas as determined by OFDI over a 6-month follow-up period. In 49 patients, OFDI investigation was performed following treatment of culprit lesion and at 6-month follow-up in patients with ST-segment elevation myocardial infarction (STEMI). A fully automatic volumetric quantification of FC was done in all lipid-containing frames of non-culprit lesions in the infarct related artery. These lesions were matched at baseline and 6-month follow-up. A total of 58 non-culprit lipid rich lesions (34 TCFAs and 24 thick-cap fibroatheroma [ThCFA]) were found in 34 patients at baseline. Overall, there was a FC volume decrease of 1.57 (Inter-quartile Range [IQR] -4.13 to 0.54) mm3 at 6-months. 27% of the lesions changed their phenotype over time (TCFA or ThCFA). TCFAs that became ThCFAs at follow-up had smaller mean and maximal FC as compared with lesions that remained TCFAs (P = 0.01 for both). Non-culprit fibroatheromas located in the infarct related artery of patients with STEMI had a volumetric reduction of the FC after 6-month follow-up. Quantitative FC assessment was able to differentiate high-risk lesions that became ThCFAs. There was a considerable change of plaque phenotype (TCFAs or ThCFAs) over time.

  9. Models of political public relations: Testing the situation in Catalonia

    Directory of Open Access Journals (Sweden)

    Dr. Jordi Xifra Triadú

    2008-01-01

    Full Text Available The idea that political communication strategies are an application of marketing strategies to political field is today commonly shared by specialists. For them public relations is viewed like a set of techniques that serves political parties and other actors of the political scene, concentrated on media relations. This instrumental perspective is not in keeping with structural dimension of public relations in political activity and communication of his actors: political parties, pressure groups and political leaders. In this point of view, during managing periods of governance or opposition and during electoral campaigns, the most applied communication form by political parties is structured in accordance with the major public relations models: press agent model, public information model, two way asymmetrical model, and two way symmetrical model. This research prove hypothesis in Catalonia according the results of a quantitative survey focused on inside professionals who provide services for the seven main political parties in this Spanish Autonomous Community.RESUMEN:La idea de que las estrategias de comunicación política constituyen una aplicación de las estrategias del marketing al ámbito político es hoy comúnmente compartida por los analistas. Para éstos, las relaciones públicas son percibidas como un conjunto de técnicas al servicio de los partidos políticos y de otros actores de la escena política concentradas en las relaciones con la prensa. Esta perspectiva instrumental no concuerda con la dimensión estructural de las relaciones públicas en la actividad política y comunicativa de sus actores: partidos políticos, grupos de presión y líderes. Desde este punto de vista, tanto en los periodos de gestión u oposición como en los electorales, la forma comunicativa más aplicada por los partidos políticos se estructura de acuerdo con los modelos tradicionales de las relaciones públicas: agente de prensa, información p

  10. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  11. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  12. Relating backprojection images to kinematics and dynamic source models

    Science.gov (United States)

    Yin, J.; Denolle, M.

    2017-12-01

    Backprojection (BP) of teleseismic P waves is a method widely used to study the evolution of earthquake radiation and is particularly effective for large earthquakes. We can harness details on the spatiotemporal evolution of the rupture process from waveform similarity or coherency. A direct relation between these kinematic observations to earthquake physics is critical. Theoretical analysis indicates that high-frequency bursts can be related to abrupt changes in rupture velocity (e.g. stopping of the rupture or kinks on the fault, e.g. Madariaga, 1976; Madariaga et al., 2006). Moreover, the BP images are thought to be equivalent to either slip or slip rate on the fault, provided that the Green's functions from the sources to the receivers are incoherent delta functions (Fukuhata et al., 2014). Furthermore, recent studies propose that the frequency dependent features of BP results can reflect the stress status, frictional and/or geometrical heterogeneity on the fault surface (e.g. Huang et al., 2012; Lay et al., 2012; Yao et al., 2013; Yin et al., 2016, etc.). With this promising background, we attempt to relate the BP results and earthquake source process through kinematic and dynamic source models. We build synthetic seismic waveforms and trace them back to the fault surface using synthetic backprojection. We carry the 3D kinematic source models using Crempien and Archuleta (2014) and the 2D kinematic models using FDMap (Dunham et al., 2011). By varying the source models such as the friction laws and fault geometries, we directly compare the BP results with the ground truth earthquake sources and further explore the possible relation to the source properties. To simplify our problem and exclude the potential effects from complex earth structure, our tests are carried out in a purely elastic whole space, allowing us to solve analytically for the far-field body waves. From these systematical tests and comparisons, we aim at building a comprehensive relation between

  13. Size determination and response assessment of liver metastases with computed tomography—Comparison of RECIST and volumetric algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Jan Holger, E-mail: jan-holger.rothe@charite.de [Klinik für Radiologie, Campus Virchow-Klinikum, Charité – Universitätsmedizin, Berlin (Germany); Grieser, Christian [Klinik für Radiologie, Campus Virchow-Klinikum, Charité – Universitätsmedizin, Berlin (Germany); Lehmkuhl, Lukas [Abteilung für Diagnostische und Interventionelle Radiologie, Herzzentrum Leipzig (Germany); Schnapauff, Dirk; Fernandez, Carmen Perez; Maurer, Martin H.; Mussler, Axel; Hamm, Bernd; Denecke, Timm; Steffen, Ingo G. [Klinik für Radiologie, Campus Virchow-Klinikum, Charité – Universitätsmedizin, Berlin (Germany)

    2013-11-01

    Objective: To compare different three-dimensional volumetric algorithms (3D-algorithms) and RECIST for size measurement and response assessment in liver metastases from colorectal and pancreatic cancer. Methods: The volumes of a total of 102 liver metastases in 45 patients (pancreatic cancer, n = 22; colon cancer, n = 23) were estimated using three volumetric methods (seeded region growing method, slice-based segmentation, threshold-based segmentation) and the RECIST 1.1 method with volume calculation based on the largest axial diameter. Each measurement was performed three times by one observer. All four methods were applied to follow-up on 55 liver metastases in 29 patients undergoing systemic treatment (median follow-up, 3.5 months; range, 1–10 months). Analysis of variance (ANOVA) with post hoc tests was performed to analyze intraobserver variability and intermethod differences. Results: ANOVA showed significant higher volumes calculated according to the RECIST guideline compared to the other measurement methods (p < 0.001) with relative differences ranging from 0.4% to 41.1%. Intraobserver variability was significantly higher (p < 0.001) for RECIST and threshold based segmentation (3.6–32.8%) compared with slice segmentation (0.4–13.7%) and seeded region growing method (0.6–10.8%). In the follow-up study, the 3D-algorithms and the assessment following RECIST 1.1 showed a discordant classification of treatment response in 10–21% of the patients. Conclusions: This study supports the use of volumetric measurement methods due to significant higher intraobserver reproducibility compared to RECIST. Substantial discrepancies in tumor response classification between RECIST and volumetric methods depending on applied thresholds confirm the requirement of a consensus concerning volumetric criteria for response assessment.

  14. Conjugate transient natural convection in a cylindrical enclosure with internal volumetric heat generation

    International Nuclear Information System (INIS)

    Sharma, Anil Kumar; Velusamy, K.; Balaji, C.

    2008-01-01

    This paper reports the results of a numerical investigation of transient turbulent natural convection heat transfer from a volumetric energy generating source placed inside a cylindrical enclosure filled with low Prandtl number fluid (liquid sodium, Pr = 0.005). Two-dimensional conservation equations of mass, momentum and energy, coupled with the Boussinesq approximation, are solved using a finite volume based discretisation method employing the SIMPLE algorithm for the pressure velocity coupling. Turbulence is modeled using the k-ε model with physical boundary conditions. The study presents the transient features of confined turbulent natural convection, due to time varying generation of heat in the volumetric source. The intensity of heat source exponentially decays with time and the source is placed over circular plates with a central opening. Results obtained from the numerical model compare favorably with those reported in the literature for steady state natural convection. Numerical simulations are carried out to display the sequential evolution of flow and thermal fields and the maximum temperature reached in the source. The advantages of distributing the heat source on multi trays have been quantified

  15. Volumetric fast multipole method for modeling Schroedinger's equation

    International Nuclear Information System (INIS)

    Zhao, Zhiqin; Kovvali, Narayan; Lin, Wenbin; Ahn, Chang-Hoi; Couchman, Luise; Carin, Lawrence

    2007-01-01

    A volume integral equation method is presented for solving Schroedinger's equation for three-dimensional quantum structures. The method is applicable to problems with arbitrary geometry and potential distribution, with unknowns required only in the part of the computational domain for which the potential is different from the background. Two different Green's functions are investigated based on different choices of the background medium. It is demonstrated that one of these choices is particularly advantageous in that it significantly reduces the storage and computational complexity. Solving the volume integral equation directly involves O(N 2 ) complexity. In this paper, the volume integral equation is solved efficiently via a multi-level fast multipole method (MLFMM) implementation, requiring O(N log N) memory and computational cost. We demonstrate the effectiveness of this method for rectangular and spherical quantum wells, and the quantum harmonic oscillator, and present preliminary results of interest for multi-atom quantum phenomena

  16. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  17. Relations among stress, coping strategies, coping motives, alcohol consumption and related problems: a mediated moderation model.

    Science.gov (United States)

    Corbin, William R; Farmer, Nicole M; Nolen-Hoekesma, Susan

    2013-04-01

    Although prominent models of alcohol use and abuse implicate stress as an important motivator of alcohol consumption, research has not consistently identified a relationship between stress and drinking outcomes. Presumably stress leads to heavier alcohol consumption and related problems primarily for individuals who lack other adaptive methods for coping effectively with stressful experiences. To test this hypothesis, we examined four adaptive coping approaches (active coping, planning, suppression of competing activities, and restraint), as predictors of alcohol use and related problems as well as moderators of relations between stress and drinking outcomes in an undergraduate population (N=225). Further, we examined coping motives for drinking as potential mediators of the effects of coping strategies as well as stress by coping strategy interactions. Analyses supported both restraint and suppression of competing activities as moderators of the influence of stress on alcohol use but not problems. The stress by restraint interaction was also evident in the prediction of coping motives, and coping motives were related to higher levels of both weekly drinking and alcohol-related problems. Finally, coping motives for drinking served to mediate the stress by restraint interaction on weekly drinking. Overall, these results suggest that efforts to suppress competing activities and restrain impulsive responses in the face of stress may reduce the risk for heavy drinking during the transition from high school to college. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Relative sensitivity analysis of the predictive properties of sloppy models.

    Science.gov (United States)

    Myasnikova, Ekaterina; Spirov, Alexander

    2018-01-25

    Commonly among the model parameters characterizing complex biological systems are those that do not significantly influence the quality of the fit to experimental data, so-called "sloppy" parameters. The sloppiness can be mathematically expressed through saturating response functions (Hill's, sigmoid) thereby embodying biological mechanisms responsible for the system robustness to external perturbations. However, if a sloppy model is used for the prediction of the system behavior at the altered input (e.g. knock out mutations, natural expression variability), it may demonstrate the poor predictive power due to the ambiguity in the parameter estimates. We introduce a method of the predictive power evaluation under the parameter estimation uncertainty, Relative Sensitivity Analysis. The prediction problem is addressed in the context of gene circuit models describing the dynamics of segmentation gene expression in Drosophila embryo. Gene regulation in these models is introduced by a saturating sigmoid function of the concentrations of the regulatory gene products. We show how our approach can be applied to characterize the essential difference between the sensitivity properties of robust and non-robust solutions and select among the existing solutions those providing the correct system behavior at any reasonable input. In general, the method allows to uncover the sources of incorrect predictions and proposes the way to overcome the estimation uncertainties.

  19. Formation of algae growth constitutive relations for improved algae modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Drewry, Jessica Louise.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  20. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei

    2012-11-04

    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  1. Morphometric relations of fractal-skeletal based channel network model

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    1998-01-01

    Full Text Available A fractal-skeletal based channel network (F-SCN model is proposed. Four regular sided initiator-basins are transformed as second order fractal basins by following a specific generating mechanism with non-random rule. The morphological skeletons, hereafter referred to as channel networks, are extracted from these fractal basins. The morphometric and fractal relationships of these F-SCNs are shown. The fractal dimensions of these fractal basins, channel networks, and main channel lengths (computed through box counting method are compared with those of estimated length–area measures. Certain morphometric order ratios to show fractal relations are also highlighted.

  2. What a public-relations-model regarding radioactive waste implicates

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Teruaki [CRC Research Institute, Inc., Tokyo (Japan)]|[Energy Research Center Wakasa Bay, Fukui (Japan)

    1996-12-31

    The behavior of public attitude to radioactive waste with time was investigated by using a mathematical model which was developed for estimating the extent of attitude change, being based on the assumption that the change of public attitude to a certain subject is caused by the information environment mainly formed by the newsmedia. Investigations were also made on the extent the public relations activity can contribute to the change of public opinion for the radioactive waste, and on the method of assortment and execution of various types of activity which brings the maximum change of attitude under a given condition of budget.

  3. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  4. Reference volumetric samples of gamma-spectroscopic sources

    International Nuclear Information System (INIS)

    Taskaev, E.; Taskaeva, M.; Grigorov, T.

    1993-01-01

    The purpose of this investigation is to determine the requirements for matrices of reference volumetric radiation sources necessary for detector calibration. The first stage of this determination consists in analysing some available organic and nonorganic materials. Different sorts of food, grass, plastics, minerals and building materials have been considered, taking into account the various procedures of their processing (grinding, screening, homogenizing) and their properties (hygroscopy, storage life, resistance to oxidation during gamma sterilization). The procedures of source processing, sample preparation, matrix irradiation and homogenization have been determined. A rotation homogenizing device has been elaborated enabling to homogenize the matrix activity irrespective of the vessel geometry. 33 standard volumetric radioactive sources have been prepared: 14 - on organic matrix and 19 - on nonorganic matrix. (author)

  5. A feasibility study of digital tomosynthesis for volumetric dental imaging

    International Nuclear Information System (INIS)

    Cho, M K; Kim, H K; Youn, H; Kim, S S

    2012-01-01

    We present a volumetric dental tomography method that compensates for insufficient projection views obtained from limited-angle scans. The reconstruction algorithm is based on the backprojection filtering method which employs apodizing filters that reduce out-of-plane blur artifacts and suppress high-frequency noise. In order to accompolish this volumetric imaging two volume-reconstructed datasets are synthesized. These individual datasets provide two different limited-angle scans performed at orthogonal angles. The obtained reconstructed images, using less than 15% of the number of projection views needed for a full skull phantom scan, demonstrate the potential use of the proposed method in dental imaging applications. This method enables a much smaller radiation dose for the patient compared to conventional dental tomography.

  6. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A; Toga, Arthur W; Thompson, Paul M

    2011-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic "Demons" algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future.

  7. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  8. Volumetric velocity measurements on flows through heart valves

    Science.gov (United States)

    Troolin, Daniel; Amatya, Devesh; Longmire, Ellen

    2009-11-01

    Volumetric velocity fields inside two types of artificial heart valves were obtained experimentally through the use of volumetric 3-component velocimetry (V3V). Index matching was used to mitigate the effects of optical distortions due to interfaces between the fluid and curved walls. The steady flow downstream of a mechanical valve was measured and the results matched well with previously obtained 2D PIV results, such as those of Shipkowitz et al. (2002). Measurements upstream and downstream of a deformable silicone valve in a pulsatile flow were obtained and reveal significant three-dimensional features of the flow. Plots and movies will be shown, and a detailed discussion of the flow and various experimental considerations will be included. Reference: Shipkowitz, T, Ambrus J, Kurk J, Wickramasinghe K (2002) Evaluation technique for bileaflet mechanical valves. J. Heart Valve Disease. 11(2) pp. 275-282.

  9. Nonrigid registration of volumetric images using ranked order statistics

    DEFF Research Database (Denmark)

    Tennakoon, Ruwan; Bab-Hadiashar, Alireza; Cao, Zhenwei

    2014-01-01

    burden and increase the registration accuracy has become an intensive area of research. In this paper we propose a fast and accurate non-rigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find......Non-rigid image registration techniques using intensity based similarity measures are widely used in medical imaging applications. Due to high computational complexities of these techniques, particularly for volumetric images, finding appropriate registration methods to both reduce the computation...... the important regions for registration and use an appropriate sampling scheme to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments...

  10. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data

    OpenAIRE

    Fischer, Felix; Selver, M. Alper; Gezer, Sinem; Dicle, O?uz; Hillen, Walter

    2015-01-01

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant addi...

  11. In-Situ Spatial Variability Of Thermal Conductivity And Volumetric ...

    African Journals Online (AJOL)

    Studies of spatial variability of thermal conductivity and volumetric water content of silty topsoil were conduct-ed on a 0.6 ha site at Abeokuta, South-Western Nigeria. The thermal conductivity (k) was measured at depths of up to 0.06 m along four parallel profiles of 200 m long and at an average temperature of 25 C, using ...

  12. Co-delivery of micronized urinary bladder matrix damps regenerative capacity of minced muscle grafts in the treatment of volumetric muscle loss injuries.

    Directory of Open Access Journals (Sweden)

    Stephen M Goldman

    Full Text Available Minced muscle grafts (MG promote de novo muscle fiber regeneration and neuromuscular strength recovery in small and large animal models of volumetric muscle loss. The most noteworthy limitation of this approach is its reliance on a finite supply of donor tissue. To address this shortcoming, this study sought to evaluate micronized acellular urinary bladder matrix (UBM as a scaffolding to promote in vivo expansion of this MG therapy in a rat model. Rats received volumetric muscle loss injuries to the tibialis anterior muscle of their left hind limb which were either left untreated or repaired with minced muscle graft at dosages of 50% and 100% of the defect mass, urinary bladder matrix in isolation, or a with an expansion product consisting of a combination of the two putative therapies in which the minced graft is delivered at a dosage of 50% of the defect mass. Rats survived to 2 and 8 weeks post injury before functional (in vivo neuromuscular strength, histological, morphological, and biochemical analyses were performed. Rats treated with the expansion product exhibited improved neuromuscular function relative to untreated VML after an 8 week time period following injury. This improvement in functional capacity, however, was accompanied with a concomitant reduction in graft mediated regeneration, as evidenced cell lineage tracing enable by a transgenic GFP expressing donor, and a mixed histological outcome indicating coincident fibrous matrix deposition with interspersed islands of nascent muscle fibers. Furthermore, quantitative immunofluorescence and transcriptional analysis following the 2 week time point suggests an exacerbated immune response to the UBM as a possible nidus for the observed suboptimal regenerative outcome. Moving forward, efforts related to the development of a MG expansion product should carefully consider the effects of the host immune response to candidate biomaterials in order to avoid undesirable dysregulation of pro

  13. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against

  14. A Technique for Generating Volumetric Cine MRI (VC-MRI)

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose To develop a technique to generate on-board volumetric-cine MRI (VC-MRI) using patient prior images, motion modeling and on-board 2D-cine MRI. Methods One phase of a 4D-MRI acquired during patient simulation is used as patient prior images. 3 major respiratory deformation patterns of the patient are extracted from 4D-MRI based on principal-component-analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2D-cine MRI. The method was evaluated using both XCAT simulation of lung cancer patients and MRI data from four real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using Volume-Percent-Difference(VPD), Center-of-Mass-Shift(COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest(ROI) selection, patient breathing pattern change and noise on the estimation accuracy were also evaluated. Results Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was on average 8.43±1.52% and the COMS was on average 0.93±0.58mm across all time-steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR=20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions Preliminary studies demonstrated the

  15. A Technique for Generating Volumetric Cine-Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Wendy [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Ren, Lei, E-mail: lei.ren@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Cai, Jing [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Zhang, You [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Chang, Zheng; Yin, Fang-Fang [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2016-06-01

    Purpose: The purpose of this study was to develop a techique to generate on-board volumetric cine-magnetic resonance imaging (VC-MRI) using patient prior images, motion modeling, and on-board 2-dimensional cine MRI. Methods and Materials: One phase of a 4-dimensional MRI acquired during patient simulation is used as patient prior images. Three major respiratory deformation patterns of the patient are extracted from 4-dimensional MRI based on principal-component analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2-dimensional cine MRI. The method was evaluated using both digital extended-cardiac torso (XCAT) simulation of lung cancer patients and MRI data from 4 real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using volume-percent-difference (VPD), center-of-mass-shift (COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest (ROI) selection, patient breathing pattern change, and noise on the estimation accuracy were also evaluated. Results: Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between normalized profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was, on average, 8.43 ± 1.52% and the COMS was, on average, 0.93 ± 0.58 mm across all time steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against

  16. Novel swine model of transfusion-related acute lung injury.

    Science.gov (United States)

    Okazaki, Hitoshi; Ishikawa, Osamu; Iijima, Takehiko; Kohira, Takahiro; Teranishi, Mai; Kawasaki, Shin; Saito, Akira; Mikami, Yu; Sugiura, Asuka; Hashimoto, Shiho; Shimada, Eiko; Uchikawa, Makoto; Matsuhashi, Mika; Tsuno, Nelson H; Tanaka, Minoru; Kiyokawa, Nobutaka; Fujimoto, Junichiro; Nagase, Takahide; Tadokoro, Kenji; Takahashi, Koki

    2014-12-01

    Transfusion-related acute lung injury (TRALI) is a life-threatening complication of blood transfusion. Antibodies against human leukocyte antigens in donors' plasma are the major causes of TRALI. Several animal models of TRALI have been developed, and the mechanism underlying TRALI development has been extensively investigated using rodent models. Although sheep models of nonimmune TRALI have been developed, large-animal models of antibody-mediated TRALI are not yet available. To develop a swine model of TRALI, male Clawn strain miniature pigs were used. A monoclonal antibody (MoAb) against swine leukocyte antigens (SLAs) Class I (4G8, 0.3 or 1.0 mg/kg body weight [BW]) and a control antibody (1.0 mg/kg BW) were injected into the peripheral vein after priming with or without 1 μg/kg BW lipopolysaccharide (LPS; n = 3 each). Lung injury was assessed using PaO2 /FiO2 (P/F) ratio and by chest X-ray imaging. Histopathologic analysis was also conducted. Lung injury could be induced by injecting 4G8 at an amount of 1.0 mg/kg BW, after LPS. The P/F ratio 90 minutes after the administration of 4G8 significantly decreased (p Lung injury was confirmed by histopathologic analysis. Lung injury in pigs was successfully induced by anti-SLA MoAb. Priming with LPS is a prerequisite for inducing lung injury and the amount of the antibody is a critical condition. © 2014 AABB.

  17. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  18. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    Science.gov (United States)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  19. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    Science.gov (United States)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow

  20. Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Seitel, Alexander; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2015-03-01

    This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning approach is used for simultaneous localization and identification of vertebrae. The localized points are refined by local thresholding in the region of the detected vertebral column. Thereafter, a statistical multi-vertebrae model is initialized on the localized vertebrae. An iterative Expectation Maximization technique is used to register the vertebral body of the model to the image edges and obtain a segmentation of the lumbar vertebral bodies. The method is evaluated by applying to nine volumetric MR images of the spine. The results demonstrate 100% vertebra identification and a mean surface error of below 2.8 mm for 3D segmentation. Computation time is less than three minutes per high-resolution volumetric image.

  1. High-throughput volumetric reconstruction for 3D wheat plant architecture studies

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2016-09-01

    Full Text Available For many tiller crops, the plant architecture (PA, including the plant fresh weight, plant height, number of tillers, tiller angle and stem diameter, significantly affects the grain yield. In this study, we propose a method based on volumetric reconstruction for high-throughput three-dimensional (3D wheat PA studies. The proposed methodology involves plant volumetric reconstruction from multiple images, plant model processing and phenotypic parameter estimation and analysis. This study was performed on 80 Triticum aestivum plants, and the results were analyzed. Comparing the automated measurements with manual measurements, the mean absolute percentage error (MAPE in the plant height and the plant fresh weight was 2.71% (1.08cm with an average plant height of 40.07cm and 10.06% (1.41g with an average plant fresh weight of 14.06g, respectively. The root mean square error (RMSE was 1.37cm and 1.79g for the plant height and plant fresh weight, respectively. The correlation coefficients were 0.95 and 0.96 for the plant height and plant fresh weight, respectively. Additionally, the proposed methodology, including plant reconstruction, model processing and trait extraction, required only approximately 20s on average per plant using parallel computing on a graphics processing unit (GPU, demonstrating that the methodology would be valuable for a high-throughput phenotyping platform.

  2. Volumetric flow around a swimming lamprey

    Science.gov (United States)

    Lehn, Andrea M.; Colin, Sean P.; Costello, John H.; Leftwich, Megan C.; Tytell, Eric D.

    2015-11-01

    A primary experimental technique for studying fluid-structure interactions around swimming fish has been planar dimensional particle image velocimetry (PIV). Typically, two components of the velocity vector are measured in a plane, in the case of swimming studies, directly behind the animal. While useful, this approach provides little to no insight about fluid structure interactions above and below the fish. For fish with a small height relative to body length, such as the long and approximately cylindrical lamprey, 3D information is essential to characterize how these fish interact with their fluid environment. This study presents 3D flow structures along the body and in the wake of larval lamprey, P etromyzon m arinus , which are 10-15 cm long. Lamprey swim through a 1000 cm3 field of view in a standard 10 gallon tank illuminated by a green laser. Data are collected using the three component velocimeter V3V system by TSI, Inc. and processed using Insight 4G software. This study expands on previous works that show two pairs of vortices each tail beat in the mid-plane of the lamprey wake. NSF DMS 1062052.

  3. General relativity cosmological models without the big bang

    International Nuclear Information System (INIS)

    Rosen, N.

    1985-01-01

    Attention is given to the so-called standard model of the universe in the framework of the general theory of relativity. This model is taken to be homogeneous and isotropic and filled with an ideal fluid characterized by a density and a pressure. Taking into consideration, however, the assumption that the universe began in a singular state, it is found hard to understand why the universe is so nearly homogeneous and isotropic at present for a singularity represents a breakdown of physical laws, and the initial singularity cannot, therefore, predetermine the subsequent symmetries of the universe. The present investigation has the objective to find a way of avoiding this initial singularity, i.e., to look for a cosmological model without the big bang. The idea is proposed that there exists a limiting density of matter of the order of magnitude of the Planck density, and that this was the density of matter at the moment at which the universe began to expand

  4. Cellular models and therapies for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    David L. Forest

    2015-05-01

    Full Text Available Age-related macular degeneration (AMD is a complex neurodegenerative visual disorder that causes profound physical and psychosocial effects. Visual impairment in AMD is caused by the loss of retinal pigmented epithelium (RPE cells and the light-sensitive photoreceptor cells that they support. There is currently no effective treatment for the most common form of this disease (dry AMD. A new approach to treating AMD involves the transplantation of RPE cells derived from either human embryonic or induced pluripotent stem cells. Multiple clinical trials are being initiated using a variety of cell therapies. Although many animal models are available for AMD research, most do not recapitulate all aspects of the disease, hampering progress. However, the use of cultured RPE cells in AMD research is well established and, indeed, some of the more recently described RPE-based models show promise for investigating the molecular mechanisms of AMD and for screening drug candidates. Here, we discuss innovative cell-culture models of AMD and emerging stem-cell-based therapies for the treatment of this vision-robbing disease.

  5. New extended standard model, dark matters and relativity theory

    Science.gov (United States)

    Hwang, Jae-Kwang

    2016-03-01

    Three-dimensional quantized space model is newly introduced as the extended standard model. Four three-dimensional quantized spaces with total 12 dimensions are used to explain the universes including ours. Electric (EC), lepton (LC) and color (CC) charges are defined to be the charges of the x1x2x3, x4x5x6 and x7x8x9 warped spaces, respectively. Then, the lepton is the xi(EC) - xj(LC) correlated state which makes 3x3 = 9 leptons and the quark is the xi(EC) - xj(LC) - xk(CC) correlated state which makes 3x3x3 = 27 quarks. The new three bastons with the xi(EC) state are proposed as the dark matters seen in the x1x2x3 space, too. The matter universe question, three generations of the leptons and quarks, dark matter and dark energy, hadronization, the big bang, quantum entanglement, quantum mechanics and general relativity are briefly discussed in terms of this new model. The details can be found in the article titled as ``journey into the universe; three-dimensional quantized spaces, elementary particles and quantum mechanics at https://www.researchgate.net/profile/J_Hwang2''.

  6. Application distribution model and related security attacks in VANET

    Science.gov (United States)

    Nikaein, Navid; Kanti Datta, Soumya; Marecar, Irshad; Bonnet, Christian

    2013-03-01

    In this paper, we present a model for application distribution and related security attacks in dense vehicular ad hoc networks (VANET) and sparse VANET which forms a delay tolerant network (DTN). We study the vulnerabilities of VANET to evaluate the attack scenarios and introduce a new attacker`s model as an extension to the work done in [6]. Then a VANET model has been proposed that supports the application distribution through proxy app stores on top of mobile platforms installed in vehicles. The steps of application distribution have been studied in detail. We have identified key attacks (e.g. malware, spamming and phishing, software attack and threat to location privacy) for dense VANET and two attack scenarios for sparse VANET. It has been shown that attacks can be launched by distributing malicious applications and injecting malicious codes to On Board Unit (OBU) by exploiting OBU software security holes. Consequences of such security attacks have been described. Finally, countermeasures including the concepts of sandbox have also been presented in depth.

  7. Volumetric humidity timely variation, at different depths, in soils of a toposequence of the Reconcavo Baiano - Brazil

    International Nuclear Information System (INIS)

    Ribeiro, Antonio Carlos; Costa, Liovando Marciano da; Paiva, Arlicelio de Queiroz; Souza, Luciano da Silva; Santana, Marlete Bastos

    1997-01-01

    Aiming the time basis volumetric humidity evaluation, at different depths, the present work has been developed in a Reconcavo Baiano toposequence consisting of three different soils, in accordance with the distances from the toposequence begin. A neutron probe has been used for determination of the soil water contents. The relative counting of the neutron probe has been converted to gravimetric humidity by using regression equation for each type of soil

  8. A 4 MV flattening filter-free beam: commissioning and application to conformal therapy and volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Stevens, S W; Rosser, K E; Bedford, J L

    2011-01-01

    Recent studies have indicated that radiotherapy treatments undertaken on a flattening filter-free (FFF) linear accelerator have a number of advantages over treatments undertaken on a conventional linear accelerator. In addition, 4 MV photon beams may give improved isodose coverage for some treatment volumes at air/tissue interfaces, compared to when utilizing the clinical standard of 6 MV photons. In order to investigate these benefits, FFF beams were established on an Elekta Beam Modulator linear accelerator for 4 MV photons. Commissioning beam data were obtained for open and wedged fields. The measured data were then imported into a treatment planning system and a beam model was commissioned. The beam model was optimized to improve dose calculations at shallow, clinically relevant depths. Following verification, the beam model was utilized in a treatment planning study, including volumetric modulated arc therapy, for a selection of lung, breast/chest wall and larynx patients. Increased dose rates of around 800 MU min -1 were recorded for open fields (relative to 320 MU min -1 for filtered open fields) and reduced head scatter was inferred from output factor measurements. Good agreement between planned and delivered dose was observed in verification of treatment plans. The planning study indicated that with a FFF beam, equivalent (and in some cases improved) isodose profiles could be achieved for small lung and larynx treatment volumes relative to 4 MV filtered treatments. Furthermore, FFF treatments with wedges could be replicated using open fields together with an 'effective wedge' technique and isocentre shift. Clinical feasibility of a FFF beam was therefore demonstrated, with beam modelling, treatment planning and verification being successfully accomplished.

  9. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    in coolability. By contrast, in comparison to the open (non-perforated) downcomer the measured dryout heat flux was reduced by 40% to 956 kW/m{sup 2}. However, both downcomer configurations lead to a better coolability in comparison to the reference case of pure top-flooding (dryout heat flux = 738 kW/m{sup 2}). The dryout heat flux values along with the pressure-drop data can further be used for the validation of numerical models used in simulation codes.

  10. Related work on reference modeling for collaborative networks

    NARCIS (Netherlands)

    Afsarmanesh, H.; Camarinha-Matos, L.M.; Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Several international research and development initiatives have led to development of models for organizations and organization interactions. These models and their approaches constitute a background for development of reference models for collaborative networks. A brief survey of work on modeling

  11. Computational simulation of turbulent natural convection in a volumetrically heated square cavity

    International Nuclear Information System (INIS)

    Vieira, Camila Braga; Su, Jian; Niceno, Bojan

    2012-01-01

    This work aims to analyze the turbulent natural convection in a volumetrically heated fluid with similar characteristics of an oxide layer of a molten core in the lower head of the pressure vessel. The simulations were carried out in a square cavity with isothermal walls, for Rayleigh numbers (Ra) ranging from 10 9 to 10 11 . Different turbulence models based on Reynolds Averaged Navier-Stokes equations were studied, such as the standard k - ε, low-Reynolds-k - ε, and Shear Stress Transport (SST), using the open-source Computational Fluid Dynamics (CFD) code - Open FOAM (Open Field Operation and Manipulation). The results of the three turbulence models were compared versus the results of experimental correlations and other authors’ simulations, and the conclusion was that the most promising model proves to be the SST, due to its accuracy and robustness. (author)

  12. Modelling the genetic risk in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Felix Grassmann

    Full Text Available Late-stage age-related macular degeneration (AMD is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69-2.05 than patients aged 75 and above (1.45, 95% CI: 1.36-1.54. Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11-1131.96 for individuals in the highest category (GRS 3.44-5.18, 0.5% of the general population compared to subjects with the most common genetic background (GRS -0.05-1.70, 40.2% of general population. The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available.

  13. Hildegard E. Peplau in model medosebnih odnosov: Hildegard E. Peplau and the model interpersonal relations:

    OpenAIRE

    Ramšak-Pajk, Jožica

    2000-01-01

    The first part of the article shortly introduces Hildegard Peplau and defines her theory of interpersonal relations between nurse and patient. The four phases of the theory and the different roles, which the nurse takes through them, are described. In conclusion the article discusses the possibility of the application of the model of interpersonal relations to the nursing process. The conclusion emphasizes the value of the use of the mentioned modeland effective communication between nurse an...

  14. Methodological proposal for the volumetric study of archaeological ceramics through 3D edition free-software programs: the case of the celtiberians cemeteries of the meseta

    Directory of Open Access Journals (Sweden)

    Álvaro Sánchez Climent

    2014-10-01

    Full Text Available Nowadays the free-software programs have been converted into the ideal tools for the archaeological researches, reaching the same level as other commercial programs. For that reason, the 3D modeling tool Blender has reached in the last years a great popularity offering similar characteristics like other commercial 3D editing programs such as 3D Studio Max or AutoCAD. Recently, it has been developed the necessary script for the volumetric calculations of three-dimnesional objects, offering great possibilities to calculate the volume of the archaeological ceramics. In this paper, we present a methodological approach for the volumetric studies with Blender and a study case of funerary urns from several celtiberians cemeteries of the Spanish Meseta. The goal is to demonstrate the great possibilities that the 3D editing free-software tools have in the volumetric studies at the present time.

  15. On quark model relations for hypercharge-exchange reactions

    International Nuclear Information System (INIS)

    Kluyver, J.C.; Blokzijl, R.; Massaro, G.G.G.; Wolters, G.F.; Grossmann, P.; Lamb, P.R.; Wells, J.

    1978-01-01

    Peripheral two-body reactions of the type K - p → M 0 + Λ, Σ 0 or Σ 0 (1385) are considered. Predictions based on the additive quark model and SU(6) baryon wave functions are tested against data on cross sections and polarisations for given momentum transfer. Data obtained in a high statistics experiment at 4.2 GeV/c K - momentum, as well as data from a large variety of other experiments are used. Highly significant violations of these predictions are observed in the data. These violations are shown to occur in a systematic fashion, according to which SU(6) must be relaxed, but the amplitude structure implied by additivity would remain valid. As an application an amplitude analysis for natural parity exchange reactions with M 0 = π, phi and rho respectively is performed, which determines a relative phase, which cannot be obtained in model-independent analysis. Also reactions with M 0 = delta or B are considered, and some implications for coupling constants are discussed. (Auth.)

  16. Modelling lifestyle effects on energy demand and related emissions

    International Nuclear Information System (INIS)

    Weber, C.

    2000-01-01

    An approach to analyse and quantify the impact of lifestyle factors on current and future energy demand is developed. Thereby not only directly environmentally relevant consumer activities such as car use or heating have been analysed, but also expenditure patterns which induce environmental damage through the production of the consumed goods. The use of household survey data from the national statistical offices offers the possibility to cover this wide range of activities. For the available social-economic household characteristics a variety of different behavioural patterns have been observed. For evaluating the energy and emission consequences of the consumed goods enhanced input-output models are used. The additions implemented - a mixed monetary-energetic approach for inter-industry flows and a separate treatment of transport -related emissions - improve the reliability of the obtained results. The developed approach has been used for analysing current emissions profiles and distributions in West Germany, France and the Netherlands as well as scenarios for future energy demand and related emissions. It therefore provides a comprehensive methodology to analyse environmental effects in a consumer and citizen perspective and thus contributes to an increase transparency of complex economic and ecological interconnections. (author)

  17. Zebrafish as a Model to Investigate Dynamin 2-Related Diseases.

    Science.gov (United States)

    Bragato, Cinzia; Gaudenzi, Germano; Blasevich, Flavia; Pavesi, Giulio; Maggi, Lorenzo; Giunta, Michele; Cotelli, Franco; Mora, Marina

    2016-02-04

    Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM) and dominant intermediate Charcot-Marie-Tooth (CMT) neuropathy type B (CMTDIB). As the relation between these DNM2-related diseases is poorly understood, we used zebrafish to investigate the effects of two different DNM2 mutations. First we identified a new alternatively spliced zebrafish dynamin-2a mRNA (dnm2a-v2) with greater similarity to human DNM2 than the deposited sequence. Then we knocked-down the zebrafish dnm2a, producing defects in muscle morphology. Finally, we expressed two mutated DNM2 mRNA by injecting zebrafish embryos with human mRNAs carrying the R522H mutation, causing CNM, or the G537C mutation, causing CMT. Defects arose especially in secondary motor neuron formation, with incorrect branching in embryos injected with CNM-mutated mRNA, and total absence of branching in those injected with CMT-mutated mRNA. Muscle morphology in embryos injected with CMT-mutated mRNA appeared less regularly organized than in those injected with CNM-mutated mRNA. Our results showing, a continuum between CNM and CMTDIB phenotypes in zebrafish, similarly to the human conditions, confirm this animal model to be a powerful tool to investigate mutations of DNM2 in vivo.

  18. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  19. Quantitative Volumetric Imaging and Clinical Outcome Characterization of Symptomatic Concussion in 10- to 14-Year-Old Adolescent Athletes.

    Science.gov (United States)

    Mac Donald, Christine L; Barber, Jason; Wright, Jason; Coppel, David; De Lacy, Nina; Ottinger, Steve; Peck, Suzanne; Panks, Chris; Zalewski, Kody; Sun, Samantha; Temkin, Nancy

    2018-01-30

    Prior work suggests that younger athletes may be more vulnerable to postconcussive syndrome. We investigated measures of clinical outcome and quantitative volumetric imaging in 10- to 14-year-old adolescent athletes to better understand the impact of concussion on this younger population. Outpatient clinics. Ten- to 14-year-old symptomatic pediatric sports concussion patients and typically developing active controls. Prospective, observational multiclinic study. Demographics, magnetic resonance imaging, clinical assessments (neurocognitive function, postconcussive symptoms, mental health symptoms, quality of life). Neuropsychological performance was comparable between groups while symptoms of mental health were discriminating and comprised the top regression model describing factors related to overall health behavior impairment. Concussion patients had smaller total brain volume as well as total intracranial volume in comparison with controls even though there was no difference on measures of natural development (age, height, weight, education, gender, and handedness). Findings indicate that 10- to 14-year-old concussion patients symptomatic at 1 month more likely exhibit mental health symptoms impairing health behavior than cognitive dysfunction. There may be a vulnerability for those with smaller brain volumes at the time of the exposure. The study provides new data to support further investigation into risk factors for prolonged symptoms in this younger athlete population.

  20. Volumetric optoacoustic imaging feedback during endovenous laser therapy - an ex vivo investigation.

    Science.gov (United States)

    Fehm, Thomas Felix; Deán-Ben, Xosé Luís; Schaur, Peter; Sroka, Ronald; Razansky, Daniel

    2016-09-01

    Endovenous laser therapy (ELT) was introduced in clinical practice for treating incompetent veins about fifteen years ago. Despite the considerable clinical evidence collected so far, no rigorous guidelines are yet available regarding the optimal energy deposition protocols while incidence of recanalization, lack of vessel occlusion and collateral damage remains variable among patients. Online monitoring and feedback-based control over the lesion progression may improve clinical outcomes. Yet the currently employed monitoring tools, such as Doppler ultrasound, often do not provide sufficient contrast as well as three-dimensional imaging capacity for accurate lesion assessment during thermal treatments. Here we investigate on the utility of volumetric optoacoustic tomography for real-time monitoring of the ELT procedures. Experiments performed in subcutaneous veins of an ox foot model revealed the accurate spatio-temporal maps of the lesion progression and characteristics of the vessel wall. Optoacoustic images further correlated with the temperature elevation measured in the area adjacent to the coagulation spot and made it possible to track the position of the fiber tip during its pull back in real time and in all three dimensions. Overall, we showcase that volumetric optoacoustic tomography is a promising tool for providing online feedback during endovenous laser therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Single camera volumetric velocimetry in aortic sinus with a percutaneous valve

    Science.gov (United States)

    Clifford, Chris; Thurow, Brian; Midha, Prem; Okafor, Ikechukwu; Raghav, Vrishank; Yoganathan, Ajit

    2016-11-01

    Cardiac flows have long been understood to be highly three dimensional, yet traditional in vitro techniques used to capture these complexities are costly and cumbersome. Thus, two dimensional techniques are primarily used for heart valve flow diagnostics. The recent introduction of plenoptic camera technology allows for traditional cameras to capture both spatial and angular information from a light field through the addition of a microlens array in front of the image sensor. When combined with traditional particle image velocimetry (PIV) techniques, volumetric velocity data may be acquired with a single camera using off-the-shelf optics. Particle volume pairs are reconstructed from raw plenoptic images using a filtered refocusing scheme, followed by three-dimensional cross-correlation. This technique was applied to the sinus region (known for having highly three-dimensional flow structures) of an in vitro aortic model with a percutaneous valve. Phase-locked plenoptic PIV data was acquired at two cardiac outputs (2 and 5 L/min) and 7 phases of the cardiac cycle. The volumetric PIV data was compared to standard 2D-2C PIV. Flow features such as recirculation and stagnation were observed in the sinus region in both cases.

  2. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

    Science.gov (United States)

    Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin

    2018-03-01

    We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

  3. Three-Dimensional Ultrasound Versus Computerized Tomography in Fat Graft Volumetric Analysis.

    Science.gov (United States)

    Blackshear, Charles Philip; Rector, Michael Anthony; Chung, Natalie Narie; Irizarry, Dre Michael; Flacco, John Stephen; Brett, Elizabeth Anne; Momeni, Arash; Lee, Gordon Kwanlyp; Longaker, Michael T; Wan, Derrick C

    2018-03-01

    Studies evaluating fat grafting in mice have frequently used micro-computed tomography (micro-CT) as an accurate radiographic tool to measure longitudinal volume retention without killing the animal. Over the past decade, however, microultrasonography has emerged as an equally powerful preclinical imaging tool. Given their respective strengths in 3-dimensional reconstruction, there is no study to our knowledge that directly compares micro-CT with microultrasound in volumetric analysis. In this study, we compared the performance of micro-CT with microultrasound in the evaluation of adipose tissue graft volume in a murine model. Fifteen immunodeficient mice were given 200 μL of adipose tissue grafts. In vivo volumetric analysis of the grafts by micro-CT and microultrasound was conducted at discrete time points up to postoperative day 105. Three mice were killed at multiple time points, and explanted grafts were reimaged by CT and ultrasound, as mentioned previously. Analysis revealed that in vivo graft volumes measured by micro-CT do not differ significantly from those of microultrasound. Furthermore, both micro-CT and microultrasound were capable of accurately measuring fat grafts as in vivo volumes closely correlated with explanted volumes. Finally, ultrasound was found to yield improved soft tissue contrast compared with micro-CT. Therefore, either modality may be used, depending on experimental needs.

  4. Integrating Health Belief Model and Technology Acceptance Model: An Investigation of Health-Related Internet Use

    Science.gov (United States)

    2015-01-01

    Background Today, people use the Internet to satisfy health-related information and communication needs. In Malaysia, Internet use for health management has become increasingly significant due to the increase in the incidence of chronic diseases, in particular among urban women and their desire to stay healthy. Past studies adopted the Technology Acceptance Model (TAM) and Health Belief Model (HBM) independently to explain Internet use for health-related purposes. Although both the TAM and HBM have their own merits, independently they lack the ability to explain the cognition and the related mechanism in which individuals use the Internet for health purposes. Objective This study aimed to examine the influence of perceived health risk and health consciousness on health-related Internet use based on the HBM. Drawing on the TAM, it also tested the mediating effects of perceived usefulness of the Internet for health information and attitude toward Internet use for health purposes for the relationship between health-related factors, namely perceived health risk and health consciousness on health-related Internet use. Methods Data obtained for the current study were collected using purposive sampling; the sample consisted of women in Malaysia who had Internet access. The partial least squares structural equation modeling method was used to test the research hypotheses developed. Results Perceived health risk (β=.135, t 1999=2.676) and health consciousness (β=.447, t 1999=9.168) had a positive influence on health-related Internet use. Moreover, perceived usefulness of the Internet and attitude toward Internet use for health-related purposes partially mediated the influence of health consciousness on health-related Internet use (β=.025, t 1999=3.234), whereas the effect of perceived health risk on health-related Internet use was fully mediated by perceived usefulness of the Internet and attitude (β=.029, t 1999=3.609). These results suggest the central role of

  5. The puzzle of the 1996 Bárdarbunga, Iceland, earthquake: no volumetric component in the source mechanism

    Science.gov (United States)

    Tkalcic, Hrvoje; Dreger, Douglas S.; Foulger, Gillian R.; Julian, Bruce R.

    2009-01-01

    A volcanic earthquake with Mw 5.6 occurred beneath the Bárdarbunga caldera in Iceland on 29 September 1996. This earthquake is one of a decade-long sequence of  events at Bárdarbunga with non-double-couple mechanisms in the Global Centroid Moment Tensor catalog. Fortunately, it was recorded well by the regional-scale Iceland Hotspot Project seismic experiment. We investigated the event with a complete moment tensor inversion method using regional long-period seismic waveforms and a composite structural model. The moment tensor inversion using data from stations of the Iceland Hotspot Project yields a non-double-couple solution with a 67% vertically oriented compensated linear vector dipole component, a 32% double-couple component, and a statistically insignificant (2%) volumetric (isotropic) contraction. This indicates the absence of a net volumetric component, which is puzzling in the case of a large volcanic earthquake that apparently is not explained by shear slip on a planar fault. A possible volcanic mechanism that can produce an earthquake without a volumetric component involves two offset sources with similar but opposite volume changes. We show that although such a model cannot be ruled out, the circumstances under which it could happen are rare.

  6. Impact of electricity prices and volumetric water allocation on energy and groundwater demand management: analysis from Western India

    International Nuclear Information System (INIS)

    Kumar, M.D.

    2005-01-01

    In recent years, power tariff policy has been increasingly advocated as a mean to influence groundwater use and withdrawal decisions of farmers in view of the failure of existing direct and indirect regulations on groundwater withdrawal in India. Many researchers argue that pro rata electricity tariff, with built in positive marginal cost of pumping could bring about efficient use of the resource, though some argue that the levels of tariff in which demand becomes elastic to pricing are too high to be viable from political and socio-economic points of view. The paper presents a theoretical model to analyze farmers' response to changes in power tariff and water allocation regimes vis a vis energy and groundwater use. It validates the model by analyzing water productivity in groundwater irrigation under different electricity pricing structures and water allocation regimes. Water productivity was estimated using primary data of gross crop inputs, cost of all inputs, and volumetric water inputs. The analysis shows that unit pricing of electricity influences groundwater use efficiency and productivity positively. It also shows that the levels of pricing at which demand for electricity and groundwater becomes elastic to tariff are socio-economically viable. Further, water productivity impacts of pricing would be highest when water is volumetrically allocated with rationing. Therefore, an effective power tariff policy followed by enforcement of volumetric water allocation could address the issue of efficiency, sustainability and equity in groundwater use in India

  7. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    Science.gov (United States)

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  8. What are the potential advantages and disadvantages of volumetric CT scanning?

    Science.gov (United States)

    Voros, Szilard

    2009-01-01

    After the introduction and dissemination of 64-slice multislice computed tomography systems, cardiovascular CT has arrived at a crossroad, and different philosophies lead down different paths of technologic development. Increased number of detector rows in the z-axis led to the introduction of dynamic, volumetric scanning of the heart and allows for whole-organ imaging. Dynamic, volumetric "whole-organ" scanning significantly reduces image acquisition time; "single-beat whole-heart imaging" results in improved image quality and reduced radiation exposure and reduced contrast dose. It eliminates helical and pitch artifacts and allows for simultaneous imaging of the base and apex of the heart. Beyond coronary arterial luminal imaging, such innovations open up the opportunity for myocardial perfusion and viability imaging and coronary arterial plaque imaging. Dual-source technology with 2 x-ray tubes placed at 90-degree angles provides heart rate-independent temporal resolution and has the potential for tissue characterization on the basis of different attenuation values at different energy levels. Refined detector technology allows for improved low-contrast resolution and may be beneficial for more detailed evaluation of coronary arterial plaque composition. The clinical benefit of each of these technologies will have to be evaluated in carefully designed clinical trials and in everyday clinical practice. Such combined experience will probably show the relative benefit of each of these philosophies in different patient populations and in different clinical scenarios.

  9. Volumetric Evaluation of the Mammary Gland and Pectoralis Major Muscle following Subglandular and Submuscular Breast Augmentation.

    Science.gov (United States)

    Roxo, Ana Claudia Weck; Nahas, Fabio Xerfan; Salin, Renan; de Castro, Claudio Cardoso; Aboudib, Jose Horacio; Marques, Ruy Garcia

    2016-01-01

    Besides being a procedure with high level of patient satisfaction, one of the main causes for reoperation after breast augmentation is related to contour deformities and changes in breast volume. Few objective data are available on postoperative volumetric analysis following breast augmentation. The aim of this study was to evaluate volume changes in the breast parenchyma and pectoralis major muscle after breast augmentation with the placement of silicone implants in the subglandular and submuscular planes. Fifty-eight women were randomly allocated either to the subglandular group (n = 24) or submuscular group (n = 24) and underwent breast augmentation in the subglandular or submuscular plane, respectively, or to a control group (n = 10) and received no intervention. Volumetric magnetic resonance imaging was performed at inclusion in all participants and either after 6 and 12 months in the control group or at 6 and 12 months after surgery in the intervention groups. Twelve months after breast augmentation, only the subglandular group had a significant reduction in glandular volume (mean, 22.8 percent), while patients in the submuscular group were the only ones showing significant reduction in muscle volume (mean, 49.80 percent). Atrophy of the breast parenchyma occurred after subglandular breast augmentation, but not following submuscular breast augmentation. In contrast, submuscular breast augmentation caused atrophy of the pectoralis major muscle. Therapeutic, II.

  10. Volumetric capnography: In the diagnostic work-up of chronic thromboembolic disease

    Directory of Open Access Journals (Sweden)

    Marcos Mello Moreira

    2010-05-01

    Full Text Available Marcos Mello Moreira1, Renato Giuseppe Giovanni Terzi1, Laura Cortellazzi2, Antonio Luis Eiras Falcão1, Heitor Moreno Junior2, Luiz Cláudio Martins2, Otavio Rizzi Coelho21Department of Surgery, 2Department of Internal Medicine, State University of Campinas, School of Medical Sciences, Campinas, Sao Paulo, BrazilAbstract: The morbidity and mortality of pulmonary embolism (PE have been found to be related to early diagnosis and appropriate treatment. The examinations used to diagnose PE are expensive and not always easily accessible. These options include noninvasive examinations, such as clinical pretests, ELISA D-dimer (DD tests, and volumetric capnography (VCap. We report the case of a patient whose diagnosis of PE was made via pulmonary arteriography. The clinical pretest revealed a moderate probability of the patient having PE, and the DD result was negative; however, the VCap associated with arterial blood gases result was positive. The patient underwent all noninvasive exams following admission to hospital and again eight months after discharge. Results gained from invasive tests were similar to those produced by image exams, highlighting the importance of VCap as an important noninvasive tool.Keywords: pulmonary embolism, pulmonary hypertension, volumetric capnography, d-dimers, pretest probability

  11. Relating the new language models of information retrieval to the traditional retrieval models

    NARCIS (Netherlands)

    Hiemstra, Djoerd; de Vries, A.P.

    During the last two years, exciting new approaches to information retrieval were introduced by a number of different research groups that use statistical language models for retrieval. This paper relates the retrieval algorithms suggested by these approaches to widely accepted retrieval algorithms

  12. Volumetric index of Tl-201 uptake in symptomatic patients after high - dose radiation treatment for high-grade gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P.A.; Garada, B.M.; Loeffler, J.S. [Brigham and Womens Hospital, Boston, MA (United States)]|[Harvard Medical School, Boston, MA (United States)] [and others

    1995-05-01

    To verify the utility of a volumetric estimation of Tl-201 uptake in the context of possible astrocytoma recurrence after surgery, radiotherapy plus stereotactic boost (radiosurgery/brachitherapy), we analyzed sequential Tl-201/Tc99m-HMPAO brain SPECT studies of 28 patients (18 m/10 f). These were categorized as having tumor mass recurrence (TM), infiltrating tumor cells but no definite tumor mass (IT), or radiation changes and necrosis (RCN) after stereotactic biopsy and/or craniotomy. SPECT studies were obtained with a high-resolution dedicated gamma camera (CERASPECT, Digital Scinitgraphics, Inc.) and image acquisition was performed after intravenous Tl-201 (18.5 MBq) and Tc-99m HMPAO (740 MBq). In order to include relevant information about tumor burden, a volumetric index of Tl-201 uptake was expressed in cm{sup 3} related to voxel size (4.6 x 10{sup -3} cc) within an elliptical ROI that included the tumor area. Only voxels with a threshold {ge} 2 in relation to the average scalp Tl-201 uptake were included and this total number of voxels expressed in cc was compared to previously established maximal tumor/scalp Tl-201 uptake ratios (T/S) and histopathology. Results are presented as the median (min-max) and differences were considered significant for p<0.05. Differences were significant between all groups for both ratios and volume indices and correlation between the two variables was 0.90. In conclusion, the volumetric index of Tl-201 is similar to the maximal Tl-201 T/S ratios in discriminating tumor recurrence and radiation necrosis, suggesting a future role for the volumetric index estimation in the evaluation of treatment efficacy and patient follow-up.

  13. A method for volumetric imaging in radiotherapy using single x-ray projection

    International Nuclear Information System (INIS)

    Xu, Yuan; Yan, Hao; Ouyang, Luo; Wang, Jing; Jiang, Steve B.; Jia, Xun; Zhou, Linghong; Cervino, Laura

    2015-01-01

    Purpose: It is an intriguing problem to generate an instantaneous volumetric image based on the corresponding x-ray projection. The purpose of this study is to develop a new method to achieve this goal via a sparse learning approach. Methods: To extract motion information hidden in projection images, the authors partitioned a projection image into small rectangular patches. The authors utilized a sparse learning method to automatically select patches that have a high correlation with principal component analysis (PCA) coefficients of a lung motion model. A model that maps the patch intensity to the PCA coefficients was built along with the patch selection process. Based on this model, a measured projection can be used to predict the PCA coefficients, which are then further used to generate a motion vector field and hence a volumetric image. The authors have also proposed an intensity baseline correction method based on the partitioned projection, in which the first and the second moments of pixel intensities at a patch in a simulated projection image are matched with those in a measured one via a linear transformation. The proposed method has been validated in both simulated data and real phantom data. Results: The algorithm is able to identify patches that contain relevant motion information such as the diaphragm region. It is found that an intensity baseline correction step is important to remove the systematic error in the motion prediction. For the simulation case, the sparse learning model reduced the prediction error for the first PCA coefficient to 5%, compared to the 10% error when sparse learning was not used, and the 95th percentile error for the predicted motion vector was reduced from 2.40 to 0.92 mm. In the phantom case with a regular tumor motion, the predicted tumor trajectory was successfully reconstructed with a 0.82 mm error for tumor center localization compared to a 1.66 mm error without using the sparse learning method. When the tumor motion

  14. Agreement of mammographic measures of volumetric breast density to MRI.

    Directory of Open Access Journals (Sweden)

    Jeff Wang

    Full Text Available Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known.To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population.Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume.Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2 values ranging from 0.40 (log fibroglandular volume to 0.91 (total breast volume. Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63, but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume.Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  15. Agreement of mammographic measures of volumetric breast density to MRI.

    Science.gov (United States)

    Wang, Jeff; Azziz, Ania; Fan, Bo; Malkov, Serghei; Klifa, Catherine; Newitt, David; Yitta, Silaja; Hylton, Nola; Kerlikowske, Karla; Shepherd, John A

    2013-01-01

    Clinical scores of mammographic breast density are highly subjective. Automated technologies for mammography exist to quantify breast density objectively, but the technique that most accurately measures the quantity of breast fibroglandular tissue is not known. To compare the agreement of three automated mammographic techniques for measuring volumetric breast density with a quantitative volumetric MRI-based technique in a screening population. Women were selected from the UCSF Medical Center screening population that had received both a screening MRI and digital mammogram within one year of each other, had Breast Imaging Reporting and Data System (BI-RADS) assessments of normal or benign finding, and no history of breast cancer or surgery. Agreement was assessed of three mammographic techniques (Single-energy X-ray Absorptiometry [SXA], Quantra, and Volpara) with MRI for percent fibroglandular tissue volume, absolute fibroglandular tissue volume, and total breast volume. Among 99 women, the automated mammographic density techniques were correlated with MRI measures with R(2) values ranging from 0.40 (log fibroglandular volume) to 0.91 (total breast volume). Substantial agreement measured by kappa statistic was found between all percent fibroglandular tissue measures (0.72 to 0.63), but only moderate agreement for log fibroglandular volumes. The kappa statistics for all percent density measures were highest in the comparisons of the SXA and MRI results. The largest error source between MRI and the mammography techniques was found to be differences in measures of total breast volume. Automated volumetric fibroglandular tissue measures from screening digital mammograms were in substantial agreement with MRI and if associated with breast cancer could be used in clinical practice to enhance risk assessment and prevention.

  16. Method for Determining Volumetric Efficiency and Its Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ambrozik Andrzej

    2017-12-01

    Full Text Available Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, in which non-stationary processes occur. To make calculations of thermodynamic parameters of the engine operating cycle, based on the comparison of cycles, it is necessary to know the mean constant value of cylinder pressure throughout this process. Because of the character of in-cylinder pressure pattern and difficulties in pressure experimental determination, in the present paper, a novel method for the determination of this quantity was presented. In the new approach, the iteration method was used. In the method developed for determining the volumetric efficiency, the following equations were employed: the law of conservation of the amount of substance, the first law of thermodynamics for open system, dependences for changes in the cylinder volume vs. the crankshaft rotation angle, and the state equation. The results of calculations performed with this method were validated by means of experimental investigations carried out for a selected engine at the engine test bench. A satisfactory congruence of computational and experimental results as regards determining the volumetric efficiency was obtained. The method for determining the volumetric efficiency presented in the paper can be used to investigate the processes taking place in the cylinder of an IC engine.

  17. Regenerative-Relational Tritangtu: Sundanese Triadic Transformation Model

    Directory of Open Access Journals (Sweden)

    Wanda Listiani

    2013-06-01

    Full Text Available ABSTRACT   Tritangtu or Trinity mindset is a Sundanese and Minang community cosmology that consists of three entities (three patterns. Tritangtu as the local wisdom is also underlying the creative actors mental structure on making their works either in the form of performance, artifacts philosophy value, or in other cultural products in Indonesian community. This study used ethnographic method with data collection techniques were participant observation in-depth interviews and documentation. The object of study is the creative actors practice at the design field in Bandung. The result of study pointed out the Sundanese Tritangtu transformation from the permanent struc- ture to dynamic structure. The change in the structure is determined by the relation between the de- sign elements forming structure with the global market segmentation. Lending Sundanese identity markers, especially the folk culture or the past traditions is regenerative efforts to harmonize the three patterns in encountering and winning the free-market competition in Indonesia.   Keyword:  Tritangtu, Sundanese Triadic Transformation ModelAbstrak   Tritangtu atau pola pikir tritunggal merupakan kosmologi masyarakat Sunda dan Minang yang terdiri dari tiga entitas (pola tiga. Tritangtu sebagai kearifan lokal juga melatarbelakangi struktur mental pelaku kreatif dalam membuat karya baik berupa pertunjukan, nilai filosofi artefak mau- pun produk budaya lainnya di masyarakat Indonesia. Penelitian ini menggunakan metode etnografi dengan teknik pengumpulan data observasi partisipasi, wawancara mendalam dan dokumentasi. Obyek penelitian ini adalah praktik pelaku kreatif di bidang desain di Bandung. Hasil penelitian ini menunjukkan adanya transformasi tritangtu Sunda dari struktur yang tetap menjadi struktur dinamis. Perubahan struktur ini ditentukan oleh relasi antar struktur pembentuk unsur desain de- ngan segmentasi pasar global. Peminjaman penanda identitas Sunda khususnya budaya

  18. Modeling of ITER related vacuum gas pumping distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Misdanitis, Serafeim [University of Thessaly, Department of Mechanical Engineering, Pedion Areos, 38334 Volos (Greece); Association EURATOM - Hellenic Republic (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [University of Thessaly, Department of Mechanical Engineering, Pedion Areos, 38334 Volos (Greece); Association EURATOM - Hellenic Republic (Greece)

    2013-10-15

    Highlights: • An algorithm to simulate vacuum gas flows through pipe networks consisting of long channels and channels of moderate length has been developed. • Analysis and results are based on kinetic theory as described by the BGK kinetic model equation. • The algorithm is capable of computing the mass flow rates (or the conductance) through the pipes and the pressure at the nodes of the network. • Since a kinetic approach is implemented, the algorithm is valid in the whole range of the Knudsen number. • The developed algorithm will be useful for simulating the vacuum distribution systems of ITER and future fusion reactors. -- Abstract: A novel algorithm recently developed to solve steady-state isothermal vacuum gas dynamics flows through pipe networks consisting of long tubes is extended to include, in addition to long channels, channels of moderate length 10 < L/D < 50. This is achieved by implementing the so-called end effect treatment/correction. Analysis and results are based on kinetic theory as described by the Boltzmann equation or associated reliable kinetic model equations. For a pipe network of known geometry the algorithm is capable of computing the mass flow rates (or the conductance) through the pipes as well as the pressure heads at the nodes of the network. The feasibility of the approach is demonstrated by simulating two ITER related vacuum distribution systems, one in the viscous regime and a second one in a wide range of Knudsen numbers. Since a kinetic approach is implemented, the algorithm is valid and the results are accurate in the whole range of the Knudsen number, while the involved computational effort remains small.

  19. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  20. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction.

  1. Volumetric and calorimetric properties of aqueous ionene solutions.

    Science.gov (United States)

    Lukšič, Miha; Hribar-Lee, Barbara

    2017-02-01

    The volumetric (partial and apparent molar volumes) and calorimetric properties (apparent heat capacities) of aqueous cationic polyelectrolyte solutions - ionenes - were studied using the oscillating tube densitometer and differential scanning calorimeter. The polyion's charge density and the counterion properties were considered as variables. The special attention was put to evaluate the contribution of electrostatic and hydrophobic effects to the properties studied. The contribution of the CH 2 group of the polyion's backbone to molar volumes and heat capacities was estimated. Synergistic effect between polyion and counterions was found.

  2. Volumetric hemispheric ratio as a useful tool in personality psychology.

    Science.gov (United States)

    Montag, Christian; Schoene-Bake, Jan-Christoph; Wagner, Jan; Reuter, Martin; Markett, Sebastian; Weber, Bernd; Quesada, Carlos M

    2013-02-01

    The present study investigates the link between volumetric hemispheric ratios (VHRs) and personality measures in N=267 healthy participants using Eysenck's Personality Inventory-Revised (EPQ-R) and the BIS/BAS scales. A robust association between extraversion and VHRs was observed for gray matter in males but not females. Higher gray matter volume in the left than in the right hemisphere was associated with higher extraversion in males. The results are discussed in the context of positive emotionality and laterality of the human brain. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. MeCP2-Related Diseases and Animal Models

    Directory of Open Access Journals (Sweden)

    Chinelo D. Ezeonwuka

    2014-01-01

    Full Text Available The role of epigenetics in human disease has become an area of increased research interest. Collaborative efforts from scientists and clinicians have led to a better understanding of the molecular mechanisms by which epigenetic regulation is involved in the pathogenesis of many human diseases. Several neurological and non-neurological disorders are associated with mutations in genes that encode for epigenetic factors. One of the most studied proteins that impacts human disease and is associated with deregulation of epigenetic processes is Methyl CpG binding protein 2 (MeCP2. MeCP2 is an epigenetic regulator that modulates gene expression by translating epigenetic DNA methylation marks into appropriate cellular responses. In order to highlight the importance of epigenetics to development and disease, we will discuss how MeCP2 emerges as a key epigenetic player in human neurodevelopmental, neurological, and non-neurological disorders. We will review our current knowledge on MeCP2-related diseases, including Rett Syndrome, Angelman Syndrome, Fetal Alcohol Spectrum Disorder, Hirschsprung disease, and Cancer. Additionally, we will briefly discuss about the existing MeCP2 animal models that have been generated for a better understanding of how MeCP2 impacts certain human diseases.

  4. Volumetric Synthetic Aperture Imaging with a Piezoelectric 2-D Row-Column Probe

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann

    2016-01-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addres......The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row...

  5. Effects of clustering structure on volumetric properties of amino acids in (DMSO + water) mixtures

    International Nuclear Information System (INIS)

    Huang Aimin; Liu Chunli; Ma Lin; Tong Zhangfa; Lin Ruisen

    2012-01-01

    Graphical abstract: Together with static light scattering measurement, volumetric properties of glycine, L-alanine and L-serine were determined and utilized to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrated that the interaction between amino acids and DMSO was greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. Hydrophobic aggregating of DMSO lead to a decrease in the hydrophobic effect of DMSO and the hydrophobic–hydrophilic and hydrophobic–hydrophobic interaction with amino acids, which was reflected by the solvation of proteins. Highlights: ► Determine volumetric properties of three amino acids in aqueous DMSO in details. ► Static light scattering measurement for clustering structure of aqueous DMSO. ► Volumetric behaviour of amino acids depends on clustering structure of aqueous DMSO. ► Clustering structure of aqueous DMSO influences solvation of protein and cellulose. - Abstract: For a better understanding on the functions of DMSO in biological systems at a relatively lower concentration, apparent molar volumes of three typical amino acids, glycine, L-alanine and L-serine in (DMSO + water) mixtures were determined and the transfer volumes from water to the mixtures were evaluated. Together with static light scattering measurement, the results were utilised to reveal the microscopic solvent structure of (DMSO + water) mixtures and its influence on the interaction between DMSO and amino acids from a clustering point of view. The results demonstrate that the interaction between amino acids and DMSO is greatly related to the clustering structure of the mixed solvent and that amino acids interacted with already established solvent clusters. The linear dependence of transfer volume of amino acids on DMSO concentration up to 2

  6. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas.

    Science.gov (United States)

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.

  7. Three-dimensional volumetric assessment of response to treatment

    International Nuclear Information System (INIS)

    Willett, C.G.; Stracher, M.A.; Linggood, R.M.; Leong, J.C.; Skates, S.J.; Miketic, L.M.; Kushner, D.C.; Jacobson, J.O.

    1988-01-01

    From 1981 to 1986, 12 patients with Stage I and II diffuse large cell lymphoma of the mediastinum were treated with 4 or more cycles of multiagent chemotherapy and for nine patients this was followed by mediastinal irradiation. The response to treatment was assessed by three-dimensional volumetric analysis utilizing thoracic CT scans. The initial mean tumor volume of the five patients relapsing was 540 ml in contrast to an initial mean tumor volume of 360 ml for the seven patients remaining in remission. Of the eight patients in whom mediastinal lymphoma volumes could be assessed 1-2 months after chemotherapy prior to mediastinal irradiation, the three patients who have relapsed had volumes of 292, 92 and 50 ml (mean volume 145 ml) in contrast to five patients who have remained in remission with residual volume abnormalities of 4-87 ml (mean volume 32 ml). Four patients in prolonged remission with CT scans taken one year after treatment have been noted to have mediastinal tumor volumes of 0-28 ml with a mean value of 10 ml. This volumetric technique to assess the extent of mediastinal large cell lymphoma from thoracic CT scans appears to be a useful method to quantitate the amount of disease at presentation as well as objectively monitor response to treatment. 13 refs.; 2 figs.; 1 table

  8. Computational assessment of visual search strategies in volumetric medical images.

    Science.gov (United States)

    Wen, Gezheng; Aizenman, Avigael; Drew, Trafton; Wolfe, Jeremy M; Haygood, Tamara Miner; Markey, Mia K

    2016-01-01

    When searching through volumetric images [e.g., computed tomography (CT)], radiologists appear to use two different search strategies: "drilling" (restrict eye movements to a small region of the image while quickly scrolling through slices), or "scanning" (search over large areas at a given depth before moving on to the next slice). To computationally identify the type of image information that is used in these two strategies, 23 naïve observers were instructed with either "drilling" or "scanning" when searching for target T's in 20 volumes of faux lung CTs. We computed saliency maps using both classical two-dimensional (2-D) saliency, and a three-dimensional (3-D) dynamic saliency that captures the characteristics of scrolling through slices. Comparing observers' gaze distributions with the saliency maps showed that search strategy alters the type of saliency that attracts fixations. Drillers' fixations aligned better with dynamic saliency and scanners with 2-D saliency. The computed saliency was greater for detected targets than for missed targets. Similar results were observed in data from 19 radiologists who searched five stacks of clinical chest CTs for lung nodules. Dynamic saliency may be superior to the 2-D saliency for detecting targets embedded in volumetric images, and thus "drilling" may be more efficient than "scanning."

  9. Volumetric Flow Measurement Using an Implantable CMUT Array.

    Science.gov (United States)

    Mengli Wang; Jingkuang Chen

    2011-06-01

    This paper describes volumetric-flow velocity measurement using an implantable capacitive micromachined ultrasonic transducer (CMUT) array. The array is comprised of multiple-concentric CMUT rings for ultrasound transmission and an outmost annular CMUT array for ultrasound reception. Microelectromechanical-system (MEMS) fabrication technology allows reception CMUT on this flowmeter to be implemented with a different membrane thickness and gap height than that of transmission CMUTs, optimizing the performance of these two different kinds of devices. The silicon substrate of this 2-mm-diameter CMUT ring array was bulk micromachined to approximately 80 to 100 μm thick, minimizing tissue disruption. The blood-flow velocity was detected using pulse ultrasound Doppler by comparing the demodulated echo ultrasound with the incident ultrasound. The demodulated ultrasound signal was sampled by a pulse delayed in time domain from the transmitted burst, which corresponds to detecting the signal at a specific distance. The flow tube/vessel diameter was detected through the time-flight delay difference from near and far wall reflections, which was measured from the ultrasound pulse echo. The angle between the ultrasound beam and the flow was found by using the cross-correlation from consecutive ultrasound echoes. Artificial blood flowing through three different polymer tubes was experimented with, while keeping the same volumetric flow rate. The discrepancy in flow measurement results between this CMUT meter and a calibrated laser Doppler flowmeter is less than 5%.

  10. Automated volumetric breast density estimation: A comparison with visual assessment

    International Nuclear Information System (INIS)

    Seo, J.M.; Ko, E.S.; Han, B.-K.; Ko, E.Y.; Shin, J.H.; Hahn, S.Y.

    2013-01-01

    Aim: To compare automated volumetric breast density (VBD) measurement with visual assessment according to Breast Imaging Reporting and Data System (BI-RADS), and to determine the factors influencing the agreement between them. Materials and methods: One hundred and ninety-three consecutive screening mammograms reported as negative were included in the study. Three radiologists assigned qualitative BI-RADS density categories to the mammograms. An automated volumetric breast-density method was used to measure VBD (% breast density) and density grade (VDG). Each case was classified into an agreement or disagreement group according to the comparison between visual assessment and VDG. The correlation between visual assessment and VDG was obtained. Various physical factors were compared between the two groups. Results: Agreement between visual assessment by the radiologists and VDG was good (ICC value = 0.757). VBD showed a highly significant positive correlation with visual assessment (Spearman's ρ = 0.754, p < 0.001). VBD and the x-ray tube target was significantly different between the agreement group and the disagreement groups (p = 0.02 and 0.04, respectively). Conclusion: Automated VBD is a reliable objective method to measure breast density. The agreement between VDG and visual assessment by radiologist might be influenced by physical factors

  11. Volumetric three-dimensional display system with rasterization hardware

    Science.gov (United States)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  12. A modified microdosimetric kinetic model for relative biological effectiveness calculation

    Science.gov (United States)

    Chen, Yizheng; Li, Junli; Li, Chunyan; Qiu, Rui; Wu, Zhen

    2018-01-01

    In the heavy ion therapy, not only the distribution of physical absorbed dose, but also the relative biological effectiveness (RBE) weighted dose needs to be taken into account. The microdosimetric kinetic model (MKM) can predict the RBE value of heavy ions with saturation-corrected dose-mean specific energy, which has been used in clinical treatment planning at the National Institute of Radiological Sciences. In the theoretical assumption of the MKM, the yield of the primary lesion is independent of the radiation quality, while the experimental data shows that DNA double strand break (DSB) yield, considered as the main primary lesion, depends on the LET of the particle. Besides, the β parameter of the MKM is constant with LET resulting from this assumption, which also differs from the experimental conclusion. In this study, a modified MKM was developed, named MMKM. Based on the experimental DSB yield of mammalian cells under the irradiation of ions with different LETs, a RBEDSB (RBE for the induction of DSB)-LET curve was fitted as the correction factor to modify the primary lesion yield in the MKM, and the variation of the primary lesion yield with LET is considered in the MMKM. Compared with the present the MKM, not only the α parameter of the MMKM for mono-energetic ions agree with the experimental data, but also the β parameter varies with LET and the variation trend of the experimental result can be reproduced on the whole. Then a spread-out Bragg peaks (SOBP) distribution of physical dose was simulated with Geant4 Monte Carlo code, and the biological and clinical dose distributions were calculated, under the irradiation of carbon ions. The results show that the distribution of clinical dose calculated with the MMKM is closed to the distribution with the MKM in the SOBP, while the discrepancy before and after the SOBP are both within 10%. Moreover, the MKM might overestimate the clinical dose at the distal end of the SOBP more than 5% because of its

  13. Androgyny and Attachment Security: Two Related Models of Optimal Personality.

    Science.gov (United States)

    Shaver, Phillip R.; And Others

    1996-01-01

    Three studies explore similarities between attachment style typologies and sex role typologies. Both are defined by pairs of dimensions: self model and other model (attachment styles); masculinity, or agency, and femininity, or communion (sex role orientations). Discusses results. (KW)

  14. Differential Equations Related to the Williams-Bjerknes Tumour Model

    Indian Academy of Sciences (India)

    Bjerknes tumour model for a cancer which spreads through an epithelial basal layer modeled on ⊂ 2. The solution of this problem is a family =(()), where each () could be considered as an approximation to the probability that the ...

  15. PROBABILISTIC RELATIONAL MODELS OF COMPLETE IL-SEMIRINGS

    OpenAIRE

    Tsumagari, Norihiro

    2012-01-01

    This paper studies basic properties of probabilistic multirelations which are generalized the semantic domain of probabilistic systems and then provides two probabilistic models of complete IL-semirings using probabilistic multirelations. Also it is shown that these models need not be models of complete idempotentsemirings.

  16. Volumetric analysis and hydrologic characterization of a modern debris flow near Yucca Mountain, Nevada

    Science.gov (United States)

    Coe, J.A.; Glancy, P.A.; Whitney, J.W.

    1997-01-01

    On July 21 or 22, 1984, debris flows triggered by rainfall occurred on the southern hillslope of Jake Ridge, about 6 km east of the crest of Yucca Mountain, Nevada. Rain gages near Jake Ridge recorded 65 mm and 69 mm on July 21, and 20 mm and 17 mm on July 22. Rates of rainfall intensity ranged up to 73 mm/h on the twenty-first, and 15 mm/h on the twenty-second. Digital elevation models with 2.0 m grid-node spacing, measured from pre-storm and post-storm aerial stereo-photographs, were used to map hillslope erosion and the downslope distribution of debris. Volumetric calculations indicate that about 7040 m3 of debris was redistributed on the 49,132 m2 hillslope study area during the two-day storm period. About 4580 m3 (65%) of the eroded sediment was deposited within the study area and the remaining 35% was deposited outside the study area in a short tributary to Fortymile Wash and in the wash itself. The maximum and mean depths of erosion in the study area were about 1.8 m and 5 cm, respectively. The mean depths of erosion on the upper and middle hillslope were 27 cm and 4 cm, respectively. The mean depth of deposition on the lower hillslope was 16 cm. Analysis of the values of cumulative precipitation in the context of the precipitation-frequency atlas of the National Oceanic and Atmospheric Administration indicates that precipitation from the main storm on July 21 was more than double that expected, on average, once during a 100-year period. The relations of precipitation intensity/duration, developed from data recorded at a nearby precipitation gage, indicate a storm interval of 500 years or greater. The amount of erosion caused by such a storm is primarily dependent on three variables: storm intensity, development of the drainage network on the hillslope, and the amount of available colluvium. Additionally, the erosive ability of successive storms of equal intensity will decrease because such storms would tend to progressively isolate and reduce the amount of

  17. Relating electrophotographic printing model and ISO13660 standard attributes

    Science.gov (United States)

    Barney Smith, Elisa H.

    2010-01-01

    A mathematical model of the electrophotographic printing process has been developed. This model can be used for analysis. From this a print simulation process has been developed to simulate the effects of the model components on toner particle placement. A wide variety of simulated prints are produced from the model's three main inputs, laser spread, charge to toner proportionality factor and toner particle size. While the exact placement of toner particles is a random process, the total effect is not. The effect of each model parameter on the ISO 13660 print quality attributes line width, fill, raggedness and blurriness is described.

  18. SU-F-T-685: Evaluation of Tumor Hypoxic Fraction Using Serial Volumetric Imaging During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, A [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: To develop a tumor response model which could be uses to compute tumor hypoxic fraction using serial volumetric tumor imaging. This algorithm may be used for treatment response assessment and also for guidance of more expensive PET imaging of hypoxia. Methods: Previously developed two-level cell population tumor response model was modified to include a third cell level describing hypoxic and necrotic cells. This third level was considered constant value during radiotherapy treatment; therefore, inclusion additional parameter did not compromise stability of model fitting to imaging data. Fitting the model to serial volumetric imaging data was performed using a least squares objective function and simulated annealing algorithm. The problem of reconstruction of radiobiological parameters from serial imaging data was considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind. Variational regularization was used to stabilize solutions. Results: To evaluate performance of the algorithm, we used a set of serial CT imaging data on tumor-volume for 14 head and neck cancer patients. The hypoxic fractions were reconstructed for each patient and the distribution of hypoxic fractions was compared to the distribution of initial hypoxic fractions previously measured using histograph. The measured and reconstructed from imaging data distributions of hypoxic fractions are in good agreement. The reconstructed distribution of cell surviving fraction was also in better agreement with in vitro data than previously obtained using the two-level cell population model. Conclusion: Our results indicate that it is possible to evaluate the initial hypoxic tumor fraction using serial volumetric imaging and a tumor response model. This algorithm can be used for treatment response assessment and guidance of more expensive PET imaging.

  19. Volumetric Analysis of Cerebral Peduncles and Cerebellar Hemispheres for Predicting Hemiparesis After Hemispherectomy.

    Science.gov (United States)

    Mullin, Jeffrey P; Soni, Pranay; Lee, Sungho; Jehi, Lara; Naduvil Valappi, Ahsan Moosa; Bingaman, William; Gonzalez-Martinez, Jorge

    2016-09-01

    In some cases of refractory epilepsy, hemispherectomy is the final invasive treatment option. However, predictors of postoperative hemiparesis in these patients have not been widely studied. To investigate how the volumetric analysis of cerebral peduncles and cerebellar hemispheres in patients who have undergone hemispherectomy may determine prognostic implications for postoperative hemiparesis. Twenty-two patients who underwent hemispherectomy at our institution were retrospectively included. Using iPlan/BrainLAB (BrainLAB, Feldkirchen, Germany) imaging software and a semiautomatic voxel-based segmentation method, we calculated the preoperative cerebral peduncle and cerebellar hemisphere volumes. Cerebral peduncle and cerebellar hemisphere ratios were compared between patients with worsened or unchanged/better hemiparesis postoperatively. The ratios of ipsilateral/contralateral cerebral peduncles (0.570 vs 0.828; P = .02) and contralateral/ipsilateral cerebellar hemispheres (0.885 vs 1.031; P = .009) were significantly lower in patients who had unchanged/improved hemiparesis postoperatively compared with patients who had worsened hemiparesis. Relative risk of worsening hemiparesis was significantly higher in patients with a cerebral peduncle ratio < 0.7 (relative risk, 4.3; P = .03) or a cerebellar ratio < 1.0 (relative risk, 6.4; P = .006). Although patients who undergo hemispherectomy are heterogeneous, we report a method of predicting postoperative hemiparesis using only standard volumetric magnetic resonance imaging. This information could be used in preoperative discussions with patients and families to help better understand that chance of retaining baseline motor function. CST, corticospinal tractfMRI, functional magnetic resonance imagingTMS, transcranial magnetic stimulation.

  20. Modeling and Performing Relational Theories in the Classroom

    Science.gov (United States)

    Suter, Elizabeth A.; West, Carrie L.

    2011-01-01

    Although directly related to students' everyday lives, the abstract and even intimidating nature of relational theories often bars students from recognizing the immediate relevance to their relationships. The theories of symbolic interactionism, social exchange, relational dialectics, social penetration, and uncertainty reduction offer students…

  1. Simulating Volumetric Pricing for Irrigation Water Operational Cost Recovery under Complete and Perfect Information

    Directory of Open Access Journals (Sweden)

    Luca Giraldo

    2014-05-01

    Full Text Available This study evaluated the implementation of a volumetric and cost-recovery pricing method for irrigation water under symmetric information conditions without the inclusion of implementation costs. The study was carried out in two steps. First, a cost function was estimated for irrigation water supplied by a water user association to a typical Mediterranean agricultural area, based on a translog function. Second, the economic impact of a pricing method designed according to this cost function was simulated using a mathematical programming territorial model for the same agricultural area. The outcomes were compared with those for the current pricing method. The impacts of this pricing method are discussed in terms of its neutral effects on total farm income and, conversely, the importance of the redistributive effects.

  2. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  3. Chemical equilibrium relations used in the fireball model of relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Gupta, S.D.

    1978-01-01

    The fireball model of relativistic heavy-ion collision uses chemical equilibrium relations to predict cross sections for particle and composite productions. These relations are examined in a canonical ensemble model where chemical equilibrium is not explicitly invoked

  4. Developmental Relational Counseling: A Model for Self-Understanding in Relation to Others

    Science.gov (United States)

    Duffey, Thelma; Haberstroh, Shane

    2012-01-01

    Developmental relational counseling (DRC) is an integrative framework designed to help clients develop personal awareness and relational functioning and conceptualize personal growth. DRC emerged from both authors' clinical work and was significantly influenced by relational-cultural theory and guided by the Enneagram personality typology and…

  5. MR volumetric analysis of the course of nephroblastomatosis under chemotherapy in childhood

    International Nuclear Information System (INIS)

    Guenther, Patrick; Waag, Karl Ludwig; Troeger, Jochen; Schenk, Jens-Peter; Graf, Norbert

    2004-01-01

    Nephroblastomatosis is a paediatric renal disease that may undergo malignant transformation. When neoadjuvant chemotherapy is indicated for nephroblastomatosis or bilateral Wilms' tumours, exact volumetric analysis using high-speed data processing and visualization may aid in determining tumour response. Using 3D-volume-rendering software, the 0.5-T MRI data of a 2-year-old girl with bilateral nephroblastomatosis was analysed. Exact volume determination of foci of nephroblastomatosis was performed by automatic and manual segmentation, and the relation to normal renal parenchyma was determined over a 12-month period. At the first visit, 80% (460/547 ml) of the extremely enlarged right kidney was due to nephroblastomatosis. Total tumour volume within the right kidney decreased to 74 ml under chemotherapy. Volume analysis of the two emerging right-sided masses after treatment correctly suggested Wilms' tumour. Three-dimensional rendering of the growing masses aided the surgeon in nephron-sparing surgery during tumour resection. (orig.)

  6. 3D deeply supervised network for automated segmentation of volumetric medical images.

    Science.gov (United States)

    Dou, Qi; Yu, Lequan; Chen, Hao; Jin, Yueming; Yang, Xin; Qin, Jing; Heng, Pheng-Ann

    2017-10-01

    While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D medical image segmentation, it is still a difficult task for CNNs to segment important organs or structures from 3D medical images owing to several mutually affected challenges, including the complicated anatomical environments in volumetric images, optimization difficulties of 3D networks and inadequacy of training samples. In this paper, we present a novel and efficient 3D fully convolutional network equipped with a 3D deep supervision mechanism to comprehensively address these challenges; we call it 3D DSN. Our proposed 3D DSN is capable of conducting volume-to-volume learning and inference, which can eliminate redundant computations and alleviate the risk of over-fitting on limited training data. More importantly, the 3D deep supervision mechanism can effectively cope with the optimization problem of gradients vanishing or exploding when training a 3D deep model, accelerating the convergence speed and simultaneously improving the discrimination capability. Such a mechanism is developed by deriving an objective function that directly guides the training of both lower and upper layers in the network, so that the adverse effects of unstable gradient changes can be counteracted during the training procedure. We also employ a fully connected conditional random field model as a post-processing step to refine the segmentation results. We have extensively validated the proposed 3D DSN on two typical yet challenging volumetric medical image segmentation tasks: (i) liver segmentation from 3D CT scans and (ii) whole heart and great vessels segmentation from 3D MR images, by participating two grand challenges held in conjunction with MICCAI. We have achieved competitive segmentation results to state-of-the-art approaches in both challenges with a much faster speed, corroborating the effectiveness of our proposed 3D DSN. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The spatial resolution of dual-tracer fluorescence thermometry in volumetrically illuminated channels

    Science.gov (United States)

    Kim, Myeongsub; Yoda, Minami

    2014-01-01

    This study estimates the spatial resolution and accuracy of dual-tracer fluorescence thermometry (DFT) for measuring water temperature fields in channels where the entire channel is illuminated as is typical in microfluidics. Temperature fields are measured in heated laminar Poiseuille flow through a 1 mm2 channel. The working fluid, an aqueous solution of the temperature-sensitive fluorophores fluorescein (Fl) and sulforhodamine B (SrB), is volumetrically illuminated over the entire channel cross-section at a wavelength of 514 nm, and the temperature of the solution is estimated from images of the longer-wavelength fluorescence from Fl and SrB. These temperature data are compared with numerical simulations of the same flow where the heat transferred to the water is estimated from independent measurements of wall surface temperature to determine the accuracy and the spatial resolution of the DFT results. The results suggest that temperature measurements in the volumetrically illuminated channel are significantly corrupted by the fluorescence emissions from beyond the focal plane. A model based on the point spread function for an aberration-free lens is employed to estimate the effect of the background "noise," i.e., the signal from beyond the object plane, on the accuracy of these DFT measurements. The results show that this background is about 30 times the signal from the focal plane. Further experiments where the channel is illuminated by a light sheet over about 40 % of the channel cross-section give estimates of the water temperature field that are on average within about 0.3 °C of the numerical predictions at an in-plane spatial resolution of 50 μm. The model is used to estimate the signal-to-background ratio for this case, as well as for a variety of commercially available microscope objectives.

  8. IRI related data and model services at NSSDC

    Science.gov (United States)

    Bilitza, D.; Papitashvili, N.; King, J.

    NASA's National Space Science Data Center (NSSDC) provides internet access to a large number of space physics data sets and models. We will review and explain the different products and services that might be of interest to the IRI community. Data can be obtained directly through anonymous ftp or through the SPyCAT WWW interface to a large volume of space physics data on juke-box type mass storage devices. A newly developed WWW system, the ATMOWeb, provides browse and sub-setting capabilities for selected atmospheric and thermospheric data. NSSDC maintains an archive of space physics models that includes a subset of ionospheric models. The model software can be retrieved via anonymous ftp. A selection of the most frequently requested models can be run on-line through special WWW interfaces. Currently supported models include the International Reference Ionosphere (IRI), the Mass Spectrometer and Incoherent Scatter (MSIS) atmospheric model, the International Geomagnetic Reference Field (IGRF) and the AE-8/AP-8 radiation belt models. In this article special emphasis will be given to the IRI interface and its various input/output options. Several new options and a Java-based plotting capability were recently added to the Web interface.

  9. Design and validation of a relative trust model

    NARCIS (Netherlands)

    Hoogendoorn, M.; Jaffry, S.W.; Maanen, P.P. van; Treur, J.

    2014-01-01

    When considering intelligent agents that interact with humans, having an idea of the trust levels of the human, for example in other agents or services, can be of great importance. Most models of human trust that exist assume trust in one trustee is independent of trust in another trustee. The model

  10. Modelling situation awareness relations in a multiagent system

    NARCIS (Netherlands)

    Blom, H.A.P.; Sharpanskykh, A.

    2015-01-01

    There is broad consensus that situation awareness (SA) plays a key role in agent-based modelling of complex sociotechnical systems. However in the social sciences and human factors literature there are different views on what SA is and how it could be modelled. More specifically, one school of

  11. Coevolution of variability models and related software artifacts

    DEFF Research Database (Denmark)

    Passos, Leonardo; Teixeira, Leopoldo; Dinztner, Nicolas

    2015-01-01

    models coevolve with other artifact types, we study a large and complex real-world variant-rich software system: the Linux kernel. Specifically, we extract variability-coevolution patterns capturing changes in the variability model of the Linux kernel with subsequent changes in Makefiles and C source...

  12. How to: understanding SWAT model uncertainty relative to measured results

    Science.gov (United States)

    Watershed models are being relied upon to contribute to most policy-making decisions of watershed management, and the demand for an accurate accounting of complete model uncertainty is rising. Generalized likelihood uncertainty estimation (GLUE) is a widely used method for quantifying uncertainty i...

  13. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease.

    Science.gov (United States)

    Jiji, Sudevan; Smitha, Karavallil Achuthan; Gupta, Arun Kumar; Pillai, Vellara Pappukutty Mahadevan; Jayasree, Ramapurath S

    2013-09-01

    A quantitative volumetric analysis of caudate nucleus can provide valuable information in early diagnosis and prognosis of patients with Alzheimer's diseases (AD). Purpose of the study is to estimate the volume of segmented caudate nucleus from MR images and to correlate the variation in the segmented volume with respect to the total brain volume. We have also tried to evaluate the caudate nucleus atrophy with the age related atrophy of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in a group of Alzheimer's disease patients. 3D fast low angle shot (3D FLASH) brain MR images of 15 AD patients, 15 normal volunteers and 15 patients who had normally diagnosed MR images were included in the study. Brain tissue and caudate nuclei were segmented using the statistical parametric mapping package and a semi-automatic tool, respectively and the volumes were estimated. Volume of segmented caudate nucleus is correlated with respect to the total brain volume. Further, the caudate nucleus atrophy is estimated with the age related atrophy of WM, GM and CSF in a group of AD patients. Significant reduction in the caudate volume of AD patients was observed compared to that of the normal volunteers. Statistical analysis also showed significant variation in the volume of GM and CSF of AD patients. Among the patients who had normal appearing brain, 33% showed significant changes in the caudate volume. We hypothesize that these changes can be considered as an indication of early AD. The method of volumetric analysis of brain structures is simple and effective way of early diagnosis of neurological disorders like Alzheimer's disease. We have illustrated this with the observed changes in the volume of caudate nucleus in a group of patients. A detailed study with more subjects will be useful in correlating these results for early diagnosis of AD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, Sudevan, E-mail: jijiaiswaryap@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum 695581, Kerala (India); Smitha, Karavallil Achuthan, E-mail: mithamahesh@gmail.com [Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India); Gupta, Arun Kumar, E-mail: gupta209@gmail.com [Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore (India); Pillai, Vellara Pappukutty Mahadevan, E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum 695581, Kerala (India); Jayasree, Ramapurath S., E-mail: jayashreemenon@gmail.com [Biophotonics and Imaging Lab, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, Kerala (India)

    2013-09-15

    Objectives: A quantitative volumetric analysis of caudate nucleus can provide valuable information in early diagnosis and prognosis of patients with Alzheimer's diseases (AD). Purpose of the study is to estimate the volume of segmented caudate nucleus from MR images and to correlate the variation in the segmented volume with respect to the total brain volume. We have also tried to evaluate the caudate nucleus atrophy with the age related atrophy of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in a group of Alzheimer's disease patients. Methods: 3D fast low angle shot (3D FLASH) brain MR images of 15 AD patients, 15 normal volunteers and 15 patients who had normally diagnosed MR images were included in the study. Brain tissue and caudate nuclei were segmented using the statistical parametric mapping package and a semi-automatic tool, respectively and the volumes were estimated. Volume of segmented caudate nucleus is correlated with respect to the total brain volume. Further, the caudate nucleus atrophy is estimated with the age related atrophy of WM, GM and CSF in a group of AD patients. Results: Significant reduction in the caudate volume of AD patients was observed compared to that of the normal volunteers. Statistical analysis also showed significant variation in the volume of GM and CSF of AD patients. Among the patients who had normal appearing brain, 33% showed significant changes in the caudate volume. We hypothesize that these changes can be considered as an indication of early AD. Conclusion: The method of volumetric analysis of brain structures is simple and effective way of early diagnosis of neurological disorders like Alzheimer's disease. We have illustrated this with the observed changes in the volume of caudate nucleus in a group of patients. A detailed study with more subjects will be useful in correlating these results for early diagnosis of AD.

  15. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease

    International Nuclear Information System (INIS)

    Jiji, Sudevan; Smitha, Karavallil Achuthan; Gupta, Arun Kumar; Pillai, Vellara Pappukutty Mahadevan; Jayasree, Ramapurath S.

    2013-01-01

    Objectives: A quantitative volumetric analysis of caudate nucleus can provide valuable information in early diagnosis and prognosis of patients with Alzheimer's diseases (AD). Purpose of the study is to estimate the volume of segmented caudate nucleus from MR images and to correlate the variation in the segmented volume with respect to the total brain volume. We have also tried to evaluate the caudate nucleus atrophy with the age related atrophy of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) in a group of Alzheimer's disease patients. Methods: 3D fast low angle shot (3D FLASH) brain MR images of 15 AD patients, 15 normal volunteers and 15 patients who had normally diagnosed MR images were included in the study. Brain tissue and caudate nuclei were segmented using the statistical parametric mapping package and a semi-automatic tool, respectively and the volumes were estimated. Volume of segmented caudate nucleus is correlated with respect to the total brain volume. Further, the caudate nucleus atrophy is estimated with the age related atrophy of WM, GM and CSF in a group of AD patients. Results: Significant reduction in the caudate volume of AD patients was observed compared to that of the normal volunteers. Statistical analysis also showed significant variation in the volume of GM and CSF of AD patients. Among the patients who had normal appearing brain, 33% showed significant changes in the caudate volume. We hypothesize that these changes can be considered as an indication of early AD. Conclusion: The method of volumetric analysis of brain structures is simple and effective way of early diagnosis of neurological disorders like Alzheimer's disease. We have illustrated this with the observed changes in the volume of caudate nucleus in a group of patients. A detailed study with more subjects will be useful in correlating these results for early diagnosis of AD

  16. Translational Models of Gambling-Related Decision-Making.

    Science.gov (United States)

    Winstanley, Catharine A; Clark, Luke

    Gambling is a harmless, recreational pastime that is ubiquitous across cultures. However, for some, gambling becomes a maladaptive and compulsive, and this syndrome is conceptualized as a behavioural addiction. Laboratory models that capture the key cognitive processes involved in gambling behaviour, and that can be translated across species, have the potential to make an important contribution to both decision neuroscience and the study of addictive disorders. The Iowa gambling task has been widely used to assess human decision-making under uncertainty, and this paradigm can be successfully modelled in rodents. Similar neurobiological processes underpin choice behaviour in humans and rats, and thus, a preference for the disadvantageous "high-risk, high-reward" options may reflect meaningful vulnerability for mental health problems. However, the choice behaviour operationalized by these tasks does not necessarily approximate the vulnerability to gambling disorder (GD) per se. We consider a number of psychological challenges that apply to modelling gambling in a translational way, and evaluate the success of the existing models. Heterogeneity in the structure of gambling games, as well as in the motivations of individuals with GD, is highlighted. The potential issues with extrapolating too directly from established animal models of drug dependency are discussed, as are the inherent difficulties in validating animal models of GD in the absence of any approved treatments for GD. Further advances in modelling the cognitive biases endemic in human decision-making, which appear to be exacerbated in GD, may be a promising line of research.

  17. Volumetric and two-dimensional image interpretation show different cognitive processes in learners

    NARCIS (Netherlands)

    van der Gijp, Anouk; Ravesloot, Cécile J.; van der Schaaf, Marieke F.; van der Schaaf, Irene C.; Huige, Josephine C B M; Vincken, Koen L.; Ten Cate, Olle Th J; van Schaik, Jan P J

    2015-01-01

    Rationale and Objectives: In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional

  18. Volumetric and two-dimensional image interpretation show different cognitive processes in learners

    NARCIS (Netherlands)

    van der Gijp, Anouk|info:eu-repo/dai/nl/413648907; Ravesloot, C.J.|info:eu-repo/dai/nl/362749663; van der Schaaf, Marieke F; van der Schaaf, Irene C|info:eu-repo/dai/nl/29133489X; Huige, Josephine C B M; Vincken, Koen L|info:eu-repo/dai/nl/143101722; Ten Cate, Olle Th J|info:eu-repo/dai/nl/068931204; van Schaik, JPJ|info:eu-repo/dai/nl/070114811

    2015-01-01

    RATIONALE AND OBJECTIVES: In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional

  19. Volumetric Arterial Wall Shear Stress Calculation Based on Cine Phase Contrast MRI

    NARCIS (Netherlands)

    Potters, Wouter V.; van Ooij, Pim; Marquering, Henk; VanBavel, Ed; Nederveen, Aart J.

    2015-01-01

    PurposeTo assess the accuracy and precision of a volumetric wall shear stress (WSS) calculation method applied to cine phase contrast magnetic resonance imaging (PC-MRI) data. Materials and MethodsVolumetric WSS vectors were calculated in software phantoms. WSS algorithm parameters were optimized

  20. Radiologist assessment of breast density by BI-RADS categories versus fully automated volumetric assessment.

    Science.gov (United States)

    Gweon, Hye Mi; Youk, Ji Hyun; Kim, Jeong-Ah; Son, Eun Ju

    2013-09-01

    The objective of our study was to estimate mammographic breast density using a fully automated volumetric breast density measurement method in comparison with BI-RADS breast density categories determined by radiologists. A total of 791 full-field digital mammography examinations with standard views were evaluated by three blinded radiologists as BI-RADS density categories 1-4. For fully automated volumetric analysis, volumetric breast density was calculated with fully automated software. The volume of fibroglandular tissue, the volume of the breast, and the volumetric percentage density were provided. The weighted overall kappa was 0.48 (moderate agreement) for the three radiologists' estimates of BI-RADS density. Pairwise comparisons of the radiologists' measurements of BI-RADS density revealed moderate to substantial agreement, with kappa values ranging from 0.51 to 0.64. There was a significant difference in mean volumetric breast density among the BI-RADS density categories, and the mean volumetric breast density increased as the BI-RADS density category increased (pBI-RADS categories and fully automated volumetric breast density (ρ=0.765, pBI-RADS density categories. Mammographic density assessment with the fully automated volumetric method may be used to assign BI-RADS density categories.

  1. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  2. Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic

    Directory of Open Access Journals (Sweden)

    Abd Kader Siti Aminah

    2017-01-01

    Full Text Available The objectives of this study are to determine the optimum bitumen content (OBC for every percentage added of waste plastics in asphalt mixtures and to investigate the stability properties of the asphalt mixtures containing waste plastic. Marshall stability and flow values along with density, air voids in total mix, voids in mineral aggregate, and voids filled with bitumen were determined to obtain OBC at different percentages of waste plastic, i.e., 4%, 6%, 8%, and 10% by weight of bitumen as additive. Results showed that the OBC for the plastic-modified asphalt mixtures at 4%, 6%, 8%, and 10% are 4.98, 5.44, 5.48, and 5.14, respectively. On the other hand, the controlled specimen’s shows better volumetric properties compared to plastic mixes. However, 4% additional of waste plastic indicated better stability than controlled specimen.

  3. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos

    2017-03-22

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  4. Volumetric multimodality neural network for brain tumor segmentation

    Science.gov (United States)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  5. Natural convection in wavy enclosures with volumetric heat sources

    International Nuclear Information System (INIS)

    Oztop, H.F.; Varol, Y.; Abu-Nada, E.; Chamkha, A.

    2011-01-01

    In this paper, the effects of volumetric heat sources on natural convection heat transfer and flow structures in a wavy-walled enclosure are studied numerically. The governing differential equations are solved by an accurate finite-volume method. The vertical walls of enclosure are assumed to be heated differentially whereas the two wavy walls (top and bottom) are kept adiabatic. The effective governing parameters for this problem are the internal and external Rayleigh numbers and the amplitude of wavy walls. It is found that both the function of wavy wall and the ratio of internal Rayleigh number (Ra I ) to external Rayleigh number (Ra E ) affect the heat transfer and fluid flow significantly. The heat transfer is predicted to be a decreasing function of waviness of the top and bottom walls in case of (IRa/ERa)>1 and (IRa/ERa)<1. (authors)

  6. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    The Dugdale crack model is widely used in materials science to predict strength of defective (cracked) materials. A stable Dugdale crack in an elasto-plastic material is prevented from spreading by uniformly distributed cohesive stresses acting in narrow areas at the crack tips. These stresses...... are assumed to be self created by local materials flow. The strength sigma_CR predictid by the Dugdale model is sigma_CR =(E Gamma_CR/phi1)^½ where E and 1 are Young’s modulus and crack half-length respectively of the material considered. The so-called critical strain energy rate is Gamma_CR = sigma......) by a constant flow stress (sigma_L). A number of materials, however, do not at all exhibit this kind of flow. Such materials are considered in this paper by Modified Dugdale crack models which apply for any cohesive stress distribution in crack front areas. Formally modified Dugdale crack models exhibit...

  7. Corruption model of loss propagation for relative prioritized packet video

    Science.gov (United States)

    Kim, Jin-Gyeong; Kim, JongWon; Kuo, C.-C. Jay

    2000-12-01

    Several analytical models have been recently introduced to estimate the impact of the error propagation effect on the source video caused by lossy transmission channels. However, previous work focused either on the statistical aspects for the whole sequence or had a high computational complexity. In this work, we concentrate on estimating the distortion caused by the loss of a packet with a moderate computational complexity. The proposed model considers both the spatial filtering effect and the temporal dependency that affect the error propagation behavior. To verify this model, a real loss propagation effect is measured and compared with that of the expected distortion level derived by the model. Also, its applicability to the quality of service (QoS) of transmitted video is demonstrated through the packet video evaluation over the simulated differentiated service (DiffServ) forwarding mechanism.

  8. Relating soil geochemical properties to arsenic bioaccessibility through hierarchical modeling.

    Science.gov (United States)

    Interest in improved understanding of relationships among soil properties and arsenic (As) bioaccessibility has motivated the use of regression models for As bioaccessibility prediction. However, limits in the numbers and types of soils included in previous studies restrict the u...

  9. Reciprocal Relations Between Cognitive Neuroscience and Cognitive Models: Opposites Attract?

    Science.gov (United States)

    Forstmann, Birte U.; Wagenmakers, Eric-Jan; Eichele, Tom; Brown, Scott; Serences, John T.

    2012-01-01

    Cognitive neuroscientists study how the brain implements particular cognitive processes such as perception, learning, and decision-making. Traditional approaches in which experiments are designed to target a specific cognitive process have been supplemented by two recent innovations. First, formal models of cognition can decompose observed behavioral data into multiple latent cognitive processes, allowing brain measurements to be associated with a particular cognitive process more precisely and more confidently. Second, cognitive neuroscience can provide additional data to inform the development of cognitive models, providing greater constraint than behavioral data alone. We argue that these fields are mutually dependent: not only can models guide neuroscientific endeavors, but understanding neural mechanisms can provide critical insights into formal models of cognition. PMID:21612972

  10. Relating soil geochemical properties to arsenic bioaccessibility through hierarchical modeling.

    Science.gov (United States)

    Nelson, Clay M; Li, Kevin; Obenour, Daniel R; Miller, Jonathan; Misenheimer, John C; Scheckel, Kirk; Betts, Aaron; Juhasz, Albert; Thomas, David J; Bradham, Karen D

    2018-01-01

    Interest in improved understanding of relationships among soil properties and arsenic (As) bioaccessibility has motivated the use of regression models for As bioaccessibility prediction. However, limits in the numbers and types of soils included in previous studies restrict the usefulness of these models beyond the range of soil conditions evaluated, as evidenced by reduced predictive performance when applied to new data. In response, hierarchical models that consider variability in relationships among soil properties and As bioaccessibility across geographic locations and contaminant sources were developed to predict As bioaccessibility in 139 soils on both a mass fraction (mg/kg) and % basis. The hierarchical approach improved the estimation of As bioaccessibility in studied soils. In addition, the number of soil elements identified as statistically significant explanatory variables increased when compared to previous investigations. Specifically, total soil Fe, P, Ca, Co, and V were significant explanatory variables in both models, while total As, Cd, Cu, Ni, and Zn were also significant in the mass fraction model and Mg was significant in the % model. This developed hierarchical approach provides a novel tool to (1) explore relationships between soil properties and As bioaccessibility across a broad range of soil types and As contaminant sources encountered in the environment and (2) identify areas of future mechanistic research to better understand the complexity of interactions between soil properties and As bioaccessibility.

  11. Volumetric analysis of corticocancellous bones using CT data

    Energy Technology Data Exchange (ETDEWEB)

    Krappinger, Dietmar; Linde, Astrid von; Rosenberger, Ralf; Blauth, Michael [Medical University Innsbruck, Department of Trauma Surgery and Sports Medicine, Innsbruck (Austria); Glodny, Bernhard; Niederwanger, Christian [Medical University Innsbruck, Department of Radiology I, Innsbruck (Austria)

    2012-05-15

    To present a method for an automated volumetric analysis of corticocancellous bones such as the superior pubic ramus using CT data and to assess the reliability of this method. Computed tomography scans of a consecutive series of 250 patients were analyzed. A Hounsfield unit (HU) thresholding-based reconstruction technique (''Vessel Tracking,'' GE Healthcare) was used. A contiguous space of cancellous bone with similar HU values between the starting and end points was automatically identified as the region of interest. The identification was based upon the density gradient to the adjacent cortical bone. The starting point was defined as the middle of the parasymphyseal corticocancellous transition zone on the axial slice showing the parasymphyseal superior pubic ramus in its maximum anteroposterior width. The end point was defined as the middle of the periarticular corticocancellous transition zone on the axial slice showing the quadrilateral plate as a thin cortical plate. The following parameters were automatically obtained on both sides: length of the center line, volume of the superior pubic ramus between the starting point and end point, minimum, maximum and mean diameter perpendicular to the center line, and mean cross-sectional area perpendicular to the center line. An automated analysis without manual adjustments was successful in 207 patients (82.8%). The center line showed a significantly greater length in female patients (67.6 mm vs 65.0 mm). The volume was greater in male patients (21.8 cm{sup 3} vs 19.4 cm{sup 3}). The intersite reliability was high with a mean difference between the left and right sides of between 0.1% (cross-sectional area) and 2.3% (volume). The method presented allows for an automated volumetric analysis of a corticocancellous bone using CT data. The method is intended to provide preoperative information for the use of intramedullary devices in fracture fixation and percutaneous cement augmentation techniques

  12. Lesion Segmentation in Automated 3D Breast Ultrasound: Volumetric Analysis.

    Science.gov (United States)

    Agarwal, Richa; Diaz, Oliver; Lladó, Xavier; Gubern-Mérida, Albert; Vilanova, Joan C; Martí, Robert

    2018-03-01

    Mammography is the gold standard screening technique in breast cancer, but it has some limitations for women with dense breasts. In such cases, sonography is usually recommended as an additional imaging technique. A traditional sonogram produces a two-dimensional (2D) visualization of the breast and is highly operator dependent. Automated breast ultrasound (ABUS) has also been proposed to produce a full 3D scan of the breast automatically with reduced operator dependency, facilitating double reading and comparison with past exams. When using ABUS, lesion segmentation and tracking changes over time are challenging tasks, as the three-dimensional (3D) nature of the images makes the analysis difficult and tedious for radiologists. The goal of this work is to develop a semi-automatic framework for breast lesion segmentation in ABUS volumes which is based on the Watershed algorithm. The effect of different de-noising methods on segmentation is studied showing a significant impact ([Formula: see text]) on the performance using a dataset of 28 temporal pairs resulting in a total of 56 ABUS volumes. The volumetric analysis is also used to evaluate the performance of the developed framework. A mean Dice Similarity Coefficient of [Formula: see text] with a mean False Positive ratio [Formula: see text] has been obtained. The Pearson correlation coefficient between the segmented volumes and the corresponding ground truth volumes is [Formula: see text] ([Formula: see text]). Similar analysis, performed on 28 temporal (prior and current) pairs, resulted in a good correlation coefficient [Formula: see text] ([Formula: see text]) for prior and [Formula: see text] ([Formula: see text]) for current cases. The developed framework showed prospects to help radiologists to perform an assessment of ABUS lesion volumes, as well as to quantify volumetric changes during lesions diagnosis and follow-up.

  13. Volumetric analysis of corticocancellous bones using CT data

    International Nuclear Information System (INIS)

    Krappinger, Dietmar; Linde, Astrid von; Rosenberger, Ralf; Blauth, Michael; Glodny, Bernhard; Niederwanger, Christian

    2012-01-01

    To present a method for an automated volumetric analysis of corticocancellous bones such as the superior pubic ramus using CT data and to assess the reliability of this method. Computed tomography scans of a consecutive series of 250 patients were analyzed. A Hounsfield unit (HU) thresholding-based reconstruction technique (''Vessel Tracking,'' GE Healthcare) was used. A contiguous space of cancellous bone with similar HU values between the starting and end points was automatically identified as the region of interest. The identification was based upon the density gradient to the adjacent cortical bone. The starting point was defined as the middle of the parasymphyseal corticocancellous transition zone on the axial slice showing the parasymphyseal superior pubic ramus in its maximum anteroposterior width. The end point was defined as the middle of the periarticular corticocancellous transition zone on the axial slice showing the quadrilateral plate as a thin cortical plate. The following parameters were automatically obtained on both sides: length of the center line, volume of the superior pubic ramus between the starting point and end point, minimum, maximum and mean diameter perpendicular to the center line, and mean cross-sectional area perpendicular to the center line. An automated analysis without manual adjustments was successful in 207 patients (82.8%). The center line showed a significantly greater length in female patients (67.6 mm vs 65.0 mm). The volume was greater in male patients (21.8 cm 3 vs 19.4 cm 3 ). The intersite reliability was high with a mean difference between the left and right sides of between 0.1% (cross-sectional area) and 2.3% (volume). The method presented allows for an automated volumetric analysis of a corticocancellous bone using CT data. The method is intended to provide preoperative information for the use of intramedullary devices in fracture fixation and percutaneous cement augmentation techniques. (orig.)

  14. Volumetric optical coherence microscopy enabled by aberrated optics (Conference Presentation)

    Science.gov (United States)

    Mulligan, Jeffrey A.; Liu, Siyang; Adie, Steven G.

    2017-02-01

    Optical coherence microscopy (OCM) is an interferometric imaging technique that enables high resolution, non-invasive imaging of 3D cell cultures and biological tissues. Volumetric imaging with OCM suffers a trade-off between high transverse resolution and poor depth-of-field resulting from defocus, optical aberrations, and reduced signal collection away from the focal plane. While defocus and aberrations can be compensated with computational methods such as interferometric synthetic aperture microscopy (ISAM) or computational adaptive optics (CAO), reduced signal collection must be physically addressed through optical hardware. Axial scanning of the focus is one approach, but comes at the cost of longer acquisition times, larger datasets, and greater image reconstruction times. Given the capabilities of CAO to compensate for general phase aberrations, we present an alternative method to address the signal collection problem without axial scanning by using intentionally aberrated optical hardware. We demonstrate the use of an astigmatic spectral domain (SD-)OCM imaging system to enable single-acquisition volumetric OCM in 3D cell culture over an extended depth range, compared to a non-aberrated SD-OCM system. The transverse resolution of the non-aberrated and astigmatic imaging systems after application of CAO were 2 um and 2.2 um, respectively. The depth-range of effective signal collection about the nominal focal plane was increased from 100 um in the non-aberrated system to over 300 um in the astigmatic system, extending the range over which useful data may be acquired in a single OCM dataset. We anticipate that this method will enable high-throughput cellular-resolution imaging of dynamic biological systems over extended volumes.

  15. Short-term mechanisms influencing volumetric brain dynamics

    Directory of Open Access Journals (Sweden)

    Nikki Dieleman

    2017-01-01

    Full Text Available With the use of magnetic resonance imaging (MRI and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of

  16. System analysis of formation and perception processes of three-dimensional images in volumetric displays

    Science.gov (United States)

    Bolshakov, Alexander; Sgibnev, Arthur

    2018-03-01

    One of the promising devices is currently a volumetric display. Volumetric displays capable to visualize complex three-dimensional information as nearly as possible to its natural – volume form without the use of special glasses. The invention and implementation of volumetric display technology will expand opportunities of information visualization in various spheres of human activity. The article attempts to structure and describe the interrelation of the essential characteristics of objects in the area of volumetric visualization. Also there is proposed a method of calculation of estimate total number of voxels perceived by observers during the 3D demonstration, generated using a volumetric display with a rotating screen. In the future, it is planned to expand the described technique and implement a system for estimation the quality of generated images, depending on the types of biplanes and their initial characteristics.

  17. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    Science.gov (United States)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  18. Age-related effects in the neocortical organization of chimpanzees

    DEFF Research Database (Denmark)

    Autrey, Michelle M; Reamer, Lisa A; Mareno, Mary Catherine

    2014-01-01

    Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and...

  19. Using mixture models to characterize disease-related traits

    OpenAIRE

    Ye Kenny Q; Chase Gary A; Finch Stephen J; Duan Tao; Mendell Nancy R

    2005-01-01

    Abstract We consider 12 event-related potentials and one electroencephalogram measure as disease-related traits to compare alcohol-dependent individuals (cases) to unaffected individuals (controls). We use two approaches: 1) two-way analysis of variance (with sex and alcohol dependency as the factors), and 2) likelihood ratio tests comparing sex adjusted values of cases to controls assuming that within each group the trait has a 2 (or 3) component normal mixture distribution. In the second ap...

  20. Extended Nambu models: Their relation to gauge theories

    Science.gov (United States)

    Escobar, C. A.; Urrutia, L. F.

    2017-05-01

    Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.

  1. Analytical model of stemwood growth in relation to nitrogen supply

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R. C.; McMurtrie, R. E. [New South Wales Univ., Sydney, NSW (Australia)

    1996-01-01

    A process-based model of tree stand growth that simulates the effect of nitrogen supply on forest productivity has been recently combined with a soil-carbon-nitrogen model. The combined model, called G`DAY has been used to examine the long-term response of unmanaged forest ecosystems to increasing CO{sub 2} concentration. In this study an attempt was made to derive a simplified, analytically tractable version of the plant production part of G`DAY, and use it to gain insight into the general relationship between stemwood growth and nitrogen supply in managed forests. The particular focus of the study was on using the model to predict how the maximum annual stemwood growth and optimal rotation length can be expected to vary in response to changes in nitrogen supply from net mineralization, fertilizer addition, fixation and atmospheric deposition. Overall, the model was considered to be a useful tool in examining the effects of changes in climate and nutrient supply on sustainable forest productivity. 20 refs., 2 tabs., 5 figs.

  2. Modelling aerosol processes related to the atmospheric dispersion of sarin.

    Science.gov (United States)

    Kukkonen, J; Riikonen, K; Nikmo, J; Jäppinen, A; Nieminen, K

    2001-08-17

    We have developed mathematical models for evaluating the atmospheric dispersion of selected chemical warfare agents (CWA), including the evaporation and settling of contaminant liquid droplets. The models and numerical results presented may be utilised for designing protection and control measures against the conceivable use of CWA's. The model AERCLOUD (AERosol CLOUD) was extended to treat two nerve agents, sarin and VX, and the mustard agent. This model evaluates the thermodynamical evolution of a five-component aerosol mixture, consisting of two-component droplets together with the surrounding three-component gas. We have performed numerical computations with this model on the evaporation and settling of airborne sarin droplets in characteristic dispersal and atmospheric conditions. In particular, we have evaluated the maximum radii (r(M)) of a totally evaporating droplet, in terms of the ambient temperature and contaminant vapour concentration. The radii r(M) range from approximately 15-80 microm for sarin droplets for the selected ambient conditions and initial heights. We have also evaluated deposition fractions in terms of the initial droplet size.

  3. Volumetric and two-dimensional image interpretation show different cognitive processes in learners.

    Science.gov (United States)

    van der Gijp, Anouk; Ravesloot, Cécile J; van der Schaaf, Marieke F; van der Schaaf, Irene C; Huige, Josephine C B M; Vincken, Koen L; Ten Cate, Olle Th J; van Schaik, Jan P J

    2015-05-01

    In current practice, radiologists interpret digital images, including a substantial amount of volumetric images. We hypothesized that interpretation of a stack of a volumetric data set demands different skills than interpretation of two-dimensional (2D) cross-sectional images. This study aimed to investigate and compare knowledge and skills used for interpretation of volumetric versus 2D images. Twenty radiology clerks were asked to think out loud while reading four or five volumetric computed tomography (CT) images in stack mode and four or five 2D CT images. Cases were presented in a digital testing program allowing stack viewing of volumetric data sets and changing views and window settings. Thoughts verbalized by the participants were registered and coded by a framework of knowledge and skills concerning three components: perception, analysis, and synthesis. The components were subdivided into 16 discrete knowledge and skill elements. A within-subject analysis was performed to compare cognitive processes during volumetric image readings versus 2D cross-sectional image readings. Most utterances contained knowledge and skills concerning perception (46%). A smaller part involved synthesis (31%) and analysis (23%). More utterances regarded perception in volumetric image interpretation than in 2D image interpretation (Median 48% vs 35%; z = -3.9; P Cognitive processes in volumetric and 2D cross-sectional image interpretation differ substantially. Volumetric image interpretation draws predominantly on perceptual processes, whereas 2D image interpretation is mainly characterized by synthesis. The results encourage the use of volumetric images for teaching and testing perceptual skills. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  4. Thymoma related myasthenia gravis in humans and potential animal models.

    Science.gov (United States)

    Marx, Alexander; Porubsky, Stefan; Belharazem, Djeda; Saruhan-Direskeneli, Güher; Schalke, Berthold; Ströbel, Philipp; Weis, Cleo-Aron

    2015-08-01

    Thymoma-associated Myasthenia gravis (TAMG) is one of the anti-acetylcholine receptor MG (AChR-MG) subtypes. The clinico-pathological features of TAMG and its pathogenesis are described here in comparison with pathogenetic models suggested for the more common non-thymoma AChR-MG subtypes, early onset MG and late onset MG. Emphasis is put on the role of abnormal intratumorous T cell selection and activation, lack of intratumorous myoid cells and regulatory T cells as well as deficient expression of the autoimmune regulator (AIRE) by neoplastic thymic epithelial cells. We review spontaneous and genetically engineered thymoma models in a spectrum of animals and the extensive clinical and immunological overlap between canine, feline and human TAMG. Finally, limitations and perspectives of the transplantation of human and murine thymoma tissue into nude mice, as potential models for TAMG, are addressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    Science.gov (United States)

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  6. Modelling the relation between income and commuting distance

    DEFF Research Database (Denmark)

    Carra, Giulia; Mulalic, Ismir; Fosgerau, Mogens

    2016-01-01

    slowly as a power law with an exponent less than one that depends on the country considered. The classical theory for job search is based on the idea that workers evaluate the wage of potential jobs as they arrive sequentially through time, and extending this model with space, we obtain predictions...... that are strongly contradicted by our empirical findings. We propose an alternative model that is based on the idea that workers evaluate potential jobs based on a quality aspect and that workers search for jobs sequentially across space. We also assume that the density of potential jobs depends on the skills...

  7. Volumetric analysis of olfactory neuroblastoma skull base laterality and implications on neck disease.

    Science.gov (United States)

    Marinelli, John P; Van Gompel, Jamie J; Link, Michael J; Moore, Eric J; Price, Daniel L; Lees, Katherine A; Kaczor, Mark W; Janus, Jeffrey R

    2018-04-01

    To determine if the laterality of primary tumors in patients with olfactory neuroblastoma (ONB) influenced the pattern and development of neck disease. Using a retrospective cohort study design from 1994 to 2015, the primary tumors of patients who either presented with or developed neck disease were volumetrically analyzed using iPlan software (version 3.0.0, BrainLAB, Feldkirchen, Germany) by two independent observers. Agreement of volume-derived sidedness was assessed with a kappa statistic, whereas agreement in volume-derived degree of tumor laterality was evaluated with an intraclass correlation coefficient. A one-sample t test was used to assess the difference in dominant percentage between the two observers. Sixty-one patients with histological diagnosis and treatment of ONB at our institution were identified. Twenty-four patients exhibited neck involvement, 13 of whom could be volumetrically analyzed. Tumors that were greater than 75% eccentric to one side all exhibited contralateral disease, whereas the majority of unilateral neck disease was associated with relatively midline masses. Within the entire cohort, ipsilateral level 2 lymph nodes displayed the highest involvement (83%, 20 of 24), followed by ipsilateral level 1 (54%, 13 of 24), contralateral level 2 (46%, 11 of 24), contralateral level 1 (21%, 5 of 24), and ipsilateral level 3 (21%, 5 of 24). Ipsilateral neck involvement frequently was observed; however, the degree of ONB primary site laterality did not appear to have implications on the development of contralateral neck disease. Therefore, when considering elective therapy to the neck, ONB laterality should not be used to justify unilateral neck treatment. 4. Laryngoscope, 128:864-870, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. VASP-E: Specificity Annotation with a Volumetric Analysis of Electrostatic Isopotentials

    Science.gov (United States)

    Chen, Brian Y.

    2014-01-01

    Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast, few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of specific binding and the engineering of binding preferences in proteins. PMID:25166865

  9. Body composition, volumetric and areal bone parameters in male-to-female transsexual persons.

    Science.gov (United States)

    Lapauw, Bruno; Taes, Youri; Simoens, Steven; Van Caenegem, Eva; Weyers, Steven; Goemaere, Stefan; Toye, Kaatje; Kaufman, Jean-Marc; T'Sjoen, Guy G

    2008-12-01

    Male-to-female (M-->F) transsexual persons undergo extreme changes in gonadal hormone concentrations, both by pharmacological and surgical interventions. Given the importance of sex steroids for developing and maintaining bone mass, bone health is a matter of concern in daily management of these patients. To provide data on bone metabolism, geometry and volumetric bone mineral density in M-->F transsexual persons. Twenty-three M-->F transsexual persons, recruited from our gender dysphoria clinic and at least 3 yrs after sex reassignment surgery, together with 46 healthy age- and height-matched control men were included in this cross-sectional study. Body composition, areal and volumetric bone parameters determined using DXA and peripheral quantitative computed tomography. Hormone levels and markers of bone metabolism assessed using immunoassays. Peak torque of biceps and quadriceps muscles and grip strength assessed using an isokinetic and hand dynamometer, respectively. M-->F transsexual persons presented lower total and regional muscle mass and lower muscle strength as compared to controls (all PF transsexual persons were characterized by smaller cortical bone size at both the radius and tibia (PF transsexual persons have less lean mass and muscle strength, and higher fat mass. In addition, they present lower trabecular vBMD and aBMD at the lumbar spine, total hip and distal radius, and smaller cortical bone size as compared to matched controls. Both the lower level of sports-related physical activity as well testosterone deprivation could contribute to these findings. These results indicate that bone health should be a parameter of interest in the long-term follow-up care for M-->F transsexual persons.

  10. Preoperative bevacizumab and volumetric recovery after resection of colorectal liver metastases.

    Science.gov (United States)

    Margonis, Georgios Antonios; Buettner, Stefan; Andreatos, Nikolaos; Sasaki, Kazunari; Pour, Manijeh Zargham; Deshwar, Ammar; Wang, Jane; Ghasebeh, Mounes Aliyari; Damaskos, Christos; Rezaee, Neda; Pawlik, Timothy M; Wolfgang, Christopher L; Kamel, Ihab R; Weiss, Matthew J

    2017-12-01

    While preoperative treatment is frequently administered to CRLM patients, the impact of chemotherapy, with or without bevacizumab, on liver regeneration remains controversial. The early and late regeneration indexes were defined as the relative increase in liver volume (RLV) within 2 and 9 months from surgery. Regeneration rates of the preoperative treatment groups were compared. Preoperative chemotherapy details and volumetric data were available for 185 patients; 78 (42.2%) received preoperative chemotherapy with bevacizumab (Bev+), 46 (24.8%) received chemotherapy only (Bev-), and 61 (33%) received no chemotherapy. Patients in the Bev+ and Bev- groups received similar chemotherapy cycles (4 [3-6] vs 4 [4-6]; P = 0.499). Despite the comparable clinicopathological characteristics and Resected Volume/Total Liver Volume (TLV) at surgery (P = 0.944) of both groups, Bev+ group had higher early and late regeneration (17.2% vs 4.3%; P = 0.035 and 14.0% vs 9.4%; P = 0.091, respectively). Of note, early and late regeneration rates (3.7% and 10.9% vs 6.6% and 5.5%, respectively) were comparable between the no chemotherapy and Bev- groups (all P > 0.05). In multivariable analysis -adjusted for gender, age, portal vein embolization, preoperative chemotherapy, resected liver volume, tumor number, postoperative chemotherapy, fibrosis, steatosis- bevacizumab independently predicted early liver regeneration (P = 0.019). Our findings suggest that preoperative bevacizumab administered along with chemotherapy was associated with enhanced volumetric restoration. Interestingly, this effect was more pronounced among patients who received oxaliplatin-based regimens and bevacizumab compared to those treated with irinotecan-based regimens and bevacizumab. © 2017 Wiley Periodicals, Inc.

  11. Model, Materialism, and Immanent Utopia in Relational Aesthetics

    DEFF Research Database (Denmark)

    Degn Johansson, Troels

    ) metaphor where social reality is staged and facilitated in order to document and present its development. At the same time however, the notion of model is difficult to dissociate from Bourriaud's materialism which draws on such different figures as the late Althusser, Lucretius, and Deleuze and which...

  12. Systemic Modelling for Relating Labour Market to Vocational Education

    Science.gov (United States)

    Papakitsos, Evangelos C.

    2016-01-01

    The present study introduces a systemic model that demonstrates a description of the relationship between the labour-market and vocational education from the perspective of systemic theory. Based on the application of the relevant methodology, the two open social systems are identified and analyzed. Their key-features are presented and the points…

  13. Control mechanisms for a nonlinear model of international relations

    Energy Technology Data Exchange (ETDEWEB)

    Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.

    1997-07-15

    Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.

  14. On some asymptotic relations in the Boltzmann-Enskog model

    International Nuclear Information System (INIS)

    Sadovnikov, B.I.; Inozemtseva, N.G.

    1977-04-01

    The coefficients in the tsup(-3/2) asymptotics of the time autocorrelation functions are successively determined in the framework of the non-linear Boltzmann-Enskog model. The left and right eigenfunction systems are constructed for the Boltzmann-Enskog operator

  15. Modeling personal exposure to traffic related air pollutants

    NARCIS (Netherlands)

    Montagne, D.R.

    2015-01-01

    The first part of this thesis is about the VE3SPA project. Land use regression (LUR) models are often used to predict the outdoor air pollution at the home address of study participants, to study long-term effects of air pollution. While several studies have documented that PM2.5 mass measured at a

  16. Accuracy of surface registration compared to conventional volumetric registration in patient positioning for head-and-neck radiotherapy: A simulation study using patient data

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjun [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 and Center for Bionics, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Li, Ruijiang; Na, Yong Hum; Xing, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States); Lee, Rena, E-mail: renalee@ewha.ac.kr [Department of Radiation Oncology, Ewha Womans University School of Medicine, Seoul 158-710 (Korea, Republic of)

    2014-12-15

    Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracy of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient

  17. Stochastic characteristics and modeling of relative humidity of Ogun ...

    African Journals Online (AJOL)

    Extreme events of atmospheric phenomena are often non deterministic in nature, and this has been a major constraint in achieving agricultural sustainability in most developing countries.To facilitate this study, 29 years information of the observed relative humidity of Ogun basin was obtained from the Federal Ministry of ...

  18. Applications of relative motion models using curvilinear coordinate frames

    Science.gov (United States)

    Perez, Alex C.

    An angles-only initial relative orbit determination aglorithm is derived using three line-of-sight observations or six angle measurements. This is accomplished by taking a Singular Value Decomposition of a 6x6 matrix to get a right singular vector approximately in the direction of the initial line-of-sight vector. Then an approximate initial relative orbit determination algorithm is derived that computes the range from the chief to the deputy vehicle. This involves the approximate solution of 6 poylnomial equations in 6 unknowns. An iterative improvement is also derived that provides the exact solution, to numerical precision, of the 6 polynomial equations in 6 unknowns. The initial relative orbit algorithm is also expanded for more than three line-of-sight observations with an iterative improvement algorithm for more than three line-of-sight observations. The algorithm is tested for a range of relative motion cases in low earth orbit and geosynchronous orbit, with and without the inclusion of J2 perturbations and with camera measurement errors.

  19. Health-Related Fitness Models in Physical Education

    Science.gov (United States)

    Houston, Jennifer; Kulinna, Pamela

    2014-01-01

    Physical education has been an integral part of the school curriculum for more than a century. Although the focus has changed over time, the major objective has remained relatively constant: to provide students with the knowledge, skills, abilities, behaviors, and confidence to be physically active throughout their lifetime. As more physical…

  20. Action Relations. Basic Design Concepts for Behaviour Modelling and Refinement.

    NARCIS (Netherlands)

    Quartel, Dick

    This thesis presents basic design concepts, design methods and a basic design language for distributed system behaviours. This language is based on two basic concepts: the action concept and the causality relation concept. Our methods focus on behaviour refinement, which consists of replacing an

  1. A Model-Based Exploration and Policy Analysis Related to Prostitution and Human Trafficking

    OpenAIRE

    András Kővári; Erik Pruyt

    2014-01-01

    This paper presents a model-based exploration and policy analysis related to prostitution and prostitution-related human trafficking. After a brief introduction to prostitution and prostitution-related human trafficking, the paper zooms in on the Dutch situation. A System Dynamics simulation model related to the Dutch situation developed to explore and provide policy insights is subsequently presented. Using the simulation model, policies are first of all tested, and preliminary conclusions a...

  2. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Science.gov (United States)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  3. Using computational models to relate structural and functional brain connectivity

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Coombes, S.

    2012-01-01

    Roč. 36, č. 2 (2012), s. 2137-2145 ISSN 0953-816X R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAINSYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : brain disease * computational modelling * functional connectivity * graph theory * structural connectivity Subject RIV: FH - Neurology Impact factor: 3.753, year: 2012

  4. A Comparison of a Relational and Nested-Relational IDEF0 Data Model

    Science.gov (United States)

    1990-03-01

    model represents the actual graphical constructs, e.g., boxes, line segments, etc., used to represent the particular IDEF0 anal - As with the essential...screen location represented in (x,y). select se.a, sa.ys. sexo , seye from segment so where se.sheet-id in select s.sheet-id from activity a, sheet s

  5. Action Relations. Basic Design Concepts for Behaviour Modelling and Refinement.

    OpenAIRE

    Quartel, Dick

    1998-01-01

    This thesis presents basic design concepts, design methods and a basic design language for distributed system behaviours. This language is based on two basic concepts: the action concept and the causality relation concept. Our methods focus on behaviour refinement, which consists of replacing an abstract behaviour by a more concrete behaviour, such that the concrete behaviour conforms to the abstract behaviour. An important idea underlying this thesis is that an effective design methodology s...

  6. Some computer simulations based on the linear relative risk model

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1991-10-01

    This report presents the results of computer simulations designed to evaluate and compare the performance of the likelihood ratio statistic and the score statistic for making inferences about the linear relative risk mode. The work was motivated by data on workers exposed to low doses of radiation, and the report includes illustration of several procedures for obtaining confidence limits for the excess relative risk coefficient based on data from three studies of nuclear workers. The computer simulations indicate that with small sample sizes and highly skewed dose distributions, asymptotic approximations to the score statistic or to the likelihood ratio statistic may not be adequate. For testing the null hypothesis that the excess relative risk is equal to zero, the asymptotic approximation to the likelihood ratio statistic was adequate, but use of the asymptotic approximation to the score statistic rejected the null hypothesis too often. Frequently the likelihood was maximized at the lower constraint, and when this occurred, the asymptotic approximations for the likelihood ratio and score statistics did not perform well in obtaining upper confidence limits. The score statistic and likelihood ratio statistics were found to perform comparably in terms of power and width of the confidence limits. It is recommended that with modest sample sizes, confidence limits be obtained using computer simulations based on the score statistic. Although nuclear worker studies are emphasized in this report, its results are relevant for any study investigating linear dose-response functions with highly skewed exposure distributions. 22 refs., 14 tabs

  7. Models for moisture estimation in different horizons of yellow argisol using TDR

    Directory of Open Access Journals (Sweden)

    Karla Silva Santos Alvares de Almeida

    2017-08-01

    Full Text Available The determination of soil moisture is very important because it is the property with the most influence on the dielectric constant of the medium. Time-domain reflectometry (TDR is an indirect technique used to estimate the water content of the soil (? based on its dielectric constant (Ka. Like any other technique, it has advantages and disadvantages. Among the major disadvantages is the need for calibration, which requires consideration of the soil characteristics. This study aimed to perform the calibration of a TDR100 device to estimate the volumetric water content of four horizons of a Yellow Argisol. Calibration was performed under laboratory conditions using disturbed soil samples contained in PVC columns. The three rods of the handcrafted probes were vertically installed in the soil columns. Weight measurements with digital scales and daily readings of the dielectric constant with the TDR device were taken. For all soil horizons evaluated, the best fits between the dielectric constant and the volumetric water content were related to the cubic polynomial model. The Ledieu model overestimated by approximately 68 % the volumetric water content in the A and AB horizons, and underestimating by 69 % in Bt2, in relation to volumetric water content obtained by gravimetry. The underestimation by linear, Topp, Roth, and Malicki models ranged from 50 % to 85 % for all horizons.

  8. Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study

    International Nuclear Information System (INIS)

    Way, Ted W; Chan, H-P; Goodsitt, Mitchell M; Sahiner, Berkman; Hadjiiski, Lubomir M; Zhou Chuan; Chughtai, Aamer

    2008-01-01

    The purpose of this study is to investigate the effects of CT scanning and reconstruction parameters on automated segmentation and volumetric measurements of nodules in CT images. Phantom nodules of known sizes were used so that segmentation accuracy could be quantified in comparison to ground-truth volumes. Spherical nodules having 4.8, 9.5 and 16 mm diameters and 50 and 100 mg cc -1 calcium contents were embedded in lung-tissue-simulating foam which was inserted in the thoracic cavity of a chest section phantom. CT scans of the phantom were acquired with a 16-slice scanner at various tube currents, pitches, fields-of-view and slice thicknesses. Scans were also taken using identical techniques either within the same day or five months apart for study of reproducibility. The phantom nodules were segmented with a three-dimensional active contour (3DAC) model that we previously developed for use on patient nodules. The percentage volume errors relative to the ground-truth volumes were estimated under the various imaging conditions. There was no statistically significant difference in volume error for repeated CT scans or scans taken with techniques where only pitch, field of view, or tube current (mA) were changed. However, the slice thickness significantly (p < 0.05) affected the volume error. Therefore, to evaluate nodule growth, consistent imaging conditions and high resolution should be used for acquisition of the serial CT scans, especially for smaller nodules. Understanding the effects of scanning and reconstruction parameters on volume measurements by 3DAC allows better interpretation of data and assessment of growth. Tracking nodule growth with computerized segmentation methods would reduce inter- and intraobserver variabilities

  9. Analytical model of stemwood growth in relation to nitrogen supply.

    Science.gov (United States)

    Dewar, Roderick C.; McMurtrie, Ross E.

    1996-01-01

    We derived a simplified version of a previously published process-based model of forest productivity and used it to gain information about the dependence of stemwood growth on nitrogen supply. The simplifications we made led to the following general expression for stemwood carbon (c(w)) as a function of stand age (t), which shows explicitly the main factors involved: c(w)(t) = eta(w)G*/ micro (w)(1 - lambdae(- micro (w)t) - micro (w)e(-lambdat)/lambda - micro (w)), where eta(w) is the fraction of total carbon production (G) allocated to stemwood, G* is the equilibrium value of G at canopy closure, lambda describes the rate at which G approaches G*, and micro (w) is the combined specific rate of stemwood maintenance respiration and senescence. According to this equation, which describes a sigmoidal growth curve, c(w) is zero initially and asymptotically approaches eta(w)G*/ micro (w) with the rate of approach dependent on lambda and micro (w). We used this result to derive corresponding expressions for the maximum mean annual stem-wood volume increment (Y) and optimal rotation length (T). By calculating the quantities G* and lambda (which characterize the variation of carbon production with stand age) as functions of the supply rate of plant-available nitrogen (U(o)), we estimated the responses of Y and T to changes in U(o). For a plausible set of parameter values, as U(o) increased from 50 to 150 kg N ha(-1) year(-1), Y increased approximately linearly from 8 to 25 m(3) ha(-1) year(-1) (mainly as a result of increasing G*), whereas T decreased from 21 to 18 years (due to increasing lambda). The sensitivity of Y and T to other model parameters was also investigated. The analytical model provides a useful basis for examining the effects of changes in climate and nutrient supply on sustainable forest productivity, and may also help in interpreting the behavior of more complex process-based models of forest growth.

  10. Towards a Definition of Role-related Concepts for Business Modeling

    NARCIS (Netherlands)

    Meertens, Lucas Onno; Iacob, Maria Eugenia; Nieuwenhuis, Lambertus Johannes Maria

    2010-01-01

    Abstract—While several role-related concepts play an important role in business modeling, their definitions, relations, and use differ greatly between languages, papers, and reports. Due to this, the knowledge captured by models is not transferred correctly, and models are incomparable. In this

  11. Unsupervised knowledge structuring Application of Infinite Relational Models to the FCA visualization

    DEFF Research Database (Denmark)

    Glückstad, Fumiko Kano; Herlau, Tue; Schmidt, Mikkel Nørgaard

    2013-01-01

    This work presents a conceptual framework for learning an ontological structure of domain knowledge, which combines Jaccard similarity coefficient with the Infinite Relational Model (IRM) by (Kemp et al. 2006) and its extended model, i.e. the normal-Infinite Relational Model (n-IRM) by (Herlau et...

  12. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Petri Tanska

    2013-01-01

    Full Text Available The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior.

  13. Modeling Spatial Data within Object Relational-Databases

    Directory of Open Access Journals (Sweden)

    Iuliana BOTHA

    2011-03-01

    Full Text Available Spatial data can refer to elements that help place a certain object in a certain area. These elements are latitude, longitude, points, geometric figures represented by points, etc. However, when translating these elements into data that can be stored in a computer, it all comes down to numbers. The interesting part that requires attention is how to memorize them in order to obtain fast and various spatial queries. This part is where the DBMS (Data Base Management System that contains the database acts in. In this paper, we analyzed and compared two object-relational DBMS that work with spatial data: Oracle and PostgreSQL.

  14. Volumetric assessment of tumour response using functional MR imaging in patients with hepatocellular carcinoma treated with a combination of doxorubicin-eluting beads and sorafenib

    International Nuclear Information System (INIS)

    Corona-Villalobos, Celia Pamela; Halappa, Vivek Gowdra; Bonekamp, Susanne; Kamel, Ihab R.; Geschwind, Jean-Francois H.; Reyes, Diane; Cosgrove, David; Pawlik, Timothy M.

    2015-01-01

    To prospectively assess treatment response using volumetric functional magnetic resonance imaging (MRI) metrics in patients with hepatocellular carcinoma (HCC) treated with the combination of doxorubicin-eluting bead-transarterial chemoembolization (DEB TACE) and sorafenib. A single center study enrolled 41 patients treated with systemic sorafenib, 400 mg twice a day, combined with DEB TACE. All patients had a pre-treatment and 3-4 week post-treatment MRI. Anatomic response criteria (RECIST, mRECIST and EASL) and volumetric functional response (ADC, enhancement) were assessed. Statistical analyses included paired Student's t-test, Kaplan-Meier curves, Cohen's Kappa, and multivariate cox proportional hazard model. Median tumour size by RECIST remained unchanged post-treatment (8.3 ± 4.1 cm vs. 8.1 ± 4.3 cm, p = 0.44). There was no significant survival difference for early response by RECIST (p = 0.93). EASL and mRECIST could not be analyzed in 12 patients. Volumetric ADC increased significantly (1.32 x 10 -3 mm 2 /sec to 1.60 x 10 -3 mm 2 /sec, p < 0.001), and volumetric enhancement decreased significantly in HAP (38.2 % to 17.6 %, p < 0.001) and PVP (76.6 % to 41.2 %, p < 0.005). Patients who demonstrated ≥ 65 % decrease PVP enhancement had significantly improved overall survival compared to non-responders (p < 0.005). Volumetric PVP enhancement was demonstrated to be significantly correlated with survival in the combination of DEB TACE and sorafenib for patients with HCC, enabling precise stratification of responders and non-responders. (orig.)

  15. Volumetric brain tumour detection from MRI using visual saliency.

    Science.gov (United States)

    Mitra, Somosmita; Banerjee, Subhashis; Hayashi, Yoichi

    2017-01-01

    Medical image processing has become a major player in the world of automatic tumour region detection and is tantamount to the incipient stages of computer aided design. Saliency detection is a crucial application of medical image processing, and serves in its potential aid to medical practitioners by making the affected area stand out in the foreground from the rest of the background image. The algorithm developed here is a new approach to the detection of saliency in a three dimensional multi channel MR image sequence for the glioblastoma multiforme (a form of malignant brain tumour). First we enhance the three channels, FLAIR (Fluid Attenuated Inversion Recovery), T2 and T1C (contrast enhanced with gadolinium) to generate a pseudo coloured RGB image. This is then converted to the CIE L*a*b* color space. Processing on cubes of sizes k = 4, 8, 16, the L*a*b* 3D image is then compressed into volumetric units; each representing the neighbourhood information of the surrounding 64 voxels for k = 4, 512 voxels for k = 8 and 4096 voxels for k = 16, respectively. The spatial distance of these voxels are then compared along the three major axes to generate the novel 3D saliency map of a 3D image, which unambiguously highlights the tumour region. The algorithm operates along the three major axes to maximise the computation efficiency while minimising loss of valuable 3D information. Thus the 3D multichannel MR image saliency detection algorithm is useful in generating a uniform and logistically correct 3D saliency map with pragmatic applicability in Computer Aided Detection (CADe). Assignment of uniform importance to all three axes proves to be an important factor in volumetric processing, which helps in noise reduction and reduces the possibility of compromising essential information. The effectiveness of the algorithm was evaluated over the BRATS MICCAI 2015 dataset having 274 glioma cases, consisting both of high grade and low grade GBM. The results were compared with

  16. PUBLIC RELATION BASED MODEL OF INTEGRATED MARKETING COMMUNICATIONS

    Directory of Open Access Journals (Sweden)

    Ljupka Naumovska

    2016-12-01

    Full Text Available The marketing communications industry and theory are facing rapid changes in accordance with global business and society fluctuations. Global and local market conditions are constantly varying and thus creating hardly predictable environment. The most implemented tool for marketing communications – advertising, is losing its power for effective communications; customers are becoming over-advertised and resistant to traditional advertising stimuli. Advertising, as one-way communication mass media tool is no longer effective as previously, hence can no longer fulfill the role of leading marketing mix tool. Therefore, the necessity for altering the structure of the traditional marketing communication mix elements, emphasizing the role of other elements but advertising, with more personalized and interactive functions. One method for improvement of marketing communication’s mix efficiency is by reallocation the leading role of advertising with public relations. The practice of public relations tools can ensure higher level of transparency in internal and external organizational communications and thus can certify more effective marketing communication. The theoretical research is supported with qualitative research of business segment by conducting a detailed interview for the marketing communication practice.

  17. Physical modelling of the rainfall infiltration processes and related landslide behaviour.

    Science.gov (United States)

    Capparelli, Giovanna; Damiano, Emilia; Olivares, Lucio; Spolverino, Gennaro; Versace, Pasquale

    2016-04-01

    The prediction of natural processes, such as weather-induced landslide, an issue that is of great importance. Were held numerous research to understand the processes underlying the triggering of a landslide, and to improve the forecasting systems. A valid prediction model can allow the implementation of an equally valid announcement and warning system, thus reducing the risk caused by such phenomena. The hydraulic and hydrologic modeling of the process that takes place in an unstable slope subjected to rainfall, can be performed using two approaches: through mathematical models or physical models. Our research uses an integrated approach, making system data of experimental sites, with both the results and interpretations of physical models, both with simulations of mathematical models. The intent is to observe and interpret laboratory experiments to reproduce and simulate the phenomenon with mathematical models. The research aims to obtain interpretations of hydrological and hydraulic processes, which occur in the slopes as a result of rain, more and more accurate. For our research we use a scaled-down physical model and a mathematical model FEM. The physical model is a channel with transparent walls composed of two floors at a variable angle (ignition and propagation) 1 meter wide and 3 meters long each. The model is instrumented with sensors that control the hydraulic and geotechnical parameters within the slopes and devices that simulate natural events. The model is equipped with a monitoring system able to keep under observation the physical quantities of interest. In particular, the apparatus is equipped with tensiometers miniaturized, that can be installed in different positions and at different depths, for the measurement of suction within the slope, miniaturized pressure transducers on the bottom of the channel for the measurement of any pressure neutral positive , TDR system for the measurement of the volumetric water content, and displacement transducers

  18. The Role of Human Relations and Interactions in Designing Memory-Related Models for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Basim MAHMOOD

    2016-04-01

    Full Text Available Recently, the use of Wireless Sensor Networks has become substantial in most of our life aspects. These networks have many issues and challenges at the design phase (e.g., memory and power consumption. There exists a huge amount of works and studies that offer and provide solutions for many of these challenges. However, the issues of predicting memory requirements and memory management have not received enough attention in sensor networks literature. Yet, most of the studies in this field focus on issues related to power consumption and connectivity of sensor nodes. This paper has two main purposes: first, we propose a metric for measuring the strength of a relation between two sensors. In the proposed metric, we involve three important characteristics of human relations and interactions: encounter frequencies, duration of encounters, and regularities of encounters. We then exploit this metric in predicting memory requirements in a sensor network. Second, based on the estimated memory size, we propose an approach for memory management in a sensor network. The proposed approach is based on two concepts: social capital in sociology and preferential return in human mobility. The results show that our approach is effective in managing sensor memories comparing to other approaches in the literature.

  19. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  20. How is weight stigma related to children's health-related quality of life? A model comparison approach.

    Science.gov (United States)

    Guardabassi, Veronica; Mirisola, Alberto; Tomasetto, Carlo

    2018-01-01

    Obesity is a highly stigmatizing condition for both adults and children, and both obesity and stigma experiences are negatively related with health-related quality of life (HRQoL). However, the relations among these constructs have been modeled in different and sometimes inconsistent terms in past research, and have been the object of surprisingly few studies in pediatric populations. The present study addresses this gap by comparing, in a sample of preadolescent children, four competing models (i.e., additive, mediation, moderation, and moderated mediation models) accounting for the role of stigma experiences in the concurrent relation between body weight and HRQoL. A community sample of 600 children aged 8-11 years completed the Perception of Teasing Scale to assess weight-based teasing experiences and the PedsQL 4.0 to assess HRQoL. Parent-reported height and weight were used to calculate age- and gender-adjusted zBMI. Log-likelihood test, BIC difference, and Wald test were used for model comparisons. The mediation model outperformed both additive and moderation models and was found to be equally informative (but more parsimonious) as compared to the moderated mediation account. The same pattern of results was replicated for both global HRQoL and domain-specific quality of life domains (i.e., physical, emotional, social, and scholastic). The mediation model provided the best fitting and more parsimonious representation of the relations between body weight, stigma experiences, and HRQoL, meaning that an increased likelihood of experiencing weight-based teasing episodes, rather than excess weight per se, is associated with reduced quality of life in middle childhood.

  1. Gender-related model for mobile-based learning

    Science.gov (United States)

    Simanjuntak, R. R.; Dewi, U. P.; Rifai, I.

    2018-03-01

    The study investigates gender influence on mobile-based learning. This case study of university students in Jakarta involved 235 students (128 male, 97 female). Results of this qualitative study showed 96% preference for mobile-based learning. A further 94% showed the needs for collaboration and authenticity for 92%. Hofstede’s cultural dimensions were used to identify the gender aspects of MALL. Preference for Masculinity (65%) was showed rather than Femininity (35%), even among the female respondents (70% of the population). Professions and professionalism received strongest preference (70%) while Individuality and Collectivism had equal preferences among students. Both female and male respondents requested Indulgence (84%) for mobile-based learning with more male respondents opted for Indulgence. The study provided a model for this gender sensitive mobile-based learning. Implications of implementing mobile-based learning as an ideal alternative for well-accommodated education are is also discussed.

  2. The Human-Computer Domain Relation in UX Models

    DEFF Research Database (Denmark)

    Clemmensen, Torkil

    This paper argues that the conceptualization of the human, the computer and the domain of use in competing lines of UX research have problematic similarities and superficial differences. The paper qualitatively analyses concepts and models in five research papers that together represent two...... influential lines of UX research: aesthetics and temporal UX, and two use situations: using a website and starting to use a smartphone. The results suggest that the two lines of UX research share a focus on users’ evaluative judgments of technology, both focuses on product qualities rather than activity...... domains, give little details about users, and treat human-computer interaction as perception. The conclusion gives similarities and differences between the approaches to UX. The implications for theory building are indicated....

  3. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ezzati, Ali [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Montefiore Medical Center, Department of Neurology, Bronx, NY (United States); Katz, Mindy J. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Lipton, Michael L. [Albert Einstein College of Medicine of Yeshiva University, The Gruss Magnetic Resonance Research Center and Departments of Radiology, Psychiatry and Behavioral Sciences and the Dominick P. Purpura Department of Neuroscience, Bronx, NY (United States); Montefiore Medical Center, The Department of Radiology, Bronx, NY (United States); Lipton, Richard B. [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine of Yeshiva University, Department of Epidemiology and Population Health, Bronx, NY (United States); Verghese, Joe [Albert Einstein College of Medicine of Yeshiva University, Saul B. Korey Department of Neurology, Bronx, NY (United States); Albert Einstein College of Medicine, Division of Cognitive and Motor Aging, Bronx, NY (United States)

    2015-08-15

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  4. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    International Nuclear Information System (INIS)

    Ezzati, Ali; Katz, Mindy J.; Lipton, Michael L.; Lipton, Richard B.; Verghese, Joe

    2015-01-01

    While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. (orig.)

  5. Quality Systems. A Thermodynamics-Related Interpretive Model

    Directory of Open Access Journals (Sweden)

    Stefano A. Lollai

    2017-08-01

    Full Text Available In the present paper, a Quality Systems Theory is presented. Certifiable Quality Systems are treated and interpreted in accordance with a Thermodynamics-based approach. Analysis is also conducted on the relationship between Quality Management Systems (QMSs and systems theories. A measure of entropy is proposed for QMSs, including a virtual document entropy and an entropy linked to processes and organisation. QMSs are also interpreted in light of Cybernetics, and interrelations between Information Theory and quality are also highlighted. A measure for the information content of quality documents is proposed. Such parameters can be used as adequacy indices for QMSs. From the discussed approach, suggestions for organising QMSs are also derived. Further interpretive thermodynamic-based criteria for QMSs are also proposed. The work represents the first attempt to treat quality organisational systems according to a thermodynamics-related approach. At this stage, no data are available to compare statements in the paper.

  6. Comparison of surface contour and volumetric three-dimensional imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Guilford, W.B.; Ullrich, C.G.; Moore, T.

    1988-01-01

    Both surface contour and volumetric three-dimensional image processing from CT data can provide accurate demonstration of skeletal anatomy. While realistic, surface contour images may obscure fine detail such as nondisplaced fractures, and thin bone may disappear. Volumetric processing can provide high detail, but the transparency effect is unnatural and may yield a confusing image. Comparison of both three-dimensional modes is presented to demonstrate those findings best shown with each and to illustrate helpful techniques to improve volumetric display, such as disarticulation of unnecessary anatomy, short-angle repeating rotation (dithering), and image combination into overlay displays

  7. DIFFERENTIAL ANALYSIS OF VOLUMETRIC STRAINS IN POROUS MATERIALS IN TERMS OF WATER FREEZING

    Directory of Open Access Journals (Sweden)

    Rusin Z.

    2013-06-01

    Full Text Available The paper presents the differential analysis of volumetric strain (DAVS. The method allows measurements of volumetric deformations of capillary-porous materials caused by water-ice phase change. The VSE indicator (volumetric strain effect, which under certain conditions can be interpreted as the minimum degree of phase change of water contained in the material pores, is proposed. The test results (DAVS for three materials with diversified microstructure: clinker brick, calcium-silicate brick and Portland cement mortar were compared with the test results for pore characteristics obtained with the mercury intrusion porosimetry.

  8. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    Science.gov (United States)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  9. Person perception as a function of interpersonal relations: The role of the Relation-Pattern Model (RPM)

    OpenAIRE

    Peeters, Guido

    1981-01-01

    The "Relation Pattern Model" (RPM) maps information that configurations of interpersonal relations imply about individuals within the configuration. This "implied information" varies according as individuals are conceived of either in self-other terms or in terms of singular persons (e.g.: proper names). Illustrative examples as well as research data show that the RPM accounts for a good deal of the variability among impressions perceivers form of people on the basis of information about inte...

  10. Performance evaluation of the newly developed volumetric strainmeter for the ocean borehole observatory in Nankai Seismogenic zone

    Science.gov (United States)

    Kitada, K.; Araki, E.; Kimura, T.; Kinoshita, M.

    2011-12-01

    Long term, in-situ monitoring of seismic activity, slow slip event, pore fluid behavior and strain accumulation around mega earthquake zone is a key for understanding the process of earthquake generation. During the IODP Expedition 332 in last December, we have successfully installed the borehole observatory including our new volumetric strainmeter in the Kumano forearc basin of the Nankai Trough. In the KY11-09 cruise by R/V Kaiyo from this July to August 2011, the performance test on the strainmeter installed into the Site C0002 in Nankai Trough was conducted for the connection to the data recorder in order to achieve the long term borehole monitoring. The observatory will be connected to submarine cabled observation network called Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) for the real time monitoring, which were constructed in and around the drilling target area during the KY11-09 cruise. Assessing the strain response based on the several externally applied stresses is a crucial step toward evaluating and interpreting the strain data collected in the ocean borehole. Especially, in order to detect strain change based on the regional stress field, it is important to verify the performance by comparing with the theory model after removed the effect of the environmental factors. In this study, we have installed the borehole volumetric strainmeter which is the same type as installed in Nankai Trough, into the 216 mm outside diameter borehole with depth of about 21m in Kamioka mine (Hida, Japan) last December and the evaluation test of the long term performance was started. The collected strain data showed the drift rate of about 400-500 nstrain/day which can be explained by the temperature change of silicone oil inside the sensing part of the strainmeter and/or the other effect. The drift corrected data clearly showed the earth tidal strain change and corresponds with areal strain change predicted by the earth tidal model (GOTIC2). 0.2 - 0

  11. Investment Frictions and the Relative Price of Investment Goods in an Open Economy Model

    OpenAIRE

    Parantap Basu; Christoph Thoenissen

    2007-01-01

    Is the relative price of investment goods a good proxy for investment frictions? We analyze investment frictions in an open economy, flexible price, two-country model and show that when the relative price of investment goods is endogenously determined in such a model, the relative price of investment can actually rise in response to a reduction in investment frictions. Only when the model is driven by TFP shocks do we observe a data congruent negative correlation between investment and the re...

  12. A Note on the Relation between Factor Analytic and Item Response Theory Models

    Science.gov (United States)

    Kamata, Akihito; Bauer, Daniel J.

    2008-01-01

    The relations among several alternative parameterizations of the binary factor analysis model and the 2-parameter item response theory model are discussed. It is pointed out that different parameterizations of factor analysis model parameters can be transformed into item response model theory parameters, and general formulas are provided.…

  13. Volumetric accuracy of cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol Woo; Kim, Jin Ho; Seo, Yu Kyeong; Lee, Sae Rom; Kang, Ju Hee; Oh, Song Hee; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Dept. of Oral and Maxillofacial Radiology, Graduate School, Kyung Hee University, Seoul (Korea, Republic of)

    2017-09-15

    This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Four geometric objects (cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. The mean VE ranged from −4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements.

  14. Cortical thickness and brain volumetric analysis in body dysmorphic disorder.

    Science.gov (United States)

    Madsen, Sarah K; Zai, Alex; Pirnia, Tara; Arienzo, Donatello; Zhan, Liang; Moody, Teena D; Thompson, Paul M; Feusner, Jamie D

    2015-04-30

    Individuals with body dysmorphic disorder (BDD) suffer from preoccupations with perceived defects in physical appearance, causing severe distress and disability. Although BDD affects 1-2% of the population, the neurobiology is not understood. Discrepant results in previous volumetric studies may be due to small sample sizes, and no study has investigated cortical thickness in BDD. The current study is the largest neuroimaging analysis of BDD. Participants included 49 medication-free, right-handed individuals with DSM-IV BDD and 44 healthy controls matched by age, sex, and education. Using high-resolution T1-weighted magnetic resonance imaging, we computed vertex-wise gray matter (GM) thickness on the cortical surface and GM volume using voxel-based morphometry. We also computed volumes in cortical and subcortical regions of interest. In addition to group comparisons, we investigated associations with symptom severity, insight, and anxiety within the BDD group. In BDD, greater anxiety was significantly associated with thinner GM in the left superior temporal cortex and greater GM volume in the right caudate nucleus. There were no significant differences in cortical thickness, GM volume, or volumes in regions of interest between BDD and control subjects. Subtle associations with clinical symptoms may characterize brain morphometric patterns in BDD, rather than large group differences in brain structure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  16. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  17. Determination of delta ferrite volumetric fraction in austenitic stainless steels

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray difraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Forster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  18. Region-of-interest volumetric visual hull refinement

    KAUST Repository

    Knoblauch, Daniel

    2010-01-01

    This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multipass process, beginning with a focussed visual hull reconstruction, resulting in a first 3D approximation of the target, followed by a region-of-interest estimation, tasked with identifying features of interest, which in turn are used to locally refine the voxel grid and extract a higher-resolution surface representation for those regions. This approach is illustrated for the reconstruction of avatars for use in tele-immersion environments, where head and hand regions are of higher interest. To allow reproducability and direct comparison a publicly available data set for human visual hull reconstruction is used. This paper shows that region-of-interest reconstruction of the target is faster and visually comparable to higher resolution focused visual hull reconstructions. This approach reduces the amount of data generated through the reconstruction, allowing faster post processing, as rendering or networking of the surface voxels. Reconstruction speeds support smooth interactions between the avatar and the virtual environment, while the improved resolution of its facial region and hands creates a higher-degree of immersion and potentially impacts the perception of body language, facial expressions and eye-to-eye contact. Copyright © 2010 by the Association for Computing Machinery, Inc.

  19. Illustration-inspired depth enhanced volumetric medical visualization.

    Science.gov (United States)

    Svakhine, Nikolai A; Ebert, David S; Andrews, William M

    2009-01-01

    Volume illustration can be used to provide insight into source data from CT/MRI scanners in much the same way as medical illustration depicts the important details of anatomical structures. As such, proven techniques used in medical illustration should be transferable to volume illustration, providing scientists with new tools to visualize their data. In recent years, a number of techniques have been developed to enhance the rendering pipeline and create illustrative effects similar to the ones found in medical textbooks and surgery manuals. Such effects usually highlight important features of the subject while subjugating its context and providing depth cues for correct perception. Inspired by traditional visual and line-drawing techniques found in medical illustration, we have developed a collection of fast algorithms for more effective emphasis/de-emphasis of data as well as conveyance of spatial relationships. Our techniques utilize effective outlining techniques and selective depth enhancement to provide perceptual cues of object importance as well as spatial relationships in volumetric datasets. Moreover, we have used illustration principles to effectively combine and adapt basic techniques so that they work together to provide consistent visual information and a uniform style.

  20. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.