WorldWideScience

Sample records for model relating reaction

  1. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as…

  2. On quark model relations for hypercharge-exchange reactions

    International Nuclear Information System (INIS)

    Kluyver, J.C.; Blokzijl, R.; Massaro, G.G.G.; Wolters, G.F.; Grossmann, P.; Lamb, P.R.; Wells, J.

    1978-01-01

    Peripheral two-body reactions of the type K - p → M 0 + Λ, Σ 0 or Σ 0 (1385) are considered. Predictions based on the additive quark model and SU(6) baryon wave functions are tested against data on cross sections and polarisations for given momentum transfer. Data obtained in a high statistics experiment at 4.2 GeV/c K - momentum, as well as data from a large variety of other experiments are used. Highly significant violations of these predictions are observed in the data. These violations are shown to occur in a systematic fashion, according to which SU(6) must be relaxed, but the amplitude structure implied by additivity would remain valid. As an application an amplitude analysis for natural parity exchange reactions with M 0 = π, phi and rho respectively is performed, which determines a relative phase, which cannot be obtained in model-independent analysis. Also reactions with M 0 = delta or B are considered, and some implications for coupling constants are discussed. (Auth.)

  3. Relating derived relations as a model of analogical reasoning: reaction times and event-related potentials.

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-11-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as chalk is to cheese") derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar-similar responding to be significantly faster than different-different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different-different waveforms were significantly more negative than similar-similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar-similar responding is relationally "simpler" than, and functionally distinct from, different-different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations.

  4. A reaction-diffusion model for market fluctuations - A relation between price change and traded volumes

    Science.gov (United States)

    Yuvan, Steven; Bier, Martin

    2018-02-01

    Two decades ago Bak et al. (1997) [3] proposed a reaction-diffusion model to describe market fluctuations. In the model buyers and sellers diffuse from opposite ends of a 1D interval that represents a price range. Trades occur when buyers and sellers meet. We show analytically and numerically that the model well reproduces the square-root relation between traded volumes and price changes that is observed in real-life markets. The result is remarkable as this relation has commonly been explained in terms of more elaborate trader strategies. We furthermore explain why the square-root relation is robust under model modifications and we show how real-life bond market data exhibit the square-root relation.

  5. Chemical equilibrium relations used in the fireball model of relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Gupta, S.D.

    1978-01-01

    The fireball model of relativistic heavy-ion collision uses chemical equilibrium relations to predict cross sections for particle and composite productions. These relations are examined in a canonical ensemble model where chemical equilibrium is not explicitly invoked

  6. Modeling of Reaction Calorimeter

    OpenAIRE

    Farzad, Reza

    2014-01-01

    The purpose of this project was to model the reaction calorimeter in order to calculate the heat of absorption which is the most important parameter in this work. Reaction calorimeter is an apparatus which is used in measuring the heat of absorption of CO2 as well as the total pressure in vapor phase based on vapor-liquid equilibrium state. Mixture of monoethanolamine (MEA) and water was used as a solvent to absorb the CO2.Project was divided in to three parts in order to make the programming...

  7. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills

    Science.gov (United States)

    Brantley, Susan L.; Lebedeva, Marina I.; Balashov, Victor N.; Singha, Kamini; Sullivan, Pamela L.; Stinchcomb, Gary

    2017-01-01

    Both vertical and lateral flows of rock and water occur within eroding hills. Specifically, when considered over geological timeframes, rock advects vertically upward under hilltops in landscapes experiencing uplift and erosion. Once rock particles reach the land surface, they move laterally and down the hillslope because of erosion. At much shorter timescales, meteoric water moves vertically downward until it reaches the regional water table and then moves laterally as groundwater flow. Water can also flow laterally in the shallow subsurface as interflow in zones of permeability contrast. Interflow can be perched or can occur during periods of a high regional water table. The depths of these deep and shallow water tables in hills fluctuate over time. The fluctuations drive biogeochemical reactions between water, CO2, O2, and minerals and these in turn drive fracturing. The depth intervals of water table fluctuation for interflow and groundwater flow are thus reaction fronts characterized by changes in composition, fracture density, porosity, and permeability. The shallow and deep reaction zones can separate over meters in felsic rocks. The zones act like valves that reorient downward unsaturated water flow into lateral saturated flow. The valves also reorient the upward advection of rock into lateral flow through solubilization. In particular, groundwater removes highly soluble, and interflow removes moderately soluble minerals. As rock and water moves through the system, hills may evolve toward a condition where the weathering advance rate, W, approaches the erosion rate, E. If W = E, the slopes of the deep and shallow reaction zones and the hillsides must allow removal of the most soluble, moderately soluble, and least soluble minerals respectively. A permeability architecture thus emerges to partition each evolving hill into dissolved and particulate material fluxes as it approaches steady state.

  8. Modelling Tethered Enzymatic Reactions

    Science.gov (United States)

    Solis Salas, Citlali; Goyette, Jesse; Coker-Gordon, Nicola; Bridge, Marcus; Isaacson, Samuel; Allard, Jun; Maini, Philip; Dushek, Omer

    Enzymatic reactions are key to cell functioning, and whilst much work has been done in protein interaction in cases where diffusion is possible, interactions of tethered proteins are poorly understood. Yet, because of the large role cell membranes play in enzymatic reactions, several reactions may take place where one of the proteins is bound to a fixed point in space. We develop a model to characterize tethered signalling between the phosphatase SHP-1 interacting with a tethered, phosphorylated protein. We compare our model to experimental data obtained using surface plasmon resonance (SPR). We show that a single SPR experiment recovers 5 independent biophysical/biochemical constants. We also compare the results between a three dimensional model and a two dimensional model. The work gives the opportunity to use known techniques to learn more about signalling processes, and new insights into how enzyme tethering alters cellular signalling. With support from the Mexican Council for Science and Technology (CONACyT), the Public Education Secretariat (SEP), and the Mexican National Autonomous University's Foundation (Fundacion UNAM).

  9. EQ6, a computer program for reaction path modeling of aqueous geochemical systems: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 4

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T.J.; Daveler, S.A.

    1992-10-09

    EQ6 is a FORTRAN computer program in the EQ3/6 software package (Wolery, 1979). It calculates reaction paths (chemical evolution) in reacting water-rock and water-rock-waste systems. Speciation in aqueous solution is an integral part of these calculations. EQ6 computes models of titration processes (including fluid mixing), irreversible reaction in closed systems, irreversible reaction in some simple kinds of open systems, and heating or cooling processes, as well as solve ``single-point`` thermodynamic equilibrium problems. A reaction path calculation normally involves a sequence of thermodynamic equilibrium calculations. Chemical evolution is driven by a set of irreversible reactions (i.e., reactions out of equilibrium) and/or changes in temperature and/or pressure. These irreversible reactions usually represent the dissolution or precipitation of minerals or other solids. The code computes the appearance and disappearance of phases in solubility equilibrium with the water. It finds the identities of these phases automatically. The user may specify which potential phases are allowed to form and which are not. There is an option to fix the fugacities of specified gas species, simulating contact with a large external reservoir. Rate laws for irreversible reactions may be either relative rates or actual rates. If any actual rates are used, the calculation has a time frame. Several forms for actual rate laws are programmed into the code. EQ6 is presently able to model both mineral dissolution and growth kinetics.

  10. EQ6, a computer program for reaction path modeling of aqueous geochemical systems: Theoretical manual, user's guide, and related documentation (Version 7.0)

    International Nuclear Information System (INIS)

    Wolery, T.J.; Daveler, S.A.

    1992-01-01

    EQ6 is a FORTRAN computer program in the EQ3/6 software package (Wolery, 1979). It calculates reaction paths (chemical evolution) in reacting water-rock and water-rock-waste systems. Speciation in aqueous solution is an integral part of these calculations. EQ6 computes models of titration processes (including fluid mixing), irreversible reaction in closed systems, irreversible reaction in some simple kinds of open systems, and heating or cooling processes, as well as solve ''single-point'' thermodynamic equilibrium problems. A reaction path calculation normally involves a sequence of thermodynamic equilibrium calculations. Chemical evolution is driven by a set of irreversible reactions (i.e., reactions out of equilibrium) and/or changes in temperature and/or pressure. These irreversible reactions usually represent the dissolution or precipitation of minerals or other solids. The code computes the appearance and disappearance of phases in solubility equilibrium with the water. It finds the identities of these phases automatically. The user may specify which potential phases are allowed to form and which are not. There is an option to fix the fugacities of specified gas species, simulating contact with a large external reservoir. Rate laws for irreversible reactions may be either relative rates or actual rates. If any actual rates are used, the calculation has a time frame. Several forms for actual rate laws are programmed into the code. EQ6 is presently able to model both mineral dissolution and growth kinetics

  11. A Bigraph Relational Model

    DEFF Research Database (Denmark)

    Beauquier, Maxime; Schürmann, Carsten

    2011-01-01

    In this paper, we present a model based on relations for bigraphical reactive system [Milner09]. Its defining characteristics are that validity and reaction relations are captured as traces in a multi-set rewriting system. The relational model is derived from Milner's graphical definition...

  12. Reduction of chemical reaction models

    Science.gov (United States)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  13. Modelling Students' Visualisation of Chemical Reaction

    Science.gov (United States)

    Cheng, Maurice M. W.; Gilbert, John K.

    2017-01-01

    This paper proposes a model-based notion of "submicro representations of chemical reactions". Based on three structural models of matter (the simple particle model, the atomic model and the free electron model of metals), we suggest there are two major models of reaction in school chemistry curricula: (a) reactions that are simple…

  14. Multiresponse modelling of the caramelisation reaction

    OpenAIRE

    Quintas, Mafalda; Guimarães, Carla; Baylina, João; Brandão, Teresa R. S.; Silva, Cristina L.M.

    2007-01-01

    Multiresponse modelling is a powerful tool for studying complex kinetics of reactions occurring in food products. This modelling technique uses information of reactants and products involved, allowing insightful kinetic parameters estimation and helping in clarifying reaction mechanisms. One example of a complex reaction that occurs in food processing is the caramelisation reaction. Caramelisation is the common name for a group of reactions observed when carbohydrates are exposed to high temp...

  15. Metathesis of alkanes and related reactions

    KAUST Repository

    Basset, Jean-Marie

    2010-02-16

    (Figure Presented) The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of aluminasupported tungsten hydride, W(H)3/Al 2O3, which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of

  16. Nuclear halo and its related reactions

    International Nuclear Information System (INIS)

    Zhang Huanqiao

    2005-01-01

    nuclear halo in terms of the analytical expressions of the expectation value for the operator r 2 in a finite square-well potential. Nuclear reactions induced by halo and weekly bound nuclei are a topic of current interest. We have measured the complete fusion cross sections of 6 Li+ 208 Pb and found the fusion cross sections above the Coulomb barrier are suppressed due to the breakup effects of weekly bound projectile 6 Li. We have also measured the elastic and quasi-elastic excitation functions of 6,7 Li, 9 Be+ 208 Pb, 209 Ri. From these excitation functions, barrier distributions are extracted and compared with the predictions of the coupled-channels model. It is found that the barrier distributions are somehow broaden and shift to lower energies which may be a signature of the breakup effects of the weekly bound projectiles. Gomes et al. study the behavior of the fusion, breakup, reaction, and elastic scattering of different projectiles on 64 Zn at near and above barrier energies. They found that the elastic (noncapture) breakup cross section is important at energies close to and above the Coulomb barrier and increases the reaction cross sections. In addition, they show that the breakup process at near and below barrier energies is responsible for the vanishing of the usual threshold anomaly of the optical and gives rise to a new type of anomaly. Recently, Newton et al. systematically analyzed the high precision fusion cross sections for Z p Z t p Z t 48 Ca+ 90,96 Zr at the XTU Tandem accelerator facility of the Laboratori Nazionali di Legnaro, Italy. The comparison of experimental 40,48 Ca+ 90,96 Zr fusion data shows that fusion of 40 Ca+ 96 Zr is much enhanced due to the positive Q-values of the transfer channels. The much larger enhancement for the 40 Ca+ 96 Zr as compared to other three systems clearly indicates that neutron transfer with the positive Q-value should play a significant role in sub-barrier fusion. In order to extract the information on the complex

  17. Entity models for trigger-reaction documents

    NARCIS (Netherlands)

    Khalid, M.A.; Marx, M.; Makkes, M.X.

    2008-01-01

    We define the notion of an entity model for a special kind of document popular on the web: an article followed by a list of reactions on that article, usually by many authors, usually inverse chronologically ordered. We call these documents trigger-reactions pairs. The entity model describes which

  18. Sodium-concrete reaction model development

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Muhlestein, L.D.; Postma, A.K.

    1982-07-01

    Major observations have been formulated after reviewing test results for over 100 sodium-concrete reaction tests. The observations form the basis for developing a mechanistic model to predict the transient behavior of sodium-concrete reactions. The major observations are listed. Mechanisms associated with sodium and water transport to the reaction zone are identified, and represented by appropriate mathematical expressions. The model attempts to explain large-scale, long-term (100 h) test results were sodium-concrete reactions terminated even in the presence of unreacted sodium and concrete

  19. Constituent models and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-01-01

    The discussion of constituent models and large transverse momentum reactions includes the structure of hard scattering models, dimensional counting rules for large transverse momentum reactions, dimensional counting and exclusive processes, the deuteron form factor, applications to inclusive reactions, predictions for meson and photon beams, the charge-cubed test for the e/sup +-/p → e/sup +-/γX asymmetry, the quasi-elastic peak in inclusive hadronic reactions, correlations, and the multiplicity bump at large transverse momentum. Also covered are the partition method for bound state calculations, proofs of dimensional counting, minimal neutralization and quark--quark scattering, the development of the constituent interchange model, and the A dependence of high transverse momentum reactions

  20. Infliximab-Related Infusion Reactions: Systematic Review

    Science.gov (United States)

    Ron, Yulia; Kivity, Shmuel; Ben-Horin, Shomron; Israeli, Eran; Fraser, Gerald M.; Dotan, Iris; Chowers, Yehuda; Confino-Cohen, Ronit; Weiss, Batia

    2015-01-01

    Objective: Administration of infliximab is associated with a well-recognised risk of infusion reactions. Lack of a mechanism-based rationale for their prevention, and absence of adequate and well-controlled studies, has led to the use of diverse empirical administration protocols. The aim of this study is to perform a systematic review of the evidence behind the strategies for preventing infusion reactions to infliximab, and for controlling the reactions once they occur. Methods: We conducted extensive search of electronic databases of MEDLINE [PubMed] for reports that communicate various aspects of infusion reactions to infliximab in IBD patients. Results: We examined full texts of 105 potentially eligible articles. No randomised controlled trials that pre-defined infusion reaction as a primary outcome were found. Three RCTs evaluated infusion reactions as a secondary outcome; another four RCTs included infusion reactions in the safety evaluation analysis; and 62 additional studies focused on various aspects of mechanism/s, risk, primary and secondary preventive measures, and management algorithms. Seven studies were added by a manual search of reference lists of the relevant articles. A total of 76 original studies were included in quantitative analysis of the existing strategies. Conclusions: There is still paucity of systematic and controlled data on the risk, prevention, and management of infusion reactions to infliximab. We present working algorithms based on systematic and extensive review of the available data. More randomised controlled trials are needed in order to investigate the efficacy of the proposed preventive and management algorithms. PMID:26092578

  1. Catalytic Conia-ene and related reactions.

    Science.gov (United States)

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-07

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years.

  2. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  3. Modeling of turbulent chemical reaction

    Science.gov (United States)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  4. Reaction time in relation to duration of heroin abuse

    Directory of Open Access Journals (Sweden)

    Martinović-Mitrović Slađana

    2011-01-01

    Full Text Available Introduction. Consequences of heroin abuse include organic damage of cerebral structures. The level of impairments is in a direct and positive relation with the length of heroin abuse. Objective. The aim of this research was the evaluation of the reaction time with heroin addicts with different length of substance abuse. Methods. Research method: 90 examinees were divided into three groups with relation to the length of heroin abuse. Data collection included a questionnaire referring to socio-demographic and addictive characteristics. A specially designed programme was used for the evaluation of reaction time to audio/ visual signal. Results. In relation to the reaction time as overall model, the difference between examinees with different length of heroin abuse can be found on the marginal level of significance (F=1.69; df=12; p=0.07. In visual modality, with the increase of length of heroin abuse leads to a significant prolongation of simple (the first visual sign: F=3.29; df=2; p=0.04 and choice reaction time (the second visual sign: F=4.97; df=2; p=0.00; the third visual sign: F=3.08; df=2; p=0.05. Longer heroin consumption also leads to the prolongation of the simple (the first auditory task: F=3.41; df=2; p=0.04 and the complex auditory reaction time (the second auditory task: F=5.67; df=2; p=0.01; the third auditory task: F=6.42; df=2; p=0.00. Conclusion. Heroin abuse leads to the prolongation of both simple and choice reaction time in visual as well as auditory modality. The average daily dose of opiates was the most important predictor of the abovementioned cognitive dysfunction.

  5. Kinetics interpretation model of isothermal martensite reactions

    International Nuclear Information System (INIS)

    Guimaraes, J.R.C.

    1976-01-01

    It was discussed details associated to the interpretation of kinetics of martencite heterogeneous nucleation in isothermal reactions. It was proposed a model which allows compute the variation of concentration of preferencial sites nucleation with a volumetric martencite fraction [pt

  6. DSMC Modeling of Flows with Recombination Reactions

    Science.gov (United States)

    2017-06-23

    Reactions S. Gimelshein, I. Wysong Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680 Air Force Research...dimensional flows, modeling is usually con- ducted for Knudsen numbers Kn > 0.001, where the impact of recombination reactions is almost always minor, so...prac- tical applicability of the DSMC method. These methods have already been tested for reacting air flows.20 Today, modeling of gas flows at

  7. Reaction path analysis of sodium-water reaction phenomena in support of chemical reaction model development

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Ohshima, Hiroyuki; Hashimoto, Kenro

    2011-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule to the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. The results are used as the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by JAEA toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  8. Investigation and Modelling of Diesel Hydrotreating Reactions

    DEFF Research Database (Denmark)

    Boesen, Rasmus Risum

    This project consists of a series of studies, that are related to hydrotreating of diesel. Hy- drotreating is an important refinery process, in which the oil stream is upgraded to meet the required environmental specifications and physical properties. Although hydrotreating is a ma- ture technology...... it has received increased attention within the last decade due to tightened legislations regarding the sulfur content, e.g. the demand for Ultra Low Sulfur Diesel (ULSD) with a maximum sulfur content of as low as 10 ppm S has increased. The process is complex, as the performance of a hydrotreating...... due to a stronger adsorption on hydrogenation sites. Since feeds used in the hydrotreating process, usually gas-oils, are complex mixtures with a large number of compounds, analysis of the reactions of individual compounds can be difficult. In this work a model-diesel feed consisting of 13 different...

  9. Reading and a diffusion model analysis of reaction time.

    Science.gov (United States)

    Naples, Adam; Katz, Leonard; Grigorenko, Elena L

    2012-01-01

    Processing speed is associated with reading performance. However, the literature is not clear either on the definition of processing speed or on why and how it contributes to reading performance. In this study we demonstrated that processing speed, as measured by reaction time, is not a unitary construct. Using the diffusion model of two-choice reaction time, we assessed processing speed in a series of same-different reaction time tasks for letter and number strings. We demonstrated that the association between reaction time and reading performance is driven by processing speed for reading-related information, but not motor or sensory encoding speed.

  10. Review of statistical models for nuclear reactions

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti

    1991-01-01

    Statistical model calculations have been widely performed for nuclear data evaluations. These were based on the models of Hauser-Feshbach, Weisskopf-Ewing and their modifications. Since the 1940s, non-compound nuclear phenomena have been observed, and stimulated many nuclear physicists to study compound and non-compound nuclear reaction mechanisms. Concerning compound nuclear reactions, they investigated problems on the basis of fundamental properties of S-matrix, statistical distributions of resonance pole parameters, random matrix elements of the nuclear Hamiltonian, and so forth. They have presented many sophisticated results. But old statistical models have been still useful, because these models were simple and easily utilizable. In this report, these old and new models will be briefly reviewed with a purpose of application to nuclear data evaluation, and examine applicability of the new models. (author)

  11. Thermodynamically Feasible Kinetic Models of Reaction Networks

    OpenAIRE

    Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts th...

  12. Nonlinear control of the Salnikov model reaction

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...... and Control Lyapunov Functions (CLF's). The results show that based on the lowest possible cost function and shortest settling time, the exact linearisation performs marginally better than the other methods....

  13. QGSM development for spallation reactions modeling

    Directory of Open Access Journals (Sweden)

    Gudima K.K.

    2012-12-01

    Full Text Available The growing interest in spallation neutron sources, accelerator-driven systems, R&D of rare isotope beams, and development of external beam radiation therapy necessitated the improvement of nuclear reaction models for both stand-alone codes for the analysis of nuclear reactions and event generators within the Monte Carlo transport systems for calculations of interactions of high-energy particles with matter in a wide range of energy and in arbitrary 3D geometry of multicomponent targets. The exclusive approach to the description of nuclear reactions is the most effective for detailed calculation of inelastic interactions with atomic nuclei. It provides the correct description of particle production, single- and double-differential spectra, recoil, and fission product yields. This approach has been realized in the Quark Gluon String Model (QGSM for nuclear reactions induced by photons, hadrons, and high energy heavy ions. In this article, improved versions of the QGSM model and a corresponding code have been developed tested and bench marked against experimental data for neutron production in spallation reactions on thin and thick targets in the energy range from a few MeV to several GeV/nucleon.

  14. QGSM development for spallation reactions modeling

    Science.gov (United States)

    Baznat, M. I.; Chigrinov, S. E.; Gudima, K. K.

    2012-12-01

    The growing interest in spallation neutron sources, accelerator-driven systems, R&D of rare isotope beams, and development of external beam radiation therapy necessitated the improvement of nuclear reaction models for both stand-alone codes for the analysis of nuclear reactions and event generators within the Monte Carlo transport systems for calculations of interactions of high-energy particles with matter in a wide range of energy and in arbitrary 3D geometry of multicomponent targets. The exclusive approach to the description of nuclear reactions is the most effective for detailed calculation of inelastic interactions with atomic nuclei. It provides the correct description of particle production, single- and double-differential spectra, recoil, and fission product yields. This approach has been realized in the Quark Gluon String Model (QGSM) for nuclear reactions induced by photons, hadrons, and high energy heavy ions. In this article, improved versions of the QGSM model and a corresponding code have been developed tested and bench marked against experimental data for neutron production in spallation reactions on thin and thick targets in the energy range from a few MeV to several GeV/nucleon.

  15. Hypersensitivity reactions and contrast medium injection: Are they always related?

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Radiology, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany); Alfke, Heiko [Department of Radiology, Klinikum Luedenscheid, Luedenscheid (Germany); Klose, Klaus Jochen [Department of Radiology, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-11-15

    Background: Hypersensitivity (allergic or non-allergic) reactions that occur after contrast medium (CM) injection are usually related to the CM. Recent studies, and case reports lack the analysis of alternate causes that could be also responsible in individual cases. Patients and methods: We investigated the individual relevant factor/causative agent of adult patients with hypersensitivity reactions that occurred in radiological units during CM-enhanced procedures (CT, angiography, urography, or MR-examinations). Both immediate and non-immediate (delayed) reactions were included. To find out the relevant agent a detailed patients' history was carefully analyzed. In addition, the records were retrospectively reviewed, and if indicated and possible laboratory (e.g. basophil activation test) and skin tests (e.g. prick) and/or provocations with CM-injections under routine conditions were performed. Results: 38 patients (men n = 21) suspected for CM-hypersensitivity reactions were identified. These reactions were in most cases mild (n = 21), moderate reactions occurred in 13 cases, and four patients had severe reactions. In 28 patients the reactions were induced by the CM (iodinated CM in 25 cases). Four patients had reactions that were not CM-related (latex allergy, adenosine reaction, vasovagal reaction, unknown cause) and in six cases the reaction was partly CM-related (immunological activation was present due to the patients' diseases). Conclusion: Our data support the hypothesis that in CM-enhanced procedures not only contrast materials but also a broad range of other factors may also induce hypersensitivity reactions. Therefore, the number of CM-induced hypersensitivity is smaller than initially suspected. The knowledge of the cause of a reaction is essential to effectively prevent its recurrence and to improve safety aspects in patients undergoing CM-injection. Larger trials should be performed to more specifically assess alternate causes in patients

  16. Multicriterial evaluation of spallation reaction models

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Gritsyuk, S.V.; Korovin, Yu.A.; Kuptsov, I.S.

    2013-01-01

    Results of evaluation of predicting ability of spallation reaction models as applied to high-energy protons interaction based on methods of discrete decision analysis are presented. It is shown that results obtained using different methods are well consistent. Recommendations are given on the use of discrete decision analysis methods for providing constants to be employed in calculations of future nuclear power facility [ru

  17. Reaction thresholds in doubly special relativity

    International Nuclear Information System (INIS)

    Heyman, Daniel; Major, Seth; Hinteleitner, Franz

    2004-01-01

    Two theories of special relativity with an additional invariant scale, 'doubly special relativity', are tested with calculations of particle process kinematics. Using the Judes-Visser modified conservation laws, thresholds are studied in both theories. In contrast with some linear approximations, which allow for particle processes forbidden in special relativity, both the Amelino-Camelia and Magueijo-Smolin frameworks allow no additional processes. To first order, the Amelino-Camelia framework thresholds are lowered and the Magueijo-Smolin framework thresholds may be raised or lowered

  18. Reaction-diffusion pulses: a combustion model

    International Nuclear Information System (INIS)

    Campos, Daniel; Llebot, Josep Enric; Fort, Joaquim

    2004-01-01

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations

  19. Reaction Wheel Disturbance Model Extraction Software - RWDMES

    Science.gov (United States)

    Blaurock, Carl

    2009-01-01

    The RWDMES is a tool for modeling the disturbances imparted on spacecraft by spinning reaction wheels. Reaction wheels are usually the largest disturbance source on a precision pointing spacecraft, and can be the dominating source of pointing error. Accurate knowledge of the disturbance environment is critical to accurate prediction of the pointing performance. In the past, it has been difficult to extract an accurate wheel disturbance model since the forcing mechanisms are difficult to model physically, and the forcing amplitudes are filtered by the dynamics of the reaction wheel. RWDMES captures the wheel-induced disturbances using a hybrid physical/empirical model that is extracted directly from measured forcing data. The empirical models capture the tonal forces that occur at harmonics of the spin rate, and the broadband forces that arise from random effects. The empirical forcing functions are filtered by a physical model of the wheel structure that includes spin-rate-dependent moments (gyroscopic terms). The resulting hybrid model creates a highly accurate prediction of wheel-induced forces. It accounts for variation in disturbance frequency, as well as the shifts in structural amplification by the whirl modes, as the spin rate changes. This software provides a point-and-click environment for producing accurate models with minimal user effort. Where conventional approaches may take weeks to produce a model of variable quality, RWDMES can create a demonstrably high accuracy model in two hours. The software consists of a graphical user interface (GUI) that enables the user to specify all analysis parameters, to evaluate analysis results and to iteratively refine the model. Underlying algorithms automatically extract disturbance harmonics, initialize and tune harmonic models, and initialize and tune broadband noise models. The component steps are described in the RWDMES user s guide and include: converting time domain data to waterfall PSDs (power spectral

  20. Model photo reaction centers via genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhiyu Wang; DiMagno, T.J.; Popov, M.; Norris, J.R. [Argonne National Lab., IL (United States)]|[Chicago Univ., IL (United States). Dept. of Chemistry; Chikin Chan; Fleming, G. [Chicago Univ., IL (United States). Dept. of Chemistry; Jau Tang; Hanson, D.; Schiffer, M. [Argonne National Lab., IL (United States)

    1992-12-31

    A series of reaction centers of Rhodococcus capsulatus isolated from a set of mutated organisms modified by site-directed mutagenesis at residues M208 and L181 are described. Changes in the amino acid at these sites affect both the energetics of the systems as well as the chemical kinetics for the initial ET event. Two empirical relations among the different mutants for the reduction potential and the ET rate are presented.

  1. Model photo reaction centers via genetic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhiyu Wang; DiMagno, T.J.; Popov, M.; Norris, J.R. (Argonne National Lab., IL (United States) Chicago Univ., IL (United States). Dept. of Chemistry); Chikin Chan; Fleming, G. (Chicago Univ., IL (United States). Dept. of Chemistry); Jau Tang; Hanson, D.; Schiffer, M. (Argonne National Lab., IL (United States))

    1992-01-01

    A series of reaction centers of Rhodococcus capsulatus isolated from a set of mutated organisms modified by site-directed mutagenesis at residues M208 and L181 are described. Changes in the amino acid at these sites affect both the energetics of the systems as well as the chemical kinetics for the initial ET event. Two empirical relations among the different mutants for the reduction potential and the ET rate are presented.

  2. Models as Relational Categories

    Science.gov (United States)

    Kokkonen, Tommi

    2017-11-01

    Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.

  3. Implementation of a vibrationally linked chemical reaction model for DSMC

    Science.gov (United States)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  4. Photochemical reactions of various model protocell systems

    Science.gov (United States)

    Folsome, C. E.

    1986-01-01

    Models for the emergence of cellular life on the primitive Earth, and for physical environments of that era have been studied that embody these assumptions: (1) pregenetic cellular forms were phase-bounded systems primarily photosynthetic in nature, and (2) the early Earth environment was anoxic (lacking appreciable amounts of free hydrogen). It was found that organic structures can also be formed under anoxic conditions (N2, CO3=, H2O) by protracted longwavelength UV radiation. Apparently these structures form initially as organic layers upon CaCO3 crystalloids. The question remains as to whether the UV photosynthetic ability of such phase bounded structures is a curiosity, or a general property of phase bounded systems which is of direct interest to the emergence of cellular life. The question of the requirement and sailient features of a phase boundary for UV photosynthetic abilities was addressed by searching for similar general physical properties which might be manifest in a variety of other simple protocell-like structures. Since it has been shown that laboratory protocell models can effect the UV photosynthesis of low molecular weight compounds, this reaction is being used as an assay to survey other types of structures for similar UV photosynthetic reactions. Various kinds of structures surveyed are: (1) proteinoids; (2) liposomes; (3) reconstituted cell membrane spheroids; (4) coacervates; and (5) model protocells formed under anoxic conditions.

  5. Reaction-diffusion models of decontamination

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...... in the aqueous solution and then is oxidized by the decontaminant. The polymer is insoluble in water, and so builds up near the interface, where its presence can impede the transport of contaminant. In these circumstances, Dstl wish to have mathematical models that give an understanding of the process, and can...

  6. The effect of exercise frequency on neuropathic pain and pain-related cellular reactions in the spinal cord and midbrain in a rat sciatic nerve injury model

    Directory of Open Access Journals (Sweden)

    Sumizono M

    2018-02-01

    Full Text Available Megumi Sumizono,1,2 Harutoshi Sakakima,1 Shotaro Otsuka,1 Takuto Terashi,1 Kazuki Nakanishi,1,2 Koki Ueda,1,2 Seiya Takada,1,2 Kiyoshi Kikuchi3 1Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan; 2Kirishima Orthopedics, Kirishima, Japan; 3Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan Background: Exercise regimens are established methods that can relieve neuropathic pain. However, the relationship between frequency and intensity of exercise and multiple cellular responses of exercise-induced alleviation of neuropathic pain is still unclear. We examined the influence of exercise frequency on neuropathic pain and the intracellular responses in a sciatic nerve chronic constriction injury (CCI model. Materials and methods: Rats were assigned to four groups as follows: CCI and high-frequency exercise (HFE group, CCI and low-frequency exercise (LFE group, CCI and no exercise (No-Ex group, and naive animals (control group. Rats ran on a treadmill, at a speed of 20 m/min, for 30 min, for 5 (HFE or 3 (LFE days a week, for a total of 5 weeks. The 50% withdrawal threshold was evaluated for mechanical sensitivity. The activation of glial cells (microglia and astrocytes, expression of brain-derived neurotrophic factor (BDNF and μ-opioid receptor in the spinal dorsal horn and endogenous opioid in the midbrain were examined using immunohistochemistry. Opioid receptor antagonists (naloxone were administered using intraperitoneal injection. Results: The development of neuropathic pain was related to the activation of glial cells, increased BDNF expression, and downregulation of the μ-opioid receptor in the ipsilateral spinal dorsal horn. In the No-Ex group, neuropathic pain showed the highest level of mechanical hypersensitivity at 2 weeks, which improved slightly until 5 weeks after CCI. In both exercise groups, the alleviation of

  7. Nurses' workload and its relation with physiological stress reactions

    OpenAIRE

    Dalri, Rita de Cássia de Marchi Barcellos; Silva, Luiz Almeida da; Mendes, Aida Maria Oliveira Cruz; Robazzi, Maria Lúcia do Carmo Cruz

    2014-01-01

    OBJECTIVE: to analyze the relation between the workload and the physiological stress reactions among nurses working at a hospital service.METHODS: cross-sectional, correlational, quantitative study, involving 95 nurses, in 2011 and 2012. Spearman's bivariate Correlation Test was used.RESULTS: most subjects are female, between 23 and 61 years old and working between 21 and 78 hours per week. The most frequent physiological reactions were back pain, fatigue/exhaustion, stiff neck and stomach ac...

  8. Comparison of DSMC Reaction Models with QCT Reaction Rates for Nitrogen

    Science.gov (United States)

    2016-07-17

    include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Comparison of DSMC Reaction Models with QCT Reaction Rates ...controls vibration coupling A is adjusted to match thermal reaction rate Simplest to implement, not tied to any other model Distribution A: Approved for...General trend: reaction rate increases with v • TCE, QK: lack of vibrational favoring results in much lower slope as compared to the benchmark QCT • VFD: φ

  9. Modeling of Reaction Processes Controlled by Diffusion

    International Nuclear Information System (INIS)

    Revelli, Jorge

    2003-01-01

    Stochastic modeling is quite powerful in science and technology.The technics derived from this process have been used with great success in laser theory, biological systems and chemical reactions.Besides, they provide a theoretical framework for the analysis of experimental results on the field of particle's diffusion in ordered and disordered materials.In this work we analyze transport processes in one-dimensional fluctuating media, which are media that change their state in time.This fact induces changes in the movements of the particles giving rise to different phenomena and dynamics that will be described and analyzed in this work.We present some random walk models to describe these fluctuating media.These models include state transitions governed by different dynamical processes.We also analyze the trapping problem in a lattice by means of a simple model which predicts a resonance-like phenomenon.Also we study effective diffusion processes over surfaces due to random walks in the bulk.We consider different boundary conditions and transitions movements.We derive expressions that describe diffusion behaviors constrained to bulk restrictions and the dynamic of the particles.Finally it is important to mention that the theoretical results obtained from the models proposed in this work are compared with Monte Carlo simulations.We find, in general, excellent agreements between the theory and the simulations

  10. Circumnutation modeled by reaction-diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Lubkin, S.R.

    1992-01-01

    In studies of biological oscillators, plants are only rarely examined. The authors study a common sub-diurnal oscillation of plants, called circumnutation. Based on experimental evidence that the oscillations consist of a turgor wave traveling around a growing plant part, circumnutation is modeled by a nonlinear reaction-diffusion system with cylindrical geometry. Because of its simplicity, and because biological oscillations are so common, an oscillatory [lambda]-[omega] reaction-diffusion system is chosen for the model. The authors study behavior of traveling waves in [lambda]-[omega] systems. The authors show the existence of Hopf bifurcations and the stability of the limit cycles born at the Hopf bifurcation for some parameter values. Using a Lindstedt-type perturbation scheme, the authors construct periodic solutions of the [lambda]-[omega] system near a Hopf bifurcation and show that the periodic solutions superimposed on the original traveling wave have the effect of altering its overall frequency and amplitude. Circumnutating plants generally display a strong directional preference to their oscillations, which is species-dependent. Circumnutation is modeled by a [lambda]-[omega] system on an annulus of variable width, which does not possess reflection symmetry about any axis. The annulus represents a region of high potassium concentration in the cross-section of the stem. The asymmetry of the annulus represents the anatomical asymmetry of the plant. Traveling waves are constructed on this variable-width annulus by a perturbation scheme, and perturbing the width of the annulus alters the amplitude and frequency of traveling waves on the domain by a small (order [epsilon][sup 2]) amount. The speed, frequency, and stability are unaffected by the direction of travel of the wave on the annulus. This indicates that the [lambda]-[omega] system on a variable-width domain cannot account for directional preferences of traveling waves in biological systems.

  11. The difference between the perception of absolute and relative motion: A reaction time study

    NARCIS (Netherlands)

    J.B.J. Smeets (Jeroen); E. Brenner (Eli)

    1994-01-01

    textabstractWe used a reaction-time paradigm to examine the extent to which motion detection depends on relative motion. In the absence of relative motion, the responses could be described by a simple model based on the detection of a fixed change in position. If relative motion was present, the

  12. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    Science.gov (United States)

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  13. Trend to equilibrium for a reaction-diffusion system modelling reversible enzyme reaction

    OpenAIRE

    Elias, Jan

    2016-01-01

    20 pages; A spatio-temporal evolution of chemicals appearing in a reversible enzyme reaction and modelled by a four component reaction-diffusion system with the reaction terms obtained by the law of mass action is considered. The large time behaviour of the system is studied by means of entropy methods.

  14. Trend to Equilibrium for a Reaction-Diffusion System Modelling Reversible Enzyme Reaction.

    Science.gov (United States)

    Eliaš, Ján

    2018-01-01

    A spatio-temporal evolution of chemicals appearing in a reversible enzyme reaction and modelled by a four-component reaction-diffusion system with the reaction terms obtained by the law of mass action is considered. The large time behaviour of the system is studied by means of entropy methods.

  15. Kinetic modelling of the Maillard reaction between proteins and sugars

    NARCIS (Netherlands)

    Brands, C.M.J.

    2002-01-01

    Keywords: Maillard reaction, sugar isomerisation, kinetics, multiresponse modelling, brown colour formation, lysine damage, mutagenicity, casein, monosaccharides, disaccharides, aldoses, ketoses

    The aim of this thesis was to determine the kinetics of the Maillard reaction between

  16. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  17. Antiepileptic drug-related adverse reactions and factors influencing these reactions.

    Science.gov (United States)

    Karimzadeh, Parvaneh; Bakrani, Vahid

    2013-01-01

    According to the basic role of drug side effects in selection of an appropriate drug, patient compliance and the quality of life in epileptic patients, and forasmuch as new drugs with unknown side effect have been introduced, necessity of this research is explained. This study was conducted to evaluate the incidence and clinical characteristics of anti epileptic drug (AED) related adverse reactions in children. In this descriptive study, children less than 14 years old with AED side effects referred to the Children's Medical Center and Mofid Childeren's Hospital (Tehran, Iran) were evaluated during 2010-2012. The informations were: sex, age, incriminating drug, type of drug side effect, incubation period, history of drug usage, and patient and family allergy history. Exclusive criterions were age more than 14 years old and reactions due to reasons other than AEDs. A total of 70 patients with AED reaction were enrolled in this study. They included 26 (37%) females and 44 (63%) males. The maximum rate of incidence was seen at age less than 5 years old. All the patients had cutaneous eruptions that the most common cutaneous drug eruption was maculopapular rash. The most common culprit was phenobarbital (70%) and the least common was lamotrigine (1.4%). In this study, we found higher rates of drug rash in patients treated with aromatic AEDs and lower rates with non-aromatic AEDs. Various endogenous and environmental factors may influence the propensity to develop these reactions.

  18. Disturbances in reaction wheels; from measurement to modelling

    NARCIS (Netherlands)

    Le, M.P.; Ellenbroek, Marcellinus Hermannus Maria; Seiler, R; van Put, P.; Cottaar, E.J.E.

    2014-01-01

    Disturbances in reaction wheels have been long a crucial aspect for many scientific observation missions. An accurate and reliable disturbance model to understand and evaluate the influence of reaction wheel disturbances to the spacecraft is critically needed. Several reaction wheel disturbance

  19. A computational study of pyrolysis reactions of lignin model compounds

    Science.gov (United States)

    Thomas Elder

    2010-01-01

    Enthalpies of reaction for the initial steps in the pyrolysis of lignin have been evaluated at the CBS-4m level of theory using fully substituted b-O-4 dilignols. Values for competing unimolecular decomposition reactions are consistent with results previously published for phenethyl phenyl ether models, but with lowered selectivity. Chain propagating reactions of free...

  20. Reaction Kinetics Model of Polymerization in the Absence of ...

    African Journals Online (AJOL)

    This paper is on reaction kinetics models for approximating diffuse propagation reaction fronts in one-dimensional gasless combustion type models. This study is carried out in the context of free-radical frontal polymerization (FP) via a propagating, self sustaining reacting front in the absence of material diffusion. The model ...

  1. Modelling Chemical Reasoning to Predict and Invent Reactions.

    Science.gov (United States)

    Segler, Marwin H S; Waller, Mark P

    2017-05-02

    The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reaction Wheel Disturbance Model Extraction Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel mechanical noise is one of the largest sources of disturbance forcing on space-based observatories. Such noise arises from mass imbalance, bearing...

  3. Reaction Wheel Disturbance Model Extraction Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel disturbances are some of the largest sources of noise on sensitive telescopes. Such wheel-induced mechanical noises are not well characterized....

  4. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  5. Diabatic models with transferrable parameters for generalized chemical reactions

    Science.gov (United States)

    Reimers, Jeffrey R.; McKemmish, Laura K.; McKenzie, Ross H.; Hush, Noel S.

    2017-05-01

    Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical

  6. Developed Hybrid Model for Propylene Polymerisation at Optimum Reaction Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-02-01

    Full Text Available A statistical model combined with CFD (computational fluid dynamic method was used to explain the detailed phenomena of the process parameters, and a series of experiments were carried out for propylene polymerisation by varying the feed gas composition, reaction initiation temperature, and system pressure, in a fluidised bed catalytic reactor. The propylene polymerisation rate per pass was considered the response to the analysis. Response surface methodology (RSM, with a full factorial central composite experimental design, was applied to develop the model. In this study, analysis of variance (ANOVA indicated an acceptable value for the coefficient of determination and a suitable estimation of a second-order regression model. For better justification, results were also described through a three-dimensional (3D response surface and a related two-dimensional (2D contour plot. These 3D and 2D response analyses provided significant and easy to understand findings on the effect of all the considered process variables on expected findings. To diagnose the model adequacy, the mathematical relationship between the process variables and the extent of polymer conversion was established through the combination of CFD with statistical tools. All the tests showed that the model is an excellent fit with the experimental validation. The maximum extent of polymer conversion per pass was 5.98% at the set time period and with consistent catalyst and co-catalyst feed rates. The optimum conditions for maximum polymerisation was found at reaction temperature (RT 75 °C, system pressure (SP 25 bar, and 75% monomer concentration (MC. The hydrogen percentage was kept fixed at all times. The coefficient of correlation for reaction temperature, system pressure, and monomer concentration ratio, was found to be 0.932. Thus, the experimental results and model predicted values were a reliable fit at optimum process conditions. Detailed and adaptable CFD results were capable

  7. Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth

    Science.gov (United States)

    Zhang, Hong; Zuo, Ran; Zhang, Guoyi

    2017-11-01

    In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.

  8. A discrete model to study reaction-diffusion-mechanics systems.

    Science.gov (United States)

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  9. A discrete model to study reaction-diffusion-mechanics systems.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  10. Nuclear reaction matrix calculations with a shell-model Q

    International Nuclear Information System (INIS)

    Barrett, B.R.; McCarthy, R.J.

    1976-01-01

    Das Barrett-Hewitt-McCarthy (BHM) method for calculating the nuclear reaction matrix G is used to compute shell-model matrix elements for A = 18 nuclei. The energy denominators in intermediate states containing one unoccupied single-particle (s.p.) state and one valence s.p. state are treated correctly, in contrast to previous calculations. These corrections are not important for valence-shell matrix elements but are found to lead to relatively large changes in cross-shell matrix elements involved in core-polarization diagrams. (orig.) [de

  11. Effect of reactions in small eddies on biomass gasification with eddy dissipation concept - Sub-grid scale reaction model.

    Science.gov (United States)

    Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin

    2016-07-01

    Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Two-nucleon transfer reactions with form factor models

    International Nuclear Information System (INIS)

    Osman, A.

    1980-04-01

    The theory of two-nucleon transfer reactions is considered. Nuclear reactions are considered with triton or 3 He particles which are used as projectiles in stripping reactions and as detected particles in pick-up reactions. In each channel we have a four-particle problem, three of them are nucleons and the fourth is a heavy particle. These transfer reactions are studied on the basis of the generaled R-matrix method. Different channel functions of the sub-clusters in the triton and 3 He particles are included. Model form factors are obtained and are used in two-nucleon transfer reactions. Differential cross-sections of different two-nucleon transfer reactions are calculated and are found in good agreement with the experimental data. The correct normalization and spectroscopic factors are obtained. (author)

  13. Modelling of chemical reactions in metallurgical processes

    OpenAIRE

    Kinaci, M. Efe; Lichtenegger, Thomas; Schneiderbauer, Simon

    2017-01-01

    Iron-ore reduction has attracted much interest in the last three decades since it can be considered as a core process in steel industry. The iron-ore is reduced to iron with the use of blast furnace and fluidized bed technologies. To investigate the harsh conditions inside fluidized bed reactors, computational tools can be utilized. One such tool is the CFD-DEM method, in which the gas phase reactions and governing equations are calculated in the Eulerian (CFD) side, whereas the particle reac...

  14. Do candidate reactions relate to job performance or affect criterion-related validity? A multistudy investigation of relations among reactions, selection test scores, and job performance.

    Science.gov (United States)

    McCarthy, Julie M; Van Iddekinge, Chad H; Lievens, Filip; Kung, Mei-Chuan; Sinar, Evan F; Campion, Michael A

    2013-09-01

    Considerable evidence suggests that how candidates react to selection procedures can affect their test performance and their attitudes toward the hiring organization (e.g., recommending the firm to others). However, very few studies of candidate reactions have examined one of the outcomes organizations care most about: job performance. We attempt to address this gap by developing and testing a conceptual framework that delineates whether and how candidate reactions might influence job performance. We accomplish this objective using data from 4 studies (total N = 6,480), 6 selection procedures (personality tests, job knowledge tests, cognitive ability tests, work samples, situational judgment tests, and a selection inventory), 5 key candidate reactions (anxiety, motivation, belief in tests, self-efficacy, and procedural justice), 2 contexts (industry and education), 3 continents (North America, South America, and Europe), 2 study designs (predictive and concurrent), and 4 occupational areas (medical, sales, customer service, and technological). Consistent with previous research, candidate reactions were related to test scores, and test scores were related to job performance. Further, there was some evidence that reactions affected performance indirectly through their influence on test scores. Finally, in no cases did candidate reactions affect the prediction of job performance by increasing or decreasing the criterion-related validity of test scores. Implications of these findings and avenues for future research are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved

  15. Analytically solvable models of reaction-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2004-05-01

    We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.

  16. Constituent rearrangement model and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Igarashi, Yuji; Imachi, Masahiro; Matsuoka, Takeo; Otsuki, Shoichiro; Sawada, Shoji.

    1978-01-01

    In this chapter, two models based on the constituent rearrangement picture for large p sub( t) phenomena are summarized. One is the quark-junction model, and the other is the correlating quark rearrangement model. Counting rules of the models apply to both two-body reactions and hadron productions. (author)

  17. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    Science.gov (United States)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  18. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...

  19. A brief overview of models of nucleon-induced reactions

    International Nuclear Information System (INIS)

    Carlson, B.V.

    2003-01-01

    The basic features of low to intermediate energy nucleon-induced reactions are discussed within the contexts of the optical model, the statistical model, preequilibrium and intranuclear cascade models. The calculation of cross sections and other scattering quantities are described. (author)

  20. Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models.

    Science.gov (United States)

    Liu, Bowen; Ramsundar, Bharath; Kawthekar, Prasad; Shi, Jade; Gomes, Joseph; Luu Nguyen, Quang; Ho, Stephen; Sloane, Jack; Wender, Paul; Pande, Vijay

    2017-10-25

    We describe a fully data driven model that learns to perform a retrosynthetic reaction prediction task, which is treated as a sequence-to-sequence mapping problem. The end-to-end trained model has an encoder-decoder architecture that consists of two recurrent neural networks, which has previously shown great success in solving other sequence-to-sequence prediction tasks such as machine translation. The model is trained on 50,000 experimental reaction examples from the United States patent literature, which span 10 broad reaction types that are commonly used by medicinal chemists. We find that our model performs comparably with a rule-based expert system baseline model, and also overcomes certain limitations associated with rule-based expert systems and with any machine learning approach that contains a rule-based expert system component. Our model provides an important first step toward solving the challenging problem of computational retrosynthetic analysis.

  1. Carbonyl-Olefin Exchange Reaction and Related Chemistry

    Science.gov (United States)

    Jossifov, Christo; Kalinova, Radostina

    A new carbon—carbon double bond forming reaction (carbonyl olefin exchange reaction) mediated by transition metal catalytic systems has been discovered. The catalytic systems used (transition metal halides or oxohalides alone or in combination with Lewis acids) are active only in the case when the two reacting groups are in one molecules and are conjugated. In addition these systems accelerate other reactions which run simultaneously with the carbonyl olefin metathesis rendering a detailed investigation of the process very complicated.

  2. Cellular automaton model of coupled mass transport and chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.

    1994-01-01

    Mass transport, coupled with chemical reactions, is modelled as a cellular automaton in which solute molecules perform a random walk on a lattice and react according to a local probabilistic rule. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. The model is applied to the reactions a + b ↔c and a + b →c, where we observe interesting macroscopic effects resulting from microscopic fluctuations and spatial correlations between molecules. We also simulate autocatalytic reaction schemes displaying spontaneous formation of spatial concentration patterns. Finally, we propose and discuss the limitations of a simple model for mineral-solute interaction. (author) 5 figs., 20 refs

  3. An Equilibrium-Based Model of Gas Reaction and Detonation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    2000-01-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999

  4. Computational study of a model system of enzyme-mediated [4+2] cycloaddition reaction.

    Science.gov (United States)

    Gordeev, Evgeniy G; Ananikov, Valentine P

    2015-01-01

    A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reaction was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation.

  5. Computational study of a model system of enzyme-mediated [4+2] cycloaddition reaction.

    Directory of Open Access Journals (Sweden)

    Evgeniy G Gordeev

    Full Text Available A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reaction was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X and semiempirical levels (PM6-DH2, PM6 performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation.

  6. Uncertainty quantification for quantum chemical models of complex reaction networks.

    Science.gov (United States)

    Proppe, Jonny; Husch, Tamara; Simm, Gregor N; Reiher, Markus

    2016-12-22

    For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to approximately address these challenges in a physically consistent way. On the one hand, it may be sufficient to consider approximate free energies if a reliable uncertainty measure can be provided. On the other hand, a highly resolved time evolution may not be necessary to still determine quantitative fluxes in a reaction network if one is interested in specific time scales. In this paper, we present discrete-time kinetic simulations in discrete state space taking free energy uncertainties into account. The method builds upon thermo-chemical data obtained from electronic structure calculations in a condensed-phase model. Our kinetic approach supports the analysis of general reaction networks spanning multiple time scales, which is here demonstrated for the example of the formose reaction. An important application of our approach is the detection of regions in a reaction network which require further investigation, given the uncertainties introduced by both approximate electronic structure methods and kinetic models. Such cases can then be studied in greater detail with more sophisticated first-principles calculations and kinetic simulations.

  7. Model reactions and natural occurrence of furans from hypersaline environments

    Directory of Open Access Journals (Sweden)

    T. Krause

    2014-05-01

    Full Text Available Volatile organic compounds like furan and its derivatives are important for atmospheric properties and reactions. In this work the known abiotic formation of furan from catechol under Fenton-like conditions with Fe3+ sulfate was revised by the use of a bispidine Fe2+ complex as a model compound for iron with well-known characteristics. While total yields were comparable to those with the Fe3+ salt, the bispidine Fe2+ complex is a better catalyst as the turnover numbers of the active iron species were higher. Additionally, the role of iron and pH is discussed in relation to furan formation from model compounds and in natural sediment and water samples collected from the Dead Sea and several salt lakes in Western Australia. Various alkylated furans and even traces of halogenated furans (3-chlorofuran and 3-bromofuran were found in some Australian samples. 3-chlorofuran was found in three sediments and four water samples, whereas 3-bromofuran was detected in three water samples. Further, the emission of furans is compared to the abundance of several possible precursors such as isoprene and aromatic hydrocarbons as well as to the related thiophenes. It is deduced that the emissions of volatile organic compounds such as furans contribute to the formation of ultra-fine particles in the vicinity of salt lakes and are important for the local climate.

  8. Cellular automaton model of mass transport with chemical reactions

    International Nuclear Information System (INIS)

    Karapiperis, T.; Blankleider, B.

    1993-10-01

    The transport and chemical reactions of solutes are modelled as a cellular automaton in which molecules of different species perform a random walk on a regular lattice and react according to a local probabilistic rule. The model describes advection and diffusion in a simple way, and as no restriction is placed on the number of particles at a lattice site, it is also able to describe a wide variety of chemical reactions. Assuming molecular chaos and a smooth density function, we obtain the standard reaction-transport equations in the continuum limit. Simulations on one-and two-dimensional lattices show that the discrete model can be used to approximate the solutions of the continuum equations. We discuss discrepancies which arise from correlations between molecules and how these discrepancies disappear as the continuum limit is approached. Of particular interest are simulations displaying long-time behaviour which depends on long-wavelength statistical fluctuations not accounted for by the standard equations. The model is applied to the reactions a + b ↔ c and a + b → c with homogeneous and inhomogeneous initial conditions as well as to systems subject to autocatalytic reactions and displaying spontaneous formation of spatial concentration patterns. (author) 9 figs., 34 refs

  9. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

    International Nuclear Information System (INIS)

    Monaco, R; Bianchi, M Pandolfi; Soares, A J

    2005-01-01

    A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

  10. Mechanistic interpretation of glass reaction: Input to kinetic model development

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.

    1991-05-01

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs

  11. A chain reaction approach to modelling gene pathways.

    Science.gov (United States)

    Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen

    2012-08-01

    BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By

  12. Ti-catalyzed Barbier-type allylations and related reactions.

    Science.gov (United States)

    Estévez, Rosa E; Justicia, José; Bazdi, Btissam; Fuentes, Noelia; Paradas, Miguel; Choquesillo-Lazarte, Duane; García-Ruiz, Juan M; Robles, Rafael; Gansäuer, Andreas; Cuerva, Juan M; Oltra, J Enrique

    2009-01-01

    Titanocene(III) complexes, easily generated in situ from commercial Ti(IV) precursors, catalyze Barbier-type allylations, intramolecular crotylations (cyclizations), and prenylations of a wide range of aldehydes and ketones. The reaction displays surprising and unprecedented mechanistic subtleties. In cyclizations a fast and irreversible addition of an allyl radical to a Ti(III)-coordinated carbonyl group seems to occur. Intermolecular additions to conjugated aldehydes proceed through a coupling of a Ti(IV)-bound ketyl radical with an allyl radical. Reactions of ketones with allylic halides take place by the classical addition of an allylic organometallic reagent. The radical coupling processes enable transformations such as the highly regioselective alpha-prenylation that are otherwise difficult to achieve. The mild reaction conditions and the possibility to employ titanocene complexes in only catalytic quantities are highly attractive features of our protocol. These unusual properties have been taken advantage of for the straightforward synthesis of the natural products rosiridol, shikalkin, and 12-hydroxysqualene.

  13. Challenges in modelling the reaction chemistry of interstellar dust.

    Science.gov (United States)

    Bromley, S T; Goumans, T P M; Herbst, E; Jones, A P; Slater, B

    2014-09-21

    Studies aiming to understand the physicochemical properties of interstellar dust and the chemical reactions that occur on and in it have traditionally been the preserve of astronomical observation and experimental attempts to mimic astronomically relevant conditions in the laboratory. Increasingly, computational modelling in its various guises is establishing a complementary third pillar of support to this endeavour by providing detailed insights into the complexities of interstellar dust chemistry. Inherently, the basis of computational modelling is to be found in the details (e.g. atomic structure/composition, reaction barriers) that are difficult to probe accurately from observation and experiment. This bottom-up atom-based theoretical approach, often itself based on deeper quantum mechanical principles, although extremely powerful, also has limitations when systems become too large or complex. In this Perspective, after first providing a general background to the current state of observational-based knowledge, we introduce a number of computational modelling methods with reference to recent state-of-the-art studies, in order to highlight the capabilities of such approaches in this field. Specifically, we first outline the use of computational chemistry methods for dust nucleation, structure, and individual reactions on bare and icy dust surfaces. Later, we review kinetic modelling of networks of reactions relevant to dust chemistry and how to take into account quantum tunnelling effects in the low temperature reactions in the interstellar medium. Finally, we point to the future challenges that need to be overcome for computational modelling to provide even more detailed and encompassing perspectives on the nature and reaction chemistry of interstellar dust.

  14. Mass-Related Dynamical Barriers in Triatomic Reactions

    Science.gov (United States)

    Yanao, T.; Koon, W. S.; Marsden, J. E.

    2006-06-01

    A methodology is given to determine the effect of different mass distributions for triatomic reactions using the geometry of shape space. Atomic masses are incorporated into the non-Euclidean shape space metric after the separation of rotations. Using the equations of motion in this non-Euclidean shape space, an averaged field of velocity-dependent fictitious forces is determined. This force field, as opposed to the force arising from the potential, dominates branching ratios of isomerization dynamics of a triatomic molecule. This methodology may be useful for qualitative prediction of branching ratios in general triatomic reactions.

  15. Models based on multichannel R-matrix theory for evaluating light element reactions

    International Nuclear Information System (INIS)

    Dodder, D.C.; Hale, G.M.; Nisley, R.A.; Witte, K.; Young, P.G.

    1975-01-01

    Multichannel R-matrix theory has been used as a basis for models for analysis and evaluation of light nuclear systems. These models have the characteristic that data predictions can be made utilizing information derived from other reactions related to the one of primary interest. Several examples are given where such an approach is valid and appropriate. (auth.)

  16. A model for reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  17. Detection and Management of Adverse Drug Reactions Related to ...

    African Journals Online (AJOL)

    The objective of this study was to establish the detection, prevalence and management of various adverse drug reactions associated with antiretroviral drugs occurring in patients attending Comprehensive Care Centre (CCC) of Kiambu District Hospital. The study was a cross sectional survey where the patients included ...

  18. A Multiple Reaction Modelling Framework for Microbial Electrochemical Technologies

    Directory of Open Access Journals (Sweden)

    Tolutola Oyetunde

    2017-01-01

    Full Text Available A mathematical model for the theoretical evaluation of microbial electrochemical technologies (METs is presented that incorporates a detailed physico-chemical framework, includes multiple reactions (both at the electrodes and in the bulk phase and involves a variety of microbial functional groups. The model is applied to two theoretical case studies: (i A microbial electrolysis cell (MEC for continuous anodic volatile fatty acids (VFA oxidation and cathodic VFA reduction to alcohols, for which the theoretical system response to changes in applied voltage and VFA feed ratio (anode-to-cathode as well as membrane type are investigated. This case involves multiple parallel electrode reactions in both anode and cathode compartments; (ii A microbial fuel cell (MFC for cathodic perchlorate reduction, in which the theoretical impact of feed flow rates and concentrations on the overall system performance are investigated. This case involves multiple electrode reactions in series in the cathode compartment. The model structure captures interactions between important system variables based on first principles and provides a platform for the dynamic description of METs involving electrode reactions both in parallel and in series and in both MFC and MEC configurations. Such a theoretical modelling approach, largely based on first principles, appears promising in the development and testing of MET control and optimization strategies.

  19. Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model

    OpenAIRE

    Wang, Sheng; Liu, Wenbin; Guo, Zhengguang; Wang, Weiming

    2013-01-01

    We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique and strictly monotonic. Furthermore, we determine the critical minimal wave speed.

  20. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  1. Cohabitation reaction-diffusion model for virus focal infections

    Science.gov (United States)

    Amor, Daniel R.; Fort, Joaquim

    2014-12-01

    The propagation of virus infection fronts has been typically modeled using a set of classical (noncohabitation) reaction-diffusion equations for interacting species. However, for some single-species systems it has been recently shown that noncohabitation reaction-diffusion equations may lead to unrealistic descriptions. We argue that previous virus infection models also have this limitation, because they assume that a virion can simultaneously reproduce inside a cell and diffuse away from it. For this reason, we build a several-species cohabitation model that does not have this limitation. Furthermore, we perform a sensitivity analysis for the most relevant parameters of the model, and we compare the predicted infection speed with observed data for two different strains of the T7 virus.

  2. Sex and age related differences in postmyelographic adverse reactions

    International Nuclear Information System (INIS)

    Maly, P.

    1989-01-01

    Differences in frequency of postmyelographic adverse reactions were analyzed with respect to sex and age in a prospective study including 1026 patients injected with metrizamide and 739 injected with iohexol. Regardless of the type of contrast medium or myelography, all types of adverse reactions were 1.4-3.8 times as frequent in women as in men. Most of the differences were statistically significant. Headache was more frequent, while vomiting and dizziness were less frequent in both women and men aged 26-50 years compared with those over 50 years of age. Dizziness and increased low back pain were consistently reported spontaneously by the patients less frequently than emerged via formal interview. The large differences between the sexes suggest that further research on contrast media toxicity would be best performed with separation of the data by gender. (orig.)

  3. Experimental animal model for late postradiation reaction of the colon

    International Nuclear Information System (INIS)

    Trott, K.R.

    1987-01-01

    Experimental animal model worked out in Muenchen is discussed in which late postradiation reaction in Wistar rats following local irradiation of the colon manifests itself by appearance of colonic stenoses causing death of the animal. Clinical symptoms of this reaction together with results of histopathologic examination of the excised parts of the colon localized in the irradiated area are discussed. The relationships effect-dose obtained in this system for X radiation applying different regimen of dose fractionation and different total times of irradiation are presented. 8 refs., 5 figs., 1 tab. (author)

  4. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modelling of structural effects on chemical reactions in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsaeter, H.R.

    1997-12-31

    Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.

  6. Improvement on reaction model for sodium-water reaction jet code and application analysis

    International Nuclear Information System (INIS)

    Itooka, Satoshi; Saito, Yoshinori; Okabe, Ayao; Fujimata, Kazuhiro; Murata, Shuuichi

    2000-03-01

    In selecting the reasonable DBL on steam generator (SG), it is necessary to improve analytical method for estimating the sodium temperature on failure propagation due to overheating. Improvement on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.30) and application analysis to the water injection tests for confirmation of code propriety were performed. On the improvement of the code, a gas-liquid interface area density model was introduced to develop a chemical reaction model with a little dependence on calculation mesh size. The test calculation using the improved code (LEAP-JET ver.1.40) were carried out with conditions of the SWAT-3·Run-19 test and an actual scale SG. It is confirmed that the SWR jet behavior on the results and the influence to analysis result of a model are reasonable. For the application analysis to the water injection tests, water injection behavior and SWR jet behavior analyses on the new SWAT-1 (SWAT-1R) and SWAT-3 (SWAT-3R) tests were performed using the LEAP-BLOW code and the LEAP-JET code. In the application analysis of the LEAP-BLOW code, parameter survey study was performed. As the results, the condition of the injection nozzle diameter needed to simulate the water leak rate was confirmed. In the application analysis of the LEAP-JET code, temperature behavior of the SWR jet was investigated. (author)

  7. College students' behavioral reactions upon witnessing relational peer aggression.

    Science.gov (United States)

    You, Ji-In; Bellmore, Amy

    2014-01-01

    With a sample of 228 college students (82.5% females) from the Midwestern United States, individual factors that contribute to emerging adults' behavioral responses when witnessing relational aggression among their peers were explored. The experience of witnessing relational aggression was found to be systematically associated with college students' behavioral responses to relational aggression through two social cognitive processes: normative beliefs about relational aggression and susceptibility to peer influence. The experience of witnessing relational aggression was associated with defending behavior through normative beliefs about relational aggression and both assisting and reinforcing behavior through normative beliefs about relational aggression and susceptibility to peer influence. The experience of witnessing relational aggression was also associated with onlooking behavior through normative beliefs about relational aggression. The findings indicate that exposure to relational aggression as a witness may influence witness responses because of the way such exposure may shape specific social cognitions. The potential for using the study findings for promoting effective witness interventions among college students is discussed. © 2014 Wiley Periodicals, Inc.

  8. A stochastic modeling of isotope exchange reactions in glutamine synthetase

    Science.gov (United States)

    Kazmiruk, N. V.; Boronovskiy, S. E.; Nartsissov, Ya R.

    2017-11-01

    The model presented in this work allows simulation of isotopic exchange reactions at chemical equilibrium catalyzed by a glutamine synthetase. To simulate the functioning of the enzyme the algorithm based on the stochastic approach was applied. The dependence of exchange rates for 14C and 32P on metabolite concentration was estimated. The simulation results confirmed the hypothesis of the ascertained validity for preferred order random binding mechanism. Corresponding values of K0.5 were also obtained.

  9. Longitudinal relations among parents' reactions to children's negative emotions, effortful control, and math achievement in early elementary school.

    Science.gov (United States)

    Swanson, Jodi; Valiente, Carlos; Lemery-Chalfant, Kathryn; Bradley, Robert H; Eggum-Wilkens, Natalie D

    2014-01-01

    Panel mediation models and fixed-effects models were used to explore longitudinal relations among parents' reactions to children's displays of negative emotions, children's effortful control (EC), and children's math achievement (N = 291; M age in fall of kindergarten = 5.66 years, SD = .39 year) across kindergarten through second grade. Parents reported their reactions and children's EC. Math achievement was assessed with a standardized achievement test. First-grade EC mediated the relation between parents' reactions at kindergarten and second-grade math achievement, beyond stability in constructs across study years. Panel mediation model results suggested that socialization of EC may be one method of promoting math achievement in early school; however, when all omitted time-invariant covariates of EC and math achievement were controlled, first-grade EC no longer predicted second-grade math achievement. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  10. Diffusion-controlled reactions modeling in Geant4-DNA

    International Nuclear Information System (INIS)

    Karamitros, M.; Luan, S.; Bernal, M.A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H.N.; Stepan, V.; Incerti, S.

    2014-01-01

    Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The

  11. Reaction kinetics and reactor modeling for fuel processing of liquid hydrocarbons to produce hydrogen. Isooctane reforming

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Manuel [Department of Refining and Petrochemicals, Center for Research and Development of the Venezuelan Oil Industry (PDVSA-Intevep), Sector el Tambor, P.O. Box 76343, Los Teques, Edo Miranda (Venezuela); Sira, Jorge [Department of Mechanical Engineering, Universidad de los Andes, Merida (Venezuela); Kopasz, John [US Department of Energy, Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2003-09-10

    A mathematical model was developed in the framework of the process simulator Aspen Plus in order to describe the reaction kinetics and performance of a fuel processor used for autothermal reforming of liquid hydrocarbons. Experimental results obtained in the facilities of Argonne National Laboratories (ANL) when reforming isooctane using a ceria-oxide catalyst impregnated with platinum were used in order to validate the reactor model. The reaction kinetics and reaction schemes were taken from published literature and most of the chemical reactions were modeled using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formulation to account for the effect of adsorption of reactants and products on the active sites of the catalyst. The water-gas-shift (WGS) reactor used to reduce the concentration of CO in the reformate was also modeled. Both reactor models use a simplified formulation for estimating the effectiveness factor of each chemical reaction in order to account for the effect of intraparticle mass transfer limitations on the reactor performance. Since the data in the literature on kinetics of autothermal reforming of liquid hydrocarbons using CeO{sub 2}-Pt catalyst is scarce, the proposed kinetic model for the reaction network was coupled to the sequential quadratic programming (SQP) algorithm implemented in Aspen Plus in order to regress the kinetic constants for the different reactions. The model describes the trend of the experimental data in terms of hydrogen yield and distribution of products with a relative deviation of {+-}15% for reforming temperatures between 600 and 800C and reactor space velocities between 15000 and 150000h{sup -1}.

  12. Mathematical Model of Synthesis Catalyst with Local Reaction Centers

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2017-01-01

    Full Text Available The article considers a catalyst granule with a porous ceramic passive substrate and point active centers on which an exothermic synthesis reaction occurs. A rate of the chemical reaction depends on the temperature according to the Arrhenius law. Heat is removed from the pellet surface in products of synthesis due to heat transfer. In our work we first proposed a model for calculating the steady-state temperature of a catalyst pellet with local reaction centers. Calculation of active centers temperature is based on the idea of self-consistent field (mean-field theory. At first, it is considered that powers of the reaction heat release at the centers are known. On the basis of the found analytical solution, which describes temperature distribution inside the granule, the average temperature of the reaction centers is calculated, which then is inserted in the formula for heat release. The resulting system of transcendental algebraic equations is transformed into a system of ordinary differential equations of relaxation type and solved numerically to achieve a steady-state value. As a practical application, the article considers a Fischer-Tropsch synthesis catalyst granule with active cobalt metallic micro-particles. Cobalt micro-particles are the centers of the exothermic reaction of hydrocarbons macromolecular synthesis. Synthesis occurs as a result of absorption of the components of the synthesis gas on metallic cobalt. The temperature distribution inside the granule for a single local center and reaction centers located on the same granule diameter is found. It was found that there is a critical temperature of reactor exceeding of which leads to significant local overheating of the centers - thermal explosion. The temperature distribution with the local reaction centers is qualitatively different from the granule temperature, calculated in the homogeneous approximation. It is shown that, in contrast to the homogeneous approximation, the

  13. Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits.

    Science.gov (United States)

    Alméras, Tancrède; Derycke, Morgane; Jaouen, Gaëlle; Beauchêne, Jacques; Fournier, Mériem

    2009-01-01

    Gravitropism is necessary for plants to control the orientation of their axes while they grow in height. In woody plants, stem re-orientations are costly because they are achieved through diameter growth. The functional diversity of gravitropism was studied to check if the mechanisms involved and their efficiency may contribute to the differentiation of height growth strategies between forest tree species at the seedling stage. Seedlings of eight tropical species were grown tilted in a greenhouse, and their up-righting movement and diameter growth were measured over three months. Morphological, anatomical, and biomechanical traits were measured at the end of the survey. Curvature analysis was used to analyse the up-righting response along the stems. Variations in stem curvature depend on diameter growth, size effects, the increase in self-weight, and the efficiency of the gravitropic reaction. A biomechanical model was used to separate these contributions. Results showed that (i) gravitropic movements were based on a common mechanism associated to similar dynamic patterns, (ii) clear differences in efficiency (defined as the change in curvature achieved during an elementary diameter increment for a given stem diameter) existed between species, (iii) the equilibrium angle of the stem and the anatomical characters associated with the efficiency of the reaction also differed between species, and (iv) the differences in gravitropic reaction were related to the light requirements: heliophilic species, compared to more shade-tolerant species, had a larger efficiency and an equilibrium angle closer to vertical. This suggests that traits determining the gravitropic reaction are related to the strategy of light interception and may contribute to the differentiation of ecological strategies promoting the maintenance of biodiversity in tropical rainforests.

  14. Providing care to relatives with mental illness: reactions and distress among primary informal caregivers.

    Science.gov (United States)

    Chang, Sherilyn; Zhang, Yunjue; Jeyagurunathan, Anitha; Lau, Ying Wen; Sagayadevan, Vathsala; Chong, Siow Ann; Subramaniam, Mythily

    2016-03-25

    The responsibility of caring for relatives with mental illness often falls on the family members. It has been reported that the reactions to or consequences of providing care are what rendered the role of a caregiver challenging and hence a source of distress. This present study thus aimed to identify socio-demographic correlates of caregiving experiences using the Caregiver Reaction Assessment (CRA) and to examine the associations between reactions to caregiving and psychological distress. A total of 350 caregivers with relatives seeking outpatient care at a tertiary psychiatric hospital were recruited for this study. Distress among caregivers was assessed using the Patient Health Questionnaire (PHQ-9). The CRA was administered to measure reactions from caregiving in four domains including impact on schedule and health (ISH), impact on finance (IF), lack of family support (LFS) and caregiver esteem (CE). Participants also completed a questionnaire that asked for their socio-demographic information. Multivariable linear regression analysis was first used with domains of CRA as outcome variables and socio-demographic variables as predictors in the models. The next set of multivariable linear regression analysis tested for the association between CRA domains and distress with CRA domain scores as outcome variables and PHQ-9 score as predictor, controlling for socio-demographic variables. Socio-demographic correlates of CRA domains identified were age, education, employment, income and ethnicity. Domain scores of CRA were significantly associated with PHQ-9 score even after controlling for socio-demographic variables. A higher distress score was associated with greater impact felt in the domain of ISH (β = 0.080, P level, and also promoting wider social care support in these domains may help to address caregiver distress.

  15. Forced thermal cycling of catalytic reactions: experiments and modelling

    DEFF Research Database (Denmark)

    Jensen, Søren; Olsen, Jakob Lind; Thorsteinsson, Sune

    2007-01-01

    Recent studies of catalytic reactions subjected to fast forced temperature oscillations have revealed a rate enhancement increasing with temperature oscillation frequency. We present detailed studies of the rate enhancement up to frequencies of 2.5 Hz. A maximum in the rate enhancement is observed...... at about 1 Hz. A model for the rate enhancement that includes the surface kinetics and the dynamic partial pressure variations in the reactor is introduced. The model predicts a levelling off of the rate enhancement with frequency at about 1 Hz. The experimentally observed decrease above 1 Hz is explained...

  16. Bayesian inference of chemical kinetic models from proposed reactions

    KAUST Repository

    Galagali, Nikhil

    2015-02-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.

  17. Students' Visualisation of Chemical Reactions--Insights into the Particle Model and the Atomic Model

    Science.gov (United States)

    Cheng, Maurice M. W.

    2018-01-01

    This paper reports on an interview study of 18 Grade 10-12 students' model-based reasoning of a chemical reaction: the reaction of magnesium and oxygen at the submicro level. It has been proposed that chemical reactions can be conceptualised using two models: (i) the "particle model," in which a reaction is regarded as the simple…

  18. Oral lichenoid reactions related to composite restorations. Preliminary report.

    Science.gov (United States)

    Lind, P O

    1988-02-01

    Lichenoid lesions topographically related to resin-based composite restorations were observed in 17 patients. In eight of these the composite had been inserted to replace amalgam restorations that were topographically related to lichenoid lesions. The other nine had no history of lichenoid lesions. Total remission occurred in four cases after the composite had been replaced with gold inlays or gold-porcelain crowns, and partial remission has been observed in five patients so far. The use of posterior composite restorations is rapidly increasing, and possible side effects, such as erosive lichenoid lesions, caused by these restorations should be considered in the differential diagnosis of lesions in the oral mucosa.

  19. Radiolytic oxidation of propane: computer modeling of the reaction scheme

    International Nuclear Information System (INIS)

    Gupta, A.K.; Hanrahan, R.J.

    1991-01-01

    The oxidation of gaseous propane under gamma radiolysis was studied at 100 torr pressure and 25 o C, at oxygen pressures from 1 to 15 torr. Major oxygen-containing products and their G-values with 10% added oxygen are as follows: acetone, 0.98; i-propyl alcohol, 0.86; propionaldehyde, 0.43; n-propyl alcohol, 0.11; acrolein, 0.14; and allyl alcohol, 0.038. The formation of major oxygen-containing products was explained on the basis that the alkyl radicals combine with molecular oxygen to give peroxyl radicals; the peroxyl radicals react with one another to give alkoxyl radicals, which in turn react with one another to form carbonyl compounds and alcohols. The reaction scheme for the formation of major products was examined using computer modeling based on a mechanism involving 28 reactions. Yields could be brought into agreement with the data within experimental error in nearly all cases. (author)

  20. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  1. Reactions of Lignin Model Compounds in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  2. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions.

    Science.gov (United States)

    Chung, Wen-Hung; Chang, Wan-Chun; Lee, Yun-Shien; Wu, Ying-Ying; Yang, Chih-Hsun; Ho, Hsin-Chun; Chen, Ming-Jing; Lin, Jing-Yi; Hui, Rosaline Chung-Yee; Ho, Ji-Chen; Wu, Wei-Ming; Chen, Ting-Jui; Wu, Tony; Wu, Yih-Ru; Hsih, Mo-Song; Tu, Po-Hsun; Chang, Chen-Nen; Hsu, Chien-Ning; Wu, Tsu-Lan; Choon, Siew-Eng; Hsu, Chao-Kai; Chen, Der-Yuan; Liu, Chin-San; Lin, Ching-Yuang; Kaniwa, Nahoko; Saito, Yoshiro; Takahashi, Yukitoshi; Nakamura, Ryosuke; Azukizawa, Hiroaki; Shi, Yongyong; Wang, Tzu-Hao; Chuang, Shiow-Shuh; Tsai, Shih-Feng; Chang, Chee-Jen; Chang, Yu-Sun; Hung, Shuen-Iu

    2014-08-06

    The antiepileptic drug phenytoin can cause cutaneous adverse reactions, ranging from maculopapular exanthema to severe cutaneous adverse reactions, which include drug reactions with eosinophilia and systemic symptoms, Stevens-Johnson syndrome, and toxic epidermal necrolysis. The pharmacogenomic basis of phenytoin-related severe cutaneous adverse reactions remains unknown. To investigate the genetic factors associated with phenytoin-related severe cutaneous adverse reactions. Case-control study conducted in 2002-2014 among 105 cases with phenytoin-related severe cutaneous adverse reactions (n=61 Stevens-Johnson syndrome/toxic epidermal necrolysis and n=44 drug reactions with eosinophilia and systemic symptoms), 78 cases with maculopapular exanthema, 130 phenytoin-tolerant control participants, and 3655 population controls from Taiwan, Japan, and Malaysia. A genome-wide association study (GWAS), direct sequencing of the associated loci, and replication analysis were conducted using the samples from Taiwan. The initial GWAS included samples of 60 cases with phenytoin-related severe cutaneous adverse reactions and 412 population controls from Taiwan. The results were validated in (1) 30 cases with severe cutaneous adverse reactions and 130 phenytoin-tolerant controls from Taiwan, (2) 9 patients with Stevens-Johnson syndrome/toxic epidermal necrolysis and 2869 population controls from Japan, and (3) 6 cases and 374 population controls from Malaysia. Specific genetic factors associated with phenytoin-related severe cutaneous adverse reactions. The GWAS discovered a cluster of 16 single-nucleotide polymorphisms in CYP2C genes at 10q23.33 that reached genome-wide significance. Direct sequencing of CYP2C identified missense variant rs1057910 (CYP2C9*3) that showed significant association with phenytoin-related severe cutaneous adverse reactions (odds ratio, 12; 95% CI, 6.6-20; P=1.1 × 10(-17)). The statistically significant association between CYP2C9*3 and phenytoin-related

  3. A reaction-diffusion model of cytosolic hydrogen peroxide.

    Science.gov (United States)

    Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D

    2016-01-01

    As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    Cosmological models in general relativity. B B PAUL. Department of Physics, Nowgong College, Nagaon, Assam, India. MS received 4 October 2002; revised 6 March 2003; accepted 21 May 2003. Abstract. LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceler- ation parameter as variable.

  5. Rigorous Multicomponent Reactive Separations Modelling: Complete Consideration of Reaction-Diffusion Phenomena

    International Nuclear Information System (INIS)

    Ahmadi, A.; Meyer, M.; Rouzineau, D.; Prevost, M.; Alix, P.; Laloue, N.

    2010-01-01

    This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO 2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used. Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick's law is less adapted for multicomponent mixtures where some abnormalities such as counter

  6. Deuterium cluster model for low energy nuclear reactions (LENR)

    Science.gov (United States)

    Miley, George; Hora, Heinrich

    2007-11-01

    For studying the possible reactions of high density deuterons on the background of a degenerate electron gas, a summary of experimental observations resulted in the possibility of reactions in pm distance and more than ksec duration similar to the K-shell electron capture [1]. The essential reason was the screening of the deuterons by a factor of 14 based on the observations. Using the bosonic properties for a cluster formation of the deuterons and a model of compound nuclear reactions [2], the measured distribution of the resulting nuclei may be explained as known from the Maruhn-Greiner theory for fission. The local maximum of the distribution at the main minimum indicates the excited states of the compound nuclei during their intermediary state. This measured local maximum may be an independent proof for the deuteron clusters at LENR. [1] H. Hora, G.H. Miley et al. Physics Letters A175, 138 (1993) [2] H. Hora and G.H. Miley, APS March Meeting 2007, Program p. 116

  7. Systematic development of reduced reaction mechanisms for dynamic modeling

    Science.gov (United States)

    Frenklach, M.; Kailasanath, K.; Oran, E. S.

    1986-01-01

    A method for systematically developing a reduced chemical reaction mechanism for dynamic modeling of chemically reactive flows is presented. The method is based on the postulate that if a reduced reaction mechanism faithfully describes the time evolution of both thermal and chain reaction processes characteristic of a more complete mechanism, then the reduced mechanism will describe the chemical processes in a chemically reacting flow with approximately the same degree of accuracy. Here this postulate is tested by producing a series of mechanisms of reduced accuracy, which are derived from a full detailed mechanism for methane-oxygen combustion. These mechanisms were then tested in a series of reactive flow calculations in which a large-amplitude sinusoidal perturbation is applied to a system that is initially quiescent and whose temperature is high enough to start ignition processes. Comparison of the results for systems with and without convective flow show that this approach produces reduced mechanisms that are useful for calculations of explosions and detonations. Extensions and applicability to flames are discussed.

  8. A mathematical model for the chemical reactions induced by radiation

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Frias, D.; Sanchez M, G.

    2007-01-01

    Full text: Ferrous sulfate salt in acid solutions is one of the systems most extensively studied and most widely used. This dosimeter has received considerable attention because of its high sensitivity to X-rays and gamma radiation. With care this dosimetry is capable of a 0.1% precision for Co gamma rays. It is an easily available commercial product and can easily be prepared. However, our experimental results have shown that kinetics of the reaction mechanism initiated by radiolysis is strongly affected by changes in the temperature of irradiation. To evaluate energy deposited by gamma radiation on samples irradiated below room temperature is a truly difficult task. In fact, irradiating iron salts with gamma rays at different decreasing temperatures keeping constant the rest of irradiation conditions, we have observed a diminution of the rate of conversions of Fe 2+ into Fe 3+ . Several factors can contribute in order that the same absorbed dose will produce different amount of production of Fe 3+ . In the present paper, we present some experimental results of the response of ferrous sulfate in frozen solutions as a function of the irradiation temperature. The considered values were from 77 K, 198 K, 273 K, and 300 K. However this aim of e article concerns with the implementation of a theoretical model framework. This is a computational numerical simulation of the kinetics of reaction induced by radiation via radiolysis and the comparison with our experimental results which allowed the study of the effect of low temperature in such contexts. We also describe the mathematical model for the reaction kinetics as well as haw is obtained the temperature dependent yield by radiolysis tem. On the other hand it is detailed the computational approach. Finally a comparison between both experimental and theoretical results was compared in order to verify the reproducibility of our results from our theoretical model. (Author)

  9. BlenX-based compositional modeling of complex reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Judit Zámborszky

    2010-02-01

    Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.

  10. An anisotropic three-fluid model for heavy ion reactions

    International Nuclear Information System (INIS)

    Lovas, I.; Zimanyi, J.; Csernai, L.P.; Greiner, W.

    1981-01-01

    The nucleons taking part in heavy ion reactions are considered as a three-fluid system. The first and second components correspond to the target and the projectile, while the thermalised nucleons produced in the course of the collision belong to the third component. Making use of the Boltzmann-equation, hydrodynamical equations are derived which yield also the anisotropy of the momentum distribution. The equation of state for anisotropic nuclear matter is derived from a field theoretical model in the mean field approximation. (Auth.)

  11. Parametric pattern selection in a reaction-diffusion model.

    Directory of Open Access Journals (Sweden)

    Michael Stich

    Full Text Available We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function of a natural control parameter (feed-rate where degenerate patterns with different numbers of spots coexist for a fixed feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and directionality effects of the different pattern pathways.

  12. Reaction rates of ozone and terpenes adsorbed to model indoor surfaces.

    Science.gov (United States)

    Springs, M; Wells, J R; Morrison, G C

    2011-08-01

    Reaction rates and reaction probabilities have been quantified on model indoor surfaces for the reaction of ozone with two monoterpenes (Δ(3) -carene and d-limonene). Molar surface loadings were obtained by performing breakthrough experiments in a plug-flow reactor (PFR) packed with beads of glass, polyvinylchloride or zirconium silicate. Reaction rates and probabilities were determined by equilibrating the PFR with both the terpene and the ozone and measuring the ozone consumption rate. To mimic typical indoor conditions, temperatures of 20, 25, and 30°C were used in both types of experiments along with a relative humidity ranging from 10% to 80%. The molar surface loading decreased with increased relative humidity, especially on glass, suggesting that water competed with the terpenes for adsorption sites. The ozone reactivity experiments indicate that higher surface loadings correspond with higher ozone uptake. The reaction probability for Δ(3) -carene with ozone ranged from 2.9 × 10(-6) to 3.0 × 10(-5) while reaction probabilities for d-limonene ranged from 2.8 × 10(-5) to 3.0 × 10(-4) . These surface reaction probabilities are roughly 10-100 times greater than the corresponding gas-phase values. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially for lower volatility terpenoids. At present, it is unclear how important heterogeneous reactions will be in influencing indoor concentrations of terpenes, ozone and their reaction products. We observe that surface reaction probabilities were 10 to 100 times greater than their corresponding gas-phase values. Thus indoor surfaces do enhance effective reaction rates and adsorption of terpenes will increase ozone flux to otherwise low-reactivity surfaces. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially

  13. Epistemology and Rosen's Modeling Relation

    International Nuclear Information System (INIS)

    Dress, W.B.

    1999-01-01

    Rosen's modeling relation is embedded in Popper's three worlds to provide an heuristic tool for model building and a guide for thinking about complex systems. The utility of this construct is demonstrated by suggesting a solution to the problem of pseudo science and a resolution of the famous Bohr-Einstein debates. A theory of bizarre systems is presented by an analogy with entangled particles of quantum mechanics. This theory underscores the poverty of present-day computational systems (e.g., computers) for creating complex and bizarre entities by distinguishing between mechanism and organism

  14. An under-met and over-met expectations model of employee reactions to merit raises.

    Science.gov (United States)

    Schaubroeck, John; Shaw, Jason D; Duffy, Michelle K; Mitra, Atul

    2008-03-01

    The authors developed a model of how raise expectations influence the relationship between merit pay raises and employee reactions and tested it using a sample of hospital employees. Pay-for-performance (PFP) perceptions were consistently related to personal reactions (e.g., pay raise happiness, pay-level satisfaction, and turnover intentions). Merit pay raises were strongly related to reactions only among employees with high raise expectations and high PFP perceptions. The interactive effects of under-met/over-met expectations and PFP perceptions were mediated by the extent to which participants saw the raise as generous and they were happy with the raises they received. The authors discuss the implications of these findings for expectation-fulfillment theories, merit pay research, and the administration of incentives. Copyright 2008 APA

  15. Persuasion, Politeness and Relational Models

    Directory of Open Access Journals (Sweden)

    Jerzy Świątek

    2017-06-01

    Full Text Available Politeness Theory, just like Grice’s Cooperative Principle, points out that pragmatic analysis of language behaviour has to be grounded in extra-linguistic facts of social (or even biological nature. Additionally, despite the slightly misleading label, Politeness Theory provides a sound methodology to explain some persuasive as well as politeness phenomena. In the same vein, the so called Relational Model Theory provides another theoretical framework for the explanation of persuasive phenomena and persuasive language. Both Relational Model Theory and Politeness Theory show that persuasion is also to be understood as a rational response to not-so-rational social and biological needs. In the article an attempt is made to compare the two theories focusing on their explanatory power in reference to language choices aiming at enhancing the persuasive potential of a language message.

  16. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

    Science.gov (United States)

    Cobbs, Gary

    2012-08-16

    Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of

  17. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Cobbs Gary

    2012-08-01

    Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the

  18. Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution

    International Nuclear Information System (INIS)

    Poyet, S.; Sellier, A.; Capra, B.; Foray, G.; Torrenti, J.M.; Cognon, H.; Bourdarot, E.

    2007-01-01

    This article presents a new model which aims at predicting the expansion induced by Alkali Silica Reaction (ASR) and describing the chemical evolution of affected concretes. It is based on the description of the transport and reaction of alkalis and calcium ions within a Relative Elementary Volume (REV). It takes into account the influence of the reactive aggregate size grading on ASR, i.e. the effect of the simultaneous presence of different sized reactive aggregates within concrete. The constitutive equations are detailed and fitted using experimental results. Results from numerical simulations are presented and compared with experiments. (authors)

  19. In silico strain optimization by adding reactions to metabolic models.

    Science.gov (United States)

    Correia, Sara; Rocha, Miguel

    2012-07-24

    Nowadays, the concerns about the environment and the needs to increase the productivity at low costs, demand for the search of new ways to produce compounds with industrial interest. Based on the increasing knowledge of biological processes, through genome sequencing projects, and high-throughput experimental techniques as well as the available computational tools, the use of microorganisms has been considered as an approach to produce desirable compounds. However, this usually requires to manipulate these organisms by genetic engineering and/ or changing the enviromental conditions to make the production of these compounds possible. In many cases, it is necessary to enrich the genetic material of those microbes with hereologous pathways from other species and consequently adding the potential to produce novel compounds. This paper introduces a new plug-in for the OptFlux Metabolic Engineering platform, aimed at finding suitable sets of reactions to add to the genomes of selected microbes (wild type strain), as well as finding complementary sets of deletions, so that the mutant becomes able to overproduce compounds with industrial interest, while preserving their viability. The necessity of adding reactions to the metabolic model arises from existing gaps in the original model or motivated by the productions of new compounds by the organism. The optimization methods used are metaheuristics such as Evolutionary Algorithms and Simulated Annealing. The usefulness of this plug-in is demonstrated by a case study, regarding the production of vanillin by the bacterium E. coli.

  20. A Reaction Zone Enthalpy Balance Model to Simulate Shock-to-Detonation Transition and Unsteady Detonation Wave Propagation

    Science.gov (United States)

    Froger, A.

    2004-07-01

    The standard models in use to simulate the reactive detonation wave propagation are not accurate in computing the transient evolutions because they focus on the shock front, not on the reaction zone where the coupling of thermodynamic and mechanic effects occurs. The model we propose is based on a new thermodynamic description of the constituents in the reaction zone, and on the use of the enthalpy balance of the chemical reaction as the energetic parameter instead of the heat of reaction. The enthalpy balance of the reaction results from the enthalpies of formation of all the chemical species involved in the reaction and is, therefore, a physical constant. The model is based on four basic assumptions: -1) the reaction zone is anevolving intimate mixture of non-reacted material and detonation products, -2) the energy released by thereaction is inherent to the detonation products alone, -3) the two constituents have the same pressure but different temperatures, -4) the specific energy released is not a constant but is related to the enthalpy balance and depends on the thermodynamic state. The model only needs the physical properties of the materials (equations of state of the constituents, chemical reaction and initiation delay), not the CJ state nor any other sub-model. When coupled with the Euler equations this thermodynamic description of the reaction zone permits us to simulate the transient evolution of an emerging detonation for any geometry (2D or 3D) or confinement structure.

  1. Assault-related shame mediates the association between negative social reactions to disclosure of sexual assault and psychological distress.

    Science.gov (United States)

    DeCou, Christopher R; Cole, Trevor T; Lynch, Shannon M; Wong, Maria M; Matthews, Kathleen C

    2017-03-01

    Several studies have identified associations between social reactions to disclosure of sexual assault and psychological distress; however, no studies have evaluated shame as a mediator of this association. This study evaluated assault-related shame as a mediator of the associations between negative social reactions to disclosure of sexual assault and symptoms of posttraumatic stress disorder (PTSD), depression, and global distress and hypothesized that there would be an indirect effect of social reactions to disclosure upon symptoms of psychopathology via assault-related shame. Participants were 207 female psychology undergraduates who reported past history of completed or attempted sexual assault and had disclosed the assault to at least 1 other person. Participants completed self-report measures of social reactions to sexual assault disclosure, assault-related shame, and symptoms of psychopathology. Participants reported significant histories of attempted or completed sexual assault and indicated clinically significant symptoms of depression and subthreshold symptoms of PTSD and global distress, on average. Evaluation of structural models confirmed the hypothesized indirect effect of negative social reactions to sexual assault disclosure upon symptoms of PTSD (z = 5.85, p shame. These findings offer new insight concerning the intervening role of assault-related shame and highlight the importance of shame as a target for therapeutic intervention. This study suggests the need for future research concerning the role of shame in the etiology of PTSD and process of disclosure among survivors of attempted or completed sexual assault. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Pion-nucleus reactions in a microscopic transport model

    International Nuclear Information System (INIS)

    Engel, A.; Cassing, W.; Mosel, U.; Schaefer, M.; Wolf, G.

    1994-01-01

    We analyse pion-nucleus reactions in a microscopic transport model of the BUU type, which propagates nucleons, pions, deltas and N(1440) resonances explicitly in space and time. In particular we examine pion absorption and inelastic-scattering cross sections for pion kinetic energies T π =85-315 MeV and various target masses. In general, the mass dependence of the experimental data is well described for energies up to the Δ-resonance (∼160 MeV), while the absorption cross sections are somewhat overestimated for the higher energies. In addition we study the possible dynamical effects of delta and pion potentials in the medium on various observables as well as alternative models for the in-medium Δ-width. ((orig.))

  3. Relative mobility of 1-H atoms of carbohydrates in heterogeneous isotope exchange reactions

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kayumov, V.G.; Kaminskii, Yu.L.

    1988-01-01

    The method of competitive reactions was used to determine the relative mobilities of the 1-H atoms of carbohydrates in reactions of heterogeneous isotope exchange, using various reference standards, catalysts, and buffer systems. On the basis of the results obtained, the investigated carbohydrates are ranged in a series of decreasing mobility of the hydrogen atoms exchanged in heterogeneous isotope exchange reactions. It was demonstrated that the mobility of the 1-H atoms is related to the concentration of the acyclic forms of the carbohydrates

  4. Relative rate study of the kinetic isotope effect in the 13CH3D + Cl reaction

    DEFF Research Database (Denmark)

    Joelsson, Lars Magnus Torvald; Forecast, Roslyn; Schmidt, Johan Albrecht

    2014-01-01

    The 13CH3D/12CH4kinetic isotope effect, α13CH3D, of CH4 + Cl is determined for the first time, using the relative rate technique and Fourier transform infrared (FTIR) spectroscopy. α13CH3D is found to be 1.60 ± 0.04. In addition, a quantum chemistry/transition state theory model with tunneling...... correction is constructed and the primary cause for α13CH3D is found to be the substantially reduced reactivity of the D atom, which, in turn, can be explained by a significant increase in the reaction barrier due to changes in the vibrational zero point energy and to a lesser extent tunneling....

  5. Radiolytic oxidation of propane: Computer modeling of the reaction scheme

    Science.gov (United States)

    Gupta, Avinash K.; Hanrahan, Robert J.

    The oxidation of gaseous propane under gamma radiolysis was studied at 100 torr pressure and 25°C, at oxygen pressures from 1 to 15 torr. Major oxygen-containing products and their G-values with 10% added oxygen are as follows: acetone, 0.98; i-propyl alcohol, 0.86; propionaldehyde, 0.43; n-propyl alcohol, 0.11; acrolein, 0.14; and allyl alcohol, 0.038. Minor products include i-butyl alcohol, t-amyl alcohol, n-butyl alcohol, n-amyl alcohol, and i-amyl alcohol. Small yields of i-hexyl alcohol and n-hexyl alcohol were also observed. There was no apparent difference in the G-values at pressures of 50, 100 and 150 torr. When the oxygen concentration was decreased below 5%, the yields of acetone, i-propyl alcohol, and n-propyl alcohol increased, the propionaldehyde yield decreased, and the yields of other products remained constant. The formation of major oxygen-containing products was explained on the basis that the alkyl radicals combine with molecular oxygen to give peroxyl radicals; the peroxyl radicals react with one another to give alkoxyl radicals, which in turn react with one another to form carbonyl compounds and alcohols. The reaction scheme for the formation of major products was examined using computer modeling based on a mechanism involving 28 reactions. Yields could be brought into agreement with the data within experimental error in nearly all cases.

  6. A multi-pathway model for photosynthetic reaction center

    Science.gov (United States)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-03-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  7. A multi-pathway model for photosynthetic reaction center

    International Nuclear Information System (INIS)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-01-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  8. A reaction-diffusion model of cholinergic retinal waves.

    Directory of Open Access Journals (Sweden)

    Benjamin Lansdell

    2014-12-01

    Full Text Available Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs, whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability.

  9. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    Science.gov (United States)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  10. Resonances and fusion in heavy ion reactions: new models and developments

    International Nuclear Information System (INIS)

    Cindro, N.

    1982-01-01

    Several aspects of the problem of the resonant behaviour of heavy-ion induced reactions are discussed. First, the problem is set in its relation to fundamental nuclear physics and our understanding of nuclear structure. It is suggested that, if the resonant behaviour of heavy-ion reactions is indeed due to the presence of particular configurations in the composite systems, these configurations must have a very specific nature which prevents their mixing with the adjacent states or else other conditons (e.g. low level density) should be met. Further on, the problem of resonant behaviour observed in back-angle elastic scattering and in forward-angle reaction data is discussed. Collisions between heavy ions leading to the composite systems 36 Ar and 40 Ca are used to discuss the apparent lack of correlation between these two sets of data. A way to understand it, based on the fragmentation of broad resonances, is suggested. In the third part the relation between structure in the fusion cross section excitation functions and that in reaction channel cross sections is discussed. Finally, in the fourth part, the orbiting-cluster model of heavy-ion resonances is briefly described and its predictions discussed. Based on this model a list is given of colliding heavy-ion systems where resonances are expected. (author)

  11. CEFTRIAXONE RELATED ADVERSE DRUG REACTIONS IN CHILDREN IN A TERTIARY CARE HOSPITAL, KOLKATA, WEST BENGAL, INDIA

    Directory of Open Access Journals (Sweden)

    Anjan Adhikari

    2014-06-01

    Full Text Available Ceftriaxone is a third-generation cephalosporin antibiotic, which has broad-spectrum activity against Gram-positive and Gram-negative bacteria. It is a frequently used antibiotic in children worldwide. Studies revealed a number of adverse reactions related to this third generation antibiotic. A survey was done where data related with adverse drug reactions (ADRs were collected for three months from the Department of Pediatrics of a tertiary care hospital, Kolkata, West Bengal, India and then evaluated. In the study, fifteen ADRs were detected. Ceftriaxone itself or its combinations correlated with more than thirty three percent (33.4% adverse reaction cases in this study. Most common adverse drug reactions in the present study population were different types of rashes like urticaria and maculopapular eruptions.

  12. Reaction-diffusion model of hair-bundle morphogenesis.

    Science.gov (United States)

    Jacobo, Adrian; Hudspeth, A J

    2014-10-28

    The hair bundle, an apical specialization of the hair cell composed of several rows of regularly organized stereocilia and a kinocilium, is essential for mechanotransduction in the ear. Its precise organization allows the hair bundle to convert mechanical stimuli to electrical signals; mutations that alter the bundle's morphology often cause deafness. However, little is known about the proteins involved in the process of morphogenesis and how the structure of the bundle arises through interactions between these molecules. We present a mathematical model based on simple reaction-diffusion mechanisms that can reproduce the shape and organization of the hair bundle. This model suggests that the boundary of the cell and the kinocilium act as signaling centers that establish the bundle's shape. The interaction of two proteins forms a hexagonal Turing pattern--a periodic modulation of the concentrations of the morphogens, sustained by local activation and long-range inhibition of the reactants--that sets a blueprint for the location of the stereocilia. Finally we use this model to predict how different alterations to the system might impact the shape and organization of the hair bundle.

  13. Theoretical intercomparison of multi-step direct reaction models and computational intercomparison of multi-step direct reaction models

    International Nuclear Information System (INIS)

    Koning, A.J.

    1992-08-01

    In recent years several statistical theories have been developed concerning multistep direct (MSD) nuclear reactions. In addition, dominant in applications is a whole class of semiclassical models that may be subsumed under the heading of 'generalized exciton models'. These are basically MSD-type extensions on top of compound-like concepts. In this report the relationship between their underlying statistical MSD-postulates is highlighted. A command framework is outlined that enables to generate the various MSD theories through assigning statistical properties to different parts of the nuclear Hamiltonian. Then it is shown that distinct forms of nuclear randomness are embodied in the mentioned theories. All these theories appear to be very similar at a qualitative level. In order to explain the high energy-tails and forward-peaked angular distribution typical for particles emitted in MSD reactions, it is imagined that the incident continuum particle stepwise looses its energy and direction in a sequence of collisions, thereby creating new particle-hole pairs in the target system. At each step emission may take place. The statistical aspect comes in because many continuum states are involved in the process. These are supposed to display chaotic behavior, the associated randomness assumption giving rise to important simplifications in the expression for MSD emission cross sections. This picture suggests that mentioned MSD models can be interpreted as a variant of essentially one and the same theory. However, this appears not to be the case. To show this usual MSD distinction within the composite reacting nucleus between the fast continuum particle and the residual interactions, the nucleons of the residual core are to be distinguished from those of the leading particle with the residual system. This distinction will turn out to be crucial to present analysis. 27 refs.; 5 figs.; 1 tab

  14. Multiphasic Reaction Modeling for Polypropylene Production in a Pilot-Scale Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-06-01

    related to the dynamic bed parameters for the separate phases and is also capable of computing the chemical reaction rate for every phase in the reaction. Our improved mutiphasic model revealed similar dynamic behaviour as the conventional model in the initial stages of the polymerization reaction; however, it diverged as time progressed.

  15. Mediated priming in the lexical decision task : Evidence from event-related potentials and reaction time

    NARCIS (Netherlands)

    Chwilla, DJ; Kolk, HHJ; Mulder, G

    Mediated priming (e.g., from LION to STRIPES vis TIGER) is predicted by spreading activation models hut only by some integration model. The goal of the present research was to localize mediated priming by assessing two-step priming effects on N400 and reaction times (RT). We propose that the N400

  16. A parametric duration model of the reaction times of drivers distracted by mobile phone conversations.

    Science.gov (United States)

    Haque, Md Mazharul; Washington, Simon

    2014-01-01

    The use of mobile phones while driving is more prevalent among young drivers-a less experienced cohort with elevated crash risk. The objective of this study was to examine and better understand the reaction times of young drivers to a traffic event originating in their peripheral vision whilst engaged in a mobile phone conversation. The CARRS-Q advanced driving simulator was used to test a sample of young drivers on various simulated driving tasks, including an event that originated within the driver's peripheral vision, whereby a pedestrian enters a zebra crossing from a sidewalk. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free and handheld. In addition to driving the simulator each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The participants were 21-26 years old and split evenly by gender. Drivers' reaction times to a pedestrian in the zebra crossing were modelled using a parametric accelerated failure time (AFT) duration model with a Weibull distribution. Also tested where two different model specifications to account for the structured heterogeneity arising from the repeated measures experimental design. The Weibull AFT model with gamma heterogeneity was found to be the best fitting model and identified four significant variables influencing the reaction times, including phone condition, driver's age, license type (provisional license holder or not), and self-reported frequency of usage of handheld phones while driving. The reaction times of drivers were more than 40% longer in the distracted condition compared to baseline (not distracted). Moreover, the impairment of reaction times due to mobile phone conversations was almost double for provisional compared to open license holders. A reduction in the ability to detect traffic events in the periphery whilst distracted

  17. Experimental study and numerical modelling of geochemical reactions occurring during uranium in situ recovery (ISR) mining

    International Nuclear Information System (INIS)

    Ben Simon, R.

    2011-09-01

    The in situ Recovery (ISR) method consists of ore mining by in situ chemical leaching with acid or alkaline solutions. ISR takes place underground and is therefore limited to the analysis of the pumped solutions, hence ISR mine management is still empirical. Numerical modelling has been considered to achieve more efficient management of this process. Three different phenomena have to be taken into account for numerical simulations of uranium ISR mining: (1) geochemical reactions; (2) the kinetics of these reactions, and (3) hydrodynamic transport with respect to the reaction kinetics. Leaching tests have been conducted on ore samples from an uranium mine in Tortkuduk (Kazakhstan) where ISR is conducted by acid leaching. Two types of leaching experiments were performed: (1) tests in batch reactors; and (2) extraction in flow through columns. The assumptions deduced from the leaching tests were tested and validated by modelling the laboratory experiments with the numerical codes CHESS and HYTEC, both developed at the Geosciences research center of Mines ParisTech. A well-constrained 1D hydrogeochemical transport model of the ISR process at laboratory-scale was proposed. It enables to translate the chemical release sequence that is observed during experiments into a geochemical reaction sequence. It was possible to highlight the controlling factors of uranium dissolution, and the precipitation of secondary mineral phase in the deposit, as well as the determination of the relative importance of these factors. (author)

  18. A Stefan model for mass transfer in a rotating disk reaction vessel

    KAUST Repository

    BOHUN, C. S.

    2015-05-04

    Copyright © Cambridge University Press 2015. In this paper, we focus on the process of mass transfer in the rotating disk apparatus formulated as a Stefan problem with consideration given to both the hydrodynamics of the process and the specific chemical reactions occurring in the bulk. The wide range in the reaction rates of the underlying chemistry allows for a natural decoupling of the problem into a simplified set of weakly coupled convective-reaction-diffusion equations for the slowly reacting chemical species and a set of algebraic relations for the species that react rapidly. An analysis of the chemical equilibrium conditions identifies an expansion parameter and a reduced model that remains valid for arbitrarily large times. Numerical solutions of the model are compared to an asymptotic analysis revealing three distinct time scales and chemical diffusion boundary layer that lies completely inside the hydrodynamic layer. Formulated as a Stefan problem, the model generalizes the work of Levich (Levich and Spalding (1962) Physicochemical hydrodynamics, vol. 689, Prentice-Hall Englewood Cliffs, NJ) and will help better understand the natural limitations of the rotating disk reaction vessel when consideration is made for the reacting chemical species.

  19. Emotional Reactions to Deviance in Groups: The Relation between Number of Angry Reactions, Felt Rejection, and Conformity

    Directory of Open Access Journals (Sweden)

    Marc W. Heerdink

    2015-06-01

    Full Text Available How many members of a group need to express their anger in order to influence a deviant group member's behavior? In two studies, we examine whether an increase in number of angry group members affects the extent to which a deviant individual feels rejected, and we investigate downstream effects on conformity. We show that each additional angry reaction linearly increases the extent to which a deviant individual feels rejected, and that this relation is independent of the total number of majority members (Study 1. This felt rejection is then shown to lead to anti-conformity unless two conditions are met: (1 the deviant is motivated to seek reacceptance in the group, and (2 conformity is instrumental in gaining reacceptance because it is observable by the majority (Study 2. These findings show that angry reactions are likely to trigger anti-conformity in a deviant, but they are also consistent with a motivational account of conformity, in which conformity is strategic behavior aimed at gaining reacceptance from the group.

  20. Emotional reactions to deviance in groups: the relation between number of angry reactions, felt rejection, and conformity.

    Science.gov (United States)

    Heerdink, Marc W; van Kleef, Gerben A; Homan, Astrid C; Fischer, Agneta H

    2015-01-01

    How many members of a group need to express their anger in order to influence a deviant group member's behavior? In two studies, we examine whether an increase in number of angry group members affects the extent to which a deviant individual feels rejected, and we investigate downstream effects on conformity. We show that each additional angry reaction linearly increases the extent to which a deviant individual feels rejected, and that this relation is independent of the total number of majority members (Study 1). This felt rejection is then shown to lead to anti-conformity unless two conditions are met: (1) the deviant is motivated to seek reacceptance in the group, and (2) conformity is instrumental in gaining reacceptance because it is observable by the majority (Study 2). These findings show that angry reactions are likely to trigger anti-conformity in a deviant, but they are also consistent with a motivational account of conformity, in which conformity is strategic behavior aimed at gaining reacceptance from the group.

  1. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  2. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor.

    Science.gov (United States)

    Li, Su-Juan; Wang, Chen; Wu, Zeng-Qiang; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan

    2010-09-03

    To understand the fundamentals of enzymatic reactions confined in micro-/nanosystems, the construction of a small enzyme reactor coupled with an integrated real-time detection system for monitoring the kinetic information is a significant challenge. Nano-enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real-time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass-transport-related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano-enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50 microL min(-1)), the enzymatic reaction kinetics became the rate-determining step. This change resulted in the decrease in the conversion efficiency of the nano-enzyme reactor and the apparent Michaelis-Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis.

  3. Development of fast reactor containment safety analysis code, CONTAIN-LMR. (3) Improvement of sodium-concrete reaction model

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya

    2015-01-01

    A computer code, CONTAIN-LMR, is an integrated analysis tool to predict the consequence of severe accident in a liquid metal fast reactor. Because a sodium-concrete reaction behavior is one of the most important phenomena in the accident, a Sodium-Limestone Concrete Ablation Model (SLAM) has been developed and installed into the original CONTAIN code at Sandia National Laboratories (SNL) in the U.S. The SLAM treats chemical reaction kinetics between the sodium and the concrete compositions mechanistically using a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer (B/L) and dehydrated concrete) region, and a wet (hydrated concrete) region, the application is limited to the reaction between sodium and limestone concrete. In order to apply SLAM to the reaction between sodium and siliceous concrete which is an ordinary structural concrete in Japan, the chemical reaction kinetics model has been improved to consider the new chemical reactions between sodium and silicon dioxide. The improved model was validated to analyze a series of sodium-concrete experiments which were conducted in Japan Atomic Energy Agency (JAEA). It has been found that relatively good agreement between calculation and experimental results is obtained and the CONTAIN-LMR code has been validated with regard to the sodium-concrete reaction phenomena. (author)

  4. Parental reactions to children's negative emotions: prospective relations to Chinese children's psychological adjustment.

    Science.gov (United States)

    Tao, Annie; Zhou, Qing; Wang, Yun

    2010-04-01

    The prospective relations between five types of parental reactions to children's negative emotions (PRCNE) and children's psychological adjustment (behavioral problems and social competence) were examined in a two-wave longitudinal study of 425 school-age children in China. Parents (mostly mothers) reported their own PRCNE. Parents, teachers, and children or peers reported on children's adjustment. Parental punitive reactions positively predicted externalizing problems (controlling for baseline), whereas emotion- and problem-focused reactions were negatively related to internalizing problems. Parental minimizing and encouragement of emotion expression were unrelated to adjustment. Concurrent relations were found between PRCNE and parents' authoritative and authoritarian parenting dimensions. However, PRCNE did not uniquely predict adjustment controlling for global parenting dimensions. The findings have implications for cultural adaptation of parent-focused interventions for families of Chinese origin. 2010 APA, all rights reserved

  5. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    Science.gov (United States)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  6. A priori modeling of chemical reactions on computational grid platforms: Workflows and data models

    International Nuclear Information System (INIS)

    Rampino, S.; Monari, A.; Rossi, E.; Evangelisti, S.; Laganà, A.

    2012-01-01

    Graphical abstract: The quantum framework of the Grid Empowered Molecular Simulator GEMS assembled on the European Grid allows the ab initio evaluation of the dynamics of small systems starting from the calculation of the electronic properties. Highlights: ► The grid based GEMS simulator accurately models small chemical systems. ► Q5Cost and D5Cost file formats provide interoperability in the workflow. ► Benchmark runs on H + H 2 highlight the Grid empowering. ► O + O 2 and N + N 2 calculated k (T)’s fall within the error bars of the experiment. - Abstract: The quantum framework of the Grid Empowered Molecular Simulator GEMS has been assembled on the segment of the European Grid devoted to the Computational Chemistry Virtual Organization. The related grid based workflow allows the ab initio evaluation of the dynamics of small systems starting from the calculation of the electronic properties. Interoperability between computational codes across the different stages of the workflow was made possible by the use of the common data formats Q5Cost and D5Cost. Illustrative benchmark runs have been performed on the prototype H + H 2 , N + N 2 and O + O 2 gas phase exchange reactions and thermal rate coefficients have been calculated for the last two. Results are discussed in terms of the modeling of the interaction and advantages of using the Grid is highlighted.

  7. Modeling non-adiabatic photoexcited reaction dynamics in condensed phases

    International Nuclear Information System (INIS)

    Coker, D.F.

    2003-01-01

    Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites

  8. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  9. The Relative Salience of Daily and Enduring Influences on Off-Job Reactions to Work Stress.

    Science.gov (United States)

    Calderwood, Charles; Ackerman, Phillip L

    2016-12-01

    Work stress is an important determinant of employee health and wellness. The occupational health community is recognizing that one contributor to these relationships may be the presence of negative off-job reactivity to work, which we argue involves continued thoughts directed towards work (cognitive reactivity), continued negative mood stemming from work (affective reactivity), and the alteration of post-work behaviours in response to work factors (behavioural reactivity). We explored the relative contributions of daily work stressors, affective traits, and subjective job stress perceptions to negative off-job reactivity. These relationships were evaluated in a study of hospital nurses (n = 75), who completed trait measures and then provided self-assessments of daily work stress and off-job reactions for four work days. The results of several multilevel analyses indicated that a main-effects model best described the data when predicting cognitive, affective, and behavioural reactivity from daily work stressors, affective traits, and subjective job stress perceptions. A series of multilevel dominance analyses revealed that subjective job stress perceptions dominated the prediction of behavioural reactivity, while trait negative affect dominated the prediction of affective reactivity. Theoretical implications and the relative salience of daily and enduring contributors to negative off-job reactivity are discussed. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pignatelli, Rossella, E-mail: rossellapignatelli@gmail.com [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Lombardi Ingegneria S.r.l., Via Giotto 36, 20145 Milano (Italy); Comi, Claudia, E-mail: comi@stru.polimi.it [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-11-15

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.

  11. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    International Nuclear Information System (INIS)

    Pignatelli, Rossella; Comi, Claudia; Monteiro, Paulo J.M.

    2013-01-01

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature

  12. Transfusion-related adverse reactions: From institutional hemovigilance effort to National Hemovigilance program

    Science.gov (United States)

    Vasudev, Rahul; Sawhney, Vijay; Dogra, Mitu; Raina, Tilak Raj

    2016-01-01

    Aims: In this study we have evaluated the various adverse reactions related to transfusion occurring in our institution as a pilot institutional effort toward a hemovigilance program. This study will also help in understanding the problems faced by blood banks/Transfusion Medicine departments in implementing an effective hemovigilance program. Materials and Methods: All the adverse reactions related to transfusion of whole blood and its components in various clinical specialties were studied for a period of 1 year. Any transfusion-related adverse event was worked up in accordance with guidelines laid down by the Directorate General of Health Services (DGHS) and departmental standard operating procedures. Results: During the study period from November 1, 2011 to October 31, 2012, 45812 components were issued [30939 WB/PRBC; 12704 fresh frozen plasma (FFP); 2169 platelets]. Risk estimation per 1000 units of red cells (WB/PRBC) transfused was estimated to be: 0.8 for febrile nonhemolytic transfusion reaction (FNHTR), 0.7 for allergic reaction, 0.19 for acute hemolytic transfusion reaction (AcHTR), 0.002 for anaphylactoid reactions, 0.1 for bacterial sepsis, and 0.06 for hypervolemia and hypocalcemia. 0.09 is the risk for delayed transfusion reaction and 0.03 is the risk for transfusion-related acute lung injury (TRALI). Risk estimate per 1,000 units of platelets transfused was estimated to be 1.38 for FNHTR, 1.18 for allergic reaction, and 1 in case of bacterial sepsis. Risk estimation per 1,000 units of FFP was estimated to be 0.15 for FNHTR and 0.2 for allergic reactions. Conclusions: Factors such as clerical checks at various levels, improvement in blood storage conditions outside blood banks, leukodepletion, better inventory management, careful donor screening, bedside monitoring of transfusion, and documentation of adverse events may decrease transfusion-related adverse events. Better coordination between transfusion specialists and various clinical specialties

  13. Unravelling the Maillard reaction network by multiresponse kinetic modelling

    NARCIS (Netherlands)

    Martins, S.I.F.S.

    2003-01-01

    The Maillard reaction is an important reaction in food industry. It is responsible for the formation of colour and aroma, as well as toxic compounds as the recent discovered acrylamide. The knowledge of kinetic parameters, such as rate constants and activation energy, is necessary to predict its

  14. Nonlinear variational models for reaction and diffusion systems

    International Nuclear Information System (INIS)

    Tanyi, G.E.

    1983-08-01

    There exists a natural metric w.r.t. which the density dependent diffusion operator is harmonic in the sense of Eells and Sampson. A physical corollary of this statement is the property that any two regular points on the orbit of a reaction or diffusion operator can be connected by a path along which the reaction rate is constant. (author)

  15. Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis

    KAUST Repository

    Ibragimov, Akif

    2010-01-01

    This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross, atherogenesis is viewed as an inflammatory spiral with a positive feedback loop involving key cellular and chemical species interacting and reacting within the intimal layer of muscular arteries. The inflammatory spiral is initiated as an instability from a healthy state which is defined to be an equilibrium state devoid of certain key inflammatory markers. Disease initiation is studied through a linear, asymptotic stability analysis of a healthy equilibrium state. Various theorems are proved, giving conditions on system parameters guaranteeing stability of the health state, and a general framework is developed for constructing perturbations from a healthy state that exhibit blow-up, which are interpreted as corresponding to disease initiation. The analysis reveals key features that arterial geometry, antioxidant levels, and the source of inflammatory components (through coupled third-kind boundary conditions or through body sources) play in disease initiation. © 2010 Society for Industrial and Applied Mathematics.

  16. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    Science.gov (United States)

    Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.

    2013-12-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the

  17. Bone-anchored hearing aid implant location in relation to skin reactions.

    NARCIS (Netherlands)

    Faber, H.T.; Wolf, M.J.F. de; Rooy, J.W.J. de; Hol, M.K.S.; Cremers, C.W.R.J.; Mylanus, E.A.M.

    2009-01-01

    OBJECTIVE: To evaluate the effect of implant location and skin thickness on the frequency and degree of adverse skin reactions around the abutment. DESIGN: Retrospective multivariate analysis of implant position related to skin thickness and clinical variables. SETTING: Tertiary referral center.

  18. Age-related accumulation of Maillard reaction products in human articular cartilage collagen

    NARCIS (Netherlands)

    Verzijl, N.; Degroot, J.; Oldehinkel, E.; Bank, R. A.; Thorpe, S. R.; Baynes, J. W.; Bayliss, M. T.; Bijlsma, J. W.; Lafeber, F. P.; TeKoppele, J. M.

    2000-01-01

    Non-enzymic modification of tissue proteins by reducing sugars, the so-called Maillard reaction, is a prominent feature of aging. In articular cartilage, relatively high levels of the advanced glycation end product (AGE) pentosidine accumulate with age. Higher pentosidine levels have been associated

  19. Ares I Reaction Control System Propellant Feedline Decontamination Modeling

    Science.gov (United States)

    Pasch, James J.

    2010-01-01

    The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range

  20. Production and application of therapeutic radioisotopes. Activity on the related nuclear reaction data

    International Nuclear Information System (INIS)

    Tarkanyi, F.

    2002-01-01

    Full text: The Charged Particle Nuclear Data (CPND) Group in the ATOMKI has been involved in measurement, compilation, evaluation and application of nuclear reaction data for more than 15 years. The main field of activity is charged particle induced reactions. The research is mainly focused on non-energy related applications: medical radioisotope production, monitoring the parameters of charged particle beams, thin layer activation to control wear and corrosion. Last years we have started to extend our activities to measurements of fast neutron reaction data and charged particle reaction data related to waste transmutation. The CPND Group itself has extended experimental experience at the Debrecen MGC 20E cyclotron and at other accelerators in collaboration with universities in Hungary or laboratories in Germany (INC, Forschungszentrum Juelich), Belgium (Cyclotron Laboratory, Vrije Universiteit of Brussels), Japan (CYRIC, Tohoku University, Sendai and National Institute of Radiological Sciences, Chiba), Finland (Cyclotron Lab., Abo Akademi, Turku), Czech Republic (Nuclear Research Institute, Rez) and South-Africa (National Accelerator Centre, Faure). Activities in the field of compilation and data evaluation are done in close collaboration with IAEA in the frame of independent projects and of the Nuclear Reaction Data Center Network. Eight scientists (six physicists and two chemists) are contributing to the nuclear data project (most of them only part-time). An important field of the nuclear data activity actually lies in the medical radioisotope production. The members of ATOMKI CPND group are involved in every day radioisotope production of diagnostic radioisotopes for PET and SPECT. The team was also involved in the IAEA-CRP on development of a recommended database for production of diagnostic radioisotopes reactions for nuclear medicine by charged particle induced reactions and presently is engaged in the extension and upgrading of this database. In the field

  1. Wide Temperature Range Kinetics of Elementary Combustion Reactions for Army Models

    National Research Council Canada - National Science Library

    Fontijn, Arthur

    2002-01-01

    The goals of this program are to provide accurate kinetic data on isolated elementary reactions at temperatures relevant to Army combustion models, particularly for propellant combustion dark zones...

  2. Reaction Wheel Disturbance Model Extraction Software, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel disturbances are some of the largest sources of noise on sensitive telescopes. Such wheel-induced mechanical noises are not well characterized....

  3. Reaction Wheel Disturbance Model Extraction Software, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Reaction wheel mechanical noise is one of the largest sources of disturbance forcing on space-based observatories. Such noise arises from mass imbalance, bearing...

  4. Modeling adsorption and reactions of organic molecules at metal surfaces.

    Science.gov (United States)

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  5. DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions.

    Science.gov (United States)

    Liang, Zhaohui; Huang, Jimmy Xiangji; Zeng, Xing; Zhang, Gang

    2016-08-10

    Genomic variations are associated with the metabolism and the occurrence of adverse reactions of many therapeutic agents. The polymorphisms on over 2000 locations of cytochrome P450 enzymes (CYP) due to many factors such as ethnicity, mutations, and inheritance attribute to the diversity of response and side effects of various drugs. The associations of the single nucleotide polymorphisms (SNPs), the internal pharmacokinetic patterns and the vulnerability of specific adverse reactions become one of the research interests of pharmacogenomics. The conventional genomewide association studies (GWAS) mainly focuses on the relation of single or multiple SNPs to a specific risk factors which are a one-to-many relation. However, there are no robust methods to establish a many-to-many network which can combine the direct and indirect associations between multiple SNPs and a serial of events (e.g. adverse reactions, metabolic patterns, prognostic factors etc.). In this paper, we present a novel deep learning model based on generative stochastic networks and hidden Markov chain to classify the observed samples with SNPs on five loci of two genes (CYP2D6 and CYP1A2) respectively to the vulnerable population of 14 types of adverse reactions. A supervised deep learning model is proposed in this study. The revised generative stochastic networks (GSN) model with transited by the hidden Markov chain is used. The data of the training set are collected from clinical observation. The training set is composed of 83 observations of blood samples with the genotypes respectively on CYP2D6*2, *10, *14 and CYP1A2*1C, *1 F. The samples are genotyped by the polymerase chain reaction (PCR) method. A hidden Markov chain is used as the transition operator to simulate the probabilistic distribution. The model can perform learning at lower cost compared to the conventional maximal likelihood method because the transition distribution is conditional on the previous state of the hidden Markov

  6. Atmospheric reaction systems as null-models to identify structural traces of evolution in metabolism.

    Directory of Open Access Journals (Sweden)

    Petter Holme

    Full Text Available The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species. For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.

  7. Chaos and fractals in dynamical models of transport and reaction.

    Science.gov (United States)

    Gaspard, P; Claus, I

    2002-03-15

    This paper contains a discussion of dynamical randomness among the different methods of simulation of a fluid and its characterization by the concept of Kolmogorov-Sinai entropy per unit time. Moreover, a renormalization-group method is presented in order to construct the hydrodynamic and reactive modes of relaxation in chaotic models. The renormalization-group construction allows us to obtain the dispersion relation of these modes, i.e. their damping rate versus the wavenumber. Besides, these modes are characterized by a fractal dimension given in terms of a diffusion coefficient and a Lyapunov exponent.

  8. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  9. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.

    Science.gov (United States)

    Hua, Pei; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-05-15

    A second order kinetic model for simulating chlorine decay in bulk water due to the reaction with dissolved organic matter (DOM) was developed. It takes into account the decreasing reactivity of dissolved organic matter using a variable reaction rate coefficient (VRRC) which decreases with an increasing conversion. The concentration of reducing species is surrogated by the maximum chlorine demand. Temperature dependency, respectively, is described by the Arrhenius-relationship. The accuracy and adequacy of the proposed model to describe chlorine decay in bulk water were evaluated and shown for very different waters and different conditions such as water mixing or rechlorination by applying statistical tests. It is thus very well suited for application in water quality modeling for distribution systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Emotional reactions to involuntary psychiatric hospitalization and stigma-related stress among people with mental illness.

    Science.gov (United States)

    Rüsch, Nicolas; Müller, Mario; Lay, Barbara; Corrigan, Patrick W; Zahn, Roland; Schönenberger, Thekla; Bleiker, Marco; Lengler, Silke; Blank, Christina; Rössler, Wulf

    2014-02-01

    Compulsory admission to psychiatric inpatient treatment can be experienced as disempowering and stigmatizing by people with serious mental illness. However, quantitative studies of stigma-related emotional and cognitive reactions to involuntary hospitalization and their impact on people with mental illness are scarce. Among 186 individuals with serious mental illness and a history of recent involuntary hospitalization, shame and self-contempt as emotional reactions to involuntary hospitalization, the cognitive appraisal of stigma as a stressor, self-stigma, empowerment as well as quality of life and self-esteem were assessed by self-report. Psychiatric symptoms were rated by the Brief Psychiatric Rating Scale. In multiple linear regressions, more self-stigma was predicted independently by higher levels of shame, self-contempt and stigma stress. A greater sense of empowerment was related to lower levels of stigma stress and self-contempt. These findings remained significant after controlling for psychiatric symptoms, diagnosis, age, gender and the number of lifetime involuntary hospitalizations. Increased self-stigma and reduced empowerment in turn predicted poorer quality of life and reduced self-esteem. The negative effect of emotional reactions and stigma stress on quality of life and self-esteem was largely mediated by increased self-stigma and reduced empowerment. Shame and self-contempt as reactions to involuntary hospitalization as well as stigma stress may lead to self-stigma, reduced empowerment and poor quality of life. Emotional and cognitive reactions to coercion may determine its impact more than the quantity of coercive experiences. Interventions to reduce the negative effects of compulsory admissions should address emotional reactions and stigma as a stressor.

  11. Reactions to Cigarette Taxes and Related Messaging: Is the South Different?

    Science.gov (United States)

    Berg, Carla J; Ribisl, Kurt M; Thrasher, James F; Haardörfer, Regine; O'Connor, Jean; Kegler, Michelle C

    2015-09-01

    Given the lag in tobacco control policies in the southeastern US, we examined differences in reactions to tobacco taxes and related messaging among Southeasterners vs. non-Southeasterners. In 2013, a cross-sectional online survey using quota-based sampling was conducted assessing tobacco use, attitudes/knowledge regarding tobacco taxation, and reactions to related messaging (health, youth prevention, economic impact, individual rights/responsibility, morality/religion, hospitality). Of 2501 participants, 36.7% were past 30-day smokers; 26.7% were Southeasterners. Compared to others, Southeasterners more likely believed that their state was in the bottom 20 states in tobacco taxes (p education, being an infrequent church-attender, and being a current smoker (p's hospitality as more persuasive (p < .05) and anti-tobacco tax messaging related to the unfairness of tobacco taxes to smokers (p = .050) less persuasive. Given that Southeasterners are receptive to increased taxation, other factors must contribute to lagging policy and must be addressed.

  12. Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis

    International Nuclear Information System (INIS)

    Haha, M. Ben; Gallucci, E.; Guidoum, A.; Scrivener, K.L.

    2007-01-01

    Scanning Electron Microscopy Image Analysis (SEM-IA) was used to quantify the degree of alkali silica reaction in affected microbars, mortar and concrete prisms. It was found that the degree of reaction gave a unique correlation with the macroscopic expansion for three different aggregates, stored at three temperatures and with two levels of alkali. The relationships found for the concretes and the mortars overlap when normalised by the aggregate content. This relationship seems to be linear up to a critical reaction degree which coincides with crack initiation within the reactive aggregates

  13. Random incidence absorption coefficients of porous absorbers based on local and extended reaction models

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the local reaction models give errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow......Room surfaces have been extensively modeled as locally reacting in room acoustic predictions although such modeling could yield significant errors under certain conditions. Therefore, this study aims to propose a guideline for adopting the local reaction assumption by comparing predicted random...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...

  14. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  15. Reaction plane angle dependence of dihadron azimuthal correlations from a multiphase transport model calculation

    International Nuclear Information System (INIS)

    Li, W.; Zhang, S.; Ma, Y. G.; Cai, X. Z.; Chen, J. H.; Ma, G. L.; Zhong, C.; Huang, H. Z.

    2009-01-01

    Dihadron azimuthal angle correlations relative to the reaction plane have been investigated in Au+Au collisions at √(s NN )=200 GeV using a multiphase transport model (AMPT). Such reaction plane azimuthal-angle-dependent correlations can shed light on the path-length effect of energy loss of high-transverse-momentum particles propagating through a hot dense medium. The correlations vary with the trigger particle azimuthal angle with respect to the reaction plane direction, φ s =φ T -Ψ EP , which is consistent with the experimental observation by the STAR Collaboration. The dihadron azimuthal angle correlation functions on the away side of the trigger particle present a distinct evolution from a single-peak to a broad, possibly double-peak structure when the trigger particle direction goes from in-plane to out-of-plane with the reaction plane. The away-side angular correlation functions are asymmetric with respect to the back-to-back direction in some regions of φ s , which could provide insight into the testing v 1 method for reconstructing the reaction plane. In addition, both the root-mean-square width (W rms ) of the away-side correlation distribution and the splitting parameter (D) between the away-side double peaks increase slightly with φ s , and the average transverse momentum of away-side-associated hadrons shows a strong φ s dependence. Our results indicate that a strong parton cascade and resultant energy loss could play an important role in the appearance of a double-peak structure in the dihadron azimuthal angular correlation function on the away side of the trigger particle.

  16. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch

    Science.gov (United States)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri

    2015-12-01

    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  17. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems.

    Science.gov (United States)

    Zhang, Wei; Lai, Wenzhen; Cao, Rui

    2017-02-22

    Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.

  18. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multizone Reaction Kinetics: Modeling of Decarburization

    Science.gov (United States)

    Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart

    2018-03-01

    In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.

  19. Temperature effects on multiphase reactions of organic molecular markers: A modeling study

    Science.gov (United States)

    Pratap, Vikram; Chen, Ying; Yao, Guangming; Nakao, Shunsuke

    2018-04-01

    Various molecular markers are used in source apportionment studies. In early studies, molecular markers were assumed to be inert. However, recent studies suggest that molecular markers can decay rapidly through multiphase reactions, which makes interpretation of marker measurements challenging. This study presents a simplified model to account for the effects of temperature and relative humidity on the lifetime of molecular markers through a shift in gas-particle partitioning as well as a change in viscosity of the condensed phase. As a model case, this study examines the stability of levoglucosan, a key marker species of biomass burning, over a wide temperature range relevant to summertime and wintertime. Despite the importance of wood combustion for space heating in winter, the lifetime of levoglucosan in wintertime is not well understood. The model predicts that in low-temperature conditions, levoglucosan predominantly remains in the particle phase, and therefore its loss due to gas-phase oxidation reactions is significantly reduced. Furthermore, the movement of the levoglucosan from the bulk of the particle to the particle surface is reduced due to low diffusivity in the semi-solid state. The simplified model developed in this study reasonably reproduces upper and lower bounds of the lifetime of levoglucosan investigated in previous studies. The model results show that the levoglucosan depletion after seven days reduces significantly from ∼98% at 25 °C to 1 week) even at 60% relative humidity irrespective of the assumed fragility parameter D that controls estimated diffusivity. The model shows that lifetime of an organic molecular marker strongly depends on assumed D especially when a semi-volatile marker is in semi-solid organic aerosol.

  20. Bone-anchored hearing aid implant location in relation to skin reactions.

    Science.gov (United States)

    Faber, Hubert T; de Wolf, Maarten J F; de Rooy, Jacky W J; Hol, Myrthe K S; Cremers, Cor W R J; Mylanus, Emmanuel A M

    2009-08-01

    To evaluate the effect of implant location and skin thickness on the frequency and degree of adverse skin reactions around the abutment. Retrospective multivariate analysis of implant position related to skin thickness and clinical variables. Tertiary referral center. Random sample of 248 patients with bone-anchored hearing aids. Bone-anchored hearing aid implant placement by means of the linear incision technique. Type and number of skin reactions and implant loss. The mean (SD) distance from the external auditory ear canal to implant was 48.8 (8.0) mm (range, 29-84 mm). The mean skin thickness was 5.5 (1.9) mm. Severe skin reactions (Holgers classification, 2-4) were seen in 46 of the 248 patients (18.5%). Implant loss occurred in 4 patients (1.6%). Three implants were lost owing to failed osseointegration (1.3%), and another implant was removed because of deterioration of cochlear function (0.9%). No implant was lost as a result of infection. Implant location and skin thickness were not correlated with implant loss or the frequency or degree of adverse skin reactions around the abutment.

  1. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  2. Kinetic modeling for thermal dehydration of ferrous oxalate dihydrate polymorphs: a combined model for induction period-surface reaction-phase boundary reaction.

    Science.gov (United States)

    Ogasawara, Haruka; Koga, Nobuyoshi

    2014-04-03

    In this study, ferrous oxalate dihydrate polymorph particles, α- and β-phases, with square bipyramidal and quadratic prismatic shapes, respectively, were synthesized. Thermal dehydration of the samples was subjected to kinetic study as a typical reaction that indicates a significant induction period and a sigmoidal mass-loss behavior. On the basis of the formal kinetic analysis of the mass-loss traces recorded under isothermal, nonisothermal, and constant transformation rate conditions and the morphological observations of the surface textures of the partially reacted sample particles, a combined kinetic model for the induction period-surface reaction-phase boundary reaction was developed. The sigmoidal mass-loss behavior after the significant induction period under isothermal conditions was satisfactorily simulated by the combined kinetic model. The kinetic parameters for the component processes of induction period, surface reaction, and phase boundary reaction were separately determined from the kinetic simulation. The differences in the kinetic behaviors of the induction period and the phase boundary reaction between α- and β-phase samples were well described by the kinetic parameters. The applicability of the combined kinetic model to practical systems was demonstrated through characterizing the physicogeometrical kinetics of the thermal dehydration of ferrous oxalate dihydrate polymorphs.

  3. Modeling of Chemical Reactions in Afterburning for the Reduction of N2O

    DEFF Research Database (Denmark)

    Gustavsson, Lennart; Glarborg, Peter; Leckner, Bo

    1996-01-01

    Full scale tests in a 12 MW fluidized bed combustor on reduction of N2O by secondary fuel injection are analyzed in terms a model that involves a detailed reaction mechanism for the gas phase chemistry as well as a description of gas-solid reactions.......Full scale tests in a 12 MW fluidized bed combustor on reduction of N2O by secondary fuel injection are analyzed in terms a model that involves a detailed reaction mechanism for the gas phase chemistry as well as a description of gas-solid reactions....

  4. Geometrical Models of the Phase Space Structures Governing Reaction Dynamics

    Science.gov (United States)

    2009-08-01

    of Mathematical Sciences . Springer, Berlin. [Child & Pollak(1980)] Child, M. S. & Pollak, E. (1980). Analytical reaction dynamics: Origin and implica...state region, i.e. the phase space point at which a trajectory enters the transition state region can be mapped analytically to the phase space point...Neishtadt, A. I. (1988). Mathematical aspects of classical and celestial mechanics. In V. I. Arnol’d, editor, Dynamical Systems III, volume 3 of Encyclopaedia

  5. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  6. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-01-01

    Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist

  7. The Figure 8 Model of International Relations

    National Research Council Canada - National Science Library

    Sibayan, Jerome T

    2008-01-01

    .... The Figure 8 Model is presented first in a Cartesian format and then in geometrical form. This model is an intuitive idea based on a particular reading of history rather than a new international relations theory...

  8. Mechanism for cyclization reaction by clavaminic acid synthase. Insights from modeling studies.

    Science.gov (United States)

    Borowski, Tomasz; de Marothy, Sven; Broclawik, Ewa; Schofield, Christopher J; Siegbahn, Per E M

    2007-03-27

    The mechanism of the oxidative cyclization reaction catalyzed by clavaminic acid synthase (CAS) was studied in silico. First, a classical molecular dynamics (MD) simulation was performed to obtain a realistic structure of the CAS-Fe(IV)=O-succinate-substrate complex; then potential of mean force (PMF) was calculated to assess the feasibility of the beta-lactam ring, more specifically its C4' corner, approaching the oxo atom. Based on the MD structure, a relatively large model of the active site region was selected and used in the B3LYP investigation of the reaction mechanism. The computational results suggest that once the oxoferryl species is formed, the oxidative cyclization catalyzed by CAS most likely involves either a mechanism involving C4'(S)-H bond cleavage of the monocyclic beta-lactam ring, or a biosynthetically unprecedented mechanism comprising (1) oxidation of the hydroxyl group of PCA to an O-radical, (2) retro-aldol-like decomposition of the O-radical to an aldehyde and a C-centered radical, which is stabilized by the captodative effect, (3) abstraction of a hydrogen atom from the C4'(S) position of the C-centered radical by the Fe(III)-OH species yielding an azomethine ylide, and (4) 1,3-dipolar cycloaddition to the ylide with aldehyde acting as a dipolarophile. Precedent for the new proposed mechanism comes from the reported synthesis of oxapenams via 1,3-dipolar cycloaddition reactions of aldehydes and ketones.

  9. Existing Model Metrics and Relations to Model Quality

    OpenAIRE

    Mohagheghi, Parastoo; Dehlen, Vegard

    2009-01-01

    This paper presents quality goals for models and provides a state-of-the-art analysis regarding model metrics. While model-based software development often requires assessing the quality of models at different abstraction and precision levels and developed for multiple purposes, existing work on model metrics do not reflect this need. Model size metrics are descriptive and may be used for comparing models but their relation to model quality is not welldefined. Code metrics are proposed to be ...

  10. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    OpenAIRE

    Cobbs, Gary

    2012-01-01

    Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most pote...

  11. Modelling of the spallation reaction: analysis and testing of nuclear models

    International Nuclear Information System (INIS)

    Toccoli, C.

    2000-01-01

    The spallation reaction is considered as a 2-step process. First a very quick stage (10 -22 , 10 -29 s) which corresponds to the individual interaction between the incident projectile and nucleons, this interaction is followed by a series of nucleon-nucleon collisions (intranuclear cascade) during which fast particles are emitted, the nucleus is left in a strongly excited level. Secondly a slower stage (10 -18 , 10 -19 s) during which the nucleus is expected to de-excite completely. This de-excitation is performed by evaporation of light particles (n, p, d, t, 3 He, 4 He) or/and fission or/and fragmentation. The HETC code has been designed to simulate spallation reactions, this simulation is based on the 2-steps process and on several models of intranuclear cascades (Bertini model, Cugnon model, Helder Duarte model), the evaporation model relies on the statistical theory of Weiskopf-Ewing. The purpose of this work is to evaluate the ability of the HETC code to predict experimental results. A methodology about the comparison of relevant experimental data with results of calculation is presented and a preliminary estimation of the systematic error of the HETC code is proposed. The main problem of cascade models originates in the difficulty of simulating inelastic nucleon-nucleon collisions, the emission of pions is over-estimated and corresponding differential spectra are badly reproduced. The inaccuracy of cascade models has a great impact to determine the excited level of the nucleus at the end of the first step and indirectly on the distribution of final residual nuclei. The test of the evaporation model has shown that the emission of high energy light particles is under-estimated. (A.C.)

  12. Reaction time inconsistency in a spatial stroop task: age-related differences through childhood and adulthood.

    Science.gov (United States)

    Williams, Benjamin R; Strauss, Esther H; Hultsch, David F; Hunter, Michael A

    2007-07-01

    Age-related differences in inconsistency of reaction time (RT) across the life span were examined on a task with differing levels of demand on executive control. A total of 546 participants, aged 5 to 76 years, completed a spatial Stroop task that permitted observations under three conditions (congruent, incongruent, and neutral) according to the correspondence between the required response (based on stimulus direction) and stimulus location. An interference effect was observed across all ages. Analyses of neutral condition data replicated previous research demonstrating RT inconsistency follows a U-shaped developmental curve across the life span. The relationship between age and inconsistency, however, depended on condition: inconsistency in the congruent condition was higher than inconsistency in both the neutral and incongruent conditions across middle-aged groups. Reaction time inconsistency may reflect processing efficiency that is maximal in young adulthood and may also be sensitive to fluctuations in performance that reflect momentarily highly efficient responding.

  13. A Gibbs Energy Minimization Approach for Modeling of Chemical Reactions in a Basic Oxygen Furnace

    Science.gov (United States)

    Kruskopf, Ari; Visuri, Ville-Valtteri

    2017-12-01

    In modern steelmaking, the decarburization of hot metal is converted into steel primarily in converter processes, such as the basic oxygen furnace. The objective of this work was to develop a new mathematical model for top blown steel converter, which accounts for the complex reaction equilibria in the impact zone, also known as the hot spot, as well as the associated mass and heat transport. An in-house computer code of the model has been developed in Matlab. The main assumption of the model is that all reactions take place in a specified reaction zone. The mass transfer between the reaction volume, bulk slag, and metal determine the reaction rates for the species. The thermodynamic equilibrium is calculated using the partitioning of Gibbs energy (PGE) method. The activity model for the liquid metal is the unified interaction parameter model and for the liquid slag the modified quasichemical model (MQM). The MQM was validated by calculating iso-activity lines for the liquid slag components. The PGE method together with the MQM was validated by calculating liquidus lines for solid components. The results were compared with measurements from literature. The full chemical reaction model was validated by comparing the metal and slag compositions to measurements from industrial scale converter. The predictions were found to be in good agreement with the measured values. Furthermore, the accuracy of the model was found to compare favorably with the models proposed in the literature. The real-time capability of the proposed model was confirmed in test calculations.

  14. Structure-reactivity modeling using mixture-based representation of chemical reactions.

    Science.gov (United States)

    Polishchuk, Pavel; Madzhidov, Timur; Gimadiev, Timur; Bodrov, Andrey; Nugmanov, Ramil; Varnek, Alexandre

    2017-09-01

    We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.

  15. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    Science.gov (United States)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-09-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst-Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants. PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  16. Detection of Adverse Reaction to Drugs in Elderly Patients through Predictive Modeling

    Directory of Open Access Journals (Sweden)

    Rafael San-Miguel Carrasco

    2016-03-01

    Full Text Available Geriatrics Medicine constitutes a clinical research field in which data analytics, particularly predictive modeling, can deliver compelling, reliable and long-lasting benefits, as well as non-intuitive clinical insights and net new knowledge. The research work described in this paper leverages predictive modeling to uncover new insights related to adverse reaction to drugs in elderly patients. The differentiation factor that sets this research exercise apart from traditional clinical research is the fact that it was not designed by formulating a particular hypothesis to be validated. Instead, it was data-centric, with data being mined to discover relationships or correlations among variables. Regression techniques were systematically applied to data through multiple iterations and under different configurations. The obtained results after the process was completed are explained and discussed next.

  17. Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Marco [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Melke, Julia, E-mail: julia.melke@gmail.co [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gerteisen, Dietmar [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2011-04-15

    Highlights: A DEFC model considering the mixed potential formation at cathode and anode. The low cell voltage at open circuit is due to the parasitic reaction of ethanol and oxygen. Under load, only the parasitic oxidation of ethanol is significant. Inhibiting the parasitic reactions can approximately double the current density. - Abstract: In this work a one-dimensional mathematical model of a direct ethanol fuel cell (DEFC) is presented. The electrochemical oxidation of ethanol in the catalyst layers is described by several reaction steps leading to surface coverage with adsorbed intermediates (CH{sub 3}CO, CO, CH{sub 3} and OH) and to the final products acetaldehyde, acetic acid and CO{sub 2}. A bifunctional reaction mechanism is assumed for the activation of water on a binary catalyst favouring the further oxidation of adsorbates blocking active catalyst sites. The chemical reactions are highly coupled with the charge and reactant transport. The model accounts for crossover of the reactants through the membrane leading to the phenomenon of cathode and anode mixed potentials due to the parasitic oxidation and reduction of ethanol and oxygen, respectively. Polarisation curves of a DEFC were recorded for various ethanol feed concentrations and were used as reference data for the simulation. Based on one set of model parameters the characteristic of electronic and protonic potential, the relative surface coverage and the parasitic current densities in the catalyst layers were studied.

  18. Reaction Automata

    OpenAIRE

    Okubo, Fumiya; Kobayashi, Satoshi; Yokomori, Takashi

    2011-01-01

    Reaction systems are a formal model that has been introduced to investigate the interactive behaviors of biochemical reactions. Based on the formal framework of reaction systems, we propose new computing models called reaction automata that feature (string) language acceptors with multiset manipulation as a computing mechanism, and show that reaction automata are computationally Turing universal. Further, some subclasses of reaction automata with space complexity are investigated and their la...

  19. Dynamic Modeling of LD Converter Steelmaking: Reaction Modeling Using Gibbs' Free Energy Minimization

    Science.gov (United States)

    Sarkar, Rahul; Gupta, Pramod; Basu, Somnath; Ballal, Nidambur Bharath

    2015-04-01

    Slag-metal emulsion plays an important role in the oxidation kinetics of metalloids in oxygen steelmaking. The importance of droplet generation rate, droplet size, and its residence time in the slag-metal emulsion on the overall reaction kinetics has become evident in recent times. Residence times of the droplets are strongly dependent on the decarburization rate, the CO bubbles giving a buoyant force to the droplets. The present work aims at developing a mathematical model for predicting the composition evolutions of the slag and the metal phases as the blow proceeds in an LD converter. The process dynamics are modeled by dividing the LD convertor into three separate continuous stirred tank reactors. Oxidation reactions are assumed to be primarily taking place at the interface between the slag and the metal phases in the emulsion. Among the different mass transfer and reaction steps controlling the kinetics, the mass transfer of FeO in the slag phase and that of the metalloids within the metal droplet are assumed to be rate-controlling. For a Fe-C-X (X = Mn, Si etc.) droplet, simultaneous removal of elements have been modeled by Gibbs' free energy minimization at the slag-metal interface. Effects of droplet size, mass transfer coefficient, and initial carbon content on the mean residence time of metal droplets in the slag-metal emulsion have also been identified. Mixing in the metal phase is simulated in terms of metal exchange rate and the reactor weight ratio between the upper and the lower parts of the bath.

  20. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

    Science.gov (United States)

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-01-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086

  1. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    Science.gov (United States)

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  2. Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction

    DEFF Research Database (Denmark)

    Björketun, Mårten E.; Tripkovic, Vladimir; Skúlason, Egill

    2013-01-01

    A scheme for evaluating symmetry factors of elementary electrode reactions using a density functional theory (DFT) based model of the electrochemical double layer is presented. As an illustration, the symmetry factor is determined for hydrogen adsorption via the electrochemical Volmer reaction...

  3. Modeling Proton- and Light Ion-Induced Reactions at Low Energies in the MARS15 Code

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gudima, K. K. [National Academy of Sciences, Cisineu (Moldova)

    2015-04-25

    An implementation of both ALICE code and TENDL evaluated nuclear data library in order to describe nuclear reactions induced by low-energy projectiles in the Monte Carlo code MARS15 is presented. Comparisons between results of modeling and experimental data on reaction cross sections and secondary particle distributions are shown.

  4. Testing an explanatory model of nurses' intention to report adverse drug reactions in hospital settings.

    Science.gov (United States)

    Angelis, Alessia De; Pancani, Luca; Steca, Patrizia; Colaceci, Sofia; Giusti, Angela; Tibaldi, Laura; Alvaro, Rosaria; Ausili, Davide; Vellone, Ercole

    2017-05-01

    To test an explanatory model of nurses' intention to report adverse drug reactions in hospital settings, based on the theory of planned behaviour. Under-reporting of adverse drug reactions is an important problem among nurses. A cross-sectional design was used. Data were collected with the adverse drug reporting nurses' questionnaire. Confirmatory factor analysis was performed to test the factor validity of the adverse drug reporting nurses' questionnaire, and structural equation modelling was used to test the explanatory model. The convenience sample comprised 500 Italian hospital nurses (mean age = 43.52). Confirmatory factor analysis supported the factor validity of the adverse drug reporting nurses' questionnaire. The structural equation modelling showed a good fit with the data. Nurses' intention to report adverse drug reactions was significantly predicted by attitudes, subjective norms and perceived behavioural control (R² = 0.16). The theory of planned behaviour effectively explained the mechanisms behind nurses' intention to report adverse drug reactions, showing how several factors come into play. In a scenario of organisational empowerment towards adverse drug reaction reporting, the major predictors of the intention to report are support for the decision to report adverse drug reactions from other health care practitioners, perceptions about the value of adverse drug reaction reporting and nurses' favourable self-assessment of their adverse drug reaction reporting skills. © 2017 John Wiley & Sons Ltd.

  5. New tools in modulating Maillard reaction from model systems to food

    NARCIS (Netherlands)

    Troise, A.D.

    2015-01-01

    New tools in modulating Maillard reaction from model systems to food
    The Maillard reaction (MR) supervises the final quality of foods and occupies a prominent place in food science. The first stable compounds, the Amadori rearrangement products

  6. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    Science.gov (United States)

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Modeling thermal spike driven reactions at low temperature and application to zirconium carbide radiation damage

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.

    2017-11-01

    The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.

  8. A Simple Model to Access Equilibrium Constants of Reactions Type A ⇋ B Using Monte Carlo Simulation.

    Directory of Open Access Journals (Sweden)

    R. R. Farias, L. A. M. Cardoso, N. M. Oliveira Neto

    2011-01-01

    Full Text Available A simple theoretical model to describe equilibrium properties of homogeneous re-versible chemical reactions is proposed and applied to an A ⇋ B type reaction. Forthis purpose the equilibrium properties are analyzed by usual Monte Carlo simula-tion. It is shown that the equilibrium constant (Ke for this kind of reaction exhibitsdistinct characteristics for Eba 1, where Eba is the ratio be-tween the reverse and forward activation energies. For Eba 1 and increase(decrease the temperature our results recover the principle of Le Chˆtelier applied ato temperature effects. The special and interesting case is obtained for Eba = 1 sinceKe = 1 for all range of temperature. Another important parameter in our analysisis θA , defined as temperature measured with relation the activation energy of theforward reaction. For fixed values of Eba and for θA ≫ 1 the equilibrium constantapproaches 1, showing that all transitions are equally likely, no matter the differencein the energy barriers. The data obtained in our simulations show the well knownrelationship between Ke , Eb , Ea and kB T . Finally we argue that this theoreticalmodel can be applied to a family of homogeneous chemical reactions characterizedby the same Eba and θA showing the broad application of this stochastic model tostudy chemical reactions. Some of these results will be discussed in terms of collisiontheory.

  9. A Simple Formula for Local Burnup and Isotope Distributions Based on Approximately Constant Relative Reaction Rate

    Directory of Open Access Journals (Sweden)

    Cenxi Yuan

    2016-01-01

    Full Text Available A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of 235U, 238U, and 239Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC calculation. Then the present formula independently gives very similar results to the MC calculation from the starting to high burnup level but takes just a few minutes. The relative reaction rates are found to be almost independent of the radius (except (n,γ of  238U and the burnup, providing a solid background for the present formula. A more realistic examination is also performed when the fuel rods locate in an assembly. A combination of the present formula and the MC calculation is expected to have a nice balance between the numerical accuracy and time consumption.

  10. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  11. Becoming the denigrated other: Group relations perspectives on initial reactions to a bipolar disorder diagnosis

    Directory of Open Access Journals (Sweden)

    Susan G. Goldberg

    2012-09-01

    Full Text Available The initial reactions to a bipolar disorder diagnosis of research participants in a small, qualitative study consisted of astonishment, dread of being mad, and extremely negative associations. All had prior mental health diagnoses, including episodes of severe depression (all but one and alcoholism (one. All participants reported mental health histories prediagnosis and most had spent years contending with mental health labels, medications, symptoms, and hospitalizations. In addition, most participants were highly educated health professionals, quite familiar with the behaviors that the medical system considered to comprise bipolar disorder. Their negative associations to the initial bipolar disorder diagnosis, therefore, appeared inconsistent with their mental health histories and professional knowledge. This article contextualizes these initial reactions of shock and distress and proposes interpretations of these findings from societal and psychodynamic group relations perspectives. The participants’ initial negative reactions are conceptualized as involving the terror of being transported from the group of normal people into the group of mad or crazy people, i.e., people with mental illnesses, who may constitute a societal denigrated other.

  12. Valproate-related erythrodermia with reversible encephalopathy: a rare but serious adverse reaction, case report.

    Science.gov (United States)

    Rener-Primec, Zvonka; Balkovec, Valerija

    2014-01-01

    Cutaneous adverse reactions to antiepileptic drugs (AEDs) are usually easily recognized in daily clinical practice when they manifest as a morbilliform or maculopapular rash within the first few weeks after introducing an AED. Valproate (VPA)-induced encephalopathy is a rare but serious complication, presenting with impaired consciousness, with or without hyperammonemia, normal liver enzymes, and normal serum level of VPA. A 2-year-old Caucasian boy with severe developmental disability and pharmacoresistant epilepsy presented with fever, generalized erythrodermia, and encephalopathy, which resolved after discontinuation of valproate. Sodium valproate (30 mg/kg/day) was introduced 5 months previously, as the third drug in combination with vigabatrin and levetiracetam, due to frequent daily seizures. The clinical condition of generalized erythrodermia and encephalopathy was recognized by the treating physician as a possible adverse reaction to VPA: with the Naranjo scale it was probably associated with VPA (six points) and possibly associated with vigabatrin and levetiracetam (three and two points, respectively). After valproate withdrawal, the patient recovered completely. This case is of interest because erythrodermia was a clue to the recognition of valproate-related adverse reaction with severe central nervous system involvement without hyperammonemia and with normal liver enzymes--a very rare occurrence.

  13. The Sugar Model: Autocatalytic Activity of the Triose-Ammonia Reaction

    Science.gov (United States)

    Weber, Arthur L.

    2006-01-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose-ammonia reaction product on the kinetics of a second identical triose-ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  14. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations

    DEFF Research Database (Denmark)

    Skulason, Egill; Tripkovic, Vladimir; Björketun, Mårten

    2010-01-01

    Density functional theory calculations have been performed for the three elementary steps―Tafel, Heyrovsky, and Volmer―involved in the hydrogen oxidation reaction (HOR) and its reverse, the hydrogen evolution reaction (HER). For the Pt(111) surface a detailed model consisting of a negatively...... charged Pt(111) slab and solvated protons in up to three water bilayers is considered and reaction energies and activation barriers are determined by using a newly developed computational scheme where the potential can be kept constant during a charge transfer reaction. We determine the rate limiting...

  15. A kinetic reaction model for biomass pyrolysis processes in Aspen Plus

    International Nuclear Information System (INIS)

    Peters, Jens F.; Banks, Scott W.; Bridgwater, Anthony V.; Dufour, Javier

    2017-01-01

    Highlights: • Predictive kinetic reaction model applicable to any lignocellulosic feedstock. • Calculates pyrolysis yields and product composition as function of reactor conditions. • Detailed modelling of product composition (33 model compounds for the bio-oil). • Good agreement with literature regarding yield curves and product composition. • Successful validation with pyrolysis experiments in bench scale fast pyrolysis rig. - Abstract: This paper presents a novel kinetic reaction model for biomass pyrolysis processes. The model is based on the three main building blocks of lignocellulosic biomass, cellulose, hemicellulose and lignin and can be readily implemented in Aspen Plus and easily adapted to other process simulation software packages. It uses a set of 149 individual reactions that represent the volatilization, decomposition and recomposition processes of biomass pyrolysis. A linear regression algorithm accounts for the secondary pyrolysis reactions, thus allowing the calculation of slow and intermediate pyrolysis reactions. The bio-oil is modelled with a high level of detail, using up to 33 model compounds, which allows for a comprehensive estimation of the properties of the bio-oil and the prediction of further upgrading reactions. After showing good agreement with existing literature data, our own pyrolysis experiments are reported for validating the reaction model. A beech wood feedstock is subjected to pyrolysis under well-defined conditions at different temperatures and the product yields and compositions are determined. Reproducing the experimental pyrolysis runs with the simulation model, a high coincidence is found for the obtained fraction yields (bio-oil, char and gas), for the water content and for the elemental composition of the pyrolysis products. The kinetic reaction model is found to be suited for predicting pyrolysis yields and product composition for any lignocellulosic biomass feedstock under typical pyrolysis conditions

  16. Attractor for a Reaction-Diffusion System Modeling Cancer Network

    Directory of Open Access Journals (Sweden)

    Xueyong Chen

    2014-01-01

    Full Text Available A reaction-diffusion cancer network regulated by microRNA is considered in this paper. We study the asymptotic behavior of solution and show the existence of global uniformly bounded solution to the system in a bounded domain Ω⊂Rn. Some estimates and asymptotic compactness of the solutions are proved. As a result, we establish the existence of the global attractor in L2(Ω×L2(Ω and prove that the solution converges to stable steady states. These results can help to understand the dynamical character of cancer network and propose a new insight to study the mechanism of cancer. In the end, the numerical simulation shows that the analytical results agree with numerical simulation.

  17. Modeling the formation and reactions of benzene metabolites.

    Science.gov (United States)

    Golding, Bernard T; Barnes, Martine L; Bleasdale, Christine; Henderson, Alistair P; Jiang, Dong; Li, Xin; Mutlu, Esra; Petty, Hannah J; Sadeghi, Majid M

    2010-03-19

    One or more of the muconaldehyde isomers is a putative product of benzene metabolism. As muconaldehydes are highly reactive dienals and potentially mutagenic they might be relevant to the carcinogenicity of benzene. Muconaldehydes may be derived through the action of a cytochrome P450 mono-oxygenase on benzene oxide-oxepin, which are established metabolites of benzene. Oxidation of benzene oxide-oxepin either by the one-electron oxidant cerium(IV) ammonium nitrate (CAN) or by iron(III) tris(1,10-phenanthroline) hexafluorophosphate in acetone at -78 degrees C or acetonitrile at -40 degrees C gave (E,Z)-muconaldehyde, which was a single diastereoisomer according to analysis by (1)H NMR spectroscopy. Reaction of toluene-1,2-oxide/2-methyloxepin with CAN gave (2E,4Z)-6-oxo-hepta-2,4-dienal. Similarly, the action of CAN on 1,6-dimethylbenzene oxide-2,7-dimethyloxepin gave (3Z,5E)-octa-3,5-diene-2,7-dione. In vivo, benzene oxide-oxepin could suffer one-electron oxidation by cytochrome P450 mono-oxygenase giving (E,Z)-muconaldehyde. The observations presented may be relevant to the toxicology of benzene oxide-oxepin and other arene oxide-oxepins as we have previously shown that (E,Z)-muconaldehyde, analogously to (Z,Z)-muconaldehyde, affords pyrrole adducts with the exocyclic amino groups of the DNA bases adenine and guanine. Independent of their possible toxicological significance, the experiments described provide preparatively useful routes to (E,Z)-muconaldehyde and its congeners. Methods are also described for the trapping and analysis of reactive benzene metabolites, e.g. using the Diels-Alder reaction with the dienophile 4-phenyl-1,2,4-triazoline-3,5-dione to trap arene oxides and with the diene 1,3-diphenylisobenzofuran to trap enals. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  18. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process

    Directory of Open Access Journals (Sweden)

    Jennifer A Flegg

    2015-09-01

    Full Text Available Over the last thirty years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e. capillary sprout growth has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made towards the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  19. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process.

    Science.gov (United States)

    Flegg, Jennifer A; Menon, Shakti N; Maini, Philip K; McElwain, D L Sean

    2015-01-01

    Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

  20. Reaction of the residents to nuclear related policies: in a risk perception perspective

    International Nuclear Information System (INIS)

    Cho, S. K.

    2001-01-01

    In general, most of the nuclear related policies are discussed at governmental level. Siting nuclear related facilities policies is the state as this. The government, as the single decision-maker, tends to decide all procedures from policy drafting, decision making to implementation. That is to say, the government has been opting for DAD(Decide-Announce-Defend) measure. This resulted in many forms of discord because the government overlooked the importance of sufficient communication with resident or the public. However, the precondition for promoting nuclear related policies is public acceptance. Meanwhile, the public including resident fully understand the necessity of nuclear facilities but do not agree with the idea of having them in their residential area. Therefore, the research focuses on identifying the affecting factors toward reaction of the resident derived from previous studies. It also aims to lay the foundation for devising effective communication strategies between the government and the public. The result of case study, it was found that these factors-trust, participation and compensative-have interacted to affect resident's reaction. Ultimately, the government must recognize the residents as decision-maker so as to gain the PA(Public Acceptance). It also necessary to create better decision making processes by substantial participation, reasonable compensation and trust are essential first steps toward improving the situation

  1. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    Science.gov (United States)

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  2. Analyzing Reaction Rates with the Distortion/Interaction‐Activation Strain Model

    Science.gov (United States)

    2017-01-01

    Abstract The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. PMID:28447369

  3. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model.

    Science.gov (United States)

    Bickelhaupt, F Matthias; Houk, Kendall N

    2017-08-14

    The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems.

    Science.gov (United States)

    Fisher, Ian; Kastl, George; Sathasivan, Arumugam

    2017-11-15

    Accurate modelling of chlorine concentrations throughout a drinking water system needs sound mathematical descriptions of decay mechanisms in bulk water and at pipe walls. Wall-reaction rates along pipelines in three different systems were calculated from differences between field chlorine profiles and accurately modelled bulk decay. Lined pipes with sufficiently large diameters (>500 mm) and higher chlorine concentrations (>0.5 mg/L) had negligible wall-decay rates, compared with bulk-decay rates. Further downstream, wall-reaction rate consistently increased (peaking around 0.15 mg/dm 2 /h) as chlorine concentration decreased, until mass-transport to the wall was controlling wall reaction. These results contradict wall-reaction models, including those incorporated in the EPANET software, which assume wall decay is of either zero-order (constant decay rate) or first-order (wall-decay rate reduces with chlorine concentration). Instead, results are consistent with facilitation of the wall reaction by biofilm activity, rather than surficial chemical reactions. A new model of wall reaction combines the effect of biofilm activity moderated by chlorine concentration and mass-transport limitation. This wall reaction model, with an accurate bulk chlorine decay model, is essential for sufficiently accurate prediction of chlorine residuals towards the end of distribution systems and therefore control of microbial contamination. Implementing this model in EPANET-MSX (or similar) software enables the accurate chlorine modelling required for improving disinfection strategies in drinking water networks. New insight into the effect of chlorine on biofilm can also assist in controlling biofilm to maintain chlorine residuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems.

    Science.gov (United States)

    Hou, Li; Xie, Jianchun; Zhao, Jian; Zhao, Mengyao; Fan, Mengdie; Xiao, Qunfei; Liang, Jingjing; Chen, Feng

    2017-10-01

    To explore initial Maillard reaction pathways and mechanisms for maximal formation of meaty flavors in heated cysteine-xylose-glycine systems, model reactions with synthesized initial Maillard intermediates, Gly-Amadori, TTCA (2-threityl-thiazolidine-4-carboxylic acids) and Cys-Amadori, were investigated. Relative relativities were characterized by spectrophotometrically monitoring the development of colorless degradation intermediates and browning reaction products. Aroma compounds formed were determined by solid-phase microextraction combined with GC-MS and GC-olfactometry. Gly-Amadori showed the fastest reaction followed by Cys-Amadori then TTCA. Free glycine accelerated reaction of TTCA, whereas cysteine inhibited that of Gly-Amadori due to association forming relatively stable thiazolidines. Cys-Amadori/Gly had the highest reactivity in development of both meaty flavors and brown products. TTCA/Gly favored yielding meaty flavors, whereas Gly-Amadori/Cys favored generation of brown products. Conclusively, initial formation of TTCA and pathway involving TTCA with glycine were more applicable to efficiently produce processed-meat flavorings in a cysteine-xylose-glycine system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The PLP cofactor: lessons from studies on model reactions.

    Science.gov (United States)

    Richard, John P; Amyes, Tina L; Crugeiras, Juan; Rios, Ana

    2011-11-01

    Experimental probes of the acidity of weak carbon acids have been developed and used to determine the carbon acid pK(a)s of glycine, glycine derivatives and iminium ion adducts of glycine to the carbonyl group, including 5'-deoxypyridoxal (DPL). The high reactivity of the DPL-stabilized glycyl carbanion towards nucleophilic addition to both DPL and the glycine-DPL iminium ion favors the formation of Claisen condensation products at enzyme active sites. The formation of the iminium ion between glycine and DPL is accompanied by a 12-unit decrease in the pK(a) of 29 for glycine. The complicated effects of formation of glycine iminium ions to DPL and other aromatic and aliphatic aldehydes and ketones on carbon acid pK(a) are discussed. These data provide insight into the contribution of the individual pyridine ring substituents to the catalytic efficiency of DPL. It is suggested that the 5'-phosphodianion group of PLP may play an important role in enzymatic catalysis of carbon deprotonation by providing up to 12 kcal/mol of binding energy that is utilized to stabilize the transition state for the enzymatic reaction. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A simple recipe for modeling reaction-rate in flows with turbulent-combustion

    Science.gov (United States)

    Girimaji, Sharath S.

    1991-01-01

    A computationally viable scheme to account for chemical reaction in turbulent flows is presented. The multivariate beta-pdf model for multiple scalar mixing forms the basis of this scheme. Using the model scalar joint pdf and a general form of the instantaneous reaction-rate, the unclosed chemical reaction terms are expressed as simple functions of scalar means and the turbulent scalar energy. The calculation procedure requires that the mean scalar equations and only one other transport equation - for the turbulent scalar energy - be solved.

  8. Consumers’ health-related motive orientations and reactions to claims about dietary calcium.

    Science.gov (United States)

    Hoefkens, Christine; Verbeke, Wim

    2013-01-10

    Health claims may contribute to better informed and healthier food choices and to improved industrial competitiveness by marketing foods that support healthier lifestyles in line with consumer preferences. With the more stringent European Union regulation of nutrition and health claims, insights into consumers' health-related goal patterns and their reactions towards such claims are needed to influence the content of lawful claims. This study investigated how consumers' explicit and implicit health-related motive orientations (HRMOs) together with the type of calcium-claim (nutrition claim, health claim and reduction of disease risk claim) influence perceived credibility and purchasing intention of calcium-enriched fruit juice. Data were collected in April 2006 through a consumer survey with 341 Belgian adults. The findings indicate that stronger implicit HRMOs (i.e., indirect benefits of calcium for personal health) are associated with higher perceived credibility, which is not (yet) translated into a higher purchasing intention. Consumers' explicit HRMOs, which refer to direct benefits or physiological functions of calcium in the body-as legally permitted in current calcium-claims in the EU-do not associate with reactions to the claims. Independently of consumers' HRMOs, the claim type significantly affects the perceived credibility and purchasing intention of the product. Implications for nutrition policy makers and food industries are discussed.

  9. Consumers’ Health-Related Motive Orientations and Reactions to Claims about Dietary Calcium

    Directory of Open Access Journals (Sweden)

    Christine Hoefkens

    2013-01-01

    Full Text Available Health claims may contribute to better informed and healthier food choices and to improved industrial competitiveness by marketing foods that support healthier lifestyles in line with consumer preferences. With the more stringent European Union regulation of nutrition and health claims, insights into consumers’ health-related goal patterns and their reactions towards such claims are needed to influence the content of lawful claims. This study investigated how consumers’ explicit and implicit health-related motive orientations (HRMOs together with the type of calcium-claim (nutrition claim, health claim and reduction of disease risk claim influence perceived credibility and purchasing intention of calcium-enriched fruit juice. Data were collected in April 2006 through a consumer survey with 341 Belgian adults. The findings indicate that stronger implicit HRMOs (i.e., indirect benefits of calcium for personal health are associated with higher perceived credibility, which is not (yet translated into a higher purchasing intention. Consumers’ explicit HRMOs, which refer to direct benefits or physiological functions of calcium in the body — as legally permitted in current calcium-claims in the EU — do not associate with reactions to the claims. Independently of consumers’ HRMOs, the claim type significantly affects the perceived credibility and purchasing intention of the product. Implications for nutrition policy makers and food industries are discussed.

  10. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems.

    Science.gov (United States)

    Winkelmann, Stefanie; Schütte, Christof

    2017-09-21

    Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.

  11. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems

    Science.gov (United States)

    Winkelmann, Stefanie; Schütte, Christof

    2017-09-01

    Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.

  12. Human Gait Modeling and Analysis Using a Semi-Markov Process With Ground Reaction Forces.

    Science.gov (United States)

    Ma, Hao; Liao, Wei-Hsin

    2017-06-01

    Modeling and evaluation of patients' gait patterns is the basis for both gait assessment and gait rehabilitation. This paper presents a convenient and real-time gait modeling, analysis, and evaluation method based on ground reaction forces (GRFs) measured by a pair of smart insoles. Gait states are defined based on the foot-ground contact forms of both legs. From the obtained gait state sequence and the duration of each state, the human gait is modeled as a semi-Markov process (SMP). Four groups of gait features derived from the SMP gait model are used for characterizing individual gait patterns. With this model, both the normal gaits of healthy people and the abnormal gaits of patients with impaired mobility are analyzed. Abnormal evaluation indices (AEI) are further proposed for gait abnormality assessment. Gait analysis experiments are conducted on 23 subjects with different ages and health conditions. The results show that gait patterns are successfully obtained and evaluated for normal, age-related, and pathological gaits. The effectiveness of the proposed AEI for gait assessment is verified through comparison with a video-based gait abnormality rating scale.

  13. Nuclear spin dependence of the reaction of H(3)+ with H2. I. Kinetics and modeling.

    Science.gov (United States)

    Crabtree, Kyle N; Tom, Brian A; McCall, Benjamin J

    2011-05-21

    The chemical reaction H(3)(+) + H(2) → H(2) + H(3)(+) is the simplest bimolecular reaction involving a polyatomic, yet is complex enough that exact quantum mechanical calculations to adequately model its dynamics are still unfeasible. In particular, the branching fractions for the "identity," "proton hop," and "hydrogen exchange" reaction pathways are unknown, and to date, experimental measurements of this process have been limited. In this work, the nuclear-spin-dependent steady-state kinetics of the H(3)(+) + H(2) reaction is examined in detail, and employed to generate models of the ortho:para ratio of H(3)(+) formed in plasmas of varying ortho:para H(2) ratios. One model is based entirely on nuclear spin statistics, and is appropriate for temperatures high enough to populate a large number of H(3)(+) rotational states. Efforts are made to include the influence of three-body collisions in this model by deriving nuclear spin product branching fractions for the H(5)(+) + H(2) reaction. Another model, based on rate coefficients calculated using a microcanonical statistical approach, is appropriate for lower-temperature plasmas in which energetic considerations begin to compete with the nuclear spin branching fractions. These models serve as a theoretical framework for interpreting the results of laboratory studies on the reaction of H(3)(+) with H(2). © 2011 American Institute of Physics.

  14. Work-Family Conflict and Work-Related Attitude: The Mediating Effects of Stress Reactions

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Binti Panatik

    2012-01-01

    Full Text Available This study aims to investigate the relationship between work-family conflict (i.e.work-to-family and family-to-work and work-related attitudes (i.e. job satisfaction,affective commitment and turnover intentions among academician in Malaysia.Mediationeffects of stress reactionswhich arebehavioral stress, somatic stress andcognitive stresswere also tested. A survey method using questionnaire was utilizedto obtain the data. A total of 267 respondents were participated, giving the return rateof 20% from the entire ofpopulation. Research data were analyzed using PASW18and AMOS SPSS18.Result indicated that onlywork-to-family conflict wassignificantly related to stress reactions.While, behavioral stress mediates the effectsof work-to-family conflict on job satisfaction, affective commitment and turnoverintentions. Cognitive stress only mediates the effects of work-to-family conflict onaffective commitment. This paper also discusses the implication of this study to theorganization and future research.

  15. Child-Rearing Practices toward Children with Hemophilia: The Relative Importance of Clinical Characteristics and Parental Emotional Reactions.

    Science.gov (United States)

    Banis, S.; Suurmeijer, Th. P. B. M.; van Peer, D. R.

    1999-01-01

    Addresses the relative importance of clinical characteristics of the child and parental emotional reactions, to child-rearing practices towards children with hemophilia. Results indicate that mother's emotional reactions appear to have a stronger influence on child-rearing uncertainty and overprotection than clinical characteristics of the child.…

  16. Stability of Posttraumatic Stress Reaction Factors and Their Relation to General Mental Health Problems in Children: A Longitudinal Study

    Science.gov (United States)

    Nygaard, Egil; Jensen, Tine K.; Dyb, Grete

    2012-01-01

    The aim of this study was to evaluate the structure of posttraumatic stress reaction factors and their relation to general mental health problems in Norwegian children exposed to the tsunami on December 26, 2004. A total of 133 children and adolescents (ages 6-17) were interviewed 10 months posttsunami using the UCLA PTSD Reaction Index, and 104…

  17. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  18. Development of the Automatic Modeling System for Reaction Mechanisms Using REX+JGG

    Science.gov (United States)

    Takahashi, Takahiro; Kawai, Kohei; Nakai, Hiroyuki; Ema, Yoshinori

    The identification of appropriate reaction models is very helpful for developing chemical vapor deposition (CVD) processes. In this study, we developed an automatic modeling system that analyzes experimental data on the cross- sectional shapes of films deposited on substrates with nanometer- or micrometer-sized trenches. The system then identifies a suitable reaction model to describe the film deposition. The inference engine used by the system to model the reaction mechanism was designed using real-coded genetic algorithms (RCGAs): a generation alternation model named "just generation gap" (JGG) and a real-coded crossover named "real-coded ensemble crossover" (REX). We studied the effect of REX+JGG on the system's performance, and found that the system with REX+JGG was the most accurate and reliable at model identification among the algorithms that we studied.

  19. Predicting Complex Organic Mixture Atmospheric Chemistry Using Computer-Generated Reaction Models

    Science.gov (United States)

    Klein, M. T.; Broadbelt, L. J.; Mazurek, M. A.

    2001-12-01

    New measurement and chemical characterization technologies now offer unprecedented capabilities for detecting and describing atmospheric organic matter at the molecular level. As a result, very detailed and extensive chemical inventories are produced routinely in atmospheric field measurements of organic compounds found in the vapor and condensed phases (particles, cloud and fog droplets). Hundreds of organic compounds can constitute the complex chemical mixtures observed for these types of samples, exhibiting a wide spectrum of physical properties such as molecular weight, polarity, pH, and chemical reactivity. The central challenge is describing chemically the complex organic aerosol mixture in a useable fashion that can be linked to predictive models. However, the great compositional complexity of organic aerosols engenders a need for the modeling of the reaction chemistry of these compounds in atmospheric chemical models. On a mechanistic level, atmospheric reactions of organic compounds can involve a network of a very large number of chemical species and reactions. Deriving such large molecular kinetic models by hand is a tedious and time-consuming process. However, such models are usually built upon a few basic chemical principles tempered with the model builder's observations, experience, and intuition that can be summarized as a set of rules. This suggests that given an algorithmic framework, computers (information technology) may be used to apply these chemical principles and rules, thereby building a kinetic model. The framework for this model building process has been developed by means of graph theory. A molecule, which is a set of atoms connected by bonds, may be conceptualized as a set of vertices connected by edges, or to be more precise, a graph. The bond breaking and forming for a reaction can be represented compactly in the form of a matrix operator formally called the "reaction matrix". The addition of the reaction matrix operator to the reduced

  20. Genome-scale Metabolic Reaction Modeling: a New Approach to Geomicrobial Kinetics

    Science.gov (United States)

    McKernan, S. E.; Shapiro, B.; Jin, Q.

    2014-12-01

    Geomicrobial rates, rates of microbial metabolism in natural environments, are a key parameter of theoretical and practical problems in geobiology and biogeochemistry. Both laboratory- and field-based approaches have been applied to study rates of geomicrobial processes. Laboratory-based approaches analyze geomicrobial kinetics by incubating environmental samples under controlled laboratory conditions. Field methods quantify geomicrobial rates by observing the progress of geomicrobial processes. To take advantage of recent development in biogeochemical modeling and genome-scale metabolic modeling, we suggest that geomicrobial rates can also be predicted by simulating metabolic reaction networks of microbes. To predict geomicrobial rates, we developed a genome-scale metabolic model that describes enzyme reaction networks of microbial metabolism, and simulated the network model by accounting for the kinetics and thermodynamics of enzyme reactions. The model is simulated numerically to solve cellular enzyme abundance and hence metabolic rates under the constraints of cellular physiology. The new modeling approach differs from flux balance analysis of system biology in that it accounts for the thermodynamics and kinetics of enzymatic reactions. It builds on subcellular metabolic reaction networks, and hence also differs from classical biogeochemical reaction modeling. We applied the new approach to Methanosarcina acetivorans, an anaerobic, marine methanogen capable of disproportionating acetate to carbon dioxide and methane. The input of the new model includes (1) enzyme reaction network of acetoclastic methanogenesis, and (2) representative geochemical conditions of freshwater sedimentary environments. The output of the simulation includes the proteomics, metabolomics, and energy and matter fluxes of M. acetivorans. Our simulation results demonstrate the predictive power of the new modeling approach. Specifically, the results illustrate how methanogenesis rates vary

  1. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2002-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  2. Modelling, Design, Operability and Analysis of Reaction-Separation Systems

    DEFF Research Database (Denmark)

    Jimenez, Edgar Ramirez

    2006-01-01

    Denne afhandling præsenterer en modelbaseret metode til design og analyse af kemiske processer som involverer en enhed for Reaktion-Separation med recycling (RSR). Det centrale i denne metode er at en modelbaseret analyse af (masse og energibalance) modeller af varierende kompleksitet identificer...

  3. Dynamic Characteristics and Model for Centralization Reaction of Acidic Tailings From Heap Leaching of Uranium Ore

    International Nuclear Information System (INIS)

    Ding Dexin; Liu Yulong; Li Guangyue; Wang Youtuan

    2010-01-01

    Centralization tests were carried out on acidic tailings from heap leaching of uranium ore by using CaO, NaOH and NH 4 OH. The variations of pH with time were measured for the three centralization systems and the dynamic models for the systems were set up by regressing the measured data. The centralization process consists of the fast reaction phase representing the reaction between the centralization agent and the acid on the surface of the tailing's particles and the slow diffusion-reaction phase representing the diffusion-reaction between the centralization agent and the acid within the tailing's particles. The non-linear coupling and feedback function model for the diffusion-reaction of the centralization agent can reflect the process and mode of the centralization reaction. There is a non-linear oscillation in the variation of pH within the centralization systems. The dynamic model for the tailing's centralization reaction can fit the pH variation within the centralization systems. (authors)

  4. Hopf bifurcation in a delayed reaction-diffusion-advection population model

    Science.gov (United States)

    Chen, Shanshan; Lou, Yuan; Wei, Junjie

    2018-04-01

    In this paper, we investigate a reaction-diffusion-advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.

  5. Models and relations in economics and econometrics

    DEFF Research Database (Denmark)

    Juselius, Katarina

    1999-01-01

    Based on a money market analysis using the cointegrated VAR model the paper demonstrates some possible pitfalls in macroeconomic inference as a direct consequence of inadequate stochastic model formulation. A number of questions related to concepts such as empirical and theoretical steady-states,...

  6. Models and relations in economics and econometrics

    DEFF Research Database (Denmark)

    Juselius, Katarina

    1999-01-01

    Based on a money market analysis using the cointegrated VAR model the paper demonstrates some possible pitfalls in macroeconomic inference as a direct consequence of inadequate stochastic model formulation. A number of questions related to concepts such as empirical and theoretical steady...

  7. Relating business modelling and enterprise architecture

    NARCIS (Netherlands)

    Meertens, Lucas Onno

    2013-01-01

    This thesis proposes a methodology for creating business models, evaluating them, and relating them to enterprise architecture. The methodology consists of several steps, leading from an organization’s current situation to a target situation, via business models and enterprise architecture.

  8. Spallation reactions in shock waves at supernova explosions and related problems

    Energy Technology Data Exchange (ETDEWEB)

    Ustinova, G. K., E-mail: ustinova@dubna.net.ru [RAS, V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry (Russian Federation)

    2013-05-15

    The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies of many elements are presented. It is well-grounded that the anomalous Xe-HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magnetohydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.

  9. Splitting and non splitting are pollution models photochemical reactions in the urban areas of greater Tehran area

    International Nuclear Information System (INIS)

    Heidarinasab, A.; Dabir, B.; Sahimi, M.; Badii, Kh.

    2003-01-01

    During the past years, one of the most important problems has been air pollution in urban areas. In this regards, ozone, as one of the major products of photochemical reactions, has great importance. The term 'photochemical' is applied to a number of secondary pollutants that appear as a result of sun-related reactions, ozone being the most important one. So far various models have been suggested to predict these pollutants. In this paper, we developed the model that has been introduced by Dabir, et al. [4]. In this model more than 48 chemical species and 114 chemical reactions are involved. The result of this development, showed good to excellent agreement across the region for compounds such as O 3 , NO, NO 2 , CO, and SO 2 with regard to VOC and NMHC. The results of the simulation were compared with previous work [4] and the effects of increasing the number of components and reactions were evaluated. The results of the operator splitting method were compared with non splitting solving method. The result showed that splitting method with one-tenth time step collapsed with non splitting method (Crank-Nicolson, under-relaxation iteration method without splitting of the equation terms). Then we developed one dimensional model to 3-D and were compared with experimental data

  10. Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's

    Directory of Open Access Journals (Sweden)

    Hernandez-Solis Augusto

    2017-01-01

    Full Text Available The novel design of the renewable boiling water reactor (RBWR allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC method is used to propagate the different neutron-reactions (as well as angular distributions covariances that are part of the TENDL-2014 nuclear data (ND library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.

  11. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    Science.gov (United States)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  12. Abortion: a review of women's perception in relation to their partner's reactions in two Brazilians cities.

    Science.gov (United States)

    Nonnenmacher, Daniele; Benute, Gláucia Rosana Guerra; Nomura, Roseli Mieko Yamamoto; Azevedo, George Dantas de; Dutra, Elza Maria do Socorro; Rebouças, Melina Séfora Souza; Luci, Mara Cristina Souza de; Francisco, Rossana Pulcineli Vieira

    2014-07-01

    to analyze women's perception in relation to their partner's reaction and behavior during the abortion process in two Brazilian capitals, associating the variables from women who suffered a spontaneous abortion with those from women who induced it. semi-structured, questionnaire-based interviews were conducted with 285 women who underwent spontaneous abortion and 31 who reported having induced it. The data were analyzed using the thematic analysis technique, and, subsequently, by the IBM SPSS Statistics Standard Edition software program. The significance level was set at p abortion referred to the partner as the person who could not find out about the abortion (pabortion was associated with the partner's absence at the time pregnancy was confirmed (p = 0.02) and, in Sao Paulo-SP, with their negative reaction to news of the pregnancy (p = 0.04) and lack of participation in the abortion process (p abortion process as an important factor. The specifics of each capital denote the influence of the geographic and cultural dimension, indicating the need to take into account the particulars of each region in Brazil while considering a holistic approach to women's health.

  13. Significance of Alkali-Silica reaction in nuclear safety-related concrete structures

    International Nuclear Information System (INIS)

    Le Pape, Y.; Field, K.G.; Mattus, C.H.; Naus, D.J.; Busby, J.T.; Saouma, V.; Ma, Z.J.; Cabage, J.V.; Guimaraes, M.

    2015-01-01

    Nuclear Power Plant license renewal up to 60 years and possible life extension beyond has established a renewed focus on long-term aging of nuclear generating stations materials, and particularly, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete components. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the U.S. Nuclear Regulatory Commission, the Academia and the Power Generation Industry, identified the need to develop a consistent knowledge base of alkali-silica reaction (ASR) within concrete as an urgent priority (Graves et al., 2014). ASR results in an expansion of Concrete produced by the reaction between alkali (generally from cement), reactive aggregate (like amorphous silica) and water absorption. ASR causes expansion, cracking and loss of mechanical properties. Considering that US commercial reactors in operation enter the age when ASR distress can be potentially observed and that numerous non-nuclear infrastructures (transportation, energy production) in a majority of the States have already experienced ASR-related concrete degradation, the susceptibility and significance of ASR for nuclear concrete structures must be addressed. This paper outlines an on-going research program including the investigation of the possibility of ASR in nuclear power plants, and the assessment of the residual shear bearing capacity of ASR-subjected nuclear structures. (authors)

  14. A GPU Reaction Diffusion Soil-Microbial Model

    Science.gov (United States)

    Falconer, Ruth; Houston, Alasdair; Schmidt, Sonja; Otten, Wilfred

    2014-05-01

    Parallelised algorithms are frequent in bioinformatics as a consequence of the close link to informatics - however in the field of soil science and ecology they are less prevalent. A current challenge in soil ecology is to link habitat structure to microbial dynamics. Soil science is therefore entering the 'big data' paradigm as a consequence of integrating data pertinent to the physical soil environment obtained via imaging and theoretical models describing growth and development of microbial dynamics permitting accurate analyses of spatio-temporal properties of different soil microenvironments. The microenvironment is often captured by 3D imaging (CT tomography) which yields large datasets and when used in computational studies the physical sizes of the samples that are amenable to computation are less than 1 cm3. Today's commodity graphics cards are programmable and possess a data parallel architecture that in many cases is capable of out-performing the CPU in terms of computational rates. The programmable aspect is achieved via a low-level parallel programming language (CUDA, OpenCL and DirectX). We ported a Soil-Microbial Model onto the GPU using the DirectX Compute API. We noted a significant computational speed up as well as an increase in the physical size that can be simulated. Some of the drawbacks of such an approach were concerned with numerical precision and the steep learning curve associated with GPGPU technologies.

  15. Quantum chemical investigation of the thermal pyrolysis reactions of the carboxylic group in a brown coal model.

    Science.gov (United States)

    Liu, Shengyu; Zhang, Zhiqiang; Wang, Huifang

    2012-01-01

    Different reaction pathways of the carboxylic group in a brown coal model were investigated by applying density function quantum chemical theory, examining the possible cross-linking and decomposition reactions between the hydrogen bonded carboxylic group-carboxylic group and the carboxylic group-hydroxyl group during the thermal pyrolysis process. The results show that bimolecular dehydration and decarboxylation of hydrogen bonded carboxylic groups have distinctly lower activation barriers and therefore, proceed preferentially at low temperature. The esterification reaction between the hydrogen bonded carboxylic group and hydroxyl group, together with unimolecular decarboxylation of isolated single carboxylic groups were also possible at moderate temperature. Aryl-aryl coupling is thought to occur via radical pyrolysis and recombination at relatively high temperature.

  16. The effect of organic molecules adsorption on hydrogen absorption in relation to the hydrogen evolution reaction

    Directory of Open Access Journals (Sweden)

    LJILJANA VRACAR

    2001-12-01

    Full Text Available The competitive adsorption of organic molecules (2,7-naphthalenedisulfonic acid and adsorbed H is of interest in relation to its influence on H absorption into a Pd-Ni electrodeposited alloy. The experimental results, in acid solution, show an enhancement of the coverage of the electrode surface with adosrbed H due to the competitive adsorption of organic molecules that interfere with H atoms, through lateral attractive interactions between the adsorbed species and communal electronic effects, leading supposedly to a decreased probability of H entry into the alloy. Chemisorbed H is, on the other hand, an intermediate in the HER, so the enhancement of the electrode coverage in the presence of co-adsorbed organic molecules promotes the hydrogen evolution reaction.

  17. Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson mechanism

    Science.gov (United States)

    Javad Azarhoosh, Mohammad; Halladj, Rouein; Askari, Sima

    2017-10-01

    In this study, a new kinetic model for methanol to light olefins (MTO) reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism was presented and the kinetic parameters was obtained using a genetic algorithm (GA) and genetic programming (GP). Several kinetic models for the MTO reactions have been presented. However, due to the complexity of the reactions, most reactions are considered lumped and elementary, which cannot be deemed a completely accurate kinetic model of the process. Therefore, in this study, the LHHW mechanism is presented as kinetic models of MTO reactions. Because of the non-linearity of the kinetic models and existence of many local optimal points, evolutionary algorithms (GA and GP) are used in this study to estimate the kinetic parameters in the rate equations. Via the simultaneous connection of the code related to modelling the reactor and the GA and GP codes in the MATLAB R2013a software, optimization of the kinetic models parameters was performed such that the least difference between the results from the kinetic models and experiential results was obtained and the best kinetic parameters of MTO process reactions were achieved. A comparison of the results from the model with experiential results showed that the present model possesses good accuracy.

  18. Use of shell model calculations in R-matrix studies of neutron-induced reactions

    International Nuclear Information System (INIS)

    Knox, H.D.

    1986-01-01

    R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)

  19. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Iskra, G.A. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil Engineering; Szecsody, J.E.; Zachara, J.M.; Streile, G.P. [Pacific Northwest Lab., Richland, WA (United States)

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  20. Transfusion-related adverse reactions reported to the National Healthcare Safety Network Hemovigilance Module, United States, 2010 to 2012.

    Science.gov (United States)

    Harvey, Alexis R; Basavaraju, Sridhar V; Chung, Koo-Whang; Kuehnert, Matthew J

    2015-04-01

    In 2010, health care facilities in the United States began voluntary enrollment in the National Healthcare Safety Network (NHSN) Hemovigilance Module. Participants report transfusion practices; red blood cell, platelet (PLT), plasma, and cryoprecipitate units transfused; and transfusion-related adverse reactions and process errors to the Centers for Disease Control and Prevention through a secure, Internet-accessible surveillance application available to transfusing facilities. Facilities submitting at least 1 month of transfused components data and adverse reactions from January 1, 2010, to December 31, 2012, were included in this analysis. Adverse reaction rates for transfused components, stratified by component type and collection and modification methods, were calculated. In 2010 to 2012, a total of 77 facilities reported 5136 adverse reactions among 2,144,723 components transfused (239.5/100,000). Allergic (46.8%) and febrile nonhemolytic (36.1%) reactions were most frequent; 7.2% of all reactions were severe or life-threatening and 0.1% were fatal. PLT transfusions (421.7/100,000) had the highest adverse reaction rate. Adverse transfusion reaction rates from the NHSN Hemovigilance Module in the United States are comparable to early hemovigilance reporting from other countries. Although severe reactions are infrequent, the numbers of transfusion reactions in US hospitals suggest that interventions to prevent these reactions are important for patient safety. Further investigation is needed to understand the apparent increased risk of reactions from apheresis-derived blood components. Comprehensive evaluation, including data validation, is important to continued refinement of the module. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. Mathematical Modeling Applied Transesterification Reaction Product of Synthesis from Animal Fats and Vegetable Oil

    OpenAIRE

    Letícia Thaís Chendynski; Universidade Estadual de Londrina; Karina G. Angilelli; Universidade Estadual de Londrina; Bruna A. D. Ferreira; Unversidade Esadual de Londrina; Dionisio Borsato; Universidade Estadual de Londrina

    2009-01-01

    The high availability and low cost of animal fat have promoted industrial interest as a partial substitute for soybean oil for transesterification reaction product of synthesis, to reduce costs and maximize profits. This study aimed to apply experimental design for biodiesel production from a mixture of soybean oil, poultry fat, beef tallow and pork lard in order to obtain predictive equations to model the transesterification reaction yield, cloud point, pour point and oxidative stability, wi...

  2. Modified shrinking unreacted-core model for the reaction between sulfur dioxide and coal fly ash/CaO/CaSO{sub 4} sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.T.; Koon, O.W. [Universiti Sains Malaysia, Pulau Pinang (Malaysia). School of Chemical Engineering

    2009-01-15

    The kinetics for non-catalytic solid gas reaction between SO{sub 2} and sorbent prepared from coal fly ash, CaO and CaSO{sub 4} in a fixed-bed reactor at low temperature were modeled and simulated. A modified shrinking unreacted-core model (SCM) with chemical reaction coupled with diffusion as the rate limiting step were developed to predict the breakthrough curves of the desulfurization reaction. The kinetic parameters of the mathematical model were obtained from a series of experimental desulfurization reactions conducted under isothermal conditions at various operating parameters; SO{sub 2} initial concentration (500 ppm {le} CSO {le} 2000 ppm), NO initial concentration (250 ppm {le} CNO: 750 ppm), reaction temperature (60{sup o}C {le} T {le} 90{sup o} C) and relative humidity (50% {le} RH {le} 80%). MATLAB software was used to solve the partial differential equations using finite difference method. The SCM model was found to give a good description of the experimental data with error less than 5%. The validated model was then used to simulate the desulfurization reaction under a wide range of operating conditions. It was found that higher initial concentration of SO{sub 2} reduces the desulfurization activity. In contrast, the presence of higher concentration of NO, reaction temperature and relative humidity in the system enhanced the desulfurization activity of the sorbent.

  3. Disproportionation of rosin on an industrial Pd/C catalyst: reaction pathway and kinetic model discrimination.

    Science.gov (United States)

    Souto, Juan Carlos; Yustos, Pedro; Ladero, Miguel; Garcia-Ochoa, Felix

    2011-02-01

    In this work, a phenomenological study of the isomerisation and disproportionation of rosin acids using an industrial 5% Pd on charcoal catalyst from 200 to 240°C is carried out. Medium composition is determined by elemental microanalysis, GC-MS and GC-FID. Dehydrogenated and hydrogenated acid species molar amounts in the final product show that dehydrogenation is the main reaction. Moreover, both hydrogen and non-hydrogen concentration considering kinetic models are fitted to experimental data using a multivariable non-linear technique. Statistical discrimination among the proposed kinetic models lead to the conclusion hydrogen considering models fit much better to experimental results. The final kinetic model involves first-order isomerisation reactions of neoabietic and palustric acids to abietic acid, first-order dehydrogenation and hydrogenation of this latter acid, and hydrogenation of pimaric acids. Hydrogenation reactions are partial first-order regarding the acid and hydrogen. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Comparisons of late vaginal mucosal reactions between interstitial and conventional intracavitary brachytherapy in patients with gynecological cancer: speculation on the relation between pallor reaction and stenosis.

    Science.gov (United States)

    Yoshida, Ken; Yamazaki, Hideya; Nakamura, Satoaki; Masui, Koji; Kotsuma, Tadayuki; Baek, Sung Jae; Akiyama, Hironori; Tanaka, Eiichi; Yoshioka, Yasuo

    2013-09-01

    To examine late vaginal mucosal reactions in patients following interstitial brachytherapy (ISBT) compared with that of intracavitary brachytherapy (ICBT). We introduced a modified Dische score to examine late reactions in vaginal mucosa of patients with gynecological cancer who underwent vaginal brachytherapy at 6, 12, 18, 24, 36, and 60 months after treatment. A comparison was made between patients who underwent ISBT (n=37) and those under conventional ICBT (n=63) with a median follow-up time of 41 months. The ICBT group included only patients with newly diagnosed cervical cancer, whereas the ISBT group included 17 patients with recurrent and 20 with newly-diagnosed cancer. Grade 1 reactions of bleeding and discharge were exhibited by <12% of patients. Erythema was detected in approximately 30% (mainly grade 1) of the patients. A total of two (3%) patients developed superficial ulceration after ICBT, whereas three (8%) grade 1 ulcers were detected in patients after ISBT. Telangiectasias were detected in approximately 70% (60% grade 1 and 10% grade 2) of patients. No statistically significant difference was found between the patients after ISBT and ICBT. After ISBT, patients have a higher stenosis rate than after ICBT (p=0.003). The pallor scores showed a strong correlation with stenosis (p<0.0001) and were higher in patients after ICBT than in patients after ISBT (p=0.006). After ISBT, patients exhibited milder but similar late mucosal reactions compared to those after ICBT, except the fact that the stenosis was more severe and the pallor reaction was milder in these patients. It can be, therefore, concluded that the pallor reaction is related to stenosis.

  5. Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model

    Science.gov (United States)

    Zhao, Hongyong; Zhu, Linhe

    2016-06-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.

  6. The hydration of slag, part 2: reaction models for blended cement

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2007-01-01

    The hydration of slag-blended cement is studied by considering the interaction between the hydrations of slag and Portland cement clinker. Three reaction models for the slag-blended cement are developed based on stoichiometric calculations. These models correlate the compositions of the unhydrated

  7. A simple model for chiral amplification in the aminoalcohol-catalyzed reaction of aldehydes with dialkylzinc

    Directory of Open Access Journals (Sweden)

    IVAN GUTMAN

    1999-08-01

    Full Text Available A simple explanation is offered for the recently discovered chiral amplification in the alkylation reaction of benzaldehyde by means of dialkylzinc, catalyzed by (dimethylaminoisoborneol. The model presentd is similar to, yet somewhat simpler than, the model put forward by Noyori et al.

  8. Bifurcation Analysis of Gene Propagation Model Governed by Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Guichen Lu

    2016-01-01

    Full Text Available We present a theoretical analysis of the attractor bifurcation for gene propagation model governed by reaction-diffusion equations. We investigate the dynamical transition problems of the model under the homogeneous boundary conditions. By using the dynamical transition theory, we give a complete characterization of the bifurcated objects in terms of the biological parameters of the problem.

  9. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  10. Aromatic products from reaction of lignin model compounds with UV-alkaline peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    A series of guaiacyl and syringyl lignin model compounds and their methylated analogues were reacted with alkaline hydrogen peroxide while irradiating with UV light at 254 nm. The aromatic products obtained were investigated by gas chromatography-mass spectrometry (GC-MS). Guaiacol, syringol and veratrol gave no detectable aromatic products. However, syringol methyl ether gave small amounts of aromatic products, resulting from ring substitution and methoxyl displacement by hydroxyl radicals. Reaction of vanillin and syringaldehyde gave the Dakin reaction products, methoxy-1,4-hydroquinones, while reaction of their methyl ethers yielded benzoic acids. Acetoguaiacone, acetosyringone and their methyl ethers afforded several hydroxylated aromatic products, but no aromatic products were identified in the reaction mixtures from guaiacylpropane and syringylpropane. In contrast, veratrylpropane gave a mixture from which 17 aromatic hydroxylated compounds were identified. It is concluded that for phenolic lignin model compounds, particularly those possessing electrondonating aromatic ring substituents, ring-cleavage reactions involving superoxide radical anions are dominant, whereas for non-phenolic lignin models, hydroxylation reactions through attack of hydroxyl radicals prevail

  11. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  12. Redox models in chemistry :  A depiction of the conceptions held by secondary school students of redox reactions

    OpenAIRE

    Österlund, Lise-Lotte

    2010-01-01

    According to previous research, students show difficulties in learning redox reactions. By the historical development different redox models exist to explain redox reactions, the oxygen model, the hydrogen model, the electron model and the oxidation number model. This thesis reports about three studies concerning conceptions held by secondary school students of redox reactions. A textbook analysis is also included in the thesis. The first study was an investigation of the students’ use of red...

  13. Non-ionic iodinated contrast media related immediate reactions: A mechanism study of 27 patients.

    Science.gov (United States)

    Zhai, Liqin; Guo, Xiangjie; Zhang, Haoyue; Jin, Qianqian; Zeng, Qiang; Tang, Xiaoxian; Gao, Cairong

    2017-01-01

    The underlying mechanism of non-ionic iodinated contrast media-related immediate reactions was evaluated in this study. Patients presenting at least grade II immediate reactions after non-ionic iodinated contrast media injection were enrolled. Basophil activation was evaluated by flow cytometry. The plasma concentration of human terminal complement complex SC5b-9, as well as concentrations of serum chymase, tryptase, human mast cell carboxypeptidase A3, human prostaglandin D2, and total IgE were measured by enzyme-linked immunosorbent assay. The basophil activation percentage was significantly higher in the study group than in the control group (17.94±21.06% vs 3.45±1.49%). The plasma concentration of human terminal complement complex SC5b-9 and concentrations of serum chymase, human mast cell carboxypeptidase A3, prostaglandin D2, tryptase, and total IgE were also significantly increased (236.99±318.21 vs 49.70±30.41ng/mL, 0.41±0.49 vs 0.09±0.06ng/mL, 1.17±0.67 vs 0.30±0.17ng/mL, 203.52±137.27 vs 102.28±48.72pg/mL, 3.81±0.22 vs 2.70±0.16ng/mL, 102.00±51.84 vs 19.97±2.75ng/mL, respectively). Both mast cells and basophils were activated in non-ionic iodinated contrast media to mediate immediate hypersensitivity, and mast cells may be involved. Different mechanisms, including IgE-dependent, complement-dependent, and direct membrane effects, contributed to mast cell and basophil activation. Individual patients may use a single or combined mechanism involving single or combined mast cells and basophils. Immediate reactions following non-ionic iodinated contrast media injection may be a mechanically heterogenous disease. Copyright © 2016. Published by Elsevier B.V.

  14. Serious infusion-related reaction after rituximab, abatacept and tocilizumab in rheumatoid arthritis: prospective registry data.

    Science.gov (United States)

    Salmon, Jean-Hugues; Perotin, Jeanne-Marie; Morel, Jacques; Dramé, Moustapha; Cantagrel, Alain; Ziegler, Liana Euller; Ravaud, Philippe; Sibilia, Jean; Pane, Isabelle; Mariette, Xavier; Gottenberg, Jacques-Eric

    2018-01-01

    The aim was to evaluate the incidence of serious infusion-related reactions (SIRRs) in RA treated by non-TNF-targeted biologics. We analysed data from three independent prospective registers, namely autoimmunity and rituximab, Orencia (abatacept) and RA (ORA) and Registry RoAcTEmra (tocilizumab), promoted by the French Society of Rheumatology and including patients with RA. SIRRs were defined by an occurrence during or within 24 h of an infusion and requiring discontinuation of treatment. Characteristics of patients with SIRRs were extracted from the electronic database. Among the 4145 patients, SIRRs occurred in 100 patients: 56 patients with the rituximab cohort (2.8% or 0.7/100 patient-years), 15 with the abatacept cohort (1.5% or 0.6/100 patient-years) and 29 with tocilizumab (1.9% or 1/100 patient-years). No fatal SIRR occurred. A previous mild infusion reaction to non-TNF-targeted biologics was observed in a quarter of patients with SIRRs. After pooled multivariate analysis, positive anti-CCP was associated with a higher risk of SIRR (odds ratio = 2.5; 95% CI: 1.01, 6.17). Absence of concomitant treatment with a synthetic DMARD tended to be associated with a higher risk of SIRR (odds ratio = 1.67; 95% CI: 1.00, 2.86). In daily practice, SIRRs are slightly more frequent than in clinical trials and rarely life threatening. In common practice, serological status (anti-CCP positivity) and absence of concomitant treatment with a synthetic DMARD increase the risk of SIRR. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Abortion: a review of women's perception in relation to their partner's reactions in two Brazilians cities

    Directory of Open Access Journals (Sweden)

    Daniele Nonnenmacher

    2014-07-01

    Full Text Available Objective: to analyze women's perception in relation to their partner's reaction and behavior during the abortion process in two Brazilian capitals, associating the variables from women who suffered a spontaneous abortion with those from women who induced it. Methods: semi-structured, questionnaire-based interviews were conducted with 285 women who underwent spontaneous abortion and 31 who reported having induced it. The data were analyzed using the thematic analysis technique, and, subsequently, by the IBM SPSS Statistics Standard Edition software program. The significance level was set at p < 0.05. Results: in both capitals, the women who induced an abortion referred to the partner as the person who could not find out about the abortion (p<0.01 in Natal; p = 0.02 in São Paulo-SP and, simultaneously, as the one who could have avoided it (p < 0.01 in Natal; p = 0.03 in São Paulo. In Natal-RN, induced abortion was associated with the partner's absence at the time pregnancy was confirmed (p = 0.02 and, in Sao Paulo-SP, with their negative reaction to news of the pregnancy (p = 0.04 and lack of participation in the abortion process (p < 0.01. Conclusion: despite having achieved independence, women still regard male participation in the abortion process as an important factor. The specifics of each capital denote the influence of the geographic and cultural dimension, indicating the need to take into account the particulars of each region in Brazil while considering a holistic approach to women's health.

  16. Phase transitions in a holographic s + p model with back-reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu [Kunming University of Science and Technology, Kunming (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Shanghai Jiao Tong University, INPAC, Department of Physics, and Shanghai Key Laboratory of Particle Physics and Cosmology, Shanghai (China); Cai, Rong-Gen [Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Gao, Xin [Virginia Tech, Department of Physics, Blacksburg, VA (United States); Li, Li [University of Crete, Department of Physics, Crete Center for Theoretical Physics, Heraklion (Greece); Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2015-11-15

    In a previous paper (Nie et al. in JHEP 1311:087, arXiv:1309.2204 [hep-th], 2013), we presented a holographic s + p superconductor model with a scalar triplet charged under an SU(2) gauge field in the bulk. We also study the competition and coexistence of the s-wave and p-wave orders in the probe limit. In this work we continue to study the model by considering the full back-reaction. The model shows a rich phase structure and various condensate behaviors such as the ''n-type'' and ''u-type'' ones, which are also known as reentrant phase transitions in condensed matter physics. The phase transitions to the p-wave phase or s + p coexisting phase become first order in strong back-reaction cases. In these first order phase transitions, the free energy curve always forms a swallow tail shape, in which the unstable s + p solution can also play an important role. The phase diagrams of this model are given in terms of the dimension of the scalar order and the temperature in the cases of eight different values of the back-reaction parameter, which show that the region for the s + p coexisting phase is enlarged with a small or medium back-reaction parameter but is reduced in the strong back-reaction cases. (orig.)

  17. Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei

    International Nuclear Information System (INIS)

    Dupuis, M.

    2006-01-01

    When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)

  18. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    Science.gov (United States)

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (phistory of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  19. Antibiotic-Related Adverse Drug Reactions at a Tertiary Care Hospital in South Korea

    Directory of Open Access Journals (Sweden)

    In Young Jung

    2017-01-01

    Full Text Available Background. Adverse drug reactions (ADRs are any unwanted/uncomfortable effects from medication resulting in physical, mental, and functional injuries. Antibiotics account for up to 40.9% of ADRs and are associated with several serious outcomes. However, few reports on ADRs have evaluated only antimicrobial agents. In this study, we investigated antibiotic-related ADRs at a tertiary care hospital in South Korea. Methods. This is a retrospective cohort study that evaluated ADRs to antibiotics that were reported at a 2400-bed tertiary care hospital in 2015. ADRs reported by physicians, pharmacists, and nurses were reviewed. Clinical information reported ADRs, type of antibiotic, causality assessment, and complications were evaluated. Results. 1,277 (62.8% patients were considered antibiotic-related ADRs based on the World Health Organization-Uppsala Monitoring Center criteria (certain, 2.2%; probable, 35.7%; and possible, 62.1%. Totally, 44 (3.4% patients experienced serious ADRs. Penicillin and quinolones were the most common drugs reported to induce ADRs (both 16.0%, followed by third-generation cephalosporins (14.9%. The most frequently experienced side effects were skin manifestations (45.1% followed by gastrointestinal disorders (32.6%. Conclusion. Penicillin and quinolones are the most common causative antibiotics for ADRs and skin manifestations were the most frequently experienced symptom.

  20. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions.

    Science.gov (United States)

    Kirilovsky, Diana

    2015-10-01

    Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.

  1. The Role of Psychological Stress Reactions in the Longitudinal Relation Between Workplace Bullying and Turnover.

    Science.gov (United States)

    Nabe-Nielsen, Kirsten; Grynderup, Matias Brødsgaard; Conway, Paul Maurice; Clausen, Thomas; Bonde, Jens Peter; Garde, Anne Helene; Hogh, Annie; Kaerlev, Linda; Török, Eszter; Hansen, Åse Marie

    2017-07-01

    To investigate the association between workplace bullying and change of job/unemployment, and to investigate whether psychological stress reactions constitute a potential pathway linking workplace bullying and change of job/unemployment. We used questionnaire data on workplace bullying and psychological stress reactions and register data on change of job/unemployment. We applied a multiple pathway approach to estimate the proportion of the association between workplace bullying and subsequent change of job/unemployment that was potentially mediated by psychological stress reactions. Workplace bullying was associated with risk of change of job (odds ratio [OR] = 1.35; 95% confidence interval [CI]: 1.06-1.72; 24% potentially mediated by psychological stress reactions) and unemployment (OR = 4.90; 95% CI: 3.18-7.55; 19% potentially mediated by psychological stress reactions). Workplace bullying has important consequences for labor market outcomes. Psychological stress reactions may play a vital role in this process.

  2. The application of selective reaction monitoring confirms dysregulation of glycolysis in a preclinical model of schizophrenia

    Directory of Open Access Journals (Sweden)

    Martins-de-Souza Daniel

    2012-03-01

    Full Text Available Abstract Background Establishing preclinical models is essential for novel drug discovery in schizophrenia. Most existing models are characterized by abnormalities in behavioral readouts, which are informative, but do not necessarily translate to the symptoms of the human disease. Therefore, there is a necessity of characterizing the preclinical models from a molecular point of view. Selective reaction monitoring (SRM has already shown promise in preclinical and clinical studies for multiplex measurement of diagnostic, prognostic and treatment-related biomarkers. Methods We have established an SRM assay for multiplex analysis of 7 enzymes of the glycolysis pathway which is already known to be affected in human schizophrenia and in the widely-used acute PCP rat model of schizophrenia. The selected enzymes were hexokinase 1 (Hk1, aldolase C (Aldoc, triosephosphate isomerase (Tpi1, glyceraldehyde-3-phosphate dehydrogenase (Gapdh, phosphoglycerate mutase 1 (Pgam1, phosphoglycerate kinase 1 (Pgk1 and enolase 2 (Eno2. The levels of these enzymes were analyzed using SRM in frontal cortex from brain tissue of PCP treated rats. Results Univariate analyses showed statistically significant altered levels of Tpi1 and alteration of Hk1, Aldoc, Pgam1 and Gapdh with borderline significance in PCP rats compared to controls. Most interestingly, multivariate analysis which considered the levels of all 7 enzymes simultaneously resulted in generation of a bi-dimensional chart that can distinguish the PCP rats from the controls. Conclusions This study not only supports PCP treated rats as a useful preclinical model of schizophrenia, but it also establishes that SRM mass spectrometry could be used in the development of multiplex classification tools for complex psychiatric disorders such as schizophrenia.

  3. Reactions related to asparaginase infusion in a 10-year retrospective cohort

    OpenAIRE

    Santos, Amanda Cabral dos; Land, Marcelo Gerardin Poirot; Silva, Nathalia Peroni da; Santos, Kelly Oliveira; Lima-Dellamora, Elisangela da Costa

    2017-01-01

    Introduction Although it is an essential component of the treatment of acute lymphoid leukemia in children, asparaginase causes adverse reactions that sometimes make it impossible to use it fully. Hypersensitivity reactions are the most frequent and may lead to early discontinuation of treatment. The present study aimed to investigate suspicions of adverse reactions during the infusion of asparaginase in a pediatric cohort. Methods A retrospective observational study was carried out at a univ...

  4. Mechanical Models of Fault-Related Folding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  5. Study of the Deformation/Interaction Model: How Interactions Increase the Reaction Barrier

    Directory of Open Access Journals (Sweden)

    Zhiling Liang

    2018-01-01

    Full Text Available The interactions (including weak interactions between dienophiles and dienes play an important role in the Diels-Alder reaction. To elucidate the influence of these interactions on the reactivity, a popular DFT functional and a variational DFT functional corrected with dispersion terms are used to investigate different substituent groups incorporated on the dienophiles and dienes. The bond order is used to track the trajectory of the cycloaddition reaction. The deformation/interaction model is used to obtain the interaction energy from the reactant complex to the inflection point until reaching the saddle point. The interaction energy initially increases with a decrease in the interatomic distance, reaching a maximum value, but then decreases when the dienophiles and dienes come closer. Reduced density gradient and chemical energy component analysis are used to analyse the interaction. Traditional transition state theory and variational transition state theory are used to obtain the reaction rates. The influence of tunneling on the reaction rate is also discussed.

  6. Modeling of mass transfer and chemical reactions in a bubble column reactor using a discrete bubble model

    NARCIS (Netherlands)

    Darmana, D.; Deen, N.G.; Kuipers, J.A.M.

    2004-01-01

    A 3D discrete bubble model is adopted to investigate complex behavior involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid bubble column reactor. In this model a continuum description is adopted for the liquid phase and additionally each individual bubble is tracked in a

  7. STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with Python

    OpenAIRE

    Wils, Stefan; Schutter, Erik De

    2009-01-01

    We describe how the use of the Python language improved the user interface of the program STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such models is a complicated process that consists of many phases. Initial versions of STEPS relied on a static input format that did not cleanly separate these phases, limiting modelers in how they could control the simulation and b...

  8. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  9. Modeling a Longitudinal Relational Research Data Systems

    Science.gov (United States)

    Olsen, Michelle D. Hunt

    2010-01-01

    A study was conducted to propose a research-based model for a longitudinal data research system that addressed recommendations from a synthesis of literature related to: (1) needs reported by the U.S. Department of Education, (2) the twelve mandatory elements that define federally approved state longitudinal data systems (SLDS), (3) the…

  10. Models of Man in Industrial Relations Research.

    Science.gov (United States)

    Kaufman, Bruce E.; And Others

    1989-01-01

    Kaufman attempts to identify essential characteristics that distinguish behavioral from nonbehavioral research in industrial relations. He argues that they are distinguished by the psychological model of man that is contained in the theoretical framework used to deduce or test hypotheses. Comments from Lewin, Mincer, and Cummings with Kaufman's…

  11. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2003-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on

  12. Influence of diffusive porosity architecture on kinetically-controlled reactions in mobile-immobile models

    Science.gov (United States)

    Babey, T.; Ginn, T. R.; De Dreuzy, J. R.

    2014-12-01

    Solute transport in porous media may be structured at various scales by geological features, from connectivity patterns of pores to fracture networks. This structure impacts solute repartition and consequently reactivity. Here we study numerically the influence of the organization of porous volumes within diffusive porosity zones on different reactions. We couple a mobile-immobile transport model where an advective zone exchanges with diffusive zones of variable structure to the geochemical modeling software PHREEQC. We focus on two kinetically-controlled reactions, a linear sorption and a nonlinear dissolution of a mineral. We show that in both cases the structure of the immobile zones has an important impact on the overall reaction rates. Through the Multi-Rate Mass Transfer (MRMT) framework, we show that this impact is very well captured by residence times-based models for the kinetic linear sorption, as it is mathematically equivalent to a modification of the initial diffusive structure; Consequently, the overall reaction rate could be easily extrapolated from a conservative tracer experiment. The MRMT models however struggle to reproduce the non-linearity and the threshold effects associated with the kinetic dissolution. A slower reaction, by allowing more time for diffusion to smooth out the concentration gradients, tends to increase their relevance. Figure: Left: Representation of a mobile-immobile model with a complex immobile architecture. The mobile zone is indicated by an arrow. Right: Total remaining mass of mineral in mobile-immobile models and in their equivalent MRMT models during a flush by a highly under-saturated solution. The models only differ by the organization of their immobile porous volumes.

  13. Characteristics of the probability function for three random-walk models of reaction--diffusion processes

    International Nuclear Information System (INIS)

    Musho, M.K.; Kozak, J.J.

    1984-01-01

    A method is presented for calculating exactly the relative width (sigma 2 )/sup 1/2// , the skewness γ 1 , and the kurtosis γ 2 characterizing the probability distribution function for three random-walk models of diffusion-controlled processes. For processes in which a diffusing coreactant A reacts irreversibly with a target molecule B situated at a reaction center, three models are considered. The first is the traditional one of an unbiased, nearest-neighbor random walk on a d-dimensional periodic/confining lattice with traps; the second involves the consideration of unbiased, non-nearest-neigh bor (i.e., variable-step length) walks on the same d-dimensional lattice; and, the third deals with the case of a biased, nearest-neighbor walk on a d-dimensional lattice (wherein a walker experiences a potential centered at the deep trap site of the lattice). Our method, which has been described in detail elsewhere [P.A. Politowicz and J. J. Kozak, Phys. Rev. B 28, 5549 (1983)] is based on the use of group theoretic arguments within the framework of the theory of finite Markov processes

  14. Stigma-related stress, shame and avoidant coping reactions among members of the general population with elevated symptom levels.

    Science.gov (United States)

    Schibalski, J V; Müller, M; Ajdacic-Gross, V; Vetter, S; Rodgers, S; Oexle, N; Corrigan, P W; Rössler, W; Rüsch, N

    2017-04-01

    It is unclear whether mental illness stigma affects individuals with subthreshold syndromes outside clinical settings. We therefore investigated the role of different stigma variables, including stigma-related stress and shame reactions, for avoidant stigma coping among members of the general population with elevated symptom levels. Based on a representative population survey, general stress resilience, stigma variables, shame about having a mental illness as well as avoidant stigma coping (secrecy and social withdrawal) were assessed by self-report among 676 participants with elevated symptom levels. Stigma variables and resilience were examined as predictors of avoidant stigma coping in a path model. Increased stigma stress was predicted by lower general stress resilience as well as by higher levels of perceived stigma, group identification and perceived legitimacy of discrimination. More shame was associated with higher perceived legitimacy. Lower resilience as well as more perceived stigma, group identification and perceived legitimacy predicted avoidant coping. Stigma stress partly mediated effects of resilience, perceived stigma and group identification on avoidant coping; shame partly mediated effects of perceived legitimacy on coping. Stigma stress and shame were also directly and positively related to avoidant stigma coping. Analyses were adjusted for symptoms, neuroticism and sociodemographic variables. Stigma may affect a larger proportion of the population than previously thought because stigma variables predicted secrecy and withdrawal among members of the general population with elevated, but overall mild symptom levels. Avoidant stigma coping likely has harmful effects, potentially exacerbating pre-existing psychological distress and undermining social networks. This highlights the need to reduce public stigma as well as to support individuals with subthreshold syndromes in their coping with stigma stress and shame reactions. Copyright © 2017

  15. [Predictive analysis on Shenmai injection-induced adverse reactions with Logistic model and ROC curve].

    Science.gov (United States)

    Ding, Feng; Shi, Qing-ping; Jiang, Xiao-dong; Liu, Yan; Sang, Ran; Zhu, Jin-xiu; Wei, Sheng-tong; Xin, Zhi-ming; Song, Ru

    2015-04-01

    To study relevant risk factors of Shenmai injection induced adverse reactions by using Logistic model and ROC curve, and made the prediction for the occurrence of relevant adverse reactions/events. Case data of patients treated with Shenmai injection were collected by using the prospective, multi-center, large-sample, nested-case control method, in order to analyze the risk factors of Shenmai injection-induced adverse reactions/events, establish the logistic model and draw the receiver operating characteristic (ROC) curve for risk factors. During the study, 7632 patients (including 3 477 males and 4 155 females) were included, and eight of them suffered adverse reactions/events. Based on a multi-factor Logistic model analysis, the age (> or = 50 years) (OR = 5.061, 95% CI: 2.197-7.924; P = 0.001), the total number of medication days (OR = -1.020, 95% CI: -l.652 - 0.388; P = 0.002) and the single dose (OR = 0.245, 95% CI: 0.127-0.364; P = 0.000) were significant independent risk factors for Shenmai injection-induced adverse reactions/events. According to the results, ROC curves were drawn with age (> or = 50 years), the total number of days of inedication and single dose; The area under ROC curves the joint predictor (0.9753, 95% CI: 0.9443-1.000, P adverse reactions/events included the age (> or = 50 years), the total number of days of medication and single dose. In clinical practice, the age (> or = 50 years), the total number of days of medication and the medication dose can be substituted in the joint predictor calculation formula (P = 1 / [1 + e(-(-21.58 + 5.061 x Xage - 1.020 x Xd + 0.245 x X(mL)] to predict the potential adverse reactions of patients and adjust the dosage regimen.

  16. J/ψ azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    International Nuclear Information System (INIS)

    Prino, F.; Alessandro, B.; Arnaldi, R.; Beole, S.; Chiavassa, E.; De Marco, N.; Gallio, M.; Giubellino, P.; Marzari-Chiesa, A.; Masera, M.; Monteno, M.; Musso, A.; Piccotti, A.; Riccati, L.; Scomparin, E.; Sigaudo, F.; Vercellin, E.; Alexa, C.; Boldea, V.; Constantinescu, S.; Dita, S.; Atayan, M.; Grigoryan, A.A.; Grigoryan, S.; Gulkanyan, H.; Bordalo, P.; Borges, G.; Quintans, C.; Ramos, S.; Santos, H.; Shahoyan, R.; Castanier, C.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Saturnini, P.; Chaurand, B.; Petiau, P.; Cheynis, B.; Guichard, A.; Pizzi, J.R.; Cicalo, C.; De Falco, A.; Masoni, A.; Puddu, G.; Serci, S.; Usai, G.L.; Comets, M.P.; Gerschel, C.; Jouan, D.; Le Bornec, Y.; Mac Cormick, M.; Tarrago, X.; Villatte, L.; Willis, N.; Wu, T.; Cortese, P.; Dellacasa, G.; Ramello, L.; Sitta, M.; Golubeva, M.B.; Guber, F.F.; Karavicheva, T.L.; Kurepin, A.B.; Topilskaya, N.S.; Idzik, M.; Kluberg, L.; Lourenco, C.; Sonderegger, P.

    2009-01-01

    The J/ψ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/ψ mesons at SPS energies. Hence, the measurement of J/ψ elliptic anisotropy, quantified by the Fourier coefficient v 2 of the J/ψ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/ψ suppression observed in Pb-Pb collisions. We present the measured J/ψ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v 2 as a function of the collision centrality and of the J/ψ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100,000 events, distributed in five centrality or p T sub-samples. The extracted v 2 values are significantly larger than zero for non-central collisions and are seen to increase with p T . (orig.)

  17. J/$\\psi$ azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    CERN Document Server

    Prino, F; Alexa, C; Arnaldi, R; Atayan, M; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Castanier, C; Castor, J; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalo, C; Comets, M P; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Fargeix, J; Force, P; Gallio, M; Gerschel, C; Giubellino, P; Golubeva, M B; Grigoryan, A A; Grigoryan, S; Guber, F F; Guichard, A; Gulkanyan, H; Idzik, M; Jouan, D; Karavicheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Mac Cormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Riccati, L; Santos, H; Saturnini, P; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Villatte, L; Willis, N; Wu, T

    2009-01-01

    The J/$\\psi$ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/$\\psi$ mesons at SPS energies. Hence, the measurement of J/$\\psi$ elliptic anisotropy, quantified by the Fourier coefficient v$_2$ of the J/$\\psi$ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/$\\psi$ suppression observed in Pb-Pb collisions. We present the measured J/$\\psi$ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v$_{2}$ as a function of the collision centrality and of the J/$\\psi$ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the ...

  18. Squatting-Related Tibiofemoral Shear Reaction Forces and a Biomechanical Rationale for Femoral Component Loosening

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2014-01-01

    Full Text Available Previous gait studies on squatting have described a rapid reversal in the direction of the tibiofemoral joint shear reaction force when going into a full weight-bearing deep knee flexion squat. The effects of such a shear reversal have not been considered with regard to the loading demand on knee implants in patients whose activities of daily living require frequent squatting. In this paper, the shear reversal effect is discussed and simulated in a finite element knee implant-bone model, to evaluate the possible biomechanical significance of this effect on femoral component loosening of high flexion implants as reported in the literature. The analysis shows that one of the effects of the shear reversal was a switch between large compressive and large tensile principal strains, from knee extension to flexion, respectively, in the region of the anterior flange of the femoral component. Together with the known material limits of cement and bone, this large mismatch in strains as a function of knee position provides new insight into how and why knee implants may fail in patients who perform frequent squatting.

  19. Development of a prediction model of severe reaction in boiled egg challenges.

    Science.gov (United States)

    Sugiura, Shiro; Matsui, Teruaki; Nakagawa, Tomoko; Sasaki, Kemal; Nakata, Joon; Kando, Naoyuki; Ito, Komei

    2016-07-01

    We have proposed a new scoring system (Anaphylaxis SCoring Aichi: ASCA) for a quantitative evaluation of the anaphylactic reaction that is observed in an oral food challenge (OFC). Furthermore, the TS/Pro (Total Score of ASCA/cumulative protein dose) can be a marker to represent the overall severity of a food allergy. We aimed to develop a prediction model for a severe allergic reaction that is provoked in a boiled egg white challenge. We used two separate datasets to develop and validate the prediction model, respectively. The development dataset included 198 OFCs, that tested positive. The validation dataset prospectively included 140 consecutive OFCs, irrespective of the result. A 'severe reaction' was defined as a TS/Pro higher than 31 (the median score of the development dataset). A multivariate logistic regression analysis was performed to identify the factors associated with a severe reaction and develop the prediction model. The following four factors were independently associated with a severe reaction: ovomucoid specific IgE class (OM-sIgE: 0-6), aged 5 years or over, a complete avoidance of egg, and a total IgE prediction model. The model showed good discrimination in a receiver operating characteristic analysis; area under the curve (AUC) = 0.84 in development dataset, AUC = 0.85 in validation dataset. The prediction model significantly improved the AUC in both datasets compared to OM-sIgE alone. This simple scoring prediction model was useful for avoiding risky OFC. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  20. A robust methodology for kinetic model parameter estimation for biocatalytic reactions

    DEFF Research Database (Denmark)

    Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson

    2012-01-01

    Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme-catalyzed reactions generally include several...... parameters, which are strongly correlated with each other. State-of-the-art methodologies such as nonlinear regression (using progress curves) or graphical analysis (using initial rate data, for example, the Lineweaver-Burke plot, Hanes plot or Dixon plot) often incorporate errors in the estimates and rarely...... lead to globally optimized parameter values. In this article, a robust methodology to estimate parameters for biocatalytic reaction kinetic expressions is proposed. The methodology determines the parameters in a systematic manner by exploiting the best features of several of the current approaches...

  1. A Series Solution of the Cauchy Problem for Turing Reaction-diffusion Model

    Directory of Open Access Journals (Sweden)

    L. Päivärinta

    2011-12-01

    Full Text Available In this paper, the series pattern solution of the Cauchy problem for Turing reaction-diffusion model is obtained by using the homotopy analysis method (HAM. Turing reaction-diffusion model is nonlinear reaction-diffusion system which usually has power-law nonlinearities or may be rewritten in the form of power-law nonlinearities. Using the HAM, it is possible to find the exact solution or an approximate solution of the problem. This technique provides a series of functions which converges rapidly to the exact solution of the problem. The efficiency of the approach will be shown by applying the procedure on two problems. Furthermore, the so-called homotopy-Pade technique (HPT is applied to enlarge the convergence region and rate of solution series given by the HAM.

  2. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.

    Science.gov (United States)

    Kocadağlı, Tolgahan; Gökmen, Vural

    2016-11-15

    The study describes the kinetics of the formation and degradation of α-dicarbonyl compounds in glucose/wheat flour system heated under low moisture conditions. Changes in the concentrations of glucose, fructose, individual free amino acids, lysine and arginine residues, glucosone, 1-deoxyglucosone, 3-deoxyglucosone, 3,4-dideoxyglucosone, 5-hydroxymethyl-2-furfural, glyoxal, methylglyoxal and diacetyl concentrations were determined to form a multiresponse kinetic model for isomerisation and degradation reactions of glucose. Degradation of Amadori product mainly produced 1-deoxyglucosone. Formation of 3-deoxyglucosone proceeded directly from glucose and also Amadori product degradation. Glyoxal formation was predominant from glucosone while methylglyoxal and diacetyl originated from 1-deoxyglucosone. Formation of 5-hydroxymethyl-2-furfural from fructose was found to be a key step. Multi-response kinetic modelling of Maillard reaction and caramelisation simultaneously indicated quantitatively predominant parallel and consecutive pathways and rate limiting steps by estimating the reaction rate constants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Negative reactions of men to the loss of power in gender relations: Lilith vs. Eve

    Directory of Open Access Journals (Sweden)

    Miguel Moya

    2012-01-01

    Full Text Available This paper examines the reaction of the man when he sees he is losing power and authority over a woman and it relation with men’s sexist ideology. 83 men participated in the study and were led to believe they were interacting via computer with a woman, and answered a decision-making task about family relationships. All of them were assigned the role of someone with authority and power. In half the cases, the woman accepted the man's decisions, and, in the other half, she did not accept. The results showed that when woman did not accept the decisions of the man, she was perceived more negatively. Moreover, the more hostile sexist participants were, the more they rated negatively their female partner, especially when the woman did not accept their decisions. Hostile sexism acts as a corrective tool against those women who defy the traditionally higher status accorded to men. The valuation that woman receive in their interaction with man is determined by what man feel threatened. These results are of great interest in the field of gender violence, since it is one more step towards explaining why some men use violence to attempt to regain their threatened or lost power.

  4. Animal models of age related macular degeneration

    Science.gov (United States)

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  5. Experimental and theoretical data on ion-molecule-reactions relevant for plasma modelling

    International Nuclear Information System (INIS)

    Hansel, A.; Praxmarer, C.; Lindinger, W.

    1995-01-01

    Despite the fact that the rate coefficients of hundreds of ion-molecule-reactions have been published in the literature, much more data are required for the purpose of plasma modelling. Many ion molecule reactions have rate coefficients, k, as large as the collisional limiting value, k c , i.e. the rate coefficients k c at which ion-neutral collision complexes are formed are close to the actual rate coefficients observed. In the case of the interaction of an ion with a non polar molecule, k c , is determined by the Langevin limiting value k L being typically 10 -9 cm 3 s -1 . However, when ions react with polar molecules k c is predicted by the average dipole orientation (ADO) theory. These classical theories yield accurate rate coefficients at thermal and elevated temperatures for practically all proton transfer as well as for many charge transfer and hydrogen abstraction reactions. The agreement between experimental and calculated values is usually better than ±20% and in the case of proton transfer reactions the agreement seems to be even better as recent investigations have shown. Even the interaction of the permanent ion dipole with non polar and polar neutrals can be taken into account to predict reaction rate coefficients as has been shown very recently in reactions of the highly polar ion ArH 3 + with various neutrals

  6. [Introduction of "the manual for handling disorders due to adverse drug reactions"--focus on the antibiotics related severe adverse drug reactions].

    Science.gov (United States)

    Saito, Mitsuo

    2008-08-01

    Because the drug-induced severe adverse reaction (SAR) is rare and often occur in the unexpected organs, the physician could be unfamiliar to SAR. In that case the early stage of the SAR is easy to overlook. So the Ministry of the Health and Welfare of Japan (MHLW) started the "Comprehensive project to deal with the disorders due to adverse drug reactions" as a four years plan since 2005. In this project, the MHLW published "the manual for handling disorders due to adverse drug reactions" in corporation with the academia. This manual is constituted by two parts, one is intended for the parents, and the other is for the general healthcare providers. In this article, the aim and the progress of the manuals and the brief summary of the SAR induced by the antibiotics will be explained. By the end of the June 2008, 29 manuals have been released, and 16 of them are antibiotics-related. It is needless to say that antibiotics are essential in the modern medical care, close monitoring of the symptom of SAR in untargeted organ is required in use of the antibiotics.

  7. Towards a unified model of neutrino-nucleus reactions for neutrino oscillation experiments

    Science.gov (United States)

    Nakamura, S. X.; Kamano, H.; Hayato, Y.; Hirai, M.; Horiuchi, W.; Kumano, S.; Murata, T.; Saito, K.; Sakuda, M.; Sato, T.; Suzuki, Y.

    2017-05-01

    A precise description of neutrino-nucleus reactions will play a key role in addressing fundamental questions such as the leptonic CP violation and the neutrino mass hierarchy through analyzing data from next-generation neutrino oscillation experiments. The neutrino energy relevant to the neutrino-nucleus reactions spans a broad range and, accordingly, the dominant reaction mechanism varies across the energy region from quasi-elastic scattering through nucleon resonance excitations to deep inelastic scattering. This corresponds to transitions of the effective degree of freedom for theoretical description from nucleons through meson-baryon to quarks. The main purpose of this review is to report our recent efforts towards a unified description of the neutrino-nucleus reactions over the wide energy range; recent overall progress in the field is also sketched. Starting with an overview of the current status of neutrino-nucleus scattering experiments, we formulate the cross section to be commonly used for the reactions over all the energy regions. A description of the neutrino-nucleon reactions follows and, in particular, a dynamical coupled-channels model for meson productions in and beyond the Δ (1232) region is discussed in detail. We then discuss the neutrino-nucleus reactions, putting emphasis on our theoretical approaches. We start the discussion with electroweak processes in few-nucleon systems studied with the correlated Gaussian method. Then we describe quasi-elastic scattering with nuclear spectral functions, and meson productions with a Δ -hole model. Nuclear modifications of the parton distribution functions determined through a global analysis are also discussed. Finally, we discuss issues to be addressed for future developments.

  8. The hydration of slag, part 1: reaction models for blended cement

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2007-01-01

    Reaction models are proposed to quantify the hydration products and to determine the composition of C–S–H from alkali-activated slags (AAS). Products of the slag hydration are first summarized from observations in literature. The main hydration products include C–S–H, hydrotalcite, hydrogarnet, AFm

  9. Influence of heat and chemical reactions on the Sisko fluid model for ...

    African Journals Online (AJOL)

    The present article studies the effects of heat and chemical reactions on the blood flow through tapered artery with a stenosis. The model incorporates Sisko fluid representation for the blood flow through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and ...

  10. Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model

    NARCIS (Netherlands)

    Fernandez, I.; Bickelhaupt, F.M.

    2016-01-01

    The Diels–Alder (DA) cycloaddition reaction has the ability to significantly increase molecular complexity regioselectively and stereospecifically in a single synthetic step. In this review it is discussed how the activation strain model of chemical reactivity reveals the physical factors that

  11. Molecular Modeling as a Self-Taught Component of a Conventional Undergraduate Chemical Reaction Engineering Course

    Science.gov (United States)

    Rothe, Erhard W.; Zygmunt, William E.

    2016-01-01

    We inserted a self-taught molecular modeling project into an otherwise conventional undergraduate chemical-reaction-engineering course. Our objectives were that students should (a) learn with minimal instructor intervention, (b) gain an appreciation for the relationship between molecular structure and, first, macroscopic state functions in…

  12. Modeling interfacial glass-water reactions: recent advances and current limitations

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-01-01

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries-pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and timescales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the mesoscale changes that occur as the system evolves. These modeling approaches include geochemical simulations (i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer simulations), Monte Carlo simulations, and molecular dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers. New results are presented as examples of each approach. (authors)

  13. Toward a Kinetic Model for Acrylamide Formation in a Glucose-Asparagine Reaction System

    NARCIS (Netherlands)

    Knol, J.J.; Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.L.; Boekel, van M.A.J.S.

    2005-01-01

    A kinetic model for the formation of acrylamide in a glucose-asparagine reaction system is pro-posed. Equimolar solutions (0.2 M) of glucose and asparagine were heated at different tempera-tures (120-200 C) at pH 6.8. Besides the reactants, acrylamide, fructose, and melanoidins were quantified after

  14. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    Science.gov (United States)

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Georgia Institute of Technology; Lu, C [Georgia Institute of Technology; Luo, Jian [Georgia Institute of Technology; Wu, Wei-min [Stanford University; Cheng, H. [Stanford University; Criddle, Craig [Stanford University; Kitanidis, Peter K. [Stanford University; Gu, Baohua [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Brooks, Scott C [ORNL

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  16. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review.

    Science.gov (United States)

    Biffis, Andrea; Centomo, Paolo; Del Zotto, Alessandro; Zecca, Marco

    2018-02-28

    Cross-couplings and related reactions are a class of highly efficient synthetic protocols that are generally promoted by molecular Pd species as catalysts. However, catalysts based on more or less highly dispersed Pd metal have been also employed for this purpose, and their use, which was largely limited to the Heck reaction until the turn of the century, has been extended in recent years to most reactions of this class. This review provides a critical overview on these recent applications of Pd metal catalysts. Particular attention is devoted to the discussion of the mechanistic pathways that have been proposed to explain the catalytic role of Pd metal. Furthermore, the most outstanding Pd metal based catalytic systems that have emerged are illustrated, together with the development of novel approaches to boost the reactivity of Pd metal. A section summarizing the current industrial applications of Pd metal catalyzed reactions of this kind concludes the review.

  17. Constitutive relations for multiphase flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, H.; Vaeth, L.; Thurnay, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    The constitutive relations that are used in the three-field fluid dynamics code IVA-KA for determining the drag in three-phase mixtures and the heat transferred by radiation are described together with some comparisons of calculational results with experiments. In these experiments (QUEOS), large quantities of solid particles are injected into water. Potential deficiencies of the present drag model are discussed. (author)

  18. The Effects of Mixing, Reaction Rates, and Stoichiometry on Yield for Mixing Sensitive Reactions—Part I: Model Development

    Directory of Open Access Journals (Sweden)

    Syed Imran A. Shah

    2012-01-01

    Full Text Available There are two classes of mixing sensitive reactions: competitive-consecutive and competitive-parallel. The yield of desired product from these coupled reactions depends on how fast the reactants are brought together. Recent experimental results have suggested that the mixing effect may depend strongly on the stoichiometry of the reactions. To investigate this, a 1D, dimensionless, reaction-diffusion model at the micromixing scale was developed. Assuming constant mass concentration and mass diffusivities, systems of PDE's were derived on a mass fraction basis for both types of reactions. Two dimensionless reaction rate ratios and a single general Damköhler number emerged from the analysis. The resulting dimensionless equations were used to investigate the effects of mixing, reaction rate ratio, and reaction stoichiometry. As expected, decreasing either the striation thickness or the dimensionless rate ratio maximizes yield, the reaction stoichiometry has a considerable effect on yield, and all three variables interact strongly.

  19. Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models

    Directory of Open Access Journals (Sweden)

    Narcisa Apreutesei

    2014-05-01

    Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.

  20. Age related differences in reaction time components and diffusion properties of normal-appearing white matter in healthy adults.

    Science.gov (United States)

    Yang, Yiqin; Bender, Andrew R; Raz, Naftali

    2015-01-01

    Deterioration of the white matter (WM) is viewed as the neural substrate of age differences in speed of information processing (reaction time, RT). However, the relationship between WM and RT components is rarely examined in healthy aging. We assessed the relationship between RT components derived from the Ratcliff diffusion model and micro-structural properties of normal-appearing WM (NAWM) in 90 healthy adults (age 18-82 years). We replicated all major extant findings pertaining to age differences in RT components and WM: lower drift rate, greater response conservativeness, longer non-decision time, lower fractional anisotropy (FA), greater mean (MD), axial (AD) and radial (RD) diffusivity were associated with advanced age. Age differences in anterior regions of the cerebral WM exceeded those in posterior regions. However, the only relationship between RT components and WM was the positive association between DR in the body of the corpus callosum and non-decision time. Thus, in healthy adults, age differences in NAWM diffusion properties are not a major contributor to age differences in RT components. Longitudinal studies with more precise and specific estimates of regional myelin content and evaluation of the contribution of age-related vascular risk factors are necessary to understand cerebral substrates of age-related cognitive slowing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)

    2013-01-11

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  2. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    Science.gov (United States)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  3. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    Science.gov (United States)

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The Role of Psychological Stress Reactions in the Longitudinal Relation Between Workplace Bullying and Turnover

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Kirsten; Grynderup, Matias Brødsgaard; Conway, Paul Maurice

    2017-01-01

    OBJECTIVES: To investigate the association between workplace bullying and change of job/unemployment, and to investigate whether psychological stress reactions constitute a potential pathway linking workplace bullying and change of job/unemployment. METHODS: We used questionnaire data on workplace...... bullying and psychological stress reactions and register data on change of job/unemployment. We applied a multiple pathway approach to estimate the proportion of the association between workplace bullying and subsequent change of job/unemployment that was potentially mediated by psychological stress...... reactions. RESULTS: Workplace bullying was associated with risk of change of job (odds ratio [OR] = 1.35; 95% confidence interval [CI]: 1.06-1.72; 24% potentially mediated by psychological stress reactions) and unemployment (OR = 4.90; 95% CI: 3.18-7.55; 19% potentially mediated by psychological stress...

  5. Reentry blackout prediction for atmospheric reentry demonstrator mission considering uncertainty in chemical reaction rate model

    Science.gov (United States)

    Jung, Minseok; Kihara, Hisashi; Abe, Ken-ichi; Takahashi, Yusuke

    2018-01-01

    A numerical simulation model of plasma flows and electromagnetic waves around a vehicle was developed to predict a radio frequency blackout. Plasma flows in the shock layer and the wake region were calculated using a computational fluid dynamics technique with a three-dimensional model. A finite-catalytic wall condition known to affect plasma properties, such as the number density of electrons, was considered for accurate prediction. A parametric study was performed to investigate the effect of uncertainty in the chemical reaction rate model on evaluating a radio frequency blackout. The behavior of electromagnetic waves in plasma was investigated using a frequency-dependent finite-difference time-domain method. Numerical simulations of reentry blackout were performed for the Atmospheric Reentry Demonstrator mission at various altitudes. The plasma flows and the complex movement of electromagnetic waves around the Atmospheric Reentry Demonstrator vehicle were clarified. The predicted signal loss profile was then directly compared with the experimental flight data to validate the present models. The numerical results generally reproduced the trends over altitudes of the measured data. It is suggested that the present simulation model can be used to investigate the radio frequency blackout and signal loss of electromagnetic waves in the communication of a reentry vehicle. It was confirmed that high associative ionization reaction rates contribute to reducing the electron density in the wake region and radio frequency blackout. It is suggested that the accuracy of predicting the signal loss improved when considering the uncertainty in the chemical reaction model for associative ionizations.

  6. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  7. ANALYZING THE HYDRO DYNAMICS AND THE CHEMICAL REACTIONS IN PULP DIGESTER SYSTEMS USING CFD MODELLING

    OpenAIRE

    Pourian, Bijan

    2011-01-01

    The aim of this thesis is to use differential analysis and finite volume method (FVM) to model and analyze a continuous pulp digester in order to create a detailed picture of the flow behaviour and chemical reactions in the digester. This information will be used to optimize wood chip flow and reactions and to diagnose and avoid faults such as hang-ups and channelling. As digesters increase in size, the importance of control of the liquor flow in the wood chip bed also increases. Pulping reac...

  8. Mathematical modelling of light-induced electric reaction of Cucurbita pepo L. leaves

    Directory of Open Access Journals (Sweden)

    Jan Stolarek

    2014-01-01

    Full Text Available The bioelectRIc reactions of 14-16 day old plants of pumpkin (Cucurbita pepo L. and internodal cells of Nitellopsis obtusa to the action of visible and ultraviolet light (UV-C were studied. The possibility of analyzing the bioelectric reaction of pumpkin plants induced by visible light by means of mathematical modelling using a linear differential equation of the second order was considered. The solution of this equation (positive and negative functions can, in a sufficient way, reflect the participation of H+ and CI- ions in the generation of the photoelectric response in green plant cells.

  9. Modeling radical edge-site reactions of biochar in CO2/water solution under ultrasonic treatment

    Science.gov (United States)

    Zubatiuk, Tetiana; Sajjadi, Baharak; Hill, Glake; Leszczynska, Danuta; Chen, Wei-Yin; Leszczynski, Jerzy

    2017-12-01

    We report results of theoretical evaluation of the mechanisms of possible radical reactions on the edge-site of biochar with CO2,SUP>·-, OH ˙ , and H ˙ in irradiated aqueous solution. The computational studies were performed for model poly aromatic systems. Obtained mechanisms reflect one of the routes of the oxygen loss accompanied by increase of hydrogen content, as observed in photochemical experiment. The reaction of CO2·- with the edge site of biochar mainly leads to reduced rather than oxidized products. The mechanism of CO2 capturing is mapped by different routes of one-electron reduction and radical addition to the aromatic ring.

  10. Learning Statistical Patterns in Relational Data Using Probabilistic Relational Models

    National Research Council Canada - National Science Library

    Koller, Daphne

    2005-01-01

    .... This effort focused on developing undirected probabilistic models for representing and learning graph patterns, learning patterns involving links between objects, learning discriminative models...

  11. Collection of human reaction times and supporting health related data for analysis of cognitive and physical performance

    Directory of Open Access Journals (Sweden)

    Petr Brůha

    2018-04-01

    Full Text Available Smoking, excessive drinking, overeating and physical inactivity are well-established risk factors decreasing human physical performance. Moreover, epidemiological work has identified modifiable lifestyle factors, such as poor diet and physical and cognitive inactivity that are associated with the risk of reduced cognitive performance. Definition, collection and annotation of human reaction times and suitable health related data and metadata provides researchers with a necessary source for further analysis of human physical and cognitive performance. The collection of human reaction times and supporting health related data was obtained from two groups comprising together 349 people of all ages - the visitors of the Days of Science and Technology 2016 held on the Pilsen central square and members of the Mensa Czech Republic visiting the neuroinformatics lab at the University of West Bohemia. Each provided dataset contains a complete or partial set of data obtained from the following measurements: hands and legs reaction times, color vision, spirometry, electrocardiography, blood pressure, blood glucose, body proportions and flexibility. It also provides a sufficient set of metadata (age, gender and summary of the participant's current life style and health to allow researchers to perform further analysis. This article has two main aims. The first aim is to provide a well annotated collection of human reaction times and health related data that is suitable for further analysis of lifestyle and human cognitive and physical performance. This data collection is complemented with a preliminarily statistical evaluation. The second aim is to present a procedure of efficient acquisition of human reaction times and supporting health related data in non-lab and lab conditions. Keywords: Reaction time, Health related data, Cognitive and physical performance, Chronic disease, Data acquisition, Data collection, Software for data collection

  12. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins II reactions at side-chain loci in model systems

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1983-11-01

    The major emphasis in radiation biology at the molecular level has been on the nucleic acid component of the nucleic acid-protein complex because of its primary genetic importance. But there is increasing evidence that radiation damage to the protein component also has important biological implications. Damage to capsid protein now appears to be a major factor in the radiation inactivation of phage and other viruses. And, there is increasing evidence that radiation-chemical change in the protein component of chromation leads to changes in the stability of the repressor-operator complexes involved in gene expression. Knowledge of the radiation chemistry of protein is also of importance in other fields such as the application of radiation sterilization to foods and drugs. Recent findings that a class of compounds, the α,α'-diaminodicarboxylic acids, not normally present in food proteins, are formed in protein radiolysis is of particular significance since certain of their peptide derivatives have been showing to exhibit immunological activity. The purpose of this review is to bring together and to correlate our present knowledge of products and mechanisms in the radiolysis of peptides, polypeptides and proteins both aqueous and solid-state. In part 1 we presented a discussion of the radiation-induced reactions of the peptide main-chain in model peptide and polypeptide systems. Here in part 2 the emphasis is on the competing radiation chemistry at side-chain loci of peptide derivatives of aliphatic, aromatic-unsaturated and sulfur-containing amino acids in similar systems. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis, and ESR spectroscopy are included

  13. [Analysis on the concepts related to adverse events and adverse reactions of acupuncture].

    Science.gov (United States)

    Wang, Chuan; Liu, Baoyan; Liu, Yan; He, Liyun; Li, Hongjiao; Liu, Jia

    2018-01-12

    With the increasing popularity of acupuncture therapy in the world, the safety of acupuncture has attracted more attention. The objective and impartial assessment of the safety of acupuncture becomes very important. The "adverse events of acupuncture" and "adverse reactions of acupuncture" are the common concepts in the research of acupuncture safety. In the paper, on the basis of the conceptual characteristics of "adverse events" and "adverse reactions" and in combination with the particular characteristics of acupuncture itself, the connation and features of the concepts of the "adverse events of acupuncture" and "adverse reactions of acupuncture" are analyzed. The interaction and differences are summarized. Both "adverse events of acupuncture" and "adverse reactions of acupuncture" are in the category of adverse medical events. The "adverse events of acupuncture" includes the damages induced by acupuncture therapy and also those without relationship with acupuncture therapy. The "adverse reactions of acupuncture" refers to the adverse outcomes induced by acupuncture therapy specially. It has the definite relationship with acupuncture therapy. Hence, the application of "adverse reactions of acupuncture" is more objective and accurate in the assessment of acupuncture safety.

  14. Development of analysis model for mid and long-term effects of sodium water reaction event in LMR

    International Nuclear Information System (INIS)

    Eoh, Jae Hyuk; Sim, Yoon Sub; Kim, Seong O; Kim, Yeon Sik; Kim, Eui Kwang; Wi, Myung Hwan

    2002-04-01

    The Sodium-Water Reaction(SWR) is important in the design consideration of a LMR steam generator. To develop the analysis code for long-term effects of SWR, investigation on the characteristics of various SWR analysis code and the assessment of an analysis model for long term effects were performed. In an event of SWR, pressure spikes of wave propagation occur at its initial stage and last for a very short time, and then bulk motion of fluid and reaction products is progressed and lasts for a long time. In a case SWR occurs, a number of hydrogen bubbles produced and sodium is entrained into the bubbles through the gas-liquid bubble interfaces by evaporation or diffusion. The partial pressure of the sodium in a hydrogen bubble is determined as a function of the bubble size, temperature, and pressure, and is rapidly decreased as its size increased. From this, it can be considered that the bulk motion in the later phase of SWR is an axial motion caused by expansion of a single-phase hydrogen gas bubble produced by a reaction in the vicinity of the leak site. Through this investigation, a preliminary simple analysis model for long-term effects of SWR was set up and sensitivity study using the system design parameters such as pressure and temperature of IHTS for KALIMER was performed. Also, a simpler analysis model using the cover gas pressure change related to the production of a hydrogen bubble in a steam generator was developed from the analyses results. These simple analysis models of the reaction site and the pressure behavior with hydrogen production can be used to develop the mid and long-term analysis code for SWR in the KALIMER steam generator design

  15. Computational comparison of quantum-mechanical models for multistep direct reactions

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1993-01-01

    We have carried out a computational comparison of all existing quantum-mechanical models for multistep direct (MSD) reactions. The various MSD models, including the so-called Feshbach-Kerman-Koonin, Tamura-Udagawa-Lenske and Nishioka-Yoshida-Weidenmueller models, have been implemented in a single computer system. All model calculations thus use the same set of parameters and the same numerical techniques; only one adjustable parameter is employed. The computational results have been compared with experimental energy spectra and angular distributions for several nuclear reactions, namely, 90 Zr(p,p') at 80 MeV, 209 Bi(p,p') at 62 MeV, and 93 Nb(n,n') at 25.7 MeV. In addition, the results have been compared with the Kalbach systematics and with semiclassical exciton model calculations. All quantum MSD models provide a good fit to the experimental data. In addition, they reproduce the systematics very well and are clearly better than semiclassical model calculations. We furthermore show that the calculated predictions do not differ very strongly between the various quantum MSD models, leading to the conclusion that the simplest MSD model (the Feshbach-Kerman-Koonin model) is adequate for the analysis of experimental data

  16. SOA formation from partitioning and heterogeneous reactions: model study in the presence of inorganic species.

    Science.gov (United States)

    Jang, Myoseon; Czoschke, Nadine M; Northcross, Amanda L; Cao, Gang; Shaof, David

    2006-05-01

    A predictive model for secondary organic aerosol (SOA) formation by both partitioning and heterogeneous reactions was developed for SOA created from ozonolysis of alpha-pinene in the presence of preexisting inorganic seed aerosols. SOA was created in a 2 m3 polytetrafluoroethylene film indoor chamber under darkness. Extensive sets of SOA experiments were conducted varying humidity, inorganic seed compositions comprising of ammonium sulfate and sulfuric acid, and amounts of inorganic seed mass. SOA mass was decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). The reaction rate constant for OM(H) production was subdivided into three categories (fast, medium, and slow) to consider different reactivity of organic products for the particle phase heterogeneous reactions. The influence of particle acidity on reaction rates was treated in a previous semiempirical model. Model OM(H) was developed with medium and strong acidic seed aerosols, and then extrapolated to OM(H) in weak acidic conditions, which are more relevant to atmospheric aerosols. To demonstrate the effects of preexisting glyoxal derivatives (e.g., glyoxal hydrate and dimer) on OM(H), SOA was created with a seed mixture comprising of aqueous glyoxal and inorganic species. Our results show that heterogeneous SOA formation was also influenced by preexisting reactive glyoxal derivatives.

  17. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  18. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    Science.gov (United States)

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Investigation of nucleon-induced reactions in the Fermi energy domain within the microscopic DYWAN model

    Energy Technology Data Exchange (ETDEWEB)

    Sebille, F.; Bonilla, C. [SUBATECH, Universite de Nantes, CNRS/IN2P3, 44 - Nantes (France); Blideanu, V.; Lecolley, J.F. [Laboratoire de Physique Corpusculaire, ENSICAEN, Universite de Caen, IN2P3-CNRS, 14 - Caen (France)

    2004-06-01

    A microscopic investigation of nucleon-induced reactions is addressed within the DYWAN model, which is based on the projection methods of out of equilibrium statistical physics and on the mathematical theory of wavelets. Due to a strongly compressed representation of the fermionic wave-functions, the numerical simulations of the nucleon transport in target are therefore able to preserve the quantum nature of the colliding system, as well as a least biased many-body information needed to keep track of the cluster formation. A special attention is devoted to the fingerprints of the phase space topology induced by the fluctuations of the self-consistent mean-field. Comparisons be ween theoretical results and experimental data point out that ETDHF type approaches are well suited to describe reaction mechanisms in the Fermi energy domain. The observed sensitivity to physical effects shows that the nucleon-induced reactions provide a valuable probe of the nuclear interaction in this range of energy. (authors)

  20. A reaction-diffusion model of CO2 influx into an oocyte

    Science.gov (United States)

    Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela

    2012-01-01

    We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674

  1. Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dong Ding; David Benson; Amir Paster; Diogo Bolster

    2012-01-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle

  2. Understanding recovery in children following traffic-related injuries: exploring acute traumatic stress reactions, child coping, and coping assistance.

    Science.gov (United States)

    Marsac, Meghan L; Donlon, Katharine A; Hildenbrand, Aimee K; Winston, Flaura K; Kassam-Adams, Nancy

    2014-04-01

    Millions of children incur potentially traumatic physical injuries every year. Most children recover well from their injury but many go on to develop persistent traumatic stress reactions. This study aimed to describe children's coping and coping assistance (i.e., the ways in which parents and peers help children cope) strategies and to explore the association between coping and acute stress reactions following an injury. Children (N = 243) rated their acute traumatic stress reactions within one month of injury and reported on coping and coping assistance six months later. Parents completed a measure of coping assistance at the six-month assessment. Children used an average of five to six coping strategies (out of 10), with wishful thinking, social support, and distraction endorsed most frequently. Child coping was associated with parent and peer coping assistance strategies. Significant acute stress reactions were related to subsequent child use of coping strategies (distraction, social withdrawal, problem-solving, blaming others) and to child report of parent use of distraction (as a coping assistance strategy). Findings suggest that children's acute stress reactions may influence their selection of coping and coping assistance strategies. To best inform interventions, research is needed to examine change in coping behaviors and coping assistance over time, including potential bidirectional relationships between trauma reactions and coping.

  3. [Pilot study evaluating the ratio of adverse drug reactions related to antimicrobials over their consumption in 2012-2013].

    Science.gov (United States)

    Bérard, C; Cerruti, L; Cotteret, C; Lebel, D; Bussières, J-F

    2016-03-01

    As part of our antimicrobials stewardship program, we were interested in the use of antimicrobials and prevalence of adverse drug reactions associated with the use of these drugs. The retrospective and descriptive study was conducted over a one year-period between April 1st 2012 and March 31st 2013 in a mother-child Hospital. We determined the ratio: number of adverse drug reactions over 10,000 defined daily dose or 10,000days of therapy. We identified the ratios higher than average for which the confidence interval did not cross the calculated average. The severity of the adverse drug reactions was codified using the Common Terminology Criteria for Adverse Events. We found 570 adverse drug reactions including 100 (17.5%) adverse drug reactions related to antimicrobials during the financial year 2012-2013. It represented 96 patients. Thus, five antimicrobials, for which the confidence interval does not cross the calculated average value, may be targeted in risk management because they have a higher ratio than average: piperacillin (290 [113-722]), valganciclovir (244 [43-1260]), ceftriaxone (114 [56-234]), acyclovir (76 [26-220]) and liposomal amphotericin B (72 [20-258]). In a mother-child university hospital, we calculated a ratios of 19 [15-23] and 13 [10-15], it allows us targeting some antimicrobials in our approach to prevention and management of adverse drug reactions. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  4. Analysis of Milk Production Traits in Early Lactation Using a Reaction Norm Model with Unknown Covariates

    DEFF Research Database (Denmark)

    Mahdi Shariati, Mohammad; Su, Guosheng; Madsen, Per

    2007-01-01

    The reaction norm model is becoming a popular approach to study genotype x environment interaction (GxE), especially when there is a continuum of environmental effects. These effects are typically unknown, and an approximation that is used in the literature is to replace them by the phenotypic...... means of each environment. It has been shown that this method results in poor inferences and that a more satisfactory alternative is to infer environmental effects jointly with the other parameters of the model. Such a reaction norm model with unknown covariates and heterogeneous residual variances...... across herds was fitted to milk, protein, and fat yield of first-lactation Danish Holstein cows to investigate the presence of GxE. Data included 188,502 first test-day records from 299 herds and 3,775 herd-years in a time period ranging from 1991 to 2003. Variance components and breeding values were...

  5. Modeling spallation reactions in tungsten and uranium targets with the Geant4 toolkit*

    Directory of Open Access Journals (Sweden)

    Greiner Walter

    2012-02-01

    Full Text Available We study primary and secondary reactions induced by 600 MeV proton beams in monolithic cylindrical targets made of natural tungsten and uranium by using Monte Carlo simulations with the Geant4 toolkit [1–3]. Bertini intranuclear cascade model, Binary cascade model and IntraNuclear Cascade Liège (INCL with ABLA model [4] were used as calculational options to describe nuclear reactions. Fission cross sections, neutron multiplicity and mass distributions of fragments for 238U fission induced by 25.6 and 62.9 MeV protons are calculated and compared to recent experimental data [5]. Time distributions of neutron leakage from the targets and heat depositions are calculated.

  6. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    Liu, X.; Ortoleva, P.

    1996-01-01

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  7. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R.; Myers, Samuel Maxwell,

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  8. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  9. Child Physical Abuse and the Related PTSD in Taiwan: The Role of Chinese Cultural Background and Victims' Subjective Reactions

    Science.gov (United States)

    Chou, Chia-Ying; Su, Yi-Jen; Wu, Ho-Mao; Chen, Sue-Huei

    2011-01-01

    Objective: This study aimed to investigate child physical abuse (CPA) while taking into account the more rigorous definitions of CPA in the Chinese societies. The prevalence of CPA and CPA-related PTSD were estimated, together with the examination of peri-traumatic subjective reactions and their impacts on PTSD. Methods: In a Taiwanese sample of…

  10. Diagnosis of ventricular drainage-related bacterial meningitis by broad-range real-time polymerase chain reaction

    DEFF Research Database (Denmark)

    Deutch, Susanna; Dahlberg, Daniel; Hedegaard, Jesper

    2007-01-01

    OBJECTIVE: To compare a broad-range real-time polymerase chain reaction (PCR) diagnostic strategy with culture to evaluate additional effects on the etiological diagnosis and the quantification of the bacterial load during the course of ventricular drainage-related bacterial meningitis (VR-BM). M...

  11. Psycho-social reactions of Palestinian families in Israel and the West Bank following war-related losses.

    Science.gov (United States)

    Abu-Baker, Khwala

    2012-01-01

    to identify psycho-social reactions of Palestinian families to personal losses during the Second Intifada in the West Bank and the Second Lebanese war in Israel. Narratives were collected from support group participants in the west Bank and in individual and family therapy in Israel. the narratives were qualitatively analyzed to identify themes relating to psycho-social reactions to war losses. themes emerging from the west Bank support groups' narratives mostly mirrored those gathered in the therapy sessions in Israel. In both sites, bereaved families exhibited similar psycho-social reactions to war-related losses. Both groups coped with loss collectively and in congruence with their common ethno-cultural background. Also, religious beliefs provided explanations. the loss experiences were ongoing and accumulative for participants in the west Bank, while in Israel it was mostly a single event. Both studies referred solely to war-related losses. the relationships of each population group with the State of Israel shaped their political, national and personal reactions to the loss. Families of "shahids/martyrs" in the west Bank gained socio-political respect, while in Israel, Arab citizens suffering war-related losses did not receive the same political respect from Israeli society, but were awarded sympathy by their communities. In Israel the situation is further complicated since the State is both the enemy and provider of material support, comfort and rescue.

  12. Child-rearing practices toward children with hemophilia: The relative importance of clinical characteristics and parental emotional reactions

    NARCIS (Netherlands)

    Banis, Hendrika; Suurmeijer, Th.P.B.M.; van Peer, D.R.

    This study addresses the relative importance of clinical characteristics of the child and parental emotional reactions, to child-rearing practices towards children who suffer from hemophilia. The variables were assessed in a Dutch sample of 108 zero-to-twelve-year-old boys with hemophilia and their

  13. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways

    International Nuclear Information System (INIS)

    Jin, Biao; Rolle, Massimo

    2016-01-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. - Highlights: • Mechanism-based, position-specific isotope modeling of micropollutants degradation. • Simultaneous description of concentration and primary and secondary isotope effects. • Key features of the model are demonstrated with three illustrative examples. • Model as a tool to explore reaction mechanisms and to design experiments. - We propose a modeling approach incorporating mechanistic information and

  14. Mercury content in amalgam tattoos of human oral mucosa and its relation to local tissue reactions

    Energy Technology Data Exchange (ETDEWEB)

    Forsell, M.; Larsson, B.; Ljungqvist, A.; Carlmark, B.; Johansson, O

    1998-02-01

    Mucosal biopsies from 48 patients with and 9 without amalgam tattoos were analysed with respect to their mercury content, distribution of mercury in the tissue, and histological tissue reactions. The distribution of mercury was assessed by auto-metallography (AMG), a silver amplification technique. The mercury content was determined by energy dispersive X-ray fluorescence (EDXRF), a multielemental analysis. Mercury was observed in connective tissue where it was confined to fibroblasts and macrophages, in vessel walls and in structures with the histological character of nerve fibres. A correlation was found between the histopathological tissue reaction, the type of mercury deposition, the intensity of the AMG reaction, and the mercury content. Mercury was also found in patients with amalgam dental fittings but without amalgam tattoos. (au) 24 refs.

  15. Mercury content in amalgam tattoos of human oral mucosa and its relation to local tissue reactions

    International Nuclear Information System (INIS)

    Forsell, M.; Larsson, B.; Ljungqvist, A.; Carlmark, B.; Johansson, O.

    1998-01-01

    Mucosal biopsies from 48 patients with and 9 without amalgam tattoos were analysed with respect to their mercury content, distribution of mercury in the tissue, and histological tissue reactions. The distribution of mercury was assessed by auto-metallography (AMG), a silver amplification technique. The mercury content was determined by energy dispersive X-ray fluorescence (EDXRF), a multielemental analysis. Mercury was observed in connective tissue where it was confined to fibroblasts and macrophages, in vessel walls and in structures with the histological character of nerve fibres. A correlation was found between the histopathological tissue reaction, the type of mercury deposition, the intensity of the AMG reaction, and the mercury content. Mercury was also found in patients with amalgam dental fittings but without amalgam tattoos. (au)

  16. Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models.

    Science.gov (United States)

    Muñoz, Emir; Novácek, Vít; Vandenbussche, Pierre-Yves

    2017-08-18

    Timely identification of adverse drug reactions (ADRs) is highly important in the domains of public health and pharmacology. Early discovery of potential ADRs can limit their effect on patient lives and also make drug development pipelines more robust and efficient. Reliable in silico prediction of ADRs can be helpful in this context, and thus, it has been intensely studied. Recent works achieved promising results using machine learning. The presented work focuses on machine learning methods that use drug profiles for making predictions and use features from multiple data sources. We argue that despite promising results, existing works have limitations, especially regarding flexibility in experimenting with different data sets and/or predictive models. We suggest to address these limitations by generalization of the key principles used by the state of the art. Namely, we explore effects of: (1) using knowledge graphs-machine-readable interlinked representations of biomedical knowledge-as a convenient uniform representation of heterogeneous data; and (2) casting ADR prediction as a multi-label ranking problem. We present a specific way of using knowledge graphs to generate different feature sets and demonstrate favourable performance of selected off-the-shelf multi-label learning models in comparison with existing works. Our experiments suggest better suitability of certain multi-label learning methods for applications where ranking is preferred. The presented approach can be easily extended to other feature sources or machine learning methods, making it flexible for experiments tuned toward specific requirements of end users. Our work also provides a clearly defined and reproducible baseline for any future related experiments. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Toward the modeling of combustion reactions through discrete element method (DEM) simulations

    Science.gov (United States)

    Reis, Martina Costa; Alobaid, Falah; Wang, Yongqi

    2018-03-01

    In this work, the process of combustion of coal particles under turbulent regime in a high-temperature reaction chamber is modeled through 3D discrete element method (DEM) simulations. By assuming the occurrence of interfacial transport phenomena between the gas and solid phases, one investigates the influence of the physicochemical properties of particles on the rates of heterogeneous chemical reactions, as well as the influence of eddies present in the gas phase on the mass transport of reactants toward the coal particles surface. Moreover, by considering a simplistic chemical mechanism for the combustion process, thermochemical and kinetic parameters obtained from the simulations are employed to discuss some phenomenological aspects of the combustion process. In particular, the observed changes in the mass and volume of coal particles during the gasification and combustion steps are discussed by emphasizing the changes in the chemical structure of the coal. In addition to illustrate how DEM simulations can be used in the modeling of consecutive and parallel chemical reactions, this work also shows how heterogeneous and homogeneous chemical reactions become a source of mass and energy for the gas phase.

  18. Modeling the BZ reaction in gels with chemo-responsive crosslinks

    Science.gov (United States)

    Yashin, Victor V.; Kuksenok, Olga; Balazs, Anna C.

    2010-03-01

    We model chemo-responsive polymer gels, which expand and contract periodically in response to the ongoing oscillatory Belousov-Zhabotinsky (BZ) reaction. This behavior is due to a ruthenium catalyst, which is grafted to the polymers and affects the polymer-solvent interactions as it undergoes the redox oscillations in the course of the reaction. We consider a permanently crosslinked polymer gel that encompasses Ru(terpy)2 catalytic units having both the terpyridine ligands chemically bonded to the network. It is known that oxidation of the Ru metal-ion from Ru(II) to Ru(III) results in the dissociation of the Ru(terpy)2 complexes since the Ru(III) ions form only mono-complexes with terpyridine. Hence, the grafted Ru(terpy)2 units would effectively create crosslinks that break and re-form in the response to the BZ reaction. We modified the Oregonator model for the BZ reaction and took into account that the re-formation of Ru(terpy)2 complexes is frustrated by the gel network. The time-dependent elastic contribution of the Ru(terpy)2 crosslinks was described by the BKZ-type constitutive equation. We report on the results of simulations in 1D. We show, in particular, that compression of the sample leads to stiffening of the gel due to an increase in the crosslink density.

  19. Elementary reaction modeling of reversible CO/CO2 electrochemical conversion on patterned nickel electrodes

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Li, Wenying; Cai, Ningsheng

    2018-03-01

    CO/CO2 are the major gas reactant/product in the fuel electrode of reversible solid oxide cells (RSOC). This study proposes a two-charge-transfer-step mechanism to describe the reaction and transfer processes of CO-CO2 electrochemical conversion on a patterned Ni electrode of RSOC. An elementary reaction model is developed to couple two charge transfer reactions, C(Ni)+O2-(YSZ) ↔ CO(Ni)+(YSZ) +2e- and CO(Ni)+O2-(YSZ) ↔ CO2(Ni)+(YSZ)+2e-, with adsorption/desorption, surface chemical reactions and surface diffusion. This model well validates in both solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes by the experimental data from a patterned Ni electrode with 10 μm stripe width at different pCO (0-0.25 atm), pCO2 (0-0.35 atm) and operating temperature (600-700 °C). This model indicates SOEC mode is dominated by charge transfer step C(Ni)+O2-(YSZ)↔CO(Ni)+(YSZ) +2e-, while SOFC mode by CO(Ni)+ O2-(YSZ)↔CO2(Ni)+(YSZ)+2e- on the patterned Ni electrode. The sensitivity analysis shows charge transfer step is the major rate-determining step for RSOC, besides, surface diffusion of CO and CO2 as well as CO2 adsorption also plays a significant role in the electrochemical reaction of SOEC while surface diffusion of CO and CO2 desorption could be co-limiting in SOFC.

  20. Ocular Toxoplasmosis: Therapy-Related Adverse Drug Reactions and Their Management.

    Science.gov (United States)

    Helfenstein, M; Zweifel, S; Barthelmes, D; Meier, F; Fehr, J; Böni, C

    2017-04-01

    Background There are different treatment options for ocular toxoplasmosis (OT). "Classic" therapy consists of pyrimethamine, sulfadiazine and folinic acid combined with systemic steroids and is still widely used. However, potentially severe side effects of this therapy have been reported. The aim of this retrospective study was to evaluate the incidence and types of adverse drug reactions in patients treated for OT. Clinical management of each adverse drug reaction was assessed. Patients and Methods In this retrospective analysis, we reviewed data of patients with OT, who were consecutively examined between December 2011 and December 2015 at the Department of Ophthalmology, University Hospital Zurich. Results In total, 49 patients had at least one episode of active OT. In 54 (83.0 %) of 65 treated episodes, the classic regimen was used. Of the 37 patients who received classic treatment, 9 (24.3 %) developed at least one adverse drug reaction which led to drug discontinuation, including elevated creatinine (5.4 %), elevated liver enzymes (5.4 %), vomiting (5.4 %), rash (5.4 %) and facial swelling (2.7 %). In 5 patients, treatment was switched to another drug, while in the other 4 patients, therapy was stopped. In these 9 patients, inflammation was well controlled 8 weeks after onset of therapy. No patient suffered from severe side effects, such as potentially life-threatening allergic reactions or pancytopenia. Conclusions In OT patients who were treated with classic therapy, adverse drug reactions are common. Therefore, clinical and laboratory monitoring is mandatory. Adverse drug reactions may require interdisciplinary management. Georg Thieme Verlag KG Stuttgart · New York.

  1. Experimental tests of recent nuclear models with the (n,γ) reaction

    International Nuclear Information System (INIS)

    Casten, R.F.

    1978-01-01

    The nonselectivity of the (n,γ) reaction provides a powerful tool for the study of those nuclear models of broad applicability whose characteristic excitations span a wide range of degrees of freedom. Several recent examples of this are discussed with particular emphasis on the recent discovery of the 0(6) limit of the interacting boson model and of a new interpretation of the Pt--0s transition region which consequently emerges. Other topics considered include recent extensions of the Nilsson model to new regions of nucleus, excitation energy and complexity of states. 43 references

  2. Biogenesis of Triterpene Dimers from Orthoquinones Related to Quinonemethides: Theoretical Study on the Reaction Mechanism

    Directory of Open Access Journals (Sweden)

    Mariana Quesadas-Rojas

    2016-11-01

    Full Text Available The biogenetic origin of triterpene dimers from the Celastraceae family has been proposed as assisted hetero-Diels-Alder reaction (HDA. In this work, computational calculation of HDA between natural quinonemethides (tingenone and isopristimerol and hypothetical orthoquinones has been performed at the M06-2X/6-31G(d level of theory. We have located all the HDA transition states supporting the biogenetic route via HDA cycloadditions. We found that all reactions take place through a concerted inverse electron demand and asynchronous mechanism. The enzymatic assistance for dimer formation was analyzed in terms of the calculated transition state energy barrier.

  3. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data.

    Science.gov (United States)

    Sriyudthsak, Kansuporn; Shiraishi, Fumihide; Hirai, Masami Yokota

    2016-01-01

    The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although, hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.

  4. The effect of learning models and emotional intelligence toward students learning outcomes on reaction rate

    Science.gov (United States)

    Sutiani, Ani; Silitonga, Mei Y.

    2017-08-01

    This research focused on the effect of learning models and emotional intelligence in students' chemistry learning outcomes on reaction rate teaching topic. In order to achieve the objectives of the research, with 2x2 factorial research design was used. There were two factors tested, namely: the learning models (factor A), and emotional intelligence (factor B) factors. Then, two learning models were used; problem-based learning/PBL (A1), and project-based learning/PjBL (A2). While, the emotional intelligence was divided into higher and lower types. The number of population was six classes containing 243 grade X students of SMAN 10 Medan, Indonesia. There were 15 students of each class were chosen as the sample of the research by applying purposive sampling technique. The data were analyzed by applying two-ways analysis of variance (2X2) at the level of significant α = 0.05. Based on hypothesis testing, there was the interaction between learning models and emotional intelligence in students' chemistry learning outcomes. Then, the finding of the research showed that students' learning outcomes in reaction rate taught by using PBL with higher emotional intelligence is higher than those who were taught by using PjBL. There was no significant effect between students with lower emotional intelligence taught by using both PBL and PjBL in reaction rate topic. Based on the finding, the students with lower emotional intelligence were quite hard to get in touch with other students in group discussion.

  5. Reactions of nitrogen oxides with heme models. Spectral and kinetic study of nitric oxide reactions with solid and solute Fe(III)(TPP)(NO3).

    Science.gov (United States)

    Kurtikyan, Tigran S; Gulyan, Gurgen M; Martirosyan, Garik G; Lim, Mark D; Ford, Peter C

    2005-05-04

    The reaction(s) of nitric oxide (nitrogen monoxide) gas with sublimed layers containing the nitrato iron(III) complex Fe(III)(TPP)(eta(2)-O(2)NO) (1, TPP = meso-tetraphenyl porphyrinate(2)(-)) leads to formation of several iron porphyrin species that are ligated by various nitrogen oxides. The eventual products of these low-temperature solid-state reactions are the nitrosyl complex Fe(TPP)(NO), the nitro-nitrosyl complex Fe(TPP)(NO(2))(NO), and 1 itself, and the relative final quantities of these were functions of the NO partial pressure. It is particularly notable that isotope labeling experiments show that the nitrato product is not simply unreacted 1 but is the result of a series of transformations taking place in the layered material. Thus, the nitrato complex formed from solid Fe(TPP)(eta(2)-O(2)NO) maintained under a (15)NO atmosphere was found to be the labeled analogue Fe(TPP)(eta(2)-O(2)(15)NO). The reactivities of the layered solids are compared to the behaviors of the same species in ambient temperature solutions. To interpret the reactions of the labeled nitrogen oxides, the potential exchange reactions between N(2)O(3) and (15)NO were examined, and complete isotope scrambling was observed between these species under the reaction conditions (T = 140 K). Overall it was concluded from isotope labeling experiments that the sequence of reactions is initiated by reaction of 1 with NO to give the nitrato nitrosyl complex Fe(TPP)(eta(1)-ONO(2))(NO) (2) as an intermediate. This is followed by a reaction in the presence of excess NO that is equivalent to the loss of the nitrate radical NO(3)(*)( )()to give Fe(TPP)(NO) as another transient species. A plausible pathway involving NO attack on the coordinated nitrate of 2 resulting in the release of N(2)O(4) concerted with electron transfer to the metal center is proposed.

  6. New paradigm for simplified combustion modeling of energetic solids: Branched chain gas reaction

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, M.Q.; Ward, M.J. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States)

    1997-09-01

    Two combustion models with simple but rational chemistry are compared: the classical high gas activation energy (E{sub g}/RT {much_gt} 1) Denison-Baum-Williams (DBW) model, and a new low gas activation energy (E{sub g}/RT {much_lt} 1) model recently proposed by Ward, Son, and Brewster (WSB). Both models make the same simplifying assumptions of constant properties, Lewis number unity, single-step, second order gas phase reaction, and single-step, zero order, high activation energy condensed phase decomposition. The only difference is in the gas reaction activation energy E{sub g} which is asymptotically large for DBW and vanishingly small for WSB. For realistic parameters the DBW model predicts a nearly constant temperature sensitivity {sigma}{sub p} and a pressure exponent n approaching 1. The WSB model predicts generally observed values of n = 0.7 to 0.9 and {sigma}{sub p}(T{sub o},P) with the generally observed variations with temperature (increasing) and pressure (decreasing). The WSB temperature profile also matches measured profiles better. Comparisons with experimental data are made using HMX as an illustrative example (for which WSB predictions for {sigma}{sub p}(T{sub o},P) are currently more accurate than even complex chemistry models). WSB has also shown good agreement with NC/NG double base propellant and HNF, suggesting that at the simplest level of combustion modeling, a vanishingly small gas activation energy is more realistic than an asymptotically large one. The authors conclude from this that the important (regression rate determining) gas reaction zone near the surface has more the character of chain branching than thermal decomposition.

  7. Scaling analysis in modeling transport and reaction processes a systematic approach to model building and the art of approximation

    CERN Document Server

    Krantz, William B

    2007-01-01

    This book is unique as the first effort to expound on the subject of systematic scaling analysis. Not written for a specific discipline, the book targets any reader interested in transport phenomena and reaction processes. The book is logically divided into chapters on the use of systematic scaling analysis in fluid dynamics, heat transfer, mass transfer, and reaction processes. An integrating chapter is included that considers more complex problems involving combined transport phenomena. Each chapter includes several problems that are explained in considerable detail. These are followed by several worked examples for which the general outline for the scaling is given. Each chapter also includes many practice problems. This book is based on recognizing the value of systematic scaling analysis as a pedagogical method for teaching transport and reaction processes and as a research tool for developing and solving models and in designing experiments. Thus, the book can serve as both a textbook and a reference boo...

  8. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments

  9. What Do Mothers Make Adolescents Feel Guilty about? Incidents, Reactions, and Relation to Depression

    Science.gov (United States)

    Donatelli, Jo-Ann L.; Bybee, Jane A.; Buka, Stephen L.

    2007-01-01

    We found mothers' history of depression and symptoms of depression among their adolescent children were both associated with the type of events that mothers made adolescents feel guilty about and with the mothers' reactions to those events. Adolescents (20 male, 23 female) described incidents in which their mothers made them feel guilty and what…

  10. Effects of visual-field and matching instruction on event-related potentials and reaction time.

    NARCIS (Netherlands)

    Kok, A.; van de Vijver, R.; Bouma, A.

    1985-01-01

    Vertical letter pairs were presented randomly in the left and right visual hemifields of 20 right-handed male undergraduates in physical-identity match and name-identity match conditions. Reaction times (RTs) showed a right visual-field superiority for name matches and a left visual-field

  11. The improvement of the heat transfer model for sodium-water reaction jet code

    International Nuclear Information System (INIS)

    Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi

    2001-02-01

    For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)

  12. The Ethical Judgment and Moral Reaction to the Product-Harm Crisis: Theoretical Model and Empirical Research

    Directory of Open Access Journals (Sweden)

    Dong Lu

    2016-07-01

    Full Text Available Based on the dual-process theory of ethical judgment, a research model is proposed for examining consumers’ moral reactions to a product-harm crisis. A national-wide survey was conducted with 801 respondents in China. The results of this study indicate that consumers will react to a product-harm crisis through controlled cognitive processing and emotional intuition. The results of the study also show that consumers view a product-harm crisis as an ethical issue, and they will make an ethical judgment according to the perceived severity and perceived relevance of the crisis. The ethical judgment in the perceived crisis severity and perceived crisis relevance will affect consumers’ condemning emotions in terms of contempt and anger. Through controlled cognitive processing, a personal consumption-related reaction (purchasing intention is influenced by the perceived crisis severity. Furthermore, a social and interpersonal reaction (negative word of mouth is influenced by the perceived crisis relevance through the controlled cognitive processing. This social and interpersonal reaction is also influenced by the perceived crisis severity and perceived crisis relevance through the intuition of other-condemning emotion. Moreover, this study finds that the product knowledge negatively moderates the impact of the perceived crisis severity on the condemning emotions. Therefore, when a consumer has a high level of product knowledge, the effect of perceived crisis severity on the condemning emotions will be attenuated, and vice versa. This study provides scholars and managers with means of understanding and handling of consumers’ reactions to a product-harm crisis.

  13. Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation

    International Nuclear Information System (INIS)

    Kong-A-Siou, D.-H.

    1975-01-01

    The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations [fr

  14. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    With electrocatalysts it is important to be able to distinguish between the effects of mass transport and reaction kinetics on the performance of the catalyst. When the hydrogen evolution reaction (HER) is considered, an additional and often neglected detail of mass transport in liquid...... is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...

  15. Modeling of a Reaction-Distillation-Recycle System to Produce Dimethyl Ether through Methanol Dehydration

    Science.gov (United States)

    Muharam, Y.; Zulkarnain, L. M.; Wirya, A. S.

    2018-03-01

    The increase in the dimethyl ether yield through methanol dehydration due to a recycle integration to a reaction-distillation system was studied in this research. A one-dimensional phenomenological model of a methanol dehydration reactor and a shortcut model of distillation columns were used to achieve the aim. Simulation results show that 10.7 moles/s of dimethyl ether is produced in a reaction-distillation system with the reactor length being 4 m, the reactor inlet pressure being 18 atm, the reactor inlet temperature being 533 K, the reactor inlet velocity being 0.408 m/s, and the distillation pressure being 8 atm. The methanol conversion is 90% and the dimethyl ether yield is 48%. The integration of the recycle stream to the system increases the dimethyl ether yield by 8%.

  16. Modified Step Variational Iteration Method for Solving Fractional Biochemical Reaction Model

    Directory of Open Access Journals (Sweden)

    R. Yulita Molliq

    2011-01-01

    Full Text Available A new method called the modification of step variational iteration method (MoSVIM is introduced and used to solve the fractional biochemical reaction model. The MoSVIM uses general Lagrange multipliers for construction of the correction functional for the problems, and it runs by step approach, which is to divide the interval into subintervals with time step, and the solutions are obtained at each subinterval as well adopting a nonzero auxiliary parameter ℏ to control the convergence region of series' solutions. The MoSVIM yields an analytical solution of a rapidly convergent infinite power series with easily computable terms and produces a good approximate solution on enlarged intervals for solving the fractional biochemical reaction model. The accuracy of the results obtained is in a excellent agreement with the Adam Bashforth Moulton method (ABMM.

  17. Contribution to the modelling of gas-solid reactions and reactors; Contribution a la modelisation des reactions et des reacteurs gaz-solide

    Energy Technology Data Exchange (ETDEWEB)

    Patisson, F

    2005-09-15

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  18. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    Energy Technology Data Exchange (ETDEWEB)

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  19. Adverse reactions related to treatment compliance during BCG maintenance therapy for non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Miyazaki, Jun; Hinotsu, Shiro; Ishizuka, Naoki; Naito, Seiji; Ozono, Seiichiro; Akaza, Hideyuki; Nishiyama, Hiroyuki

    2013-08-01

    The aim of the study was to investigate the factor of adverse reactions related to compliance with Mycobacterium bovis bacillus Calmette-Guérin maintenance therapy in patients with high-risk non-muscle-invasive bladder cancer. This study was a post hoc analysis using the database of a randomized controlled trial that examined the efficacy of bacillus Calmette-Guérin (Connaught strain) maintenance therapy. Among the 42 patients assigned to the bacillus Calmette-Guérin maintenance therapy group, six patients dropped out or withdrew consent before the bacillus Calmette-Guérin maintenance therapy. The adverse reactions and clinical backgrounds of the remaining 36 patients who underwent bacillus Calmette-Guérin maintenance therapy were compared between the two groups: the patients who completed the bacillus Calmette-Guérin maintenance therapy (the Completed group), and those who discontinued the bacillus Calmette-Guérin maintenance therapy (the Discontinued group). Of the 36 patients who underwent bacillus Calmette-Guérin maintenance therapy, 15 (41.7%) were in the Completed group and 21 (58.3%) were in the Discontinued group. Local adverse reactions (≥G2) were observed during maintenance therapy in 86.7% of the Completed group and 95.2% of the Discontinued group. As for adverse reactions during the induction therapy (bacillus Calmette-Guérin induction therapy), the frequencies of gross hematuria and systemic adverse reactions (any grade) tended to be higher in the Discontinued group than in the Completed group, although not significantly so. In the Cochran-Armitage trend test, the linear T trend (i.e. the trend in the risk of an increased rate of discontinuation according to gross hematuria and systemic adverse reactions with bacillus Calmette-Guérin induction therapy) was statistically significant (P = 0.0179). Most patients who completed bacillus Calmette-Guérin maintenance therapy experienced local adverse reactions (≥G2) during the maintenance

  20. Pain-Related Reactions among Premature Infants with Gestational Age Less than 26 Weeks: An Observational Cohort Study.

    Science.gov (United States)

    Martakis, Kyriakos; Hünseler, Christoph; Thangavelu, Kruthika; Kribs, Angela; Roth, Bernhard

    2016-01-01

    There is insufficient information regarding acute pain reactions among premature infants with a gestational age of less than 26 weeks and no appropriate scale for pain measurement in this age group. We hypothesized that these infants present specific reactions to a standardized pain stimulus within the first 3 days of life. Mixed-methods, prospective, open-label, single-arm, observational study. Routine capillary or peripheral blood takes were filmed. The model consisting of a baseline, a preparatory, an interventional and a return-to-baseline phase was filmed. After a pilot evaluation, experienced medical and nursing neonatal intensive care unit (NICU) staff analysed the videos. Twenty infants with gestational ages ranging from 22 weeks and 3 days to 26 weeks (mean 24 weeks) were recruited. Nineteen infants showed pain reactions, with a mean latency of 8.3 s (range 2-30). The majority presented eye movements, changes of the breath pattern and a slight increase in the mean SpO2 value. A high degree of interrater and intrarater reliability was found. Premature infants with a gestational age of up to 26 weeks can present a variety of discrete reactions as response to a pain stimulus within the first 72 h of life. Experienced NICU staff can perform a valid and reliable evaluation of these reactions. © 2016 S. Karger AG, Basel.

  1. Catalytic Hydrotreatment of Fast Pyrolysis Oil: Model Studies on Reaction Pathways for the Carbohydrate Fraction

    OpenAIRE

    Wildschut, J.; Arentz, J.; Rasrendra, C. B.; Venderbosch, R. H.; Heeres, H. J.

    2009-01-01

    Fast pyrolysis oil can be upgraded by a catalytic hydrotreatment (250-400 degrees C, 100-200 bar) using heterogeneous catalysts such as Ru/C to hydrocarbon-like products that can serve as liquid transportation fuels. Insight into the complex reaction pathways of the various component fractions during hydrotreatment is desirable to reduce the formation of by-products such as char and gaseous components. This paper deals with the catalytic hydrotreatment of representative model components for t...

  2. Joint ICTP-IAEA advanced workshop on model codes for spallation reactions

    International Nuclear Information System (INIS)

    Filges, D.; Leray, S.; Yariv, Y.; Mengoni, A.; Stanculescu, A.; Mank, G.

    2008-08-01

    The International Atomic Energy Agency (IAEA) and the Abdus Salam International Centre for Theoretical Physics (ICTP) organised an expert meeting at the ICTP from 4 to 8 February 2008 to discuss model codes for spallation reactions. These nuclear reactions play an important role in a wide domain of applications ranging from neutron sources for condensed matter and material studies, transmutation of nuclear waste and rare isotope production to astrophysics, simulation of detector set-ups in nuclear and particle physics experiments, and radiation protection near accelerators or in space. The simulation tools developed for these domains use nuclear model codes to compute the production yields and characteristics of all the particles and nuclei generated in these reactions. These codes are generally Monte-Carlo implementations of Intra-Nuclear Cascade (INC) or Quantum Molecular Dynamics (QMD) models, followed by de-excitation (principally evaporation/fission) models. Experts have discussed in depth the physics contained within the different models in order to understand their strengths and weaknesses. Such codes need to be validated against experimental data in order to determine their accuracy and reliability with respect to all forms of application. Agreement was reached during the course of the workshop to organise an international benchmark of the different models developed by different groups around the world. The specifications of the benchmark, including the set of selected experimental data to be compared to the models, were also defined during the workshop. The benchmark will be organised under the auspices of the IAEA in 2008, and the first results will be discussed at the next Accelerator Applications Conference (AccApp'09) to be held in Vienna in May 2009. (author)

  3. Reaction times in visual search can be explained by a simple model of neural synchronization.

    Science.gov (United States)

    Kazanovich, Yakov; Borisyuk, Roman

    2017-03-01

    We present an oscillatory neural network model that can account for reaction times in visual search experiments. The model consists of a central oscillator that represents the central executive of the attention system and a number of peripheral oscillators that represent objects in the display. The oscillators are described as generalized Kuramoto type oscillators with adapted parameters. An object is considered as being included in the focus of attention if the oscillator associated with this object is in-phase with the central oscillator. The probability for an object to be included in the focus of attention is determined by its saliency that is described in formal terms as the strength of the connection from the peripheral oscillator to the central oscillator. By computer simulations it is shown that the model can reproduce reaction times in visual search tasks of various complexities. The dependence of the reaction time on the number of items in the display is represented by linear functions of different steepness which is in agreement with biological evidence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Martin; Yuan, Jinliang; Sunden, Bengt [Department of Energy Sciences, Lund University, SE-221 00 Lund (Sweden)

    2010-05-15

    A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures. (author)

  5. A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing

    Science.gov (United States)

    Van Ende, Marie-Aline; Jung, In-Ho

    2017-02-01

    The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.

  6. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Pellet

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2018-04-01

    Kinetic modeling of quartz and carbon pellet at temperatures of 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) was investigated in this study. The carbon materials used were charcoal, coke, coal, and preheated coal. The overall SiC producing reaction can be described by the reaction SiO2 + 3C = SiC + 2CO. In the SiC-producing step, the reaction rate of quartz and carbon pellet can be expressed as {d{ pct}}/dt = ( {1 - 0.40 × X_{fix - C}^{ - 0.86} × FC × {pct}} ) × A × \\exp ( { - E/{{RT}}} ) The carbon factor F C was used to describe the influence of different carbon materials that effect the gas-solid interface reaction. For charcoal, coke, coal, and preheated coal, the F C values were 0.83, 0.80, 0.94, and 0.83, respectively. The pre-exponential factor A values for the preceding four carbon materials were 1.06 × 1016 min-1, 4.21 × 1015 min-1, 3.85 × 109 min-1, and 1.00 × 1025 min-1, respectively. The activation energies E for the SiC-producing step were 570, 563, 336, and 913 kJ/mole for charcoal, coke, coal, and preheated coal pellets, respectively.

  7. Nuclear reaction rate uncertainties and astrophysical modeling: Carbon yields from low-mass giants

    International Nuclear Information System (INIS)

    Herwig, Falk; Austin, Sam M.; Lattanzio, John C.

    2006-01-01

    Calculations that demonstrate the influence of three key nuclear reaction rates on the evolution of asymptotic giant branch stars have been carried out. We study the case of a star with an initial mass of 2 M · and a metallicity of Z=0.01, somewhat less than the solar metallicity. The dredge-up of nuclear processed material from the interior of the star and the yield predictions for carbon are sensitive to the rate of the 14 N(p,γ) 15 O and triple-α reactions. These reactions dominate the H- and He-burning shells of stars in this late evolutionary phase. Published uncertainty estimates for each of these two rates propagated through stellar evolution calculations cause uncertainties in carbon enrichment and yield predictions of about a factor of 2. The other important He-burning reaction, 12 C(α,γ) 16 O, although associated with the largest uncertainty in our study, does not have a significant influence on the abundance evolution compared with other modeling uncertainties. This finding remains valid when the entire evolution from the main sequence to the tip of the asymptotic giant branch is considered. We discuss the experimental sources of the rate uncertainties addressed here and give some outlooks for future work

  8. Theoretical studies on thermal degradation reaction mechanism of model compound of bisphenol A polycarbonate.

    Science.gov (United States)

    Huang, Jinbao; He, Chao; Li, Xinsheng; Pan, Guiying; Tong, Hong

    2018-01-01

    Density functional theory methods (DFT) M062X have been used to investigate the thermal degradation processes of model compound of bisphenol A polycarbonate (MPC) and to identify the optimal reaction paths in the thermal decomposition of bisphenol A polycarbonate (PC). The bond dissociation energies of main bonds in MPC were calculated, and it is found that the weakest bond in MPC is the single bond between the methylic carbon and carbon atom and the second weakest bond in MPC is the single bond between oxygen atom and the carbonyl carbon. On the basis of computational results of kinetic parameters, a mechanism is proposed where the hydrolysis (or alcoholysis) reaction is the main degradation pathways for the formation of the evolved products, and the homolytic cleavage and rearrangement reactions are the competitive reaction pathways in the thermal degradation of PC. The proposed mechanism is consistent with experimental observations of CO 2 , bisphenol A and 1,1-bis(4-hydroxyphenyl)-ethane as the main degradation products, together with a small amount of CO, alkyl phenol and diphenyl carbonate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Pellet

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2018-01-01

    Kinetic modeling of quartz and carbon pellet at temperatures of 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) was investigated in this study. The carbon materials used were charcoal, coke, coal, and preheated coal. The overall SiC producing reaction can be described by the reaction SiO2 + 3C = SiC + 2CO. In the SiC-producing step, the reaction rate of quartz and carbon pellet can be expressed as {d{ pct}}/dt = ( {1 - 0.40 × X_{fix - C}^{ - 0.86} × FC × {pct}} ) × A × \\exp ( { - E/{{RT}}} ) The carbon factor F C was used to describe the influence of different carbon materials that effect the gas-solid interface reaction. For charcoal, coke, coal, and preheated coal, the F C values were 0.83, 0.80, 0.94, and 0.83, respectively. The pre-exponential factor A values for the preceding four carbon materials were 1.06 × 1016 min-1, 4.21 × 1015 min-1, 3.85 × 109 min-1, and 1.00 × 1025 min-1, respectively. The activation energies E for the SiC-producing step were 570, 563, 336, and 913 kJ/mole for charcoal, coke, coal, and preheated coal pellets, respectively.

  10. Development and validation of a risk model for predicting adverse drug reactions in older people during hospital stay: Brighton Adverse Drug Reactions Risk (BADRI model.

    Directory of Open Access Journals (Sweden)

    Balamurugan Tangiisuran

    Full Text Available Older patients are at an increased risk of developing adverse drug reactions (ADR. Of particular concern are the oldest old, which constitute an increasingly growing population. Having a validated clinical tool to identify those older patients at risk of developing an ADR during hospital stay would enable healthcare staff to put measures in place to reduce the risk of such an event developing. The current study aimed to (1 develop and (2 validate an ADR risk prediction model.We used a combination of univariate analysis and multivariate binary logistic regression to identify clinical risk factors for developing an ADR in a population of older people from a UK teaching hospital. The final ADR risk model was then validated in a European population (European dataset.Six-hundred-ninety patients (median age 85 years were enrolled in the development stage of the study. Ninety-five reports of ADR were confirmed by independent review in these patients. Five clinical variables were identified through multivariate analysis and included in our final model; each variable was attributed a score of 1. Internal validation produced an AUROC of 0.74, a sensitivity of 80%, and specificity of 55%. During the external validation stage the AUROC was 0.73, with sensitivity and specificity values of 84% and 43% respectively.We have developed and successfully validated a simple model to use ADR risk score in a population of patients with a median age of 85, i.e. the oldest old. The model is based on 5 clinical variables (≥8 drugs, hyperlipidaemia, raised white cell count, use of anti-diabetic agents, length of stay ≥12 days, some of which have not been previously reported.

  11. On detonation initiation by a temperature gradient for a detailed chemical reaction models

    International Nuclear Information System (INIS)

    Liberman, M.A.; Kiverin, A.D.; Ivanov, M.F.

    2011-01-01

    The evolution from a temperature gradient to a detonation is investigated for combustion mixture whose chemistry is governed by a detailed chemical kinetics. We show that a detailed chemical reaction model has a profound effect on the spontaneous wave concept for detonation initiation by a gradient of reactivity. The evolution to detonation due to a temperature gradient is considered for hydrogen-oxygen and hydrogen-air mixtures at different initial pressures. It is shown that the minimal length of the temperature gradient for which a detonation can be ignited is much larger than that predicted from a one-step chemical model. - Highlights: → We study detonation initiation by temperature gradient for detailed chemical models. → Detailed chemical models have a profound effect on the spontaneous wave concept. → Initiating detonation by temperature gradient differs from one-step model. → In real fuels DDT can not be initiated by temperature gradient.

  12. Evolution of Autocatalytic Sets in Computational Models of Chemical Reaction Networks.

    Science.gov (United States)

    Hordijk, Wim

    2016-06-01

    Several computational models of chemical reaction networks have been presented in the literature in the past, showing the appearance and (potential) evolution of autocatalytic sets. However, the notion of autocatalytic sets has been defined differently in different modeling contexts, each one having some shortcoming or limitation. Here, we review four such models and definitions, and then formally describe and analyze them in the context of a mathematical framework for studying autocatalytic sets known as RAF theory. The main results are that: (1) RAF theory can capture the various previous definitions of autocatalytic sets and is therefore more complete and general, (2) the formal framework can be used to efficiently detect and analyze autocatalytic sets in all of these different computational models, (3) autocatalytic (RAF) sets are indeed likely to appear and evolve in such models, and (4) this could have important implications for a possible metabolism-first scenario for the origin of life.

  13. Exciton model and quantum molecular dynamics in inclusive nucleon-induced reactions

    International Nuclear Information System (INIS)

    Bevilacqua, Riccardo; Pomp, Stephan; Watanabe, Yukinobu

    2011-01-01

    We compared inclusive nucleon-induced reactions with two-component exciton model calculations and Kalbach systematics; these successfully describe the production of protons, whereas fail to reproduce the emission of composite particles, generally overestimating it. We show that the Kalbach phenomenological model needs to be revised for energies above 90 MeV; agreement improves introducing a new energy dependence for direct-like mechanisms described by the Kalbach model. Our revised model calculations suggest multiple preequilibrium emission of light charged particles. We have also compared recent neutron-induced data with quantum molecular dynamics (QMD) calculations complemented by the surface coalescence model (SCM); we observed that the SCM improves the predictive power of QMD. (author)

  14. Inhibitory processes relate differently to balance/reaction time dual tasks in young and older adults.

    Science.gov (United States)

    Mendelson, David N; Redfern, Mark S; Nebes, Robert D; Richard Jennings, J

    2010-01-01

    Inhibitory processes have been suggested to be involved in maintaining balance in older adults, specifically in the integration of sensory information. This study investigated the association between inhibition and the ability to shift attention between auditory and visual modalities during a balance challenge. Young (21-35 years; n = 24) and older (70-85 years; n = 22) healthy subjects completed tasks assessing perceptual inhibition and motor inhibition. Subjects then performed dual-task paradigms pairing auditory and visual choice reaction time tasks with different postural conditions. Sensory channel switch cost was quantified as the difference between visual and auditory reaction times. Results showed that better perceptual and motor inhibition capabilities were associated with less sensory switch cost in the old (perceptual inhibition: r = .51; motor inhibition: r = .48). In the young, neither perceptual nor motor inhibition was associated with sensory switch cost. Inhibitory skills appear particularly important in the elderly for processing events from multiple sensory channels while maintaining balance.

  15. Vesiculobullous skin reaction temporally related to firocoxib treatment in a white rhinoceros (Ceratotherium simum).

    Science.gov (United States)

    Stringer, Elizabeth M; De Voe, Ryan S; Linder, Keith; Troan, Brigid; McCalla-Martin, Amy; Loomis, Michael R

    2012-03-01

    A 40 yr-old female white rhinoceros (Ceratotherium simum) suffered from chronic nail-bed abscesses. Due to worsening of clinical signs, the animal's nonsteroidal anti-inflammatory treatment was switched to firocoxib. Approximately 7 days after this change, the animal developed multifocal vesicles and bullae along the lateral aspects of the thorax and abdomen, the dorsum, and the proximal limbs. Cytology and culture did not identify an infectious etiology. Histologically, the lesions consisted of a severe, subacute vesiculobullous dermatitis with intraepidermal to subepidermal clefting with areas of individual keratinocyte necrosis and minor neutrophilic epidermal infiltrates. These findings are similar to those seen in some drug reactions in people; therefore an adverse drug reaction to the firocoxib was suspected.

  16. A simple formula for local burnup based on constant relative reaction rate per nuclei

    OpenAIRE

    Yuan, Cenxi; Wang, Xuming; Chen, Shengli

    2015-01-01

    A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of $^{235}$U, $^{238}$U, and $^{239}$Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reactio...

  17. Traveling waves in a nonlocal, piecewise linear reaction-diffusion population model

    Science.gov (United States)

    Autry, E. A.; Bayliss, A.; Volpert, V. A.

    2017-08-01

    We consider an analytically tractable switching model that is a simplification of a nonlocal, nonlinear reaction-diffusion model of population growth where we take the source term to be piecewise linear. The form of this source term allows us to consider both the monostable and bistable versions of the problem. By transforming to a traveling frame and choosing specific kernel functions, we are able to reduce the problem to a system of algebraic equations. We construct solutions and examine the propagation speed and monotonicity of the resulting waves.

  18. Molecular-Level Simulations of Chemical Reaction Equilibrium and Diffusion in Slit and Cylindrical Nanopores: Model Dimerisation Reactions

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Předota, Milan; Brennan, J.K.

    2013-01-01

    Roč. 39, č. 13 (2013), s. 1103-1120 ISSN 0892-7022 R&D Projects: GA ČR GA13-09914S Grant - others:GA ČR(CZ) GA13-08651S Institutional support: RVO:67985858 Keywords : molecular dynamics * reaction ensemble Monte Carlo * slit and cylindrical nanopores Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.119, year: 2013

  19. Pertanggungjawaban Sosial Universitas: Implementasi Model Cycle Relations

    Directory of Open Access Journals (Sweden)

    Lina Sinatra Wijaya

    2016-10-01

    Full Text Available The competition among Higher Education is getting tougher. They need to do their best in order to maintain their existence and getting more students coming to their institutions. One way to achieve that goal is through carrying out Corporate Social Responsibility (CSR programs or University Social Responsibility (USR for university. This study tries to investigate the implementation of ‘Cycle Relations’ model in CSR to increase the intake of Higher Education. This study involved seven Higher Educations and nineteen High schools in Central Java. In collecting the data, it used a depth-interview method with all the related parties in this study. The result showed that most of the Higher Education institutions have implemented Corporate Social Responsibility program in various ways. Their target audience included the high schools, society, and parents.  From the model implementation, it showed that the CSR program did have an impact towards the intake in their institution. However, one important thing to consider is that the role of the teachers at schools was quite significant in influencing the students to choose which university to go.  This reflects that although the Higher Education institution have planned and carried out CSR programs according to what the target audiences’ need, it does not guarantee that it will have direct impact towards their intake because the influence of teacher is quite significant. It may have a bigger impact in long term as the target audiences know the quality and contribution of the Higher Education institutions.

  20. Simplified models of transport and reactions in conditions of CO2 storage in saline aquifers

    Science.gov (United States)

    Suchodolska, Katarzyna; Labus, Krzysztof

    2016-04-01

    Simple hydrogeochemical models may serve as tools of preliminary assessment of CO2 injection and sequestraton impact on the aquifer and cap-rocks. In order to create models of reaction and transport in conditions of CO2 injection and storage, the TOUGHREACT simulator, and the Geochemist's Workbench software were applied. The chemical composition of waters for kinetic transport models based on the water - rock equilibrium calculations. Analyses of reaction and transport of substances during CO2 injection and storage period were carried out in three scenarios: one-dimensional radial model, and two-dimensional model of CO2 injection and sequestration, and one-dimensional model of aquifer - cap-rock interface. Modeling was performed in two stages. The first one simulated the immediate changes in the aquifer and insulating rocks impacted by CO2 injection (100 days in case of reaction model and 30 years in transport and reaction model), the second - enabled assessment of long-term effects of sequestration (20000 years). Reactions' quality and progress were monitored and their effects on formation porosity and sequestration capacity in form of mineral, residual and free phase of CO2 were calculated. Calibration of numerical models (including precipitation of secondary minerals, and correction of kinetics parameters) describing the initial stage of injection, was based on the experimental results. Modeling allowed to evaluate the pore space saturation with gas, changes in the composition and pH of pore waters, relationships between porosity and permeability changes and crystallization or dissolution minerals. We assessed the temporal and spatial extent of crystallization processes, and the amount of carbonates trapping. CO2 in mineral form. The calculated sequestration capacity of analyzed formations reached n·100 kg/m3 for the: dissolved phase - CO(aq), gas phase - CO2(g) and mineral phase, but as much as 101 kg/m3 for the supercritical phase - SCCO2. Processes of gas

  1. Risk considerations related to lung modeling

    International Nuclear Information System (INIS)

    Masse, R.; Cross, F.T.

    1989-01-01

    Improved lung models provide a more accurate assessment of dose from inhalation exposures and, therefore, more accurate dose-response relationships for risk evaluation and exposure limitation. Epidemiological data for externally irradiated persons indicate that the numbers of excess respiratory tract carcinomas differ in the upper airways, bronchi, and distal lung. Neither their histogenesis and anatomical location nor their progenitor cells are known with sufficient accuracy for accurate assessment of the microdosimetry. The nuclei of sensitive cells generally can be assumed to be distributed at random in the epithelium, beneath the mucus and tips of the beating cilia and cells. In stratified epithelia, basal cells may be considered the only cells at risk. Upper-airway tumors have been observed in both therapeutically irradiated patients and in Hiroshima-Nagasaki survivors. The current International Commission on Radiological Protection Lung-Model Task Group proposes that the upper airways and lung have a similar relative risk coefficient for cancer induction. The partition of the risk weighting factor, therefore, will be proportional to the spontaneous death rate from tumors, and 80% of the weighting factor for the respiratory tract should be attributed to the lung. For Weibel lung-model branching generations 0 to 16 and 17 to 23, the Task Group proposes an 80/20 partition of the risk, i.e., 64% and 16%, respectively, of the total risk. Regarding risk in animals, recent data in rats indicate a significantly lower effectiveness for lung-cancer induction at low doses from insoluble long-lived alpha-emitters than from Rn daughters. These findings are due, in part, to the fact that different regions of the lung are irradiated. Tumors in the lymph nodes are rare in people and animals exposed to radiation.44 references

  2. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.

    1980-01-01

    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  3. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways.

    Science.gov (United States)

    Jin, Biao; Rolle, Massimo

    2016-03-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  5. Reactions of benzene oxide, a reactive metabolite of benzene, with model nucleophiles and DNA.

    Science.gov (United States)

    Míčová, Kateřina; Linhart, Igor

    2012-10-01

    1. Reactivity of benzene oxide (BO), a reactive metabolite of benzene, was studied in model reactions with biologically relevant S- and N-nucleophiles by LC-ESI-MS. 2. Reaction with N-acetylcysteine (NAC) in aqueous buffer solutions gave N-acetyl-S-(6-hydroxycyclohexa-2,4-dien-1-yl)cysteine (pre-phenylmercapturic acid, PPhMA), which was easily dehydrated in acidic solutions to phenylmercapturic acid (PhMA). The yield of PPhMA + PhMA increased exponentially with pH up to 11% in the pH range from 5.5 to 11.4. 3. Primary 6-hydroxycyclohexa-2,4-dien-1-yl (HC) adducts were detected also in reactions of purine nucleosides and nucleotides under physiological conditions. After a vigorous acidic hydrolysis, all HC adducts were converted to corresponding phenyl purines, which were identified as 7-phenylguanine (7-PhG), 3-phenyladenine (3-PhA) and N(6)-phenyladenine (6-PhA). The yield of 7-PhG amounted to 14 ± 5 and 16 ± 7 ppm for 2'-deoxyguanosine and 2'-deoxyguanosine-5'-monophosphate, respectively, that of 6-PhA was 500 ± 70 and 455 ± 75 ppm with 2'-deoxyadenosine and 2'-deoxyadenosine-5'-phosphate, respectively, with only traces of 3-PhA. 4. Reactions with the DNA followed by acidic hydrolysis yielded 26 ± 11 ppm (mean ± SD; n = 9) of 7-PhG as the sole adduct detected. 5. In contrast to the reactions with S-nucleophiles, the reactivity of BO with nucleophilic sites in the DNA is very low and can therefore hardly account for a significant DNA damage caused by benzene.

  6. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  7. Back-reaction and effective acceleration in generic LTB dust models

    International Nuclear Information System (INIS)

    Sussman, Roberto A

    2011-01-01

    We provide a thorough examination of the conditions for the existence of back-reaction and an 'effective' acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains,we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the boundary of every domain. Effective deceleration necessarily occurs in all domains in (a) the asymptotic radial range of models converging to a FLRW background (b) the asymptotic time range of non-vacuum hyperbolic models (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions(ii) central (non-vacuum) density voids (iii) the intermediate radial range of models converging to a FLRW background (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v) domains near and or intersecting a non-simultaneous big bang. All these scenarios occur in hyperbolic models with negative averaged and local spatial curvature though scenarios (iv) and (v) are also possible in low density regions of a class of elliptic models in which the local spatial curvature is negative but its average is positive. Rough numerical estimates between -0.003 and -0.5 were found for the effective deceleration parameter. While the existence of accelerating domains cannot be ruled out in models converging to an Einstein-de Sitter background and in domains undergoing gravitational collapse the conditions for this are very restrictive. The results obtained may provide important theoretical clues on the effects of back-reaction and averaging in more general non-spherical models. Communicated by L Andersson (paper)

  8. 4He(γ,dd and 3He(γ,pd reactions in nonlocal covariant model

    Directory of Open Access Journals (Sweden)

    Kasatkin Yu. A.

    2014-03-01

    Full Text Available Photonuclear reaction research is of great interest to obtain information about the structure of nuclei. The investigation of structural effects requires certain insights into the reaction mechanisms, that have to be identified on the basis of the fundamental principles of covariance and gauge invariance. The major achievement of the chosen model is the ability to reproduce the cross-section dependence using the minimal necessary set of parameters. We analyze the two-particle disintegration of 3He nuclei by photons. Our interest was raised by the fact that 3He is the simplest many-particle system which admits an exact solutions. We also consider the process 4He(γ, dd. This process comes at the expense of the quadrupole absorption of γ-rays, while the dipole transition is suppressed. This property is a consequence of the isospin selection as well as the identity of the particles in the final state. Obtained results describe the energy range from threshold (20 MeV to 140 MeV. Therefore, the model mentioned in the paper has the peculiarity to be valid not only for the low-energy regime, but also for higher energies. Present paper is devoted to determine the roles of different reaction mechanisms and to solve problems above.

  9. Polydioxanone biodegradable stent placement in a canine urethral model: analysis of inflammatory reaction and biodegradation.

    Science.gov (United States)

    Park, Jung-Hoon; Song, Ho-Young; Shin, Ji Hoon; Kim, Jin Hyoung; Jun, Eun Jung; Cho, Young Chul; Kim, Soo Hwan; Park, Jihong

    2014-08-01

    To investigate the inflammatory reaction and perform quantitative analysis of biodegradation after placement of a polydioxanone (PDO) biodegradable stent in a canine urethral model. PDO biodegradable stents were placed in the proximal and distal urethra of nine male mongrel dogs. The dogs were euthanized 4 weeks (group A; n = 3), 8 weeks (group B; n = 3), or 12 weeks (group C; n = 3) after stent placement. The luminal diameter of the stent-implanted urethra was assessed by follow-up retrograde urethrography, and histologic findings were obtained after the dogs were killed. Stents were removed after euthanasia, and their surface morphology and molecular weight were evaluated. Hematologic examination was performed to evaluate inflammatory reaction. Stent placement was technically successful in all dogs. The average luminal diameter gradually decreased. The average number of epithelial layers (2.93 vs 4.42; P stents were completely decomposed. An experimental study in a canine urethral model has demonstrated acceptable inflammatory reaction with gradually increasing granulation tissue but no luminal obstruction within 12 weeks. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  10. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Science.gov (United States)

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-03-22

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  11. Composite double oscillation in a modified version of the oregonator model of the Belousov-Zhabotinsky reaction

    Science.gov (United States)

    Janz, Robert D.; Vanecek, David J.; Field, Richard J.

    1980-10-01

    A number of nonmonotonic behaviors appear when the Belousov-Zhabotinsky reaction is run in a flow system (CSTR) which are not observed when the reaction is run in a closed system. Among these behaviors is composite double oscillation in which nearly identical bursts of oscillation are separated by regular periods of quiescence. Here we use a modified version of the oregonator model of the Belousov-Zhabotinsky reaction to simulate composite double oscillation. Our modification involves the addition of a new variable which is related to the amount of brominated organic material present in the system. This new variable changes slowly on the time scale of the oscillations and controls the value of f, the stoichiometric factor of step 5 in the oregonator. Thus the behavior of the modified oregonator in CSTR mode when flowrates are moderate can be rationalized in terms of the properties of the unmodified oregonator in a closed system. We show that composite double oscillation is a hysteresis phenomenon occurring over a small range of values of f where a locally stable steady state and a locally stable limit cycle coexist. Composite double oscillation occurs as the system is carried back-and-forth across the area of coexistence by the new, slowly moving variable whose concentration grows during the oscillatory phase, when the system is on the locally stable limit cycle, and decays during the quiescent phase, when the system is on the locally stable steady state.

  12. Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets

    Energy Technology Data Exchange (ETDEWEB)

    Celler, A; Hou, X [University of British Columbia, Vancouver, BC, Canada, (Canada); Benard, F; Ruth, T, E-mail: aceller@physics.ubc.ca, E-mail: xinchi@phas.ubc.ca, E-mail: fbenard@bccrc.ca, E-mail: truth@triumf.ca [BC Cancer Agency, Vancouver, BC (Canada)

    2011-09-07

    Recent acute shortage of medical radioisotopes prompted investigations into alternative methods of production and the use of a cyclotron and {sup 100}Mo(p,2n){sup 99m}Tc reaction has been considered. In this context, the production yields of {sup 99m}Tc and various other radioactive and stable isotopes which will be created in the process have to be investigated, as these may affect the diagnostic outcome and radiation dosimetry in human studies. Reaction conditions (beam and target characteristics, and irradiation and cooling times) need to be optimized in order to maximize the amount of {sup 99m}Tc and minimize impurities. Although ultimately careful experimental verification of these conditions must be performed, theoretical calculations can provide the initial guidance allowing for extensive investigations at little cost. We report the results of theoretically determined reaction yields for {sup 99m}Tc and other radioactive isotopes created when natural and enriched molybdenum targets are irradiated by protons. The cross-section calculations were performed using a computer program EMPIRE for the proton energy range 6-30 MeV. A computer graphical user interface for automatic calculation of production yields taking into account various reaction channels leading to the same final product has been created. The proposed approach allows us to theoretically estimate the amount of {sup 99m}Tc and its ratio relative to {sup 99g}Tc and other radioisotopes which must be considered reaction contaminants, potentially contributing to additional patient dose in diagnostic studies.

  13. Cissampelos sympodialis Eichl. (Menispermaceae inhibits anaphylactic shock reaction in murine allergic model

    Directory of Open Access Journals (Sweden)

    C.R. Bezerra-Santos

    Full Text Available The murine model of OVA-induced immediate allergic reaction was used to evaluate the effectiveness of intraperitoneal sub-acute treatment with the leaf hydroalcoholic extract of Cissampelos sympodialis (AFL in the anaphylactic shock reaction, IgE production and the background proliferative response. BALB/c mice treated with AFL ranging from 200 to 400 mg/kg/day for 5 days before and during OVA-sensitization strongly reduced the animal death and promoted reduction in total and OVA-specific serum IgE level. Spleen cells from AFL-treated sensitized animals showed a decreased proliferative background response when compared with non-sensitized animals. These results demonstrated that sub-acute intraperitoneal treatment with Cissampelos sympodialis extract has an anti-allergic effect.

  14. Modelling the consumption of oxygen by container corrosion and reaction with Fe(II)

    International Nuclear Information System (INIS)

    Kolar, M.; King, F.

    1995-01-01

    A model is described that predicts the rate of O 2 consumption in a sealed nuclear fuel waste disposal vault as a result of container corrosion, reaction with biotite and the oxidation of organics and other oxidizable impurities in the clay. The most important reactions leading to the consumption of O 2 for Cu containers in a conceptual Canadian disposal vault are container corrosion, the oxidation of dissolved Cu(l) and the oxidation of organics and other impurities in the clay. Consumption of O 2 by the oxidation of dissolved Fe(Il) from biotite is significant in backfill materials containing crushed granite and in the rock itself. The O 2 initially trapped in the disposal vault is predicted to be consumed in between 50 and 670 a. (author)

  15. Modeling the consumption of oxygen by container corrosion and reaction with Fe(II)

    International Nuclear Information System (INIS)

    Kolar, M.; King, F.

    1996-01-01

    A model is described that predicts the rate of O 2 consumption in a sealed nuclear fuel waste disposal vault as a result of container corrosion, reaction with biotite and the oxidation of organics and other oxidizable impurities in the clay. The most important reactions leading to the consumption of O 2 for Cu containers in a conceptual Canadian disposal vault are container corrosion, the oxidation of dissolved Cu(I) and the oxidation of organics and other impurities in the clay. Consumption of O 2 by the oxidation of dissolved Fe(II) from biotite is significant in backfill materials containing crushed granite and in the rock itself. The O 2 initially trapped in the disposal vault is predicted to be consumed in between 50 and 670 a

  16. A model of hydrogen impact induced chemical erosion of carbon based on elementary reaction steps

    International Nuclear Information System (INIS)

    Wittmann, M.; Kueppers, J.

    1996-01-01

    Based on the elementary reaction steps for chemical erosion of carbon by hydrogen a model is developed which allows to calculate the amount of carbon erosion at a hydrogenated carbon surface under the impact of hydrogen ions and neutrals. Hydrogen ion and neutral flux energy distributions prevailing at target plates in the ASDEX upgrade experiment are chosen in the present calculation. The range of hydrogen particles in the target plates is calculated using TRIDYN code. Based upon the TRIDYN results the extent of the erosion reaction as a function of depth is estimated. The results show that both, target temperature and impinging particle flux energy distribution, determine the hydrogen flux density dependent erosion yield and the location of the erosion below the surface. (orig.)

  17. The relation between mirror self-image reactions and imitation in 14- and 18-month-old infants.

    Science.gov (United States)

    Zmyj, Norbert; Prinz, Wolfgang; Daum, Moritz M

    2013-12-01

    Previous research suggests that sensitivity to aspects of the self and others develop in tandem. We tested 14- and 18-month-olds' imitative abilities and mirror self-image reactions (i.e., testing behavior and passing the mark test). Results showed that 14-month-olds' imitation was closely related to the occurrence of testing behavior in front of the mirror, where they checked whether they could control the movements of the mirror image. Eighteen-month-olds, however, no longer showed this relation. Furthermore, in 18-month-olds, we found a high association between imitation and passing the mark test. These correlations suggest that infants' mirror self-image reactions and imitation share the ability to detect and produce visual-motor contingencies. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Direct reactions of weakly-bound nuclei within a one dimensional model

    Science.gov (United States)

    Moschini, L.; Vitturi, A.; Moro, AM

    2018-03-01

    A line of research has been developed to describe structure and dynamics of weakly-bound systems with one or more valence particles. To simplify the problem we are assuming particles moving in one dimension and, despite the drastic assumption, the model encompasses many characteristics observed in experiments. Within this model we can describe, for example, one- and two-particle breakup and one- and two-particle transfer processes. We concentrate here in models involving weakly-bound nuclei with just one valence particle. Exact solutions obtained by directly solving the time-dependent Schroedinger equation can be compared with the results obtained with different approximation schemes (coupled-channels formalism, continuum discretization, etc). Our goal is to investigate the limitations of the models based on approximations, and in particular to understand the role of continuum in the reaction mechanism.

  19. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    Science.gov (United States)

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  20. Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays

    International Nuclear Information System (INIS)

    Xu Rui; Chaplain, M.A.J.; Davidson, F.A.

    2006-01-01

    In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model

  1. Relating gas chromatographic profiles to sensory measurements describing the end products of the Maillard reaction.

    Science.gov (United States)

    Stanimirova, I; Boucon, C; Walczak, B

    2011-01-30

    Often in analytical practice, a set of samples is described by different types of measurements in the hope that a comprehensive characterisation of samples will provide a more complete picture and will help in determining the similarities among samples. The main focus is then on how to combine the information described by different measurement variables and how to analyse it simultaneously. In other words, the main goal is to find a common representation of samples that emphasises the individual and common properties of the different blocks of variables. Several methods can be adopted for the simultaneous analysis of multiblock data with a common object mode. These are: consensus principal component analysis (CPCA), SUM-PCA, multiple factor analysis (MFA) and structuration des tableaux à trois indices de la statistique (STATIS).In this article we present a comparison of the performances of these methods for data describing the chemistry and sensory profiles of the Maillard reaction products. The aroma compounds formed during the reaction of thermal heating between one or two selected amino acids and one or two reducing sugars have been analysed by head space gas chromatography and the intensity and nature of the odour of the resulting products has been evaluated according to selected descriptors by a panel of sensory experts.The results showed that using the information of the chromatographic and sensory data in conjunction enhanced the interpretability of the data. SUM-PCA and more specifically multiple factor analysis, MFA, allowed for a detailed study of the similarities of mixtures in terms of reaction products and sensory profiles. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Simulation and Statistical Inference of Stochastic Reaction Networks with Applications to Epidemic Models

    KAUST Repository

    Moraes, Alvaro

    2015-01-01

    Epidemics have shaped, sometimes more than wars and natural disasters, demo- graphic aspects of human populations around the world, their health habits and their economies. Ebola and the Middle East Respiratory Syndrome (MERS) are clear and current examples of potential hazards at planetary scale. During the spread of an epidemic disease, there are phenomena, like the sudden extinction of the epidemic, that can not be captured by deterministic models. As a consequence, stochastic models have been proposed during the last decades. A typical forward problem in the stochastic setting could be the approximation of the expected number of infected individuals found in one month from now. On the other hand, a typical inverse problem could be, given a discretely observed set of epidemiological data, infer the transmission rate of the epidemic or its basic reproduction number. Markovian epidemic models are stochastic models belonging to a wide class of pure jump processes known as Stochastic Reaction Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions but they also have applications in neural networks, virus kinetics, and dynamics of social networks, among others. 4 This PhD thesis is focused on novel fast simulation algorithms and statistical inference methods for SRNs. Our novel Multi-level Monte Carlo (MLMC) hybrid simulation algorithms provide accurate estimates of expected values of a given observable of SRNs at a prescribed final time. They are designed to control the global approximation error up to a user-selected accuracy and up to a certain confidence level, and with near optimal computational work. We also present novel dual-weighted residual expansions for fast estimation of weak and strong errors arising from the MLMC methodology. Regarding the statistical inference

  3. Reaction of long-lived radicals and vitamin C in γ-irradiated mammalian cells and their model system at 295 K. Tunneling reaction in biological system

    International Nuclear Information System (INIS)

    Matsumoto, Takuro; Miyazaki, Tetsuo; Kosugi, Yoshio; Kumada, Takayuki; Koyama, Sinji; Kodama, Seiji; Watanabe, Masami.

    1996-01-01

    When golden hamster embryo (GHE) cells or concentrated albumin solution (0.1 kg dm -3 ) that is a model system of cells is irradiated with γ-rays at 295 K, organic radicals produced can be observed by ESR. The organic radicals survive at both 295 K and 310 K for such a long time as 20 hr. The long-lived radicals in GHE cells and the albumin solution react with vitamin C by the rate constants of 0.007 dm 3 mol -1 s -1 and 0.014 dm 3 mol -1 s -1 , respectively. The long-lived radicals in human cells cause gene mutation, which is suppressed by addition of vitamin C. The isotope effect on the rate constant (k) for the reaction of the long-lived radicals and vitamin C has been studied in the albumin solution by use of protonated vitamin C and deuterated vitamin C. The isotope effect (k H /k D ) was more than 20-50 and was interpreted in terms of tunneling reaction. When GHE cells or the aqueous albumin solution (0.1 kg dm -3 ) is irradiated with γ-rays at 295 K, organic radicals produced survive for more than 24 hr at room temperature. Very recently we have found that vitamin C reacts with the long-lived organic radicals in the γ-irradiated albumin solution at high concentration of 0.1 kg dm -3 by the rate constant of 0.014 dm 3 mol -1 s -1 . Since most of reactions in biological systems including the reaction of vitamin C are a transfer of a hydrogen atom or a proton that has a large wave character, it is generally expected that the tunneling reaction may play an important role in biological systems at room temperature. The studies of isotope effects on reactions will give an information on the contribution of tunneling reaction. (J.P.N.)

  4. Comprehensive impedance model of cobalt deposition in sulfate solutions accounting for homogeneous reactions and adsorptive effects

    International Nuclear Information System (INIS)

    Vazquez-Arenas, Jorge; Pritzker, Mark

    2011-01-01

    A comprehensive physicochemical model for cobalt deposition onto a cobalt rotating disk electrode in sulfate-borate (pH 3) solutions is derived and statistically fit to experimental EIS spectra obtained over a range of CoSO 4 concentrations, overpotentials and rotation speeds. The model accounts for H + and water reduction, homogeneous reactions and mass transport within the boundary layer. Based on a thermodynamic analysis, the species CoSO 4(aq) , B(OH) 3(aq) , B 3 O 3 (OH) 4 - , H + and OH - and two homogeneous reactions (B(OH) 3(aq) hydrolysis and water dissociation) are included in the model. Kinetic and transport parameters are estimated by minimizing the sum-of-squares error between the model and experimental measurements using a simplex method. The electrode response is affected most strongly by parameters associated with the first step of Co(II) reduction, reflecting its control of the rate of Co deposition, and is moderately sensitive to the parameters for H + reduction and the Co(II) diffusion coefficient. Water reduction is found not to occur to any significant extent under the conditions studied. These trends are consistent with that obtained by fitting equivalent electrical circuits to the experimental spectra. The simplest circuit that best fits the data consists of two RQ elements (resistor-constant phase element) in parallel or series with the solution resistance.

  5. Modelling the effect of temperature on the range expansion of species by reaction-diffusion equations.

    Science.gov (United States)

    Richter, Otto; Moenickes, Sylvia; Suhling, Frank

    2012-02-01

    The spatial dynamics of range expansion is studied in dependence of temperature. The main elements population dynamics, competition and dispersal are combined in a coherent approach based on a system of coupled partial differential equations of the reaction-diffusion type. The nonlinear reaction terms comprise population dynamic models with temperature dependent reproduction rates subject to an Allee effect and mutual competition. The effect of temperature on travelling wave solutions is investigated for a one dimensional model version. One main result is the importance of the Allee effect for the crossing of regions with unsuitable habitats. The nonlinearities of the interaction terms give rise to a richness of spatio-temporal dynamic patterns. In two dimensions, the resulting non-linear initial boundary value problems are solved over geometries of heterogeneous landscapes. Geo referenced model parameters such as mean temperature and elevation are imported into the finite element tool COMSOL Multiphysics from a geographical information system. The model is applied to the range expansion of species at the scale of middle Europe. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Reaction modeling of drainage quality in the Duluth Complex, northern Minnesota, USA

    Science.gov (United States)

    Seal, Robert; Lapakko, Kim; Piatak, Nadine; Woodruff, Laurel G.

    2015-01-01

    Reaction modeling can be a valuable tool in predicting the long-term behavior of waste material if representative rate constants can be derived from long-term leaching tests or other approaches. Reaction modeling using the REACT program of the Geochemist’s Workbench was conducted to evaluate long-term drainage quality affected by disseminated Cu-Ni-(Co-)-PGM sulfide mineralization in the basal zone of the Duluth Complex where significant resources have been identified. Disseminated sulfide minerals, mostly pyrrhotite and Cu-Fe sulfides, are hosted by clinopyroxene-bearing troctolites. Carbonate minerals are scarce to non-existent. Long-term simulations of up to 20 years of weathering of tailings used two different sets of rate constants: one based on published laboratory single-mineral dissolution experiments, and one based on leaching experiments using bulk material from the Duluth Complex conducted by the Minnesota Department of Natural Resources (MNDNR). The simulations included only plagioclase, olivine, clinopyroxene, pyrrhotite, and water as starting phases. Dissolved oxygen concentrations were assumed to be in equilibrium with atmospheric oxygen. The simulations based on the published single-mineral rate constants predicted that pyrrhotite would be effectively exhausted in less than two years and pH would rise accordingly. In contrast, only 20 percent of the pyrrhotite was depleted after two years using the MNDNR rate constants. Predicted pyrrhotite depletion by the simulation based on the MNDNR rate constant matched well with published results of laboratory tests on tailings. Modeling long-term weathering of mine wastes also can provide important insights into secondary reactions that may influence the permeability of tailings and thereby affect weathering behavior. Both models predicted the precipitation of a variety of secondary phases including goethite, gibbsite, and clay (nontronite).

  7. Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study

    Science.gov (United States)

    Wu, Weibing; Liu, Wei; Mu, Wei; Deng, Yulin

    2016-06-01

    A novel design of liquid catalyzed fuel cell (LCFC), which uses polyoxometalates (POMs) as the photocatalyst and charge carrier has been reported previously. In this paper, the adaptability of biomass fuels (e.g., glycerol and glucose) to the LCFC and corresponding cell performance were studied in detail here. An interesting finding that greatly differs from conventional fuel cell is that high molecular weight fuels rather than small molecule fuels (e.g., methanol and ethylene glycol) are favored by the novel LCFC with respect to the power densities. The power output of LCFC strongly depends on the number and structure of hydroxyl groups in the biomass fuels. The evidence of UV-Vis and 1H NMR spectra shows that the preassociation between POM and alcohol fuels, which determines the photoelectrochemical reaction pathway of POM, is enhanced as the number of hydroxyl increases. Experimental results also demonstrate that more hydroxyl groups in the molecules lead to faster photoelectrochemical reaction between POM and fuels, higher reduction degree of POM, and further higher power output of LCFC. Our study reveals that biomass-based polyhydroxyl compounds such as starch, hemicellulose and cellulose are potential high-performance fuels for LCFC.

  8. Reaction of Tris(cyclopentadienyl)uranium compounds with amines, azides, and related ligands

    International Nuclear Information System (INIS)

    Rosen, R.K.

    1989-12-01

    The trivalent uranium compound, (MeC 5 H 4 ) 3 U(thf), serves as a one- or two-electron reducing agent towards azides, RN 3 . These reactions produce either the uranium(IV) azide, (MeC 5 H 4 ) 3 UN 3 , or uranium(V) imides, (MeC 5 H 4 ) 3 UNR. The role of steric and electronic effects upon this reaction has been investigated using several series of azides. For Me 3 XN 3 , the imides are produced when X = C or Si, both products are formed when X = Ge, and the azide is produced when X = Sn. For Ph 3 XN 3 , the azide is produced when X = C or Sn. For Ph 3-x CH 3 N 3 , the imide is produced when x = 2 and both compounds are produced when x = 1. For substituted phenylazides, RC 6 H 4 N 3 , only the imides are produced. The magnetic properties of uranium diimides, [(MeC 5 H 4 ) 3 U] 2 (μ-NRN), were investigated. Several uranium(III) amines, (MeC 5 H 4 ) 3 U(NH 2 R), were produced from (MeC 5 H 4 ) 3 U(thf) and RNH 2 , and NH 3 was found to be a better ligand towards (MeC 5 H 4 ) 3 U than is PMe 3

  9. Dietary Maillard reaction products and their fermented products reduce cardiovascular risk in an animal model.

    Science.gov (United States)

    Oh, N S; Park, M R; Lee, K W; Kim, S H; Kim, Y

    2015-08-01

    This study examined the effects of Maillard reaction products (MRP) and MRP fermented by lactic acid bacteria on antioxidants and their enhancement of cardiovascular health in ICR mouse and rat models. In previous in vitro studies, the selected lactic acid bacteria were shown to significantly affect the activity of MRP. The expression of genes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) related to antioxidant activity was upregulated by Maillard-reacted sodium caseinate (cMRP), and cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) synergistically increased the expression of catalase and superoxide dismutase when compared with the high-cholesterol-diet group. Bleeding time, the assay for determination of antithrombotic activity, was significantly prolonged by Maillard-reacted whey protein concentration (wMRP) and wMRP fermented by Lactobacillus gasseri H10 (F-wMRP), similar to the bleeding time of the aspirin group (positive control). In addition, the acute pulmonary thromboembolism-induced mice overcame severe body paralysis or death in both the wMRP and the F-wMRP groups. In the serum-level experiment, cMRP and F-cMRP significantly reduced the serum total and low-density lipoprotein cholesterol levels and triglycerides but had only a slight effect on high-density lipoprotein cholesterol. The levels of aspartate transaminase and alanine transaminase also declined in the cMRP and F-cMRP intake groups compared with the high-cholesterol-diet group. In particular, F-cMRP showed the highest reducing effects on triglycerides, aspartate transaminase, and alanine transaminase. Moreover, the expression of cholesterol-related genes in the F-cMRP group demonstrated greater effects than for the cMRP group in the level of cholesterol 7 α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and low-density lipoprotein receptors compared with the high-cholesterol-diet group. The protective role of cMRP and F-cMRP in the high

  10. Handbook of latent variable and related models

    CERN Document Server

    Lee, Sik-Yum

    2011-01-01

    This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables.- Covers a wide class of important models- Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data- Includes illustrative examples with real data sets from business, education, medicine, public health and sociology.- Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

  11. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    Science.gov (United States)

    Foy, E.; Ronan, G.; Chinitz, W.

    1982-01-01

    A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.

  12. Hybrid approaches for multiple-species stochastic reaction-diffusion models

    Science.gov (United States)

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  13. Hybrid approaches for multiple-species stochastic reaction-diffusion models.

    KAUST Repository

    Spill, Fabian

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  14. Charge-dependent non-bonded interaction methods for use in quantum mechanical modeling of condensed phase reactions

    Science.gov (United States)

    Kuechler, Erich R.

    Molecular modeling and computer simulation techniques can provide detailed insight into biochemical phenomena. This dissertation describes the development, implementation and parameterization of two methods for the accurate modeling of chemical reactions in aqueous environments, with a concerted scientific effort towards the inclusion of charge-dependent non-bonded non-electrostatic interactions into currently used computational frameworks. The first of these models, QXD, modifies interactions in a hybrid quantum mechanical/molecular (QM/MM) mechanical framework to overcome the current limitations of 'atom typing' QM atoms; an inaccurate and non-intuitive practice for chemically active species as these static atom types are dictated by the local bonding and electrostatic environment of the atoms they represent, which will change over the course of the simulation. The efficacy QXD model is demonstrated using a specific reaction parameterization (SRP) of the Austin Model 1 (AM1) Hamiltonian by simultaneously capturing the reaction barrier for chloride ion attack on methylchloride in solution and the solvation free energies of a series of compounds including the reagents of the reaction. The second, VRSCOSMO, is an implicit solvation model for use with the DFTB3/3OB Hamiltonian for biochemical reactions; allowing for accurate modeling of ionic compound solvation properties while overcoming the discontinuous nature of conventional PCM models when chemical reaction coordinates. The VRSCOSMO model is shown to accurately model the solvation properties of over 200 chemical compounds while also providing smooth, continuous reaction surfaces for a series of biologically motivated phosphoryl transesterification reactions. Both of these methods incorporate charge-dependent behavior into the non-bonded interactions variationally, allowing the 'size' of atoms to change in meaningful ways with respect to changes in local charge state, as to provide an accurate, predictive and

  15. A Turing Reaction-Diffusion Model for Human Cortical Folding Patterns and Cortical Pattern Malformations

    Science.gov (United States)

    Hurdal, Monica K.; Striegel, Deborah A.

    2011-11-01

    Modeling and understanding cortical folding pattern formation is important for quantifying cortical development. We present a biomathematical model for cortical folding pattern formation in the human brain and apply this model to study diseases involving cortical pattern malformations associated with neural migration disorders. Polymicrogyria is a cortical malformation disease resulting in an excessive number of small gyri. Our mathematical model uses a Turing reaction-diffusion system to model cortical folding. The lateral ventricle (LV) and ventricular zone (VZ) of the brain are critical components in the formation of cortical patterning. In early cortical development the shape of the LV can be modeled with a prolate spheroid and the VZ with a prolate spheroid surface. We use our model to study how global cortex characteristics, such as size and shape of the LV, affect cortical pattern formation. We demonstrate increasing domain scale can increase the number of gyri and sulci formed. Changes in LV shape can account for sulcus directionality. By incorporating LV size and shape, our model is able to elucidate which parameters can lead to excessive cortical folding.

  16. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.

    1986-01-01

    A computationally-viable model describing the interaction between fluid-mechanical turbulence and finite-rate combustion reactions, principally in high-speed flows was developed. Chemical kinetic mechanisms, complete and global, were developed describing the finite rate reaction of fuels of interest to NASA. These fuels included principally hydrogen and silane, although a limited amount of work involved hydrocarbon fuels as well.

  17. Neural networks for modelling of chemical reaction systems with complex kinetics: oxidation of 2-octanol with nitric acid

    NARCIS (Netherlands)

    Molga, E.J.; van Woezik, B.A.A.; Westerterp, K.R.

    2000-01-01

    Application of neural networks to model the conversion rates of a heterogeneous oxidation reaction has been investigated — oxidation of 2-octanol with nitric acid has been considered as a case study. Due to a more complex and unknown kinetics of the investigated reaction the proposed approach based

  18. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    Science.gov (United States)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  19. Evolution of the Maillard Reaction in Glutamine or Arginine-Dextrinomaltose Model Systems.

    Science.gov (United States)

    Pastoriza, Silvia; Rufián-Henares, José Ángel; García-Villanova, Belén; Guerra-Hernández, Eduardo

    2016-12-07

    Enteral formulas are foods designed for medical uses to feed patients who are unable to eat normally. They are prepared by mixing proteins, amino acids, carbohydrates and fats and submitted to sterilization. During thermal treatment, the Maillard reaction takes place through the reaction of animo acids with reducing sugars. Thus, although glutamine and arginine are usually added to improve the nutritional value of enteral formulas, their final concentration may vary. Thus, in the present paper the early, intermediate, and advanced states of the Maillard reaction were studied in model systems by measuring loss of free amino acids through the decrease of fluorescence intensity with o -phtaldialdehyde (OPA), 5-Hydroximethylfurfural (HMF), furfural, glucosylisomaltol, fluorescence, and absorbance at 420 nm. The systems were prepared by mixing glutamine or arginine with dextrinomaltose (similar ingredients to those used in special enteral formula), and heated at 100 °C, 120 °C and 140 °C for 0 to 30 min. The recorded changes in the concentration of furanic compounds was only useful for longer heating times of high temperatures, while absorbance and fluorescence measurements were useful in all the assayed conditions. In addition, easiness and sensitivity of absorbance and fluorescence make them useful techniques that could be implemented as indicators for monitoring the manufacture of special enteral formulas. Glucosylisomaltol is a useful indicator to monitor the manufacture of glutamine-enriched enteral formulas.

  20. Evolution of the Maillard Reaction in Glutamine or Arginine-Dextrinomaltose Model Systems

    Directory of Open Access Journals (Sweden)

    Silvia Pastoriza

    2016-12-01

    Full Text Available Enteral formulas are foods designed for medical uses to feed patients who are unable to eat normally. They are prepared by mixing proteins, amino acids, carbohydrates and fats and submitted to sterilization. During thermal treatment, the Maillard reaction takes place through the reaction of animo acids with reducing sugars. Thus, although glutamine and arginine are usually added to improve the nutritional value of enteral formulas, their final concentration may vary. Thus, in the present paper the early, intermediate, and advanced states of the Maillard reaction were studied in model systems by measuring loss of free amino acids through the decrease of fluorescence intensity with o-phtaldialdehyde (OPA, 5-Hydroximethylfurfural (HMF, furfural, glucosylisomaltol, fluorescence, and absorbance at 420 nm. The systems were prepared by mixing glutamine or arginine with dextrinomaltose (similar ingredients to those used in special enteral formula, and heated at 100 °C, 120 °C and 140 °C for 0 to 30 min. The recorded changes in the concentration of furanic compounds was only useful for longer heating times of high temperatures, while absorbance and fluorescence measurements were useful in all the assayed conditions. In addition, easiness and sensitivity of absorbance and fluorescence make them useful techniques that could be implemented as indicators for monitoring the manufacture of special enteral formulas. Glucosylisomaltol is a useful indicator to monitor the manufacture of glutamine-enriched enteral formulas.

  1. Applications of Transport/Reaction Codes to Problems in Cell Modeling; TOPICAL

    International Nuclear Information System (INIS)

    MEANS, SHAWN A.; RINTOUL, MARK DANIEL; SHADID, JOHN N.

    2001-01-01

    We demonstrate two specific examples that show how our exiting capabilities in solving large systems of partial differential equations associated with transport/reaction systems can be easily applied to outstanding problems in computational biology. First, we examine a three-dimensional model for calcium wave propagation in a Xenopus Laevis frog egg and verify that a proposed model for the distribution of calcium release sites agrees with experimental results as a function of both space and time. Next, we create a model of the neuron's terminus based on experimental observations and show that the sodium-calcium exchanger is not the route of sodium's modulation of neurotransmitter release. These state-of-the-art simulations were performed on massively parallel platforms and required almost no modification of existing Sandia codes

  2. STEPS: modeling and simulating complex reaction-diffusion systems with Python

    Directory of Open Access Journals (Sweden)

    Stefan Wils

    2009-06-01

    Full Text Available We describe how the use of the Python language improved the user interface of the program STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such models is a complicated process that consists of many phases. Initial versions of STEPS relied on a static input format that did not cleanly separate these phases, limiting modelers in how they could control the simulation and becoming increasingly complex as new features and new simulation algorithms were added. We solved all of these problems by tightly integrating STEPS with Python, using SWIG to expose our existing simulation code.

  3. Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise

    Science.gov (United States)

    Beato, Valentina; Engel, Harald

    2003-05-01

    We study the dynamics of excitation pulses in a modified Oregonator model for the light-sensitive Belousov-Zhabotinsky (BZ)reaction assuming that the intensity of the applied illumination is a spatiotemporal stochastic field with finite correlation time and correlation length. For a two-component version of the model we discuss the dependence of the pulse speed on the characteristic parameters of the noise in the framework of a small noise approximation up to the first order in the correlation time. In the full three-component model we find enhancement of coherence resonance for suitable chosen correlation time. Based on this observation, we propose a mechanism for noise-enhanced propagation of pulse trains in excitable media subjected to external fluctuations.

  4. Kinetic modelling of hydro-treatment reactions by study of different chemical groups; Modelisation cinetique des reactions d`hydrotraitement par regroupement en familles chimiques

    Energy Technology Data Exchange (ETDEWEB)

    Bonnardot, J.

    1998-11-19

    Hydro-treatment of petroleum shortcuts permits elimination of unwanted components in order to increase combustion in engine and to decrease atmospheric pollution. Hydro-desulfurization (HDS), Hydro-denitrogenation (HDN) and Hydrogenation of aromatics (HDA) of a LCO (Light Cycle Oil)-Type gas oil have been studied using a new pilot at a fixed temperature with a NiMo/Al{sub 2}O{sub 3} catalyst. A hydrodynamic study showed that reactions occurring in the up-flow fixed bed reactor that has been used during the experiments, were governed exclusively by chemical reaction rates and not by diffusion. Through detailed chemical analysis, height chemical groups have been considered: three aromatics groups, one sulfided group, one nitrogenized and NH{sub 3}, H{sub 2}S, H{sub 2}. Two Langmuir-Hinshelwood-type kinetic models with either one or two types of sites have been established. The model with two types of site - one site of hydrogenation and one site of hydrogenolysis - showed a better fit in the modeling of the experimental results. This model enables to forecast the influence of partial pressure of H{sub 2}S and partial pressure of H{sub 2} on hydro-treatment reactions of a LCO-type gas oil. (author) 119 refs.

  5. Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms.

    Science.gov (United States)

    Zhang, Lei; Zhao, Zhi-Jian; Gong, Jinlong

    2017-09-11

    The gradually increased concentration of carbon dioxide (CO 2 ) in the atmosphere has been recognized as the primary culprit for the rise of the global mean temperature. In recent years, development of routes for highly efficient conversion of CO 2 has received much attention. This Review describes recent progress on the design and synthesis of solid-state catalysts for the electrochemical reduction of CO 2 . The significance of this catalytic conversion is presented, followed by the general parameters for CO 2 electroreduction and a summary of the reaction apparatus. We also discuss various types of solid catalysts based on their CO 2 conversion mechanisms. We summarize the crucial factors (particle size, surface structure, composition, etc.) determining the performance for electroreduction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    International Nuclear Information System (INIS)

    Navasa, M; Andersson, M; Yuan, J; Sundén, B

    2012-01-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  7. Reaction kinetics and modeling of photoinitiated cationic polymerization of an alicyclic based diglycidyl ether

    International Nuclear Information System (INIS)

    Harikrishna, R.; Ponrathnam, S.; Tambe, S.S.

    2014-01-01

    Highlights: • Photocationic polymerization of alicyclic based diglycidyl ether was carried out. • Kinetic parameters were influenced by gelation and diffusional restrictions. • Applicability of autocatalytic model was established by nonlinear regression. • System showed higher activation energy than cycloaliphatic and aromatic diepoxides. -- Abstract: Photoinitiated cationic polymerization of cycloaliphatic diepoxides had received tremendous attention, while studies with lesser polymerizable diglycidyl ethers are comparatively less reported. The present work deals with the photoinitiated cationic polymerization of cyclohexane dimethanol diglycidyl ether followed by estimation of kinetic parameters. The effects of concentration of photoinitiator and temperature on curing performance were studied using photo differential scanning calorimeter or photo DSC with polychromatic radiation. It was observed that the rate of polymerization as well as ultimate conversion increased with increasing concentration of photoinitiator and temperature. The influences of gelation as well as diffusional restrictions have remarkable effect on cure performance. The kinetic parameters as per autocatalytic kinetic model were studied by Levenberg–Marquardt nonlinear regression method instead of conventional linear method for obtaining more accurate values of apparent rate constant. It was observed that the model fits with data from initial stages to almost towards the end of the reaction. The activation energy was found to be higher than the values reported for more reactive cycloaliphatic diepoxides. The value of pre-exponential factor increased with increase in activation energy showing influence of gelation at early stages of reaction

  8. A Non-Isothermal Chemical Lattice Boltzmann Model Incorporating Thermal Reaction Kinetics and Enthalpy Changes

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2017-08-01

    Full Text Available The lattice Boltzmann method is an efficient computational fluid dynamics technique that can accurately model a broad range of complex systems. As well as single-phase fluids, it can simulate thermohydrodynamic systems and passive scalar advection. In recent years, it also gained attention as a means of simulating chemical phenomena, as interest in self-organization processes increased. This paper will present a widely-used and versatile lattice Boltzmann model that can simultaneously incorporate fluid dynamics, heat transfer, buoyancy-driven convection, passive scalar advection, chemical reactions and enthalpy changes. All of these effects interact in a physically accurate framework that is simple to code and readily parallelizable. As well as a complete description of the model equations, several example systems will be presented in order to demonstrate the accuracy and versatility of the method. New simulations, which analyzed the effect of a reversible reaction on the transport properties of a convecting fluid, will also be described in detail. This extra chemical degree of freedom was utilized by the system to augment its net heat flux. The numerical method outlined in this paper can be readily deployed for a vast range of complex flow problems, spanning a variety of scientific disciplines.

  9. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    Science.gov (United States)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  10. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gribok, Andrei V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  11. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    International Nuclear Information System (INIS)

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.; Mahadevan, Sankaran

    2015-01-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  12. A Moessbauer spectroscopic study of corrosion related reactions in the iron-hydrogen fluoride-water-oxygen system

    International Nuclear Information System (INIS)

    Crouse, P.L.

    1989-03-01

    The results of a study of a number of corrosion related reactions in the Fe-HF-H 2 O-O2 system are presented. The primary techniques used were transmission and conversion electron Moessbauer spectroscopy. Conversion electron Moessbauer spectra were recorded at very low γ-photon glancing angles and at normal incidence. Depth profiles of surface layers were obtained by recording spectra at different glancing angles. The initial product which forms when an iron surface is exposed to the vapour of azeotropic hydrofluoric acid was identified as FeF 25 ·47H 2 O. With increasing film thickness, a product, identified as non-stoichiometric Fe 2 F 5 ·7H 2 O, was shown to occur. A thermodynamic analysis of the system is presented which shows FeF 3 ·3H 2 O to be the most stable compound under the experimental conditions used, and suggests a stepwise reaction sequence in which FeF 2 ·4H 2 O forms first, followed by Fe 2 F 5 ·7H 2 O and finally FeF 3 ·3H 2 O. Results obtained in a gravimetric study reveal the rate of reaction of metallic iron with the azeotropic vapour to be controlled by the rate of diffusion of the gaseous species through the product layer. In the case of the reactions with the vapour of higher dilutions of aqueous HF, the chemical reaction between the iron substrate and the gaseous species is rate controlling. 86 refs., 61 figs., 14 tabs

  13. Reaction of Tris(cyclopentadienyl)uranium compounds with amines, azides, and related ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.K.

    1989-12-01

    The trivalent uranium compound, (MeC{sub 5}H{sub 4}){sub 3}U(thf), serves as a one- or two-electron reducing agent towards azides, RN{sub 3}. These reactions produce either the uranium(IV) azide, (MeC{sub 5}H{sub 4}){sub 3}UN{sub 3}, or uranium(V) imides, (MeC{sub 5}H{sub 4}){sub 3}UNR. The role of steric and electronic effects upon this reaction has been investigated using several series of azides. For Me{sub 3}XN{sub 3}, the imides are produced when X = C or Si, both products are formed when X = Ge, and the azide is produced when X = Sn. For Ph{sub 3}XN{sub 3}, the azide is produced when X = C or Sn. For Ph{sub 3-x}CH{sub 3}N{sub 3}, the imide is produced when x = 2 and both compounds are produced when x = 1. For substituted phenylazides, RC{sub 6}H{sub 4}N{sub 3}, only the imides are produced. The magnetic properties of uranium diimides, ((MeC{sub 5}H{sub 4}){sub 3}U){sub 2}({mu}-NRN), were investigated. Several uranium(III) amines, (MeC{sub 5}H{sub 4}){sub 3}U(NH{sub 2}R), were produced from (MeC{sub 5}H{sub 4}){sub 3}U(thf) and RNH{sub 2}, and NH{sub 3} was found to be a better ligand towards (MeC{sub 5}H{sub 4}){sub 3}U than is PMe{sub 3}.

  14. A cellular automata model for traffic flow based on kinetics theory, vehicles capabilities and driver reactions

    Science.gov (United States)

    Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.

    2018-02-01

    In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.

  15. Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems.

    Science.gov (United States)

    Dennis, Cara; Karim, Faris; Smith, J Scott

    2015-02-01

    Heterocyclic amines (HCAs), highly mutagenic and potentially carcinogenic by-products, form during Maillard browning reactions, specifically in muscle-rich foods. Chemical model systems allow examination of in vitro formation of HCAs while eliminating complex matrices of meat. Limited research has evaluated the effects of Maillard reaction parameters on HCA formation. Therefore, 4 essential Maillard variables (precursors molar concentrations, water amount, sugar type, and sugar amounts) were evaluated to optimize a model system for the study of 4 HCAs: 2-amino-3-methylimidazo-[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoxaline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline. Model systems were dissolved in diethylene glycol, heated at 175 °C for 40 min, and separated using reversed-phase liquid chromatography. To define the model system, precursor amounts (threonine and creatinine) were adjusted in molar increments (0.2/0.2, 0.4/0.4, 0.6/0.6, and 0.8/0.8 mmol) and water amounts by percentage (0%, 5%, 10%, and 15%). Sugars (lactose, glucose, galactose, and fructose) were evaluated in several molar amounts proportional to threonine and creatinine (quarter, half, equi, and double). The precursor levels and amounts of sugar were significantly different (P < 0.05) in regards to total HCA formation, with 0.6/0.6/1.2 mmol producing higher levels. Water concentration and sugar type also had a significant effect (P < 0.05), with 5% water and lactose producing higher total HCA amounts. A model system containing threonine (0.6 mmol), creatinine (0.6 mmol), and glucose (1.2 mmol), with 15% water was determined to be the optimal model system with glucose and 15% water being a better representation of meat systems. © 2015 Institute of Food Technologists®

  16. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan

    2010-01-01

    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  17. Continuous Dependence in Front Propagation for Convective Reaction-Diffusion Models with Aggregative Movements

    Directory of Open Access Journals (Sweden)

    Luisa Malaguti

    2011-01-01

    Full Text Available The paper deals with a degenerate reaction-diffusion equation, including aggregative movements and convective terms. The model also incorporates a real parameter causing the change from a purely diffusive to a diffusive-aggregative and to a purely aggregative regime. Existence and qualitative properties of traveling wave solutions are investigated, and estimates of their threshold speeds are furnished. Further, the continuous dependence of the threshold wave speed and of the wave profiles on a real parameter is studied, both when the process maintains its diffusion-aggregation nature and when it switches from it to another regime.

  18. On one model problem for the reaction-diffusion-advection equation

    Science.gov (United States)

    Davydova, M. A.; Zakharova, S. A.; Levashova, N. T.

    2017-09-01

    The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.

  19. An Immunosensing System Using Stilbene Glycoside as a Fluorogenic Substrate for an Enzymatic Reaction Model

    Directory of Open Access Journals (Sweden)

    Ya-Fei Tan

    2008-09-01

    Full Text Available A natural product, stilbene glycoside (2,3,5,4’-tetrahydroxydiphenylethylene-2-O-glucoside, TBG, has been evaluated for the first time as a potential substrate for horseradish peroxidase (HRP-catalyzed fluorogenic reactions. The properties of TBG as a fluorogenic substrate for HRP and its application in a fluorometric enzyme-linked immunosensing system were compared with commercially available substrates such as p-hydroxyphenylpropionic acid (pHPPA, chavicol and Amplex red using Brucella melitensis antibody (BrAb as a model analyte. The immunosensing body based on HRP-BrAb was constructed by dispersing graphite, BrAg and paraffin wax at room temperature. In a competitive immunoassay procedure, the BrAb competed with HRP-BrAb to react with the immobilized BrAg. In the enzymatic reaction, the binding HRP-BrAb on the sensing body surface can catalyze the polymerization reaction of TBG by H2O2 forming fluorescent dimers and causing an increase in fluorescence intensity. TBG showed comparable ability for HRP detection and its enzyme-linked immunosensing reaction system, in a linear detection ranging of 3.5´10-8~7.6´10-6g/L and with a detection limit of 1.7´10-9 g/L. The immobilized biocomposite surface could be regenerated with excellent reproducibility (RSD=3.8% by simply polishing with an alumina paper. The proposed immunosensing system has been used to determine the BrAb in rabbit serum samples with satisfactory results.

  20. Kinetics and thermodynamics of ceramic/metal interface reactions related to high T(sub c) superconducting applications

    Science.gov (United States)

    Notis, Michael R.; Oh, Min-Seok

    1990-01-01

    Superconducting ceramic materials, no matter what their form, size or shape, must eventually make contact with non-superconducting materials in order to accomplish current transfer to other parts of a real operating system, or for testing and measurement of properties. Thus, whether the configuration is a clad wire, a bulk superconducting disc, tape, or a thick or thin superconducting film on a substrate, the physical and mechanical behavior of interface (interconnections, joints, etc.) between superconductors and normal conductor materials of all kinds is of extreme importance to the technological development of these systems. Fabrication heat treatments associated with the particular joining process allow possible reactions between the superconducting ceramic and the contact to occur, and consequently influence properties at the interface region. The nature of these reactions is therefore of great broad interest, as these may be a primary determinant for the real capability of these materials. Research related both to fabrication of composite sheathed wire products, and the joining contacts for physical property measurements, as well as, a review of other related literature in the field are described. Comparison are made between 1-2-3, Bi-, and Tl-based ceramic superconductors joined to a variety of metals including Cu, Ni, Fe, Cr, Ag, Ag-Pd, Au, In, and Ga. The morphology of reaction products and the nature of interface degradation as a function of time will be highlighted.

  1. A chemo-mechanical model for the acoustic nonlinearity change in concrete with alkali-silica reactions

    Science.gov (United States)

    Liu, M.; Jacobs, L. J.; Qu, J.

    2013-01-01

    Experimental data have demonstrated that damage induced by alkali-silica reaction (ASR) in concrete, even in its very early stage, can cause changes in the acoustic nonlinearity parameter β. This provides a means to characterize ASR damage in concrete nondestructively. However, there is currently no model that explains the relationship between the acoustic nonlinearity parameter and ASR damage. In this work, we present a micromechanics-based chemo-mechanical model that relates the acoustic nonlinearity parameter to ASR damage. The mechanical part of the model is developed based on a modified version of the generalized self-consistent theory. The chemical part of the model accounts for two opposing diffusion processes. One is the diffusion of alkali ions in the pore solution into aggregates, and the other is the permeation of ASR gel from the aggregate surface into the surrounding porous cement matrix. Furthermore, a fracture model is used to simulate crack initiation and growth, so that the crack density and total expansion can be obtained. Finally, the acoustic nonlinearity parameter is determined as a function of exposure time by accounting for the gel pressure and the crack density. This model provides a way to quantitatively predict the changes in the acoustic nonlinearity parameter due to ASR damage, which can be used to guide experimental measurements for nondestructive evaluation of ASR damage.

  2. Electrocatalysis in alkaline media: Mechanistic studies of fuel cell reactions on well-defined model catalysts

    Science.gov (United States)

    Spendelow, Jacob S.

    Scanning tunneling microscopy and electrochemical techniques have been used to study several electrocatalytic reactions occurring on Pt(111) and Pt(111)/Ru surfaces in alkaline media. The reactions chosen, CO oxidation, methanol oxidation, and oxygen reduction, are relevant to direct methanol fuel cells (DMFCs). Each is relatively slow, and therefore requires high loading of precious metal catalysts to achieve sufficient fuel cell power density. The focus of these studies has been on determining mechanisms and limiting factors in each reaction. Special attention has been given to the role of adsorbed Ru and the role of Pt defects in enhancing catalytic activity. All defects were found to be more active than terraces for CO oxidation on Pt(111) in alkaline media at DMFC-relevant potentials. Step-typed defects enhance methanol dehydrogenation, but kink-type defects are inactive for this reaction. All defects are inactive for oxygen reduction. These observations can be explained in terms of the local geometric and electronic structure at defects. Adsorbate-adsorbate repulsions, with resultant effects on activation barriers, control the rates of CO oxidation, as well as methanol oxidation. In the case of CO, coverage-dependent CO-CO repulsions and OH-OH repulsions on defects both enhance kinetics. In the case of methanol, repulsive interactions with CO decrease the rate of methanol dehydrogenation, thus giving rise to the CO poisoning effect. Ru was found to promote both methanol dehydrogenation and CO oxidation on adjacent Pt sites. Ru enhances methanol dehydrogenation through two distinct ligand effects: it increases the intrinsic dehydrogenation activity of adjacent Pt sites, and it causes CO to diffuse away from these active sites, decreasing the CO poisoning effect. A Ru ligand effect also enhances CO oxidation by weakening the Pt-CO bond. Ru supplies adsorbed OH for bifunctional CO oxidation, but since Pt defects can also supply OH in alkaline media, the Ru

  3. Gender-related power differences, beliefs and reactions towards people living with HIV/AIDS: an urban study in Nigeria

    Directory of Open Access Journals (Sweden)

    De Vries Nanne K

    2010-06-01

    Full Text Available Abstract Background Although there are an increasing number of studies on HIV-related stigma in Nigeria, very little research has focused on how power differences based on gender perpetuate the stigmatization of people living with HIV/AIDS (PLWHA and how these gender differences affect the care that PLWHA receive in health care institutions. We explore gender-related beliefs and reactions of society, including health care professionals (HCPs, with regard to PLWHA, using Connell's theoretical framework of gender and power (1987. With Connell's structural theory of gender and power (financial inequality, authority and structure of social norms, we can describe gender differences in stigmatization of PLWHA. Method We conducted in-depth semi-structured interviews, lasting 60 to 90 minutes, with 100 persons (40 members of the general public, 40 HCPs and 20 PLWHA in Port Harcourt, Nigeria. The interviews were tape-recorded and transcribed verbatim. The Nvivo 7 computer package was used to analyze the data. Results There are similarities and differences between the general public and HCPs towards PLWHA in gender-related beliefs and reactions. For instance, although association with promiscuity and power differences were commonly acknowledged in the different groups, there are differences in how these reactions are shown; such as HCPs asking the female PLWHA to inform their partners to ensure payment of hospital bills. Women with HIV/AIDS in particular are therefore in a disadvantaged position with regard to the care they receive. Conclusion Despite the fact that men and women with HIV/AIDS suffer the same illness, clear disparities are apparent in the negative reaction women and men living with HIV/AIDS experience in society. We show that women's generally low status in society contributes to the extreme negative reactions to which female PLWHA are subject. The government should create policies aimed at reducing the power differences in family, society

  4. Is non-response to fluconazole maintenance therapy for recurrent Candida vaginitis related to sensitization to atopic reactions?

    Science.gov (United States)

    Donders, Gilbert G G; Grinceviciene, Svitrigaile; Bellen, Gert; Jaeger, Martin; Ten Oever, Jaap; Netea, Mihai G

    2018-04-01

    Is sensitization to atopic reaction related to treatment response of recurrent Candida vulvovaginal (RVVC)? Analysis of ReCiDiF trial data of optimal (OR) and non-responders (NR) to fluconazole maintenance treatment, to explore medical history, physical status, family history, and vaginal immune response for potential sensitization to atopic reaction. Sociodemographic characteristics of 33 NR women were not different from 38 OR. NR had received higher number of different treatments (mean difference 1.6 different treatments (95% CI: 0.20-2.97), P = .03) and had more episodes of disease (P predictive factor for non-response in multivariate analysis with specificity 77.8% and sensitivity 51.6%. Women with RVVC with vulvar excoriation, longer duration of disease, and family history of atopic disease are at increased risk not to respond to maintenance fluconazole treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Mapping Relational Operations onto Hypergraph Model

    Directory of Open Access Journals (Sweden)

    2010-10-01

    ="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>

    The relational model is the most commonly used data model for storing large datasets, perhaps due to the simplicity of the tabular format which had revolutionized database management systems. However, many real world objects are recursive and associative in nature which makes storage in the relational model difficult. The hypergraph model is a generalization of a graph model, where each hypernode can be made up of other nodes or graphs and each hyperedge can be made up of one or more edges. It may address the recursive and associative limitations of relational model

  6. a longitudinal study of age-related differences in reactions to phsycological contract breach

    NARCIS (Netherlands)

    Paul Jansen; Annet de Lange; Matthijs Bal; Mandy van der Velde

    2013-01-01

    The current paper investigated age‐related differences in the relations of psychological contract breach with work outcomes over time. Based on affective events theory, we expected job satisfaction to mediate the longitudinal relationship of contract breach with changes in job performance. Moreover,

  7. A Longitudinal Study of Age-Related Differences in Reactions to Psychological Contract Breach

    NARCIS (Netherlands)

    Bal, P.M.; Lange, A.H. de; Jansen, P.G.W.; Velde, M.E.G. van der

    2013-01-01

    The current paper investigated age-related differences in the relations of psychological contract breach with work outcomes over time. Based on affective events theory, we expected job satisfaction to mediate the longitudinal relationship of contract breach with changes in job performance. Moreover,

  8. A longitudinal study of age-related differences in reactions to psychological contract breach

    NARCIS (Netherlands)

    Bal, P.M.; de Lange, A.H.; Jansen, P.G.W.; van der Velde, E.G.

    2013-01-01

    The current paper investigated age-related differences in the relations of psychological contract breach with work outcomes over time. Based on affective events theory, we expected job satisfaction to mediate the longitudinal relationship of contract breach with changes in job performance. Moreover,

  9. Implicit coupling of turbulent diffusion with chemical reaction mechanisms for prognostic atmospheric dispersion models

    Energy Technology Data Exchange (ETDEWEB)

    Berlowitz, D.R.

    1996-11-01

    In the last few decades the negative impact by humans on the thin atmospheric layer enveloping the earth, the basis for life on this planet, has increased steadily. In order to halt, or at least slow down this development, the knowledge and study of these anthropogenic influence has to be increased and possible remedies have to be suggested. An important tool for these studies are computer models. With their help the atmospheric system can be approximated and the various processes, which have led to the current situation can be quantified. They also serve as an instrument to assess short or medium term strategies to reduce this human impact. However, to assure efficiency as well as accuracy, a careful analysis of the numerous processes involved in the dispersion of pollutants in the atmosphere is called for. This should help to concentrate on the essentials and also prevent excessive usage of sometimes scarce computing resources. The basis of the presented work is the EUMAC Zooming Model (ETM), and particularly the component calculating the dispersion of pollutants in the atmosphere, the model MARS. The model has two main parts: an explicit solver, where the advection and the horizontal diffusion of pollutants are calculated, and an implicit solution mechanism, allowing the joint computation of the change of concentration due to chemical reactions, coupled with the respective influence of the vertical diffusion of the species. The aim of this thesis is to determine particularly the influence of the horizontal components of the turbulent diffusion on the existing implicit solver of the model. Suggestions for a more comprehensive inclusion of the full three dimensional diffusion operator in the implicit solver are made. This is achieved by an appropriate operator splitting. A selection of numerical approaches to tighten the coupling of the diffusion processes with the calculation of the applied chemical reaction mechanisms are examined. (author) figs., tabs., refs.

  10. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    Directory of Open Access Journals (Sweden)

    M. M. Chim

    2017-12-01

    Full Text Available Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4 droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5 hydroxyl functionalization product (C5H8O5 and a C4 fragmentation product (C4H6O3. These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon–carbon bond scission of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model coupled with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from

  11. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    Science.gov (United States)

    Chim, Man Mei; Cheng, Chiu Tung; Davies, James F.; Berkemeier, Thomas; Shiraiwa, Manabu; Zuend, Andreas; Nin Chan, Man

    2017-12-01

    Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4) droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5) hydroxyl functionalization product (C5H8O5) and a C4 fragmentation product (C4H6O3). These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon-carbon bond scission) of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model) coupled with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from 0.362 to 0.424; however, the

  12. Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition

    Science.gov (United States)

    Lacitignola, Deborah; Bozzini, Benedetto; Frittelli, Massimo; Sgura, Ivonne

    2017-07-01

    The present paper deals with the pattern formation properties of a specific morpho-electrochemical reaction-diffusion model on a sphere. The physico-chemical background to this study is the morphological control of material electrodeposited onto spherical particles. The particular experimental case of interest refers to the optimization of novel metal-air flow batteries and addresses the electrodeposition of zinc onto inert spherical supports. Morphological control in this step of the high-energy battery operation is crucial to the energetic efficiency of the recharge process and to the durability of the whole energy-storage device. To rationalise this technological challenge within a mathematical modeling perspective, we consider the reaction-diffusion system for metal electrodeposition introduced in [Bozzini et al., J. Solid State Electr.17, 467-479 (2013)] and extend its study to spherical domains. Conditions are derived for the occurrence of the Turing instability phenomenon and the steady patterns emerging at the onset of Turing instability are investigated. The reaction-diffusion system on spherical domains is solved numerically by means of the Lumped Surface Finite Element Method (LSFEM) in space combined with the IMEX Euler method in time. The effect on pattern formation of variations in the domain size is investigated both qualitatively, by means of systematic numerical simulations, and quantitatively by introducing suitable indicators that allow to assign each pattern to a given morphological class. An experimental validation of the obtained results is finally presented for the case of zinc electrodeposition from alkaline zincate solutions onto copper spheres.

  13. Vascular histopathologic reaction to pulmonary artery banding in an in vivo growing porcine model.

    Science.gov (United States)

    Nedorost, Lukáš; Uemura, Hideki; Furck, Anke; Saeed, Imran; Slavik, Zdenek; Kobr, Jiří; Tonar, Zbyněk

    2013-10-01

    Pulmonary artery banding (PAB) is used as a surgical palliation to reduce excessive pulmonary blood flow caused by congenital heart defects. Due to the lack of microscopic studies dealing with the tissue remodeling caused by contemporary PAB materials, this study aimed to assess histologic changes associated with PAB surgery by analyzing local tissue reaction to the presence of Gore-Tex strips fixed around the pulmonary artery. Gore-Tex strips were used for PAB in a growing porcine model. After 5 weeks, histologic samples with PAB (n = 5) were compared with healthy pulmonary arterial segments distal to the PAB or from a sham-treated animal (n = 1). Stereology was used to quantify the density of the vasa vasorum and the area fraction of elastin, smooth muscle actin, macrophages, and nervi vasorum within the pulmonary arterial wall. The null hypothesis stated that samples did not differ histopathologically from adjacent vascular segments or sham-treated samples. The PAB samples had a greater area fraction of macrophages, a lower amount of nervi vasorum, and a tendency toward decreased smooth muscle content compared with samples that had no PAB strips. There was no destruction of elastic membranes, no medionecrosis, no pronounced inflammatory infiltration or foreign body reaction, and no vasa vasorum deficiency after the PAB. All the histopathologic changes were limited to the banded vascular segment and did not affect distal parts of the pulmonary artery. The study results show the tissue reaction of palliative PAB and suggest that Gore-Tex strips used contemporarily for PAB do not cause severe local histologic damage to the banded segment of the pulmonary arterial wall after 5 weeks in a porcine PAB model.

  14. In vitro model to study the biomaterial-dependent reaction of macrophages in an inflammatory environment.

    Science.gov (United States)

    Grotenhuis, N; Vd Toom, H F E; Kops, N; Bayon, Y; Deerenberg, E B; Mulder, I M; van Osch, G J V M; Lange, J F; Bastiaansen-Jenniskens, Y M

    2014-07-01

    Macrophages play an important role in the reaction to biomaterials, which sometimes have to be used in a surgical field at risk of contamination. The macrophage phenotype in reaction to biomaterials in an inflammatory environment was evaluated in both an in vivo and in vitro setting. In the in vivo setting, polypropylene (PP) biomaterial was implanted for 28 days in the contaminated abdominal wall of rats, and upon removal analysed by routine histology as well as immunohistochemistry for CD68 (marker for macrophages), inducible nitric oxide synthase (iNOS - a marker for proinflammatory M1 macrophages) and CD206 (marker for anti-inflammatory M2 macrophages). For the in vitro model, human peripheral blood monocytes were cultured for 3 days on biomaterials made from PP, collagen (COL), polyethylene terephthalate (PET) and PET coated with collagen (PET+COL). These experiments were performed both with and without lipopolysaccharide and interferon γ stimulation. Secretion of both M1- and M2-related proteins was measured, and a relative M1/M2 index was calculated. In vivo, iNOS- and CD206-positive cells were found around the fibres of the implanted PP biomaterial. In vitro, macrophages on both PP and COL biomaterial had a relatively low M1/M2 index. Macrophages on the PET biomaterial had a high M1/M2 index, with the highest increase of M1 cytokines in an inflammatory environment. Macrophages on the PET+COL biomaterial also had a high M1/M2 index. Macrophages in an inflammatory environment in vitro still react in a biomaterial-dependent manner. This model can help to select biomaterials that are tolerated best in a surgical environment at risk of contamination. © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.

  15. Modeling reaction histories to study chemical pathways in condensed phase detonation

    International Nuclear Information System (INIS)

    Scott Stewart, D.; Hernández, Alberto; Lee, Kibaek

    2016-01-01

    The estimation of pressure and temperature histories, which are required to understand chemical pathways in condensed phase explosives during detonation, is discussed. We argue that estimates made from continuum models, calibrated by macroscopic experiments, are essential to inform modern, atomistic-based reactive chemistry simulations at detonation pressures and temperatures. We present easy to implement methods for general equation of state and arbitrarily complex chemical reaction schemes that can be used to compute reactive flow histories for the constant volume, the energy process, and the expansion process on the Rayleigh line of a steady Chapman-Jouguet detonation. A brief review of state-of-the-art of two-component reactive flow models is given that highlights the Ignition and Growth model of Lee and Tarver [Phys. Fluids 23, 2362 (1980)] and the Wide-Ranging Equation of State model of Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. We discuss evidence from experiments and reactive molecular dynamic simulations that motivate models that have several components, instead of the two that have traditionally been used to describe the results of macroscopic detonation experiments. We present simplified examples of a formulation for a hypothetical explosive that uses simple (ideal) equation of state forms and detailed comparisons. Then, we estimate pathways computed from two-component models of real explosive materials that have been calibrated with macroscopic experiments.

  16. Modelling the intra-particle transport phenomena and chemical reactions of olive kernel fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.; Damartzis, Th. [Department of Chemical Engineering, Aristotle University of Thessaloniki, University Box 455, 24154 Thessaloniki (Greece)

    2007-08-15

    In the present study, the development of a mathematical model for the description of the pyrolysis of a single solid olive kernel particle and the prediction of the fast pyrolysis product yields, is presented. Kinetic model is coupled with heat transfer model. The global degradation of biomass is based on Koufopanos et al. mechanism and described by two parallel 1-order reactions. The analysis is focused on primary degradation for small particle and simulations have been carried out for a spherical particle, with radius of 175 {mu}m. The model has been validated against experiments carried out in a laboratory wire mesh reactor, for temperature range from 573 K to 873 K and a heating rate of 200 K/s. The results of the simulation are in good agreement with the experimental data, regarding temperature, conversion histories and product distribution of olive kernel fast pyrolysis. The numerical method applied was finite difference for the heat transfer model and Runge-Kutta 4th order method for chemical kinetics model equations. (author)

  17. Modeling reaction histories to study chemical pathways in condensed phase detonation

    Science.gov (United States)

    Scott Stewart, D.; Hernández, Alberto; Lee, Kibaek

    2016-03-01

    The estimation of pressure and temperature histories, which are required to understand chemical pathways in condensed phase explosives during detonation, is discussed. We argue that estimates made from continuum models, calibrated by macroscopic experiments, are essential to inform modern, atomistic-based reactive chemistry simulations at detonation pressures and temperatures. We present easy to implement methods for general equation of state and arbitrarily complex chemical reaction schemes that can be used to compute reactive flow histories for the constant volume, the energy process, and the expansion process on the Rayleigh line of a steady Chapman-Jouguet detonation. A brief review of state-of-the-art of two-component reactive flow models is given that highlights the Ignition and Growth model of Lee and Tarver [Phys. Fluids 23, 2362 (1980)] and the Wide-Ranging Equation of State model of Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. We discuss evidence from experiments and reactive molecular dynamic simulations that motivate models that have several components, instead of the two that have traditionally been used to describe the results of macroscopic detonation experiments. We present simplified examples of a formulation for a hypothetical explosive that uses simple (ideal) equation of state forms and detailed comparisons. Then, we estimate pathways computed from two-component models of real explosive materials that have been calibrated with macroscopic experiments.

  18. Effect of vestibular stimulation on auditory and visual reaction time in relation to stress

    Directory of Open Access Journals (Sweden)

    Archana Rajagopalan

    2017-01-01

    Full Text Available The present study was undertaken to provide scientific evidence and for beneficial effects of vestibular stimulation for the management of stress-induced changes in auditory and visual reaction time (RT. A total of 240 healthy college students of the age group of 18-24 of either gender were a part of this research after obtaining written consent from them. RT for right and left response was measured for two auditory stimuli (low and high pitch and visual stimuli (red and green were recorded. A significant decrease in the visual RT for green light and red light was observed and stress-induced changes was effectively prevented followed by vestibular stimulation. Auditory RT for high pitch right and left response was significantly decreased and stress-induced changes was effectively prevented followed by vestibular stimulation. Vestibular stimulation is effective in boosting auditory and visual RT and preventing stress-induced changes in RT in males and females. We recommend incorporation of vestibular stimulation by swinging in our lifestyle for improving cognitive functions.

  19. A novel murine model of late-phase reaction of immediate hypersensitivity

    Directory of Open Access Journals (Sweden)

    S. Facincone

    1997-01-01

    Full Text Available We describe here a novel experimental model of late-phase reaction of immediate hypersensitivity developed in mice. It consists of introducing small fragments of heat-coagulated hen egg white into the subcutaneous tissue of mice. After 14 days, animals challenged with purified ovalbumin into the footpad presented an immediate swelling of the paw peaking at 30 min, followed by two peaks of swelling at 6 and 24 h. Histological examination of the paws showed a massive eosinophil infiltration (more than 800 cells/5 microscopic fields. This intense infiltration persisted for more than 14 days after the challenge. Furthermore, in mice immunized with coagulated egg white the delayed swelling of the paws and eosinophilic infiltration were significantly higher than in mice immunized with the classical protocol of ovalbumin in alumen adjuvant. Transfer of lymph node cells obtained from mice implanted with heat-coagulated hen egg white induced footpad swelling and eosinophil infiltration in response to ovalbumin. High levels of ovalbuminspecific IgG1 but not of IgE were detected in the serum of these animals. The advantages of this model for the experimental study of late-phase reaction per se and its relevance to the study of allergic diseases such as asthma are discussed.

  20. Inclusive reaction π- + p → p + anything at Fermilab energies and comparison to Triple Regge Models

    International Nuclear Information System (INIS)

    Blanar, G.J.

    1975-01-01

    An experiment which measured the inclusive reaction π - + p → p + anything at incident beam momentum of 40, 100, 200 and 240 GeV is described. Measurements were made in the t region -.1 to -.4 GeV 2 . The apparatus, calibration methods, data reduction and analysis techniques are discussed in detail. Comparisons between the observed single particle invariant cross sections and Triple Regge Models are made. The experiment used the missing mass technique with a liquid hydrogen target and a single arm spectrometer. The spectrometer consisted of four spark chambers, and one proportional chamber to determine the trajectory, and an array of five large scintillator counters to determine the kinetic energy of the recoil proton. A single proportional chamber was located downstream of the target to provide calibration data from the elastic reaction, π - + p → π - + p. Approximately five million triggers were taken with almost a million events appearing in the final cross sections. A comparison to a simple four term Triple Regge Model (PPP, PPR, RRP, RRR) gave a poor fit. However, including the pion contributions explicitly (ππR and ππP) gave good agreement. Adding the interference terms (PRP and PRR) did not significantly improve the fit