WorldWideScience

Sample records for model receives fuel

  1. Storage rack for fuel cell receiving shrouds

    International Nuclear Information System (INIS)

    Mollon, L.

    1978-01-01

    Disclosed is a rack for receiving a multiplicity of vertical tubular shrouds or tubes for storing spent nuclear fuel cells. The rack comprises a plurality of horizontally reticulated frames interconnected by tension rods and spacing tubes surrounding the rods

  2. Fuel Receiving and Storage Station. License application, amendment 4

    International Nuclear Information System (INIS)

    1975-04-01

    Amendment No. 4 of the application for licensing the Barnwell Fuel Processing Plant is presented. Information is included on: the quantity and characteristics of nuclear fuel assemblies which can be received and stored; specifications limiting the outside washdown of contaminated casks received for unloading; and definition of environmental monitoring program. (U.S.)

  3. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  4. Fuel Burn Estimation Model

    Science.gov (United States)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  5. Fuel Receiving and Storage Station. License application, amendment 5, addendum

    International Nuclear Information System (INIS)

    1975-06-01

    This Addendum to AG-L105 addresses the utilization of the Service Concentrator for evaporation of low level wastes generated during fuel receiving and storage operations. The Service Concentrator is described from various viewpoints and necessary relevant data are included for adequate assessment of safety. (U.S.)

  6. Fuel Receiving and Storage Station. License application, amendment 7

    International Nuclear Information System (INIS)

    1976-02-01

    Amendment No. 7 to Allied-General Nuclear Services application for licensing of the Fuel Receiving and Storage Station consists of revised pages for: Amendment No. 7 to AG-L 105, ''Technical Description in Support of Application for FRSS Operation''; Amendment No. 1 to AG-L 105A, ''Early Operation of the Service Concentrator''; and Amendment No. 2 to AG-L 110, ''FRSS Summary Preoperational Report.''

  7. Bus fuel consumption model

    Energy Technology Data Exchange (ETDEWEB)

    Zargari, S.A. [Iran Univ. of Science and Technology, Teheran (Iran, Islamic Republic of); Khan, A.M. [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering

    2000-07-01

    The interest in rapid bus transit has increased sharply with the realization that modern metropolitan areas rely on public transit to provide for strong economies and communities. As a prevention tool against traffic congestion, deteriorating air quality and rising greenhouse gas emissions, this study of bus fuel consumption was designed to assist in the planning and management of rapid bus transit. The Australian Road Research Board's (ARRB) Road Fuel Consumption Model was used as a starting point. The estimations required were realized with the help of Newtonian Mechanics. The four states of vehicular traffic were examined: acceleration, cruise, deceleration, and idle. The estimated total power required from the engine to overcome resistance forces, to run vehicle accessories and overcome internal engine friction was calculated. The data for the standard and articulated bus was obtained from OC Transpo in Ottawa. The study permitted the authors to conclude that the estimations for the parameters for power requirements and fuel consumption for heavy duty vehicles are appropriate. The methodology for the estimation of fuel consumption on the Transitway, which is part of the rapid bus transit system, proved adequate. In addition, the methodology was useful to estimate fuel savings resulting from demand management strategies with potential for modal shift. 9 refs., 6 tabs.

  8. Spent fuel: prediction model development

    International Nuclear Information System (INIS)

    Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.

    1979-07-01

    The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained

  9. Modeling fuel succession

    Science.gov (United States)

    Brett Davis; Jan van Wagtendonk; Jen Beck; Kent van Wagtendonk

    2009-01-01

    Surface fuels data are of critical importance for supporting fire incident management, risk assessment, and fuel management planning, but the development of surface fuels data can be expensive and time consuming. The data development process is extensive, generally beginning with acquisition of remotely sensed spatial data such as aerial photography or satellite...

  10. Modelling Accident Tolerant Fuel Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Hales, Jason Dean [Idaho National Laboratory; Gamble, Kyle Allan Lawrence [Idaho National Laboratory

    2016-05-01

    The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. The United States Department of Energy (DOE) through its Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is a three-year project to perform research on two accident tolerant concepts. The final outcome of the ATF HIP will be an in-depth report to the DOE Advanced Fuels Campaign (AFC) giving a recommendation on whether either of the two concepts should be included in their lead test assembly scheduled for placement into a commercial reactor in 2022. The two ATF concepts under investigation in the HIP are uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (Idaho National Laboratory, Los Alamos National Laboratory, and Argonne National Laboratory), a comprehensive multiscale approach to modeling is being used that includes atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. Model development and fuel performance analysis are critical since a full suite of experimental studies will not be complete before AFC must prioritize concepts for focused development. In this paper, we present simulations of the two proposed accident tolerance fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. Sensitivity analyses are completed using Sandia National Laboratories’ Dakota software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). We also outline the multiscale modelling approach being employed. Considerable additional work is required prior to preparing the recommendation report for the Advanced

  11. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  12. Modeling fuel cell stack systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., Los Alamos, NM (United States); Lalk, T R [Dept. of Mech. Eng., Texas A and M Univ., College Station, TX (United States)

    1998-06-15

    A technique for modeling fuel cell stacks is presented along with the results from an investigation designed to test the validity of the technique. The technique was specifically designed so that models developed using it can be used to determine the fundamental thermal-physical behavior of a fuel cell stack for any operating and design configuration. Such models would be useful tools for investigating fuel cell power system parameters. The modeling technique can be applied to any type of fuel cell stack for which performance data is available for a laboratory scale single cell. Use of the technique is demonstrated by generating sample results for a model of a Proton Exchange Membrane Fuel Cell (PEMFC) stack consisting of 125 cells each with an active area of 150 cm{sup 2}. A PEMFC stack was also used in the verification investigation. This stack consisted of four cells, each with an active area of 50 cm{sup 2}. Results from the verification investigation indicate that models developed using the technique are capable of accurately predicting fuel cell stack performance. (orig.)

  13. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  14. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected

  15. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    International Nuclear Information System (INIS)

    Cottrell, J.E.; Shallo, F.A.; Musselwhite, E.L.; Wiedemann, G.F.; Young, M.

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model

  16. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Jim E.; Shallo, Frank A.; Musselwhite, E Larry; Wiedemann, George F.; Young, Moylen

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model.

  17. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  18. Spent nuclear fuel characterization for a bounding reference assembly for the receiving basin for off-site fuel

    International Nuclear Information System (INIS)

    Kahook, S.D.; Garrett, R.L.; Canas, L.R.

    1995-01-01

    A basis for interim operation 1 (BIO) for the receiving basin for off-site fuel (RBOF) facility at the U.S. Department of Energy's (DOE) Savannah River site nuclear materials production complex has been developed in accordance to draft DOE-STD-0019-93 (Ref. 2). The latter document requires a hazard categorization per DOE-STD-1027-92 (Ref. 3) for the safety analysis portion of the BIO. This classification places the facility in one of three categories as defined in DOE 5480.23 (Ref. 4) per the total radioactivity, which can be released during an accident. The diversity of spent nuclear fuels stored in the RBOF made an exacting assessment of the total radioactive inventory virtually impossible. This restriction led to a conservative calculation based on the concept of a hypothetical bounding reference fuel assembly (RFA) integrated over the total capacity of the facility. The RFA is derived from a systematic ranking of the real assemblies (current and expected) according to a maximum burnup criterion. The indicated scheme is not only simple but precluded a potential delay in the completion of the BIO

  19. A conceptual model for the fuel oxidation of defective fuel

    International Nuclear Information System (INIS)

    Higgs, J.D.; Lewis, B.J.; Thompson, W.T.; He, Z.

    2007-01-01

    A mechanistic conceptual model has been developed to predict the fuel oxidation behaviour in operating defective fuel elements for water-cooled nuclear reactors. This theoretical work accounts for gas-phase transport and sheath reactions in the fuel-to-sheath gap to determine the local oxygen potential. An improved thermodynamic analysis has also been incorporated into the model to describe the equilibrium state of the oxidized fuel. The fuel oxidation kinetics treatment accounts for multi-phase transport including normal diffusion and thermodiffusion for interstitial oxygen migration in the solid, as well as gas-phase transport in the fuel pellet cracks. The fuel oxidation treatment is further coupled to a heat conduction equation. A numerical solution of the coupled transport equations is obtained by a finite-element technique with the FEMLAB 3.1 software package. The model is able to provide radial-axial profiles of the oxygen-to-uranium ratio and the fuel temperatures as a function of time in the defective element for a wide range of element powers and defect sizes. The model results are assessed against coulometric titration measurements of the oxygen-to-metal profile for pellet samples taken from ten spent defective elements discharged from the National Research Universal Reactor at the Chalk River Laboratories and commercial reactors

  20. Helicopter fuel burn modeling in AEDT.

    Science.gov (United States)

    2011-08-01

    This report documents work done to enhance helicopter fuel consumption modeling in the Federal Aviation : Administrations Aviation Environmental Design Tool (AEDT). Fuel consumption and flight performance data : were collected from helicopter flig...

  1. Modelling fuel cell performance using artificial intelligence

    Science.gov (United States)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  2. Modelling fuel cell performance using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ogaji, S.O.T.; Singh, R.; Pilidis, P.; Diacakis, M. [Power Propulsion and Aerospace Engineering Department, Centre for Diagnostics and Life Cycle Costs, Cranfield University (United Kingdom)

    2006-03-09

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed. (author)

  3. Bearing support for receiving used fuel elements of nuclear power stations

    International Nuclear Information System (INIS)

    Krieger, F.

    1979-01-01

    A bearing support for receiving used fuel elements of nuclear power stations includes a plurality of chambers which have square cross-sections and each include inner and outer spaced apart walls with screening plates therebetween for screening the radiating fuel elements. Each chamber is detachably secured at its underside to a common foot plate and is held in position at its upper side by spacer elements. The outer wall comprises two equal-sided angle sheets and the inner wall comprises a closed square tube. The thickness of the outer wall is smaller than that of the inner wall and the outer walls are held in spaced relationship to each other at their upper sides by detachable bar grates

  4. Fuel Receiving and Storage Station. Nuclear Regulatory Commission's draft environmental statement

    International Nuclear Information System (INIS)

    1975-05-01

    A draft of the environmental impact statement for the Barnwell Fuel Receiving and Storage Station is presented. This facility is being constructed on a 1700 acre site about six miles west of the city of Barnwell in Barnwell County, South Carolina. The following topics are discussed: the site, the station, environmental effects of site preparation and station construction, environmental effects of station operation, effluent and environmental monitoring programs, environmental effects of accidents , need for the station, benefit-cost analysis of alternatives, and conclusions. (U.S.)

  5. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  6. The lumped parameter model for fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.

  7. Model Year 2017 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  8. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  9. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  10. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  11. Model Year 2018 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-12-07

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  12. Physical models for high burnup fuel

    International Nuclear Information System (INIS)

    Kanyukova, V.; Khoruzhii, O.; Likhanskii, V.; Solodovnikov, G.; Sorokin, A.

    2003-01-01

    In this paper some models of processes in high burnup fuel developed in Src of Russia Troitsk Institute for Innovation and Fusion Research are presented. The emphasis is on the description of the degradation of the fuel heat conductivity, radial profiles of the burnup and the plutonium accumulation, restructuring of the pellet rim, mechanical pellet-cladding interaction. The results demonstrate the possibility of rather accurate description of the behaviour of the fuel of high burnup on the base of simplified models in frame of the fuel performance code if the models are physically ground. The development of such models requires the performance of the detailed physical analysis to serve as a test for a correct choice of allowable simplifications. This approach was applied in the SRC of Russia TRINITI to develop a set of models for the WWER fuel resulting in high reliability of predictions in simulation of the high burnup fuel

  13. Aids to determining fuel models for estimating fire behavior

    Science.gov (United States)

    Hal E. Anderson

    1982-01-01

    Presents photographs of wildland vegetation appropriate for the 13 fuel models used in mathematical models of fire behavior. Fuel model descriptions include fire behavior associated with each fuel and its physical characteristics. A similarity chart cross-references the 13 fire behavior fuel models to the 20 fuel models used in the National Fire Danger Rating System....

  14. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  15. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  16. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  17. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  18. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  19. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  20. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  1. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  2. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Kucuk, Aylin; Cheng, Bo; Potts, Gerald A.; Shiralkar, Bharat; Morgan, Dave; Epperson, Kenny; Gose, Garry

    2014-01-01

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  3. Transmutation Fuel Performance Code Thermal Model Verification

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  4. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  5. Fuel Receiving and Storage Station. Technical description in support of application for FRSS operation

    International Nuclear Information System (INIS)

    1975-02-01

    Questions from the USAEC Directorate of Licensing related to the safety of casks used to transport and store fuel elements at the Barnwell Fuel Processing Plant and to facilities and procedures used in the plant are answered. (U.S.)

  6. Modeling the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Dunzik-Gougar, Mary Lou; Juchau, Christopher A.

    2010-01-01

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  7. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  8. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  9. CFTSIM-ITER dynamic fuel cycle model

    International Nuclear Information System (INIS)

    Busigin, A.; Gierszewski, P.

    1998-01-01

    Dynamic system models have been developed for specific tritium systems with considerable detail and for integrated fuel cycles with lesser detail (e.g. D. Holland, B. Merrill, Analysis of tritium migration and deposition in fusion reactor systems, Proceedings of the Ninth Symposium Eng. Problems of Fusion Research (1981); M.A. Abdou, E. Vold, C. Gung, M. Youssef, K. Shin, DT fuel self-sufficiency in fusion reactors, Fusion Technol. (1986); G. Spannagel, P. Gierszewski, Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket, Fusion Eng. Des. (1991); W. Kuan, M.A. Abdou, R.S. Willms, Dynamic simulation of a proposed ITER tritium processing system, Fusion Technol. (1995)). In order to provide a tool to understand and optimize the behavior of the ITER fuel cycle, a dynamic fuel cycle model called CFTSIM is under development. The CFTSIM code incorporates more detailed ITER models, specifically for the important isotope separation system, and also has an easier-to-use graphical interface. This paper provides an overview of CFTSIM Version 1.0. The models included are those with significant and varying tritium inventories over a test campaign: fueling, plasma and first wall, pumping, fuel cleanup, isotope separation and storage. An illustration of the results is shown. (orig.)

  10. Hydraulic modelling of the CARA Fuel element

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Juanico, Luis; Giorgi, M.; Ghiselli, Alberto M.; Zampach, Ruben; Fiori, Jose M.; Yedros, Pablo A.

    2004-01-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10 4 and 1,5x10 5 ) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [es

  11. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  12. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    Kaoua, Th.; Lenain, R.

    2004-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  13. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    N'kaoua, Th.; Lenain, R.

    2002-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  14. Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling

    International Nuclear Information System (INIS)

    Higgs, J.

    2005-01-01

    The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)

  15. MARMOT update for oxide fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Chao [Idaho National Lab. (INL), Idaho Falls, ID (United States); Aagesen, Larry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ahmed, Karim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Wen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Tonks, Michael [Pennsylvania State Univ., University Park, PA (United States); Millett, Paul [Univ. of Arkansas, Fayetteville, AR (United States)

    2016-09-01

    This report summarizes the lower-length-scale research and development progresses in FY16 at Idaho National Laboratory in developing mechanistic materials models for oxide fuels, in parallel to the development of the MARMOT code which will be summarized in a separate report. This effort is a critical component of the microstructure based fuel performance modeling approach, supported by the Fuels Product Line in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The progresses can be classified into three categories: 1) development of materials models to be used in engineering scale fuel performance modeling regarding the effect of lattice defects on thermal conductivity, 2) development of modeling capabilities for mesoscale fuel behaviors including stage-3 gas release, grain growth, high burn-up structure, fracture and creep, and 3) improved understanding in material science by calculating the anisotropic grain boundary energies in UO$_2$ and obtaining thermodynamic data for solid fission products. Many of these topics are still under active development. They are updated in the report with proper amount of details. For some topics, separate reports are generated in parallel and so stated in the text. The accomplishments have led to better understanding of fuel behaviors and enhance capability of the MOOSE-BISON-MARMOT toolkit.

  16. Simplified fuel cell system model identification

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Fadel, M. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France); Hankache, W. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France)]|[Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France); Hissel, D. [Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France)

    2006-07-01

    This paper discussed a simplified physical fuel cell model used to study fuel cell and supercap energy applications for vehicles. Anode, cathode, membrane, and electrode elements of the cell were modelled. A quasi-static Amphlett model was used to predict voltage responses of the fuel cell as a function of the current, temperature, and partial pressures of the reactive gases. The potential of each cell was multiplied by the number of cells in order to model a fuel cell stack. The model was used to describe the main phenomena associated with current voltage behaviour. Data were then compared with data from laboratory tests conducted on a 20 cell stack subjected to a current and time profile developed using speed data from a vehicle operating in an urban environment. The validated model was used to develop iterative optimization algorithms for an energy management strategy that linked 3 voltage sources with fuel cell parameters. It was concluded that classic state and dynamic measurements using a simple least square algorithm can be used to identify the most important parameters for optimal fuel cell operation. 9 refs., 1 tab., 6 figs.

  17. Mathematical modeling of biomass fuels formation process

    International Nuclear Information System (INIS)

    Gaska, Krzysztof; Wandrasz, Andrzej J.

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task

  18. Fuel element performance computer modelling

    International Nuclear Information System (INIS)

    Locke, D.H.

    1978-01-01

    The meeting was attended by 88 participants from 17 countries. Altogether 47 papers were presented. The majority of the presentations contained a description of the equations and solutions used to describe and evaluate some of the physical processes taking place in water reactor fuel pins under irradiation. At the same time, particular attention was paid to the ''bench marking'' of the codes wherein solutions arrived at for particular experiments are compared with the results at the experiments

  19. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  20. Model investigation of fuel rod behaviour

    International Nuclear Information System (INIS)

    Girgis, M.M.; Wiesenack, W.; Stegemann, D.

    1985-06-01

    Thermal and mechanical behaviour of fuel rods can be explained but unsatisfactorily by models based of an axial symmetry concept. Recently developed models include, with respect to their thermal components, a simple method for the computation of the temperature distribution within the fuel, and they also take into account the influence of excentrically placed pellets for the computation of heat transfer in the cold gap. Additionally, a finite-element model is used to evaluate the effects of cracking and fragmentation on the thermal behaviour of pellets. The reaction of fuel and fuel cladding to external and internal loadings and the axial interaction between fuel and cladding are described in the mechanical portion of the model. A special case of axial coupling is the so-called random stacking interaction caused by fuel pellets placed excentrically at the cladding and sliding radially and axially. In the comparison of measurement results, both thermal and mechanical behaviour of different rods from the OECD Halden Reactor Project are subject to investigations. (RF) [de

  1. Mathematical modeling of solid oxide fuel cells

    Science.gov (United States)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  2. Micromechanical modelling of fuel viscoplastic behaviour

    International Nuclear Information System (INIS)

    Masson, R.; Blanc, V.; Gatt, J.M.; Julien, J.; Michel, B.; Largenton, R.

    2015-01-01

    To identify the effect of microstructural parameters on the viscoplastic behaviour of nuclear fuels, micromechanical (also called homogenisation) approaches are used. These approaches aim at deriving effective properties of heterogeneous material from the properties of their constituents. They stand on full-field computations of representative volume elements of microstructures as well as on mean-field semi-analytical models. For light water reactor fuels, these approaches have been applied to the modelling of the effect of two microstructural parameters: the porosity effects on the thermal creep of dioxide uranium fuels (transient conditions of irradiation) as well as the plutonium content effect on the viscoplastic behaviour (nominal conditions of irradiations) of mixed oxide fuels (MOX). (authors)

  3. Fuel swelling importance in PCI mechanistic modelling

    International Nuclear Information System (INIS)

    Arimescu, V.I.

    2005-01-01

    Under certain conditions, fuel pellet swelling is the most important factor in determining the intensity of the pellet-to-cladding mechanical interaction (PCMI). This is especially true during power ramps, which lead to a temperature increase to a higher terminal plateau that is maintained for hours. The time-dependent gaseous swelling is proportional to temperature and is also enhanced by the increased gas atom migration to the grain boundary during the power ramp. On the other hand, gaseous swelling is inhibited by a compressive hydrostatic stress in the pellet. Therefore, PCMI is the net result of combining gaseous swelling and pellet thermal expansion with the opposing feedback from the cladding mechanical reaction. The coupling of the thermal and mechanical processes, mentioned above, with various feedback loops is best simulated by a mechanistic fuel code. This paper discusses a mechanistic swelling model that is coupled with a fission gas release model as well as a mechanical model of the fuel pellet. The role of fuel swelling is demonstrated for typical power ramps at different burn-ups. Also, fuel swelling plays a significant role in avoiding the thermal instability for larger gap fuel rods, by limiting the potentially exponentially increasing gap due to the positive feedback loop effect of increasing fission gas release and the associated over-pressure inside the cladding. (author)

  4. Experimental and theoretical requirements for fuel modelling

    International Nuclear Information System (INIS)

    Gatesoupe, J.P.

    1979-01-01

    From a scientific point of view it may be considered that any event in the life of a fuel pin under irradiation should be perfectly well understood and foreseen from that deterministic point of view, the whole behaviour of the pin maybe analysed and dismantled with a specific function for every component part and each component part related to one basic phenomenon which can be independently studied on pure physical grounds. When extracted from the code structure the subroutine is studied for itself by specialists who try to keep as close as possible to the physics involved in the phenomenon; that often leads to an impressive luxury in details and a subsequent need for many unavailable input data. It might seem more secure to follow that approach since it tries to be firmly based on theoretical grounds. One should think so if the phenomenological situation in the pin were less complex than it is. The codes would not be adequate for off-normal operating conditions since for the accidental transient conditions the key-phenomena would not be the same as for steady-state or slow transient conditions. The orientation given to fuel modelling is based on our two main technological constraints which are: no fuel melting; no cladding failure; no excessive cladding deformation. In this context, the only relevant models are those which have a significant influence on the maximum temperatures in the fuel or on the cladding damage hence the selection between key models and irrelevant models which will next be done. A rather pragmatic view is kept on codification with a special focus on a few determinant aspects of fuel behaviour and no attention to models which are nothing but decorative. Fuel modeling is merely considered as a link between experimental knowledge; it serves as a guide for further improvements in fuel design and as so happens to be quite useful. On this basis the main lacks in of fuel behaviour is described. These are mainly concerning: thermal transfer through

  5. Final environmental statement related to the operation of the Barnwell Fuel Receiving and Storage Station (Docket No. 70-1729)

    International Nuclear Information System (INIS)

    1976-01-01

    The proposed action is to issue a materials license, pursuant to 10 CFR Parts 30, 40 and 70 of the Commission's regulations, authorizing Allied-General Nuclear Services to receive and handle fuel casks containing spent reactor fuel elements and to store spent reactor fuel at the Barnwell Nuclear Fuel Plant (BNFP), in the Barnwell Fuel Receiving and Storage Station (BFRSS). The BFRSS is a part of, and contiguous to, the BNFP-Separations Facility which is being constructed on a small portion of a 1700 acre site about six miles west of the city of Barnwell in Barnwell County, South Carolina. Construction of the BFRSS facility has been completed and the BNFP Separations Facility is more than 90% complete. A uranium Hexafluoride Facility is being constructed on the same site, and a Plutonium Product Facility is proposed to be constructed adjacent to the Separations Facility. The license that is the subject of this action will, if issued, allow lthe use of the BFRSS separate4 from the operation of the Separations Facility. Impacts resulting from the construction of the BFRSS have already occurred and mitigating measures have been and are being implemented to offset any adverse impacts. Operation of the BFRSS will not interfere with water sources, and should cause no noticeable damage to the terrestrial or aquatic environments. Operating experience at other fuel receiving and storage facilities has shown that radioactive concentrations discharged to the environs (the more significant process effluents) have been well below applicabhle state and federal limits. The small quantities to be released during operation of the BFRSS will result in negligible environmental impact. 20 figs

  6. Fuel safety criteria in NEA member countries - Compilation of responses received from member countries

    International Nuclear Information System (INIS)

    2003-03-01

    In 2001 the Committee on the Safety of Nuclear Installations (CSNI) issued a report on Fuel Safety Criteria Technical Review. The objective was to review the present fuel safety criteria and judge to which extent they are affected by the 'new' design elements, such as different cladding materials, higher burnup, the use of MOX fuels, etc. The report stated that the current framework of fuel safety criteria remains generally applicable, being largely unaffected by the 'new' or modern design elements. The levels (numbers) in the individual safety criteria may, however, change in accordance with the particular fuel and core design features. Some of these levels have already been - or are continuously being - adjusted. The level adjustments of several other criteria (RIA, LOCA) also appears to be needed, on the basis of experimental data and the analysis thereof. As a follow-up, among its first tasks, the CSNI Special Expert Group on Fuel Safety Margins (SEG FSM) initiated the collection of information on the present fuel safety criteria used in NEA member states with the objective to solicit national practices in the use of fuel safety criteria, in particular to get information on their specific national levels/values, including their recent adjustments, and to identify the differences and commonalties between the different countries. Two sources of information were used to produce this report: a compilation of responses to a questionnaire prepared for the June 2000 CNRA meeting, and individual responses from the SEGFSM members to the new revised questionnaire issued by the task Force preparing this report. In accordance with the latter, the fuel safety criteria discussed in this report were divided into three categories: (A) safety criteria - criteria imposed by the regulator; (B) operational criteria - specific to the fuel design and provided by the fuel vendor as part of the licensing basis; (C) design criteria - limits employed by vendors and/or utilities for fuel

  7. Advances in HTGR fuel performance models

    International Nuclear Information System (INIS)

    Stansfield, O.M.; Goodin, D.T.; Hanson, D.L.; Turner, R.F.

    1985-01-01

    Advances in HTGR fuel performance models have improved the agreement between observed and predicted performance and contributed to an enhanced position of the HTGR with regard to investment risk and passive safety. Heavy metal contamination is the source of about 55% of the circulating activity in the HTGR during normal operation, and the remainder comes primarily from particles which failed because of defective or missing buffer coatings. These failed particles make up about 5 x 10 -4 fraction of the total core inventory. In addition to prediction of fuel performance during normal operation, the models are used to determine fuel failure and fission product release during core heat-up accident conditions. The mechanistic nature of the models, which incorporate all important failure modes, permits the prediction of performance from the relatively modest accident temperatures of a passively safe HTGR to the much more severe accident conditions of the larger 2240-MW/t HTGR. (author)

  8. Modeling of PHWR fuel elements using FUDA code

    International Nuclear Information System (INIS)

    Tripathi, Rahul Mani; Soni, Rakesh; Prasad, P.N.; Pandarinathan, P.R.

    2008-01-01

    The computer code FUDA (Fuel Design Analysis) is used for modeling PHWR fuel bundle operation history and carry out fuel element thermo-mechanical analysis. The radial temperature profile across fuel and sheath, fission gas release, internal gas pressure, sheath stress and strains during the life of fuel bundle are estimated

  9. Comparison of Different Fuel Temperature Models

    Energy Technology Data Exchange (ETDEWEB)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  10. Comparison of Different Fuel Temperature Models

    International Nuclear Information System (INIS)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  11. FACSIM/MRS-1: Cask receiving and consolidation model documentation and user's guide

    International Nuclear Information System (INIS)

    Lotz, T.L.; Shay, M.R.

    1987-06-01

    The Pacific Northwest Laboratory (PNL) has developed a stochastic computer model, FACSIM/MRS, to assist in assessing the operational performance of the Monitored Retrievable Storage (MRS) waste-handling facility. This report provides the documentation and user's guide for the component FACSIM/MRS-1, which is also referred to as the front-end model. The FACSIM/MRS-1 model simulates the MRS cask-receiving and spent-fuel consolidation activities. The results of the assessment of the operational performance of these activities are contained in a second report, FACSIM/MRS-1: Cask Receiving and Consolidation Performance Assessment (Lotz and Shay 1987). The model of MRS canister storage and shipping operations is presented in FACSIM/MRS-2: Storage and Shipping Model Documentation and User's Guide (Huber et al. 1987). The FACSIM/MRS model uses the commercially available FORTRAN-based SIMAN (SIMulation ANalysis language) simulation package (Pegden 1982). SIMAN provides a set of FORTRAN-coded commands, called block operations, which are used to build detailed models of continuous or discrete events that make up the operations of any process, such as the operation of an MRS facility. The FACSIM models were designed to run on either an IBM-PC or a VAX minicomputer. The FACSIM/MRS-1 model is flexible enough to collect statistics concerning almost any aspect of the cask receiving and consolidation operations of an MRS facility. The MRS model presently collects statistics on 51 quantities of interest during the simulation. SIMAN reports the statistics with two forms of output: a SIMAN simulation summary and an optional set of SIMAN output files containing data for use by more detailed post processors and report generators

  12. Cryogenic Fuel Tank Draining Analysis Model

    Science.gov (United States)

    Greer, Donald

    1999-01-01

    One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

  13. Structural analyses of the fuel receiving station pool at the Nuclear Fuel Service reprocessing plant, West Valley, New York

    International Nuclear Information System (INIS)

    Dong, R.G.; Ma, S.M.

    1978-01-01

    The FRS is a pool structure and enclosing building constructed in 1966 for storing spent nuclear fuel. The enclosing building was not analyzed. The pool structure's responses to operating loads, seismic excitation, and an accidentally dropped cask were determined. Locations in the FRS pool were identified where structural strength would be exceeded in the event of an earthquake of 0.2 g maximum ground acceleration or an accident in which a cask dropped from the maximum height of the crane hook used to maneuver it. 25 figures, 4 tables

  14. Progress in Chemical Kinetic Modeling for Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J

    2008-06-06

    Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.

  15. 42 CFR Appendix to Part 54a - Model Notice of Individuals Receiving Substance Abuse Services

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Model Notice of Individuals Receiving Substance... ORGANIZATIONS RECEIVING DISCRETIONARY FUNDING UNDER TITLE V OF THE PUBLIC HEALTH SERVICE ACT, 42 U.S.C. 290aa...—Model Notice of Individuals Receiving Substance Abuse Services Model Notice to Individuals Receiving...

  16. Receiving more than data - a signal model, theory and implementation of a cognitive IEEE 802.15.4 receiver

    Directory of Open Access Journals (Sweden)

    Tim Esemann

    2016-09-01

    Full Text Available Standard medium access schemes sense the channel immediately prior transmission, but are blind during the transmission. Therefore, standard transceivers have limited cognitive capabilities which are important for operation in heterogeneous radio environments. Specifically, mobile interferers move gradually into the reception range before actually causing collisions. These gradual interferences cannot yet be detected, and upcoming collisions cannot be predicted. We present a theoretical analysis of the received and demodulated signal. This analysis and the derived signal model verifies that the received signal contains more than transmitted data exclusively. Enhanced signal processing extracts signal components of an interference at the receiver and enables advanced interference detection to provide information about approaching mobile interferers. Our theoretical analysis is evaluated by simulations and experiments with an IEEE 802.15.4 transmitter and an extended cognitive receiver.

  17. Modeling of PWR fuel at extended burnup

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Raphael M.; Silva, Antonio Teixeira, E-mail: rmdias@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  18. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael M.; Silva, Antonio Teixeira

    2015-01-01

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  19. MMSNF 2005. Materials models and simulations for nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Freyss, M.; Durinck, J.; Carlot, G.; Sabathier, C.; Martin, P.; Garcia, P.; Ripert, M.; Blanpain, P.; Lippens, M.; Schut, H.; Federov, A.V.; Bakker, K.; Osaka, M.; Miwa, S.; Sato, I.; Tanaka, K.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Govers, K.; Verwerft, M.; Hou, M.; Lemehov, S.E.; Terentyev, D.; Govers, K.; Kotomin, E.A.; Ashley, N.J.; Grimes, R.W.; Van Uffelen, P.; Mastrikov, Y.; Zhukovskii, Y.; Rondinella, V.V.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Minato, K.; Phillpot, S.; Watanabe, T.; Shukla, P.; Sinnott, S.; Nino, J.; Grimes, R.; Staicu, D.; Hiernaut, J.P.; Wiss, T.; Rondinella, V.V.; Ronchi, C.; Yakub, E.; Kaye, M.H.; Morrison, C.; Higgs, J.D.; Akbari, F.; Lewis, B.J.; Thompson, W.T.; Gueneau, C.; Gosse, S.; Chatain, S.; Dumas, J.C.; Sundman, B.; Dupin, N.; Konings, R.; Noel, H.; Veshchunov, M.; Dubourg, R.; Ozrin, C.V.; Veshchunov, M.S.; Welland, M.T.; Blanc, V.; Michel, B.; Ricaud, J.M.; Calabrese, R.; Vettraino, F.; Tverberg, T.; Kissane, M.; Tulenko, J.; Stan, M.; Ramirez, J.C.; Cristea, P.; Rachid, J.; Kotomin, E.; Ciriello, A.; Rondinella, V.V.; Staicu, D.; Wiss, T.; Konings, R.; Somers, J.; Killeen, J

    2006-07-01

    The MMSNF Workshop series aims at stimulating research and discussions on models and simulations of nuclear fuels and coupling the results into fuel performance codes.This edition was focused on materials science and engineering for fuel performance codes. The presentations were grouped in three technical sessions: fundamental modelling of fuel properties; integral fuel performance codes and their validation; collaborations and integration of activities. (A.L.B.)

  20. MMSNF 2005. Materials models and simulations for nuclear fuels

    International Nuclear Information System (INIS)

    Freyss, M.; Durinck, J.; Carlot, G.; Sabathier, C.; Martin, P.; Garcia, P.; Ripert, M.; Blanpain, P.; Lippens, M.; Schut, H.; Federov, A.V.; Bakker, K.; Osaka, M.; Miwa, S.; Sato, I.; Tanaka, K.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Govers, K.; Verwerft, M.; Hou, M.; Lemehov, S.E.; Terentyev, D.; Govers, K.; Kotomin, E.A.; Ashley, N.J.; Grimes, R.W.; Van Uffelen, P.; Mastrikov, Y.; Zhukovskii, Y.; Rondinella, V.V.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Minato, K.; Phillpot, S.; Watanabe, T.; Shukla, P.; Sinnott, S.; Nino, J.; Grimes, R.; Staicu, D.; Hiernaut, J.P.; Wiss, T.; Rondinella, V.V.; Ronchi, C.; Yakub, E.; Kaye, M.H.; Morrison, C.; Higgs, J.D.; Akbari, F.; Lewis, B.J.; Thompson, W.T.; Gueneau, C.; Gosse, S.; Chatain, S.; Dumas, J.C.; Sundman, B.; Dupin, N.; Konings, R.; Noel, H.; Veshchunov, M.; Dubourg, R.; Ozrin, C.V.; Veshchunov, M.S.; Welland, M.T.; Blanc, V.; Michel, B.; Ricaud, J.M.; Calabrese, R.; Vettraino, F.; Tverberg, T.; Kissane, M.; Tulenko, J.; Stan, M.; Ramirez, J.C.; Cristea, P.; Rachid, J.; Kotomin, E.; Ciriello, A.; Rondinella, V.V.; Staicu, D.; Wiss, T.; Konings, R.; Somers, J.; Killeen, J.

    2006-01-01

    The MMSNF Workshop series aims at stimulating research and discussions on models and simulations of nuclear fuels and coupling the results into fuel performance codes.This edition was focused on materials science and engineering for fuel performance codes. The presentations were grouped in three technical sessions: fundamental modelling of fuel properties; integral fuel performance codes and their validation; collaborations and integration of activities. (A.L.B.)

  1. Modelling the effects of transport policy levers on fuel efficiency and national fuel consumption

    International Nuclear Information System (INIS)

    Kirby, H.R.; Hutton, B.; McQuaid, R.W.; Napier Univ., Edinburgh; Raeside, R.; Napier Univ., Edinburgh; Zhang, Xiayoan; Napier Univ., Edinburgh

    2000-01-01

    The paper provides an overview of the main features of a Vehicle Market Model (VMM) which estimates changes to vehicle stock/kilometrage, fuel consumed and CO 2 emitted. It is disaggregated into four basic vehicle types. The model includes: the trends in fuel consumption of new cars, including the role of fuel price: a sub-model to estimate the fuel consumption of vehicles on roads characterised by user-defined driving cycle regimes; procedures that reflect distribution of traffic across different area/road types; and the ability to vary the speed (or driving cycle) from one year to another, or as a result of traffic growth. The most significant variable influencing fuel consumption of vehicles was consumption in the previous year, followed by dummy variables related to engine size. the time trend (a proxy for technological improvements), and then fuel price. Indeed the effect of fuel price on car fuel efficiency was observed to be insignificant (at the 95% level) in two of the three versions of the model, and the size of fuel price term was also the smallest. This suggests that the effectiveness of using fuel prices as a direct policy tool to reduce fuel consumption may he limited. Fuel prices may have significant indirect impacts (such as influencing people to purchase more fuel efficient cars and vehicle manufacturers to invest in developing fuel efficient technology) as may other factors such as the threat of legislation. (Author)

  2. Fuel consumption models for pine flatwoods fuel types in the southeastern United States

    Science.gov (United States)

    Clinton S. Wright

    2013-01-01

    Modeling fire effects, including terrestrial and atmospheric carbon fluxes and pollutant emissions during wildland fires, requires accurate predictions of fuel consumption. Empirical models were developed for predicting fuel consumption from fuel and environmental measurements on a series of operational prescribed fires in pine flatwoods ecosystems in the southeastern...

  3. BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem

    Science.gov (United States)

    Robert E. Burgan; Richard C. Rothermel

    1984-01-01

    This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.

  4. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    International Nuclear Information System (INIS)

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  5. Fuel Receiving and Storage Station. Nuclear Regulatory Commission's final environmental statement

    International Nuclear Information System (INIS)

    1976-01-01

    The following items are covered: the site, the station, environmental effects of site preparation and station construction, environmental effects of station operation, effluent and environmental monitoring programs, environmental effects of accidents, need for BFRSS, benefit-cost analysis of alternatives, generic environmental impact statements, and discussion of and response to comments received on the draft environmental statement

  6. Nuclear Fuel Leasing, Recycling and proliferation: Modeling a Global View

    International Nuclear Information System (INIS)

    Crozat, M P; Choi, J; Reis, V H; Hill, R

    2004-01-01

    On February 11, 2004, U.S. President George W. Bush, in a speech to the National Defense University stated: ''The world must create a safe, orderly system to field civilian nuclear plants without adding to the danger of weapons proliferation. The world's leading nuclear exporters should ensure that states have reliable access at reasonable cost to fuel for civilian reactors, so long as those states renounce enrichment and reprocessing. Enrichment and reprocessing are not necessary for nations seeking to harness nuclear energy for peaceful purposes.'' This concept would require nations to choose one of two paths for civilian nuclear development: those that only have reactors and those that contain one or more elements of the nuclear fuel cycle, including recycling. ''Fuel cycle'' states would enrich uranium, manufacture and lease fuel to ''reactor'' states and receive the reactor states' spent fuel. All parties would accede to stringent security and safeguard standards, embedded within a newly invigorated international regime. Reactor states would be relieved of the financial, environmental (and political) burden of enriching and manufacturing fuel and dealing with spent fuel. Fuel cycle states would potentially earn money on leasing the fuel and perhaps on sales of reactors to the reactor states. Such a leasing concept is especially interesting in scenarios which envision growth in nuclear power, and an important consideration for such a nuclear growth regime is the role of recycling of civilian spent fuel. Recycling holds promise for improved management of spent fuel and efficient utilization of resources, but continues to raise the specter of a world with uncontrolled nuclear weapons proliferation. If done effectively, a fuel-leasing concept could help create a political and economic foundation for significant growth of clean, carbon-free nuclear power while providing a mechanism for significant international cooperation to reduce proliferation concern. This

  7. A comparative study of approaches to direct methanol fuel cells modelling

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Falcao, D.S.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Engenharia, Tecnologia e Inovacao, Paco do Lumiar, 22,1649-038 (Portugal)

    2007-03-15

    Fuel cell modelling has received much attention over the past decade in an attempt to better understand the phenomena occurring within the cell. Mathematical models and simulation are needed as tools for design optimization of fuel cells, stacks and fuel cell power systems. Analytical, semi-empirical and mechanistic models for direct methanol fuel cells (DMFC) are reviewed. Effective models were until now developed describing the fundamental electrochemical and transport phenomena taking place in the cell. More research is required to develop models that can account for the two-phase flows occurring in the anode and cathode of the DMFC. The merits and demerits of the models are presented. Selected models of different categories are implemented and discussed. Finally, one of the selected simplified models is proposed as a computer-aided tool for real-time system level DMFC calculations. (author)

  8. Modeling fuels and fire effects in 3D: Model description and applications

    Science.gov (United States)

    Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn

    2016-01-01

    Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...

  9. Effect of cathode electron-receiver on the performance of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiaoying; Li, Dong [Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Sun, Yongming; Yuan, Zhenhong; Li, Lianhua; Li, Yin [Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2010-07-15

    Performance of cathode electron receivers has direct effect on the voltage and power density of MFC. This paper explored the electrical performance of MFC with potassium permanganate, ferricyanide solution and dissolved oxygen (DO) as cathode electron receivers. The results showed that the internal resistance of MFC with DO depends on catalyst and is higher than that of MFC with potassium permanganate and potassium ferricyanide solution. The maximum volume power density is 4.35 W/m{sup 3}, and the smallest internal resistance is only about 54 {omega}. In case of DO, the internal resistance and power density is different depending on the catalyst and is not too much related to the membranes. (author)

  10. Fuel compliance model for pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.

    1985-01-01

    This paper describes two aspects of fuel pellet deformation that play significant roles in determining maximum cladding hoop strains during pellet-cladding mechanical interaction: compliance of fragmented fuel pellets and influence of the pellet end-face design on the transmission of axial compressive force in the fuel stack. The latter aspect affects cladding ridge formation and explains several related observations that cannot be explained by the hourglassing model. An empirical model, called the fuel compliance model and representing the above aspects of fuel deformation, has been developed using the results from two Halden experiments and incorporated into the FRAP-T6 fuel performance code

  11. Modelling of molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.; Benjamin, A.S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data

  12. Models for predicting fuel consumption in sagebrush-dominated ecosystems

    Science.gov (United States)

    Clinton S. Wright

    2013-01-01

    Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentate Nutt.) ecosystems....

  13. Some aspects of continuum physics used in fuel pin modeling

    International Nuclear Information System (INIS)

    Bard, F.E.

    1975-06-01

    The mathematical formulation used in fuel pin modeling is described. Fuel pin modeling is not a simple extension of the experimental and interpretative methods used in classical mechanics. New concepts are needed to describe materials in a reactor environment. Some aspects of continuum physics used to develop these new constitutive equations for fuel pins are presented. (U.S.)

  14. Forest fuel - economy and models for cost analysis

    International Nuclear Information System (INIS)

    Olsson, Anders.

    1991-01-01

    The purpose of this report is to develop guidelines for the R and D work within Skogskraft with the aim of improving the efficiency of the investigatory work. The report mainly concerns logging waste. The contents are as follows; Terminology - definitions: This section includes a brief description of wood fuels with regard to terminology, definitions, production and marketing. Units of measurement: Different units of measurement are descrived and their relationship to forestry, sawmills and consumers of wood fuels. An account is also given of effective thermal values and formulas for calculations of the energy content for different wood fuels. Calculation models, analyses: This section discusses different models and standards for calculating machine and manual costs. In addition, views are given on cost analysis and certain guidelines with regard to overhead costs. Actors and systems: There is a risk that technical problems receive a far too dominant role in relation to problems which concern organisation and structure. Consequently, it is important to define the actors and to illustrate the different driving forces and tensions that may occur. Seven different actors/interested parties have been described and analysed with regard to primary and secondary interests in ecological, technical and economic questions. Preparation of reports: Certain recommendations have been given with regard to formal requirements and quality requirements

  15. Modeling bacterial contamination of fuel ethanol fermentation.

    Science.gov (United States)

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. Copyright 2008 Wiley Periodicals, Inc.

  16. Modelling chemical behavior of water reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R G.J.; Hanshaw, J; Mason, P K; Mignanelli, M A [AEA Technology, Harwell (United Kingdom)

    1997-08-01

    For many applications, large computer codes have been developed which use correlation`s, simplifications and approximations in order to describe the complex situations which may occur during the operation of nuclear power plant or during fault scenarios. However, it is important to have a firm physical basis for simplifications and approximations in such codes and, therefore, there has been an emphasis on modelling the behaviour of materials and processes on a more detailed or fundamental basis. The application of fundamental modelling techniques to simulated various chemical phenomena in thermal reactor fuel systems are described in this paper. These methods include thermochemical modelling, kinetic and mass transfer modelling and atomistic simulation and examples of each approach are presented. In each of these applications a summary of the methods are discussed together with the assessment process adopted to provide the fundamental parameters which form the basis of the calculation. (author). 25 refs, 9 figs, 2 tabs.

  17. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  18. Receiver Prejudice and Model Ethnicity: Impact on Advertising Effectiveness.

    Science.gov (United States)

    Lai, Hsiu-Chen Sandra; And Others

    1990-01-01

    Assesses the effect of model ethnicity on prejudiced respondents, and thus on advertising effectiveness. Finds that, for the most part, use of Asian models does not cause prejudiced respondents to evaluate a product or advertisement more negatively than when White models are used. (SR)

  19. Nuclear-fuel-cycle optimization: methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book present methods applicable to analyzing fuel-cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After an introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective. Subsequent chapters deal with the fuel-cycle problems faced by a power utility. The fuel-cycle models cover the entire cycle from the supply of uranium to the disposition of spent fuel. The chapter headings are: Nuclear Fuel Cycle, Uranium Supply and Demand, Basic Model of the LWR (light water reactor) Fuel Cycle, Resolution of Uncertainties, Assessment of Proliferation Risks, Multigoal Optimization, Generalized Fuel-Cycle Models, Reactor Strategy Calculations, and Interface with Energy Strategies. 47 references, 34 figures, 25 tables

  20. Modeling closed nuclear fuel cycles processes

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, O.V. [A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials, Rogova, 5a street, Moscow, 123098 (Russian Federation); Makeeva, I.R. [Zababakhin All-Russian Scientific Research Institute of Technical Physics, Vasiliev street 13, Snezhinsk, Chelyabinsk region, 456770 (Russian Federation); Liventsov, S.N. [Tomsk Polytechnic University, Tomsk, Lenin Avenue, 30, 634050 (Russian Federation)

    2016-07-01

    Computer models of processes are necessary for determination of optimal operating conditions for closed nuclear fuel cycle (NFC) processes. Computer models can be quickly changed in accordance with new and fresh data from experimental research. 3 kinds of process simulation are necessary. First, the VIZART software package is a balance model development used for calculating the material flow in technological processes. VIZART involves taking into account of equipment capacity, transport lines and storage volumes. Secondly, it is necessary to simulate the physico-chemical processes that are involved in the closure of NFC. The third kind of simulation is the development of software that allows the optimization, diagnostics and control of the processes which implies real-time simulation of product flows on the whole plant or on separate lines of the plant. (A.C.)

  1. Models for MOX fuel behaviour. A selective review

    International Nuclear Information System (INIS)

    Massih, Ali R.

    2006-01-01

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO 2 fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO 2 . In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO 2 fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO 2 fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO 2 vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO 2 . This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation

  2. Models for MOX fuel behaviour. A selective review

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2006-12-15

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO{sub 2} fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO{sub 2}. In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO{sub 2} fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO{sub 2} fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO{sub 2} vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO{sub 2}. This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation.

  3. On the modeling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Christer

    1997-12-01

    This report concerns on the modelling of fuel sprays in a non-combustible case using an own developed fuel spray code module. The spray code is made as an independent module to simplify the use of different gas flow solvers together with the spray module. This enables the possibility to use different turbulence models. In the report two turbulence models has been used, the standard k-{epsilon} and the LES (Large Eddy Simulation) model. The report presents results obtained from a sensitivity study of both numerical and physical parameters on an evaporating spray under diesel like conditions (light duty diesel engine) with the spray code module attached to a cylindrical gas phase flow solver. The results from the sensitivity analysis showed that these effects were not so pronounced as has been reported. It was suggested that this was due to the `easy` nature of the investigated case, where the flow field could be sufficiently resolved without violating the droplet void fraction criteria and break-up, collision and combustion that may increase the grid spacing sensitivity were not modelled. An investigation was performed to valuate the feasibility of using LES as turbulence model. Calculations of the initial phase of a developing jet were made and it was found that in the initial phase of the spray and the flow structure were similar to that of a spatially developing jet flow, which is in agreement with experimental observations. Results from LES calculations on a developing spray jet was also compared with k-{epsilon} based ones. This result showed that the spray-LES approach captured the transition from a laminar to a turbulent flow field with an increase in turbulent kinetic energy k along the injection direction 45 refs, 37 figs, 2 tabs

  4. Integrating repositories with fuel cycles: The airport authority model

    International Nuclear Information System (INIS)

    Forsberg, C.

    2012-01-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  5. Integrating repositories with fuel cycles: The airport authority model

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  6. Modeling of fuel bundle vibration and the associated fretting wear in a CANDU fuel channel

    International Nuclear Information System (INIS)

    Mohany, A.; Hassan, M.

    2011-01-01

    In this paper a numerical model is developed to predict the vibration response of a CANDU® fuel bundle and the associated fretting wear in the surrounding pressure tube. One excitation mechanism is considered in this model; turbulence-induced excitation caused by coolant flow inside the fuel channel. The numerical model can be easily adapted to include the effects of seismic events, fuel bundle impact during refuelling and start-up of the reactor, and the acoustic pressure pulsations caused by the primary heat transport (PHT) pumps. The simulation is performed for a typical CANDU fuel bundle with 37 fuel elements. The clearances between the buttons of the inner fuel elements, and between the bearing pads of the outer fuel elements and the pressure tube were measured from an actual fuel bundle. Some variability among the measured clearance values was observed. Therefore, probability density functions of the measured clearance values were established and the simulation was performed for the probabilistic distribution of the clearance values. The contact between the fuel bundle and the pressure tube is modeled using pseudo-force contact method. The proposed modelling technique can be used in future CANDU reactors to avoid fuel and pressure tube fretting damage due to the aforementioned excitation mechanisms. (author)

  7. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  8. Some properties for modeling of fuel elements

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1979-01-01

    Two areas key to the materials modeling of fuel element behavior are discussed. The relative importance of atomic diffusion vs. bubble migration is first surveyed and the interplay of bubble mobility and re-solution parameter is highlighted. It is concluded that biased bubble migration at higher temperatures is required to explain available gas-release data, especially during transients. At intermediate temperatures, random bubble migration is required to explain both gas-release rates and the observation of large (approx. 700A) intragranular bubbles following in-pile and post-irradiation transients. Different fuel models employ different values of re-solution parameter, both below and above an experimentally determined value. Bubble mobilities are deduced to approach theoretical, surface diffusion-controlled values during transients, but they may be somewhat less mobile during steady-state operation. Next, the present understanding of radiation-induced hardening and creep is discussed, highlighting the interplay of these two phenomena. An overall constitutive scheme is presented and predictions of failure limits are deduced therefrom employing instability analysis

  9. Modelling strategic responses to car and fuel taxation

    NARCIS (Netherlands)

    Heijnen, P.; Kooreman, P.

    We develop a model to analyse the interactions between actors involved in car and fuel taxation: consumers, car producers, fuel producers and the government. Heterogeneous consumers choose between two versions of a car that differ in engine type (diesel or gasoline). Car manufacturers and fuel

  10. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  11. Mathematical Model of the Jet Engine Fuel System

    Directory of Open Access Journals (Sweden)

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  12. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  13. Mathematical Model of the Jet Engine Fuel System

    Science.gov (United States)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  14. Receiver Expectations: Toward a New Model of Resistance to Persuasion.

    Science.gov (United States)

    Miller, Michael D.; Burgoon, Michael

    Communication research long has noted how pretreatment strategies ("inoculations") induce resistance to persuasion, but a new model proposes that resistance is an integral part of the persuasion process. Using the inoculation framework, researchers showed the importance of threats to an individual's attitudes in developing resistance to…

  15. Fuel behavior modeling using the MARS computer code

    International Nuclear Information System (INIS)

    Faya, S.C.S.; Faya, A.J.G.

    1983-01-01

    The fuel behaviour modeling code MARS against experimental data, was evaluated. Two cases were selected: an early comercial PWR rod (Maine Yankee rod) and an experimental rod from the Canadian BWR program (Canadian rod). The MARS predictions are compared with experimental data and predictions made by other fuel modeling codes. Improvements are suggested for some fuel behaviour models. Mars results are satisfactory based on the data available. (Author) [pt

  16. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  17. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  18. Atomic scale simulations for improved CRUD and fuel performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    A more mechanistic description of fuel performance codes can be achieved by deriving models and parameters from atomistic scale simulations rather than fitting models empirically to experimental data. The same argument applies to modeling deposition of corrosion products on fuel rods (CRUD). Here are some results from publications in 2016 carried out using the CASL allocation at LANL.

  19. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  20. Supply chain modeling of forest fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, Helene; Lundgren, Jan T.; Roennqvist, Mikael

    2001-04-01

    We study the problem of deciding when and where forest residues are to be converted into forest fuel, and how the residues are to be transported and stored in order to satisfy demand at heating plants. Decisions also include whether or not additional harvest areas and saw-mills are to be contracted. In addition, we consider the flow of products from saw-mills and import harbors, and address the question about which terminals to use. The planning horizon is one year and monthly time periods are considered. The supply chain problem is formulated as a large mixed integer linear programming model. In order to obtain solutions within reasonable time we have developed a heuristic solution approach. Computational results from a large Swedish supplying entrepreneur are reported.

  1. Supply chain modeling of forest fuel

    International Nuclear Information System (INIS)

    Gunnarsson, Helene; Lundgren, Jan T.; Roennqvist, Mikael

    2001-04-01

    We study the problem of deciding when and where forest residues are to be converted into forest fuel, and how the residues are to be transported and stored in order to satisfy demand at heating plants. Decisions also include whether or not additional harvest areas and saw-mills are to be contracted. In addition, we consider the flow of products from saw-mills and import harbors, and address the question about which terminals to use. The planning horizon is one year and monthly time periods are considered. The supply chain problem is formulated as a large mixed integer linear programming model. In order to obtain solutions within reasonable time we have developed a heuristic solution approach. Computational results from a large Swedish supplying entrepreneur are reported

  2. WWER reactor fuel performance, modelling and experimental support. Proceedings

    International Nuclear Information System (INIS)

    Stefanova, S.; Chantoin, P.; Kolev, I.

    1994-01-01

    This publication is a compilation of 36 papers presented at the International Seminar on WWER Reactor Fuel Performance, Modelling and Experimental Support, organised by the Institute for Nuclear Research and Nuclear Energy (BG), in cooperation with the International Atomic Energy Agency. The Seminar was attended by 76 participants from 16 countries, including representatives of all major Russian plants and institutions responsible for WWER reactor fuel manufacturing, design and research. The reports are grouped in four chapters: 1) WWER Fuel Performance and Economics: Status and Improvement Prospects: 2) WWER Fuel Behaviour Modelling and Experimental Support; 3) Licensing of WWER Fuel and Fuel Analysis Codes; 4) Spent Fuel of WWER Plants. The reports from the corresponding four panel discussion sessions are also included. All individual papers are recorded in INIS as separate items

  3. WWER reactor fuel performance, modelling and experimental support. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Chantoin, P; Kolev, I [eds.

    1994-12-31

    This publication is a compilation of 36 papers presented at the International Seminar on WWER Reactor Fuel Performance, Modelling and Experimental Support, organised by the Institute for Nuclear Research and Nuclear Energy (BG), in cooperation with the International Atomic Energy Agency. The Seminar was attended by 76 participants from 16 countries, including representatives of all major Russian plants and institutions responsible for WWER reactor fuel manufacturing, design and research. The reports are grouped in four chapters: (1) WWER Fuel Performance and Economics: Status and Improvement Prospects: (2) WWER Fuel Behaviour Modelling and Experimental Support; (3) Licensing of WWER Fuel and Fuel Analysis Codes; (4) Spent Fuel of WWER Plants. The reports from the corresponding four panel discussion sessions are also included. All individual papers are recorded in INIS as separate items.

  4. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  5. Thermal conductivity model of vibro-packed fuel

    International Nuclear Information System (INIS)

    Yeon Soo, Kim

    2001-01-01

    In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)

  6. Modeling RERTR experimental fuel plates using the PLATE code

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Snelgrove, J.L.; Brazener, R.A.

    2003-01-01

    Modeling results using the PLATE dispersion fuel performance code are presented for the U-Mo/Al experimental fuel plates from the RERTR-1, -2, -3 and -5 irradiation tests. Agreement of the calculations with experimental data obtained in post-irradiation examinations of these fuels, where available, is shown to be good. Use of the code to perform a series of parametric evaluations highlights the sensitivity of U-Mo dispersion fuel performance to fabrication variables, especially fuel particle shape and size distributions. (author)

  7. Modelling of spray evaporation and penetration for alternative fuels

    OpenAIRE

    Azami, M. H.; Savill, Mark A.

    2016-01-01

    The focus of this work is on the modelling of evaporation and spray penetration for alternative fuels. The extension model approach is presented and validated for alternative fuels, namely, Kerosene (KE), Ethanol (ETH), Methanol (MTH), Microalgae biofuel (MA), Jatropha biofuel (JA), and Camelina biofuel (CA). The results for atomization and spray penetration are shown in a time variant condition. Comparisons have been made to visualize the transient behaviour of these fuels. The vapour pressu...

  8. Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel

    International Nuclear Information System (INIS)

    Lewis, B.J.; Thompson, W.T.; Akbari, F.; Thompson, D.M.; Thurgood, C.; Higgs, J.

    2004-01-01

    A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor

  9. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  10. Integrated fuel-cycle models for fast breeder reactors

    International Nuclear Information System (INIS)

    Ott, K.O.; Maudlin, P.J.

    1981-01-01

    Breeder-reactor fuel-cycle analysis can be divided into four different areas or categories. The first category concerns questions about the spatial variation of the fuel composition for single loading intervals. Questions of the variations in the fuel composition over several cycles represent a second category. Third, there is a need for a determination of the breeding capability of the reactor. The fourth category concerns the investigation of breeding and long-term fuel logistics. Two fuel-cycle models used to answer questions in the third and fourth area are presented. The space- and time-dependent actinide balance, coupled with criticality and fuel-management constraints, is the basis for both the Discontinuous Integrated Fuel-Cycle Model and the Continuous Integrated Fuel-Cycle Model. The results of the continuous model are compared with results obtained from detailed two-dimensional space and multigroup depletion calculations. The continuous model yields nearly the same results as the detailed calculation, and this is with a comparatively insignificant fraction of the computational effort needed for the detailed calculation. Thus, the integrated model presented is an accurate tool for answering questions concerning reactor breeding capability and long-term fuel logistics. (author)

  11. Autoxidation of jet fuels: Implications for modeling and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, S.P. [Univ. of Dayton Research Institute, OH (United States); Chin, L.P. [Systems Research Laboratories, Inc., Dayton, OH (United States)

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to model the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.

  12. Fuel modelling and its economical competitiveness

    International Nuclear Information System (INIS)

    Marino, A.C.; Savino, E.J.

    1996-01-01

    Due to reasons of economical competitiveness, there is at present a strong need in the nuclear industry to improve fuel performance under more demanding operating conditions, such as those resulting from an extended burnup. This requires a good understanding of the properties of fuel rod materials and their in-service performance. As it can be easily foreseen, thermal, mechanical and microstructural irradiation effects are strongly interrelated while the fuel is at reactor operating conditions. (author). 7 refs., 16 figs

  13. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  14. Detailed modeling of common rail fuel injection process

    NARCIS (Netherlands)

    Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2005-01-01

    Modeling of fuel injection equipment is a tool that is used increasingly for explaining or predicting the effect of advanced diesel injection strategies on combustion and emissions. This paper reports on the modeling of the high-pressure part of a research type Heavy Duty Common Rail (CR) fuel

  15. Modeling the optimal management of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Swindle, D.W. Jr.; Korcz, K.O.

    1977-01-01

    Recent governmental policy decisions dictate that strategies for managing spent nuclear fuel be developed. Two models are constructed to investigate the optimum residence time and the optimal inventory withdrawal policy for fuel material that presently must be stored. The mutual utility of the models is demonstrated through reference case application

  16. Development of 3D Oxide Fuel Mechanics Models

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casagranda, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pitts, S. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-27

    This report documents recent work to improve the accuracy and robustness of the mechanical constitutive models used in the BISON fuel performance code. These developments include migration of the fuel mechanics models to be based on the MOOSE Tensor Mechanics module, improving the robustness of the smeared cracking model, implementing a capability to limit the time step size based on material model response, and improving the robustness of the return mapping iterations used in creep and plasticity models.

  17. Fuel element transfer cask modelling using MCNP technique

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2009-01-01

    Full text: After operating for more than 25 years, some of the Reaktor TRIGA PUSPATI (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement. (author)

  18. Fuel Element Transfer Cask Modelling Using MCNP Technique

    International Nuclear Information System (INIS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  19. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing......, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a 609MW utility boiler is numerically studied, in which...... calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations of the same...

  20. Modelling of some high burnup phenomena in nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, K; Lindstroem, F; Massih, A R [ABB Atom AB, Vaesteraas (Sweden)

    1997-08-01

    In this paper the results of some modelling efforts carried out by ABB Atom to describe certain light water reactor fuel high burnup effects are presented. In particular the degradation of fuel thermal conductivity with burnup and its impact on fuel temperature is briefly discussed. The formation of a porous rim and its effect on a thermal fission gas release has been modelled and the model has been used to predict the release of pressurized water reactor fuel rods that were operated at low power densities. Furthermore, a mathematical model which combines the diffusion and re-solution controlled thermal release with grain boundary movement has been briefly described. The model is used to compare release with diffusion only and release caused by diffusion and grain boundary sweeping (due to grain growth). Finally, analytical expressions are obtained for the calculation of fuel stoichiometry as a function of burnup. (author). 20 refs, 10 figs, 1 tab.

  1. A cost-performance model for ground-based optical communications receiving telescopes

    Science.gov (United States)

    Lesh, J. R.; Robinson, D. L.

    1986-01-01

    An analytical cost-performance model for a ground-based optical communications receiving telescope is presented. The model considers costs of existing telescopes as a function of diameter and field of view. This, coupled with communication performance as a function of receiver diameter and field of view, yields the appropriate telescope cost versus communication performance curve.

  2. Evaluation model for PWR irradiated fuel

    International Nuclear Information System (INIS)

    Gomes, I.C.

    1983-01-01

    The individual economic value of the plutonium isotopes for the recycle of the PWR reactor is investigated, assuming the existence of an market for this element. Two distinct market situations for the stages of the fuel cycle are analysed: one for the 1972 costs and the other for costs of 1982. Comparisons are made for each of the two market situations concerning enrichment of the U-235 in the uranium fuel that gives the minimum cost in the fuel cycle. The method adopted to establish the individual value of the plutonium isotopes consists on the economical analyses of the plutonium fuel cycle for four different isotopes mixtures refering to the uranium fuel cycle. (Author) [pt

  3. Modeling and simulation of a molten salt cavity receiver with Dymola

    International Nuclear Information System (INIS)

    Zhang, Qiangqiang; Li, Xin; Wang, Zhifeng; Zhang, Jinbai; El-Hefni, Baligh; Xu, Li

    2015-01-01

    Molten salt receivers play an important role in converting solar energy to thermal energy in concentrating solar power plants. This paper describes a dynamic mathematical model of the molten salt cavity receiver that couples the conduction, convection and radiation heat transfer processes in the receiver. The temperature dependence of the material properties is also considered. The radiosity method is used to calculate the radiation heat transfer inside the cavity. The outlet temperature of the receiver is calculated for 11 sets of transient working conditions. The simulation results compare well with experimental data, thus the model can be further used in system simulations of entire power plants. - Highlights: • A detailed model for molten salt cavity receiver is presented. • The model couples the conduction, convection and thermal radiation. • The simulation results compare well with experimental data. • The model can be further used for many purposes.

  4. Modeling of terminal-area airplane fuel consumption

    Science.gov (United States)

    2009-08-01

    Accurate modeling of airplane fuel consumption is necessary for air transportation policy-makers to properly : adjudicate trades between competing environmental and economic demands. Existing public models used for : computing terminal-area airplane ...

  5. PWR-to-PWR fuel cycle model using dry process

    International Nuclear Information System (INIS)

    Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong

    2002-03-01

    PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance

  6. Fuel fragmentation model advances using TEXAS-V

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M.L.; El-Beshbeeshy, M.; Nilsuwankowsit, S.; Tang, J. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Because an energetic fuel-coolant interaction may be a safety hazard, experiments are being conducted to investigate the fuel-coolant mixing/quenching process (FARO) as well as the energetics of vapor explosion propagation for high temperature fuel melt simulants (KROTOS, WFCI, ZrEX). In both types of experiments, the dynamic breakup of the fuel is one of the key aspects that must be fundamentally understood to better estimate the magnitude of the mixing/quenching process or the explosion energetics. To aid our understanding the TEXAS fuel-coolant interaction computer model has been developed and is being used to analyze these experiments. Recently, the models for dynamic fuel fragmentation during the mixing and explosion phases of the FCI have been improved by further insights into these processes. The purpose of this paper is to describe these enhancements and to demonstrate their improvements by analysis of particular JRC FCI data. (author)

  7. Simulation and modelling of advanced Argentinian nuclear fuels

    International Nuclear Information System (INIS)

    Marino, A.; Losada, E.; Demarco, G.; Garces, J.; Marino, A.; Jaroszewicz, S.; Mosca, H.; Demarco, G.

    2011-01-01

    The BaCo code (Barra Combustible, Spanish expression for 'fuel rod') was developed to simulate the nuclear fuel rods behaviour under irradiation. The generation of nucleo electricity in Argentina is based on PHWR NPP and, as a consequence, BaCo is focused on PHWR fuels keeping full compatibility with PWR, WWER, among others type of fuels (commercial, experimental or prototypes). BaCo includes additional extensions for 3D calculations, statistical improvements, fuel design and batch analysis. Research on new fuels and cladding materials properties based on ab initio and multiscale modelling are currently under development to be included in BaCo simulations in order to be applied to Generation IV reactors. The ab initio and multiscale modelling can enhance the field of application of the code by including a strong physical basement covering the unavailable data needed for those improvements. (authors)

  8. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  9. An Adjusted Discount Rate Model for Fuel Cycle Cost Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Kang, G. B.; Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Owing to the diverse nuclear fuel cycle options available, including direct disposal, it is necessary to select the optimum nuclear fuel cycles in consideration of the political and social environments as well as the technical stability and economic efficiency of each country. Economic efficiency is therefore one of the significant evaluation standards. In particular, because nuclear fuel cycle cost may vary in each country, and the estimated cost usually prevails over the real cost, when evaluating the economic efficiency, any existing uncertainty needs to be removed when possible to produce reliable cost information. Many countries still do not have reprocessing facilities, and no globally commercialized HLW (High-level waste) repository is available. A nuclear fuel cycle cost estimation model is therefore inevitably subject to uncertainty. This paper analyzes the uncertainty arising out of a nuclear fuel cycle cost evaluation from the viewpoint of a cost estimation model. Compared to the same discount rate model, the nuclear fuel cycle cost of a different discount rate model is reduced because the generation quantity as denominator in Equation has been discounted. Namely, if the discount rate reduces in the back-end process of the nuclear fuel cycle, the nuclear fuel cycle cost is also reduced. Further, it was found that the cost of the same discount rate model is overestimated compared with the different discount rate model as a whole.

  10. An Adjusted Discount Rate Model for Fuel Cycle Cost Estimation

    International Nuclear Information System (INIS)

    Kim, S. K.; Kang, G. B.; Ko, W. I.

    2013-01-01

    Owing to the diverse nuclear fuel cycle options available, including direct disposal, it is necessary to select the optimum nuclear fuel cycles in consideration of the political and social environments as well as the technical stability and economic efficiency of each country. Economic efficiency is therefore one of the significant evaluation standards. In particular, because nuclear fuel cycle cost may vary in each country, and the estimated cost usually prevails over the real cost, when evaluating the economic efficiency, any existing uncertainty needs to be removed when possible to produce reliable cost information. Many countries still do not have reprocessing facilities, and no globally commercialized HLW (High-level waste) repository is available. A nuclear fuel cycle cost estimation model is therefore inevitably subject to uncertainty. This paper analyzes the uncertainty arising out of a nuclear fuel cycle cost evaluation from the viewpoint of a cost estimation model. Compared to the same discount rate model, the nuclear fuel cycle cost of a different discount rate model is reduced because the generation quantity as denominator in Equation has been discounted. Namely, if the discount rate reduces in the back-end process of the nuclear fuel cycle, the nuclear fuel cycle cost is also reduced. Further, it was found that the cost of the same discount rate model is overestimated compared with the different discount rate model as a whole

  11. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  12. Analytic models for fuel pin transient performance

    International Nuclear Information System (INIS)

    Bard, F.E.; Fox, G.L.; Washburn, D.F.; Hanson, J.E.

    1976-09-01

    HEDL's ability to analyze various mechanisms that operate within a fuel pin has progressed substantially through development of codes such as PECTCLAD, which solves cladding response, and DSTRESS, which solves fuel response. The PECTCLAD results show good correlation with a variety of mechanical tests on cladding material and also demonstrate the significance of cladding strength when applying the life fraction rule. The DSTRESS results have shown that fuel deforms sufficiently during overpower transient tests that available volumes are filled, whether in the form of a central cavity or start-up cracks

  13. PYRO, a system for modeling fuel reprocessing

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1989-01-01

    Compact, on-site fuel reprocessing and waste management for the Integral Fast Reactor are based on the pyrochemical reprocessing of metal fuel. In that process, uranium and plutonium in spent fuel are separated from fission products in an electrorefiner using liquid cadmium and molten salt solvents. Quantitative estimates of the distribution of the chemical elements among the metal and salt phases are essential for development of both individual pyrochemical process steps and the complete process. This paper describes the PYRO system of programs used to generate reliable mass flows and compositions

  14. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  15. Communication received from the Resident Representative of Germany to the IAEA with regard to the German proposal on the multilateralization of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2007-01-01

    The Agency has received a communication dated 26 April 2007 from the Resident Representative of Germany, attaching the German proposal on the Multilateralization of the Nuclear Fuel Cycle. As requested in that communication, the proposal is herewith circulated for the information of Member States

  16. Communication received on 12 September 2006 from the Permanent Mission of Japan to the Agency concerning arrangements for the assurance of nuclear fuel supply

    International Nuclear Information System (INIS)

    2006-01-01

    The Secretariat has received on 12 September 2006 a communication from the Permanent Mission of Japan attaching a document entitled 'Japan's Proposal: IAEA Standby Arrangements System for the Assurance of Nuclear Fuel Supply'. As requested by the Permanent Mission, the text of the attachment is herewith reproduced for the information of Member States

  17. Communication dated 18 May 2009 received from the Permanent Mission of Kazakhstan to the Agency enclosing a position paper regarding the establishment of IAEA nuclear fuel banks

    International Nuclear Information System (INIS)

    2009-01-01

    The Secretariat has received a communication dated 18 May 2009 from the Permanent Mission of Kazakhstan, transmitting a position paper of Kazakhstan regarding the establishment of IAEA nuclear fuel banks. As requested in that communication, the attached position paper is herewith circulated for the information of all Member States

  18. Communication received from the Federal Minister for European and International Affairs of Austria with regard to the Austrian proposal on the multilateralization of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2007-01-01

    The Agency has received a communication dated 10 May 2007 from the Federal Minister for European and International Affairs of the Republic of Austria, attaching a paper on the Multilateralization of the Nuclear Fuel Cycle. As requested in that communication, the paper is herewith circulated for the information of Member States

  19. Binomial model for measuring expected credit losses from trade receivables in non-financial sector entities

    Directory of Open Access Journals (Sweden)

    Branka Remenarić

    2018-01-01

    Full Text Available In July 2014, the International Accounting Standards Board (IASB published International Financial Reporting Standard 9 Financial Instruments (IFRS 9. This standard introduces an expected credit loss (ECL impairment model that applies to financial instruments, including trade and lease receivables. IFRS 9 applies to annual periods beginning on or after 1 January 2018 in the European Union member states. While the main reason for amending the current model was to require major banks to recognize losses in advance of a credit event occurring, this new model also applies to all receivables, including trade receivables, lease receivables, related party loan receivables in non-financial sector entities. The new impairment model is intended to result in earlier recognition of credit losses. The previous model described in International Accounting Standard 39 Financial instruments (IAS 39 was based on incurred losses. One of the major questions now is what models to use to predict expected credit losses in non-financial sector entities. The purpose of this paper is to research the application of the current impairment model, the extent to which the current impairment model can be modified to satisfy new impairment model requirements and the applicability of the binomial model for measuring expected credit losses from accounts receivable.

  20. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  1. Model of cooling nuclear fuel rod in the nuclear reactor

    International Nuclear Information System (INIS)

    Lavicka, David; Polansky, Jiri

    2010-01-01

    The following topics are described: Some basic requirements for nuclear fuel rods; The VVER 1000 fuel rod; Classification of the two-phase flow in the vertical tube; Type of heat transfer crisis in the vertical tube; Experimental apparatus; Model of the nuclear fuel rod and spacers; Potential of the experimental apparatus (velocity profile measurement via PIV; thermal flow field measurement by the PLIF method; cooling graph in dependence on the fuel rod temperature; comparison of the hydrodynamic properties with respect to the design features of the spacers). (P.A.)

  2. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  3. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  4. Development of Dynamic Spent Nuclear Fuel Environmental Effect Analysis Model

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2010-07-01

    The dynamic environmental effect evaluation model for spent nuclear fuel has been developed and incorporated into the system dynamic DANESS code. First, the spent nuclear fuel isotope decay model was modeled. Then, the environmental effects were modeled through short-term decay heat model, short-term radioactivity model, and long-term heat load model. By using the developed model, the Korean once-through nuclear fuel cycles was analyzed. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. If the disposal starts from 2060, the short-term decay heat of Cs-137 and Sr-90 isotopes are W and 1.8x10 6 W in 2100. Also, the total long-term heat load in 2100 will be 4415 MW-y. From the calculation results, it was found that the developed model is very convenient and simple for evaluation of the environmental effect of the spent nuclear fuel

  5. RA3: Application of a calculation model for fuel management with SEFE (Slightly Enriched Fuel Elements)

    International Nuclear Information System (INIS)

    Estryk, G.; Higa, M.

    1993-01-01

    The RA-3 (5 MW, MTR) reactor is mainly utilized to produce radioisotopes (Mo-99, I-131, etc.). It started operating with Low Enrichment Uranium (LEU) in 1990, and spends around 12 fuels per year. Although this consumption is small compared to a nuclear power station. It is important to do a good management of them. The present report describes: - A reactor model to perform the Fuel Shuffling. - Results of fuel management simulations for 2 and a half years of operation. Some features of the calculations can be summarized as follows: 1) A 3D calculation model is used with the code PUMA. It does not have experimental adjustments, except for some approximations in the reflector representation and predicts: power, flux distributions and reactivity of the core in an acceptable way. 2) Comparisons have been made with the measurements done in the commissioning with LEU fuels, and it has also been compared with the empirical method (the previous one) which had been used in the former times of operation with LEU fuel. 3) The number of points of the model is approximately 13500, an it can be run in 80386 personal computer. The present method has been verified as a good tool to perform the simulations for the fuel management of RA-3 reactor. It is expected to produce some economic advantages in: - Achieving a better utilization of the fuels. - Leaving more time of operation for radioisotopes production. The activation measurements through the whole core required by the previous method can be significantly reduced. (author)

  6. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Piet, Steven J.; Matthern, Gretchen E.; Shropshire, David E.; Jeffers, Robert F.; Yacout, A.M.; Schweitzer, Tyler

    2010-01-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  7. 3D Reflection Map Modeling for Optical Emitter-receiver Pairs

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    2004-01-01

    A model for a model-based 3D-position determination system for a passive object is presented. Infrared emitter/receiver pairs are proposed as sensing part to acquire information on a ball shaped object's position. A 3D reflection map model is derived trough geometrical considerations. The model...

  8. SAVIT: a dymanic model to predict vibratory motion within a spent fuel shipping cask; rail car system

    International Nuclear Information System (INIS)

    Fields, S.R.

    1978-03-01

    A dynamic model of a spent fuel shipping cask-rail car system has been developed to provide estimates of the vibratory motion of LWR spent fuel assemblies during transport and to estimate the effects of this motion on the condition of the assemblies when they arrive at receiving and storage facilities. Results of preliminary test computations are presented to illustrate the capabilities of the model

  9. Transport fuel demand responses to fuel price and income projections : Comparison of integrated assessment models

    NARCIS (Netherlands)

    Edelenbosch, O. Y.; van Vuuren, Detlef; Bertram, C.; Carrara, S.; Emmerling, J.; Daly, H.; Kitous, A.; McCollum, D. L.; Saadi Failali, N.

    Income and fuel price pathways are key determinants in projections of the energy system in integrated assessment models. In recent years, more details have been added to the transport sector representation in these models. To better understand the model dynamics, this manuscript analyses transport

  10. Structural analysis and modeling of water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Roshan Zamir, M.

    2000-01-01

    An important aspect of the design and analysis of nuclear reactor is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system under normal and emergency operating conditions. To achieve these objectives and in order to provide a suitable computer code based on fundamental material properties for design and study of the thermal-mechanical behavior of water reactor fuel rods during their irradiation life and also to demonstrate the fuel rod design and modeling for students, The KIANA-1 computer program has been developed by the writer at Amir-Kabir university of technology with support of Atomic Energy Organization of Iran. KIANA-1 is an integral one-dimensional computer program for the thermal and mechanical analysis in order to predict fuel rods performance and also parameter study of Zircaloy-clad UO 2 fuel rod during steady state conditions. The code has been designed for the following main objectives: To give a solution for the steady state heat conduction equation for fuel as a heat source and clad by using finite difference, control volume and semi-analytical methods in order to predict the temperature profile in the fuel and cladding. To predict the inner gas pressures due to the filling gases and released gaseous fission products. To predict the fission gas production and release by using a simple diffusion model based on the Booth models and an empirical model. To calculate the fuel-clad gap conductance for cracked fuel with partial contact zones to a closed gap with strong contact. To predict the distribution of stress in three principal directions in the fuel and sheet by assuming one-dimensional plane strain and asymmetric idealization. To calculate the strain distribution in three principal directions and the corresponding deformation in the fuel and cladding. For this purpose the permanent strain such as creep or plasticity as well as the thermoelastic deformation and also the swelling, densification, cracking

  11. Nuclear reactor fuel rod behavior modelling and current trends

    International Nuclear Information System (INIS)

    Colak, Ue.

    2001-01-01

    Safety assessment of nuclear reactors is carried out by simulating the events to taking place in nuclear reactors by realistic computer codes. Such codes are developed in a way that each event is represented by differential equations derived based on physical laws. Nuclear fuel is an important barrier against radioactive fission gas release. The release of radioactivity to environment is the main concern and this can be avoided by preserving the integrity of fuel rod. Therefore, safety analyses should cover an assessment of fuel rod behavior with certain extent. In this study, common approaches for fuel behavior modeling are discussed. Methods utilized by widely accepted computer codes are reviewed. Shortcomings of these methods are explained. Current research topics to improve code reliability and problems encountered in fuel rod behavior modeling are presented

  12. Modelling of WWER-1000 fuel: state and prospects

    International Nuclear Information System (INIS)

    Medvedev, A.; Bibilashvili, Yu.; Bogatyr, S.; Khvostov, G.

    1994-01-01

    The role of START-3 code in studying and computerized modelling of post-irradiation behaviour of standard fuel rods in real operation conditions of WWER-1000 reactors is described. The models used in the code are based on experimental study of material properties, processes and post irradiation research on standard and experimental fuel pins. The code capability is verified by comparison with data from experiments on WWER test rods performed in MR reactor, the Russia-Finland tests SOFIT and the international program FUMEX. The comparison performed and the results thus obtained demonstrate the satisfactory ability of START-3 code to simulate fuel rod behaviour in normal operation condition. The calculations confirm the experimentally observed evidence of an essential margin on serviceability of WWER-1000 fuel pin with three year operation cycle permitting an increase in design fuel burnup. 2 tabs., 18 figs

  13. Modelling of WWER-1000 fuel: state and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, A; Bibilashvili, Yu; Bogatyr, S; Khvostov, G [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation)

    1994-12-31

    The role of START-3 code in studying and computerized modelling of post-irradiation behaviour of standard fuel rods in real operation conditions of WWER-1000 reactors is described. The models used in the code are based on experimental study of material properties, processes and post irradiation research on standard and experimental fuel pins. The code capability is verified by comparison with data from experiments on WWER test rods performed in MR reactor, the Russia-Finland tests SOFIT and the international program FUMEX. The comparison performed and the results thus obtained demonstrate the satisfactory ability of START-3 code to simulate fuel rod behaviour in normal operation condition. The calculations confirm the experimentally observed evidence of an essential margin on serviceability of WWER-1000 fuel pin with three year operation cycle permitting an increase in design fuel burnup. 2 tabs., 18 figs.

  14. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  15. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Jeffers, Robert F.; Matthern, Gretchen E.; Piet, Steven J.; Baker, Benjamin A.; Grimm, Joseph

    2009-01-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R and D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several Microsoft

  16. MELCOR Modeling of Air-Cooled PWR Spent Fuel Assemblies in Water empty Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Lopez, C.

    2013-07-01

    The OECD Spent Fuel Project (SFP) investigated fuel degradation in case of a complete Loss-Of- Coolant-Accident in a PWR spent fuel pool. Analyses of the SFP PWR ignition tests have been conducted with the 1.86.YT.3084.SFP MELCOR version developed by SNL. The main emphasis has been placed on assessing the MELCOR predictive capability to get reasonable estimates of time-to-ignition and fire front propagation under two configurations: hot neighbor (i.e., adiabatic scenario) and cold neighbor (i.e., heat transfer to adjacent fuel assemblies). A detailed description of hypotheses and approximations adopted in the MELCOR model are provided in the paper. MELCOR results accuracy was notably different between both scenarios. The reasons are highlighted in the paper and based on the results understanding a set of remarks concerning scenarios modeling is given.

  17. Evaluation of utilizing spent fuel and plutonium by optimization model for nuclear fuel cycle

    International Nuclear Information System (INIS)

    Yoshida, Naoto; Fujii, Yasumasa; Komiyama, Ryoichi

    2016-01-01

    The nuclear power generation has played an important role in power generation mix as a base load power supply. On the other hand, increasing spent fuel and separated plutonium is a long-standing problem. It is expected that advanced fast reactor and high temperature gas reactor could reduce nuclear waste and effectively consume it as valuable resources. Specific scenarios about spent fuel and the gross weight of plutonium are assumed in this study, and the installable potential of fuel cycle and the most suitable reactor mix are analyzed. The model is formulated as liner programing. The model identifies the best strategy of mix of nuclear reactor types to minimize the present value of total cost in a forecast period. As a result, Fast Breeder Reactor and High Temperature Gas Reactor reduce stored spent fuel and increase the consumptions of plutonium. (author)

  18. Isotopic modelling using the ENIGMA-B fuel performance code

    International Nuclear Information System (INIS)

    Rossiter, G.D.; Cook, P.M.A.; Weston, R.

    2001-01-01

    A number of experimental programmes by BNFL and other MOX fabricators have now shown that the in-pile performance of MOX fuel is generally similar to that of conventional UO 2 fuel. Models based on UO 2 fuel experience form a good basis for a description of MOX fuel behaviour. However, an area where the performance of MOX fuel is sufficiently different from that of UO 2 to warrant model changes is in the radial power and burnup profile. The differences in radial power and burnup profile arise from the presence of significant concentrations of plutonium in MOX fuel, at beginning of life, and their subsequent evolution with burnup. Amongst other effects, plutonium has a greater neutron absorption cross-section than uranium. This paper focuses on the development of a new model for the radial power and burnup profile within a UO 2 or MOX fuel rod, in which the underlying fissile isotope concentration distributions are tracked during irradiation. The new model has been incorporated into the ENIGMA-B fuel performance code and has been extended to track the isotopic concentrations of the fission gases, xenon and krypton. The calculated distributions have been validated against results from rod puncture measurements and electron probe micro-analysis (EPMA) linescans, performed during the M501 post irradiation examination (PIE) programme. The predicted gas inventory of the fuel/clad gap is compared with the isotopic composition measured during rod puncture and the measured radial distributions of burnup (from neodymium measurements) and plutonium in the fuel are compared with the calculated distributions. It is shown that there is good agreement between the code predictions and the measurements. (author)

  19. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  20. Physical model of the nuclear fuel cycle simulation code SITON

    International Nuclear Information System (INIS)

    Brolly, Á.; Halász, M.; Szieberth, M.; Nagy, L.; Fehér, S.

    2017-01-01

    Finding answers to main challenges of nuclear energy, like resource utilisation or waste minimisation, calls for transient fuel cycle modelling. This motivation led to the development of SITON v2.0 a dynamic, discrete facilities/discrete materials and also discrete events fuel cycle simulation code. The physical model of the code includes the most important fuel cycle facilities. Facilities can be connected flexibly; their number is not limited. Material transfer between facilities is tracked by taking into account 52 nuclides. Composition of discharged fuel is determined using burnup tables except for the 2400 MW thermal power design of the Gas-Cooled Fast Reactor (GFR2400). For the GFR2400 the FITXS method is used, which fits one-group microscopic cross-sections as polynomial functions of the fuel composition. This method is accurate and fast enough to be used in fuel cycle simulations. Operation of the fuel cycle, i.e. material requests and transfers, is described by discrete events. In advance of the simulation reactors and plants formulate their requests as events; triggered requests are tracked. After that, the events are simulated, i.e. the requests are fulfilled and composition of the material flow between facilities is calculated. To demonstrate capabilities of SITON v2.0, a hypothetical transient fuel cycle is presented in which a 4-unit VVER-440 reactor park was replaced by one GFR2400 that recycled its own spent fuel. It is found that the GFR2400 can be started if the cooling time of its spent fuel is 2 years. However, if the cooling time is 5 years it needs an additional plutonium feed, which can be covered from the spent fuel of a Generation III light water reactor.

  1. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  2. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  3. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  4. PEM fuel cell modeling and simulation using Matlab

    CERN Document Server

    Spiegel, Colleen

    2011-01-01

    Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for

  5. Metal-fuel modeling for inherently safe reactor designs

    International Nuclear Information System (INIS)

    Miles, K.J. Jr.

    1987-01-01

    Current development of breeder reactor systems has led to the renewed interest in metal fuels. These fuels have properties that enhance the inherent safety of the system, such as high thermal conductivity, compatibility with liquid sodium, and low fuel/cladding mechanical interaction. While metal-fuel irradiation behavior is well understood, there are some areas where more information is needed to fully understand the various safety-related phenomena, such as fuel/cladding chemical interaction, eutectic melting and penetration, and axial relocation of molten fuel prior to cladding breach. Because many of these phenomena can cause changes in the reactivity state of the system, their effects on whole-core normal, anticipated, and hypothetical accident scenarios need to be studied. The metal-fuel behavior model DEFORM-5 is being developed to provide the necessary phenomenological basis for these studies. The first stage in the DEFORM-5 development has been completed. Presently, DEFORM-5 calculates the cladding strain, life fraction, and eutectic penetration thinning for Types D9, HT9, or 316 steels. This first stage of DEFORM-5 has been used to analyze the TREAT M2, M3, and M4 transients with irradiated Experimental Breeder Reactor-II driver fuel. The paper shows the DEFORM-5 and experimental results for failure times for the test pins. The results provide confidence and validation of the DEFORM-5 modeling of the cladding behavior

  6. The Model of Temperature Dynamics of Pulsed Fuel Assembly

    CERN Document Server

    Bondarchenko, E A; Popov, A K

    2002-01-01

    Heat exchange process differential equations are considered for a subcritical fuel assembly with an injector. The equations are obtained by means of the use of the Hermit polynomial. The model is created for modelling of temperature transitional processes. The parameters and dynamics are estimated for hypothetical fuel assembly consisting of real mountings: the powerful proton accelerator and the reactor IBR-2 core at its subcritica l state.

  7. Thermal modeling of a pressurized air cavity receiver for solar dish Stirling system

    Science.gov (United States)

    Zou, Chongzhe; Zhang, Yanping; Falcoz, Quentin; Neveu, Pierre; Li, Jianlan; Zhang, Cheng

    2017-06-01

    A solar cavity receiver model for the dish collector system is designed in response to growing demand of renewable energy. In the present research field, no investigations into the geometric parameters of a cavity receiver have been performed. The cylindrical receiver in this study is composed of an enclosed bottom at the back, an aperture at the front, a helical pipe inside the cavity and an insulation layer on the external surface of the cavity. The influence of several critical receiver parameters on the thermal efficiency is analyzed in this paper: cavity inner diameter and cavity length. The thermal model in this paper is solved considering the cavity dimensions as variables. Implementing the model into EES, each parameter influence is separately investigated, and a preliminary optimization method is proposed.

  8. Universal autoignition models for designer fuels in HCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vandersickel, A.; Boulouchos, K.; Wright, Y.M. [LAV - Aerothermochemistry and Combustion Systems Laboratory - Institute of Energy Technology, ETH Zurich (Switzerland)], email: vandersickel@lav.mavt.ethz.ch

    2010-07-01

    In the energy sector, stringent regulations have been implemented on combustion emissions in order to address health and environmental concerns and help improve air quality. A novel combustion mode, homogeneous charge compression ignition (HCCI), can improve the emissions performance of an engine in terms of NOx and soot release over that of diesel while maintaining the same efficiencies. However, problems of ignition timing control arise with HCCI. The aim of this paper is to determine how fuel properties impact the HCCI ignition process and operating range. This study was carried out as part of a collaboration among several universities and automotive companies and 10 fuels were investigated experimentally and numerically using Arrhenius' model and a lumped reaction model. The two ignition models were successfully adapted to describe the behavior of the studied fuels; atomizer engine experiments validated their results. Further work will be conducted to optimize the reaction mechanism for the remaining process fuels.

  9. Transient heat conduction in a pebble fuel applying fractional model

    International Nuclear Information System (INIS)

    Gomez A, R.; Espinosa P, G.

    2009-10-01

    In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)

  10. MODELING OF THE FUNCTIONING UNITS OF FUEL SYSTEM OF GAS TURBINE ENGINE AIRCRAFT IN VIEW OF AVIATION FUEL QUALITY CHANGES

    OpenAIRE

    I. I. Zavyalik; V. S. Oleshko; V. M. Samoylenko; E. V. Fetisov

    2016-01-01

    The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  11. PEM fuel cell model suitable for energy optimization purposes

    International Nuclear Information System (INIS)

    Caux, S.; Hankache, W.; Fadel, M.; Hissel, D.

    2010-01-01

    Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms.

  12. PEM fuel cell model suitable for energy optimization purposes

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Hankache, W.; Fadel, M. [LAPLACE/CODIASE: UMR CNRS 5213, Universite de Toulouse - INPT, UPS, - ENSEEIHT: 2 rue Camichel BP7122, 31071 Toulouse (France); CNRS, LAPLACE, F-31071 Toulouse (France); Hissel, D. [FEMTO-ST ENISYS/FCLAB, UMR CNRS 6174, University of Franche-Comte, Rue Thierry Mieg, 90010 Belfort (France)

    2010-02-15

    Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms. (author)

  13. Multivariable control system for dynamic PEM fuel cell model

    International Nuclear Information System (INIS)

    Tanislav, Vasile; Carcadea, Elena; Capris, Catalin; Culcer, Mihai; Raceanu, Mircea

    2010-01-01

    Full text: The main objective of this work was to develop a multivariable control system of robust type for a PEM fuel cells assembly. The system will be used in static and mobile applications for different values of power, generated by a fuel cell assembly of up to 10 kW. Intermediate steps were accomplished: a study of a multivariable control strategy for a PEM fuel cell assembly; a mathematic modeling of mass and heat transfer inside of fuel cell assembly, defining the response function to hydrogen and oxygen/air mass flow and inlet pressure changes; a testing stand for fuel cell assembly; experimental determinations of transient response for PEM fuel cell assembly, and more others. To define the multivariable control system for a PEM fuel cell assembly the parameters describing the system were established. Also, there were defined the generic mass and energy balance equations as functions of derivative of m i , in and m i , out , representing the mass going into and out from the fuel cell, while Q in is the enthalpy and Q out is the enthalpy of the unused reactant gases and heat produced by the product, Q dis is the heat dissipated to the surroundings, Q c is the heat taken away from the stack by active cooling and W el is the electricity generated. (authors)

  14. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  15. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Directory of Open Access Journals (Sweden)

    Tai-hoon Kim

    2010-12-01

    Full Text Available Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained.

  16. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    Science.gov (United States)

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained. PMID:22163510

  17. Analytic model for ultrasound energy receivers and their optimal electric loads

    Science.gov (United States)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-08-01

    In this paper, we present an analytic model for thickness resonating plate ultrasound energy receivers, which we have derived from the piezoelectric and the wave equations and, in which we have included dielectric, viscosity and acoustic attenuation losses. Afterwards, we explore the optimal electric load predictions by the zero reflection and power maximization approaches present in the literature with different acoustic boundary conditions, and discuss their limitations. To validate our model, we compared our expressions with the KLM model solved numerically with very good agreement. Finally, we discuss the differences between the zero reflection and power maximization optimal electric loads, which start to differ as losses in the receiver increase.

  18. Communication dated 26 May 2009 received from the Permanent Mission of Austria to the Agency enclosing a working paper regarding Multilateralisation of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2009-01-01

    The Secretariat has received a communication dated 26 May 2009 from the Permanent Mission of Austria, transmitting a working paper entitled 'Multilateralisation of the Nuclear Fuel Cycle: Increasing Transparency and Sustainable Security'. The working paper is based on a food-for-thought paper previously submitted by Austria on 10 May 2007, and issued as INFCIRC/706. As requested in that communication, the working paper is herewith circulated for the information of all Member States

  19. Loss of spent fuel pool cooling PRA: Model and results

    International Nuclear Information System (INIS)

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 x 10 -5 and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 x 10 -3 . Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible

  20. Performance model and thermal comparison of different alternatives for the Fresnel single-tube receiver

    International Nuclear Information System (INIS)

    Montes, María J.; Barbero, Rubén; Abbas, Rubén; Rovira, Antonio

    2016-01-01

    Highlights: • A thermal model for a single-tube Fresnel receiver has been developed. • A comparative analysis based on different design parameters, has been carried out. • A comparative analysis based on different working fluids, has been carried out. • The receiver thermal performance is characterized by energy and exergy efficiencies. - Abstract: Although most of recent commercial Solar Thermal Power Plants (STPP) installed worldwide are parabolic trough plants, it seems that Linear Fresnel Collectors (LFC) are becoming an attractive option to generate electricity from solar radiation. Contrary to parabolic trough collectors, the design of LFC receivers has many degrees of freedom, and two basic designs can be found in the literature: single-tube and multi-tube design. This article studies the single-tube design, for which a thermal model has been developed. This model has been thought to be accurate enough to characterize the heat transfer in a non-elementary geometry and flexible enough to support changes of the characteristic parameters in the receiver design. The thermal model proposed is based on a two-dimensional, steady-state energy balance, in the receiver cross section and along its length. One of the features of the model is the characterization of the convective and radiative heat transfer in the receiver cavity, as it is not an elementary geometry. Another feature is the possibility of studying the receiver performance with different working fluids, both single-phase or two-phase. At last, the receiver performance has been characterized by means of the energy and exergy efficiency. Both variables are important for a complete receiver thermal analysis, as will be shown in the paper. The model has been first applied to the comparative study of the thermal performance of LFC receivers based on the value of some parameters: selective coating emissivity in the tube and inlet fluid thermal properties, for the case of using water/steam. As a second

  1. Modeling and Simulation of the Direct Methanol Fuel Cell

    Science.gov (United States)

    Wohr, M.; Narayanan, S. R.; Halpert, G.

    1996-01-01

    From intro.: The direct methanol liquid feed fuel cell uses aqueous solutions of methanol as fuel and oxygen or air as the oxidant and uses an ionically conducting polymer membrane such as Nafion(sup r)117 and the electrolyte. This type of direct oxidation cell is fuel versatile and offers significant advantages in terms of simplicity of design and operation...The present study focuses on the results of a phenomenological model based on current understanding of the various processed operating in these cells.

  2. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... surpasses batteries in important areas, fundamental research is still required to improve durability and performance. Particularly the transport of methanol and water within the cell structure is difficult to study in-situ. A demand therefore exist for the fundamental development of mathematical models...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...

  3. Progress in fuel pin modelling in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J D; Biancheria, A; Leibnitz, D; O' Reilly, B D; Liu, Y Y; Labar, M P; Gneiting, B C [General Electric Company, Sunnyvale, CA (United States)

    1979-12-01

    In the USA, the focus for theoretical fuel pin modeling is the LIFE system. This system of codes, algorithms, criteria and analysis guidelines is intended to provide a common basis for communication amongst the development groups, a reference set of analysis guidelines for design, and eventually a consensus on the state-of-the-art for licensing. The technical objective is to predict the effect of design options on fuel pin performance limits, which include fuel temperature, pin deformation and cladding breach during normal operation and design basis transients. The mechanistic approach to modeling is taken in LIFE to the extent possible. That is, the approach is to describe the key phenomena in sufficient detail to provide a fundamental understanding of their synergistic effect on the fuel pin performance limits.

  4. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  5. Models for fuel rod behaviour at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)

    2004-12-01

    This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be

  6. The FIT Model - Fuel-cycle Integration and Tradeoffs

    International Nuclear Information System (INIS)

    Piet, Steven J.; Soelberg, Nick R.; Bays, Samuel E.; Pereira, Candido; Pincock, Layne F.; Shaber, Eric L.; Teague, Melissa C.; Teske, Gregory M.; Vedros, Kurt G.

    2010-01-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria - fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the 'system losses study' team that developed it (Shropshire2009, Piet2010) are an initial step by the FCR and D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R and D needs and set longer-term goals. The question originally posed to the 'system losses study' was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for 'minimum fuel treatment' approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  7. System modeling of spent fuel transfers at EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.; Houshyar, A.

    1994-01-01

    The unloading of spent fuel from the Experimental Breeder Reactor-II (EBR-II) for interim storage and subsequent processing in the Fuel Cycle Facility (FCF) is a multi-stage process, involving complex operations at a minimum of four different facilities at the Argonne National Laboratory-West (ANL-W) site. Each stage typically has complicated handling and/or cooling equipment that must be periodically maintained, leading to both planned and unplanned downtime. A program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. Routine operation of the reactor for fuels performance and materials testing occurred simultaneously in FY 1994 with the blanket unloading. In the summer of 1994, Congress dictated the October 1, 1994 shutdown of EBR-2. Consequently, all blanket S/As and fueled drivers will be removed from the reactor tank and replaced with stainless steel assemblies (which are needed to maintain a precise configuration within the grid so that the under sodium fuel handling equipment can function). A system modeling effort was conducted to determine the means to achieve the objective for the blanket and fuel unloading program, which under the current plan requires complete unloading of the primary tank of all fueled assemblies in 2 1/2 years. A simulation model of the fuel handling system at ANL-W was developed and used to analyze different unloading scenarios; the model has provided valuable information about required resources and modifications to equipment and procedures. This paper reports the results of this modeling effort

  8. CANDU fuel bundle deformation modelling with COMSOL multiphysics

    International Nuclear Information System (INIS)

    Bell, J.S.; Lewis, B.J.

    2012-01-01

    Highlights: ► The deformation behaviour of a CANDU fuel bundle was modelled. ► The model has been developed on a commercial finite-element platform. ► Pellet/sheath interaction and end-plate restraint effects were considered. ► The model was benchmarked against the BOW code and a variable-load experiment. - Abstract: A model to describe deformation behaviour of a CANDU 37-element bundle has been developed under the COMSOL Multiphysics finite-element platform. Beam elements were applied to the fuel elements (composed of fuel sheaths and pellets) and endplates in order to calculate the bowing behaviour of the fuel elements. This model is important to help assess bundle-deformation phenomena, which may lead to more restrictive coolant flow through the sub-channels of the horizontally oriented bundle. The bundle model was compared to the BOW code for the occurrence of a dry-out patch, and benchmarked against an out-reactor experiment with a variable load on an outer fuel element.

  9. Simulation modelling for new gas turbine fuel controller creation.

    Science.gov (United States)

    Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.

    2017-11-01

    State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.

  10. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    International Nuclear Information System (INIS)

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-01-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a ''living document'' that will be modified over the course of the execution of this work

  11. Communication of 12 June 2009 received from the Permanent Missions of Germany and the Russian Federation with regard to a working paper 'Principles of fuel supply guarantees and the multilateralization of fuel cycle activities'

    International Nuclear Information System (INIS)

    2009-01-01

    The Secretariat has received a communication dated 12 June 2009 from the Permanent Missions of Germany and the Russian Federation, transmitting the text of the working paper 'Principles of fuel supply guarantees and the multilateralization of fuel cycle activities' submitted by Germany and the Russian Federation to the Preparatory Committee for the 2010 Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons. As requested in that communication, the abovementioned paper is herewith circulated for the information of all Member States

  12. Modeling of coated fuel particles irradiation behavior

    International Nuclear Information System (INIS)

    Liang Tongxiang; Phelip, M.

    2006-01-01

    In this report, PANAMA code was used to estimate the CP performance under normal and accident condition. Under the normal irradiation test (1000 degree C 625 efpd, 10% FIMA), for intact CP fuel, failure fraction is in the level of 10 -7 . As-fabricated SiC failed particles results in the through coatings failed particles much earlier than the intact particles does, OPyC layer does not fail immediately after irradiation starts. The significant failures start at beyond the burnup of about 7% FIMA. Under the accident condition, the calculated results showed that when the heating temperature is much higher than 1850 degree C, the failure fraction of coated particle can reach the level of 1 percent. The CP fuel fails significantly if it has a buffer layer thinner than 65 urn, SiC layer thinner than 30 μm. High burnup CP need to develop small size kernel, thick buffer layer and thick SiC layer. (authors)

  13. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M T; Kaario, O T [VTT Energy, Espoo (Finland)

    1998-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  14. Model for the determination of the nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1979-09-01

    The Nuclear Fuel Cost Determination Model, MDCN, is a computer program written in FORTRAN IV, meant to calculate the nuclear fuel cost employed in nuclear power plants for heat or electrical energy generation. The economic principles employed are: capital recovery proportional to the energy generation, present worth method for the equivalence of costs and levelized fuel cost calculation. This model presents some inovations in comparasion with other models already in use, since it takes into account refueling and maintenance outages and it does not fix the fuel cycle steps (industrial processes and services). The first inovation leads to a more realistic cost determination and permits the model to be employed together with hydrothermal power system simulators; the second permits a more flexible use of the model, like economical comparison of fuel cycles. Complementing the main body of the work, where the theoretical fundamentals and methodology necessary to the calculation developments are discussed, annexes are included treating in greater detail some specific itens; the more important ones refer to the FORTRAN program, input data preparation and example. (Author) [pt

  15. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  16. Analytic model for ultrasound energy receivers and their optimal electric loads II: Experimental validation

    Science.gov (United States)

    Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.

    2017-10-01

    In this paper, we verify the two optimal electric load concepts based on the zero reflection condition and on the power maximization approach for ultrasound energy receivers. We test a high loss 1-3 composite transducer, and find that the measurements agree very well with the predictions of the analytic model for plate transducers that we have developed previously. Additionally, we also confirm that the power maximization and zero reflection loads are very different when the losses in the receiver are high. Finally, we compare the optimal load predictions by the KLM and the analytic models with frequency dependent attenuation to evaluate the influence of the viscosity.

  17. Study of fuel control strategy based on an fuel behavior model for starting conditions; Nenryo kyodo model ni motozuita shidoji no nenryo hosei hosho ni tsuite no kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Uchida, M; Iwano, H; Oba, H [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have applied a fuel behavior model to a fuel injection system which we call SOFIS (Sophisticated and Optimized Fuel Injection System) so that we get air/fuel ratio control accuracy and good driveability. However the fuel behavior under starting conditions is still not clear. To meet low emission rules and to get better driveability under starting conditions, better air/fuel ratio control is necessary. Now we have understood the ignition timing, injection timing, and injection pulse width required in such conditions. In former days, we analyzed the state of the air/fuel mixture under cold conditions and made a new fuel behavior model which considered fuel loss such as hydrocarbons and dissolution into oil and so on. Al this time, we have applied this idea to starting. We confirm this new model offers improved air/fuel ratio control. 6 refs., 9 figs., 3 tabs.

  18. Standard model for safety analysis report of fuel fabrication plants

    International Nuclear Information System (INIS)

    1980-09-01

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  19. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  20. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    Science.gov (United States)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  1. Towards a lumped reaction model for future designer fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vandersickel, A.; Wright, Y.M.; Boulouchos, K. [ETH Zurich, Aerothermochemistry and Combustion Systems Laboratory, Zurich (Switzerland). Inst. of Energy Technology

    2009-07-01

    The homogeneous charge compression ignition (HCCI) is one of the most promising engine processes to simultaneously reduce nitrogen oxide and soot emissions. However, its applicability is hindered by its relatively limited operating range. Designer fuels offer unique possibilities for tailoring evaporation and auto-ignition properties, offering a means to control and expand the HCCI operation range. The identification of HCCI relevant fuel properties as well as the definition of a new fuel index able to describe a fuels suitability for HCCI was required in order to develop such designer fuels. This paper discussed a numerical and experimental investigation of a large set of technical fuels covering a wide range of properties. The paper discussed mechanism development approaches, optimization of the lumped mechanism, and and results. Zheng's 7-step reaction mechanism was successfully coupled with a genetic optimization algorithm and fitted to n-heptane ignition delay data. It was concluded that the presented coupled approach could improve the predictive quality of the model and demonstrate that the Zheng model was sufficiently elaborate to emulate the influence of temperature, pressure, exhaust gas recirculation and lambda on ignition. 8 refs., 1 tab., 3 figs.

  2. Towards a lumped reaction model for future designer fuels

    International Nuclear Information System (INIS)

    Vandersickel, A.; Wright, Y.M.; Boulouchos, K.

    2009-01-01

    The homogeneous charge compression ignition (HCCI) is one of the most promising engine processes to simultaneously reduce nitrogen oxide and soot emissions. However, its applicability is hindered by its relatively limited operating range. Designer fuels offer unique possibilities for tailoring evaporation and auto-ignition properties, offering a means to control and expand the HCCI operation range. The identification of HCCI relevant fuel properties as well as the definition of a new fuel index able to describe a fuels suitability for HCCI was required in order to develop such designer fuels. This paper discussed a numerical and experimental investigation of a large set of technical fuels covering a wide range of properties. The paper discussed mechanism development approaches, optimization of the lumped mechanism, and and results. Zheng's 7-step reaction mechanism was successfully coupled with a genetic optimization algorithm and fitted to n-heptane ignition delay data. It was concluded that the presented coupled approach could improve the predictive quality of the model and demonstrate that the Zheng model was sufficiently elaborate to emulate the influence of temperature, pressure, exhaust gas recirculation and lambda on ignition. 8 refs., 1 tab., 3 figs.

  3. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    International Nuclear Information System (INIS)

    Chiang, Ren-Tai; Williams, John B.; Folk, Ken S.

    2008-01-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  4. BWR Fuel Assemblies Physics Analysis Utilizing 3D MCNP Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ren-Tai [University of Florida, Gainesville, Florida 32611 (United States); Williams, John B.; Folk, Ken S. [Southern Nuclear Company, Birmingham, Alabama 35242 (United States)

    2008-07-01

    MCNP is used to model a partially controlled BWR fresh fuel four assemblies (2x2) system for better understanding BWR fuel behavior and for benchmarking production codes. The impact of the GE14 plenum regions on axial power distribution is observed by comparing against the GE13 axial power distribution, in which the GE14 relative power is lower than the GE13 relative power at the 15. node and at the 16. node due to presence of the plenum regions in GE14 fuel in these two nodes. The segmented rod power distribution study indicates that the azimuthally dependent power distribution is very significant for the fuel rods next to the water gap in the uncontrolled portion. (authors)

  5. Nuclear fuel cycle optimization - methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book is aimed at presenting methods applicable in the analysis of fuel cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After a succinct introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective and subsequent chapters deal with the fuel cycle problems faced by a power utility. A fundamental material flow model is introduced first in the context of light water reactor fuel cycles. Besides the minimum cost criterion, the text also deals with other objectives providing for a treatment of cost uncertainties and of the risk of proliferation of nuclear weapons. Methods to assess mixed reactor strategies, comprising also other reactor types than the light water reactor, are confined to cost minimization. In the final Chapter, the integration of nuclear capacity within a generating system is examined. (author)

  6. TAFV Alternative Fuels and Vehicles Choice Model Documentation; TOPICAL

    International Nuclear Information System (INIS)

    Greene, D.L.

    2001-01-01

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model

  7. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  8. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  9. Fuel consumption modeling in support of ATM environmental decision-making

    Science.gov (United States)

    2009-07-01

    The FAA has recently updated the airport terminal : area fuel consumption methods used in its environmental models. : These methods are based on fitting manufacturers fuel : consumption data to empirical equations. The new fuel : consumption metho...

  10. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  11. Solution to a fuel-and-cladding rewetting model

    International Nuclear Information System (INIS)

    Olek, S.

    1989-06-01

    A solution by the Wiener-Hopf technique is derived for a model for the rewetting of a nuclear fuel rod. The gap between the fuel and the cladding is modelled by an imperfect contact between the two. A constant heat transfer coefficient is assumed on the wet side, whereas the dry side is assumed to be adiabatic. The solution for the rewetting temperature is in the form of an integral whose integrand contains the model parameters, including the rewetting velocity. Numerical results are presented for a large number of these parameters. It is shown that there are such large values of the rewetting temperature and the gap resistance, or such low values of the initial wall temperature, for which the rewetting velocity is unaffected by the fuel properties. (author) l fig., 7 tabs., 17 refs

  12. Modelling the release behaviour of cesium during severe fuel degradation

    International Nuclear Information System (INIS)

    Lewis, B.J.; Andre, B.; Morel, B.

    1995-01-01

    An analytical model has been applied to describe the diffusional release of fission product cesium from Zircaloy-clad fuel under high-temperature reactor accident conditions. The present treatment accounts for the influence of the atmosphere (i.e., changing oxygen potential) on the state of fuel oxidation and the release kinetics. The effects of fuel dissolution on the volatile release behaviour (under reducing conditions) is considered in terms of earlier crucible experiments and a simple model based on bubble coalescence and transport in metal pools. The model has been used to interpret the cesium release kinetics observed in steam and hydrogen experiments at the Vertical Irradiation (VI) Facility in the Oak Ridge National Laboratory and at the HEVA/VERCORS Facility in the Commissariat a l'Energie Atomique. (author)

  13. A model for fission product distribution in CANDU fuel

    International Nuclear Information System (INIS)

    Muzumdar, A.P.

    1983-01-01

    This paper describes a model to estimate the distribution of active fission products among the UO 2 grains, grain-boundaries, and the free void spaces in CANDU fuel elements during normal operation. This distribution is required for the calculation of the potential release of activity from failed fuel sheaths during a loss-of-coolant accident. The activity residing in the free spaces (''free'' inventory) is available for release upon sheath rupture, whereas relatively high fuel temperatures and/or thermal shock are required to release the activity in the grain boundaries or grains. A preliminary comparison of the model with the data from in-reactor sweep-gas experiments performed in Canada yields generally good agreement, with overprediction rather than under prediction of radiologically important isotopes, such as I 131 . The model also appears to generally agree with the ''free'' inventory release calculated using ANS-5.4. (author)

  14. Contrasting two models of academic self-efficacy--domain-specific versus cross-domain--in children receiving and not receiving special instruction in mathematics.

    Science.gov (United States)

    Jungert, Tomas; Hesser, Hugo; Träff, Ulf

    2014-10-01

    In social cognitive theory, self-efficacy is domain-specific. An alternative model, the cross-domain influence model, would predict that self-efficacy beliefs in one domain might influence performance in other domains. Research has also found that children who receive special instruction are not good at estimating their performance. The aim was to test two models of how self-efficacy beliefs influence achievement, and to contrast children receiving special instruction in mathematics with normally-achieving children. The participants were 73 fifth-grade children who receive special instruction and 70 children who do not receive any special instruction. In year four and five, the children's skills in mathematics and reading were assessed by national curriculum tests, and in their fifth year, self-efficacy in mathematics and reading were measured. Structural equation modeling showed that in domains where children do not receive special instruction in mathematics, self-efficacy is a mediating variable between earlier and later achievement in the same domain. Achievement in mathematics was not mediated by self-efficacy in mathematics for children who receive special instruction. For normal achieving children, earlier achievement in the language domain had an influence on later self-efficacy in the mathematics domain, and self-efficacy beliefs in different domains were correlated. Self-efficacy is mostly domain specific, but may play a different role in academic performance depending on whether children receive special instruction. The results of the present study provided some support of the Cross-Domain Influence Model for normal achieving children. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  15. Multiple Surrogate Modeling for Wire-Wrapped Fuel Assembly Optimization

    International Nuclear Information System (INIS)

    Raza, Wasim; Kim, Kwang-Yong

    2007-01-01

    In this work, shape optimization of seven pin wire wrapped fuel assembly has been carried out in conjunction with RANS analysis in order to evaluate the performances of surrogate models. Previously, Ahmad and Kim performed the flow and heat transfer analysis based on the three-dimensional RANS analysis. But numerical optimization has not been applied to the design of wire-wrapped fuel assembly, yet. Surrogate models are being widely used in multidisciplinary optimization. Queipo et al. reviewed various surrogates based models used in aerospace applications. Goel et al. developed weighted average surrogate model based on response surface approximation (RSA), radial basis neural network (RBNN) and Krigging (KRG) models. In addition to the three basic models, RSA, RBNN and KRG, the multiple surrogate model, PBA also has been employed. Two geometric design variables and a multi-objective function with a weighting factor have been considered for this problem

  16. Modeling a Change in Flowrate through Detention or Additional Pavement on the Receiving Stream : Final Report

    Science.gov (United States)

    2017-11-01

    The addition or removal of flow from a stream affects the water surface downstream and possibly upstream. The extent of such effects is generally determined by modeling the receiving stream. Guidance that concisely describes how far up/downstream a h...

  17. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  18. Modeling two-phase flow in PEM fuel cell channels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)

  19. Performance Analysis of Receive Diversity in Wireless Sensor Networks over GBSBE Models

    OpenAIRE

    Goel, Shivali; Abawajy, Jemal H.; Kim, Tai-hoon

    2010-01-01

    Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied rece...

  20. Empirical membrane lifetime model for heavy duty fuel cell systems

    Science.gov (United States)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  1. Modeling and Circumventing the Effect of Sediments and Water Column on Receiver Functions

    Science.gov (United States)

    Audet, P.

    2017-12-01

    Teleseismic P-wave receiver functions are routinely used to resolve crust and mantle structure in various geologic settings. Receiver functions are approximations to the Earth's Green's functions and are composed of various scattered phase arrivals, depending on the complexity of the underlying Earth structure. For simple structure, the dominant arrivals (converted and back-scattered P-to-S phases) are well separated in time and can be reliably used in estimating crustal velocity structure. In the presence of sedimentary layers, strong reverberations typically produce high-amplitude oscillations that contaminate the early part of the wave train and receiver functions can be difficult to interpret in terms of underlying structure. The effect of a water column also limits the interpretability of under-water receiver functions due to the additional acoustic wave propagating within the water column that can contaminate structural arrivals. We perform numerical modeling of teleseismic Green's functions and receiver functions using a reflectivity technique for a range of Earth models that include thin sedimentary layers and overlying water column. These modeling results indicate that, as expected, receiver functions are difficult to interpret in the presence of sediments, but the contaminating effect of the water column is dependent on the thickness of the water layer. To circumvent these effects and recover source-side structure, we propose using an approach based on transfer function modeling that bypasses receiver functions altogether and estimates crustal properties directly from the waveforms (Frederiksen and Delayney, 2015). Using this approach, reasonable assumptions about the properties of the sedimentary layer can be included in forward calculations of the Green's functions that are convolved with radial waveforms to predict vertical waveforms. Exploration of model space using Monte Carlo-style search and least-square waveform misfits can be performed to

  2. Models of the ablation of fuel pellets

    International Nuclear Information System (INIS)

    Rozhanskij, V.A.; Senichenkov, I.Yu.

    2005-01-01

    One performed qualitative analysis of a model of neutral screening (NS) and of neutral-and-plasma screening (NPS). One listed basic physical processes governing formation of a screening cloud and evaporation rate. For the model one presents formulae linking evaporation rate and cloud parameters with parameters of background plasma and pellet. One carried out comparative evaluation of the efficiency and showed that the major share of energy flow of background electrons was trapped in a plasma cloud. One derived formulae for evaporation rate and for plasma parameters in terms of the model. One discusses how it happens that the model of neutral screening describes pellet evaporation rate adequately [ru

  3. Modeling and dynamics of an autothermal JP5 fuel reformer for marine fuel cell applications

    International Nuclear Information System (INIS)

    Tsourapas, Vasilis; Sun, Jing; Nickens, Anthony

    2008-01-01

    In this work, a dynamic model of an integrated autothermal reformer (ATR) and proton exchange membrane fuel cell (PEM FC) system and model-based evaluation of its dynamic characteristics are presented. The ATR reforms JP5 fuel into a hydrogen rich flow. The hydrogen is extracted from the reformate flow by a separator membrane (SEP), then supplied to the PEM FC for power generation. A catalytic burner (CB) and a turbine are also incorporated to recuperate energy from the remaining SEP flow that would otherwise be wasted. A dynamic model of this system, based on the ideal gas law and energy balance principles, is developed and used to explore the effects of the operating setpoint selection of the SEP on the overall system efficiency. The analysis reveals that a trade-off exists between the SEP efficiency and the overall system efficiency. Finally the open loop system simulation results are presented and conclusions are drawn on the SEP operation

  4. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  5. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  6. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  7. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    International Nuclear Information System (INIS)

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-01-01

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  8. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States); Shao, Lin [Texas A & M Univ., College Station, TX (United States); Tsvetkov, Pavel [Texas A & M Univ., College Station, TX (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  9. The ELOCA fuel modelling code: past, present and future

    International Nuclear Information System (INIS)

    Williams, A.F.

    2005-01-01

    ELOCA is the Industry Standard Toolset (IST) computer code for modelling CANDU fuel under the transient coolant conditions typical of an accident scenario. Since its original inception in the early 1970's, the code has undergone continual development and improvement. The code now embodies much of the knowledge and experience of fuel behaviour gained by the Canadian nuclear industry over this period. ELOCA has proven to be a valuable tool for the safety analyst, and continues to be used extensively to support the licensing cases of CANDU reactors. This paper provides a brief and much simplified view of this development history, its current status, and plans for future development. (author)

  10. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  11. Integrated multi-scale modelling and simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Valot, C.; Bertolus, M.; Masson, R.; Malerba, L.; Rachid, J.; Besmann, T.; Phillpot, S.; Stan, M.

    2015-01-01

    This chapter aims at discussing the objectives, implementation and integration of multi-scale modelling approaches applied to nuclear fuel materials. We will first show why the multi-scale modelling approach is required, due to the nature of the materials and by the phenomena involved under irradiation. We will then present the multiple facets of multi-scale modelling approach, while giving some recommendations with regard to its application. We will also show that multi-scale modelling must be coupled with appropriate multi-scale experiments and characterisation. Finally, we will demonstrate how multi-scale modelling can contribute to solving technology issues. (authors)

  12. Mathematical model for solid fuel combustion in fluidized bed

    International Nuclear Information System (INIS)

    Kostikj, Zvonimir; Noshpal, Aleksandar

    1994-01-01

    A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)

  13. Logistics models for the transportation of radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Joy, D.S.; Holcomb, B.D.

    1978-03-01

    Mathematical modeling of the logistics of waste shipment is an effective way to provide input to program planning and long-range waste management. Several logistics models have been developed for use in parametric studies, contingency planning, and management of transportation networks. These models allow the determination of shipping schedules, optimal routes, probable transportation modes, minimal costs, minimal personnel exposure, minimal transportation equipment, etc. Such information will permit OWI to specify waste-receiving rates at various repositories in order to balance work loads, evaluate surge capacity requirements, and estimate projected shipping cask fleets. The programs are tailored to utilize information on the types of wastes being received, location of repositories and waste-generating facilities, shipping distances, time required for a given shipment, availability of equipment, above-ground storage capabilities and locations, projected waste throughput rates, etc. Two basic models have been developed. The Low-Level Waste Model evaluates the optimal transportation policy for shipping waste directly from the source to a final destination without any intermediate stops. The Spent Fuel Logistics Model evaluates the optimal transportation policy for shipping unreprocessed spent fuel from nuclear power plants (1) indirectly, that is, to an Away-From-Reactor (AFR) storage facility, with subsequent transhipment to a repository, or (2) directly to a repository

  14. Consistent modelling of wind turbine noise propagation from source to receiver

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine...... propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine....... and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound...

  15. Modeling of circulating nuclear fuels with Comsol Multiphysics

    International Nuclear Information System (INIS)

    Cammi, A.; Di Marcello, V.; Luzzi, L.

    2007-01-01

    This paper presents multi-physics modelling of circulating nuclear fuel in a simple geometry by means of COMSOL 3.3. Among the Circulating Fuel Reactors (CFR), the most promising is the Molten Salt Reactor (MSR). Physics of such circulating nuclear fuel requires five coupled equations of conservation laws: the momentum balance, the energy balance, the neutron balance and the precursors balance. In this complex field, represented by the coupling of thermal-hydrodynamics with neutronics, the highly non linear regime and the wide disparity of time scales, COMSOL was used to investigate the region of reactor that comprises only the flowing fluid, and a parametric study was performed by varying the size of the analyzed region and the inlet velocity of fluid. This study is sufficient to achieve a preliminary evaluation of the thermo-physical behaviour of the system and paves the way for further progress concerning a more complex and realistic MSR geometry. (authors)

  16. Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models

    International Nuclear Information System (INIS)

    Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

    1979-09-01

    A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed

  17. Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

    1979-09-01

    A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed. (DLC)

  18. Model for Estimation of Fuel Consumption of Cruise Ships

    Directory of Open Access Journals (Sweden)

    Morten Simonsen

    2018-04-01

    Full Text Available This article presents a model to estimate the energy use and fuel consumption of cruise ships that sail Norwegian waters. Automatic identification system (AIS data and technical information about cruise ships provided input to the model, including service speed, total power, and number of engines. The model was tested against real-world data obtained from a small cruise vessel and both a medium and large cruise ship. It is sensitive to speed and the corresponding engine load profile of the ship. A crucial determinate for total fuel consumption is also associated with hotel functions, which can make a large contribution to the overall energy use of cruise ships. Real-world data fits the model best when ship speed is 70–75% of service speed. With decreased or increased speed, the model tends to diverge from real-world observations. The model gives a proxy for calculation of fuel consumption associated with cruise ships that sail to Norwegian waters and can be used to estimate greenhouse gas emissions and to evaluate energy reduction strategies for cruise ships.

  19. A dermatotoxicokinetic model of human exposures to jet fuel.

    Science.gov (United States)

    Kim, David; Andersen, Melvin E; Nylander-French, Leena A

    2006-09-01

    Workers, both in the military and the commercial airline industry, are exposed to jet fuel by inhalation and dermal contact. We present a dermatotoxicokinetic (DTK) model that quantifies the absorption, distribution, and elimination of aromatic and aliphatic components of jet fuel following dermal exposures in humans. Kinetic data were obtained from 10 healthy volunteers following a single dose of JP-8 to the forearm over a surface area of 20 cm2. Blood samples were taken before exposure (t = 0 h), after exposure (t = 0.5 h), and every 0.5 h for up to 3.5 h postexposure. The DTK model that best fit the data included five compartments: (1) surface, (2) stratum corneum (SC), (3) viable epidermis, (4) blood, and (5) storage. The DTK model was used to predict blood concentrations of the components of JP-8 based on dermal-exposure measurements made in occupational-exposure settings in order to better understand the toxicokinetic behavior of these compounds. Monte Carlo simulations of dermal exposure and cumulative internal dose demonstrated no overlap among the low-, medium-, and high-exposure groups. The DTK model provides a quantitative understanding of the relationship between the mass of JP-8 components in the SC and the concentrations of each component in the systemic circulation. The model may be used for the development of a toxicokinetic modeling strategy for multiroute exposure to jet fuel.

  20. Heavy truck modeling for fuel consumption. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, T.

    2001-12-01

    Fuel consumption for heavy trucks depends on many factors like roads, weather, and driver behavior that are hard for a manufacturer to influence. However, one design possibility is the power train configuration. Here a new simulation program for heavy trucks is created to find the configuration of the power train that gives the lowest fuel consumption for each transport task. For efficient simulations the model uses production code for speed and gear control, and it uses exchangeable data sets to allow simulation of the whole production range of engine types, on recorded road profiles from all over the world. Combined with a graphical user interface this application is called STARS (Scania Truck And Road Simulation). The forces of rolling resistance and air resistance in the model are validated through an experiment where the propeller shaft torque of a heavy truck is measured. It is found that the coefficient of rolling resistance is strongly dependent on tire temperature, not only on vehicle speed as expected. This led to the development of a new model for rolling resistance. The model includes the dynamic behavior of the tires and relates rolling resistance to tire temperature and vehicle speed. In another experiment the fuel consumption of a test truck in highway driving is measured. The altitude of the road is recorded with a barometer and used in the corresponding simulations. Despite of the limited accuracy of this equipment the simulation program manage to predict a level of fuel consumption only 2% lower than the real measurements. It is concluded that STARS is a good tool for predicting fuel consumption for trucks in highway driving and for comparing different power train configurations.

  1. A state-space model for estimating detailed movements and home range from acoustic receiver data

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Weng, Kevin

    2013-01-01

    We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function of dista......We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... that the location error scales log-linearly with detection range and movement speed. This result can be used as guideline for designing network layout when species movement capacity and acoustic environment are known or can be estimated prior to network deployment. Finally, as an example, the state-space model...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....

  2. Modeling spray drift and runoff-related inputs of pesticides to receiving water.

    Science.gov (United States)

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S

    2018-03-01

    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  3. Modelling methods for co-fired pulverised fuel furnaces

    Energy Technology Data Exchange (ETDEWEB)

    L. Ma; M. Gharebaghi; R. Porter; M. Pourkashanian; J.M. Jones; A. Williams [University of Leeds, Leeds (United Kingdom). Energy and Resources Research Institute

    2009-12-15

    Co-firing of biomass and coal can be beneficial in reducing the carbon footprint of energy production. Accurate modelling of co-fired furnaces is essential to discover potential problems that may occur during biomass firing and to mitigate potential negative effects of biomass fuels, including lower efficiency due to lower burnout and NOx formation issues. Existing coal combustion models should be modified to increase reliability of predictions for biomass, including factors such as increased drag due to non-spherical particle sizes and accounting for organic compounds and the effects they have on NOx emission. Detailed biomass co-firing models have been developed and tested for a range of biomass fuels and show promising results. 32 refs., 4 figs., 3 tabs.

  4. Physical model and calculation code for fuel coolant interactions

    International Nuclear Information System (INIS)

    Goldammer, H.; Kottowski, H.

    1976-01-01

    A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)

  5. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  6. Modelling of LOCA Tests with the BISON Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Richard L [Idaho National Laboratory; Pastore, Giovanni [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Spencer, Benjamin Whiting [Idaho National Laboratory; Hales, Jason Dean [Idaho National Laboratory

    2016-05-01

    BISON is a modern finite-element based, multidimensional nuclear fuel performance code that is under development at Idaho National Laboratory (USA). Recent advances of BISON include the extension of the code to the analysis of LWR fuel rod behaviour during loss-of-coolant accidents (LOCAs). In this work, BISON models for the phenomena relevant to LWR cladding behaviour during LOCAs are described, followed by presentation of code results for the simulation of LOCA tests. Analysed experiments include separate effects tests of cladding ballooning and burst, as well as the Halden IFA-650.2 fuel rod test. Two-dimensional modelling of the experiments is performed, and calculations are compared to available experimental data. Comparisons include cladding burst pressure and temperature in separate effects tests, as well as the evolution of fuel rod inner pressure during ballooning and time to cladding burst. Furthermore, BISON three-dimensional simulations of separate effects tests are performed, which demonstrate the capability to reproduce the effect of azimuthal temperature variations in the cladding. The work has been carried out in the frame of the collaboration between Idaho National Laboratory and Halden Reactor Project, and the IAEA Coordinated Research Project FUMAC.

  7. Development of a Multicomponent Prediction Model for Acute Esophagitis in Lung Cancer Patients Receiving Chemoradiotherapy

    International Nuclear Information System (INIS)

    De Ruyck, Kim; Sabbe, Nick; Oberije, Cary; Vandecasteele, Katrien; Thas, Olivier; De Ruysscher, Dirk; Lambin, Phillipe; Van Meerbeeck, Jan; De Neve, Wilfried; Thierens, Hubert

    2011-01-01

    Purpose: To construct a model for the prediction of acute esophagitis in lung cancer patients receiving chemoradiotherapy by combining clinical data, treatment parameters, and genotyping profile. Patients and Methods: Data were available for 273 lung cancer patients treated with curative chemoradiotherapy. Clinical data included gender, age, World Health Organization performance score, nicotine use, diabetes, chronic disease, tumor type, tumor stage, lymph node stage, tumor location, and medical center. Treatment parameters included chemotherapy, surgery, radiotherapy technique, tumor dose, mean fractionation size, mean and maximal esophageal dose, and overall treatment time. A total of 332 genetic polymorphisms were considered in 112 candidate genes. The predicting model was achieved by lasso logistic regression for predictor selection, followed by classic logistic regression for unbiased estimation of the coefficients. Performance of the model was expressed as the area under the curve of the receiver operating characteristic and as the false-negative rate in the optimal point on the receiver operating characteristic curve. Results: A total of 110 patients (40%) developed acute esophagitis Grade ≥2 (Common Terminology Criteria for Adverse Events v3.0). The final model contained chemotherapy treatment, lymph node stage, mean esophageal dose, gender, overall treatment time, radiotherapy technique, rs2302535 (EGFR), rs16930129 (ENG), rs1131877 (TRAF3), and rs2230528 (ITGB2). The area under the curve was 0.87, and the false-negative rate was 16%. Conclusion: Prediction of acute esophagitis can be improved by combining clinical, treatment, and genetic factors. A multicomponent prediction model for acute esophagitis with a sensitivity of 84% was constructed with two clinical parameters, four treatment parameters, and four genetic polymorphisms.

  8. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  9. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  10. Stochastic sensitivity analysis of the biosphere model for Canadian nuclear fuel waste management

    International Nuclear Information System (INIS)

    Reid, J.A.K.; Corbett, B.J.

    1993-01-01

    The biosphere model, BIOTRAC, was constructed to assess Canada's concept for nuclear fuel waste disposal in a vault deep in crystalline rock at some as yet undetermined location in the Canadian Shield. The model is therefore very general and based on the shield as a whole. BIOTRAC is made up of four linked submodels for surface water, soil, atmosphere, and food chain and dose. The model simulates physical conditions and radionuclide flows from the discharge of a hypothetical nuclear fuel waste disposal vault through groundwater, a well, a lake, air, soil, and plants to a critical group of individuals, i.e., those who are most exposed and therefore receive the highest dose. This critical group is totally self-sufficient and is represented by the International Commission for Radiological Protection reference man for dose prediction. BIOTRAC is a dynamic model that assumes steady-state physical conditions for each simulation, and deals with variation and uncertainty through Monte Carlo simulation techniques. This paper describes SENSYV, a technique for analyzing pathway and parameter sensitivities for the BIOTRAC code run in stochastic mode. Results are presented for 129 I from the disposal of used fuel, and they confirm the importance of doses via the soil/plant/man and the air/plant/man ingestion pathways. The results also indicate that the lake/well water use switch, the aquatic iodine mass loading parameter, the iodine soil evasion rate, and the iodine plant/soil concentration ratio are important parameters

  11. Modelling spent fuel and HLW behaviour in repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, A M; Esteban, J A

    2003-07-01

    The aim of this report is to give the reader an overall insight of the different models, which are used to predict the long-term behaviour of the spent fuels and HLW disposed in a repository. The models must be established on basic data and robust kinetics describing the mechanisms controlling spent fuel alteration/dissolution in a repository. The UO2 matrix, or source term, contains embedded in it the , majority of radionuclides of the spent fuel (some are in the gap cladding). For this reason the SF radionuclides release models play a significant role in the performance assessment of radioactive waste disposal. The differences existing between models published in the literature are due to the conceptual understanding of the processes and the degree of the conservatism used with the parameter values, and the boundary conditions. They mainly differ in their level of simplification and their final objective. Sometimes are focused the show compliance with regulatory requirements, other to support decision making, to increase the level of confidence of public and scientific community, could be empirical, semi-empirical or analytical. The models take into account the experimental results from radionuclides releases and their extrapolation to the very long term. Its necessary a great statistics for have a representative dissolution rate, due at the number of experimental results is not very high and many of them show a great scatter, independently of theirs different compositions by axial and radial variations, due to linear power or local burnup. On the other hand, it is difficult to predict the spent fuel behaviour over the long term, based in short term experiments. In this report is given a little description of the radionuclides distribution in the spent fuel and also in the cladding/pellet gap, grain boundary, cracks and rim zones (the matrix rim zone can be considered with an especial characteristics very different to the rest of the spent fuel), and structural

  12. Modelling spent fuel and HLW behaviour in repository conditions

    International Nuclear Information System (INIS)

    Esparza, A. M.; Esteban, J. A.

    2003-01-01

    The aim of this report is to give the reader an overall insight of the different models, which are used to predict the long-term behaviour of the spent fuels and HLW disposed in a repository. The models must be established on basic data and robust kinetics describing the mechanisms controlling spent fuel alteration/dissolution in a repository. The UO2 matrix, or source term, contains embedded in it the , majority of radionuclides of the spent fuel (some are in the gap cladding). For this reason the SF radionuclides release models play a significant role in the performance assessment of radioactive waste disposal. The differences existing between models published in the literature are due to the conceptual understanding of the processes and the degree of the conservatism used with the parameter values, and the boundary conditions. They mainly differ in their level of simplification and their final objective. Sometimes are focused the show compliance with regulatory requirements, other to support decision making, to increase the level of confidence of public and scientific community, could be empirical, semi-empirical or analytical. The models take into account the experimental results from radionuclides releases and their extrapolation to the very long term. Its necessary a great statistics for have a representative dissolution rate, due at the number of experimental results is not very high and many of them show a great scatter, independently of theirs different compositions by axial and radial variations, due to linear power or local burnup. On the other hand, it is difficult to predict the spent fuel behaviour over the long term, based in short term experiments. In this report is given a little description of the radionuclides distribution in the spent fuel and also in the cladding/pellet gap, grain boundary, cracks and rim zones (the matrix rim zone can be considered with an especial characteristics very different to the rest of the spent fuel), and structural

  13. Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis

    Science.gov (United States)

    2016-07-31

    distribution unlimited Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis Matthew...vital importance for hydrocarbon -fueled propulsion systems: fuel thermal performance as indicated by physical and chemical effects of cooling passage... analysis . The selection and acquisition of a set of chemically diverse fuels is pivotal for a successful outcome since test method validation and

  14. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Receiving Basin for Offsite Fuel (Supplement 3)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P M

    1983-09-01

    Analysis of the Savannah River Plant RBOF and RRF included an evaluation of the reliability of process equipment and controls, administrative controls, and engineered safety features. The evaluation also identified potential scenarios and radiological consequences. Risks were calculated in terms of 50-year population dose commitment per year (man-rem/year) to the onsite and offsite population within an 80 Km radius of RBOF and RRF, and to an individual at the plant boundary. The total 50-year onsite and offsite population radiological risks of operating the RBOF and RRF were estimated to be 1.0 man-rem/year. These risks are significantly less than the population dose of 54,000 man/rem/yr for natural background radiation in a 50-mile radius. The 50-year maximum offsite individual risk from operating the facility was estimated to be 2.1 {times} 10{sup 5} rem/yr. These risks are significantly lower than 93 mrem/yr an individual is expected to receive from natural background radiation in this area. The analysis shows. that the RBOF and RRF can be operated without undue risk to onsite personnel or to the general public.

  15. Modelling transient energy release from molten fuel coolant interaction debris

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-05-01

    A simple model of transient energy release in a Molten Fuel Coolant Interaction is presented. A distributed heat transfer model is used to examine the effect of heat transfer coefficient, time available for rapid energy heat transfer and particle size on transient energy release. The debris is assumed to have an Upper Limit Lognormal distribution. Model predictions are compared with results from the SUW series of experiments which used thermite-generated uranium dioxide molybdenum melts released below the surface of a pool of water. Uncertainties in the physical principles involved in the calculation of energy transfer rates are discussed. (author)

  16. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  17. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    Energy Technology Data Exchange (ETDEWEB)

    Kassa, Mateos [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Hall, Carrie [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Ickes, Andrew [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA; Wallner, Thomas [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA

    2016-10-07

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air

  18. Recent developments in the modeling of molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Wilemski, G.

    1984-01-01

    Modeling of porous electrodes and overall performance of molten carbonate fuel cells is reviewed. Aspects needing improvement are discussed. Some preliminary results on internal methane reforming cells are presented. Successful modeling of molten carbonate fuel cells has been carried out at two levels. The first concerns the prediction of overall cell performance and performance decay, i.e., the calculation of current-voltage curves and their decay rates for various cell operating conditions. The second involves the determination of individual porous electrode performance, i.e., how the electrode overpotential is affected by pore structure, gas composition, degree of electrolyte fill, etc. Both levels are treated mechanistically, as opposed to empirically, using fundamental mathematical descriptions of the relevant physical and chemical phenomena, in order to provide quantitative predictive capability

  19. Motor fuel demand analysis - applied modelling in the European union

    International Nuclear Information System (INIS)

    Chorazewiez, S.

    1998-01-01

    Motor fuel demand in Europe amounts to almost half of petroleum products consumption and to thirty percent of total final energy consumption. This study considers, Firstly, the energy policies of different European countries and the ways in which the consumption of motor gasoline and automotive gas oil has developed. Secondly it provides an abstract of demand models in the energy sector, illustrating their specific characteristics. Then it proposes an economic model of automotive fuel consumption, showing motor gasoline and automotive gas oil separately over a period of thirty years (1960-1993) for five main countries in the European Union. Finally, forecasts of consumption of gasoline and diesel up to the year 2020 are given for different scenarios. (author)

  20. Experimental Characterization and Modeling of PEM Fuel Cells

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk

    fundamental knowledge of the transport and electrochemical processes of PEM fuel cells and to provide methods for obtaining high quality data for PEM fuel cell simulation model validation. In this thesis three different areas of experimental characterization techniques was investigated, they include: Stack...... for obtaining very detailed data of the manifold flow. Moreover, the tools complement each other well, as high quality validation data can be obtained from PIV measurements to verify CFD models. AC Impedance Spectroscopy was used to thoroughly characterize a HTPEM single cell. The measurement method...... was furthermore transferred onto a Labview platform, which signiffcantly improves the exibility and lowers the cost of using this method. This technique is expected to bea very important future tool, used both for material characterization, celldiagnostic, system optimization and as a control input parameter...

  1. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T; de Lira, S; Puig, V; Quevedo, J [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D; Riera, J; Serra, M [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  2. Modeling Fuel Choice among Households in Northern Cameroon

    Directory of Open Access Journals (Sweden)

    Jean Hugues Nlom

    2015-07-01

    Full Text Available The present study aims to explore economic and socio-demographic factors that influence a household’s probability to switch from firewood to cleaner fuels (kerosene and LPG in northern Cameroon. The paper employs an ordered probit model to construct cooking patterns and fuel choices. Three main cooking sources are considered: firewood, kerosene, and liquefied petroleum gas. Utilized data are derived from a national survey conducted in 2004 by the Cameroonian National Institute of Statistics. The study analyzes the data related to the Sudano-Sahelian agro-ecological zone, which is one of the most affected by land degradation and decertification. While results indicate that there is a potential for a transition from traditional to cleaner fuels in the studied region, this transition is still in its earlier stage. The research demonstrates that firewood and kerosene prices, age of household heads, educational level of household heads and willingness to have a gas cylinder, as well as type of dwelling have a statistically significant impact on fuel-switching decisions.

  3. Testing woody fuel consumption models for application in Australian southern eucalypt forest fires

    Science.gov (United States)

    J.J. Hollis; S. Matthews; Roger Ottmar; S.J. Prichard; S. Slijepcevic; N.D. Burrows; B. Ward; K.G. Tolhurst; W.R. Anderson; J S. Gould

    2010-01-01

    Five models for the consumption of coarse woody debris or woody fuels with a diameter larger than 0.6 cm were assessed for application in Australian southern eucalypt forest fires including: CONSUME models for (1) activity fuels, (2) natural western woody and (3) natural southern woody fuels, (4) the BURNUP model and (5) the recommendation by the Australian National...

  4. Fast reactor fuel pin behaviour modelling in the UK

    International Nuclear Information System (INIS)

    Matthews, J.R.; Hughes, H.

    1979-01-01

    Two fuel behaviour codes have been applied extensively to fast reactor problems; SLEUTH developed at Sprlngfields Nuclear Laboratory and FRUMP at A.E.R.E. Harwell. The SLEUTH fuel pin endurance code was originally developed to define a programme of power cycling and power ramp experiments In Advanced Gas Cooled Reactors (AGRs) where, because of the very soft cladding, pellet clad interaction is severe. The code was required to define accelerated test conditions to generalise from the observed endurance to that under other power histories and to select for investigation the most significant design, material and operational variables. The weak clad and low coolant pressure combine to make fission gas swelling a major contributor to clad deformation while the high clad ductility renders the distribution of strain readily observable. This has led to a detailed study of strain concentrations using the SEER code. SLEUTH and SEER have subsequently been used to specify power cycling and power ramp 112 experiments in water cooled, fast and materials testing reactors with the aim of developing a unified quantitative model of pellet-clad interaction whatever the reactor system. The FRUMP fuel behaviour code was developed specifically for the interpretation of fast reactor fuel pin behaviour. Experience with earlier models was valuable In its development. Originally the model was developed to describe behaviour during normal operation, but subsequently the code has been used extensively in the field of accident studies. Much of the effort in FRUMP development has been devoted to the production of physical models of the various effects of irradiation and the temperature gradients on the structure of the fuel and clad. Each process is modelled as well as is permitted by current knowledge and the limitations of computing costs. Each sub-model has a form which reflects the underlying mechanisms, where quantities are unknown values are assigned semi-empirically, i.e. coefficients

  5. Fast reactor fuel pin behaviour modelling in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J R [UKAEA, Harwell, Didcot, Oxon (United Kingdom); Hughes, H [Springfields Nuclear Power Development Laboratories, Springfields, Salwick, Preston (United Kingdom)

    1979-12-01

    Two fuel behaviour codes have been applied extensively to fast reactor problems; SLEUTH developed at Sprlngfields Nuclear Laboratory and FRUMP at A.E.R.E. Harwell. The SLEUTH fuel pin endurance code was originally developed to define a programme of power cycling and power ramp experiments In Advanced Gas Cooled Reactors (AGRs) where, because of the very soft cladding, pellet clad interaction is severe. The code was required to define accelerated test conditions to generalise from the observed endurance to that under other power histories and to select for investigation the most significant design, material and operational variables. The weak clad and low coolant pressure combine to make fission gas swelling a major contributor to clad deformation while the high clad ductility renders the distribution of strain readily observable. This has led to a detailed study of strain concentrations using the SEER code. SLEUTH and SEER have subsequently been used to specify power cycling and power ramp 112 experiments in water cooled, fast and materials testing reactors with the aim of developing a unified quantitative model of pellet-clad interaction whatever the reactor system. The FRUMP fuel behaviour code was developed specifically for the interpretation of fast reactor fuel pin behaviour. Experience with earlier models was valuable In its development. Originally the model was developed to describe behaviour during normal operation, but subsequently the code has been used extensively in the field of accident studies. Much of the effort in FRUMP development has been devoted to the production of physical models of the various effects of irradiation and the temperature gradients on the structure of the fuel and clad. Each process is modelled as well as is permitted by current knowledge and the limitations of computing costs. Each sub-model has a form which reflects the underlying mechanisms, where quantities are unknown values are assigned semi-empirically, i.e. coefficients

  6. Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models

    Science.gov (United States)

    Patlan, E.; Velasco, A. A.; Konter, J.

    2009-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.

  7. MODELING OF THE FUNCTIONING UNITS OF FUEL SYSTEM OF GAS TURBINE ENGINE AIRCRAFT IN VIEW OF AVIATION FUEL QUALITY CHANGES

    Directory of Open Access Journals (Sweden)

    I. I. Zavyalik

    2016-01-01

    Full Text Available The article describes the developed modeling system in MATLAB Simulink which allows to simulate, explore and pre- dict the technical condition of the units of the aircraft gas turbine engine fuel system depending on aviation fuel quality changes.

  8. Radionuclide release rates from spent fuel for performance assessment modeling

    International Nuclear Information System (INIS)

    Curtis, D.B.

    1994-01-01

    In a scenario of aqueous transport from a high-level radioactive waste repository, the concentration of radionuclides in water in contact with the waste constitutes the source term for transport models, and as such represents a fundamental component of all performance assessment models. Many laboratory experiments have been done to characterize release rates and understand processes influencing radionuclide release rates from irradiated nuclear fuel. Natural analogues of these waste forms have been studied to obtain information regarding the long-term stability of potential waste forms in complex natural systems. This information from diverse sources must be brought together to develop and defend methods used to define source terms for performance assessment models. In this manuscript examples of measures of radionuclide release rates from spent nuclear fuel or analogues of nuclear fuel are presented. Each example represents a very different approach to obtaining a numerical measure and each has its limitations. There is no way to obtain an unambiguous measure of this or any parameter used in performance assessment codes for evaluating the effects of processes operative over many millennia. The examples are intended to suggest by example that in the absence of the ability to evaluate accuracy and precision, consistency of a broadly based set of data can be used as circumstantial evidence to defend the choice of parameters used in performance assessments

  9. Fuel cycle model and the cost of a recycling thorium in the CANDU reactor

    International Nuclear Information System (INIS)

    Choi, Hangbok; Park, Chang Je

    2005-01-01

    The dry process fuel technology has a high proliferation-resistance, which allows applications not only to the existing but also to the future nuclear fuel cycle systems. In this study, the homogeneous ThO 2 -UO 2 recycling fuel cycle in a Canada deuterium uranium (CANDU) reactor was assessed for a fuel cycle cost evaluation. A series of parametric calculations were performed for the uranium fraction, enrichment of the initial uranium fuel, and the fission product removal rated of the recycled fuel. The fuel cycle cost was estimated by the levelized lifetime cost model provided by the Organization for Economic Cooperation and Development/Nuclear Energy Agency. Though it is feasible to recycle the homogeneous ThO 2 -UO 2 fuel in the CANDU reactor from the viewpoint of a mass balance, the recycling fuel cycle cost is much higher than the conventional natural uranium fuel cycle cost for most cases due to the high fuel fabrication cost. (author)

  10. Statistical model for prediction of hearing loss in patients receiving cisplatin chemotherapy.

    Science.gov (United States)

    Johnson, Andrew; Tarima, Sergey; Wong, Stuart; Friedland, David R; Runge, Christina L

    2013-03-01

    This statistical model might be used to predict cisplatin-induced hearing loss, particularly in patients undergoing concomitant radiotherapy. To create a statistical model based on pretreatment hearing thresholds to provide an individual probability for hearing loss from cisplatin therapy and, secondarily, to investigate the use of hearing classification schemes as predictive tools for hearing loss. Retrospective case-control study. Tertiary care medical center. A total of 112 subjects receiving chemotherapy and audiometric evaluation were evaluated for the study. Of these subjects, 31 met inclusion criteria for analysis. The primary outcome measurement was a statistical model providing the probability of hearing loss following the use of cisplatin chemotherapy. Fifteen of the 31 subjects had significant hearing loss following cisplatin chemotherapy. American Academy of Otolaryngology-Head and Neck Society and Gardner-Robertson hearing classification schemes revealed little change in hearing grades between pretreatment and posttreatment evaluations for subjects with or without hearing loss. The Chang hearing classification scheme could effectively be used as a predictive tool in determining hearing loss with a sensitivity of 73.33%. Pretreatment hearing thresholds were used to generate a statistical model, based on quadratic approximation, to predict hearing loss (C statistic = 0.842, cross-validated = 0.835). The validity of the model improved when only subjects who received concurrent head and neck irradiation were included in the analysis (C statistic = 0.91). A calculated cutoff of 0.45 for predicted probability has a cross-validated sensitivity and specificity of 80%. Pretreatment hearing thresholds can be used as a predictive tool for cisplatin-induced hearing loss, particularly with concomitant radiotherapy.

  11. Sustainable multilateral nuclear fuel cycle framework. (2) Models for multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Adachi, T; Tanaka, S; Tazaki, M; Akiba, M; Takashima, R; Kuno, Y

    2011-01-01

    To construct suitable models for a reliable and sustainable international/regional framework in the fields of nuclear fuel cycle, it is essential to reflect recent political situations including such that 1) a certain number of emerging countries especially in south-east Asia want to introduce and develop nuclear power in the long-terms despite the accident of the Fukushima Daiichi NPP, and 2) exposition of nuclear proliferation threats provided by North Korea and Iran. It is also to be considered that Japan is an unique country having enrichment and reprocessing facilities on commercial base among non-nuclear weapon countries. Although many models presented for the internationalization have not been realized yet, studies at the University of Tokyo aim at multilateral nuclear approach (MNA) in Asian-Pacific countries balancing between nuclear non-proliferation and nuclear fuel supply/service and presenting specific examples such as prerequisites for participating countries, scope of cooperative activities, ownership of facilities and type of agreements/frameworks. We will present a model basic agreement and several bilateral and multi-lateral agreements for the combinations of industry or government led consortia including Japan and its neighboring countries and made a preliminary evaluation for the combination of processes/facilities based on the INFCIRC/640 report for MNA. (author)

  12. Fuel models and results from the TRAC-PF1/MIMAS TMI-2 accident calculation

    International Nuclear Information System (INIS)

    Schwegler, E.C.; Maudlin, P.J.

    1983-01-01

    A brief description of several fuel models used in the TRAC-PF1/MIMAS analysis of the TMI-2 accident is presented, and some of the significant fuel-rod behavior results from this analysis are given. Peak fuel-rod temperatures, oxidation heat production, and embrittlement and failure behavior calculated for the TMI-2 accident are discussed. Other aspects of fuel behavior, such as cladding ballooning and fuel-cladding eutectic formation, were found not to significantly affect the accident progression

  13. Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model.

    Science.gov (United States)

    Mao, Tianqi; Wang, Zhaocheng; Wang, Qi

    2017-01-23

    Single-photon avalanche diode (SPAD) is a promising photosensor because of its high sensitivity to optical signals in weak illuminance environment. Recently, it has drawn much attention from researchers in visible light communications (VLC). However, existing literature only deals with the simplified channel model, which only considers the effects of Poisson noise introduced by SPAD, but neglects other noise sources. Specifically, when an analog SPAD detector is applied, there exists Gaussian thermal noise generated by the transimpedance amplifier (TIA) and the digital-to-analog converter (D/A). Therefore, in this paper, we propose an SPAD-based VLC system with pulse-amplitude-modulation (PAM) under Poisson-Gaussian mixed noise model, where Gaussian-distributed thermal noise at the receiver is also investigated. The closed-form conditional likelihood of received signals is derived using the Laplace transform and the saddle-point approximation method, and the corresponding quasi-maximum-likelihood (quasi-ML) detector is proposed. Furthermore, the Poisson-Gaussian-distributed signals are converted to Gaussian variables with the aid of the generalized Anscombe transform (GAT), leading to an equivalent additive white Gaussian noise (AWGN) channel, and a hard-decision-based detector is invoked. Simulation results demonstrate that, the proposed GAT-based detector can reduce the computational complexity with marginal performance loss compared with the proposed quasi-ML detector, and both detectors are capable of accurately demodulating the SPAD-based PAM signals.

  14. Numerical modeling of a cryogenic fluid within a fuel tank

    Science.gov (United States)

    Greer, Donald S.

    1994-01-01

    The computational method developed to study the cryogenic fluid characteristics inside a fuel tank in a hypersonic aircraft is presented. The model simulates a rapid draining of the tank by modeling the ullage vapor and the cryogenic liquid with a moving interface. A mathematical transformation was developed and applied to the Navier-Stokes equations to account for the moving interface. The formulation of the numerical method is a transient hybrid explicit-implicit technique where the pressure term in the momentum equations is approximated to first order in time by combining the continuity equation with an ideal equation of state.

  15. NHR dynamic analysis of control rod and fuel assembly of test model

    International Nuclear Information System (INIS)

    Wang Jiachun; Cai Laizhong

    2001-01-01

    The basic purpose is to analyze the dynamic response of the structure, with the seismic excitation, which is the important components of 200 MW Heating Reactor, including the control rod, fuel assembly, zirconium alloy boxes and the relevant parts. The author presents the simplification and building of the model. By comparing the effects under different constraint conditions, the final analyzed model is determined after the preliminary analysis. Then the model is calculated to obtain the frequencies of the model, the analysis of the response spectrum and the time series data under some seismic excitations. From the outcome what is received above, the influence of the basic frequency is discussed. And the displacement and acceleration responses of different sample points are obtained and analyzed to predict the safety of the reactor

  16. Development of steady-state model for MSPT and detailed analyses of receiver

    Science.gov (United States)

    Yuasa, Minoru; Sonoda, Masanori; Hino, Koichi

    2016-05-01

    Molten salt parabolic trough system (MSPT) uses molten salt as heat transfer fluid (HTF) instead of synthetic oil. The demonstration plant of MSPT was constructed by Chiyoda Corporation and Archimede Solar Energy in Italy in 2013. Chiyoda Corporation developed a steady-state model for predicting the theoretical behavior of the demonstration plant. The model was designed to calculate the concentrated solar power and heat loss using ray tracing of incident solar light and finite element modeling of thermal energy transferred into the medium. This report describes the verification of the model using test data on the demonstration plant, detailed analyses on the relation between flow rate and temperature difference on the metal tube of receiver and the effect of defocus angle on concentrated power rate, for solar collector assembly (SCA) development. The model is accurate to an extent of 2.0% as systematic error and 4.2% as random error. The relationships between flow rate and temperature difference on metal tube and the effect of defocus angle on concentrated power rate are shown.

  17. Challenges in mechanical modeling of SFR fuel rod transient behavior

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2013-07-01

    Modeling of SFR fuel rod mechanical behavior under transient conditions entails the development of a creep law to predict cladding viscoplastic strain. In this regard, this work is focused on defining a proper clad creep law structure as the basis to set a suitable model under SFR off-normal conditions as transient overpower and loss of fluid. To do so, a review of in-codes clad creep models has been done by using SAS-SFR, SCANAIR and ASTEC. The proposed creep model has been structured in two parts: viscoplastic behaviour before the failure (primary and secondary creep) and the failure due to viscoplastic collapse (tertiary creep). In order to model the first part, Norton creep law has been proposed as a conservative option. An irradiation hardening factor should be included for best estimate calculations. The recommendation for the second part is to apply a failure criterion based on strain limit or rupture time, which allows achieving conservative results.

  18. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States); El-Azab, Anter [Florida State Univ., Tallahassee, FL (United States); Pernice, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Peterson, John W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Polyakov, Peter [Univ. of Wyoming, Laramie, WY (United States); Tavener, Simon [Colorado State Univ., Fort Collins, CO (United States); Xiu, Dongbin [Purdue Univ., West Lafayette, IN (United States); Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis for computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

  19. Atomic scale modelling of materials of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Bertolus, M.

    2011-10-01

    This document written to obtain the French accreditation to supervise research presents the research I conducted at CEA Cadarache since 1999 on the atomic scale modelling of non-metallic materials involved in the nuclear fuel cycle: host materials for radionuclides from nuclear waste (apatites), fuel (in particular uranium dioxide) and ceramic cladding materials (silicon carbide). These are complex materials at the frontier of modelling capabilities since they contain heavy elements (rare earths or actinides), exhibit complex structures or chemical compositions and/or are subjected to irradiation effects: creation of point defects and fission products, amorphization. The objective of my studies is to bring further insight into the physics and chemistry of the elementary processes involved using atomic scale modelling and its coupling with higher scale models and experimental studies. This work is organised in two parts: on the one hand the development, adaptation and implementation of atomic scale modelling methods and validation of the approximations used; on the other hand the application of these methods to the investigation of nuclear materials under irradiation. This document contains a synthesis of the studies performed, orientations for future research, a detailed resume and a list of publications and communications. (author)

  20. On the significance of modeling nuclear fuel behavior with the right representation of physical phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-204, Cambridge, MA 02139 (United States); Kazimi, Mujid S. [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-204, Cambridge, MA 02139 (United States)

    2011-02-15

    Research highlights: Essence of more physics based modeling approaches to the fuel behavior problem is emphasized. Demonstrations on modeling of metallic and oxide fuel dimensional changes and fission gas behavior with more physics based and semi-empirical approaches are given. Essence of fuel clad chemical interaction modeling of the metallic fuel in an appropriate way and implications during short and long term transients for sodium fast reactor applications are discussed. - Abstract: This work emphasizes the relevance of representation of appropriate mechanisms for understanding the actual physical behavior of the fuel pin under irradiation. Replacing fully empirical simplified treatments with more rigorous semi-empirical models which include the important pieces of physics, would open the path to more accurately capture the sensitivity to various parameters such as operating conditions, geometry, composition, and enhance the uncertainty quantification process. Steady state and transient fuel behavior demonstration examples and implications are given for sodium fast reactor metallic fuels by using FEAST-METAL. The essence of appropriate modeling of the fuel clad mechanical interaction and fuel clad chemical interaction of the metallic fuels are emphasized. Furthermore, validation efforts for oxide fuel pellet swelling behavior at high temperature and high burnup LWR conditions and comparison with FRAPCON-EP and FRAPCON-3.4 codes will be given. The value of discriminating the oxide fuel swelling modes, instead of applying a linear line, is pointed out. Future directions on fuel performance modeling will be addressed.

  1. Models for Microbial Fuel Cells: A critical review

    Science.gov (United States)

    Xia, Chengshuo; Zhang, Daxing; Pedrycz, Witold; Zhu, Yingmin; Guo, Yongxian

    2018-01-01

    Microbial fuel cells (MFCs) have been widely viewed as one of the most promising alternative sources of renewable energy. A recognition of needs of efficient development methods based on multidisciplinary research becomes crucial for the optimization of MFCs. Modeling of MFCs is an effective way for not only gaining a thorough understanding of the effects of operation conditions on the performance of power generation but also becomes of essential interest to the successful implementation of MFCs. The MFC models encompass the underlying reaction process and limiting factors of the MFC. The models come in various forms, such as the mathematical equations or the equivalent circuits. Different modeling focuses and approaches of the MFC have emerged. In this study, we present a state of the art of MFCs modeling; the past modeling methods are reviewed as well. Models and modeling methods are elaborated on based on the classification provided by Mechanism-based models and Application-based models. Mechanisms, advantages, drawbacks, and application fields of different models are illustrated as well. We exhibit a complete and comprehensive exposition of the different models for MFCs and offer further guidance to promote the performance of MFCs.

  2. Fuel Performance Modeling of U-Mo Dispersion Fuel: The thermal conductivity of the interaction layers of the irradiated U-Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mistarhi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    U-Mo/Al dispersion fuel performed well at a low burn-up. However, higher burn-up and higher fission rate irradiation testing showed enhanced fuel meat swelling which was caused by high interaction layer growth and pore formation. The performance of the dispersion type fuel in the irradiation and un-irradiation environment is very important. During the fabrication of the dispersion type fuel an Interaction Layer (IL) is formed due to the inter-diffusion between the U-Mo fuel particles and the Al matrix which is an intermetallic compound (U,Mo)Alx. During irradiation, the IL becomes amorphous causing a further decrease in the thermal conductivity and an increase in the centerline temperature of the fuel meat. Several analytical models and numerical methods were developed to study the performance of the unirradiated U-Mo/Al dispersion fuel. Two analytical models were developed to study the performance of the irradiated U-Mo/Al dispersion fuel. In these models, the thermal conductivity of the IL was assumed to be constant. The properties of the irradiated U-Mo dispersion fuel have been investigated recently by Huber et al. The objective of this study is to develop a correlation for IL thermal conductivity during irradiation as a function of the temperature and fission density from the experimentally measured thermal conductivity of the irradiated U-Mo/Al dispersion fuel. The thermal conductivity of IL during irradiation was calculated from the experimentally measured data and a correlation was developed from the thermal conductivity of IL as a function of T and fission density.

  3. Model documentation Renewable Fuels Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

  4. New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion

    KAUST Repository

    Han, Yunqing; Elbaz, Ayman M.; Roberts, William L.; Im, Hong G.

    2016-01-01

    A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing

  5. Source-receiver two-way wave extrapolation for prestack exploding-reflector modelling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-10-08

    Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high-order partial differential equations in the source-receiver time domain. The fourth-order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P-waves and reduce to the zero-offset exploding-reflector solutions when the source coincides with the receiver. A challenge for implementing two-way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral-based extrapolation. Using spectral methods based on the low-rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach.

  6. Experimental investigation and mathematical modeling of triode PEM fuel cells

    International Nuclear Information System (INIS)

    Martino, E.; Koilias, G.; Athanasiou, M.; Katsaounis, A.; Dimakopoulos, Y.; Tsamopoulos, J.; Vayenas, C.G.

    2017-01-01

    Highlights: •The triode fuel cell operation was tested using novel comb-type electrode designs. •Triode operation enhances the PEMFC power output by up to 500%. •Power output enhancement exceeds auxiliary power by up to 20%. •Good agreement with mathematical model based on the laws of Kirchhoff. •Proton fluxes in the membrane found via solution of the Nernst Planck equation -- Abstract: The triode operation of humidified PEM fuel cells has been investigated both with pure H 2 and with CO poisoned H 2 feed over commercial Vulcan supported Pt(30%)-Ru(15%) anodes. It was found that triode operation, which involves the use of a third, auxiliary, electrode, leads to up to 400% power output increase with the same CO poisoned H 2 gas feed. At low current densities, the power increase is accompanied by an increase in overall thermodynamic efficiency. A mathematical model, based on Kirchhoff’s laws, has been developed which is in reasonably good agreement with the experimental results. In order to gain some additional insight into the mechanism of triode operation, the model has been also extended to describe the potential distribution inside the Nafion membrane via the numerical solution of the Nernst-Planck equation. Both model and experiment have shown the critical role of minimizing the auxiliary-anode or auxiliary-cathode resistance, and this has led to improved comb-shaped anode or cathode electrode geometries.

  7. A model for gap conductance in nuclear fuel rods

    International Nuclear Information System (INIS)

    Loyalka, S.K.

    1982-01-01

    Computation of nuclear reactor fuel behavior under normal and off-normal conditions is influenced by gap conductance models. These models should provide accurate results for heat transfer for arbitrary gap widths and gas mixtures and should be based on considerations of the kinetic theory of gases. There has been considerable progress in the study of heat transfer in a simple gas for arbitrary Knudsen numbers (Kn = l/similar to d, where l is a meanfree-path and similar d is the gap width) in recent years. Using these recent results, a simple expression for heat transfer in a gas mixture (enclosed between parallel plates) for an arbitrary Knudsen number has been constructed, and a new model for gap conductance has been proposed. The latter reproduces the free molecular (small gap, Kn >> 1) and the jump limits (large gaps, Kn << 1) correctly, and it provides fairly accurate results for arbitrary gap widths. The new model is suitable for use in large fuel behavior computer programs

  8. CFD modeling of secondary flows in fuel rod bundles

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Ninokata, Hisashi

    2004-01-01

    An optimized non-linear eddy viscosity model is introduced, for calculations of detailed coolant velocity distribution in a tight lattice fuel bundle. The low Reynolds formulation has been optimized based on DNS data for channel flow. The non-linear stress-strain relationship has been modified in the coefficients to model the flow anisotropy, which causes the formation of turbulence driven secondary flows inside the bundle subchannels. Predictions of the model are first compared to experimental measurements of secondary flows in a triangularly arrayed rod bundle with p/d=1.3. Subsequently wall shear stress and velocity predictions are compared with different experimental data for a rod bundle with p/d=1.17. The model shows to be able to correctly reproduce the scale of the secondary motion, and to accurately reproduce both wall shear stress and velocity distributions inside the rod bundle subchannels. (author)

  9. The effective and dust free receiving station and handling for the low calorific value solid fuels; Tehokas ja poelytoen seospolttoaineiden vastaanottoasema sekae kaesittely- ja kuljetinjaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nojonen, O [Finntech Oy, Espoo (Finland); Jaervinen, T [VTT Energy, Jyvaeskylae (Finland). Energy Use

    1996-12-31

    The aim of the project was to get higher automatization level and improve dust preventing in solid fuel receiving stations. There are two general types of receiving stations in the Finnish power plants: large unloading stations for the side tipping devices of trucks and small ones for the rear tipping devices of trucks. In the first ones the trucks empty their load (approx. 100 m{sup 3} loose bulk density) divided by hauling unit and trailer within few (5-10) minutes into a rectangular box, which depth is approx. 3 m. The discharging causes a strong counter current air and dust flow (20-40 m{sup 3}/s) upwards and the dust will easily spread out all over the station. In the second ones the discharging takes place from the rear of truck and trailer using loadspace conveyor of the vehicle within 20 minutes. The material falls on a (belt) conveyor, which is on the floor level. The problems in side tipping system are connected with dust and surplus time, which is needed for the preparation and completion of unloading and sampling. For the fine dust control has also been tested water spray (fog) nozzles and tried to utilise a settling chamber for the dust stream. Also the using the settling chamber equipped with air suction connections and cyclone separation may be effective. In the rear tipping system are also applied bag filters because of smaller air quantities. The rapid truck positioning and control in the receiving station is one of the presupposition for the fast and accurate unloading. This can be done using ultrasonic sensing methods. Also the ensuring of accurate discharging can be based on the modern technology. One of the basic things is the enlarging of video control (CCD -cameras)

  10. The effective and dust free receiving station and handling for the low calorific value solid fuels; Tehokas ja poelytoen seospolttoaineiden vastaanottoasema sekae kaesittely- ja kuljetinjaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nojonen, O. [Finntech Oy, Espoo (Finland); Jaervinen, T. [VTT Energy, Jyvaeskylae (Finland). Energy Use

    1995-12-31

    The aim of the project was to get higher automatization level and improve dust preventing in solid fuel receiving stations. There are two general types of receiving stations in the Finnish power plants: large unloading stations for the side tipping devices of trucks and small ones for the rear tipping devices of trucks. In the first ones the trucks empty their load (approx. 100 m{sup 3} loose bulk density) divided by hauling unit and trailer within few (5-10) minutes into a rectangular box, which depth is approx. 3 m. The discharging causes a strong counter current air and dust flow (20-40 m{sup 3}/s) upwards and the dust will easily spread out all over the station. In the second ones the discharging takes place from the rear of truck and trailer using loadspace conveyor of the vehicle within 20 minutes. The material falls on a (belt) conveyor, which is on the floor level. The problems in side tipping system are connected with dust and surplus time, which is needed for the preparation and completion of unloading and sampling. For the fine dust control has also been tested water spray (fog) nozzles and tried to utilise a settling chamber for the dust stream. Also the using the settling chamber equipped with air suction connections and cyclone separation may be effective. In the rear tipping system are also applied bag filters because of smaller air quantities. The rapid truck positioning and control in the receiving station is one of the presupposition for the fast and accurate unloading. This can be done using ultrasonic sensing methods. Also the ensuring of accurate discharging can be based on the modern technology. One of the basic things is the enlarging of video control (CCD -cameras)

  11. Fission gas induced deformation model for FRAP-T6 and NSRR irradiated fuel test simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Sasajima, Hideo; Fuketa, Toyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hosoyamada, Ryuji; Mori, Yukihide

    1996-11-01

    Pulse irradiation tests of irradiated fuels under simulated reactivity initiated accidents (RIAs) have been carried out at the Nuclear Safety Research Reactor (NSRR). Larger cladding diameter increase was observed in the irradiated fuel tests than in the previous fresh fuel tests. A fission gas induced cladding deformation model was developed and installed in a fuel behavior analysis code, FRAP-T6. The irradiated fuel tests were analyzed with the model in combination with modified material properties and fuel cracking models. In Test JM-4, where the cladding temperature rose to higher temperatures and grain boundary separation by the pulse irradiation was significant, the fission gas model described the cladding deformation reasonably well. The fuel had relatively flat radial power distribution and the grain boundary gas from the whole radius was calculated to contribute to the deformation. On the other hand, the power density in the irradiated LWR fuel rods in the pulse irradiation tests was remarkably higher at the fuel periphery than the center. A fuel thermal expansion model, GAPCON, which took account of the effect of fuel cracking by the temperature profile, was found to reproduce well the LWR fuel behavior with the fission gas deformation model. This report present details of the models and their NSRR test simulations. (author)

  12. Analysis of the interaction between a submerged jet and a receiver-diffuser in a reverse-flow diverter. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1983-01-01

    Two mathematical models of the interaction between a submerged jet emanating from the nozzle of a reverse flow diverter (RFD) and a receiver-diffuser of a venturi-like reverse flow diverter are presented and compared with experimental data. Both models predict the output characteristics fairly accurately, although the experimentally measured flow is observed to saturate at higher values of jet dynamic pressure and at lower values of output load impedances. An analysis based on the inviscid flow model indicates cavitation as the likely cause of the flow saturation

  13. An evaluation of gas release modelling approaches as to their applicability in fuel behaviour models

    International Nuclear Information System (INIS)

    Mattila, L.J.; Sairanen, R.T.

    1980-01-01

    The release of fission gas from uranium oxide fuel to the voids in the fuel rod affects in many ways the behaviour of LWR fuel rods both during normal operating conditions including anticipated transients and during off-normal and accident conditions. The current trend towards significantly increased discharge burnup of LWR fuel will increase the importance of fission gas release considerations both from the design and safety viewpoints. In the paper fission gas release models are classified to 5 categories on the basis of complexity and physical sophistication. For each category, the basic approach common to the models included in the category is described, a few representative models of the category are singled out and briefly commented in some cases, the advantages and drawbacks of the approach are listed and discussed and conclusions on the practical feasibility of the approach are drawn. The evaluation is based on both literature survey and our experience in working with integral fuel behaviour models. The work has included verification efforts, attempts to improve certain features of the codes and engineering applications. The classification of fission gas release models regarding their applicability in fuel behaviour codes can of course be done only in a coarse manner. The boundaries between the different categories are vague and a model may be well refined in a way which transfers it to a higher category. Some current trends in fuel behaviour research are discussed which seem to motivate further extensive efforts in fission product release modelling and are certain to affect the prioritizing of the efforts. (author)

  14. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  15. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  16. 3-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cell Using Different Fuels

    Science.gov (United States)

    2011-01-01

    major types of fuel cells in practice are listed below: Polymer Electrolyte Membrane Fuel Cell ( PEMFC ) Alkaline Fuel cell (AFC) Phosphoric Acid...Material Operating Temperature (oC) Efficiency (%) PEMFC H2, Methanol, Formic Acid Hydrated Organic Polymer < 90 40-50 AFC Pure H2 Aqueous

  17. Fuel Behavior Modeling Issues Associated with Future Fast Reactor Systems

    International Nuclear Information System (INIS)

    Yacout, A.M.; Hofman, G.L.; Lambert, J.D.B.; Kim, Y.S.

    2007-01-01

    Major issues of concern related to advanced fast reactor fuel behavior are discussed here with focus on phenomena that are encountered during irradiation of metallic fuel elements. Identification of those issues is part of an advanced fuel simulation effort that aims at improving fuel design and reducing reliance on conventional approach of design by experiment which is both time and resource consuming. (authors)

  18. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    Science.gov (United States)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  19. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    Science.gov (United States)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  20. Channel Model of Molecular Communication via Diffusion in a Vessel-like Environment Considering a Partially Covering Receiver

    OpenAIRE

    Turan, Meriç; Kuran, Mehmet Sukru; Yilmaz, H. Birkan; Demirkol, Ilker; Tugcu, Tuna

    2018-01-01

    By considering potential health problems that a fully covering receiver may cause in vessel-like environments, the implementation of a partially covering receiver is needed. To this end, distribution of hitting location of messenger molecules (MM) is analyzed within the context of molecular communication via diffusion with the aim of channel modeling. The distribution of these MMs for a fully covering receiver is analyzed in two parts: angular and radial dimensions. For the angular distributi...

  1. Physical modeling of spent-nuclear-fuel container

    Directory of Open Access Journals (Sweden)

    Wang Liping

    2012-11-01

    Full Text Available A new physical simulation model was developed to simulate the casting process of the ductile iron heavy section spent-nuclear-fuel container. In this physical simulation model, a heating unit with DR24 Fe-Cr-Al heating wires was used to compensate the heat loss across the non-natural surfaces of the sample, and a precise and reliable casting temperature controlling/monitoring system was employed to ensure the thermal behavior of the simulated casting to be similar to the actual casting. Also, a mould system was designed, in which changeable mould materials can be used for both the outside and inside moulds for different applications. The casting test was carried out with the designed mould and the cooling curves of central and edge points at different isothermal planes of the casting were obtained. Results show that for most isothermal planes, the temperature control system can keep the temperature differences within 6 ℃ between the edge points and the corresponding center points, indicating that this new physical simulation model has high simulation accuracy, and the mould developed can be used for optimization of casting parameters of spent-nuclear-fuel container, such as composition of ductile iron, the pouring temperature, the selection of mould material and design of cooling system. In addition, to maintain the spheroidalization of the ductile iron, the force-chilling should be used for the current physical simulation to ensure the solidification of casting in less than 2 h.

  2. Alternative Liquid Fuels Simulation Model (AltSim).

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the

  3. Calculation of demands for nuclear fuels and fuel cycle services. Description of computer model and strategies developed by Working Group 1

    International Nuclear Information System (INIS)

    Working Group 1 examined a range of reactor deployment strategies and fuel cycle options, in oder to estimate the range of nuclear fuel requirements and fuel cycle service needs which would result. The computer model, its verification in comparison with other models, the strategies to be examined through use of the model, and the range of results obtained are described

  4. Analysis and modelling of the fuels european market

    International Nuclear Information System (INIS)

    Simon, V.

    1999-04-01

    The research focus on the European fuel market prices referring to the Rotterdam and Genoa spot markets as well the German, Italian and French domestic markets. The thesis try to explain the impact of the London IPE future market on spot prices too. The mainstream research has demonstrated that co-integration seems to be the best theoretical approach to investigate the long run equilibrium relations. A particular attention will be devoted to the structural change in the econometric modelling on these equilibriums. A deep analysis of the main European petroleum products markets permit a better model specification concerning each of these markets. Further, we will test if any evidence of relations between spot and domestic prices could be confirmed. Finally, alternative scenarios will be depicted to forecast prices in the petroleum products markets. The objective is to observe the model reaction to changes crude oil prices. (author)

  5. A model for radial cesium transport in a fuel pellet

    International Nuclear Information System (INIS)

    Imoto, Shosuke

    1989-01-01

    In order to explain the radial redistribution of cesium in an irradiated pellet, a two-step release model is proposed. The first step involves the migration of cesium by atomic diffusion to some channels, such as grain boundaries and cracks, and the second step assumes a thermomigration down along the temperature gradient. Distribution profiles of cesium are obtained by numerical calculation with the present model assuming a constant and spatially uniform birth rate of cesium in the pellet. The result agrees well with the profile observed by micro-gamma scanning for the LWR fuel in the outer region of the pellet but diverges from it at the inner region. Discussion is made on the steady-state model hitherto generally utilized. (orig.)

  6. Development and preliminary analyses of material balance evaluation model in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo

    1994-01-01

    Material balance evaluation model in nuclear fuel cycle has been developed using ORIGEN-2 code as basic engine. This model has feature of: It can treat more than 1000 nuclides including minor actinides and fission products. It has flexibility of modeling and graph output using a engineering work station. I made preliminary calculation of LWR fuel high burnup effect (reloading fuel average burnup of 60 GWd/t) on nuclear fuel cycle. The preliminary calculation shows LWR fuel high burnup has much effect on Japanese Pu balance problem. (author)

  7. Bayesian modelling of household solid fuel use: insights towards designing effective interventions to promote fuel switching in Africa.

    Science.gov (United States)

    Rehfuess, Eva A; Briggs, David J; Joffe, Mike; Best, Nicky

    2010-10-01

    Indoor air pollution from solid fuel use is a significant risk factor for acute lower respiratory infections among children in sub-Saharan Africa. Interventions that promote a switch to modern fuels hold a large health promise, but their effective design and implementation require an understanding of the web of upstream and proximal determinants of household fuel use. Using Demographic and Health Survey data for Benin, Kenya and Ethiopia together with Bayesian hierarchical and spatial modelling, this paper quantifies the impact of household-level factors on cooking fuel choice, assesses variation between communities and districts and discusses the likely nature of contextual effects. Household- and area-level characteristics appear to interact as determinants of cooking fuel choice. In all three countries, wealth and the educational attainment of women and men emerge as important; the nature of area-level factors varies between countries. In Benin, a two-level model with spatial community random effects best explains the data, pointing to an environmental explanation. In Ethiopia and Kenya, a three-level model with unstructured community and district random effects is selected, implying relatively autonomous economic and social areas. Area-level heterogeneity, indicated by large median odds ratios, appears to be responsible for a greater share of variation in the data than household-level factors. This may be an indication that fuel choice is to a considerable extent supply-driven rather than demand-driven. Consequently, interventions to promote fuel switching will carefully need to assess supply-side limitations and devise appropriate policy and programmatic approaches to overcome them. To our knowledge, this paper represents the first attempt to model the determinants of solid fuel use, highlighting socio-economic differences between households and, notably, the dramatic influence of contextual effects. It illustrates the potential that multilevel and spatial

  8. Model evaluation of faecal contamination in coastal areas affected by urban rivers receiving combined sewer overflows.

    Science.gov (United States)

    Shibata, T; Kojima, K; Lee, S A; Furumai, H

    2014-01-01

    Odaiba seaside park is one of the most popular waterfronts in Tokyo Bay, but is easily affected by wet weather pollutant loads through combined sewer overflows (CSOs). The monitoring data of Escherichia coli clearly showed high faecal contamination after a rainfall event on 9-11 November 2007. We estimated the amounts of discharge volume and E. coli pollutant loads of urban rivers receiving CSO from rainfall chambers as well as pumping stations and primary effluent discharge. The result suggested that Sumida River and Meguro River were more influential to the Odaiba coastal area than other sources including the nearest wastewater treatment plant. Subsequently, we simulated the dynamic behaviour of E. coli by a three-dimensional (3D) hydro-dynamic and water quality model. The model simulation reproduced that E. coli concentration after the rainfall event increased rapidly at first and later gradually decreased. The simulations with and without inflow pollutant loads from urban rivers suggested that the E. coli concentration can be influenced by the Meguro River just after the rainfall event and Sumida River about 1 week later. From the spatial and temporal distribution of surface E. coli concentration, after at least 6 days from the rainfall event, high faecal contamination spread to the whole of the coastal area.

  9. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  10. Core-state models for fuel management of equilibrium and transition cycles in pressurized water reactors

    International Nuclear Information System (INIS)

    Aragones, J.M.; Martinez-Val, J.M.; Corella, M.R.

    1977-01-01

    Fuel management requires that mass, energy, and reactivity balance be satisfied in each reload cycle. Procedures for selection of alternatives, core-state models, and fuel cost calculations have been developed for both equilibrium and transition cycles. Effective cycle lengths and fuel cycle variables--namely, reload batch size, schedule of incore residence for the fuel, feed enrichments, energy sharing cycle by cycle, and discharge burnup and isotopics--are the variables being considered for fuel management planning with a given energy generation plan, fuel design, recycling strategy, and financial assumptions

  11. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET model--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet). Major publications that address GREET development are listed. These reports document methodologies, development, key default assumptions, applications, and results of the GREET model. They are also posted, along with additional materials for the GREET model, on the TTRDC Web site. For a given transportation fuel/technology combination, the GREET model separately calculates: (A)--Fuel-cycle energy consumption for the following three source categories: (1) Total energy (all energy sources), (2) Fossil fuels (petroleum, natural gas [NG], and coal), and (3) Petroleum. (B)--Fuel-cycle emissions of the following three greenhouse gases (GHGs): (1) Carbon dioxide (CO 2 ) (with a global warming potential [GWP] of 1), (2) Methane (CH 4 ) (with a GWP of 21), and (3) Nitrous oxide (N 2 O) (with a GWP of 310). (C)--Fuel-cycle emissions of the following five criteria pollutants (separated into total [T] and urban [U] emissions): (1) Volatile organic compounds (VOCs), (2) Carbon monoxide (CO), (3) Nitrogen oxides (NO x ), (4) Particulate matter with a mean aerodynamic diameter of 10 (micro)m or less (PM 10 ), and (5) Sulfur oxides

  12. Characterization Report on Fuels for NEAMS Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gofryk, Krzysztof [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Nearly 20% of the world’s electricity today is generated by nuclear energy from uranium dioxide (UO2) fuel. The thermal conductivity of UO2 governs the conversion of heat produced from fission events into electricity and it is an important parameter in reactor design and safety. While nuclear fuel operates at high to very high temperatures, thermal conductivity and other materials properties lack sensitivity to temperature variations and to material variations at reactor temperatures. As a result, both the uncertainties in laboratory measurements at high temperatures and the small differences in properties of different materials inevitably lead to large uncertainties in models and little predictive power. Conversely, properties measured at low to moderate temperatures have more sensitivity, less uncertainty, and have larger differences in properties for different materials. These variations need to be characterized as they will afford the highest predictive capability in modeling and offer best assurances for validation and verification at all temperatures. This is well emphasized in the temperature variation of the thermal conductivity of UO2.

  13. LEU-fueled SLOWPOKE-2 modelling with MCNP4A

    International Nuclear Information System (INIS)

    Pierre, J.R.M.; Bonin, H.W.J.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fueled SLOWPOKE-2 research reactor at Royal Military College,excess reactivity measurements were conducted over a range of temperature and power. Given the advance in computer technology, the use of Monte Carlo N-Particle Transport Code System MCNP 4A appeared possible for the simulation of the LEU-fueled SLOWPOKE-2 reactor core, and this work demonstrates that this is indeed the case. MCNP 4A is a full three dimensional program allowing the user to enter a large amount of complexity. The limit on the geometry complexity is the computing time required to achieve a reasonable standard deviation. To this point several models of the SLOWPOKE-2 have been developed giving some insight on the sensitivity of the code. MCNP4A can use various cross section libraries. The aim of this work is to calculate accurately the reactivity of the core and reproduce The temperature trend of the reactivity. The model preserved as much as possible the details of the core and facility in order to allow further study in the flux mapping

  14. Comparative analysis of methods and tools for open and closed fuel cycles modeling: MESSAGE and DESAE

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Korovin, Yu.A.; Murogov, V.M.; Fedorova, E.V.; Fesenko, G.A.

    2006-01-01

    Comparative analysis of optimization and simulation methods by the example of MESSAGE and DESAE programs is carried out for nuclear power prospects and advanced fuel cycles modeling. Test calculations for open and two-component nuclear power and closed fuel cycle are performed. Auxiliary simulation-dynamic model is developed to specify MESSAGE and DESAE modeling approaches difference. The model description is given [ru

  15. Seismic behaviour of PWR fuel assemblies model and its validation

    International Nuclear Information System (INIS)

    Queval, J.C.; Gantenbein, F.; Brochard, D.; Benjedidia, A.

    1991-01-01

    The validity of the models simulating the seismic behaviour of PWR cores can only be exactly demonstrated by seismic testing on groups of fuel assemblies. Shake table seismic tests of rows of assembly mock-ups, conducted by the CEA in conjunction with FRAMATOME, are presented in reference /1/. This paper addresses the initial comparisons between model and test results for a row of five assemblies in air. Two models are used: a model with a single beam per assembly, used regularly in accident analyses, and described in reference /2/, and a more refined 2-beam per assembly model, geared mainly towards interpretation of test results. The 2-beam model is discussed first, together with parametric studies used to characterize it, and the study of the assembly row for a period limited to 2 seconds and for different excitation levels. For the 1-beam model assembly used in applications, the row is studied over the total test time, i.e twenty seconds, which covers the average duration of the core seismic behaviour studies, and for a peak exciting acceleration value at 0.4 g, which corresponds to the SSE level of the reference spectrum

  16. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  17. Modelling of pellet-cladding interaction for PWRs reactors fuel rods

    International Nuclear Information System (INIS)

    Esteves, A.M.

    1991-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyzes the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. Linear and non-linear material behaviors are allowed. Elastic, plastic and creep behaviors are considered for the cladding materials. The modelling is applied to Angra-II fuel rod design. The results are analyzed and compared. (author)

  18. Crustal Structure and Subsidence of the Williston Basin: Evidence from Receiver Function Stacking and Gravity Modeling

    Science.gov (United States)

    Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.

    2017-12-01

    The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.

  19. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Science.gov (United States)

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  20. Thermochemical data and its use in modeling chemical behavior in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Gibby, R.L.; Woodley, R.E.; Adamson, M.G.; Johnson, C.E.

    1979-01-01

    The status of US activities to obtain fuel chemistry data is reviewed. Analytical expressions addressing basic needs of all fuel chemistry models are presented. Fission product concentrations during irradiation, oxygen-to-metal (O/M) at beginning-of-life and at burnup, and the potential in fuel-cladding gap at burnup are described

  1. Multi-zone modeling of Diesel engine fuel spray development with vegetable oil, bio-diesel or Diesel fuels

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.

    2006-01-01

    This work presents a model of fuel sprays development in the cylinders of Diesel engines that is two-dimensional, multi-zone, with the issuing jet (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection as well as across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber before and after wall impingement. After the jet break up time, a group of droplets is generated in each zone, with the model following their motion during heating, evaporation and mixing with the in-cylinder air. The model is applied for the interesting case of using vegetable oils or their derived bio-diesels as fuels, which recently are considered as promising alternatives to petroleum distillates since they are derived from biological sources. Although there are numerous experimental studies that show curtailment of the emitted smoke with possible increase of the emitted NO x against the use of Diesel fuel, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these biologically derived fuels. Thus, in the present work, a theoretical detailed model of spray formation is developed that is limited to the related investigation of the physical processes by decoupling it from the chemical effects after combustion initiation. The analysis results show how the widely differing physical properties of these fuels, against the normal Diesel fuel, affect greatly the spray formation and consequently the combustion mechanism and the related emissions

  2. Homogeneous versus heterogeneous shielding modeling of spent-fuel casks

    International Nuclear Information System (INIS)

    Carbajo, J.J.; Lindner, C.N.

    1992-01-01

    The design of spent-fuel casks for storage and transport requires modeling the cask for criticality, shielding, thermal, and structural analyses. While some parts of the cask are homogeneous, other regions are heterogeneous with different materials intermixed. For simplicity, some of the heterogeneous regions may be modeled as homogeneous. This paper evaluates the effect of homogenizing some regions of a cask on calculating radiation dose rates outside the cask. The dose rate calculations were performed with the one-dimensional discrete ordinates shielding XSDRNPM code coupled with the XSDOSE code and with the three-dimensional QAD-CGGP code. Dose rates were calculated radially at the midplane of the cask at two locations, cask surface and 2.3 m from the radial surface. The last location corresponds to a point 2 m from the lateral sides of a transport railroad car

  3. Simulator for candu600 fuel handling system. the experimental model

    International Nuclear Information System (INIS)

    Marinescu, N.; Predescu, D.; Valeca, S.

    2013-01-01

    A main way to increase the nuclear plant safety is related to selection and continuous training of the operation staff. In this order, the computer programs for training, testing and evaluation of the knowledge get, or training simulators including the advanced analytical models of the technological systems are using. The Institute for Nuclear Research from Pitesti, Romania intend to design and build an Fuel Handling Simulator at his F/M Head Test Rig facility, that will be used for training of operating personnel. This paper presents simulated system, advantages to use the simulator, and the experimental model of simulator, that has been built to allows setting of the requirements and fabrication details, especially for the software kit that will be designed and implement on main simulator. (authors)

  4. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  5. EIA model documentation: Electricity market module - electricity fuel dispatch

    International Nuclear Information System (INIS)

    1997-01-01

    This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA's Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097

  6. EIA model documentation: Electricity market module - electricity fuel dispatch

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

  7. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  8. Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher A.R. Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2005-08-01

    Using semi-empirical equations for modeling a proton exchange membrane fuel cell is proposed for providing a tool for the design and analysis of fuel cell total systems. The focus of this study is to derive an empirical model including process variations to estimate the performance of fuel cell without extensive calculations. The model take into account not only the current density but also the process variations, such as the gas pressure, temperature, humidity, and utilization to cover operating processes, which are important factors in determining the real performance of fuel cell. The modelling results are compared well with known experimental results. The comparison shows good agreements between the modeling results and the experimental data. The model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. (Author)

  9. The modeling experience of fuel element units operation under MSC.MARC and MENTAT 2008R1

    International Nuclear Information System (INIS)

    Kulakov, G.; Kashirin, B.; Kosaurov, A.; Konovalov, Y.; Kuznetsov, A.; Medvedev, A.; Novikov, V.; Vatulin, A.

    2009-01-01

    MSC Software is leading developer of CAE-software in the world, so behaviour of fuel elements modeling with MSC.MARC use is of great practical importance. Behaviour of fuel elements usually is modeled in the elastic-viscous-plastic statement with account on fuel swelling during irradiation. For container type fuel elements contact interaction between fuel pellets and cladding or other parts of fuel element in top and bottom plugs must be in account. Results of simulated behaviour of various type fuel elements - container type fuel elements for PWR and RBMK reactors, dispersion type fuel elements for research reactors are presented. (authors)

  10. A comparative Thermal Analysis of conventional parabolic receiver tube and Cavity model tube in a Solar Parabolic Concentrator

    Science.gov (United States)

    Arumugam, S.; Ramakrishna, P.; Sangavi, S.

    2018-02-01

    Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.

  11. A model for predicting skin dose received by patients from an x-ray ...

    African Journals Online (AJOL)

    Patient dosimetry has raised concern on quality assurance in hospitals. Several organisations and research groups have been advocating ways of minimising radiation dose received by patients in hospitals. In this paper we have shown that it is possible to obtain in a simple way a reasonable estimate of skin dose received ...

  12. Implementation of a dry process fuel cycle model into the DYMOND code

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Jeong, Chang Joon; Choi, Hang Bok

    2004-01-01

    For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada Deuterium Uranium (CANDU) reactor, direct use of spent Pressurized Water Reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-through and DUPIC fuel cycles

  13. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests

    Science.gov (United States)

    Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...

  14. French approach in fuel pin modelling for fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pascard, R [CEA-Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-12-01

    The purpose of this paper is to present the general philosophy on the problem of fuel modelling now prevailing in France after a twelve years period of tremendously increasing knowledge on fuel behavior. When the Rapsodie fuel pin was designed in 1962 , little was known about the behavior of a mixed oxide fuel pin under fast flux ; but a large body of knowledge on UO{sub 2} behavior in thermal reactor was available together with some sparse irradiation results on (U Pu)O{sub 2} in French experimental reactors. The performances assigned to the pin were then rather modest in rating (400 w/cm) and in burnup (30,000 MWd/t). The AISI 316 steel in solution annealed state was chosen as cladding material. The clad itself was supposed to deform by thermal creep due to fission gas pressure (100% release), and was affected consequently by a strain limit criteria. The importance of clad temperature ({approx}650 deg.) was considered only in connection with thermal creep, the possibility of a chemical reaction between mixed oxide and clad being at that time hardly suspected. Rapsodie had only been at full power for a few months when appeared the evidence of stainless steel swelling under a fast neutrons flux. This swelling was observed on Rapsodie pins as soon as they experienced sufficient neutrons dose, roughly one year later. This entirely new problem came immediately in the front stage (and is still of major importance today), and was at the origin of the change from the Rapsodie to the Fortissimo core in order to accelerate materials testing versus void swelling by multiplying the flux by a factor two. Even with unforeseen swelling, the design of the Rapsodie and later on Fortissimo pin, allowed not only to reach the goal burnup, but to increase it steadily to roughly 100,000 MWd/t. Since then, the French approach in fuel pin design has still retained something of its original simplicity, and technological efficiency, attitude which is justified by the following

  15. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    Science.gov (United States)

    Roger D. Ottmar

    2014-01-01

    Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic...

  16. A Deformation Model of TRU Metal Dispersion Fuel Rod for HYPER

    International Nuclear Information System (INIS)

    Lee, Byoung Oon; Hwang, Woan; Park, Won S.

    2002-01-01

    Deformation analysis in fuel rod design is essential to assure adequate fuel performance and integrity under irradiation conditions. An in-reactor performance computer code for a dispersion fuel rod is being developed in the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRU-Zr)-Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appeared that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel. Some experimental tests including in-pile and out-pile experiments are needed for verifying the predictive capability of the DIMAC code. An in-reactor performance analysis computer code for blanket fuel is being developed at the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRUZr)- Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appears that the deformation by swelling within fuel meat is very large for both fuels, and the major deformation mechanism at cladding is creep. The swelling strain is almost constant within the fuel meat, and is assumed to be zero in the cladding made of HT9. It is estimated that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel, and the dispersion fuel performance may be limited by swelling. But the predicted volume change of the (TRU-Zr)-Zr dispersion fuel models is about 6.1% at 30 at.% burnup. The value of cladding

  17. Improvement of the design model for SMART fuel assembly

    International Nuclear Information System (INIS)

    Zee, Sung Kyun; Yim, Jeong Sik

    2001-04-01

    A Study on the design improvement of the TEP, BEP and Hoddown spring of a fuel assembly for SMART was performed. Cut boundary Interpolation Method was applied to get more accurate results of stress and strain distribution from the results of the coarse model calculation. The improved results were compared with that of a coarse one. The finer model predicted slightly higher stress and strain distribution than the coarse model, which meant the results of the coarse model was not converged. Considering that the test results always showed much less stress than the FEM and the location of the peak stress of the refined model, the pressure stress on the loading point seemed to contribute significantly to the stresses. Judging from the fact that the peak stress appeared only at the local area, the results of the refined model were considered enough to be a conservative prediction of the stress levels. The slot of the guide thimble screw was ignored to get how much thickness of the flow plate can be reduced in case of optimization of the thickness and also cut off the screw dent hole was included for the actual geometry. For the BEP, the leg and web were also included in the model and the results with and without the leg alignment support were compared. Finally, the holddown spring which is important during the in-reactor behavior of the FA was modeled more realistic and improved to include the effects of the friction between the leaves and the loading surface. Using this improved model, it was possible that the spring characteristics were predicted more accurate to the test results. From the analysis of the spring characteristics, the local plastic area controled the characteristics of the spring dominantly which implied that it was necessary for the design of the leaf to be optimized for the improvement of the plastic behavior of the leaf spring

  18. Fuel rod modelling during transients: The TOUTATIS code

    International Nuclear Information System (INIS)

    Bentejac, F.; Bourreau, S.; Brochard, J.; Hourdequin, N.; Lansiart, S.

    2001-01-01

    The TOUTATIS code is devoted to the PCI local phenomena simulation, in correlation with the METEOR code for the global behaviour of the fuel rod. More specifically, the TOUTATIS objective is to evaluate the mechanical constraints on the cladding during a power transient thus predicting its behaviour in term of stress corrosion cracking. Based upon the finite element computation code CASTEM 2000, TOUTATIS is a set of modules written in a macro language. The aim of this paper is to present both code modules: The axisymmetric bi-dimensional module, modeling a unique block pellet; The tri dimensional module modeling a radially fragmented pellet. Having shown the boundary conditions and the algorithms used, the application will be illustrated by: A short presentation of the bidimensional axisymmetric modeling performances as well as its limits; The enhancement due to the three dimensional modeling will be displayed by sensitivity studies to the geometry, in this case the pellet height/diameter ratio. Finally, we will show the easiness of the development inherent to the CASTEM 2000 system by depicting the process of a modeling enhancement by adding the possibility of an axial (horizontal) fissuration of the pellet. As conclusion, the future improvements planned for the code are depicted. (author)

  19. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  20. Modeling Water Management in Polymer-Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P.; Newman, John

    2007-09-07

    Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. The water, either liquid or vapor, produced by the reduction of oxygen at the cathode exits the PEFC through either the cathode or anode flow field. The electrons generated at the anode pass through an external circuit and may be used to perform work before they are consumed at the cathode. The performance of a PEFC is most often reported in the form of a polarization curve, as shown in Figure 2. Roughly speaking, the polarization curve can be broken down into various regions. First, it should be noted that the equilibrium potential differs from the open-circuit voltage due mainly to hydrogen crossover through the membrane (i.e., a mixed potential

  1. Toward verifying fossil fuel CO2 emissions with the CMAQ model: motivation, model description and initial simulation.

    Science.gov (United States)

    Liu, Zhen; Bambha, Ray P; Pinto, Joseph P; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A

    2014-04-01

    Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere-atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and Carbon Tracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NO(x), SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future. Atmospheric CO2 has long been modeled

  2. Correlations between fuel pins irradiated in fast and thermal fluxes using the frump fuel pin modelling program

    International Nuclear Information System (INIS)

    Hayns, M.R.; Adam, J.

    1975-08-01

    There is no experimental facilities in which a fuel pin can be irradiated in a fast environment under well defined conditions of over power or flow run down. Consequently most of the infor mation which is being accumulated on the behaviour of fuel pins under severe conditions is obtained from either capsule or loop rigs in thermal reactors. It is the purpose of this paper to highlight the differences between the behaviour of fuel pins irradiated in a thermal flux and a fast flux. A typical set of conditions is taken from an overpower experiment in a thermal flux and the behaviour of the system is analysed using the fuel modelling program FRUMP. A second numerical experiment is then performed in which the same conditions prevail, except that a fast flux is assumed, the criterion for comparison being that the total power input to the system is the same in both cases. From the many possible correlations which result from such an exercise the fuel tempreature has been selected to highlight various important features of the two irradiations. It is demonstrated that the flux depression can cause differences in the pin behaviour, even to altering the order of events in a transient. For example fuel melting will occur at different times and at different positions in the fuel in the two cases. It is concluded that the techniques of fuel modelling, as typified in the program FRUMP can provide a very useful tool indeed for the analysis of such experiments and for guiding the establishment of the appropriate correlations for the extrapolation to the fast flux case. (author)

  3. Modeling of burnup express-estimation for UO{sub 2}-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Likhanskii, Vladimir V.; Tokarev, Sergey A.; Vilkhivskaya, Olga V., E-mail: vilhivskaya_olga@mail.ru

    2017-03-15

    Highlights: • Proposed engineering model estimates fuel burnup by {sup 134}Cs/{sup 137}Cs activity ratio. • Buildup of cesium isotopes relies on changing neutron spectrum in the core cycle. • {sup 134}Cs/{sup 137}Cs activity ratios in FAs with Gd-doped fuel rods are analyzed. • Comparison of the model calculations with the NPPs spike measurements is presented. - Abstract: The paper presents the developed engineering model of cesium isotopes production as function of UO{sub 2}-fuel burnup and an assessment of their activity ratios. The model considers the evolution of linear power of gadolinium-doped fuel rods and fuel rods surrounding them in fuel assemblies with high enrichment fuel, harder neutron spectrum, and the changes in cross-sections of neutron reactions in thermal and epithermal energy areas. Parametrical dependences in the model are based on the fuel operation data for nuclear power plants and on the detailed neutronic-physical calculations of the core. Presented are the results of the model calculations for the {sup 134}Cs/{sup 137}Cs activity ratios in fuel taking into account the parameter of hardness of the neutron spectrum during the first irradiation cycle for fuel with enrichment ranging from 3.6 wt% in {sup 235}U.

  4. An Integrated Model for Identifying Linkages Between the Management of Fuel Treatments, Fire and Ecosystem Services

    Science.gov (United States)

    Bart, R. R.; Anderson, S.; Moritz, M.; Plantinga, A.; Tague, C.

    2015-12-01

    Vegetation fuel treatments (e.g. thinning, prescribed burning) are a frequent tool for managing fire-prone landscapes. However, predicting how fuel treatments may affect future wildfire risk and associated ecosystem services, such as forest water availability and streamflow, remains a challenge. This challenge is in part due to the large range of conditions under which fuel treatments may be implemented, as response is likely to vary with species type, rates of vegetation regrowth, meteorological conditions and physiographic properties of the treated site. It is also due to insufficient understanding of how social factors such as political pressure, public demands and economic constraints affect fuel management decisions. To examine the feedbacks between ecological and social dimensions of fuel treatments, we present an integrated model that links a biophysical model that simulates vegetation and hydrology (RHESSys), a fire spread model (WMFire) and an empirical fuel treatment model that accounts for agency decision-making. We use this model to investigate how management decisions affect landscape fuel loads, which in turn affect fire severity and ecosystem services, which feedback to management decisions on fuel treatments. We hypothesize that this latter effect will be driven by salience theory, which predicts that fuel treatments are more likely to occur following major wildfire events. The integrated model provides a flexible framework for answering novel questions about fuel treatments that span social and ecological domains, areas that have previously been treated separately.

  5. A fuel response model for the design of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Duffey, T.A.; Einziger, R.E.; Hobbins, R.R.; Jordon, H.; Rashid, Y.R.; Barrett, P.R.; Sanders, T.L.

    1989-01-01

    The radiological source terms pertinent to spent fuel shipping cask safety assessments are of three distinct origins. One of these concerns residual contamination within the cask due to handling operations and previous shipments. A second is associated with debris (''crud'') that had been deposited on the fuel rods in the course of reactor operation, and a third involves the radioactive material contained within the rods. Although the lattermost source of radiotoxic material overwhelms the others in terms of inventory, its release into the shipping cask, and thence into the biosphere, requires the breach of an additional release barrier, viz., the fuel rod cladding. Hence, except for the special case involving the transport of fuel rods containing previously breached claddings, considerations of the source terms due to material contained in the fuel rods are complicated by the need to address the likelihood of fuel cladding failure during transport. The purpose of this report is to describe a methodology for estimating the shipping cask source terms contribution due to radioactive material contained within the spent fuel rods. Thus, the probability of fuel cladding failure as well as radioactivity release is addressed. 8 refs., 2 tabs

  6. Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: Model evaluation and comparison with national Fire Danger Rating System algorithms

    Science.gov (United States)

    J. D. Carlson; Larry S. Bradshaw; Ralph M. Nelson; Randall R Bensch; Rafal Jabrzemski

    2007-01-01

    The application of a next-generation dead-fuel moisture model, the 'Nelson model', to four timelag fuel classes using an extensive 21-month dataset of dead-fuel moisture observations is described. Developed by Ralph Nelson in the 1990s, the Nelson model is a dead-fuel moisture model designed to take advantage of frequent automated weather observations....

  7. Books Received

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Books Received. Articles in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 118-118 Books Received. Books Received · More Details Fulltext PDF. Volume 1 Issue 2 February 1996 pp 120-120 Books Received. Books Received.

  8. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  9. Dynamic modeling and analysis of alternative fuel cycle scenarios in Korea

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2007-01-01

    The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ∼65000 tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors

  10. Shock ignition of thermonuclear fuel: principles and modelling

    International Nuclear Information System (INIS)

    Atzeni, S.; Ribeyre, X.; Schurtz, G.; Schmitt, A.J.; Canaud, B.; Betti, R.; Perkins, L.J.

    2014-01-01

    Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1 MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined. (special topic)

  11. Verify Super Double-Heterogeneous Spherical Lattice Model for Equilibrium Fuel Cycle Analysis AND HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis

    International Nuclear Information System (INIS)

    Gray S. Chang

    2005-01-01

    The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble/block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code--ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis

  12. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  13. Communication of 8 June 2009 received from the Permanent Mission of the Republic of Korea concerning a non-paper 'The Republic of Korea's suggestion on possible criteria for multilateral approaches to the nuclear fuel cycle'

    International Nuclear Information System (INIS)

    2009-01-01

    The Secretariat has received a communication dated 8 June 2009 from the Permanent Mission of the Republic of Korea, transmitting the text of a non-paper entitled 'The Republic of Korea's Suggestion on Possible Criteria for Multilateral Approaches to the Nuclear Fuel Cycle'. As requested in that communication, the abovementioned non-paper is herewith circulated for the information of all Member States

  14. A proposed model of factors influencing hydrogen fuel cell vehicle acceptance

    Science.gov (United States)

    Imanina, N. H. Noor; Kwe Lu, Tan; Fadhilah, A. R.

    2016-03-01

    Issues such as environmental problem and energy insecurity keep worsening as a result of energy use from household to huge industries including automotive industry. Recently, a new type of zero emission vehicle, hydrogen fuel cell vehicle (HFCV) has received attention. Although there are argues on the feasibility of hydrogen as the future fuel, there is another important issue, which is the acceptance of HFCV. The study of technology acceptance in the early stage is a vital key for a successful introduction and penetration of a technology. This paper proposes a model of factors influencing green vehicle acceptance, specifically HFCV. This model is built base on two technology acceptance theories and other empirical studies of vehicle acceptance. It aims to provide a base for finding the key factors influencing new sustainable energy fuelled vehicle, HFCV acceptance which is achieved by explaining intention to accept HFCV. Intention is influenced by attitude, subjective norm and perceived behavioural control from Theory of Planned Behaviour and personal norm from Norm Activation Theory. In the framework, attitude is influenced by perceptions of benefits and risks, and social trust. Perceived behavioural control is influenced by government interventions. Personal norm is influenced by outcome efficacy and problem awareness.

  15. Source-receiver two-way wave extrapolation for prestack exploding-reflector modelling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, Sergey; Wu, Zedong

    2014-01-01

    or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high-order partial differential equations in the source-receiver time domain. The fourth

  16. New weighted sum of gray gases model applicable to Computational Fluid Dynamics (CFD) modeling of oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse

    2010-01-01

    gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...

  17. Modeling a failure criterion for U-Mo/Al dispersion fuel

    Science.gov (United States)

    Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik

    2016-05-01

    The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  18. Modeling a failure criterion for U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong, E-mail: tylor@kaeri.re.kr [Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik [Korea Atomic Energy Research Institute, 111, Daedeok-Daero 989 Beon-Gil, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2016-05-15

    The breakaway swelling in U–Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U–Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  19. SCADOP: Phenomenological modeling of dryout in nuclear fuel rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arnab, E-mail: arnie@barc.gov.in; Chandraker, D.K., E-mail: dineshkc@barc.gov.in; Vijayan, P.K., E-mail: vijayanp@barc.gov.in

    2015-11-15

    Highlights: • Phenomenological model for annular flow dryout is presented. • The model evaluates initial entrained fraction using a new methodology. • The history effect in annular flow is predicted and validated. • Rod bundle dryout is predicted using subchannel methodology. • Model is validated against experimental dryout data in tubes and rod bundles. - Abstract: Analysis and prediction of dryout is of important consequence to safety of nuclear fuel clusters of boiling water type of reactors. Traditionally, experimental correlations are used for dryout predictions. Since these correlations are based on operating parameters and do not aim to model the underlying phenomena, there has been a proliferation of the correlations, each catering to some specific bundle geometry under a specific set of operating conditions. Moreover, such experiments are extremely costly. In general, changes in tested bundle geometry for improvement in thermal-hydraulic performance would require re-experimentation. Understanding and modeling the basic processes leading to dryout in flow boiling thus has great incentive. Such a model has the ability to predict dryout in any rod bundle geometry, unlike the operating parameter based correlation approach. Thus more informed experiments can be carried out. A good model can, reduce the number of experiments required during the iterations in bundle design. In this paper, a phenomenological model as indicated above is presented. The model incorporates a new methodology to estimate the Initial Entrained Fraction (IEF), i.e., entrained fraction at the onset of annular flow. The incorporation of this new methodology is important since IEF is often assumed ad-hoc and sometimes also used as a parameter to tune the model predictions to experimental data. It is highlighted that IEF may be low under certain conditions against the general perception of a high IEF due to influence of churn flow. It is shown that the same phenomenological model is

  20. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    International Nuclear Information System (INIS)

    Mella, R.; Wenman, M.R.

    2013-01-01

    Thermo-mechanical contributions to pellet–clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS’s well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used

  1. Modeling of constituent redistribution in U-Pu-Zr metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States)]. E-mail: yskim@anl.gov; Hayes, S.L. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Hofman, G.L. [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Yacout, A.M. [Argonne National Laboratory, Nuclear Engineering, RERTR, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  2. FAST: a combined NOC and transient fuel performance model using a commercial FEM environment

    Energy Technology Data Exchange (ETDEWEB)

    Prudil, A.; Bell, J.; Oussoren, A.; Chan, P. [Royal Military College of Canada, Kingston, ON (Canada); Lewis, B. [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    The Fuel And Sheath modelling Tool (FAST) is a combined normal operating conditions (NOC) and transient fuel performance code developed on the COMSOL Multiphysics finite-element platform. The FAST code has demonstrated excellent performance in proof of concept validation tests against experimental data and comparison to the ELESIM, ELESTRES and ELOCA fuel performance codes. In this paper we discuss ongoing efforts to expand the capabilities of the code to include multiple pellet geometries, model stress-corrosion cracking phenomena and modelling of advanced fuels composed of mixed oxides of thorium, uranium, and plutonium for the Canadian Supercritical Water Reactor (SCWR). (author)

  3. Proton Exchange Membrane Fuel Cell Modelling Using Moving Least Squares Technique

    Directory of Open Access Journals (Sweden)

    Radu Tirnovan

    2009-07-01

    Full Text Available Proton exchange membrane fuel cell, with low polluting emissions, is a great alternative to replace the traditional electrical power sources for automotive applications or for small stationary consumers. This paper presents a numerical method, for the fuel cell modelling, based on moving least squares (MLS. Experimental data have been used for developing an approximated model of the PEMFC function of the current density, air inlet pressure and operating temperature of the fuel cell. The method can be applied for modelling others fuel cell sub-systems, such as the compressor. The method can be used for off-line or on-line identification of the PEMFC stack.

  4. Emissions and Fuel Consumption Modeling for Evaluating Environmental Effectiveness of ITS Strategies

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Song

    2013-01-01

    Full Text Available Road transportation is a major fuel consumer and greenhouse gas emitter. Recently, the intelligent transportation systems (ITSs technologies, which can improve traffic flow and safety, have been developed to reduce the fuel consumption and vehicle emissions. Emission and fuel consumption estimation models play a key role in the evaluation of ITS technologies. Based on the influence analysis of driving parameters on vehicle emissions, this paper establishes a set of mesoscopic vehicle emission and fuel consumption models using the real-world vehicle operation and emission data. The results demonstrate that these models are more appropriate to evaluate the environmental effectiveness of ITS strategies with enough estimation accuracy.

  5. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  6. Mathematical model of thermal and mechanical steady state fuel element behaviour TEDEF

    International Nuclear Information System (INIS)

    Dinic, N.; Kostic, Z.; Josipovic, M.

    1987-01-01

    In this paper a numerical model of thermal and thermomechanical behaviour of a cylindrical metal uranium fuel element is described. Presented are numerical method and computer program for solving the stationary temperature field and thermal stresses of a fuel element. The model development is a second phase of analysis of these phenomena, and may as well be used for analysing power nuclear reactor fuel elements behaviour. (author)

  7. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    Science.gov (United States)

    2015-06-01

    of JP-8 and a Fischer- Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Toxicol Sci 116(1): 239-248. Gallinat, J...AFRL-RH-WP-TR-2015-0084 IN VITRO STUDIES AND PRELIMINARY MATHEMATICAL MODEL FOR JET FUEL AND NOISE INDUCED AUDITORY IMPAIRMENT...April 2014 – September 2014 4. TITLE AND SUBTITLE In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory

  8. Modeling vehicle fuel consumption and emissions at signalized intersection approaches : integrating field-collected data into microscopic simulation.

    Science.gov (United States)

    2012-07-01

    Microscopic models produce emissions and fuel consumption estimates with higher temporal resolution than other scales of : models. Most emissions and fuel consumption models were developed with data from dynamometer testing which are : sufficiently a...

  9. Development of a real-time fuel cell stack modelling solution with integrated test rig interface for the generic fuel cell modelling environment (GenFC) software

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.D.; Monsberger, M.; Hacker, V. [Graz Univ. of Technology, Graz (Austria). Christian Doppler Laboratory for Fuel Cell Systems; Gubner, A.; Reimer, U. [Forschungszentrum Julich, Julich (Germany)

    2007-07-01

    Since the late 1980s, numerous FC models have been developed by scientists and engineers worldwide to design, control and optimize fuel cells (FCs) and fuel cell (FC) power systems. However, state-of-the-art FC models have only a small range of applications within the versatile field of FC modelling. As fuel cell technology approaches commercialization, the scientific community is faced with the challenge of providing robust fuel cell models that are compatible with established processes in industrial product development. One such process, known as Hardware in the Loop (HiL), requires real-time modelling capability. HiL is used for developing and testing hardware components by adding the complexity of the related dynamic systems with mathematical representations. Sensors and actuators are used to interface simulated and actual hardware components. As such, real-time fuel cell models are among the key elements in the development of the Generic Fuel Cell Modelling Environment (GenFC) software. Six European partners are developing GenFC under the support of the Sixth European Framework Programme for Research and Technological Development (FP6). GenFC is meant to increase the use of fuel cell modelling for systems design and to enable cost- and time-efficient virtual experiments for optimizing operating parameters. This paper presented an overview of the GenFC software and the GenFC HiL functionality. It was concluded that GenFC is going to be an extendable software tool providing FC modelling techniques and solutions to a wide range of different FC modelling applications. By combining the flexibility of the GenFC software with this HiL-specific functionality, GenFC is going to promote the use of FC model-based HiL technology in FC system development. 9 figs.

  10. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.

    Energy Technology Data Exchange (ETDEWEB)

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting those into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior

  11. Dodewaard fuel supply agreement - a model for the future

    International Nuclear Information System (INIS)

    Raven, L.F.; Hubers, C.

    1980-01-01

    An Agreement between the Utility GKN and the Fuel Supplier BNFL has eliminated any Utility imposed penalty clauses for fuel failure due to operational conditions and, consequently, there are no restrictions imposed by the Fuel Supplier on the reactor operational manoeuvres. The result is that the Utility can now decide if the risk of fuel clad failure during a reactor power ramp outweighs the financial loss due to slower ramp rates. It is the Utility and not the Fuel Supplier who is in the best position to make this judgment provided adequate operational experience and computer codes are available to quantify the risk. The paper discusses the reactor operational experience, including the fuel failure rate and the confirmation of PCI failure by post irradiation examination. It establishes the practicality of the Agreement for the Dodewaard reactor and suggests such arrangements could be beneficial to other Utilities. (author)

  12. Effects of homogeneous geometry models in simulating the fuel balls in HTR-10

    International Nuclear Information System (INIS)

    Wang Mengjen; Liang Jenqhorng; Peir Jinnjer; Chao Dersheng

    2012-01-01

    In this study, the core geometry of HTR-10 was simulated using four different models including: (1) model 1 - an explicit double heterogeneous geometry, (2) model 2 - a mixing of UO 2 kernel and four layers in each TRISO particle into one, (3) model 3 - a mixing of 8,335 TRISO particles and the inner graphite matrix in each fuel ball into one, and (4) model 4 - a mixing of the outer graphite shell, 8,335 TRISO particles, and the inner graphite matrix in each fuel ball into one. The associated initial core computations were performed using the MCNP version 1.51 computer code. The experimental fuel loading height of 123 cm was employed for each model. The results revealed that the multiplication factors ranged from largest to smallest with model 1, model 2, model 3, and model 4. The neutron spectrum in the fuel region of each models varied from the hardest to the softest are model 1, model 2, model 3, and model 4 while the averaged neutron spectrum in fuel ball from hardest to softest are model 4, model 3, model 2, and model 1. In addition, the CPU execution times extended from longest to shortest with model 1, model 2, model 3, and model 4. (author)

  13. Dynamic fuel cell models and their application in hardware in the loop simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Zijad; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany); Vath, Andreas; Hartkopf, Th. [Technische Universitaet Darmstadt/Institut fuer Elektrische Energiewandlung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany)

    2006-03-21

    Currently, fuel cell technology plays an important role in the development of alternative energy converters for mobile, portable and stationary applications. With the help of physical based models of fuel cell systems and appropriate test benches it is possible to design different applications and investigate their stationary and dynamic behaviour. The polymer electrolyte membrane (PEM) fuel cell system model includes gas humidifier, air and hydrogen supply, current converter and a detailed stack model incorporating the physical characteristics of the different layers. In particular, the use of these models together with hardware in the loop (HIL) capable test stands helps to decrease the costs and accelerate the development of fuel cell systems. The interface program provides fast data exchange between the test bench and the physical model of the fuel cell or any other systems in real time. So the flexibility and efficiency of the test bench increase fundamentally, because it is possible to replace real components with their mathematical models. (author)

  14. A suitable model plant for control of the set fuel cell-DC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain)

    2008-04-15

    In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author)

  15. Argonne Fuel Cycle Facility ventilation system -- modeling and results

    International Nuclear Information System (INIS)

    Mohr, D.; Feldman, E.E.; Danielson, W.F.

    1995-01-01

    This paper describes an integrated study of the Argonne-West Fuel Cycle Facility (FCF) interconnected ventilation systems during various operations. Analyses and test results include first a nominal condition reflecting balanced pressures and flows followed by several infrequent and off-normal scenarios. This effort is the first study of the FCF ventilation systems as an integrated network wherein the hydraulic effects of all major air systems have been analyzed and tested. The FCF building consists of many interconnected regions in which nuclear fuel is handled, transported and reprocessed. The ventilation systems comprise a large number of ducts, fans, dampers, and filters which together must provide clean, properly conditioned air to the worker occupied spaces of the facility while preventing the spread of airborne radioactive materials to clean am-as or the atmosphere. This objective is achieved by keeping the FCF building at a partial vacuum in which the contaminated areas are kept at lower pressures than the other worker occupied spaces. The ventilation systems of FCF and the EBR-II reactor are analyzed as an integrated totality, as demonstrated. We then developed the network model shown in Fig. 2 for the TORAC code. The scope of this study was to assess the measured results from the acceptance/flow balancing testing and to predict the effects of power failures, hatch and door openings, single-failure faulted conditions, EBR-II isolation, and other infrequent operations. The studies show that the FCF ventilation systems am very controllable and remain stable following off-normal events. In addition, the FCF ventilation system complex is essentially immune to reverse flows and spread of contamination to clean areas during normal and off-normal operation

  16. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  17. Mathematical modeling of oxygen transport in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ann Mari

    1997-12-31

    This thesis develops mathematical models to describe the electrochemical performance of a solid oxide fuel cell cathode based on electrochemical kinetics and mass transfer. The individual effects of various coupled processes are investigated. A one-dimensional model is developed based on porous electrode theory. Two different mechanisms are investigated for the charge transfer reaction. One of these assumes that intermediately adsorbed oxygen atoms are reduced at the electrode/electrolyte interface, similar to the models proposed for metal electrodes. Simulated polarization curves exhibit limited currents due to depletion of oxygen adsorbates at high cathodic overvoltages. An empirical correlation is confirmed to exist between the limiting current an the oxygen partial pressure, however, a similar correlation often assumed to exist between the measured polarization resistance and the oxygen partial pressure could not be justified. For the other model, oxygen vacancies are assumed to be exchanged directly at the electrode/electrolyte interface. The electrochemical behaviour is improved by reducing the oxygen partial pressure, due to increased vacancy concentration of the electrode material. Simulated polarization curves exhibit Tafel-like slopes in the cathodic direction, which are due to polarization concentration, and not activation polarization in the conventional sense. Anodic limiting currents are predicted due to lack of available free sites for vacancy exchange at the cathode side. The thesis also presents a theoretical treatment of current and potential distributions in simple two-dimensional cell geometries, and a two-dimensional model for a porous electrode-electrolyte system for investigation of the effect of interfacial diffusion of adsorbates along the electrode/electrolyte interface. 172 refs., 60 figs., 11 tabs.

  18. Advanced fuel cycle cost estimation model and its cost estimation results for three nuclear fuel cycles using a dynamic model in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Wonil [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Youn, Saerom; Gao, Ruxing [University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Bang, Sungsig, E-mail: ssbang@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Department of Business and Technology Management, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-11-15

    Highlights: • The nuclear fuel cycle cost using a new cost estimation model was analyzed. • The material flows of three nuclear fuel cycle options were calculated. • The generation cost of once-through was estimated to be 66.88 mills/kW h. • The generation cost of pyro-SFR recycling was estimated to be 78.06 mills/kW h. • The reactor cost was identified as the main cost driver of pyro-SFR recycling. - Abstract: The present study analyzes advanced nuclear fuel cycle cost estimation models such as the different discount rate model and its cost estimation results. To do so, an analysis of the nuclear fuel cycle cost of three options (direct disposal (once through), PWR–MOX (Mixed OXide fuel), and Pyro-SFR (Sodium-cooled Fast Reactor)) from the viewpoint of economic sense, focusing on the cost estimation model, was conducted using a dynamic model. From an analysis of the fuel cycle cost estimation results, it was found that some cost gap exists between the traditional same discount rate model and the advanced different discount rate model. However, this gap does not change the priority of the nuclear fuel cycle option from the viewpoint of economics. In addition, the fuel cycle costs of OT (Once-Through) and Pyro-SFR recycling based on the most likely value using a probabilistic cost estimation except for reactor costs were calculated to be 8.75 mills/kW h and 8.30 mills/kW h, respectively. Namely, the Pyro-SFR recycling option was more economical than the direct disposal option. However, if the reactor cost is considered, the economic sense in the generation cost between the two options (direct disposal vs. Pyro-SFR recycling) can be changed because of the high reactor cost of an SFR.

  19. Modelling of the thermomechanical and physical processes in FR fuel pins using the GERMINAL code

    International Nuclear Information System (INIS)

    Roche, L.; Pelletier, M.

    2000-01-01

    In the frame of the R and D on Fast Reactor mixed oxide fuels, CEA/DEC has developed the computer code GERMINAL for studying fuel pin thermal and mechanical behaviour, both during steady-state and incidental conditions, up to high burn-up (25 at%). The first part of this paper is devoted to the description of the main models: fuel evolution (central hole and porosity evolution, Plutonium redistribution, O/M radial profile, transient gas swelling, melting fuel behaviour, minor actinides production), high burn-up models (fission gas, volatile fission products and JOG formation), fuel-cladding heat transfer, fuel-cladding mechanical interaction. The second part gives some examples of calculation results taken from the GERMINAL validation data base (more than 40 experiments from PHENIX, PFR, CABRI reactors), with special emphasis on: local fission gas retention and global release, fuel geometry evolution, radial redistribution of plutonium for high burn-up fuels, solid and annular fuel behaviour during power ramps including fuel melting, helium formation from MA (Am and Np) doped homogeneous fuels. (author)

  20. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [University of South Carolina, Columbia; McMurray, Jake W [ORNL; Simunovic, Srdjan [ORNL

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  1. DART model for thermal conductivity of U3Si2 Aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    2004-01-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminum dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values. (author)

  2. DART model for thermal conductivity of U3Si2 aluminum dispersion fuel

    International Nuclear Information System (INIS)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    1995-09-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminium dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values

  3. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass

    OpenAIRE

    Delucchi, Mark; Lipman, Timothy

    2003-01-01

    An Appendix to the Report, “A Lifecycle Emissions Model (LEM): Lifecycle Emissions From Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materialsâ€

  4. Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest

    Science.gov (United States)

    Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi. Kelly

    2013-01-01

    We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m

  5. Modeling of the PWR fuel mechanical behaviour and particularly study of the pellet-cladding interaction in a fuel rod

    International Nuclear Information System (INIS)

    Hourdequin, N.

    1995-05-01

    In Pressurized Water Reactor (PWR) power plants, fuel cladding constitutes the first containment barrier against radioactive contamination. Computer codes, developed with the help of a large experimental knowledge, try to predict cladding failures which must be limited in order to maintain a maximal safety level. Until now, fuel rod design calculus with unidimensional codes were adequate to prevent cladding failures in standard PWR's operating conditions. But now, the need of nuclear power plant availability increases. That leads to more constraining operating condition in which cladding failures are strongly influenced by the fuel rod mechanical behaviour, mainly at high power level. Then, the pellet-cladding interaction (PCI) becomes important, and is characterized by local effects which description expects a multidimensional modelization. This is the aim of the TOUTATIS 2D-3D code, that this thesis contributes to develop. This code allows to predict non-axisymmetric behaviour too, as rod buckling which has been observed in some irradiation experiments and identified with the help of TOUTATIS. By another way, PCI is influenced by under irradiation experiments and identified with the help of TOUTATIS which includes a densification model and a swelling model. The latter can only be used in standard operating conditions. However, the processing structure of this modulus provides the possibility to include any type of model corresponding with other operating conditions. In last, we show the result of these fuel volume variations on the cladding mechanical conditions. (author). 25 refs., 89 figs., 2 tabs., 12 photos., 5 appends

  6. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  7. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  8. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shahab, S.; Gray, M.; Erturk, A., E-mail: alper.erturk@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  9. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    International Nuclear Information System (INIS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-01-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver

  10. Model and algorithm for bi-fuel vehicle routing problem to reduce GHG emissions.

    Science.gov (United States)

    Abdoli, Behroz; MirHassani, Seyed Ali; Hooshmand, Farnaz

    2017-09-01

    Because of the harmful effects of greenhouse gas (GHG) emitted by petroleum-based fuels, the adoption of alternative green fuels such as biodiesel and compressed natural gas (CNG) is an inevitable trend in the transportation sector. However, the transition to alternative fuel vehicle (AFV) fleets is not easy and, particularly at the beginning of the transition period, drivers may be forced to travel long distances to reach alternative fueling stations (AFSs). In this paper, the utilization of bi-fuel vehicles is proposed as an operational approach. We present a mathematical model to address vehicle routing problem (VRP) with bi-fuel vehicles and show that the utilization of bi-fuel vehicles can lead to a significant reduction in GHG emissions. Moreover, a simulated annealing algorithm is adopted to solve large instances of this problem. The performance of the proposed algorithm is evaluated on some random instances.

  11. Modeling defect and fission gas properties in U-Si fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Noordhoek, Mark [Univ. of South Carolina, Columbia, SC (United States); Besmann, Theodore [Univ. of South Carolina, Columbia, SC (United States); Middleburgh, Simon C. [Westinghouse Electric Sweden, Vasteras (Sweden); Lahoda, E. J. [Westinghouse Electric Company LLC, Cranberry Woods, PA (United States); Chernatynskiy, Aleksandr [Missouri University of Science and Technology; Grimes, Robin W. [Imperial College, London (United Kingdom)

    2017-04-27

    Uranium silicides, in particular U3Si2, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO2 fuel. They benefit from high thermal conductivity (metallic) compared to UO2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.

  12. Modeling defect and fission gas properties in U-Si fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Noordhoek, Mark J. [Univ. of South Carolina, Columbia, SC (United States); Besmann, Theodore M. [Univ. of South Carolina, Columbia, SC (United States); Middleburgh, Simon C. [Westinghouse Electric Sweden, Vasteras (Sweden); Lahoda, E. J. [Westinghouse Electric Company LLC, Cranberry Woods, PA (United States); Chernatynskiy, Aleksandr [Missouri Univ. of Science and Technology, Rolla, MO (United States); Grimes, Robin W. [Imperial College, London (United Kingdom)

    2017-04-14

    Uranium silicides, in particular U3Si2, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO2 fuel. They benefit from high thermal conductivity (metallic) compared to UO2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.

  13. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    International Nuclear Information System (INIS)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs

  14. The elastic model for arbitrary radially cracked fuel implemented in COMETHE-4D

    Energy Technology Data Exchange (ETDEWEB)

    Shihab, S [Belgonucleaire S.A., Brussels (Belgium)

    1997-08-01

    Among high burnup effects, the swelling occurring in the pellet rim is such that the fuel presents a radial bridging in its periphery. This secondary bridging has an important effect on the mechanical reaction of the fuel in case of PCI. The present paper describes the elastic mechanical model of the fuel to be implemented in COMETHE-4D which alleviates problems encountered with the previously model which assumed such bridging to occur solely in the central part of the fuel. (author). 9 refs, 4 figs.

  15. Research of power fuel low-temperature vortex combustion in industrial boiler based on numerical modelling

    Directory of Open Access Journals (Sweden)

    Orlova K.Y.

    2017-01-01

    Full Text Available The goal of the presented research is to perform numerical modelling of fuel low-temperature vortex combustion in once-through industrial steam boiler. Full size and scaled-down furnace model created with FIRE 3D software and was used for the research. All geometrical features were observed. The baseline information for the low-temperature vortex furnace process are velocity and temperature of low, upper and burner blast, air-fuel ratio, fuel consumption, coal dust size range. The obtained results are: temperature and velocity three dimensional fields, furnace gases and solid fuel ash particles concentration.

  16. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  17. Model studying the processes arising during fuel element overheating

    International Nuclear Information System (INIS)

    Usynin, G.B.; Anoshkin, Yu.I.; Vlasichev, G.N.; Galitskikh, Yu.N.; Semenychev, M.A.

    1986-01-01

    A calculational technique for studying heating and melting of fuel elements in the BN type reactors during an accident with heat release failure and a simulator with central rod heater intended for out-of-pile experiments is developed. The time rangeof the characteristic melting steps for the most thermally stressed fuel element at the reactor nominal power is calculated. The experimental study of the fuel element melting using a simulator with a tungsten heater has proved that the technique for the simultor and fuel can melting, respectively, is correct. The developed technique is used for determining the geometrical values and operational conditions for experiments with simulators, when quantitative and qualitative characteristics of the process under study are rather close to those natural for fuel elements

  18. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Science.gov (United States)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  19. Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2014-01-01

    Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.

  20. Cracked pellet gap conductance model: comparison of FRAP-S calculations with measured fuel centerline temperatures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Broughton, J.M.

    1975-03-01

    Fuel pellets crack extensively upon irradiation due both to thermal stresses induced by power changes and at high burnup, to accumulation of gaseous fission products at grain boundaries. Therefore, the distance between the fuel and cladding will be circumferentially nonuniform; varying between that calculated for intact operating fuel pellets and essentially zero (fuel segments in contact with the cladding wall). A model for calculation of temperatures in cracked pellets is proposed wherein the effective fuel to cladding gap conductance is calculated by taking a zero pressure contact conductance in series with an annular gap conductance. Comparisons of predicted and measured fuel centerline temperatures at beginning of life and at extended burnup are presented in support of the model. 13 references

  1. Development of a code and models for high burnup fuel performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Kitajima, S [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1997-08-01

    First the high burnup LWR fuel behavior is discussed and necessary models for the analysis are reviewed. These aspects of behavior are the changes of power history due to the higher enrichment, the temperature feedback due to fission gas release and resultant degradation of gap conductance, axial fission gas transport in fuel free volume, fuel conductivity degradation due to fission product solution and modification of fuel micro-structure. Models developed for these phenomena, modifications in the code, and the benchmark results mainly based on Risoe fission gas project is presented. Finally the rim effect which is observe only around the fuel periphery will be discussed focusing into the fuel conductivity degradation and swelling due to the porosity development. (author). 18 refs, 13 figs, 3 tabs.

  2. The Finite Element Modelling and Dynamic Characteristics Analysis about One Kind of Armoured Vehicles’ Fuel Tanks

    Science.gov (United States)

    Gao, Yang; Ge, Zhishang; Zhai, Weihao; Tan, Shiwang; Zhang, Feng

    2018-01-01

    The static and dynamic characteristics of fuel tank are studied for the armoured vehicle in this paper. The CATIA software is applied to build the CAD model of the armoured vehicles’ fuel tank, and the finite element model is established in ANSYS Workbench. The finite element method is carried out to analyze the static and dynamic mechanical properties of the fuel tank, and the first six orders of mode shapes and their frequencies are also computed and given in the paper, then the stress distribution diagram and the high stress areas are obtained. The results of the research provide some references to the fuel tanks’ design improvement, and give some guidance for the installation of the fuel tanks on armoured vehicles, and help to improve the properties and the service life of this kind of armoured vehicles’ fuel tanks.

  3. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  4. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal... Renewable Fuel Standard program regulations. Because EPA received adverse comment, we are withdrawing the...

  5. Modeling constituent redistribution in U–Pu–Zr metallic fuel using the advanced fuel performance code BISON

    International Nuclear Information System (INIS)

    Galloway, J.; Unal, C.; Carlson, N.; Porter, D.; Hayes, S.

    2015-01-01

    Highlights: • An improved constituent distribution formulation in metallic nuclear fuels. • The new algorithm is implemented into the advanced fuel performance framework BISON. • Experimental Breeder Reactor-II data, T179, DP16, T459 are reanalyzed. • Phase dependent diffusion coefficients are improved. • Most influential phase is gamma, followed by alpha and thirdly the beta phase. - Abstract: An improved robust formulation for constituent distribution in metallic nuclear fuels is developed and implemented into the advanced fuel performance framework BISON. The coupled thermal diffusion equations are solved simultaneously to reanalyze the constituent redistribution in post irradiation data from fuel tests performed in Experimental Breeder Reactor-II (EBR-II). Deficiencies observed in previously published formulation and numerical implementations are also improved. The present model corrects an inconsistency between the enthalpies of solution and the solubility limit curves of the phase diagram while also adding an artificial diffusion term when in the 2-phase regime that stabilizes the standard Galerkin finite element (FE) method used by BISON. An additional improvement is in the formulation of zirconium flux as it relates to the Soret term. With these new modifications, phase dependent diffusion coefficients are revaluated and compared with the previously recommended values. The model validation included testing against experimental data from fuel pins T179, DP16 and T459, irradiated in EBR-II. A series of viable material properties for U–Pu–Zr based materials was determined through a sensitivity study, which resulted in three cases with differing parameters that showed strong agreement with one set of experimental data, rod T179. Subsequently a full-scale simulation of T179 was performed to reduce uncertainties, particularly relating to the temperature boundary condition for the fuel. In addition a new thermal conductivity model combining all

  6. Advancements in the behavioral modeling of fuel elements and related structures

    International Nuclear Information System (INIS)

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L.

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs

  7. Extended fuel swelling models and ultra high burn-up fuel behavior of U–Pu–Zr metallic fuel using FEAST-METAL

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-215, Cambridge, MA 02139 (United States); Andrews, Nathan C., E-mail: nandrews@mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-215, Cambridge, MA 02139 (United States)

    2013-05-15

    Highlights: ► Improved fuel swelling models in phase structure dependent form. ► A probabilistic verification exercise for the open porosity formation threshold. ► Satisfactory validation effort for available EBR-II database. ► Ultra high burn-up behavior of U–6Zr fuel with 60% smear density fuel. -- Abstract: Computational models in FEAST-METAL U–Pu–Zr metallic fuel behavior code have been upgraded to improve fission gas, solid fission product swelling, and pore sintering behavior in a microstructure dependent form. First, fission gas bubble growth is modeled by selecting small and large bubble groups according to a fixed number of gas atoms per bubble group. Small bubbles nucleated at phase boundaries grow via gas migration and turn into large bubbles. Furthermore, bubble morphology for each phase structure is captured by selecting the number of atoms per bubble and the shape of the bubbles in a phase dependent form. The gas diffusion coefficients for the single gamma phase and effective dual (α + δ) and (β + γ) phase structures are modeled separately, using the activation energy of the corresponding phase structure. In this study, it is found that pressure sintering of the interconnected porosity in dual phases should be less effective than the reference model in order to match clad strain and fission gas release behavior. In addition to these improvements, a probabilistic approach is taken to verify the fission gas-swelling threshold at which interconnected porosity begins. This fracture problem is treated as a function of critical crack length formed via bubble coalescence. It was found that a 10% gas-swelling threshold is appropriate for a wide range of gas bubble sizes. The new version of FEAST-METAL predicts the burn-up, smear density, and axial variation of the clad hoop strain and fission gas release behavior satisfactorily for selected test pins under EBR-II conditions. The code is used to predict ultra-high burn-up U–Pu–6Zr vented

  8. Extended fuel swelling models and ultra high burn-up fuel behavior of U–Pu–Zr metallic fuel using FEAST-METAL

    International Nuclear Information System (INIS)

    Karahan, Aydın; Andrews, Nathan C.

    2013-01-01

    Highlights: ► Improved fuel swelling models in phase structure dependent form. ► A probabilistic verification exercise for the open porosity formation threshold. ► Satisfactory validation effort for available EBR-II database. ► Ultra high burn-up behavior of U–6Zr fuel with 60% smear density fuel. -- Abstract: Computational models in FEAST-METAL U–Pu–Zr metallic fuel behavior code have been upgraded to improve fission gas, solid fission product swelling, and pore sintering behavior in a microstructure dependent form. First, fission gas bubble growth is modeled by selecting small and large bubble groups according to a fixed number of gas atoms per bubble group. Small bubbles nucleated at phase boundaries grow via gas migration and turn into large bubbles. Furthermore, bubble morphology for each phase structure is captured by selecting the number of atoms per bubble and the shape of the bubbles in a phase dependent form. The gas diffusion coefficients for the single gamma phase and effective dual (α + δ) and (β + γ) phase structures are modeled separately, using the activation energy of the corresponding phase structure. In this study, it is found that pressure sintering of the interconnected porosity in dual phases should be less effective than the reference model in order to match clad strain and fission gas release behavior. In addition to these improvements, a probabilistic approach is taken to verify the fission gas-swelling threshold at which interconnected porosity begins. This fracture problem is treated as a function of critical crack length formed via bubble coalescence. It was found that a 10% gas-swelling threshold is appropriate for a wide range of gas bubble sizes. The new version of FEAST-METAL predicts the burn-up, smear density, and axial variation of the clad hoop strain and fission gas release behavior satisfactorily for selected test pins under EBR-II conditions. The code is used to predict ultra-high burn-up U–Pu–6Zr vented

  9. Model documentation renewable fuels module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA`s ongoing mission to provide analytical and forecasting information systems.

  10. Model documentation renewable fuels module of the National Energy Modeling System

    International Nuclear Information System (INIS)

    1997-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA's ongoing mission to provide analytical and forecasting information systems

  11. Modelling of phenomena associated with high burnup fuel behaviour during overpower transients

    International Nuclear Information System (INIS)

    Sills, H.E.; Langman, V.J.; Iglesias, F.C.

    1995-01-01

    Phenomena of importance to the behaviour of high burnup fuel subjected to conditions of rapid overpower (i.e., LWR RIAs) include the change in cladding material properties due to irradiation, pellet-clad interaction (PCI) and 'rim' effects associated with the periphery of high burnup fuel. 'Rim' effects are postulated to be caused by changes in fuel morphology at high burnup. Typical discharge burnups for CANDU fuel are low compared to LWRs. Maximum linear ratings for CANDU fuel are higher than those for LWRs. However, under normal operating conditions, the Zircaloy-4 clad of the CANDU fuel is collapsed onto the fuel stack. Thus, the CANDU fuel performance codes model the transient behaviour of the fuel-to-clad interface and are capable of assessing the potential for pellet-clad mechanical interaction (PCMI) failures for a wide range of overpower conditions. This report provides a discussion of the modelling of the phenomena of importance to high burnup fuel behaviour during rapid overpower transients. (author)

  12. Modeling and Parameterization of Fuel Economy in Heavy Duty Vehicles (HDVs

    Directory of Open Access Journals (Sweden)

    Yunjung Oh

    2014-08-01

    Full Text Available The present paper suggests fuel consumption modeling for HDVs based on the code from the Japanese Ministry of the Environment. Two interpolation models (inversed distance weighted (IDW and Hermite and three types of fuel efficiency maps (coarse, medium, and dense were adopted to determine the most appropriate combination for further studies. Finally, sensitivity analysis studies were conducted to determine which parameters greatly impact the fuel efficiency prediction results for HDVs. While vitiating each parameter at specific percentages (±1%, ±3%, ±5%, ±10%, the change rate of the fuel efficiency results was analyzed, and the main factors affecting fuel efficiency were summarized. As a result, the Japanese transformation algorithm program showed good agreement with slightly increased prediction accuracy for the fuel efficiency test results when applying the Hermite interpolation method compared to IDW interpolation. The prediction accuracy of fuel efficiency remained unchanged regardless of the chosen fuel efficiency map data density. According to the sensitivity analysis study, three parameters (fuel consumption map data, driving force, and gross vehicle weight have the greatest impact on fuel efficiency (±5% to ±10% changes.

  13. Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up

    International Nuclear Information System (INIS)

    El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.

    2004-01-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  14. Transactions of 2. international seminars on the mathematical/mechanical modelling of reactor fuel elements

    International Nuclear Information System (INIS)

    Lassmann, K.

    1991-01-01

    Fuel element modelling is a wide field of activity that spans decades of research and code development for different reactor systems and very different situations such as normal operation, off-normal situations and severe accidents. Modern computer technology helps to take the full advantage of detailed model development performed over the past for daily design analyses, safety analyses, conception of new experiments and investigation of an improved nuclear fuel utilization and fuel element performance. The basic development of the concepts of fuel element modelling can be considered as finished. The future trends are the development of refined models based on a deeper understanding of the physical and mechanical basis. Areas of interest are transient phenomena especially the fission product behaviour, burnup-enhanced phenomena, PCI and fuel reliability, severe core damage and chemical aspects. The seminar presentations reflect this variety

  15. Heat transfer modelling in a spent-fuel dry storage system

    International Nuclear Information System (INIS)

    Ritz, J.B.; Le Bonhomme, S.

    2001-01-01

    The purpose of this paper is to present a numerical modelling of heat transfers in a Spent-Fuel horizontal dry storage. The horizontal dry storage is an interesting issue to momentary store spent fuel containers before the final storage. From a thermal point of view, the cooling of spent fuel container by natural convection is a suitable and inexpensive process but it necessitates to well define the dimensions of the concept due to the difficulty to control the thermal environment. (author)

  16. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  17. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States)

    2010-01-31

    An engineering code to model the irradiation behavior of UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  18. Simplified Modeling of Tropospheric Ozone Formation Considering Alternative Fuels Using

    Directory of Open Access Journals (Sweden)

    Leonardo Aragão Ferreira da Silva

    2014-07-01

    Full Text Available Brazilian cities have been constantly exposed to air quality episodes of high ozone concentrations (O3 . Known for not be emitted directly into the environment, O3 is a result of several chemical reactions of other pollutants emitted to atmosphere. The growth of vehicle fleet and government incentives for using alternative fuels like ethanol and Compressed Natural Gas (CNG are changing the Brazilian Metropolitan Areas in terms of acetaldehyde and formaldehyde emissions, Volatile Organic Compounds (VOC's present in the atmosphere and known to act on the kinetics of ozone. Driven by high concentrations of tropospheric ozone in urban/industry centers and its implications for environment and population health, the target of this work is understand the kinetics of ozone formation through the creation of a mathematical model in FORTRAN 90, describing a system of coupled ordinary differential equations able to represent a simplified mechanism of photochemical reactions in the Brazilian Metropolitan Area. Evaluating the concentration results of each pollutant were possible to observe the precursor’s influence on tropospheric ozone formation, which seasons were more conducive to this one and which are the influences of weather conditions on formation of photochemical smog.

  19. Multiple-Echo Suppression Modeling and Experimental Verification for Acoustic Transmission along Periodic Drillstring Using Dual Receivers

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2014-01-01

    Full Text Available In the oil industry, the accompanied reverberation is a major constraint in the transmission rate and distance because the drillstring is a heterogeneous assembly. Based on the transient impulse responses in uplink and downlink channels, an improved simplified echo suppression model with two acoustic receivers is presented in consideration of position optimization of single acoustic receiver. Then the acoustic receiving characteristics of transmitted signals in a length-limited periodic drillstring channel are obtained in single- and dual-receiver modes. An additive downward white Gaussian noise is also introduced in the channel. Moreover, an experimental rig is established by using a rotatable electromagnetic vibration exciter and two piezoelectric accelerometers, which are spaced one-quarter wavelength apart along a 6.3-meter simulated periodic drillstring. The ASK-, FSK-, and PSK-modulated square-wave pulse sequences at a transmission rate of 200 bit/s are applied to the simulated drillstring at a rotation speed of 0, 80, and 140 r/min, respectively. The experimental results show that the dual-receiver mode can exhibit a significantly improved average error bit ratio, which is approximately 2.5 to 3 times lower than that of the single-receiver mode, especially under the conditions of higher rotation speeds.

  20. 2.5D real waveform and real noise simulation of receiver functions in 3D models

    DEFF Research Database (Denmark)

    Schiffer, Christian; Jacobsen, B. H.; Balling, N.

    to the Central Fjord area in East Greenland (Schiffer et al., 2013), where a 3D velocity model of crust and uppermost mantle was adjusted to receiver functions from 2 years of seismometer recordings and wide angle crustal profiles (Schlindwein and Jokat, 1999; Voss and Jokat, 2007). Computationally...

  1. State-of-the-Art Report on Multi-scale Modelling of Nuclear Fuels

    International Nuclear Information System (INIS)

    Bartel, T.J.; Dingreville, R.; Littlewood, D.; Tikare, V.; Bertolus, M.; Blanc, V.; Bouineau, V.; Carlot, G.; Desgranges, C.; Dorado, B.; Dumas, J.C.; Freyss, M.; Garcia, P.; Gatt, J.M.; Gueneau, C.; Julien, J.; Maillard, S.; Martin, G.; Masson, R.; Michel, B.; Piron, J.P.; Sabathier, C.; Skorek, R.; Toffolon, C.; Valot, C.; Van Brutzel, L.; Besmann, Theodore M.; Chernatynskiy, A.; Clarno, K.; Gorti, S.B.; Radhakrishnan, B.; Devanathan, R.; Dumont, M.; Maugis, P.; El-Azab, A.; Iglesias, F.C.; Lewis, B.J.; Krack, M.; Yun, Y.; Kurata, M.; Kurosaki, K.; Largenton, R.; Lebensohn, R.A.; Malerba, L.; Oh, J.Y.; Phillpot, S.R.; Tulenko, J. S.; Rachid, J.; Stan, M.; Sundman, B.; Tonks, M.R.; Williamson, R.; Van Uffelen, P.; Welland, M.J.; Valot, Carole; Stan, Marius; Massara, Simone; Tarsi, Reka

    2015-10-01

    The Nuclear Science Committee (NSC) of the Nuclear Energy Agency (NEA) has undertaken an ambitious programme to document state-of-the-art of modelling for nuclear fuels and structural materials. The project is being performed under the Working Party on Multi-Scale Modelling of Fuels and Structural Material for Nuclear Systems (WPMM), which has been established to assess the scientific and engineering aspects of fuels and structural materials, describing multi-scale models and simulations as validated predictive tools for the design of nuclear systems, fuel fabrication and performance. The WPMM's objective is to promote the exchange of information on models and simulations of nuclear materials, theoretical and computational methods, experimental validation and related topics. It also provides member countries with up-to-date information, shared data, models, and expertise. The goal is also to assess needs for improvement and address them by initiating joint efforts. The WPMM reviews and evaluates multi-scale modelling and simulation techniques currently employed in the selection of materials used in nuclear systems. It serves to provide advice to the nuclear community on the developments needed to meet the requirements of modelling for the design of different nuclear systems. The original WPMM mandate had three components (Figure 1), with the first component currently completed, delivering a report on the state-of-the-art of modelling of structural materials. The work on modelling was performed by three expert groups, one each on Multi-Scale Modelling Methods (M3), Multi-Scale Modelling of Fuels (M2F) and Structural Materials Modelling (SMM). WPMM is now composed of three expert groups and two task forces providing contributions on multi-scale methods, modelling of fuels and modelling of structural materials. This structure will be retained, with the addition of task forces as new topics are developed. The mandate of the Expert Group on Multi-Scale Modelling of

  2. Hardware-in-the-loop vehicle system including dynamic fuel cell model

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Z.; Lenhart, T.; Braun, M.; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Darmstadt (Germany)

    2005-07-01

    In order to reduce costs and accelerate the development of fuel cells and systems the usage of hardware-in-the-loop (HIL) testing and dynamic modelling opens new possibilities. The dynamic model of a proton exchange membrane fuel cell (PEMFC) together with a vehicle model is used to carry out a comprehensive system investigation, which allows designing and optimising the behaviour of the components and the entire fuel cell system. The set-up of a HIL system enables real time interaction between the selected hardware and the model. (orig.)

  3. Modeling of a HTPEM fuel cell using Adaptive Neuro-Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Sahlin, Simon Lennart

    2015-01-01

    In this work an Adaptive Neuro-Fuzzy Inference System (ANFIS) model of the voltage of a fuel cell is developed. The inputs of this model are the fuel cell temperature, current density and the carbon monoxide concentration of the anode supply gas. First an identification experiment which spans...... the expected operating range of the fuel cell is performed in a test station. The data from this experiment is then used to train ANFIS models with 2, 3, 4 and 5 membership functions. The performance of these models is then compared and it is found that using 3 membership functions provides the best compromise...

  4. Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model

    OpenAIRE

    T. H. Lee; J. H. Park; S. M. Lee; S. C. Lee

    2010-01-01

    In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of ...

  5. Modeling the Multinationality and Other Socio-Political Aspects of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Nguyen, Viet Phuong; Yim, Man Sung

    2016-01-01

    Nuclear fuel cycle is a complex process with numerous steps, which are influenced by both engineering and socio-economic factors. Therefore, as an interdisciplinary tool developed to study the dynamic complexity of a system, system dynamics has been used to simulate nuclear fuel cycle and to support the development of nuclear policies. A number of studies have been done in this area providing comprehensive view of nuclear fuel cycle in respect to the energy scenarios, material flows, and pricing mechanism. However, the effect of other socio-economic aspects like public acceptance, proliferation risks, or the transboundary nature of the nuclear fuel cycle have not been well illustrated by those previous researches. In order to inform decision makers of the suitability and sustainability of any nuclear fuel cycle option, a modeling tool has to adequately cover such issues. A system dynamics model of nuclear fuel cycle was developed in order to examine the trans-boundary and domestic effects related to the socio-economic aspect of the fuel cycle. The significance and coefficient of the socio-economic factors were determined using statistical analysis of historical data. Preliminary results show the definitive effect of such factors on the net benefit of the nuclear fuel cycle and its expansion in relation with the nuclear cooperation between the service provider and the end-user. Thus, future models need to incorporate such features in order to provide a more comprehensive look of the fuel cycle

  6. Modeling the Multinationality and Other Socio-Political Aspects of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Viet Phuong; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear fuel cycle is a complex process with numerous steps, which are influenced by both engineering and socio-economic factors. Therefore, as an interdisciplinary tool developed to study the dynamic complexity of a system, system dynamics has been used to simulate nuclear fuel cycle and to support the development of nuclear policies. A number of studies have been done in this area providing comprehensive view of nuclear fuel cycle in respect to the energy scenarios, material flows, and pricing mechanism. However, the effect of other socio-economic aspects like public acceptance, proliferation risks, or the transboundary nature of the nuclear fuel cycle have not been well illustrated by those previous researches. In order to inform decision makers of the suitability and sustainability of any nuclear fuel cycle option, a modeling tool has to adequately cover such issues. A system dynamics model of nuclear fuel cycle was developed in order to examine the trans-boundary and domestic effects related to the socio-economic aspect of the fuel cycle. The significance and coefficient of the socio-economic factors were determined using statistical analysis of historical data. Preliminary results show the definitive effect of such factors on the net benefit of the nuclear fuel cycle and its expansion in relation with the nuclear cooperation between the service provider and the end-user. Thus, future models need to incorporate such features in order to provide a more comprehensive look of the fuel cycle.

  7. Finite element modelling of different CANDU fuel bundle types in various refuelling conditions

    International Nuclear Information System (INIS)

    Roman, M. R.; Ionescu, D. V.; Olteanu, G.; Florea, S.; Radut, A. C.

    2016-01-01

    The objective of this paper is to develop a finite element model for static strength analysis of the CANDU standard with 37 elements fuel bundle and the SEU43 with 43 elements fuel bundle design for various refuelling conditions. The computer code, ANSYS7.1, is used to simulate the axial compression in CANDU type fuel bundles subject to hydraulic drag loads, deflection of fuel elements, stresses and displacements in the end plates. Two possible situations for the fuelling machine side stops are considered in our analyses, as follows: the last fuel bundle is supported by the two side stops and a side stop can be blocked therefore, the last fuel bundle is supported by only one side stop. The results of the analyses performed are briefly presented and also illustrated in a graphical form. The finite element model developed in present study is verified against test results for endplate displacement and element bowing obtained from strength tests with fuel bundle string and fuelling machine side-stop simulators. Comparison of ANSYS model predictions with these experimental results led to a very good agreement. Despite the difference in hydraulic load between SEU43 and CANDU standard fuel bundles strings, the maximum stress in the SEU43 endplate is about the same with the maximum stress in the CANDU standard endplate. The comparative assessment reveals that SEU43 fuel bundle is able to withstand high flow rate without showing a significant geometric instability. (authors)

  8. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET mode--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet)

  9. A model for predicting skin dose received by patients from an x-ray ...

    African Journals Online (AJOL)

    We have done this by modifying a model for predicting skin dose derived by Edmonds for a triple-phase generator. Results for 100 patients based on the triple-phase generator output show a reasonable average agreement (»1%) between our present model and the Edmonds's model. Although our earlier estimated ...

  10. A fission gas release model for MOX fuel and its verification

    International Nuclear Information System (INIS)

    Koo, Y.H.; Sohn, D.S.; Strijov, P.

    2000-01-01

    A fission gas release model for MOX fuel has been developed based on a model for UO 2 fuel. Using the concept of equivalent cell, the model considers the uneven distribution of Pu within the fuel matrix and a number of Pu-rich particles that could lead to a non-uniform fission rate and fission gas distribution across the fuel pellet. The model has been incorporated into a code, COSMOS, and some parametric studies were made to analyze the effect of the size and Pu content of Pu-rich agglomerates. The model was then applied to the experimental data obtained from the FIGARO program, which consisted of the base irradiation of MOX fuels in the BEZNAU-1 PWR and the subsequent irradiation of four refabricated fuel segments in the Halden reactor. The calculated gas releases show good agreement with the measured ones. In addition, the present analysis indicates that the microstructure of the MOX fuel used in the FIGARO program is such that it has produced little difference in terms of gas release compared with UO 2 fuel. (author)

  11. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling

    DEFF Research Database (Denmark)

    Geels, C.; Christensen, J.H.; Hansen, A.W.

    2006-01-01

    Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August......Atmospheric transport, C-14. fossil fuel CO_2, numerical modeling, the north East Atlantic Region Udgivelsesdato: 18 August...

  12. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2015-11-01

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  13. Experimental irradiation of UMo fuel: Pie results and modeling of fuel behaviour

    International Nuclear Information System (INIS)

    Languille, A.; Plancq, D.; Huet, F.; Guigon, B.; Lemoine, P.; Sacristan, P.; Hofman, G.; Snelgrove, J.; Rest, J.; Hayes, S.; Meyer, M.; Vacelet, H.; Leborgne, E.; Dassel, G.

    2002-01-01

    Seven full-sized U Mo plates containing ca. 8 g/cm 3 of uranium in the fuel meat have been irradiated since the beginning of the French U Mo development program. The first three of them with 20% 235 U enrichment were irradiated at maximum surfacic power under 150 W/cm 2 in the OSIRIS reactor up to 50% burn-up and are under examination. Their global behaviour is satisfactory: no failure and a low swelling. The other four plates were irradiated in the HFR Petten at maximum surfacic power between 150 and 250 W/cm 2 with two enrichments 20 and 35%. The experiment was stopped after two cycles due to a fuel failure. The post- irradiation examinations were completed in 2001 in Petten. Examinations showed a correct behaviour of 20% enriched plates and an abnormal behaviour of the two other plates (35%-enriched) with a clad failure on the plate 4. The fuel failure appears to result from a combination of factors that led to high corrosion cladding and high fuel meat temperatures. (author)

  14. Research efforts on fuels, fuel models, and fire behavior in eastern hardwood forests

    Science.gov (United States)

    Thomas A. Waldrop; Lucy Brudnak; Ross J. Phillips; Patrick H. Brose

    2006-01-01

    Although fire was historically important to most eastern hardwood systems, its reintroduction by prescribed burning programs has been slow. As a result, less information is available on these systems to fire managers. Recent research and nationwide programs are beginning to produce usable products to predict fuel accumulation and fire behavior. We introduce some of...

  15. A model for recovery of scrap monolithic uranium molybdenum fuel by electrorefining

    Science.gov (United States)

    Van Kleeck, Melissa A.

    The goal of the Reduced Enrichment for Research and Test Reactors program (RERTR) is toreduce enrichment at research and test reactors, thereby decreasing proliferation risk at these facilities. A new fuel to accomplish this goal is being manufactured experimentally at the Y12 National Security Complex. This new fuel will require its own waste management procedure,namely for the recovery of scrap from its manufacture. The new fuel is a monolithic uraniummolybdenum alloy clad in zirconium. Feasibility tests were conducted in the Planar Electrode Electrorefiner using scrap U-8Mo fuel alloy. These tests proved that a uranium product could be recovered free of molybdenum from this scrap fuel by electrorefining. Tests were also conducted using U-10Mo Zr clad fuel, which confirmed that product could be recovered from a clad version of this scrap fuel at an engineering scale, though analytical results are pending for the behavior of Zr in the electrorefiner. A model was constructed for the simulation of electrorefining the scrap material produced in the manufacture of this fuel. The model was implemented on two platforms, Microsoft Excel and MatLab. Correlations, used in the model, were developed experimentally, describing area specific resistance behavior at each electrode. Experiments validating the model were conducted using scrap of U-10Mo Zr clad fuel in the Planar Electrode Electrorefiner. The results of model simulations on both platforms were compared to experimental results for the same fuel, salt and electrorefiner compositions and dimensions for two trials. In general, the model demonstrated behavior similar to experimental data but additional refinements are needed to improve its accuracy. These refinements consist of a function for surface area at anode and cathode based on charge passed. Several approximations were made in the model concerning areas of electrodes which should be replaced by a more accurate function describing these areas.

  16. Modeling of laser cladding with application to fuel cell manufacturing.

    Science.gov (United States)

    2010-01-01

    Polymer electrolyte membrane (PEM) fuel cells have many advantages such as compactness, : lightweight, high power density, low temperature operation and near zero emissions. Although : many research organizations have intensified their efforts toward...

  17. Model documentation renewable fuels module of the National Energy Modeling System

    Science.gov (United States)

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogs and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost, and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  18. Model documentation renewable fuels module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  19. Combustion modelling of a fuel oil flame; Modelisation de la combustion d`une flamme de fuel

    Energy Technology Data Exchange (ETDEWEB)

    Flour, I.; Mechitouan, N.

    1996-10-01

    The combustion modelling of a fuel oil flame has been realised in the scope of the R and D `Combustion Turbines`. This report presents the results of the 2D simulation of a fuel oil flame (n-octane), at atmospherical pressure, without swirl, realised using the Eulerian two-phase flow software Melodif. This calculation has been defined in collaboration with IFP, using experimental data from the IFRP. The hollow cone spray of liquid fuel is injected in the middle of the combustion chamber, with a co-flowing annular air. The furnace diameter is 2 meter and its length is 6,25 meter. A large recirculation zone is induced by the air flow, and leads to take into account the whole furnace, in order to avoid some problems with the limit conditions at the outlet. This calculation deals with droplets evaporation, gaseous phase combustion and radiation heat transfer. Predictions concerning gaseous axial mean velocity and mean temperature gradient in the flame, are in good agreement with measurements. However the temperature is too low in the peripheral zone of the flow. This is probably due to the fact that heat exchanges at the wall furnace are not correctly represented, because of a lack of detailed limit conditions for the walls. The mean radial velocity is not so well predicted, but this measurement is also quite difficult in a strongly longitudinal flow. The results concerning the dispersed phase will not be compared, because no measurements on the liquid fuel were available. As it has been experimentally observed, the simulation shows that the fuel oil spray quickly evaporates as it enters the combustion chamber. This result allows to propose to use an homogeneous approach (hypothesis of no-slipping between the two phases) in an Eulerian one-phase flow code, in case of a 3D simulation of liquid fuel turbine. (authors)

  20. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  1. Research in Supercritical Fuel Properties and Combustion Modeling

    Science.gov (United States)

    2015-09-18

    identified reactions needing further study and C-2 and C-3 species to add to the mechanism . 15. SUBJECT TERMS Supercritical fluids , Brillouin scattering...kinetics mechanism for combustion of hydrocarbon fuels containing up to 2 carbon atoms, including uncertainties. • We identified key reactions and...safety. The chemical mechanisms for combustion of all of these fuels share the same set of elementary reactions of smaller-fragment hydrocarbons , and

  2. Simulation model of dynamical behaviour of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Planchard, J.

    1994-01-01

    This report briefly describes the homogenized dynamical equations of a tube bundle placed in a perfect irrotational fluid, on case of small displacements. This approach can be used to study the mechanical behaviour of fuel assemblies of PWR reactor submitted to earthquake or depressurization blow-down. The numerical calculations require to define the added mass matrix of the fuel assemblies, for which the principle of computation is presented. (author). 14 refs., 4 figs

  3. Field Measurement and Calibration of HDM-4 Fuel Consumption Model on Interstate Highway in Florida

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-03-01

    Full Text Available Fuel consumptions are measured by operating passenger car and tractor-trailer on two interstate roadway sites in Florida. Each site contains flexible pavement and rigid pavement with similar pavement, traffic and environmental condition. Field test reveals that the average fuel consumption differences between vehicle operating on flexible pavement and rigid pavement at given test condition are 4.04% for tractor-trailer and 2.50% for passenger car, with a fuel saving on rigid pavement. The fuel consumption differences are found statistically significant at 95% confidence level for both vehicle types. Test data are then used to calibrate the Highway Development and Management IV (HDM-4 fuel consumption model and model coefficients are obtained for three sets of observations. Field measurement and prediction by calibrated model shows generally good agreement. Nevertheless, verification and adjustment with more experiment or data sources would be expected in future studies.

  4. Randomly dispersed particle fuel model in the PSG Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Leppaenen, J.

    2007-01-01

    High-temperature gas-cooled reactor fuels are composed of thousands of microscopic fuel particles, randomly dispersed in a graphite matrix. The modelling of such geometry is complicated, especially using continuous-energy Monte Carlo codes, which are unable to apply any deterministic corrections in the calculation. This paper presents the geometry routine developed for modelling randomly dispersed particle fuels using the PSG Monte Carlo reactor physics code. The model is based on the delta-tracking method, and it takes into account the spatial self-shielding effects and the random dispersion of the fuel particles. The calculation routine is validated by comparing the results to reference MCNP4C calculations using uranium and plutonium based fuels. (authors)

  5. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  6. Modeling approach for annular-fuel elements using the ASSERT-PV subchannel code

    International Nuclear Information System (INIS)

    Dominguez, A.N.; Rao, Y.

    2012-01-01

    The internally and externally cooled annular fuel (hereafter called annular fuel) is under consideration for a new high burn-up fuel bundle design in Atomic Energy of Canada Limited (AECL) for its current, and its Generation IV reactor. An assessment of different options to model a bundle fuelled with annular fuel elements is presented. Two options are discussed: 1) Modify the subchannel code ASSERT-PV to handle multiple types of elements in the same bundle, and 2) coupling ASSERT-PV with an external application. Based on this assessment, the selected option is to couple ASSERT-PV with the thermalhydraulic system code CATHENA. (author)

  7. Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers

    Energy Technology Data Exchange (ETDEWEB)

    Loukusa, Henri, E-mail: henri.loukusa@vtt.fi; Ikonen, Timo; Valtavirta, Ville; Tulkki, Ville

    2016-12-01

    The elemental and chemical composition of nuclear fuel pellets are key factors influencing the material properties of the pellets. The oxidation state of the fuel is one of the most important chemical properties influencing the material properties of the fuel, and it can only be determined with the knowledge of the chemical composition. A measure of the oxidation state is the oxygen chemical potential of the fuel. It can be buffered by redox pairs, such as the well-known Mo/MoO{sub 2} pair. In this work, the elemental composition of the fuel is obtained from a burnup calculation and the temperature and pressure calculated with a fuel performance code. An estimate of the oxygen potential of fuel is calculated with Gibbs energy minimization. The results are compared against experimental data from the literature. The significance of the UMoO{sub 6} compound and its buffering effect on the oxygen potential is emphasized. - Highlights: • A Gibbs energy minimization routine has been developed for nuclear fuel modeling. • The initial stoichiometry affects the development of the oxygen potential of fuel. • UMoO{sub 6} is found to buffer the oxygen potential of nuclear fuel.

  8. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    International Nuclear Information System (INIS)

    Folsom, Charles

    2015-01-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50-30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.

  9. The modeling of fuel rod behaviour under RIA conditions in the code DYN3D

    International Nuclear Information System (INIS)

    Rohde, U.

    1998-01-01

    A description of the fuel rod behaviour and heat transfer model used in the code DYN3D for nuclear reactor core dynamic simulations is given. Besides the solution of heat conduction equations in fuel and cladding, the model comprises detailed description of heat transfer in the gas gap by conduction, radiation and fuel-cladding contact. The gas gap behaviour is modeled in a mechanistic way taking into account transient changes of the gas gap parameters based on given conditions for the initial state. Thermal, elastic and plastic deformations of fuel and cladding are taken into account within 1D approximation. Numerical studies concerning the fuel rod behaviour under RIA conditions in power reactors are reported. Fuel rod behaviour at high pressures and flow rates in power reactors is different from the behaviour under atmospheric pressure and stagnant flow conditions in the experiments. The mechanisms of fuel rod failure for fresh and burned fuel reported from the literature can be qualitatively reproduced by the DYN3D model. (author)

  10. Fuel load modeling from mensuration attributes in temperate forests in northern Mexico

    Science.gov (United States)

    Maricela Morales-Soto; Marín Pompa-Garcia

    2013-01-01

    The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...

  11. Spent fuel waste disposal: analyses of model uncertainty in the MICADO project

    International Nuclear Information System (INIS)

    Grambow, B.; Ferry, C.; Casas, I.; Bruno, J.; Quinones, J.; Johnson, L.

    2010-01-01

    The objective was to find out whether international research has now provided sufficiently reliable models to assess the corrosion behavior of spent fuel in groundwater and by this to contribute to answering the question whether the highly radioactive used fuel from nuclear reactors can be disposed of safely in a geological repository. Principal project results are described in the paper

  12. Nongray-gas Effects in Modeling of Large-scale Oxy-fuel Combustion Processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    , in which a recently refined weighted-sum-of-gray-gases model (WSGGM) applicable to oxy-fuel conditions is used to perform non-gray and gray calculations, respectively, and a widely used air-fuel WSGGM is also employed for gray calculation. This makes the only difference among the different computational...

  13. Fuel requirements for experimental devices in MTR reactors. A perturbation model for reactor core analysis

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1991-01-01

    Irradiation in neutron absorbing devices, requiring high fast neutron fluxes in the core or high thermal fluxes in the reflector and flux traps, lead to higher density fuel and larger core dimensions. A perturbation model of the reactor core helps to estimate the fuel requirements. (orig.)

  14. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  15. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    International Nuclear Information System (INIS)

    Jeong, Gwan Yoon; Sohn, Dong Seong; Kim, Yeon Soo

    2014-01-01

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model

  16. Modelling of U-Mo/Al Dispersion fuel fission induced swelling and creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonne (United States)

    2014-05-15

    In a Dispersion fuel which U-Mo particles are dispersed in Al metal matrix, a similar phenomenon forming a bulge region was observed but it is difficult to quantify and construct a model for explaining creep and swelling because of its complex microstructure change during irradiation including interaction layer (IL) and porosity formation. In a Dispersion fuel meat, fission product induces fuel particles swelling and it has to be accommodated by the deformation of the Al matrix and newly formed IL during irradiation. Then, it is reasonable that stress from fuel swelling in the complex structure should be relaxed by local adjustments of particles, Al matrix, and IL. For analysis of U-Mo/Al Dispersion fuel creep, the creep of U-Mo particle, Al matrix, and IL should be considered. Moreover, not only fuel particle swelling and IL growth, but also fuel and Al matrix consumptions due to IL formation are accounted in terms of their volume fraction changes during irradiation. In this work, fuel particles, Al matrix and IL are treated in a way of homogenized constituents: Fuel particles, Al matrix and IL consist of an equivalent meat during irradiation. Meat volume swelling of two representative plates was measured: One (Plate A) was a pure Al matrix with 6g/cc uranium loading, the other (Plate B) a silicon added Al matrix with 8g/cc uranium loading. The meat swelling of calculated as a function of burnup. The meat swelling of calculation and measurement was compared and the creep rate coefficients for Al and IL were estimated by repetitions. Based on assumption that only the continuous phase of Al-IL combined matrix accommodated the stress from fuel particle swelling and it was allowed to have creep deformation, the homogenization modeling was performed. The meat swelling of two U-Mo/Al Dispersion fuel plates was modeled by using homogenization model.

  17. Communication of 10 June 2009 received from the Permanent Mission of the United Kingdom with regard to the International Nuclear Fuel Supply Conference: Securing safe access to peaceful power

    International Nuclear Information System (INIS)

    2009-01-01

    The Secretariat has received a communication dated 10 June 2009 from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland, attaching a note from the United Kingdom and the final remarks of the Chairman of the International Nuclear Fuel Supply Conference: Securing safe access to peaceful power, held in London on 17 and 18 March 2009. As requested in that communication, the note and final remarks are herewith circulated for the information of Member States

  18. Communication dated 9 June 2008 received from the Resident Representatives of Germany, the Netherlands and the United Kingdom to the Agency with regard to the Conference on Nuclear Fuel Supply: Challenges and Opportunities

    International Nuclear Information System (INIS)

    2008-01-01

    The Secretariat has received a communication dated 9 June 2008 from the Resident Representatives of Germany, the Netherlands and the United Kingdom, attaching the full report of Germany, the Netherlands and the United Kingdom on the Conference on Nuclear Fuel Supply: Challenges and Opportunities, held in Berlin on 17-18 April 2008. As requested in that communication, the report is herewith circulated for the information of Member States

  19. Wildland Fire Behaviour Case Studies and Fuel Models for Landscape-Scale Fire Modeling

    Directory of Open Access Journals (Sweden)

    Paul-Antoine Santoni

    2011-01-01

    Full Text Available This work presents the extension of a physical model for the spreading of surface fire at landscape scale. In previous work, the model was validated at laboratory scale for fire spreading across litters. The model was then modified to consider the structure of actual vegetation and was included in the wildland fire calculation system Forefire that allows converting the two-dimensional model of fire spread to three dimensions, taking into account spatial information. Two wildland fire behavior case studies were elaborated and used as a basis to test the simulator. Both fires were reconstructed, paying attention to the vegetation mapping, fire history, and meteorological data. The local calibration of the simulator required the development of appropriate fuel models for shrubland vegetation (maquis for use with the model of fire spread. This study showed the capabilities of the simulator during the typical drought season characterizing the Mediterranean climate when most wildfires occur.

  20. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dolbow, John E. [Duke Univ., Durham, NC (United States); Hales, Jason D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  1. Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, Sergey

    2010-01-01

    While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.

  2. Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-10-17

    While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.

  3. Study of slab fuel cell models for reactor core neutronic calculation

    International Nuclear Information System (INIS)

    Claro, Luiz H.; Ono, Shizuca; Nascimento, Jamil A.; Vieira, Wilson J.; Caldeira, Alexandre D.; Dias, Artur Flavio

    2005-01-01

    In this work some models for a slab cell of a nuclear reactor are studied. Two methodologies are used: the deterministic through WIMS code, and the probabilistic one through MCNP code. The objective is to define the best geometric model for a fuel cell to be applied in a cell calculation to be carried through the WIMS code and to use the MCNP code as reference. The results had indicated that for the one-dimensional model the slab fuel cell with only three regions is the best option with a fuel region, a cladding region and a moderator region. (author)

  4. Development of an analytical model to assess fuel property effects on combustor performance

    Science.gov (United States)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.; Riddlebaugh, S. M.

    1987-01-01

    A generalized first-order computer model has been developed in order to analytically evaluate the potential effect of alternative fuels' effects on gas turbine combustors. The model assesses the size, configuration, combustion reliability, and durability of the combustors required to meet performance and emission standards while operating on a broad range of fuels. Predictions predicated on combustor flow-field determinations by the model indicate that fuel chemistry, as defined by hydrogen content, exerts a significant influence on flame retardation, liner wall temperature, and smoke emission.

  5. A phenomenological model of two-phase (air/fuel droplet developing and breakup

    Directory of Open Access Journals (Sweden)

    Pavlović Radomir R.

    2013-01-01

    Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.

  6. Comparative analysis of different methods of modelling of most loaded fuel pin in transients

    International Nuclear Information System (INIS)

    Ovdiyenko, Y.; Khalimonchuk, V.; Ieremenko, M.

    2007-01-01

    Different methods of modeling of most loaded fuel pin are presented at the work. Calculation studies are performed on example of accident related to WWER-1000 cluster rod ejection with using of spatial kinetic code DYN3D that uses nodal method to calculate distribution of neutron flux in the core. Three methods of modeling of most loaded fuel pin are considered - flux reconstruction in fuel macrocell, pin-by-pin calculation by using of DYN3D/DERAB package and by introducing of additional 'hot channel'. Obtained results of performed studies could be used for development of calculation kinetic models during preparing of safety analysis report (Authors)

  7. Modelling and simulation of a PEM fuel cell power system with a fuzzy logic controller

    International Nuclear Information System (INIS)

    Al-Dabbagh, A.W.; Lu, L.; Mazza, A.

    2009-01-01

    Fuel cell power systems are emerging as promising means of electrical power generation on account of the associated clean electricity generation process, as well as their suitability for use in a wide range of applications. During the design stage, the development of a computer model for simulating the behaviour of a system under development can facilitate the experimentation and testing of that system's performance. Since the electrical power output of a fuel cell stack is seldom at a suitable fixed voltage, conditioning circuits and their associated controllers must be incorporated in the design of the fuel cell power system. This paper presents a MATLAB/Simulink model that simulates the behaviour of a Proton Exchange Membrane (PEM) fuel cell, conditioning circuits and their controllers. The computer modelling of the PEMFC was based on adopted mathematical models that describe the fuel cell's operational voltage, while accounting for the irreversibilities associated with the fuel cell stack. The conditioning circuits that are included in the Simulink model are a DC-DC converter and DC-AC inverter circuits. These circuits are the commonly utilized power electronics circuits for regulating and conditioning the output voltage from a fuel cell stack. The modelling of the circuits is based on relationships that govern the output voltage behaviour with respect to their input voltages, switching duty cycle and efficiency. In addition, this paper describes a Fuzzy Logic Controller (FLC) design that is aimed at regulating the conditioning circuits to provide and maintain suitable electrical power for a wide range of applications. (author)

  8. Nuclear-Thermal Analysis of Fully Ceramic Microencapsulated Fuel via Two-Temperature Homogenized Model

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Nam Zin

    2013-01-01

    The FCM fuel is based on a proven safety philosophy that has been utilized operationally in very high temperature reactors (VHTRs). However, the FCM fuel consists of TRISO particles randomly dispersed in SiC matrix. The high heterogeneity in composition leads to difficulty in explicit thermal calculation of such a fuel. Therefore, an appropriate homogenization model becomes essential. In this paper, we apply the two-temperature homogenized model to thermal analysis of an FCM fuel. The model was recently proposed in order to provide more realistic temperature profiles in the fuel element in VHTRs. We applied the two-temperature homogenized model to FCM fuel. The two-temperature homogenized model was obtained by particle transport Monte Carlo calculation applied to the pellet region consisting of many coated particles uniformly dispersed in SiC matrix. Since this model gives realistic temperature profiles in the pellet (providing fuel-kernel temperature and SiC matrix temperature distinctly), it can be used for more accurate neutronics evaluation such as Doppler temperature feedback. The transient thermal calculation may be performed also more realistically with temperature-dependent homogenized parameters in various scenarios

  9. Studies on modeling to failed fuel detection system response in LMFBR

    International Nuclear Information System (INIS)

    Miyazawa, T.; Saji, G.; Mitsuzuku, N.; Hikichi, T.; Odo, T.; Rindo, H.

    1981-05-01

    Failed Fuel Detection (FFD) system with Fission Products (FP) detection is considered to be the most promissing method, since FP provides direct information against fuel element failure. For designing FFD system and for evaluating FFD signals, some adequate FFD signal response to fuel failure have been required. But few models are available in nowadays. Thus Power Reactor and Nuclear Fuel Development Corporation (PNC) had developed FFD response model with computer codes, based on several fundamental investigations on FP release and FP behavior, and referred to foreign country experiences on fuel failure. In developing the model, noble gas and halogen FP release and behavior were considered, since FFD system would be composed of both cover gas monitoring and delayed neutron monitoring. The developed model can provide typical fuel failure response and detection limit which depends on various background signals at cover gas monitoring and delayed neutron monitoring. According to the FFD response model, we tried to assume fuel failure response and detection limit at Japan experimental fast reactor ''JOYO''. The detection limit of JOYO FFD system was estimated by measuring the background signals. Followed on the studies, a complete computer code has been now made with some improvement. On the paper, the details of the model, out line of developed computer code, status of JOYO FFD system, and trial assumption of JOYO FFD response and detection limit. (author)

  10. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  11. Modeling and preliminary analysis on the temperature profile of the (TRU-Zr)-Zr dispersion fuel rod for HYPER

    International Nuclear Information System (INIS)

    Lee, B. W.; Hwang, W.; Lee, B. S.; Park, W. S.

    2000-01-01

    Either TRU-Zr metal alloy or (TRU-Zr)-Zr dispersion fuel is considered as a blanket fuel for HYPER(Hybrid Power Extraction Reactor). In order to develop the code for dispersion fuel rod performance analysis under steady state condition, the fuel temperature distribution model which is the one of the most important factors in a fuel performance code has been developed in this paper,. This developed model computes the one dimensional radial temperature distribution of a cylindrical fuel rod. The temperature profile results by this model are compared with the temperature distributions of U 3 Si-A1 dispersion fuel and TRU-Zr metal alloy fuel. This model will be installed in performance analysis code for dispersion fuel

  12. Overall models and experimental database for UO2 and MOX fuel increasing performance

    International Nuclear Information System (INIS)

    Bernard, L.C.; Blanpain, P.

    2001-01-01

    COPERNIC is an advanced fuel rod performance code developed by Framatome. It is based on the TRANSURANUS code that contains a clear and flexible architecture, and offers many modeling possibilities. The main objectives of COPERNIC are to accurately predict steady-state and transient fuel operations at high burnups and to incorporate advanced materials such as the Framatome M5-alloy cladding. An extensive development program was undertaken to benchmark the code to very high burnups and to new M5-alloy cladding data. New models were developed for the M5-alloy cladding and the COPERNIC thermal models were upgraded and improved to extend the predictions to burnups over 100 GWd/tM. Since key phenomena, like fission gas release, are strongly temperature dependent, many other models were upgraded also. The COPERNIC qualification range extends to 67, 55, 53 GWd/tM respectively for UO 2 , UO 2 -Gd 2 O 3 , and MOX fuels with Zircaloy-4 claddings. The range extends to 63 GWd/tM with UO 2 fuel and the advanced M5-alloy cladding. The paper focuses on thermal and fission gas release models, and on MOX fuel modeling. The COPERNIC thermal model consists of several submodels: gap conductance, gap closure, fuel thermal conductivity, radial power profile, and fuel rim. The fuel thermal conductivity and the gap closure models, in particular, have been significantly improved. The model was benchmarked with 3400 fuel centerline temperature data from many French and international programs. There are no measured to predicted statistical biases with respect to linear heat generation rate or burnup. The overall quality of the model is state-of-the-art as the model uncertainty is below 10 %. The fission gas release takes into account athermal and thermally activated mechanisms. The model was adapted to MOX and Gadolinia fuels. For the heterogeneous MOX MIMAS fuels, an effective burnup is used for the incubation threshold. For gadolinia fuels, a scaled temperature effect is used. The

  13. Reference Material Properties and Standard Problems to Verify the Fuel Performance Models Ver 1.0

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, Jae Yong; Koo, Yang Hyun

    2010-12-01

    All fuel performance models must be validated by in-pile and out-pile tests. However, the model validation requires much efforts and times to confirm its exactness. In many fields, new performance models and codes are confirmed by code-to-code benchmarking process under simplified standard problem analysis. At present, the DUOS, which is the steady state fuel performance analysis code for dual cooled annular fuel, development project is progressing and new FEM module is developed to analyze the fuel performance during transient period. In addition, the verification process is planning to examine the new models and module's rightness by comparing with commercial finite element analysis such as a ADINA, ABAQUS and ANSYS. This reports contains the result of unification of material properties and establishment of standard problem to verify the newly developed models with commercial FEM code

  14. A Two-Dimensional Multiphysics Coupling Model of a Middle and Low Temperature Solar Receiver/Reactor for Methanol Decomposition

    Directory of Open Access Journals (Sweden)

    Yanjuan Wang

    2017-10-01

    Full Text Available Abstract: In this paper, the endothermic methanol decomposition reaction is used to obtain syngas by transforming middle and low temperature solar energy into chemical energy. A two-dimensional multiphysics coupling model of a middle and low temperature of 150~300 °C solar receiver/reactor was developed, which couples momentum equation in porous catalyst bed, the governing mass conservation with chemical reaction, and energy conservation incorporating conduction/convection/radiation heat transfer. The complex thermochemical conversion process of the middle and low temperature solar receiver/reactor (MLTSRR system was analyzed. The numerical finite element method (FEM model was validated by comparing it with the experimental data and a good agreement was obtained, revealing that the numerical FEM model is reliable. The characteristics of chemical reaction, coupled heat transfer, the components of reaction products, and the temperature fields in the receiver/reactor were also revealed and discussed. The effects of the annulus vacuum space and the glass tube on the performance of the solar receiver/reactor were further studied. It was revealed that when the direct normal irradiation increases from 200 W/m2 to 800 W/m2, the theoretical efficiency of solar energy transformed into chemical energy can reach 0.14–0.75. When the methanol feeding rate is 13 kg/h, the solar flux increases from 500 W/m2 to 1000 W/m2, methanol conversion can fall by 6.8–8.9% with air in the annulus, and methanol conversion can decrease by 21.8–28.9% when the glass is removed from the receiver/reactor.

  15. Modelling of the fuel mechanical behavior: from creep laws to internal variable models

    International Nuclear Information System (INIS)

    Leclercq, S.

    1998-01-01

    Creep laws such as that of Bohaboy are commonly used to simulate the fuel pellet response to the demands placed upon it during its use. These laws are sufficient for describing the base operating conditions (where only creep appears), but they require improvement for describing power ramp conditions (where hardening and relaxation appear). The aim of the present paper is to develop a framework in which it will be possible to build models that are more representative of the fuel pellet in pile conditions. The approach presented here is based on the thermodynamics of irreversible processes and continuum mechanics. It is postulated that the material is made of a mixture of porous and 'sound' material. The evolution of porosity is deduced from experimental results in order to be consistent with the second law of thermodynamics. This implies the assumption of a threshold value for the existence of densification and swelling. (orig.)

  16. 11. International conference on WWER fuel performance, modelling and experimental support. Proceedings

    International Nuclear Information System (INIS)

    Manolova, M.; Boneva, S.; Mitev, M.

    2015-01-01

    This publication is a compilation of the papers presented in 11th International Conference on WWER Fuel Performance, Modeling and Experimental Support, organized by the Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences in co-operation with the International Atomic Energy Agency (IAEA), Vienna, Austria, supported by the Kozloduy Nuclear Power Plant (KNPP), the Bulgarian Nuclear Regulatory Agency, and TVEL Fuel Company, Russia. The Conference took place in hotel Bolero, Golden Sands Resort, Bulgaria, from 26 September 2015 to 3 October 2015. It was attended by 117 participants, among them more than 100 experts and specialists from 22 countries, including representatives of 3 international organizations, 16 Russian organizations and other 36 foreign institutes, nuclear fuel plants, nuclear power plants and organizations responsible for WWER and PWR fuel design, manufacturing and research, and 3 Bulgarian organizations, working for the Bulgarian nuclear industry. 70 papers have been presented in the Conference in 6 oral and 1 poster session, covering: (1) general overview lectures; (2) fuel performance and operational experience; (3) fuel modeling and experimental support; (4) fuel safety and QA; (5) spent fuel performance and management; (6) specific issues of WWER-1000 fuel reliability. The proceedings provide Summary, Conclusions and Recommendations of the Conference, together with the full text of the presentations. IAEA Technical Meeting (TM) “Achieving zero fuel failure rates: challenges and perspectives”, 1 – 2 October 2015 was organized in conjunction with the 11th International Conference on WWER Fuel Performance, Modelling and Experimental Support. The reports presented on TM sessions are included in the Conference Proceedings too

  17. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jerden, James L., E-mail: jerden@anl.gov [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Frey, Kurt [University of Notre Dame, Notre Dame, IN 46556 (United States); Ebert, William [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • This model accounts for chemistry, temperature, radiolysis, U(VI) minerals, and hydrogen effect. • The hydrogen effect dominates processes determining spent fuel dissolution rate. • The hydrogen effect protects uranium oxide spent fuel from oxidative dissolution. - Abstract: The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO{sub 2} and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO{sub 2} and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO{sub 2} and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H{sub 2}O{sub 2} and O{sub 2}). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit

  18. Permeability of EVOH Barrier Material Used in Automotive Applications: Metrology Development for Model Fuel Mixtures

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2015-02-01

    Full Text Available EVOH (Ethylene-Vinyl Alcohol materials are widely used in automotive applications in multi-layer fuel lines and tanks owing to their excellent barrier properties to aromatic and aliphatic hydrocarbons. These barrier materials are essential to limit environmental fuel emissions and comply with the challenging requirements of fast changing international regulations. Nevertheless, the measurement of EVOH permeability to model fuel mixtures or to their individual components is particularly difficult due to the complexity of these systems and their very low permeability, which can vary by several orders of magnitude depending on the permeating species and their relative concentrations. This paper describes the development of a new automated permeameter capable of taking up the challenge of measuring minute quantities as low as 1 mg/(m2.day for partial fluxes for model fuel mixtures containing ethanol, i-octane and toluene at 50°C. The permeability results are discussed as a function of the model fuel composition and the importance of EVOH preconditioning is emphasized for accurate permeability measurements. The last part focuses on the influence of EVOH conditioning on its mechanical properties and its microstructure, and further illustrates the specific behavior of EVOH in presence of ethanol oxygenated fuels. The new metrology developed in this work offers a new insight in the permeability properties of a leading barrier material and will help prevent the consequences of (bioethanol addition in fuels on environmental emissions through fuel lines and tanks.

  19. The continuous fuel cycle model and the gas cooled fast reactor

    International Nuclear Information System (INIS)

    Christie, Stuart; Lathouwers, Danny; Kloosterman, Jan Leen; Hagen, Tim van der

    2011-01-01

    The gas cooled fast reactor (GFR) is one of the generation IV designs currently being evaluated for future use. It is intended to behave as an isobreeder, producing the same amount of fuel as it consumes during operation. The actinides in the fuel will be recycled repeatedly in order to minimise the waste output to fission products only. Striking the balance of the fissioning of various actinides against transmutation and decay to achieve these goals is a complex problem. This is compounded by the time required for burn-up modelling, which can be considerable for a single cycle, and even longer for studies of fuel evolution over many cycles. The continuous fuel cycle model approximates the discrete steps of loading, operating and unloading a reactor as continuous processes. This simplifies the calculations involved in simulating the behaviour of the fuel, reducing the time needed to model the changes to the fuel composition over many cycles. This method is used to study the behaviour of GFR fuel over many cycles and compared to results obtained from direct calculations. The effects of varying fuel cycle properties such as feed material, recycling of additional actinides and reprocessing losses are also investigated. (author)

  20. Thermal conductivity degradation analyses of LWR MOX fuel by the quasi-two phase material model

    International Nuclear Information System (INIS)

    Kosaka, Yuji; Kurematsu, Shigeru; Kitagawa, Takaaki; Suzuki, Akihiro; Terai, Takayuki

    2012-01-01

    The temperature measurements of mixed oxide (MOX) and UO 2 fuels during irradiation suggested that the thermal conductivity degradation rate of the MOX fuel with burnup should be slower than that of the UO 2 fuel. In order to explain the difference of the degradation rates, the quasi-two phase material model is proposed to assess the thermal conductivity degradation of the MIMAS MOX fuel, which takes into account the Pu agglomerate distributions in the MOX fuel matrix as fabricated. As a result, the quasi-two phase model calculation shows the gradual increase of the difference with burnup and may expect more than 10% higher thermal conductivity values around 75 GWd/t. While these results are not fully suitable for thermal conductivity degradation models implemented by some industrial fuel manufacturers, they are consistent with the results from the irradiation tests and indicate that the inhomogeneity of Pu content in the MOX fuel can be one of the major reasons for the moderation of the thermal conductivity degradation of the MOX fuel. (author)