WorldWideScience

Sample records for model process steps

  1. Model-based risk analysis of coupled process steps.

    Science.gov (United States)

    Westerberg, Karin; Broberg-Hansen, Ernst; Sejergaard, Lars; Nilsson, Bernt

    2013-09-01

    A section of a biopharmaceutical manufacturing process involving the enzymatic coupling of a polymer to a therapeutic protein was characterized with regards to the process parameter sensitivity and design space. To minimize the formation of unwanted by-products in the enzymatic reaction, the substrate was added in small amounts and unreacted protein was separated using size-exclusion chromatography (SEC) and recycled to the reactor. The quality of the final recovered product was thus a result of the conditions in both the reactor and the SEC, and a design space had to be established for both processes together. This was achieved by developing mechanistic models of the reaction and SEC steps, establishing the causal links between process conditions and product quality. Model analysis was used to complement the qualitative risk assessment, and design space and critical process parameters were identified. The simulation results gave an experimental plan focusing on the "worst-case regions" in terms of product quality and yield. In this way, the experiments could be used to verify both the suggested process and the model results. This work demonstrates the necessary steps of model-assisted process analysis, from model development through experimental verification.

  2. Modeling printed circuit board curvature in relation to manufacturing process steps

    NARCIS (Netherlands)

    Schuerink, G.A.; Slomp, M.; Wits, Wessel Willems; Legtenberg, R.; Legtenberg, R.; Kappel, E.A.

    2013-01-01

    This paper presents an analytical method to predict deformations of Printed Circuit Boards (PCBs) in relation to their manufacturing process steps. Classical Lamination Theory (CLT) is used as a basis. The model tracks internal stresses and includes the results of subsequent production steps, such a

  3. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  4. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    Directory of Open Access Journals (Sweden)

    F. M. Achete

    2015-02-01

    Full Text Available In estuaries most of the sediment load is carried in suspension. Sediment dynamics differ depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. Suspended sediment concentration (SSC is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. A robust sediment model is the first step towards a chain of model including contaminants and phytoplankton dynamics and habitat modeling. This works aims to determine turbidity levels in the complex-geometry Delta of San Francisco Estuary using a process-based approach (D-Flow Flexible Mesh software. Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters, the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year (Water Year 2011. Model results shows that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The current model may act as the base model for a chain of ecological models and climate scenario forecasting.

  5. Derivation and application of time step model in solidification process simulation

    OpenAIRE

    2007-01-01

    The heat transfer during the casting solidification process includes the heat radiation of the high temperature casting and the mold, the heat convection between the casting and the mold, and the heat conduction inside the casting and from the casting to the mold. In this paper, a formula of time step in simulation of solidification is derived, considering the heat radiation, convection and conduction based on the conservation of energy. The different heat transfer conditions between the conv...

  6. Derivation and application of time step model in solidification process simulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The heat transfer during the casting solidification process includes the heat radiation of the high temperature casting and the mold, the heat convection between the casting and the mold, and the heat conduction inside the casting and from the casting to the mold. In this paper, a formula of time step in simulation of solidification is derived, considering the heat radiation, convection and conduction based on the conservation of energy. The different heat transfer conditions between the conventional sand casting and the permanent mold casting are taken into account in this formula. The characteristics of heat transfer in the interior and surface of the casting are also considered. The numerical experiments show that this formula can avoid computational dispersion, and improve the computational efficiency by about 20% in the simulation of solidification process.

  7. Derivation and application of time step model in solidification process simulation

    Directory of Open Access Journals (Sweden)

    GONG Wen-bang

    2007-08-01

    Full Text Available The heat transfer during the casting solidification process includes the heat radiation of the high temperature casting and the mold, the heat convection between the casting and the mold, and the heat conduction inside the casting and from the casting to the mold. In this paper, a formula of time step in simulation of solidification is derived, considering the heat radiation, convection and conduction based on the conservation of energy. The different heat transfer conditions between the conventional sand casting and the permanent mold casting are taken into account in this formula. The characteristics of heat transfer in the interior and surface of the casting are also considered. The numerical experiments show that this formula can avoid computational dispersion, and improve the computational efficiency by about 20% in the simulation of solidification process.

  8. Step by step: Revisiting step tolling in the bottleneck model

    NARCIS (Netherlands)

    Lindsey, C.R.; Berg, van den V.A.C.; Verhoef, E.T.

    2010-01-01

    In most dynamic traffic congestion models, congestion tolls must vary continuously over time to achieve the full optimum. This is also the case in Vickrey's (1969) 'bottleneck model'. To date, the closest approximations of this ideal in practice have so-called 'step tolls', in which the toll takes o

  9. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    OpenAIRE

    2015-01-01

    In estuaries most of the sediment load is carried in suspension. Sediment dynamics differ depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. Suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. A robust sediment model is the first step towards a chain of model including contaminants and phytoplankton dy...

  10. Topological study of the late steps of the artemisinin decomposition process: modeling the outcome of the experimentally obtained products.

    Science.gov (United States)

    Moles, Pamela; Oliva, Mónica; Safont, Vicent S

    2011-01-20

    By using 6,7,8-trioxabicyclo[3.2.2]nonane as the artemisinin model and dihydrated Fe(OH)(2) as the heme model, we report a theoretical study of the late steps of the artemisinin decomposition process. The study offers two viewpoints: first, the energetic and geometric parameters are obtained and analyzed, and hence, different reaction paths have been studied. The second point of view uses the electron localization function (ELF) and the atoms in molecules (AIM) methodology, to conduct a complete topological study of such steps. The MO analysis together with the spin density description has also been used. The obtained results agree nicely with the experimental data, and a new mechanistic proposal that explains the experimentally determined outcome of deoxiartemisinin has been postulated.

  11. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  12. Modeling heat and mass transfer in the heat treatment step of yerba maté processing

    Directory of Open Access Journals (Sweden)

    J. M. Peralta

    2007-03-01

    Full Text Available The aim of this research was to estimate the leaf and twig temperature and moisture content of yerba maté branches (Ilex paraguariensis Saint Hilaire during heat treatment, carried out in a rotary kiln dryer. These variables had to be estimated (modeling the heat and mass transfer due to the difficulty of experimental measurement in the dryer. For modeling, the equipment was divided into two zones: the flame or heat treatment zone and the drying zone. The model developed fit well with the experimental data when water loss took place only in leaves. In the first zone, leaf temperature increased until it reached 135°C and then it slowly decreased to 88°C at the exit, despite the gas temperature, which varied in this zone from 460°C to 120°C. Twig temperature increased in the two zones from its inlet temperature (25°C up to 75°C. A model error of about 3% was estimated based on theoretical and experimental data on leaf moisture content.

  13. HETC-3STEP included fragmentation process

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; Iga, Kiminori; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-03-01

    High Energy Transport Code (HETC) based on the cascade-evaporation model is modified to calculate the fragmentation cross section. For the cascade process, nucleon-nucleon cross sections are used for collision computation; effective in-medium-corrected cross sections are adopted instead of the original free-nucleon collision. The exciton model is adopted for improvement of backward nucleon-emission cross section for low-energy nucleon-incident events. The fragmentation reaction is incorporated into the original HETC as a subroutine set by the use of the systematics of the reaction. The modified HETC (HETC-3STEP/FRG) reproduces experimental fragment yields to a reasonable degree. (author)

  14. Neurocognitive Processing Steps during Remembrance

    Directory of Open Access Journals (Sweden)

    Mukundan CR

    2016-12-01

    Full Text Available A method of recording several of the electrophysiological changes seen during remembrance of experiential components of autobiographic episodes has been developed for use in forensic investigations of suspects and accused persons. The technique has been called Brain Electrical Oscillations Signature [BEOS] profiling and has been used successfully used in several hundreds of cases as aid for investigation. The two important facilitating aspects of the test are that [1] remembrance can be automatically cued by presenting short verbal statements referring to various components of an experience, and the remembrance is automatic and mandatory when a cue is presented, in normal individuals. [2] There is also no need for any response from the subject while receiving the cueing information. Knowing the occurrence of an activity in the past does not trigger any remembrance of own participation. Remembrance of participation in an activity occurs only if the person has participated in the activity referred by the probe. Remembrance has several neurocognitive components, which are reflected in the scalp EEG of a person. Sets of verbal probes representing different formulations of the episode and the different roles of individuals, as they are essentially possibilities arrived at by an investigating team, when more than one person is suspected to be involved in the activity are presented to the suspected persons. Each multichannel epoch of EEG time locked to each probe, acquired with its pre-probe baseline, is acquired and analyzed to determine the statistical significance of the differences in the different components across the EEG channels of each epoch, related to each probe, is analyzed and statistically compared. Presence of Experiential Knowledge is arrived at if all the changes indicating multiple neurocognitive processing components are significantly present.

  15. Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process.

    Science.gov (United States)

    Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2017-01-12

    Conventional pharmaceutical freeze-drying is an inefficient and expensive batch-wise process, associated with several disadvantages leading to an uncontrolled end product variability. The proposed continuous alternative, based on spinning the vials during freezing and on optimal energy supply during drying, strongly increases process efficiency and improves product quality (uniformity). The heat transfer during continuous drying of the spin frozen vials is provided via non-contact infrared (IR) radiation. The energy transfer to the spin frozen vials should be optimised to maximise the drying efficiency while avoiding cake collapse. Therefore, a mechanistic model was developed which allows computing the optimal, dynamic IR heater temperature in function of the primary drying progress and which, hence, also allows predicting the primary drying endpoint based on the applied dynamic IR heater temperature. The model was validated by drying spin frozen vials containing the model formulation (3.9mL in 10R vials) according to the computed IR heater temperature profile. In total, 6 validation experiments were conducted. The primary drying endpoint was experimentally determined via in-line near-infrared (NIR) spectroscopy and compared with the endpoint predicted by the model (50min). The mean ratio of the experimental drying time to the predicted value was 0.91, indicating a good agreement between the model predictions and the experimental data. The end product had an elegant product appearance (visual inspection) and an acceptable residual moisture content (Karl Fischer).

  16. Modeling of Combined Processing Steps for Reducing Escherichia coli O157:H7 Populations in Apple Cider

    Science.gov (United States)

    Uljas, Heidi E.; Schaffner, Donald W.; Duffy, Siobain; Zhao, Lihui; Ingham, Steven C.

    2001-01-01

    Probabilistic models were used as a systematic approach to describe the response of Escherichia coli O157:H7 populations to combinations of commonly used preservation methods in unpasteurized apple cider. Using a complete factorial experimental design, the effect of pH (3.1 to 4.3), storage temperature and time (5 to 35°C for 0 to 6 h or 12 h), preservatives (0, 0.05, or 0.1% potassium sorbate or sodium benzoate), and freeze-thaw (F-T; −20°C, 48 h and 4°C, 4 h) treatment combinations (a total of 1,600 treatments) on the probability of achieving a 5-log10-unit reduction in a three-strain E. coli O157:H7 mixture in cider was determined. Using logistic regression techniques, pH, temperature, time, and concentration were modeled in separate segments of the data set, resulting in prediction equations for: (i) no preservatives, before F-T; (ii) no preservatives, after F-T; (iii) sorbate, before F-T; (iv) sorbate, after F-T; (v) benzoate, before F-T; and (vi) benzoate, after F-T. Statistical analysis revealed a highly significant (P cider pH being the most important, followed by temperature and time, and finally by preservative concentration. All models predicted 92 to 99% of the responses correctly. To ensure safety, use of the models is most appropriate at a 0.9 probability level, where the percentage of false positives, i.e., falsely predicting a 5-log10-unit reduction, is the lowest (0 to 4.4%). The present study demonstrates the applicability of logistic regression approaches to describing the effectiveness of multiple treatment combinations in pathogen control in cider making. The resulting models can serve as valuable tools in designing safe apple cider processes. PMID:11133437

  17. Physical modeling of stepped spillways

    Science.gov (United States)

    Stepped spillways applied to embankment dams are becoming popular for addressing the rehabilitation of aging watershed dams, especially those situated in the urban landscape. Stepped spillways are typically placed over the existing embankment, which provides for minimal disturbance to the original ...

  18. Six-step reasoning model for robot-soccer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The decision-making system of robot-soccer is a kind of knowledge system. A Six-step Reasoning Model is established by formalizing its expert knowledge and decision-making process. Furthermore, many other models can be considered as mutation and evolution of the Six-step Reasoning Model.

  19. Positive steps turning into a process

    Directory of Open Access Journals (Sweden)

    Božičević Goran

    2004-01-01

    Full Text Available The conclusion of the research conducted in Croatia for QPSW in 2003 is there is no systematic, accountable and structural confrontation with the past in Croatia, but there is growing concern within the civil society about the problems incurred by the lack of such a confrontation. Two different approaches can be discerned: individual work with particular persons or target groups and advocacy that could influence the alteration of the public opinion and decision-making. Both levels are necessary and they should unfold simultaneously. The systematization and regional cooperation of documentation centers, cooperation between victim organizations and peace initiatives, the inclusion of former warriors into peace building processes the cooperation of artists and activists - represent some of the new and promising steps on the civilian scene in Croatia. The constant strengthening of the independent media and the judiciary, coupled with constant efforts on both levels - the personal and the public - raises hopes that the confrontation with the past in Croatia is a process and not a trend.

  20. Attentional spreading to task-irrelevant object features: experimental support and a 3-step model of attention for object-based selection and feature-based processing modulation.

    Science.gov (United States)

    Wegener, Detlef; Galashan, Fingal Orlando; Aurich, Maike Kathrin; Kreiter, Andreas Kurt

    2014-01-01

    Directing attention to a specific feature of an object has been linked to different forms of attentional modulation. Object-based attention theory founds on the finding that even task-irrelevant features at the selected object are subject to attentional modulation, while feature-based attention theory proposes a global processing benefit for the selected feature even at other objects. Most studies investigated either the one or the other form of attention, leaving open the possibility that both object- and feature-specific attentional effects do occur at the same time and may just represent two sides of a single attention system. We here investigate this issue by testing attentional spreading within and across objects, using reaction time (RT) measurements to changes of attended and unattended features on both attended and unattended objects. We asked subjects to report color and speed changes occurring on one of two overlapping random dot patterns (RDPs), presented at the center of gaze. The key property of the stimulation was that only one of the features (e.g., motion direction) was unique for each object, whereas the other feature (e.g., color) was shared by both. The results of two experiments show that co-selection of unattended features even occurs when those features have no means for selecting the object. At the same time, they demonstrate that this processing benefit is not restricted to the selected object but spreads to the task-irrelevant one. We conceptualize these findings by a 3-step model of attention that assumes a task-dependent top-down gain, object-specific feature selection based on task- and binding characteristics, and a global feature-specific processing enhancement. The model allows for the unification of a vast amount of experimental results into a single model, and makes various experimentally testable predictions for the interaction of object- and feature-specific processes.

  1. Attentional spreading to task-irrelevant object features: Experimental support and a 3-step model of attention for object-based selection and feature-based processing modulation

    Directory of Open Access Journals (Sweden)

    Detlef eWegener

    2014-06-01

    Full Text Available Directing attention to a specific feature of an object has been linked to different forms of attentional modulation. Object-based attention theory founds on the finding that even task-irrelevant features at the selected object are subject to attentional modulation, while feature-based attention theory proposes a global processing benefit for the selected feature even at other objects. Most studies investigated either the one or the other form of attention, leaving open the possibility that both object- and feature-specific attentional effects do occur at the same time and may just represent two sides of a single attention system. We here investigate this issue by testing attentional spreading within and across objects, using reaction time measurements to changes of attended and unattended features on both attended and unattended objects. We asked subjects to report color and speed changes occurring on one of two overlapping random dot patterns, presented at the center of gaze. The key property of the stimulation was that only one of the features (e.g. motion direction was unique for each object, whereas the other feature (e.g. color was shared by both. The results of two experiments show that co-selection of unattended features even occurs when those features have no means for selecting the object. At the same time, they demonstrate that this processing benefit is not restricted to the selected object but spreads to the task-irrelevant one. We conceptualize these findings by a 3-step model of attention that assumes a task-dependent top-down gain, object-specific feature selection based on task- and binding characteristics, and a global feature-specific processing enhancement. The model allows for the unification of a vast amount of experimental results into a single model, and makes various experimentally testable predictions for the interaction of object- and feature-specific processes.

  2. New Multi-step Worm Attack Model

    CERN Document Server

    Robiah, Y; Shahrin, S; Faizal, M A; Zaki, M Mohd; Marliza, R

    2010-01-01

    The traditional worms such as Blaster, Code Red, Slammer and Sasser, are still infecting vulnerable machines on the internet. They will remain as significant threats due to their fast spreading nature on the internet. Various traditional worms attack pattern has been analyzed from various logs at different OSI layers such as victim logs, attacker logs and IDS alert log. These worms attack pattern can be abstracted to form worms' attack model which describes the process of worms' infection. For the purpose of this paper, only Blaster variants were used during the experiment. This paper proposes a multi-step worm attack model which can be extended into research areas in alert correlation and computer forensic investigation.

  3. Process-based numerical modelling of turbidity currents on a stepped slope-to-basin profile of the Fort Brown Fm., South Africa

    Science.gov (United States)

    Empinotti, Thais; Spychala, Yvonne; Luthi, Stefan; Hodgson, David

    2016-04-01

    The depositional architectures of deep-water turbiditic deposits are strongly influenced by seafloor topography. Slope gradient variations of less than one degree might be sufficient to change the distribution of sands significantly along the basin profile. Stratigraphic units of deep-water sandstones from the Fort Brown Fm. in the Laingsburg depocentre (Karoo Basin, South Africa) are an example of that. Regional mapping and stratigraphic correlation of Units C to F (Van der Merwe et al., 2014) show a change from sand-attached systems in Units C and D to sand-detached systems in Units E and F. The sand-attached systems show a continuity of sands from entrenched slope valleys to basin-floor lobe complexes, while in the sand-detached systems there are widespread sand bypass zones of approximately 10 to 30 km where almost no sand is deposited and erosive features are observed. This is interpreted to reflect the development of a stepped slope profile. Lobe deposits occur before and after the bypass region, but significant differences in depositional architecture are noticed between these lobe deposits. The intraslope lobes are characterized by an aggradational to compensational stacking pattern and a common occurrence of erosive features, while the basin floor lobes show a lateral compensating stacking pattern with less erosive features. In this study, process-based numerical modelling of turbidity currents are performed to test if a stepped slope to basin profile with subtle gradient changes similar to that interpreted for the Laingsburg depocentre during the deposition of Unit E are suitable to generate the sediment distribution pattern observed in the field. Through an iterative modelling workflow we aim to constrain the paleoslope gradient changes using the parameters constrained from outcrop. The study also investigates how flow parameters such as sediment concentration, flow velocity, flow thickness and Froude number behave as a function of different slope

  4. Two-step estimation for inhomogeneous spatial point processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Guan, Yongtao

    This paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second order properties (K-function). Regression parameters are estimated using a Poisson likelihood score estimating function and in a second...... step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rain forests....

  5. A step-by-step procedure for pH model construction in aquatic systems

    Directory of Open Access Journals (Sweden)

    A. F. Hofmann

    2007-10-01

    Full Text Available We present, by means of a simple example, a comprehensive step-by-step procedure to consistently derive a pH model of aquatic systems. As pH modeling is inherently complex, we make every step of the model generation process explicit, thus ensuring conceptual, mathematical, and chemical correctness. Summed quantities, such as total inorganic carbon and total alkalinity, and the influences of modeled processes on them are consistently derived. The model is subsequently reformulated until numerically and computationally simple dynamical solutions, like a variation of the operator splitting approach (OSA and the direct substitution approach (DSA, are obtained. As several solution methods are pointed out, connections between previous pH modelling approaches are established. The final reformulation of the system according to the DSA allows for quantification of the influences of kinetic processes on the rate of change of proton concentration in models containing multiple biogeochemical processes. These influences are calculated including the effect of re-equilibration of the system due to a set of acid-base reactions in local equilibrium. This possibility of quantifying influences of modeled processes on the pH makes the end-product of the described model generation procedure a powerful tool for understanding the internal pH dynamics of aquatic systems.

  6. Investigation on the stepping arc stud welding process

    Institute of Scientific and Technical Information of China (English)

    Chi Qiang; Zhang Jianxun; Fu Jifei; Zhang Youquan

    2005-01-01

    Through the investigation on traditional arc stud welding process, a new welding gun and its control system were developed in this paper. The stepping arc stud welding gun was mainly made by a stepping motor as actuating unit and a screw-driven device as moving unit. A control system with a MCS-51 single-chip microcomputer as main control component was used to realize the new stud welding procedure. This new welding process with stepping stud welding gun is named as stepping arc stud welding. In the new welding process, the stud action can be looked as constituted by some micro steps. The setting and adjusting of the stepping arc welding gun behavior parameters are accomplished independently. It is indicated from the results of process tests and bending test that the stepping arc stud welding process is practicable.

  7. A model for two-step ageing

    Indian Academy of Sciences (India)

    K T Kashyap; C Ramachandra; B Chatterji; S Lele

    2000-10-01

    In commercial practice, two-step ageing is commonly used in Al–Zn–Mg alloys to produce a fine dispersion of ′ precipitates to accentuate the mechanical properties and resistance to stress corrosion cracking. While this is true in Al–Zn–Mg alloys, two-step ageing leads to inferior properties in Al–Mg–Si alloys. This controversial behaviour in different alloys can be explained by Pashley’s Kinetic model. Pashley’s model addresses the stability of clusters after two-step ageing. In the development of the model, the surface energy term between cluster and matrix is taken into account while the coherency strains between the cluster and matrix are not considered. In the present work, a model is developed which takes into account the coherency strains between cluster and matrix and defines a new stability criterion, inclusive of strain energy term. Experiments were done on AA 7010 aluminium alloy by carrying out a two-step ageing treatment and the results fit the new stability criterion. Thus it is found that the new model for two-step ageing is verified in the case of Al–Zn–Mg alloy.

  8. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  9. STEP - Product Model Data Sharing and Exchange

    DEFF Research Database (Denmark)

    Kroszynski, Uri

    1998-01-01

    - Product Data Representation and Exchange", featuring at present some 30 released parts, and growing continuously. Many of the parts are Application Protocols (AP). This article presents an overview of STEP, based upon years of involvement in three ESPRIT projects, which contributed to the development......During the last fifteen years, a very large effort to standardize the product models employed in product design, manufacturing and other life-cycle phases has been undertaken. This effort has the acronym STEP, and resulted in the International Standard ISO-10303 "Industrial Automation Systems...

  10. Two-step estimation for inhomogeneous spatial point processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Guan, Yongtao

    2009-01-01

    The paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second-order properties (K-function). Regression parameters are estimated by using a Poisson likelihood score estimating function and in the ......The paper is concerned with parameter estimation for inhomogeneous spatial point processes with a regression model for the intensity function and tractable second-order properties (K-function). Regression parameters are estimated by using a Poisson likelihood score estimating function...... and in the second step minimum contrast estimation is applied for the residual clustering parameters. Asymptotic normality of parameter estimates is established under certain mixing conditions and we exemplify how the results may be applied in ecological studies of rainforests....

  11. Critical steps in tissue processing in histopathology.

    Science.gov (United States)

    Comanescu, Maria; Annaratone, Laura; D'Armento, Giuseppe; Cardos, Georgeta; Sapino, Anna; Bussolati, Gianni

    2012-04-01

    Histopathological diagnosis using Formalin-Fixed Paraffin Embedded (FFPE) tissues is essential for the prognostic and therapeutic management of cancer patients. Pathologists are being confronted with increasing demands, from both clinicians and patients, to provide immunophenotypic and gene expression data from FFPE tissues to allow the planning of personalized therapeutic regimens. Recent improvements in the protocols for pre-analysis processing of pathological tissues aim to better preserve cellular details and to conserve antigens and nucleic acid sequences. These developments have been recently patented. The international protocol for the transporting of surgical specimens from the surgical theatre to the pathology department is to immerse the specimen in formalin. The alternative method of sealing the specimens into bags under a vacuum and then cooling is a well-accepted and environmentally safe procedure that overcomes the many drawbacks linked to transfer in formalin. Importantly, RNA is notoriously poorly preserved in FFPE tissue. Due to this, successful procedures for the extraction of genetic information from archival tissues have been the object of several studies and patents. Novel molecular approaches for RT-qPCR and gene array analysis on FFPE tissues are presented here. Moreover, a major advance is reported in this study, the observation that tissue fixation in cold conditions allows a much better preservation of nucleic acid sequences.

  12. Modular process modeling for OPC

    Science.gov (United States)

    Keck, M. C.; Bodendorf, C.; Schmidtling, T.; Schlief, R.; Wildfeuer, R.; Zumpe, S.; Niehoff, M.

    2007-03-01

    Modular OPC modeling, describing mask, optics, resist and etch processes separately is an approach to keep efforts for OPC manageable. By exchanging single modules of a modular OPC model, a fast response to process changes during process development is possible. At the same time efforts can be reduced, since only single modular process steps have to be re-characterized as input for OPC modeling as the process is adjusted and optimized. Commercially available OPC tools for full chip processing typically make use of semi-empirical models. The goal of our work is to investigate to what extent these OPC tools can be applied for modeling of single process steps as separate modules. For an advanced gate level process we analyze the modeling accuracy over different process conditions (focus and dose) when combining models for each process step - optics, resist and etch - for differing single processes to a model describing the total process.

  13. Harmonically-Interacting Step Approach to the Relaxation Process of Vicinal Surface. II. The Relaxation Process Induced by the Step-Edge Diffusion

    Science.gov (United States)

    Yamamoto, Takao

    1999-09-01

    The relaxation processes of vicinal surface induced by the diffusion of adatoms along the step edge are analyzed by the Ginzburg-Landau-Langevin equation based on the harmonically-interacting step (HIS) picture.By the equation, the time evolutions of the step deformation width and the step fluctuation width are analyzed.For the relaxation process induced by the infinite-length step-edge diffusion, these quantities show the “universal” scaling behaviors.However, both of the universality and the scaling behavior disappear for the finite-length diffusion.To verify the results quantitatively, we performed the Monte-Carlo calculations for the solid-on-solid step terrace-step-kink model.The results from the Monte-Carlo calculations agree with the analytic results from the HIS picture very well.

  14. Short-term time step convergence in a climate model.

    Science.gov (United States)

    Wan, Hui; Rasch, Philip J; Taylor, Mark A; Jablonowski, Christiane

    2015-03-01

    This paper evaluates the numerical convergence of very short (1 h) simulations carried out with a spectral-element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the horizontal grid spacing is fixed at approximately 110 km, the process-coupling time step is varied between 1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is paid to the behavior of the parameterized subgrid-scale physics. First, a dynamical core test with reduced dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Second, results from full-physics CAM5 simulations with reduced physics and dynamics time steps are discussed. It is shown that the convergence rate is 0.4-considerably slower than the expected rate of 1.0. Sensitivity experiments indicate that, among the various subgrid-scale physical parameterizations, the stratiform cloud schemes are associated with the largest time-stepping errors, and are the primary cause of slow time step convergence. While the details of our findings are model specific, the general test procedure is applicable to any atmospheric general circulation model. The need for more accurate numerical treatments of physical parameterizations, especially the representation of stratiform clouds, is likely common in many models. The suggested test technique can help quantify the time-stepping errors and identify the related model sensitivities.

  15. Implementation of a Proposed Model of a Constructivist Teaching-Learning Process – A Step Towards an Outcome Based Education in Chemistry Laboratory Instruction

    Directory of Open Access Journals (Sweden)

    Dr. Paz B. Reyes

    2013-12-01

    Full Text Available This study implemented the proposed model of a constructivist teachinglearning process and determined the extent by which the students manifested the institutional learning outcomes which include competency, credibility, commitment and collaboration. It also investigated if there was an improvement in the learning outcomes after the implementation of the constructivist teachinglearning process and determined the students’ acceptance of the constructivist teaching-learning process. Towards the end a plan of action was proposed to enhance the students’ manifestation of the institutional learning outcomes. It made use of the qualitative- quantitative method particularly the descriptive design. The results of the study revealed that the students manifest competency, credibility, commitment and collaboration as they accept positively the constructivist teaching-learning process in their chemistry laboratory subject. It can be deduced from the findings that the constructivist teaching-learning process improved the learning outcomes of the students. The use of the proposed plan of action is recommended for an effective chemistry laboratory instruction.

  16. Designing webliographies in an effective and simple manner: a step by step process

    Directory of Open Access Journals (Sweden)

    Dariush Alimohammadi

    2004-08-01

    Full Text Available This paper explains web-based information retrieval as one of the main research interests of information professionals during the last decade, and introduces machine-oriented and human-oriented approaches in the designing process of Internet search tools and concerns with the second approach as a basis for the discussion. Then it defines the concept of webliography as a special type human-edited search tools. It is in fact an enumerative list of hypertext links and a gateway to the scientific sources of information on the Net, whether annotated or not. The existence and development of webliographies on the Net are justified based on a brief literature review. 14 phases of webliography production process are also enumerated step by step and a conclusion is provided finally.

  17. Integrated Modelling - the next steps (Invited)

    Science.gov (United States)

    Moore, R. V.

    2010-12-01

    modelling demonstrations and to achieve a critical mass of accessible linkable models. These models will be spread across the world and there will need to be a search mechanism to find them. If the benefits of integrated modelling are to become widely available, ways will have to be found to automate and hide the linking process. All the above will require considerable resources. It is proposed to build these resources by creating an international community of practice based upon the open source model. The talk will expand upon the research and development required.

  18. Methods to construct a step-by-step beginner’s guide to decision analytic cost-effectiveness modeling

    Science.gov (United States)

    Rautenberg, Tamlyn; Hulme, Claire; Edlin, Richard

    2016-01-01

    Background Although guidance on good research practice in health economic modeling is widely available, there is still a need for a simpler instructive resource which could guide a beginner modeler alongside modeling for the first time. Aim To develop a beginner’s guide to be used as a handheld guide contemporaneous to the model development process. Methods A systematic review of best practice guidelines was used to construct a framework of steps undertaken during the model development process. Focused methods review supplemented this framework. Consensus was obtained among a group of model developers to review and finalize the content of the preliminary beginner’s guide. The final beginner’s guide was used to develop cost-effectiveness models. Results Thirty-two best practice guidelines were data extracted, synthesized, and critically evaluated to identify steps for model development, which formed a framework for the beginner’s guide. Within five phases of model development, eight broad submethods were identified and 19 methodological reviews were conducted to develop the content of the draft beginner’s guide. Two rounds of consensus agreement were undertaken to reach agreement on the final beginner’s guide. To assess fitness for purpose (ease of use and completeness), models were developed independently and by the researcher using the beginner’s guide. Conclusion A combination of systematic review, methods reviews, consensus agreement, and validation was used to construct a step-by-step beginner’s guide for developing decision analytical cost-effectiveness models. The final beginner’s guide is a step-by-step resource to accompany the model development process from understanding the problem to be modeled, model conceptualization, model implementation, and model checking through to reporting of the model results. PMID:27785080

  19. New Multi-step Worm Attack Model

    OpenAIRE

    Robiah, Y.; Rahayu, S. Siti; Shahrin , S.; M. FAIZAL A.; Zaki, M. Mohd; Marliza, R.

    2010-01-01

    The traditional worms such as Blaster, Code Red, Slammer and Sasser, are still infecting vulnerable machines on the internet. They will remain as significant threats due to their fast spreading nature on the internet. Various traditional worms attack pattern has been analyzed from various logs at different OSI layers such as victim logs, attacker logs and IDS alert log. These worms attack pattern can be abstracted to form worms' attack model which describes the process of worms' infection. Fo...

  20. Dynamics Of Innovation Diffusion With Two Step Decision Process

    Directory of Open Access Journals (Sweden)

    Szymczyk Michał

    2014-02-01

    Full Text Available The paper discusses the dynamics of innovation diffusion among heterogeneous consumers. We assume that customers’ decision making process is divided into two steps: testing the innovation and later potential adopting. Such a model setup is designed to imitate the mobile applications market. An innovation provider, to some extent, can control the innovation diffusion by two parameters: product quality and marketing activity. Using the multi-agent approach we identify factors influencing the saturation level and the speed of innovation adaptation in the artificial population. The results show that the expected level of innovation adoption among customer’s friends and relative product quality and marketing campaign intensity are crucial factors explaining them. It has to be stressed that the product quality is more important for innovation saturation level and marketing campaign has bigger influence on the speed of diffusion. The topology of social network between customers is found important, but within investigated parameter range it has lover impact on innovation diffusion dynamics than the above mentioned factors

  1. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.

    Science.gov (United States)

    Farazdaghi, Hadi

    2011-02-01

    Photosynthesis is the origin of oxygenic life on the planet, and its models are the core of all models of plant biology, agriculture, environmental quality and global climate change. A theory is presented here, based on single process biochemical reactions of Rubisco, recognizing that: In the light, Rubisco activase helps separate Rubisco from the stored ribulose-1,5-bisphosphate (RuBP), activates Rubisco with carbamylation and addition of Mg²(+), and then produces two products, in two steps: (Step 1) Reaction of Rubisco with RuBP produces a Rubisco-enediol complex, which is the carboxylase-oxygenase enzyme (Enco) and (Step 2) Enco captures CO₂ and/or O₂ and produces intermediate products leading to production and release of 3-phosphoglycerate (PGA) and Rubisco. PGA interactively controls (1) the carboxylation-oxygenation, (2) electron transport, and (3) triosephosphate pathway of the Calvin-Benson cycle that leads to the release of glucose and regeneration of RuBP. Initially, the total enzyme participates in the two steps of the reaction transitionally and its rate follows Michaelis-Menten kinetics. But, for a continuous steady state, Rubisco must be divided into two concurrently active segments for the two steps. This causes a deviation of the steady state from the transitional rate. Kinetic models are developed that integrate the transitional and the steady state reactions. They are tested and successfully validated with verifiable experimental data. The single-process theory is compared to the widely used two-process theory of Farquhar et al. (1980. Planta 149, 78-90), which assumes that the carboxylation rate is either Rubisco-limited at low CO₂ levels such as CO₂ compensation point, or RuBP regeneration-limited at high CO₂. Since the photosynthesis rate cannot increase beyond the two-process theory's Rubisco limit at the CO₂ compensation point, net photosynthesis cannot increase above zero in daylight, and since there is always respiration at

  2. PID controller auto-tuning based on process step response and damping optimum criterion.

    Science.gov (United States)

    Pavković, Danijel; Polak, Siniša; Zorc, Davor

    2014-01-01

    This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations.

  3. A Brief Analysis to the 3-Step Translation Process

    Institute of Scientific and Technical Information of China (English)

    丘胜祥

    2009-01-01

    With the development of science and technology,the culture of translation still is multiplied continuously.However.how can you translate a good target text quickly and accurately?We should master transhtion skills and seep basic steps in translating.As the matter of fact,translation is expressed language actives through using a language to another language exchanged with the accuracy and integrity of thinking.Some call it an art,and yet some others take it as a career.but no matter what the purpose is,the process oftranslation has its certain steps.A translator will have to understand the source text fust.and then conduct her/his translation and then,proofread the source text.In addition,translation standard,which is Faithfulness,Expressiveness,Elegance,phy an important role in the translation process.A brief analysis of the problems mentioned above is made.

  4. Methods to construct a step-by-step beginner’s guide to decision analytic cost-effectiveness modeling

    Directory of Open Access Journals (Sweden)

    Rautenberg T

    2016-10-01

    Full Text Available Tamlyn Rautenberg,1 Claire Hulme,2 Richard Edlin,3 1Health Economics and HIV/AIDS Research Division (HEARD, University of Kwazulu Natal, KwaZulu Natal, South Africa; 2Leeds Institute of Health Sciences (LIHS, Academic Unit of Health Economics (AUHE, University of Leeds, West Yorkshire, United Kingdom; 3Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand Background: Although guidance on good research practice in health economic modeling is widely available, there is still a need for a simpler instructive resource which could guide a beginner modeler alongside modeling for the first time. Aim: To develop a beginner’s guide to be used as a handheld guide contemporaneous to the model development process. Methods: A systematic review of best practice guidelines was used to construct a framework of steps undertaken during the model development process. Focused methods review supplemented this framework. Consensus was obtained among a group of model developers to review and finalize the content of the preliminary beginner’s guide. The final beginner’s guide was used to develop cost-effectiveness models. Results: Thirty-two best practice guidelines were data extracted, synthesized, and critically evaluated to identify steps for model development, which formed a framework for the beginner’s guide. Within five phases of model development, eight broad submethods were identified and 19 methodological reviews were conducted to develop the content of the draft beginner’s guide. Two rounds of consensus agreement were undertaken to reach agreement on the final beginner’s guide. To assess fitness for purpose (ease of use and completeness, models were developed independently and by the researcher using the beginner’s guide. Conclusion: A combination of systematic review, methods reviews, consensus agreement, and validation was used to construct a step-by-step beginner’s guide for developing decision analytical

  5. NUMERICAL SIMULATION FOR THE STEPPED SPILLWAY OVERFLOW WITH TURBULENCE MODEL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Stepped spillways have increasingly become a very important measure for flood discharge and energy dissipation. Therefore, the velocity, pressure and other characteristics of the flow on the stepped spillway should be known clearly. But so far the study for the stepped spillway overflow is only based on the model test. In this paper, the stepped spillway overflow was simulated by the Reynolds stress turbulence model. The simulation results were analyzed and compared with measured data, which shows they are satisfactory.

  6. On a single step technique for adaptive array processing

    Science.gov (United States)

    Worms, Josef

    1986-07-01

    An improved adaptation algorithm designed for real time signal processing in antenna arrays is presented. The method is used for determining the filter weights in a sidelobe cancellation system. The Wiener filter equation is solved by using the well known Gauss-Seidel method and a sample matrix estimate. This algorithm (SSM - Single Step Method) combines rapid convergence and numerical stability. Compared with the direct SMI-technique and the Widrow LMS-algorithm, the properties of the proposed algorithm lead us to the conclusion that it is especially well suited for airborne antenna array applications.

  7. Two-step variable selection in quantile regression models

    Directory of Open Access Journals (Sweden)

    FAN Yali

    2015-06-01

    Full Text Available We propose a two-step variable selection procedure for high dimensional quantile regressions,in which the dimension of the covariates, pn is much larger than the sample size n. In the first step, we perform l1 penalty, and we demonstrate that the first step penalized estimator with the LASSO penalty can reduce the model from an ultra-high dimensional to a model whose size has the same order as that of the true model, and the selected model can cover the true model. The second step excludes the remained irrelevant covariates by applying the adaptive LASSO penalty to the reduced model obtained from the first step. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. We conduct a simulation study and a real data analysis to evaluate the finite sample performance of the proposed approach.

  8. Preimpregnation: an important step for biomass refining processes

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, K.M.F.; Jollez, P.; Chornet, E. [Universite de Sherbrooke, Quebec (Canada). Departement de genie chimique

    1998-12-31

    Lignocellulosics treatment via rapid aqueous/steam processes is a heterogeneous reaction that can result in a non-uniform product distribution due to poor contact of reactants within the lignocellulosic matrix. This unfavourable situation could be aggravated when the steam treatment is applied to lignocellulosic using restricted amounts of water such as in ``steam explosion`` processes. However, by impregnation prior to steam treatment, uniform product distributions can be achieved. In the impregnation steps, reactive agents are forced into the lignocellulosic matrix at relatively low temperatures, preferably below 100{sup o}C. This warrants a uniform chemical concentration through the matrix. The advantages of impregnation are more evident when straws are fractionated using aqueous/steam treatments: significant amounts of extractives can be removed in the impregnation steps. We also show that during barley straw impregnation at different levels of NaOH and three temperatures, 25, 60 and 100{sup o}C, for 10 min of impregnation, a considerable amount of ash is removed (up to 86 wt% of the initial ash) along with extractives. Therefore, an improved quality of fibers can be obtained from straw by impregnation prior to steam treatment. (author)

  9. Formalising the Continuous/Discrete Modeling Step

    Directory of Open Access Journals (Sweden)

    Wen Su

    2011-06-01

    Full Text Available Formally capturing the transition from a continuous model to a discrete model is investigated using model based refinement techniques. A very simple model for stopping (eg. of a train is developed in both the continuous and discrete domains. The difference between the two is quantified using generic results from ODE theory, and these estimates can be compared with the exact solutions. Such results do not fit well into a conventional model based refinement framework; however they can be accommodated into a model based retrenchment. The retrenchment is described, and the way it can interface to refinement development on both the continuous and discrete sides is outlined. The approach is compared to what can be achieved using hybrid systems techniques.

  10. Formalising the Continuous/Discrete Modeling Step

    CERN Document Server

    Banach, Richard; Su, Wen; Huang, Runlei; 10.4204/EPTCS.55.8

    2011-01-01

    Formally capturing the transition from a continuous model to a discrete model is investigated using model based refinement techniques. A very simple model for stopping (eg. of a train) is developed in both the continuous and discrete domains. The difference between the two is quantified using generic results from ODE theory, and these estimates can be compared with the exact solutions. Such results do not fit well into a conventional model based refinement framework; however they can be accommodated into a model based retrenchment. The retrenchment is described, and the way it can interface to refinement development on both the continuous and discrete sides is outlined. The approach is compared to what can be achieved using hybrid systems techniques.

  11. Multi-agent System for Process Planning in Step-nc Based Manufacturing

    Directory of Open Access Journals (Sweden)

    Juan Du

    2012-09-01

    Full Text Available In order to realize STEP-NC-oriented computer numerical control machining and achieve optimal performance in manufacturing, a multi-agent system for process planning in STEP-NC based manufacturing was designed. By analyzing the characteristic of STEP-NC data model, a manufacturing feature-oriented process planning method was proposed in this study and the distributed artificial intelligence methods, namely collaborative multi-agent was employed to accomplish process planning of part. The proposed multi-agent system consists of three types of autonomous agents, which are global manager agents, planning agents and manufacturing resource agents, respectively. Process planning can be automatically completed by multiple agents’ cooperation. Each agent is capable of communicating to each other through improved Knowledge Query and Manipulation Language (KQML. At last, one test part was designed and simulated to demonstrate the capabilities of this research in the study.

  12. Steps towards improvement of Latvian geoid model

    Science.gov (United States)

    Janpaule, Inese; Balodis, Janis

    2013-04-01

    The high precision geoid model is essential for the normal height determination when the GNSS positioning methods are used. In Latvia for more than 10 years gravimetric geoid model LV'98 is broadely used by surveyors and scientists. The computation of this model was performed using GRAVSOFT software using gravimetric measurements, digitised gravimetric data and satellite altimetry data over Baltic sea, the estimated accuracy of LV'98 geoid model is 6-8cm. (J. Kaminskis, 2010) However, the accuracy of Latvian geoid model should be improved. In order to aacomplish this task, the evaluation of several methods and test computations have been made. KTH method was developed at the Royal Institute of Technology (KTH) in Stockholm. This method utilizes the least-squares modification of the Stokes integral for the biased, unbiased, and optimum stochastic solutions. The modified Bruns-Stokes integral combines the regional terrestrial gravity data with a global geopotential model (GGM) (R. Kiamehr, 2006). DFHRS (Digital Finite-Element Height Reference Surface) method has been developed at the Karlsruhe University of Applied Sciences, Faculty of Geomatics (R. Jäger, 1999). In the DFHRS concept the area is divided into smaller finite elements - meshes. The height reference surface N in each mesh is calculated by a polynomial in term of (x,y) coordinates. Each group of meshes form a patch, which are related to a set of individual parameters, which are introduced by the datum parametrizations. As an input data the European Gravimetric Geoid Model 1997 (EGG97) and 102 GNSS/levelling points were used. In order to improve the Latvian geoid model quality and accuracy the development of mobile digital zenith telescope for determination of vertical deflections with 0.1" expected accuracy is commenced at University of Latvia, Institute of Geodesy and Geoinformation. The project was started in 2010, the goal of it is to design a portable, cheap and robust instrument, using industrially

  13. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhi, E-mail: c2002z@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Li Feng [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China); Hao Limei [Department of Applied Physics, Xi' an University of Science and Technology, Xi' an 710054 (China); Chen Anqi; Kong Youchao [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710129 (China)

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl{sub 2}{center_dot}4H{sub 2}O), myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163 Degree-Sign and rolling angle is less than 3 Degree-Sign . Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  14. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    Science.gov (United States)

    Chen, Zhi; Li, Feng; Hao, Limei; Chen, Anqi; Kong, Youchao

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163° and rolling angle is less than 3°. Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  15. Two-Step Processes and IR Recording in Photorefractive Crystals

    Science.gov (United States)

    Kraetzig, Eckhard; Buse, Karsten

    Two-step excitation processes have been used for hologram storage in photorefractive crystals. By this means the interference pattern can be formed with red or near-IR light and nondestructive readout of information is possible. Often shallow levels are involved in the holographic recording process in photorefractive crystals. The shallow levels can be populated by illumination with visible or UV pulses forming states with relatively long lifetimes, thus sensitizing the crystals for holographic recording with IR pulses. In LiNbO3 and LiTaO3 the most important shallow levels have been identified. They result from NbLi^5+ and TaLi^5+ antisite defects (Nb5+ or Ta5+ on Li+ site). The crystals can also be pre-illuminated with visible light from a cw argon laser or a xenon lamp and holograms can be recorded with red light from a laser diode. The sensitization process is possible for other photorefractive crystals, too. The holograms can be read nondestructively with IR light and can be erased with green light. The hologram lifetime is limited by electron tunneling or by an ionic conductivity. Lifetimes up to years can be achieved. Recording of components for telecommunication applications with IR light allows one to create reconfigurable and thus more versatile devices.

  16. IR recording in photorefractive crystals via two-step processes

    Science.gov (United States)

    Kraetzig, Eckhard E.

    2002-01-01

    Two-step excitation processes have been used for hologram storage in photorefractive crystals. Then the interference pattern can be formed with red or near-IR light and nondestructive readout of information is possible. Often shallow levels are involved in the holographic recording process in photorefractive crystals. The shallow levels can be populated by illumination with visible or UV pulses forming states with relatively long life times, thus sensitizing the crystals for holographic recording with IR pulses. In LiNbO3 and LiTaO3 the most important shallow levels have been identified. They result from NbLi5+ and TaLi5+ antisite defects (Nb5+ or Ta5+ on Li+ site). The crystals can also be pre-illuminated with visible light of a cw argon laser or of a Xenon lamp and holograms can be recorded with red light of a laser diode. The sensitization process is possible for other photorefractive crystals, too. The holograms can be read nondestructively with IR light and can be erased with green light.

  17. Two step processes for meson production at the time of flight spectrometer at cosy.

    CERN Document Server

    Hassan, A M

    2000-01-01

    in this work the contribution of the two step mechanism to the cross section of the reaction pd-> sup 3 He eta is presented in a model calculation. a simple approach is used where relativistic kinematics and empirical cross sections are employed. the on-and off -shell effects and the selective fusion of the baryons to sup 3 He on the velocity matching concept are described . for the first time the folding process includes the angular and energy dependence of the two subsequent steps (step A:pp -> d pi sup + and step B:pi sup + n-> eta p) in the simulation . the angular and energy dependences and the fusion probability of the baryons to a bound baryonic system ( sup 3 He )are used to weigh the events in each corresponding step. the velocity matching is the reason for selective fusion of the baryons to sup 3 He. the angular distribution predicted by the two step processes shows a forward peak of sup 3 He in the center of mass system except in a small range of 0 to 10 MeV excess energy where the cross section is...

  18. Solute transport modeling using morphological parameters of step-pool reaches

    Science.gov (United States)

    JiméNez, Mario A.; Wohl, Ellen

    2013-03-01

    Step-pool systems have been widely studied during the past few years, resulting in enhanced knowledge of mechanisms for sediment transport, energy dissipation and patterns of self-organization. We use rhodamine tracer data collected in nine step-pool reaches during high, intermediate and low flows to explore scaling of solute transport processes. Using the scaling patterns found, we propose an extension of the Aggregated Dead Zone (ADZ) approach for solute transport modeling based on the morphological features of step-pool units and their corresponding inherent variability within a stream reach. In addition to discharge, the reach-average bankfull width, mean step height, and the ratio of pool length to step-to-step length can be used as explanatory variables for the dispersion process within the studied reaches. These variables appeared to be sufficient for estimating ADZ model parameters and simulating solute transport in predictive mode for applications in reaches lacking tracer data.

  19. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  20. One small step: world's first integrated EUVL process line

    Science.gov (United States)

    Roberts, Jeanette M.; Bacuita, Terence; Bristol, Robert L.; Cao, Heidi B.; Chandhok, Manish; Lee, Sang H.; Panning, Eric M.; Shell, Melissa; Zhang, Guojing; Rice, Bryan J.

    2005-05-01

    The Intel lithography roadmap calls for Extreme Ultraviolet Lithography (EUVL) to be used for the 32 nm node. With the installation of the EUV Micro-Exposure Tool (MET) complete, Intel now has the world's first integrated EUVL process line including the first commercial EUV exposure tool. This process line will be used to develop the EUV technology, including mask and resist, and to investigate issues such as defect printability. It also provides a test-bed to discover and resolve problems associated with using this novel technology in a fab (not lab) environment. Over 22,000 fields have been exposed, the discharge-produced plasma light source has operated for 50,000,000 pulses, 8 masks have been fabricated, and 8 resists have been characterized. The MET combines high resolution capability with Intel's advanced processing facilities to prepare EUVL for high-volume manufacturing (HVM). In this paper we review the MET installation and facilities, novel capabilities of the linked track, data on optics quality and modeled tool capability, and the MET mask fabrication process. We present data on tool performance including printing 45 nm 1/2 pitch lines with 160 nm depth of focus and 27 nm isolated lines. We show tool accuracy and repeatability data, and discuss issues uncovered during installation and use.

  1. Online Rule Generation Software Process Model

    National Research Council Canada - National Science Library

    Sudeep Marwaha; Alka Aroa; Satma M C; Rajni Jain; R C Goyal

    2013-01-01

    .... The software process model for rule generation using decision tree classifier refers to the various steps required to be executed for the development of a web based software model for decision rule generation...

  2. Advanced oxidation processes: overall models

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Curco, D.; Addardak, A.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica. Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    Modelling AOPs implies to consider all the steps included in the process, that means, mass transfer, kinetic (reaction) and luminic steps. In this way, recent works develop models which relate the global reaction rate to catalyst concentration and radiation absorption. However, the application of such models requires to know what is the controlling step for the overall process. In this paper, a simple method is explained which allows to determine the controlling step. Thus, it is assumed that reactor is divided in two hypothetical zones (dark and illuminated), and according to the experimental results, obtained by varying only the reaction volume, it can be decided if reaction occurs only in the illuminated zone or in the all reactor, including dark zone. The photocatalytic degradation of phenol, by using titania degussa P-25 as catalyst, is studied as reaction model. The preliminary results obtained are presented here, showing that it seems that, in this case, reaction only occurs in the illuminated zone of photoreactor. A model is developed to explain this behaviour. (orig.)

  3. A single-step genomic model with direct estimation of marker effects.

    Science.gov (United States)

    Liu, Z; Goddard, M E; Reinhardt, F; Reents, R

    2014-09-01

    Compared with the currently widely used multi-step genomic models for genomic evaluation, single-step genomic models can provide more accurate genomic evaluation by jointly analyzing phenotypes and genotypes of all animals and can properly correct for the effect of genomic preselection on genetic evaluations. The objectives of this study were to introduce a single-step genomic model, allowing a direct estimation of single nucleotide polymorphism (SNP) effects, and to develop efficient computing algorithms for solving equations of the single-step SNP model. We proposed an alternative to the current single-step genomic model based on the genomic relationship matrix by including an additional step for estimating the effects of SNP markers. Our single-step SNP model allowed flexible modeling of SNP effects in terms of the number and variance of SNP markers. Moreover, our single-step SNP model included a residual polygenic effect with trait-specific variance for reducing inflation in genomic prediction. A kernel calculation of the SNP model involved repeated multiplications of the inverse of the pedigree relationship matrix of genotyped animals with a vector, for which numerical methods such as preconditioned conjugate gradients can be used. For estimating SNP effects, a special updating algorithm was proposed to separate residual polygenic effects from the SNP effects. We extended our single-step SNP model to general multiple-trait cases. By taking advantage of a block-diagonal (co)variance matrix of SNP effects, we showed how to estimate multivariate SNP effects in an efficient way. A general prediction formula was derived for candidates without phenotypes, which can be used for frequent, interim genomic evaluations without running the whole genomic evaluation process. We discussed various issues related to implementation of the single-step SNP model in Holstein populations with an across-country genomic reference population.

  4. Stepped spillway optimization through numerical and physical modeling

    Directory of Open Access Journals (Sweden)

    Hamed Sarkardeh, Morteza Marosi, Raza Roshan

    2015-01-01

    Full Text Available The spillway is among the most important structures of a dam. It is importance for the spillway to be designed properly and passes flood flow safely with more energy dissipation. The zone which ogee spillway crest and stepped chute profile are joined with each other is important in design view. In the present study, a physical model as well as a numerical model was employed on a case study of stepped spillway to modify the transitional zone and improve flow pattern over the spillway. Many alternatives were examined and optimized. Finally, the performance of the selected alternative was checked for different flow conditions, air entrainment and energy dissipation. To simulate the turbulence phenomenon, RNG model and for free surface VOF model was selected in the numerical model. Results of the numerical and physical models were compared and good agreement concluded in flow conditions and energy dissipation.

  5. Efficient vector hysteresis modeling using rotationally coupled step functions

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A., E-mail: adlyamr@gmail.com; Abd-El-Hafiz, S.K., E-mail: sabdelhafiz@gmail.com

    2012-05-01

    Vector hysteresis models are usually used as sub-modules of field computation software tools. When dealing with a massive field computation problem, computational efficiency and practicality of such models become crucial. In this paper, generalization of a recently proposed computationally efficient vector hysteresis model based upon interacting step functions is presented. More specifically, the model is generalized to cover vector hysteresis modeling of both isotropic and anisotropic magnetic media. Model configuration details as well as experimental testing and simulation results are given in the paper.

  6. Treatment of fish processing wastewater in a one-step or two-step upflow anaerobic sludge blanket (UASB) reactor

    NARCIS (Netherlands)

    Paluenzuela-Rollon, A.; Zeeman, G.; Lubberding, H.J.; Lettinga, G.; Alaerts, G.J.

    2002-01-01

    The performance of one-step UASB reactors treating fish processing wastewater of different lipid levels was determined using artificially generated influent simulating that of the canning of sardines and tuna. The organic loading rates (OLR) and the hydraulic retention times (HRT) were 5-8 g COD.l(-

  7. Treatment of fish processing wastewater in a one-step or two-step upflow anaerobic sludge blanket (UASB) reactor

    NARCIS (Netherlands)

    Paluenzuela-Rollon, A.; Zeeman, G.; Lubberding, H.J.; Lettinga, G.; Alaerts, G.J.

    2002-01-01

    The performance of one-step UASB reactors treating fish processing wastewater of different lipid levels was determined using artificially generated influent simulating that of the canning of sardines and tuna. The organic loading rates (OLR) and the hydraulic retention times (HRT) were 5-8 g

  8. A Virtual Environment for Process Management. A Step by Step Implementation

    Science.gov (United States)

    Mayer, Sergio Valenzuela

    2003-01-01

    In this paper it is presented a virtual organizational environment, conceived with the integration of three computer programs: a manufacturing simulation package, an automation of businesses processes (workflows), and business intelligence (Balanced Scorecard) software. It was created as a supporting tool for teaching IE, its purpose is to give…

  9. Modified pendulum model for mean step length estimation.

    Science.gov (United States)

    González, Rafael C; Alvarez, Diego; López, Antonio M; Alvarez, Juan C

    2007-01-01

    Step length estimation is an important issue in areas such as gait analysis, sport training or pedestrian localization. It has been shown that the mean step length can be computed by means of a triaxial accelerometer placed near the center of gravity of the human body. Estimations based on the inverted pendulum model are prone to underestimate the step length, and must be corrected by calibration. In this paper we present a modified pendulum model in which all the parameters correspond to anthropometric data of the individual. The method has been tested with a set of volunteers, both males and females. Experimental results show that this method provides an unbiased estimation of the actual displacement with a standard deviation lower than 2.1%.

  10. Step-by-Step Model for the Study of the Apriori Algorithm for Predictive Analysis

    Directory of Open Access Journals (Sweden)

    Daniel Grigore ROŞCA

    2015-06-01

    Full Text Available The goal of this paper was to develop an educational oriented application based on the Data Mining Apriori Algorithm which facilitates both the research and the study of data mining by graduate students. The application could be used to discover interesting patterns in the corpus of data and to measure the impact on the speed of execution as a function of problem constraints (value of support and confidence variables or size of the transactional data-base. The paper presents a brief overview of the Apriori Algorithm, aspects about the implementation of the algorithm using a step-by-step process, a discussion of the education-oriented user interface and the process of data mining of a test transactional data base. The impact of some constraints on the speed of the algorithm is also experimentally measured without a systematic review of different approaches to increase execution speed. Possible applications of the implementation, as well as its limits, are briefly reviewed.

  11. Multivariate statistical analysis of a multi-step industrial processes

    DEFF Research Database (Denmark)

    Reinikainen, S.P.; Høskuldsson, Agnar

    2007-01-01

    Monitoring and quality control of industrial processes often produce information on how the data have been obtained. In batch processes, for instance, the process is carried out in stages; some process or control parameters are set at each stage. However, the obtained data might not be utilized....... This approach will show how the process develops from a data point of view. The procedure is illustrated on a relatively simple industrial batch process, but it is also applicable in a general context, where knowledge about the variables is available....

  12. The Creative Music Strategy: A Seven-Step Instructional Model

    Science.gov (United States)

    Robinson, Nathalie G.; Bell, Cindy L.; Pogonowski, Lenore

    2011-01-01

    The creative music strategy is a dynamic and flexible seven-step model for guiding general music students through the music concepts of improvisation and composition, followed by critical reflection. These are musical behaviors that cultivate the development of our students' deeper conceptual understandings and music independence by helping them…

  13. Step-indexed Kripke models over recursive worlds

    DEFF Research Database (Denmark)

    Birkedal, Lars; Reus, Bernhard; Schwinghammer, Jan

    2011-01-01

    worlds that are recursively defined in a category of metric spaces. In this paper, we broaden the scope of this technique from the original domain-theoretic setting to an elementary, operational one based on step indexing. The resulting method is widely applicable and leads to simple, succinct models...

  14. Problem Resolution through Electronic Mail: A Five-Step Model.

    Science.gov (United States)

    Grandgenett, Neal; Grandgenett, Don

    2001-01-01

    Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…

  15. Stutter-Step Models of Performance in School

    Science.gov (United States)

    Morgan, Stephen L.; Leenman, Theodore S.; Todd, Jennifer J.; Kentucky; Weeden, Kim A.

    2013-01-01

    To evaluate a stutter-step model of academic performance in high school, this article adopts a unique measure of the beliefs of 12,591 high school sophomores from the Education Longitudinal Study, 2002-2006. Verbatim responses to questions on occupational plans are coded to capture specific job titles, the listing of multiple jobs, and the listing…

  16. Semiclassical two-step model for strong-field ionization

    CERN Document Server

    Shvetsov-Shilovski, N I; Madsen, L B; Räsänen, E; Lemell, C; Burgdörfer, J; Arbó, D G; Tőkési, K

    2016-01-01

    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte-Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schr\\"odinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fan-like interference patterns in the low-energy part of the two-dimensional...

  17. Modeling multiphase materials processes

    CERN Document Server

    Iguchi, Manabu

    2010-01-01

    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  18. Product Development Process Modeling

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The use of Concurrent Engineering and other modern methods of product development and maintenance require that a large number of time-overlapped "processes" be performed by many people. However, successfully describing and optimizing these processes are becoming even more difficult to achieve. The perspective of industrial process theory (the definition of process) and the perspective of process implementation (process transition, accumulation, and inter-operations between processes) are used to survey the method used to build one base model (multi-view) process model.

  19. Industrial Process Identification and Control Design Step-test and Relay-experiment-based Methods

    CERN Document Server

    Liu, Tao

    2012-01-01

      Industrial Process Identification and Control Design is devoted to advanced identification and control methods for the operation of continuous-time processes both with and without time delay, in industrial and chemical engineering practice.   The simple and practical step- or relay-feedback test is employed when applying the proposed identification techniques, which are classified in terms of common industrial process type: open-loop stable; integrating; and unstable, respectively. Correspondingly, control system design and tuning models that follow are presented for single-input-single-output processes.   Furthermore, new two-degree-of-freedom control strategies and cascade control system design methods are explored with reference to independently-improving, set-point tracking and load disturbance rejection. Decoupling, multi-loop, and decentralized control techniques for the operation of multiple-input-multiple-output processes are also detailed. Perfect tracking of a desire output trajectory is realiz...

  20. Modeling the stepping mechanism in negative lightning leaders

    Science.gov (United States)

    Iudin, Dmitry; Syssoev, Artem; Davydenko, Stanislav; Rakov, Vladimir

    2017-04-01

    It is well-known that the negative leaders develop in a step manner using a mechanism of the so-called space leaders in contrary to positive ones, which propagate continuously. Despite this fact has been known for about a hundred years till now no one had developed any plausible model explaining this asymmetry. In this study we suggest a model of the stepped development of the negative lightning leader which for the first time allows carrying out the numerical simulation of its evolution. The model is based on the probability approach and description of temporal evolution of the discharge channels. One of the key features of our model is accounting for the presence of so called space streamers/leaders which play a fundamental role in the formation of negative leader's steps. Their appearance becomes possible due to the accounting of potential influence of the space charge injected into the discharge gap by the streamer corona. The model takes into account an asymmetry of properties of negative and positive streamers which is based on well-known from numerous laboratory measurements fact that positive streamers need about twice weaker electric field to appear and propagate as compared to negative ones. An extinction of the conducting channel as a possible way of its evolution is also taken into account. This allows us to describe the leader channel's sheath formation. To verify the morphology and characteristics of the model discharge, we use the results of the high-speed video observations of natural negative stepped leaders. We can conclude that the key properties of the model and natural negative leaders are very similar.

  1. A Ten-Step Process for Developing Teaching Units

    Science.gov (United States)

    Butler, Geoffrey; Heslup, Simon; Kurth, Lara

    2015-01-01

    Curriculum design and implementation can be a daunting process. Questions quickly arise, such as who is qualified to design the curriculum and how do these people begin the design process. According to Graves (2008), in many contexts the design of the curriculum and the implementation of the curricular product are considered to be two mutually…

  2. Supramyl, a process step for the preparation of energy alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Misselhorn, K.

    1981-01-01

    A continuous process for EtOH manufacture from starch-containing materials (potato, manioc, maize, and wheat) is described and the energy requirements for the process and the conventional process are compared. The materials are mixed with alpha-amylase and CaO and heated with steam in a continuous starch-digestion unit. The temperature effect on viscosity of the mash, the dextrose equivalent as function of time and enzyme concentration, and retrogradation for various raw materials are discussed. The respective energy consumption for starch mashing, distillation, and spent-wash evaporation and drying for the conventional process are 8.0, 10.9, and 10.9 and the respective energy consumptions for the continuous process are 0.7, 5.8, and 8.1 MJ/l EtOH.

  3. Performance of a Voltage Step-Up/Step-Down Transformerless DC/DC Converter: Analytical Model

    Science.gov (United States)

    Suskis, P.; Rankis, I.

    2012-01-01

    The authors present an analytical model for a voltage step-up/step-down DC/DC converter without transformers. The proposed topology is a combination of classic buck and boost converters in one single circuit but with differing operational principles. The converter is developed for a wind power autonomous supply system equipped with a hydrogen electrolytic tank and a fuel cell for energy stabilization. The main power source of the hydrogen-based autonomous supply system is energized by a synchronous generator operating on permanent magnets and equipped with a diode bridge. The input voltage of the converter in this case varies in the range 0-700 V, while its output DC voltage must be 540 V according to the demand of other parts of the system. To maintain the rated voltage, a special electrical load regulation is introduced. The calculations of the converter, the generator (equipped with a diode bridge) as element of the power system supply joint, and the load replaced by resistance are verified with PSIM software.

  4. Modelling a New Product Model on the Basis of an Existing STEP Application Protocol

    Directory of Open Access Journals (Sweden)

    B.-R. Hoehn

    2005-01-01

    Full Text Available During the last years a great range of computer aided tools has been generated to support the development process of various products. The goal of a continuous data flow, needed for high efficiency, requires powerful standards for the data exchange. At the FZG (Gear Research Centre of the Technical University of Munich there was a need for a common gear data format for data exchange between gear calculation programs. The STEP standard ISO 10303 was developed for this type of purpose, but a suitable definition of gear data was still missing, even in the Application Protocol AP 214, developed for the design process in the automotive industry. The creation of a new STEP Application Protocol or the extension of existing protocol would be a very time consumpting normative process. So a new method was introduced by FZG. Some very general definitions of an Application Protocol (here AP 214 were used to determine rules for an exact specification of the required kind of data. In this case a product model for gear units was defined based on elements of the AP 214. Therefore no change of the Application Protocol is necessary. Meanwhile the product model for gear units has been published as a VDMA paper and successfully introduced for data exchange within the German gear industry associated with FVA (German Research Organisation for Gears and Transmissions. This method can also be adopted for other applications not yet sufficiently defined by STEP

  5. Process modeling style

    CERN Document Server

    Long, John

    2014-01-01

    Process Modeling Style focuses on other aspects of process modeling beyond notation that are very important to practitioners. Many people who model processes focus on the specific notation used to create their drawings. While that is important, there are many other aspects to modeling, such as naming, creating identifiers, descriptions, interfaces, patterns, and creating useful process documentation. Experience author John Long focuses on those non-notational aspects of modeling, which practitioners will find invaluable. Gives solid advice for creating roles, work produ

  6. Product and Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian T.; Gani, Rafiqul

    This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models. These ...

  7. A proposed health model: a step before model confirmation.

    Science.gov (United States)

    Gauff, J F

    1992-01-01

    Health marketers have devoted extensive conceptual and empirical effort toward explaining and predicting individuals' health-related decisions. This paper proposes a health behavior model by combining the health belief model and the theory of planned behavior model. Recent modifications of the Fishbein and Ajzen (1975) model are discussed and an extension is introduced to better explain goal pursuit. These revisions (Bagozzi and Warshaw 1990) are incorporated in the proposed model.

  8. Product and Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian T.; Gani, Rafiqul

    This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models....... These approaches are put into the context of life cycle modelling, where multiscale and multiform modelling is increasingly prevalent in the 21st century. The book commences with a discussion of modern product and process modelling theory and practice followed by a series of case studies drawn from a variety...... to biotechnology applications, food, polymer and human health application areas. The book highlights to important nature of modern product and process modelling in the decision making processes across the life cycle. As such it provides an important resource for students, researchers and industrial practitioners....

  9. Anodization of Aluminium using a fast two-step process

    Indian Academy of Sciences (India)

    Murugaiya Sridar Ilango; Amruta Mutalikdesai; Sheela K Ramasesha

    2016-01-01

    Ultra-fast two-step anodization method is developed for obtaining ordered nano-pores on aluminium (Al) foil. First anodization was carried out for 10 min, followed by 3 min of second anodization at high voltage (150 V) compared to previous reports of anodization times of 12 h (40-60 V). The pore dimensions on anodized alumina are 180 nm for pore diameter and 130 nm for inter-pore distance. It was evident that by increasing the anodization voltage to 150 V, the diameter of the pores formed was above 150 nm. The electrolyte and its temperature affect the shape and size of the pore formation. At lower anodization temperature, controlled pore formation was observed. The anodized samples were characterized using the field emission scanning electron microscope (FE-SEM) to determine the pore diameter and inter-pore distance. Using UVVisible spectroscopy, the reflectance spectra of anodized samples were measured. The alumina (Al2O3) peaks were identified by x-ray diffraction (XRD) technique. The x-ray photo electron spectroscopy (XPS) analysis confirmed the Al 2p peak at 73.1 eV along with the oxygen O 1s at 530.9 eV and carbon traces C 1s at 283.6 eV.

  10. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    Science.gov (United States)

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT).

  11. Standard Model processes

    CERN Document Server

    Mangano, M.L.; Aguilar Saavedra, J.A.; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  12. More steps towards process automation for optical fabrication

    Science.gov (United States)

    Walker, David; Yu, Guoyu; Beaucamp, Anthony; Bibby, Matt; Li, Hongyu; McCluskey, Lee; Petrovic, Sanja; Reynolds, Christina

    2017-06-01

    In the context of Industrie 4.0, we have previously described the roles of robots in optical processing, and their complementarity with classical CNC machines, providing both processing and automation functions. After having demonstrated robotic moving of parts between a CNC polisher and metrology station, and auto-fringe-acquisition, we have moved on to automate the wash-down operation. This is part of a wider strategy we describe in this paper, leading towards automating the decision-making operations required before and throughout an optical manufacturing cycle.

  13. Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery

    NARCIS (Netherlands)

    Gilbert-López, B.; Mendiola, J.A.; Fontecha, J.; Broek, van den L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E.

    2015-01-01

    An algae-based biorefinery relies on the efficient use of algae biomass through its fractionation of several valuable/bioactive compounds that can be used in industry. If this biorefinery includes green platforms as downstream processing technologies able to fulfill the requirements of green

  14. Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery

    NARCIS (Netherlands)

    Gilbert-López, B.; Mendiola, J.A.; Fontecha, J.; Broek, van den L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E.

    2015-01-01

    An algae-based biorefinery relies on the efficient use of algae biomass through its fractionation of several valuable/bioactive compounds that can be used in industry. If this biorefinery includes green platforms as downstream processing technologies able to fulfill the requirements of green chemist

  15. STEPS: modeling and simulating complex reaction-diffusion systems with Python

    Directory of Open Access Journals (Sweden)

    Stefan Wils

    2009-06-01

    Full Text Available We describe how the use of the Python language improved the user interface of the program STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such models is a complicated process that consists of many phases. Initial versions of STEPS relied on a static input format that did not cleanly separate these phases, limiting modelers in how they could control the simulation and becoming increasingly complex as new features and new simulation algorithms were added. We solved all of these problems by tightly integrating STEPS with Python, using SWIG to expose our existing simulation code.

  16. Theoretical evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process

    Institute of Scientific and Technical Information of China (English)

    ZHU Gui-bing; PENG Yong-zhen

    2006-01-01

    Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.

  17. Implementation of Real-Time Machining Process Control Based on Fuzzy Logic in a New STEP-NC Compatible System

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-01-01

    Full Text Available Implementing real-time machining process control at shop floor has great significance on raising the efficiency and quality of product manufacturing. A framework and implementation methods of real-time machining process control based on STEP-NC are presented in this paper. Data model compatible with ISO 14649 standard is built to transfer high-level real-time machining process control information between CAPP systems and CNC systems, in which EXPRESS language is used to define new STEP-NC entities. Methods for implementing real-time machining process control at shop floor are studied and realized on an open STEP-NC controller, which is developed using object-oriented, multithread, and shared memory technologies conjunctively. Cutting force at specific direction of machining feature in side mill is chosen to be controlled object, and a fuzzy control algorithm with self-adjusting factor is designed and embedded in the software CNC kernel of STEP-NC controller. Experiments are carried out to verify the proposed framework, STEP-NC data model, and implementation methods for real-time machining process control. The results of experiments prove that real-time machining process control tasks can be interpreted and executed correctly by the STEP-NC controller at shop floor, in which actual cutting force is kept around ideal value, whether axial cutting depth changes suddenly or continuously.

  18. Stepping and crowding of molecular motors: statistical kinetics from an exclusion process perspective.

    Science.gov (United States)

    Ciandrini, Luca; Romano, M Carmen; Parmeggiani, Andrea

    2014-09-02

    Motor enzymes are remarkable molecular machines that use the energy derived from the hydrolysis of a nucleoside triphosphate to generate mechanical movement, achieved through different steps that constitute their kinetic cycle. These macromolecules, nowadays investigated with advanced experimental techniques to unveil their molecular mechanisms and the properties of their kinetic cycles, are implicated in many biological processes, ranging from biopolymerization (e.g., RNA polymerases and ribosomes) to intracellular transport (motor proteins such as kinesins or dyneins). Although the kinetics of individual motors is well studied on both theoretical and experimental grounds, the repercussions of their stepping cycle on the collective dynamics still remains unclear. Advances in this direction will improve our comprehension of transport process in the natural intracellular medium, where processive motor enzymes might operate in crowded conditions. In this work, we therefore extend contemporary statistical kinetic analysis to study collective transport phenomena of motors in terms of lattice gas models belonging to the exclusion process class. Via numerical simulations, we show how to interpret and use the randomness calculated from single particle trajectories in crowded conditions. Importantly, we also show that time fluctuations and non-Poissonian behavior are intrinsically related to spatial correlations and the emergence of large, but finite, clusters of comoving motors. The properties unveiled by our analysis have important biological implications on the collective transport characteristics of processive motor enzymes in crowded conditions.

  19. SAR processing with stepped chirps and phased array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  20. Model Checking of Boolean Process Models

    CERN Document Server

    Schneider, Christoph

    2011-01-01

    In the field of Business Process Management formal models for the control flow of business processes have been designed since more than 15 years. Which methods are best suited to verify the bulk of these models? The first step is to select a formal language which fixes the semantics of the models. We adopt the language of Boolean systems as reference language for Boolean process models. Boolean systems form a simple subclass of coloured Petri nets. Their characteristics are low tokens to model explicitly states with a subsequent skipping of activations and arbitrary logical rules of type AND, XOR, OR etc. to model the split and join of the control flow. We apply model checking as a verification method for the safeness and liveness of Boolean systems. Model checking of Boolean systems uses the elementary theory of propositional logic, no modal operators are needed. Our verification builds on a finite complete prefix of a certain T-system attached to the Boolean system. It splits the processes of the Boolean sy...

  1. Business Process Modeling: Blueprinting

    OpenAIRE

    Al-Fedaghi, Sabah

    2017-01-01

    This paper presents a flow-based methodology for capturing processes specified in business process modeling. The proposed methodology is demonstrated through re-modeling of an IBM Blueworks case study. While the Blueworks approach offers a well-proven tool in the field, this should not discourage workers from exploring other ways of thinking about effectively capturing processes. The diagrammatic representation presented here demonstrates a viable methodology in this context. It is hoped this...

  2. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  3. Decentralized identification for multivariable integrating processes with time delays from closed-loop step tests.

    Science.gov (United States)

    Mei, Hua; Li, Shaoyuan

    2007-04-01

    In order to identify those multivariable processes with integrating factors in their transfer function matrices, a simple yet robust decentralized identification method from closed-loop step tests is proposed. By the frequency response matrix computed from the closed-loop system data and the knowledge of the decentralized controller, the structural information of the multivariable integrating process is determined firstly and then the continuous parametric model with dead times is approximated similarly with the parameterization of the open-loop stable process. Computer simulations and an application to a 3 x 3 integrating multiple-tank water level system verify the validation of the proposed method even if the closed-loop system is affected by some stochastic noise sources.

  4. Semiclassical two-step model for strong-field ionization

    Science.gov (United States)

    Shvetsov-Shilovski, N. I.; Lein, M.; Madsen, L. B.; Räsänen, E.; Lemell, C.; Burgdörfer, J.; Arbó, D. G.; Tőkési, K.

    2016-07-01

    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schrödinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fanlike interference patterns in the low-energy part of the two-dimensional momentum distributions, as well as the modulations in the photoelectron angular distributions.

  5. Asynchronous adaptive time step in quantitative cellular automata modeling

    Directory of Open Access Journals (Sweden)

    Sun Yan

    2004-06-01

    Full Text Available Abstract Background The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. Results Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. Conclusions Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment.

  6. Process and Context in Choice Models

    DEFF Research Database (Denmark)

    Ben-Akiva, Moshe; Palma, André de; McFadden, Daniel

    2012-01-01

    We develop a general framework that extends choice models by including an explicit representation of the process and context of decision making. Process refers to the steps involved in decision making. Context refers to factors affecting the process, focusing in this paper on social networks. The...

  7. The method validation step of biological dosimetry accreditation process

    Energy Technology Data Exchange (ETDEWEB)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph. [Institut de Radioprotection et de Surete Nucleaire, LDB, 92 - Fontenay aux Roses (France)

    2006-07-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was

  8. Development and Experimental Evaluation of a Steady-state Model for the Step-feed Biological Nitrogen Removal Process%分段进水生物脱氮工艺稳态模型的开发与试验评价

    Institute of Scientific and Technical Information of China (English)

    祝贵兵; 彭永臻; 王淑莹; 左金龙; 王亚宜; 郭建华

    2007-01-01

    In this article, a steady-state mathematical model was developed and experimentally evaluated to investigate the effect of influent flow distribution and volume ratios of anoxic and aerobic zones in each stage on the total nitrogen concentration of the effluent in the step-feed biological nitrogen removal process.Unlike the previous modeling methods, this model can be used to calculate the removal rates of ammonia and nitrate in each stage and thereby predict the concentrations of ammonia, nitrate, and total nitrogen in the effluent.To verify the simulation results, pilot-scale experimental studies were carried out in a four-stage step feed process.Good correlations were achieved between the measured data and the simulation results, which proved the validity of the developed model.The sensitivity of the model predictions was analyzed.After verification of the validity, the step feed process was optimally operated for five months using the model and the criteria developed for the design and operation.During the pilot-scale experimental period, the effluent total nitrogen concentrations were all below 5mg·L-1.with more than 90% removal efficiency.

  9. Biodiesel production from microalgae Spirulina maxima by two step process: Optimization of process variable

    Directory of Open Access Journals (Sweden)

    M.A. Rahman

    2017-04-01

    Full Text Available Biodiesel from green energy source is gaining tremendous attention for ecofriendly and economically aspect. In this investigation, a two-step process was developed for the production of biodiesel from microalgae Spirulina maxima and determined best operating conditions for the steps. In the first stage, acid esterification was conducted to lessen acid value (AV from 10.66 to 0.51 mgKOH/g of the feedstock and optimal conditions for maximum esterified oil yielding were found at molar ratio 12:1, temperature 60°C, 1% (wt% H2SO4, and mixing intensity 400 rpm for a reaction time of 90 min. The second stage alkali transesterification was carried out for maximum biodiesel yielding (86.1% and optimal conditions were found at molar ratio 9:1, temperature 65°C, mixing intensity 600 rpm, catalyst concentration 0.75% (wt% KOH for a reaction time of 20 min. Biodiesel were analyzed according to ASTM standards and results were within standards limit. Results will helpful to produce third generation algal biodiesel from microalgae Spirulina maxima in an efficient manner.

  10. Diagnostic and Prognostic Models for Generator Step-Up Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Agarwal; Nancy J. Lybeck; Binh T. Pham

    2014-09-01

    In 2014, the online monitoring (OLM) of active components project under the Light Water Reactor Sustainability program at Idaho National Laboratory (INL) focused on diagnostic and prognostic capabilities for generator step-up transformers. INL worked with subject matter experts from the Electric Power Research Institute (EPRI) to augment and revise the GSU fault signatures previously implemented in the Electric Power Research Institute’s (EPRI’s) Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software. Two prognostic models were identified and implemented for GSUs in the FW-PHM Suite software. INL and EPRI demonstrated the use of prognostic capabilities for GSUs. The complete set of fault signatures developed for GSUs in the Asset Fault Signature Database of the FW-PHM Suite for GSUs is presented in this report. Two prognostic models are described for paper insulation: the Chendong model for degree of polymerization, and an IEEE model that uses a loading profile to calculates life consumption based on hot spot winding temperatures. Both models are life consumption models, which are examples of type II prognostic models. Use of the models in the FW-PHM Suite was successfully demonstrated at the 2014 August Utility Working Group Meeting, Idaho Falls, Idaho, to representatives from different utilities, EPRI, and the Halden Research Project.

  11. Online Rule Generation Software Process Model

    Directory of Open Access Journals (Sweden)

    Sudeep Marwaha

    2013-07-01

    Full Text Available For production systems like expert systems, a rule generation software can facilitate the faster deployment. The software process model for rule generation using decision tree classifier refers to the various steps required to be executed for the development of a web based software model for decision rule generation. The Royce’s final waterfall model has been used in this paper to explain the software development process. The paper presents the specific output of various steps of modified waterfall model for decision rules generation.

  12. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining.

    Science.gov (United States)

    Bae, Won Gyu; Song, Ki Young; Rahmawan, Yudi; Chu, Chong Nam; Kim, Dookon; Chung, Do Kwan; Suh, Kahp Y

    2012-07-25

    We present a direct one-step method to fabricate dual-scale superhydrophobic metallic surfaces using wire electrical discharge machining (WEDM). A dual-scale structure was spontaneously formed by the nature of exfoliation characteristic of Al 7075 alloy surface during WEDM process. A primary microscale sinusoidal pattern was formed via a programmed WEDM process, with the wavelength in the range of 200 to 500 μm. Notably, a secondary roughness in the form of microcraters (average roughness, Ra: 4.16 to 0.41 μm) was generated during the exfoliation process without additional chemical treatment. The low surface energy of Al 7075 alloy (γ = 30.65 mJ/m(2)) together with the presence of dual-scale structures appears to contribute to the observed superhydrophobicity with a static contact angle of 156° and a hysteresis less than 3°. To explain the wetting characteristics on dual-scale structures, we used a simple theoretical model. It was found that Cassie state is likely to present on the secondary roughness in all fabricated surfaces. On the other hand, either Wenzel or Cassie state can present on the primary roughness depending on the characteristic length of sinusoidal pattern. In an optimal condition of the serial cutting steps with applied powers of ∼30 and ∼8 kW, respectively, a stable, superhydrophobic metallic surface was created with a sinusoidal pattern of 500 μm wavelength.

  13. Business Model Process Configurations

    DEFF Research Database (Denmark)

    Taran, Yariv; Nielsen, Christian; Thomsen, Peter

    2015-01-01

    Purpose – The paper aims: 1) To develop systematically a structural list of various business model process configuration and to group (deductively) these selected configurations in a structured typological categorization list. 2) To facilitate companies in the process of BM innovation......, by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...... method of data analysis. Findings - A comprehensive literature review and analysis resulted in a list of business model process configurations systematically organized under five classification groups, namely, revenue model; value proposition; value configuration; target customers, and strategic...

  14. ANALYSIS AND PROCESSING OF LMF-COSTAS STEPPED FREQUENCY RADAR SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Mu Shanxiang; Ji Xiaoli; Li Ming; Li Xingguo

    2003-01-01

    Linear Modulated Frequency (LMF) Costas Stepped Frequency Radar (SFR) signal is introduced. Its ambiguity function is derived and analyzed in detail and its feasibility is validated in theory. The scheme of the proposed signal processing is also presented. The results of theoretic analysis and simulation show that, by using the proposed signal and increasing the bandwidth of the total stepped frequency, the ambiguity sidelobe is well suppressed and the range-velocity coupling in the stepped frequency radar is also greatly weakened.

  15. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  16. Automatic control strategy for step feed anoxic/aerobic biological nitrogen removal process

    Institute of Scientific and Technical Information of China (English)

    ZHU Gui-bing; PENG Yong-zhen; WU Shu-yun; WANG Shu-ying

    2005-01-01

    Control of sludge age and mixed liquid suspended solids concentration in the activated sludge process is critical for ensuring effective wastewater treatment. A nonlinear dynamic model for a step-feed activated sludge process was developed in this study. The system is based on the control of the sludge age and mixed liquor suspended solids in the aerator of last stage by adjusting the sludge recycle and wastage flow rates respectively. The simulation results showed that the sludge age remained nearly constant at a value of 16 d in the variation of the influent characteristics. The mixed liquor suspended solids in the aerator of last stage were also maintained to a desired value of 2500 g/m3 by adjusting wastage flow rates.

  17. Biosphere Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  18. Global seismic inversion as the next standard step in the processing sequence

    Energy Technology Data Exchange (ETDEWEB)

    Maver, Kim G.; Hansen, Lars S.; Jepsen, Anne-Marie; Rasmussen, Klaus B.

    1998-12-31

    Seismic inversion of post stack seismic data has until recently been regarded as a reservoir oriented method since the standard inversion techniques rely on extensive well control and a detailed user derived input model. Most seismic inversion techniques further requires a stable wavelet. As a consequence seismic inversion is mainly utilised in mature areas focusing of specific zones only after the seismic data has been interpreted and is well understood. By using an advanced 3-D global technique, seismic inversion is presented as the next standard step in the processing sequence. The technique is robust towards noise within the seismic data, utilizes a time variant wavelet, and derives a low frequency model utilizing the stacking velocities and only limited well control. 4 figs.

  19. 42 CFR 50.406 - What are the steps in the process?

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What are the steps in the process? 50.406 Section 50.406 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS POLICIES OF GENERAL APPLICABILITY Public Health Service Grant Appeals Procedure § 50.406 What are the steps...

  20. A two-step process for controlling the surface smoothness of polyelectrolyte-based microcapsules.

    Science.gov (United States)

    Lacík, I; Anilkumar, A V; Wang, T G

    2001-01-01

    Biocompatibility is one of the crucial requirements to be fulfilled when designing devices for immunoisolation of transplanted cells. The quality of the capsule surface (smoothness/roughness) influences the nature of cell overgrowth on it by immunocytes, which eventually may lead to the transplant failure. A microcapsule has been developed based on the polyelectrolyte complexation of the polyanions sodium alginate and cellulose sulphate with the polycation poly(methylene-co-guanidine), which was successfully tested in rodent animal models. Recently, the principles for controlling the surface smoothness of these capsules has been identified. This paper reports on a two-step process used for production of stable capsules with improved surface properties. The methodology involves separating the process of drop shape recovery and precursor capsule formation from the process of membrane formation by applying a two-reactor design. The multi-loop reactors are connected in series, and the process separation is given by the different composition of cation solutions flowing in each reactor. This process enables one to prepare the microcapsule immunoisolation device, which can differ in the extent of surface roughness and, thus, is suitable for studying the effect of surface morphology of the immunoisolation device on cell overgrowth. The effect of this process on the capsule permeability has also been evaluated.

  1. Hydrothermal decomposition of industrial jarosite in alkaline media: The rate determining step of the process kinetics

    Directory of Open Access Journals (Sweden)

    González-Ibarra A.A.

    2016-01-01

    Full Text Available This work examines the role of NaOH and Ca(OH2 on the hydrothermal decomposition of industrial jarosite deposited by a Mexican company in a tailings dam. The industrial jarosite is mainly composed by natrojarosite and contains 150 g Ag/t, showing a narrow particle size distribution, as revealed by XRD, fire assay, SEM-EDS and laser-diffraction analysis. The effect of the pH, when using NaOH or Ca(OH2 as alkalinizing agent was studied by carrying out decomposition experiments at different pH values and 60°C in a homogeneous size particle system (pH = 8, 9, 10 and 11 and in a heterogeneous size particle system (pH = 11. Also, the kinetic study of the process and the controlling step of the decomposition reaction when NaOH and Ca(OH2 are used was determined by fitting the data obtained to the shrinking core model for spherical particles of constant size. These results, supported by chemical (EDS, morphological (SEM and mapping of elements (EDS analysis of a partially reacted jarosite particle allowed to conclude that when NaOH is used, the process kinetics is controlled by the chemical reaction and when Ca(OH2 is used, the rate determining step is changed to a diffusion control through a layer of solid products.

  2. 3D Rigid-Plastic Finite Element Analysis for Skew Rolling Process of the Stepped Part

    Institute of Scientific and Technical Information of China (English)

    Gang FANG; Pan ZENG

    2003-01-01

    Based on rigid-plastic finite element method, a skew rolling process of stepped part is simulated. Considering nodesaving and effective remeshing, the tetrahedron solid elements are used to discrete workpiece. The workpiece material adopts rigid-plastic m

  3. Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation.

    Science.gov (United States)

    Yang, Zhijun; Cameron, Katherine; Lewinger, William; Webb, Barbara; Murray, Alan

    2012-03-01

    Animals such as stick insects can adaptively walk on complex terrains by dynamically adjusting their stepping motion patterns. Inspired by the coupled Matsuoka and resonate-and-fire neuron models, we present a nonlinear oscillation model as the neuromorphic central pattern generator (CPG) for rhythmic stepping pattern generation. This dynamic model can also be used to actuate the motoneurons on a leg joint with adjustable driving frequencies and duty cycles by changing a few of the model parameters while operating such that different stepping patterns can be generated. A novel mixed-signal integrated circuit design of this dynamic model is subsequently implemented, which, although simplified, shares the equivalent output performance in terms of the adjustable frequency and duty cycle. Three identical CPG models being used to drive three joints can make an arthropod leg of three degrees of freedom. With appropriate initial circuit parameter settings, and thus suitable phase lags among joints, the leg is expected to walk on a complex terrain with adaptive steps. The adaptation is associated with the circuit parameters mediated both by the higher level nervous system and the lower level sensory signals. The model is realized using a 0.3- complementary metal-oxide-semiconductor process and the results are reported.

  4. Foam process models.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  5. Preparatory steps for a robust dynamic model for organically bound tritium dynamics in agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Melintescu, A.; Galeriu, D. [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest-Magurele (Romania); Diabate, S.; Strack, S. [Institute of Toxicology and Genetics, Karlsruhe Institute of Technology - KIT, Eggenstein-Leopoldshafen (Germany)

    2015-03-15

    The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.

  6. Refactoring Process Models in Large Process Repositories.

    NARCIS (Netherlands)

    Weber, B.; Reichert, M.U.

    2008-01-01

    With the increasing adoption of process-aware information systems (PAIS), large process model repositories have emerged. Over time respective models have to be re-aligned to the real-world business processes through customization or adaptation. This bears the risk that model redundancies are introdu

  7. Refactoring Process Models in Large Process Repositories.

    NARCIS (Netherlands)

    Weber, B.; Reichert, M.U.

    With the increasing adoption of process-aware information systems (PAIS), large process model repositories have emerged. Over time respective models have to be re-aligned to the real-world business processes through customization or adaptation. This bears the risk that model redundancies are

  8. Enhanced nutrient removal in three types of step feeding process from municipal wastewater.

    Science.gov (United States)

    Peng, Yongzhen; Ge, Shijian

    2011-06-01

    An anoxic/oxic step feeding process was improved to enhance nutrient removal by reconfiguring the process into (1) anaerobic/anoxic/oxic step feeding process or (2) modified University of Capetown (UCT) step feeding process. Enhanced nitrogen and phosphorus removal and optimized organics utilization were obtained simultaneously in the modified UCT type with both internal and sludge recycle ratios of 75% as well as anaerobic/anoxic/oxic volume ratio of 1:3:6. Specifically, the UCT configuration and optimized operational conditions lead to the enrichment of denitrifying phosphorus removal microorganisms and achieved improved anaerobic P-release and anoxic P-uptake activities, which were beneficial to the denitrifying phosphorus removal activities and removal efficiencies. Due to high mixed liquor suspended solid and uneven distributed dissolved oxygen, 35% of total nitrogen was eliminated through simultaneous nitrification and denitrification process in aerobic zones. Moreover, 62 ± 6% of influent chemical oxygen demands was involved in the denitrification or phosphorus release processes.

  9. Single-step stereolithography of complex anatomical models for optical flow measurements.

    Science.gov (United States)

    de Zélicourt, Diane; Pekkan, Kerem; Kitajima, Hiroumi; Frakes, David; Yoganathan, Ajit P

    2005-02-01

    Transparent stereolithographic rapid prototyping (RP) technology has already demonstrated in literature to be a practical model construction tool for optical flow measurements such as digital particle image velocimetry (DPIV), laser doppler velocimetry (LDV), and flow visualization. Here, we employ recently available transparent RP resins and eliminate time-consuming casting and chemical curing steps from the traditional approach. This note details our methodology with relevant material properties and highlights its advantages. Stereolithographic model printing with our procedure is now a direct single-step process, enabling faster geometric replication of complex computational fluid dynamics (CFD) models for exact experimental validation studies. This methodology is specifically applied to the in vitro flow modeling of patient-specific total cavopulmonary connection (TCPC) morphologies. The effect of RP machining grooves, surface quality, and hydrodynamic performance measurements as compared with the smooth glass models are also quantified.

  10. Women's steps of change and entry into drug abuse treatment. A multidimensional stages of change model.

    Science.gov (United States)

    Brown, V B; Melchior, L A; Panter, A T; Slaughter, R; Huba, G J

    2000-04-01

    The Transtheoretical, or Stages of Change Model, has been applied to the investigation of help-seeking related to a number of addictive behaviors. Overall, the model has shown to be very important in understanding the process of help-seeking. However, substance abuse rarely exists in isolation from other health, mental health, and social problems. The present work extends the original Stages of Change Model by proposing "Steps of Change" as they relate to entry into substance abuse treatment programs for women. Readiness to make life changes in four domains-domestic violence, HIV sexual risk behavior, substance abuse, and mental health-is examined in relation to entry into four substance abuse treatment modalities (12-step, detoxification, outpatient, and residential). The Steps of Change Model hypothesizes that help-seeking behavior of substance-abusing women may reflect a hierarchy of readiness based on the immediacy, or time urgency, of their treatment issues. For example, women in battering relationships may be ready to make changes to reduce their exposure to violence before admitting readiness to seek substance abuse treatment. The Steps of Change Model was examined in a sample of 451 women contacted through a substance abuse treatment-readiness program in Los Angeles, California. A series of logistic regression analyses predict entry into four separate treatment modalities that vary. Results suggest a multidimensional Stages of Change Model that may extend to other populations and to other types of help-seeking behaviors.

  11. JIMM: the next step for mission-level models

    Science.gov (United States)

    Gump, Jamieson; Kurker, Robert G.; Nalepka, Joseph P.

    2001-09-01

    The (Simulation Based Acquisition) SBA process is one in which the planning, design, and test of a weapon system or other product is done through the more effective use of modeling and simulation, information technology, and process improvement. This process results in a product that is produced faster, cheaper, and more reliably than its predecessors. Because the SBA process requires realistic and detailed simulation conditions, it was necessary to develop a simulation tool that would provide a simulation environment acceptable for doing SBA analysis. The Joint Integrated Mission Model (JIMM) was created to help define and meet the analysis, test and evaluation, and training requirements of a Department of Defense program utilizing SBA. Through its generic nature of representing simulation entities, its data analysis capability, and its robust configuration management process, JIMM can be used to support a wide range of simulation applications as both a constructive and a virtual simulation tool. JIMM is a Mission Level Model (MLM). A MLM is capable of evaluating the effectiveness and survivability of a composite force of air and space systems executing operational objectives in a specific scenario against an integrated air and space defense system. Because MLMs are useful for assessing a system's performance in a realistic, integrated, threat environment, they are key to implementing the SBA process. JIMM is a merger of the capabilities of one legacy model, the Suppressor MLM, into another, the Simulated Warfare Environment Generator (SWEG) MLM. By creating a more capable MLM, JIMM will not only be a tool to support the SBA initiative, but could also provide the framework for the next generation of MLMs.

  12. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    Science.gov (United States)

    Park, Sung-Hyeon; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon; Kim, Hak-Sung

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects.

  13. Mechanical and Metallurgical Evolution of Stainless Steel 321 in a Multi-step Forming Process

    Science.gov (United States)

    Anderson, M.; Bridier, F.; Gholipour, J.; Jahazi, M.; Wanjara, P.; Bocher, P.; Savoie, J.

    2016-04-01

    This paper examines the metallurgical evolution of AISI Stainless Steel 321 (SS 321) during multi-step forming, a process that involves cycles of deformation with intermediate heat treatment steps. The multi-step forming process was simulated by implementing interrupted uniaxial tensile testing experiments. Evolution of the mechanical properties as well as the microstructural features, such as twins and textures of the austenite and martensite phases, was studied as a function of the multi-step forming process. The characteristics of the Strain-Induced Martensite (SIM) were also documented for each deformation step and intermediate stress relief heat treatment. The results indicated that the intermediate heat treatments considerably increased the formability of SS 321. Texture analysis showed that the effect of the intermediate heat treatment on the austenite was minor and led to partial recrystallization, while deformation was observed to reinforce the crystallographic texture of austenite. For the SIM, an Olson-Cohen equation type was identified to analytically predict its formation during the multi-step forming process. The generated SIM was textured and weakened with increasing deformation.

  14. A three step supercritical process to improve the dissolution rate of eflucimibe.

    Science.gov (United States)

    Rodier, Elisabeth; Lochard, Hubert; Sauceau, Martial; Letourneau, Jean-Jacques; Freiss, Bernard; Fages, Jacques

    2005-10-01

    The aim of this study is to improve the dissolution properties of a poorly-soluble active substance, Eflucimibe by associating it with gamma-cyclodextrin. To achieve this objective, a new three-step process based on supercritical fluid technology has been proposed. First, Eflucimibe and cyclodextrin are co-crystallized using an anti-solvent process, dimethylsulfoxide being the solvent and supercritical carbon dioxide being the anti-solvent. Second, the co-crystallized powder is held in a static mode under supercritical conditions for several hours. This is the maturing step. Third, in a final stripping step, supercritical CO(2) is flowed through the matured powder to extract the residual solvent. The coupling of the first two steps brings about a significant synergistic effect to improve the dissolution rate of the drug. The nature of the entity obtained at the end of each step is discussed and some suggestions are made as to what happens in these operations. It is shown the co-crystallization ensures a good dispersion of both compounds and is rather insensitive to the operating parameters tested. The maturing step allows some dissolution-recrystallization to occur thus intensifying the intimate contact between the two compounds. Addition of water is necessary to make maturing effective as this is governed by the transfer properties of the medium. The stripping step allows extraction of the residual solvent but also removes some of the Eflucimibe which is the main drawback of this final stage.

  15. Modelling of transport and biogeochemical processes in pollution plumes: Literature review of model development

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial Equi...

  16. Microstructure evolution of semi-solid 2024 alloy during two-step reheating process

    Institute of Scientific and Technical Information of China (English)

    WANG Shun-cheng; LI Yuan-yuan; CHEN Wei-ping; ZHENG Xiao-ping

    2008-01-01

    A two-step reheating process was proposed and applied to perform reheating experiments on the semi-solid 2024 alloy billet. In this process, the semi-solid billet was firstly heated over liquidus temperature and then isothermally held at solid-liquid zone temperature. Microstructure evolution of the semi-solid billet during two-step reheating was studied by optical microscope and compared with that during isothermal reheating. The results show that the remelting rate of the semi-solid billet during two-step reheating is faster than that during isothermal reheating. Under the same reheating time, the grains of the semi-solid billet reheated by two-step reheating process are finer and rounder than those by isothermal reheating process. The present experimental results indicate that accelerating the formation of liquid phase during the two-step reheating process can restrain the coalescence of grains to a certain extent, and thus refine the grain size and promote the grain spheroidization.

  17. Efficient Hydrolysis of Rice Straw into Xylose and Glucose by a Two-step Process

    Directory of Open Access Journals (Sweden)

    YAN Lu-lu

    2016-07-01

    Full Text Available The hydrolysis of rice straw into xylose and glucose in dilute sulfuric acid aqueous solution was studied with a two-step process in batch autoclave reactor. The results showed that compared with the traditional one-step acid hydrolysis, both xylose and glucose could be produced in high yields from rice straw by using the two-step acid hydrolysis process. The effects of reaction temperature, reaction time, the amount of rice straw and acid concentration on the hydrolysis of rice straw were systematically studied, and showed that except initial rice straw loading amount, the other parameters had remarkable influence on the products distribution and yields. In the first-step of the hydrolysis process, a high xylose yield of 162.6 g·kg-1 was obtained at 140℃ after 120 min reaction time. When the solid residues from the first step were subjected to a second-step hydrolysis, a glucose yield as high as 216.5 g·kg-1 could be achieved at 180℃ after 120 min. This work provides a promising strategy for the efficient and value-added utilization of agricultural wastes such as rice straw.

  18. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    Science.gov (United States)

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yu; Lei, Jixue; Yin, Bing; Zhang, Heqiu; Ji, Jiuyu; Hu, Lizhong, E-mail: lizhongh@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); The Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024 (China); Yang, Dechao [Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian 116024 (China); Bian, Jiming; Liu, Yanhong; Zhao, Yu; Luo, Yingmin [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-03-17

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  20. Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps

    Energy Technology Data Exchange (ETDEWEB)

    Lejay, Antoine, E-mail: Antoine.Lejay@iecn.u-nancy.fr [Universite de Lorraine, IECN, UMR 7502, Vandoeuvre-les-Nancy, F-54500 (France); CNRS, IECN, UMR 7502, Vandoeuvre-les-Nancy, F-54500 (France); Inria, Villers-les-Nancy, F-54600 (France); IECN, BP 70238, F-54506 Vandoeuvre-les-Nancy Cedex (France); Pichot, Geraldine, E-mail: Geraldine.Pichot@inria.fr [Inria, Rennes - Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes Cedex (France); INRIA, Campus de Beaulieu, 35042 Rennes Cedex (France)

    2012-08-30

    In this article, we propose new Monte Carlo techniques for moving a diffusive particle in a discontinuous media. In this framework, we characterize the stochastic process that governs the positions of the particle. The key tool is the reduction of the process to a Skew Brownian motion (SBM). In a zone where the coefficients are locally constant on each side of the discontinuity, the new position of the particle after a constant time step is sampled from the exact distribution of the SBM process at the considered time. To do so, we propose two different but equivalent algorithms: a two-steps simulation with a stop at the discontinuity and a one-step direct simulation of the SBM dynamic. Some benchmark tests illustrate their effectiveness.

  1. Statistical optimization for biodiesel production from waste frying oil through two-step catalyzed process

    Energy Technology Data Exchange (ETDEWEB)

    Charoenchaitrakool, Manop [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok (Thailand); Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok (Thailand); Thienmethangkoon, Juthagate [Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok (Thailand)

    2011-01-15

    The aim of this work was to investigate the optimum conditions in biodiesel production from waste frying oil using two-step catalyzed process. In the first step, sulfuric acid was used as a catalyst for the esterification reaction of free fatty acid and methanol in order to reduce the free fatty acid content to be approximate 0.5%. In the second step, the product from the first step was further reacted with methanol using potassium hydroxide as a catalyst. The Box-Behnken design of experiment was carried out using the MINITAB RELEASE 14, and the results were analyzed using response surface methodology. The optimum conditions for biodiesel production were obtained when using methanol to oil molar ratio of 6.1:1, 0.68 wt.% of sulfuric acid, at 51 C with a reaction time of 60 min in the first step, followed by using molar ratio of methanol to product from the first step of 9.1:1, 1 wt.% KOH, at 55 C with a reaction time of 60 min in the second step. The percentage of methyl ester in the obtained product was 90.56 {+-} 0.28%. In addition, the fuel properties of the produced biodiesel were in the acceptable ranges according to Thai standard for community biodiesel. (author)

  2. Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1997-05-01

    A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

  3. 煤基合成气一步制备高纯度二甲醚的全流程建模与模拟%Modeling and Simulation of Production Process on Dimethyl Ether Synthesized from Coal-based Syngas by One-step Method

    Institute of Scientific and Technical Information of China (English)

    韩嫒嫒; 张海涛; 应卫勇; 房鼎业

    2009-01-01

    As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, the process flowsheet is developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.

  4. Low-resolution density maps from atomic models: how stepping "back" can be a step "forward".

    Science.gov (United States)

    Belnap, D M; Kumar, A; Folk, J T; Smith, T J; Baker, T S

    1999-01-01

    Atomic-resolution structures have had a tremendous impact on modern biological science. Much useful information also has been gleaned by merging and correlating atomic-resolution structural details with lower-resolution (15-40 A), three-dimensional (3D) reconstructions computed from images recorded with cryo-transmission electron microscopy (cryoTEM) procedures. One way to merge these structures involves reducing the resolution of an atomic model to a level comparable to a cryoTEM reconstruction. A low-resolution density map can be derived from an atomic-resolution structure by retrieving a set of atomic coordinates editing the coordinate file, computing structure factors from the model coordinates, and computing the inverse Fourier transform of the structure factors. This method is a useful tool for structural studies primarily in combination with 3D cryoTEM reconstructions. It has been used to assess the quality of 3D reconstructions, to determine corrections for the phase-contrast transfer function of the transmission electron microscope, to calibrate the dimensions and handedness of 3D reconstructions, to produce difference maps, to model features in macromolecules or macromolecular complexes, and to generate models to initiate model-based determination of particle orientation and origin parameters for 3D reconstruction.

  5. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xin; Fang, Zhen; Liu, Yun-hu [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China)

    2010-12-15

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H{sub 2}SO{sub 4} or by two-step process were studied in an ultrasonic reactor at 60 C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H{sub 2}SO{sub 4} as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H{sub 2}SO{sub 4} for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil. (author)

  6. Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xin [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China); Fang Zhen, E-mail: zhenfang@xtbg.ac.c [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China); Liu Yunhu [Biomass Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefulu, Kunming, Yunnan Province 650223 (China)

    2010-12-15

    Transesterification of high free fatty acid content Jatropha oil with methanol to biodiesel catalyzed directly by NaOH and high-concentrated H{sub 2}SO{sub 4} or by two-step process were studied in an ultrasonic reactor at 60 deg. C. If NaOH was used as catalyst, biodiesel yield was only 47.2% with saponification problem. With H{sub 2}SO{sub 4} as catalyst, biodiesel yield was increased to 92.8%. However, longer reaction time (4 h) was needed and the biodiesel was not stable. A two-step, acid-esterification and base-transesterification process was further used for biodiesel production. It was found that after the first-step pretreatment with H{sub 2}SO{sub 4} for 1 h, the acid value of Jatropha oil was reduced from 10.45 to 1.2 mg KOH/g, and subsequently, NaOH was used for the second-step transesterification. Stable and clear yellowish biodiesel was obtained with 96.4% yield after reaction for 0.5 h. The total production time was only 1.5 h that is just half of the previous reported. The two-step process with ultrasonic radiation is effective and time-saving for biodiesel production from Jatropha oil.

  7. Low-temperature process steps for realization of non-volatile memory devices

    NARCIS (Netherlands)

    Brunets, I.; Boogaard, A.; Aarnink, A.A.I.; Kovalgin, A.Y.; Wolters, R.A.M.; Holleman, J.; Schmitz, J.

    2007-01-01

    In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the subs

  8. Transient kinetics and rate limiting steps for the processive cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Hirosuke, Tatsumi; Robin Ren, Guilin

    2013-01-01

    as substrate. Analysis of the pre-steady state regime allowed delineation rate constants for both fast and slow steps in the enzymatic cycle and assessment of how these constants influenced the rate of hydrolysis at quasi-steady state. Processive movement on the cellulose strand advanced with characteristic...

  9. The Mixing of Methods: a three-step process for improving rigour in impact evaluations

    NARCIS (Netherlands)

    Ton, G.

    2012-01-01

    This article describes a systematic process that is helpful in improving impact evaluation assignments, within restricted budgets and timelines. It involves three steps: a rethink of the key questions of the evaluation to develop more relevant, specific questions; a way of designing a mix of

  10. Inference Based on Simple Step Statistics for the Location Model.

    Science.gov (United States)

    1981-07-01

    function. Let TN,k(9) - Zak(’)Vi(e). Then TNk is called the k-step statistic. Noether (1973) studied the 1-step statistic with particular emphasis on...opposed to the sign statistic. These latter two comparisons were first discussed by Noether (1973) in a somewhat different setting. Notice that the...obtained by Noether (1973). If k - 3, we seek the (C + 1)’st and (2N - bI - b2 - C)’th ordered Walsh averages in D The algorithm of Section 3 modified to

  11. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    Science.gov (United States)

    Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Chattopadhyay, Goutam (Inventor); Perez, Jose Vicente Siles (Inventor); Lin, Robert H. (Inventor); Mehdi, Imran (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  12. Accurate and stable time stepping in ice sheet modeling

    CERN Document Server

    Cheng, Gong; von Sydow, Lina

    2016-01-01

    In this paper we introduce adaptive time step control for simulation of evolution of ice sheets. The discretization error in the approximations is estimated using "Milne's device" by comparing the result from two different methods in a predictor-corrector pair. Using a predictor-corrector pair the expensive part of the procedure, the solution of the velocity and pressure equations, is performed only once per time step and an estimate of the local error is easily obtained. The stability of the numerical solution is maintained and the accuracy is controlled by keeping the local error below a given threshold using PI-control. Depending on the threshold, the time step $\\Delta t$ is bound by stability requirements or accuracy requirements. Our method takes a shorter $\\Delta t$ than an implicit method but with less work in each time step and the solver is simpler. The method is analyzed theoretically with respect to stability and applied to the simulation of a 2D ice slab and a 3D circular ice sheet. %The automatic...

  13. Accurate and stable time stepping in ice sheet modeling

    Science.gov (United States)

    Cheng, Gong; Lötstedt, Per; von Sydow, Lina

    2017-01-01

    In this paper we introduce adaptive time step control for simulation of the evolution of ice sheets. The discretization error in the approximations is estimated using "Milne's device" by comparing the result from two different methods in a predictor-corrector pair. Using a predictor-corrector pair the expensive part of the procedure, the solution of the velocity and pressure equations, is performed only once per time step and an estimate of the local error is easily obtained. The stability of the numerical solution is maintained and the accuracy is controlled by keeping the local error below a given threshold using PI-control. Depending on the threshold, the time step Δt is bound by stability requirements or accuracy requirements. Our method takes a shorter Δt than an implicit method but with less work in each time step and the solver is simpler. The method is analyzed theoretically with respect to stability and applied to the simulation of a 2D ice slab and a 3D circular ice sheet. The stability bounds in the experiments are explained by and agree well with the theoretical results.

  14. A one-step-ahead pseudo-DIC for comparison of Bayesian state-space models.

    Science.gov (United States)

    Millar, R B; McKechnie, S

    2014-12-01

    In the context of state-space modeling, conventional usage of the deviance information criterion (DIC) evaluates the ability of the model to predict an observation at time t given the underlying state at time t. Motivated by the failure of conventional DIC to clearly choose between competing multivariate nonlinear Bayesian state-space models for coho salmon population dynamics, and the computational challenge of alternatives, this work proposes a one-step-ahead DIC, DICp, where prediction is conditional on the state at the previous time point. Simulations revealed that DICp worked well for choosing between state-space models with different process or observation equations. In contrast, conventional DIC could be grossly misleading, with a strong preference for the wrong model. This can be explained by its failure to account for inflated estimates of process error arising from the model mis-specification. DICp is not based on a true conditional likelihood, but is shown to have interpretation as a pseudo-DIC in which the compensatory behavior of the inflated process errors is eliminated. It can be easily calculated using the DIC monitors within popular BUGS software when the process and observation equations are conjugate. The improved performance of DICp is demonstrated by application to the multi-stage modeling of coho salmon abundance in Lobster Creek, Oregon. © 2014, The International Biometric Society.

  15. Two step esterification-transesterification process of wet greasy sewage sludge for biodiesel production.

    Science.gov (United States)

    Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R

    2016-01-01

    Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst.

  16. Impacting student anxiety for the USMLE Step 1 through process-oriented preparation

    Directory of Open Access Journals (Sweden)

    Roy E. Strowd

    2010-02-01

    Full Text Available Background: Standardized examinations are the key components of medical education. The USMLE Step 1 is the first of these important milestones. Success on this examination requires both content competency and efficient strategies for study and review. Students employ a wide variety of techniques in studying for this examination, with heavy reliance on personal study habits and advice from other students. Nevertheless, few medical curricula formally address these strategies. Methods: In response to student-generated critique at our institution, a five-part seminar series on process-oriented preparation was developed and implemented to address such concerns. The series focused on early guidance and preparation strategies for Step 1 and the many other important challenges in medical school. Emphasis was placed on facilitating conversation and mentorship opportunities between students. Results & Conclusions: A profoundly positive experience was reported by our medical students that included a decreased anxiety level for the Step 1 examination.

  17. Adaptive process control strategy for a two-step bending process

    NARCIS (Netherlands)

    Dallinger, F.N.; Roux, E.P.; Havinga, Gosse Tjipke; d'Ippolito, R.; van Tijum, R.; van Ravenswaaij, R.; Hora, P.; van den Boogaard, Antonius H.; Setchi, R.; Howlett, R.J.; Naim, M.; Seinz, H.

    2014-01-01

    A robust production is an important goal in sheet metal forming in order to make the process outcome insensitive to variations in input and process conditions. This would guarantee a minimum number of defects and reduced press downtime. However, for com-plex parts it is difficult to achieve robust s

  18. Multivariate modelling of the tablet manufacturing process with wet granulation for tablet optimization and in-process control

    NARCIS (Netherlands)

    Westerhuis, J.A; Coenegracht, P.M J; Lerk, C.F

    1997-01-01

    The process of tablet manufacturing with granulation is described as a two-step process. The first step comprises wet granulation of the powder mixture, and in the second step the granules are compressed into tablets. For the modelling of the pharmaceutical process of wet granulation and tableting,

  19. Transport Simulation Model Calibration with Two-Step Cluster Analysis Procedure

    Directory of Open Access Journals (Sweden)

    Zenina Nadezda

    2015-12-01

    Full Text Available The calibration results of transport simulation model depend on selected parameters and their values. The aim of the present paper is to calibrate a transport simulation model by a two-step cluster analysis procedure to improve the reliability of simulation model results. Two global parameters have been considered: headway and simulation step. Normal, uniform and exponential headway generation models have been selected for headway. Application of two-step cluster analysis procedure to the calibration procedure has allowed reducing time needed for simulation step and headway generation model value selection.

  20. A stepped leader model for lightning including charge distribution in branched channels

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Zhang, Li [School of Electrical Engineering, Shandong University, Jinan 250061 (China); Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn [Beijing Key Lab of HV and EMC, North China Electric Power University, Beijing 102206 (China); State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206 (China)

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  1. On Activity modelling in process modeling

    Directory of Open Access Journals (Sweden)

    Dorel Aiordachioaie

    2001-12-01

    Full Text Available The paper is looking to the dynamic feature of the meta-models of the process modelling process, the time. Some principles are considered and discussed as main dimensions of any modelling activity: the compatibility of the substances, the equipresence of phenomena and the solvability of the model. The activity models are considered and represented at meta-level.

  2. ADDING A NEW STEP WITH SPATIAL AUTOCORRELATION TO IMPROVE THE FOUR-STEP TRAVEL DEMAND MODEL WITH FEEDBACK FOR A DEVELOPING CITY

    Directory of Open Access Journals (Sweden)

    Xuesong FENG, Ph.D Candidate

    2009-01-01

    Full Text Available It is expected that improvement of transport networks could give rise to the change of spatial distributions of population-related factors and car ownership, which are expected to further influence travel demand. To properly reflect such an interdependence mechanism, an aggregate multinomial logit (A-MNL model was firstly applied to represent the spatial distributions of these exogenous variables of the travel demand model by reflecting the influence of transport networks. Next, the spatial autocorrelation analysis is introduced into the log-transformed A-MNL model (called SPA-MNL model. Thereafter, the SPA-MNL model is integrated into the four-step travel demand model with feedback (called 4-STEP model. As a result, an integrated travel demand model is newly developed and named as the SPA-STEP model. Using person trip data collected in Beijing, the performance of the SPA-STEP model is empirically compared with the 4-STEP model. It was proven that the SPA-STEP model is superior to the 4-STEP model in accuracy; most of the estimated parameters showed statistical differences in values. Moreover, though the results of the simulations to the same set of assumed scenarios by the 4-STEP model and the SPA-STEP model consistently suggested the same sustainable path for the future development of Beijing, it was found that the environmental sustainability and the traffic congestion for these scenarios were generally overestimated by the 4-STEP model compared with the corresponding analyses by the SPA-STEP model. Such differences were clearly generated by the introduction of the new modeling step with spatial autocorrelation.

  3. Modelling the impacts of an invasive species across landscapes: a step-wise approach

    Directory of Open Access Journals (Sweden)

    Darren Ward

    2014-06-01

    Full Text Available We estimate the extent of ecological impacts of the invasive Asian paper wasp across different landscapes in New Zealand. We used: (i a baseline distribution layer (modelled via MaxEnt; (ii Asian paper wasp nest density (from >460 field plots, related to their preferences for specific land cover categories; and (iii and their foraging intensity (rates of foraging success, and the time available to forage on a seasonal basis. Using geographic information systems this information is combined and modelled across different landscapes in New Zealand in a step-wise selection process. The highest densities of Asian paper wasps were in herbaceous saline vegetation, followed closely by built-up areas, and then scrub and shrubland. Nest densities of 34 per ha, and occupancy rates of 0.27 were recorded for herbaceous saline vegetation habitats. However, the extent of impacts of the Asian paper wasp remains relatively restricted because of narrow climate tolerances and spatial restriction of preferred habitats. A step-wise process based on geographic information systems and species distribution models, in combination with factors such as distribution, density, and predation, create a useful tool that allows the extent of impacts of invasive species to be assessed across large spatial scales. These models will be useful for conservation managers as they provide easy visual interpretation of results, and can help prioritise where direct conservation action or control of the invader are required.

  4. Modelling the impacts of an invasive species across landscapes: a step-wise approach.

    Science.gov (United States)

    Ward, Darren; Morgan, Fraser

    2014-01-01

    We estimate the extent of ecological impacts of the invasive Asian paper wasp across different landscapes in New Zealand. We used: (i) a baseline distribution layer (modelled via MaxEnt); (ii) Asian paper wasp nest density (from >460 field plots, related to their preferences for specific land cover categories); and (iii) and their foraging intensity (rates of foraging success, and the time available to forage on a seasonal basis). Using geographic information systems this information is combined and modelled across different landscapes in New Zealand in a step-wise selection process. The highest densities of Asian paper wasps were in herbaceous saline vegetation, followed closely by built-up areas, and then scrub and shrubland. Nest densities of 34 per ha, and occupancy rates of 0.27 were recorded for herbaceous saline vegetation habitats. However, the extent of impacts of the Asian paper wasp remains relatively restricted because of narrow climate tolerances and spatial restriction of preferred habitats. A step-wise process based on geographic information systems and species distribution models, in combination with factors such as distribution, density, and predation, create a useful tool that allows the extent of impacts of invasive species to be assessed across large spatial scales. These models will be useful for conservation managers as they provide easy visual interpretation of results, and can help prioritise where direct conservation action or control of the invader are required.

  5. Multi-step process for concentrating magnetic particles in waste sludges

    Science.gov (United States)

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  6. Hybrid modelling of a sugar boiling process

    CERN Document Server

    Lauret, Alfred Jean Philippe; Gatina, Jean Claude

    2012-01-01

    The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

  7. Four-dimensional transform fault processes: progressive evolution of step-overs and bends

    Science.gov (United States)

    Wakabayashi, John; Hengesh, James V.; Sawyer, Thomas L.

    2004-11-01

    Many bends or step-overs along strike-slip faults may evolve by propagation of the strike-slip fault on one side of the structure and progressive shut-off of the strike-slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike-slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf

  8. Molecular-Scale Structural Controls on Nanoscale Growth Processes: Step-Specific Regulation of Biomineral Morphology

    Science.gov (United States)

    Dove, P. M.; Davis, K. J.; De Yoreo, J. J.; Orme, C. A.

    2001-12-01

    Deciphering the complex strategies by which organisms produce nanocrystalline materials with exquisite morphologies is central to understanding biomineralizing systems. One control on the morphology of biogenic nanoparticles is the specific interactions of their surfaces with the organic functional groups provided by the organism and the various inorganic species present in the ambient environment. It is now possible to directly probe the microscopic structural controls on crystal morphology by making quantitative measurements of the dynamic processes occurring at the mineral-water interface. These observations can provide crucial information concerning the actual mechanisms of growth that is otherwise unobtainable through macroscopic techniques. Here we use in situ molecular-scale observations of step dynamics and growth hillock morphology to directly resolve roles of principal impurities in regulating calcite surface morphologies. We show that the interactions of certain inorganic as well as organic impurities with the calcite surface are dependent upon the molecular-scale structures of step-edges. These interactions can assume a primary role in directing crystal morphology. In calcite growth experiments containing magnesium, we show that growth hillock structures become modified owing to the preferential inhibition of step motion along directions approximately parallel to the [010]. Compositional analyses have shown that Mg incorporates at different levels into the two types of nonequivalent steps, which meet at the hillock corner parallel to [010]. A simple calculation of the strain caused by this difference indicates that we should expect a significant retardation at this corner, in agreement with the observed development of [010] steps. If the low-energy step-risers produced by these [010] steps is perpendicular to the c-axis as seems likely from crystallographic considerations, this effect provides a plausible mechanism for the elongated calcite crystal

  9. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    Directory of Open Access Journals (Sweden)

    Diego Tresinari SANTOS

    2015-01-01

    Full Text Available AbstractIn this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions. Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.

  10. Four-Dimensional Transform Fault Processes: Evolution of Step-Overs and Bends at Different Scales

    Science.gov (United States)

    Wakabayashi, J.; Hengesh, J. V.; Sawyer, T. L.

    2002-12-01

    Many bends or step-overs along strike-slip faults may evolve by propagation of the strike-slip fault on one side of the structure and progressive shut off of the strike-slip fault on the other side. In such a process, new transverse structures form, old ones become inactive, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike-slip duplex. Consequences of this type of step-over evolution include the following: 1. the amount of vertical structural relief in restraining step-over or bend regions is less than expected (apatite fission track ages associated with these step-over regions predate the strike-slip faulting); 2. pull-apart basin deposits are left outside of the active basin and commonly subjected to contractional deformation and uplift; and 3. local basin inversion occurs that is not linked to regional plate motion changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California. Examples of pull-apart basin deposits related to migrating releasing () bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault in the Mission Peak area, and the Greenville to the Concord fault at Mount Diablo (10 km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Another

  11. Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process.

    Science.gov (United States)

    Srilatha, K; Prabhavathi Devi, B L A; Lingaiah, N; Prasad, R B N; Sai Prasad, P S

    2012-09-01

    The present study demonstrates the production of biodiesel from used cooking oil containing high free fatty acid by a two-step heterogeneously catalyzed process. The free fatty acids were first esterified with methanol using a 25 wt.% TPA/Nb(2)O(5) catalyst followed by transesterification of the oil with methanol over ZnO/Na-Y zeolite catalyst. The catalysts were characterized by XRD, FT-IR, BET surface area and CO(2)-TPD. In the case of transesterification the effect of reaction parameters, such as catalyst concentration, methanol to oil molar ratio and reaction temperature, on the yield of ester were investigated. The catalyst with 20 wt.% ZnO loading on Na-Y exhibited the highest activity among the others. Both the solid acid and base catalysts were found to be reusable for several times indicating their efficacy in the two-step process.

  12. Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting

    DEFF Research Database (Denmark)

    van der Aalst, W.M.P.; Rubin, V.; Verbeek, H.M.W.

    Process mining includes the automated discovery of processes from event logs. Based on observed events (e.g., activities being executed or messages being exchanged) a process model is constructed. One of the essential problems in process mining is that one cannot assume to have seen all possible...

  13. Practical consideration for design and optimization of the step feed process

    Institute of Scientific and Technical Information of China (English)

    Shijian GE; Yongzhen PENG; Congcong LU; Shuying WANG

    2013-01-01

    Based on the anoxic/oxic (A/O) step feed process, a modified University of Cape Town (UCT) step feed process was developed by adding an anaerobic zone and adjusting sludge retum pipeline. Performance evaluation of these two types of processes was investigated by optimizing operational parameters, such as the anaerobic/ anoxic/oxic volumes, internal recycle ratios, and sludge retention times, for removal of chemical oxygen demanding (COD), nitrogen, and phosphorus. Results showed high removal efficiencies of COD of (85.0±1.7)%, ammonium of (99.7±0.2)%, total nitrogen (TN) of (85.5±l.7)%, phosphorus of (95.1±3.3)%, as well as excellent sludge settleability with average sludge volume index of (83.7±9.5) L·mg-1 in the modified UCT process. Moreover, (61.5±6.0)% of influent COD was efficiently involved in denitrification or phosphorus release process. As much as 35.3% of TN was eliminated through simultaneous nitrification and denitrification process in aerobic zones. In addition, the presence of denitrifying phosphorus accumulating organisms (DNPAOs), account- ing for approximately 39.2% of PAOs, was also greatly beneficial to the nitrogen Consequently, the modified and phosphorus removal. UCT step feed process was more attractive for the wastewater treatment plant, because it had extremely competitive advantages such as higher nutrient removal efficiencies, lower energy and dosages consumption, excellent settling sludge and operational assurance.

  14. Auditory processing models

    DEFF Research Database (Denmark)

    Dau, Torsten

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will pr...

  15. Hydrocarbon Synthesis from Carbon Dioxide and Hydrogen: A Two-Step Process

    Science.gov (United States)

    2013-08-14

    with an immersion cooler (SP Scientific) in a water bath, and the product gas stream was first dried over a bed of 3 Å molecular sieves prior to GC...Commonwealth realm Crown government in the course of their duties. Article Hydrocarbon Synthesis from Carbon Dioxide and Hydrogen: A Two-Step Process...AUG 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Hydrocarbon Synthesis from Carbon Dioxide and Hydrogen: A

  16. Process simulation of single-step dimethyl ether production via biomass gasification.

    Science.gov (United States)

    Ju, Fudong; Chen, Hanping; Ding, Xuejun; Yang, Haiping; Wang, Xianhua; Zhang, Shihong; Dai, Zhenghua

    2009-01-01

    In this study, we simulated the single-step process of dimethyl ether (DME) synthesis via biomass gasification using ASPEN Plus. The whole process comprised four parts: gasification, water gas shift reaction, gas purification, and single-step DME synthesis. We analyzed the influence of the oxygen/biomass and steam/biomass ratios on biomass gasification and synthesis performance. The syngas H(2)/CO ratio after water gas shift process was modulated to 1, and the syngas was then purified to remove H(2)S and CO(2), using the Rectisol process. Syngas still contained trace amounts of H(2)S and about 3% CO(2) after purification, which satisfied the synthesis demands. However, the high level of cold energy consumption was a problem during the purification process. The DME yield in this study was 0.37, assuming that the DME selectivity was 0.91 and that CO was totally converted. We performed environmental and economic analyses, and propose the development of a poly-generation process based on economic considerations.

  17. Solid-state three-step model for high-harmonic generation from periodic crystals

    CERN Document Server

    Ikemachi, Takuya; Sato, Takeshi; Yumoto, Junji; Kuwata-Gonokami, Makoto; Ishikawa, Kenichi L

    2016-01-01

    We study high-harmonic generation (HHG) from solids driven by intense laser pulses using the time-dependent Schrodinger equation for a one-dimensional model periodic crystal. Based on the simulation results, we propose a simple model that can quantitatively explain many aspects of solid- state HHG, some of which have been experimentally observed. Incorporating interband tunneling, intraband acceleration, and recombination with the valence-band hole, our model can be viewed as a solid-state counterpart of the familiar three-step model highly successful for gas-phase HHG and provides a unified basis to understand HHG from gaseous media and solid-state materials. The solid-state three-step model describes how, by repeating intraband acceleration and interband tunneling, electrons climb up across multiple conduction bands. The key parameter in predicting the HHG spectrum structure from the band-climbing process is the peak-to-valley (or valley-to-peak) full amplitude of the pulse vector potential $A(t)$. When the...

  18. Experimental investigation of initial steps of helix propagation in model peptides.

    Science.gov (United States)

    Goch, Grazyna; Maciejczyk, Maciej; Oleszczuk, Marta; Stachowiak, Damian; Malicka, Joanna; Bierzyński, Andrzej

    2003-06-10

    It is not certain whether the helix propagation parameters s(n)() (i.e., the equilibrium constants between (n - 1)- and n-residue long alpha-helices) determined from numerous studies of rather long model peptides are applicable for description of the initial steps of the helix formation during the protein folding process. From fluorescence, NMR, and calorimetric studies of a series of model peptides, containing the La(3+)-binding sequence nucleating the helix (Siedlecka, M., Goch, G., Ejchart, A., Sticht, H., and Bierzynski, A. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 903-908), we have determined, at 25 degrees C, the average values of the enthalpy DeltaH(n)() and of the helix growth parameters s(n)() describing the first four steps of helix propagation in polyalanine. The absolute values of the C-cap parameters, describing the contribution of the C-terminal residues to the helix free energy, have also been estimated for alanine (1.2 +/- 0.5) and NH(2) group (1.6 +/- 0.7). The initial four steps of the helix growth in polyalanine can be described by a common propagation parameter s = 1.54 +/- 0.04. The enthalpy DeltaH(n)() is also constant and equals -980 +/- 100 cal mol(-)(1).

  19. Xylose isomerization with zeolites in a two-step alcohol-water process.

    Science.gov (United States)

    Paniagua, Marta; Saravanamurugan, Shunmugavel; Melian-Rodriguez, Mayra; Melero, Juan A; Riisager, Anders

    2015-03-01

    Isomerization of xylose to xylulose was efficiently catalyzed by large-pore zeolites in a two-step methanol-water process that enhanced the product yield significantly. The reaction pathway involves xylose isomerization to xylulose, which, in part, subsequently reacts with methanol to form methyl xyluloside (step 1) followed by hydrolysis after water addition to form additional xylulose (step 2). NMR spectroscopy studies performed with (13) C-labeled xylose confirmed the proposed reaction pathway. The most active catalyst examined was zeolite Y, which proved more active than zeolite beta, ZSM-5, and mordenite. The yield of xylulose obtained over H-USY (Si/Al=6) after 1 h of reaction at 100 °C was 39%. After water hydrolysis in the second reaction step, the yield increased to 47%. Results obtained from pyridine adsorption studies confirm that H-USY (6) is a catalyst that combines Brønsted and Lewis acid sites, and isomerizes xylose in alcohol media to form xylulose at low temperature. The applied zeolites are commercially available; do not contain any auxiliary tetravalent metals, for example, tin, titanium, or zirconium; isomerize xylose efficiently; are easy to regenerate; and are prone to recycling.

  20. Integrating social media and social marketing: a four-step process.

    Science.gov (United States)

    Thackeray, Rosemary; Neiger, Brad L; Keller, Heidi

    2012-03-01

    Social media is a group of Internet-based applications that allows individuals to create, collaborate, and share content with one another. Practitioners can realize social media's untapped potential by incorporating it as part of the larger social marketing strategy, beyond promotion. Social media, if used correctly, may help organizations increase their capacity for putting the consumer at the center of the social marketing process. The purpose of this article is to provide a template for strategic thinking to successfully include social media as part of the social marketing strategy by using a four-step process.

  1. Anodic bonding using a hybrid electrode with a two-step bonding process

    Science.gov (United States)

    Wei, Luo; Jing, Xie; Yang, Zhang; Chaobo, Li; Yang, Xia

    2012-06-01

    A two-step bonding process using a novel hybrid electrode is presented. The effects of different electrodes on bonding time, bond strength and the bonded interface are analyzed. The anodic bonding is studied using a domestic bonding system, which carries out a detailed analysis of the integrity of the bonded interface and the bond strength measurement. With the aid of the hybrid electrode, a bubble-free anodic bonding process could be accomplished within 15-20 min, with a shear strength in excess of 10 MPa. These results show that the proposed method has a high degree of application value, including in most wafer-level MEMS packaging.

  2. A Three Step B2B Sales Model Based on Satisfaction Judgments

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe

    2015-01-01

    . The insights produces can be applied for selling companies to craft close collaborative customer relationships in a systematic a d efficient way. The process of building customer relationships will be guided through actions that yields higher satisfaction judgments leading to loyal customers and finally......This paper aims to provide a coherent, detailed and integrative understanding of the mental processes (i.e. dimensions) that industrial buyers apply when forming satisfaction judgments in adjacent to new task buying situations. A qualitative inductive research strategy is utilized in this study...... companies’ perspective. The buying center members applied satisfaction dimension when forming satisfaction judgments. Moreover, the focus and importance of the identified satisfaction dimensions fluctuated pending on the phase of the buying process. Based on the findings a three step sales model is proposed...

  3. Dual damascene BEOL processing using multilevel step and flash imprint lithography

    Science.gov (United States)

    Chao, Brook H.; Palmieri, Frank; Jen, Wei-Lun; McMichael, D. Hale; Willson, C. Grant; Owens, Jordan; Berger, Rich; Sotoodeh, Ken; Wilks, Bruce; Pham, Joseph; Carpio, Ronald; LaBelle, Ed; Wetzel, Jeff

    2008-03-01

    Step and Flash Imprint Lithography (S-FIL®) in conjunction with Sacrificial Imprint Materials (SIM) shows promise as a cost effective solution to patterning sub 45nm features and is capable of simultaneously patterning two levels of interconnect structures, which provides a high throughput and low cost BEOL process. This paper describes the integration of S-FIL into an industry standard Cu/low-k dual damascene process that is being practiced in the ATDF at Sematech in Austin. The pattern transferring reactive ion etching (RIE) process is the most critical step and was extensively explored in this study. In addition to successful process development, the results provide useful insight into the optimal design of multilevel templates which must take into account the characteristics of both the imaging material and the dielectric layer. The template used in this study incorporates both the via and trench levels of an M2 (Metal 2) test vehicle that incorporates via chains with varying via dimensions, Kelvin test structures, serpentines, etc. The smallest vias on the template are 120nm vias with an aspect ratio of 2.0 and the smallest dense lines are 125nm/175nm with an aspect ratio of 2.9. Two inter-level dielectrics (ILD), Coral® and Black Diamond® were studied. No trench etch stop was incorporated in the ILD film stack. A multi-step, in-situ etching scheme was developed that achieves faithful pattern transfer from the sacrificial imprint material (SIM) into the underlying low k ILD with surprisingly wide process latitude. This multi-step scheme includes the following etch steps: a residual layer open, a via etch, a trench descum, a trench etch, and an SIM removal ash. Among these steps, the trench etch was found to be the most challenging to develop and it holds the key to producing high aspect ratio dual damascene features. An etching chemistry based on two fluorocarbon gases, CF 4 and C 4F 8, was found to be very effective in delivering the desired etch profiles

  4. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    Science.gov (United States)

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications.

  5. Palytoxin induces cell lysis by priming a two-step process in mcf-7 cells.

    Science.gov (United States)

    Prandi, Simone; Sala, Gian Luca; Bellocci, Mirella; Alessandrini, Andrea; Facci, Paolo; Bigiani, Albertino; Rossini, Gian Paolo

    2011-08-15

    The cytolytic action of palytoxin (PlTX) was recognized long ago, but its features have remained largely undetermined. We used biochemical, morphological, physiological, and physical tools, to study the cytolytic response in MCF-7 cells, as our model system. Cytolysis represented a stereotyped response induced by the addition of isotonic phosphate buffer (PBS) to cells that had been exposed to PlTX, after toxin removal and under optimal and suboptimal experimental conditions. Cytolysis was sensitive to osmolytes present during cell exposure to PlTX but not in the course of the lytic phase. Fluorescence microscopy showed that PlTX caused cell rounding and rearrangement of the actin cytoskeleton. Atomic force microscopy (AFM) was used to monitor PlTX effects in real time, and we found that morphological and mechanical properties of MCF-7 cells did not change during toxin exposure, but increased cell height and decreased stiffness at its surface were observed when PBS was added to PlTX-treated cells. The presence of an osmolyte during PlTX treatment prevented the detection of changes in morphological and mechanical properties caused by PBS addition to toxin-treated cells, as detected by AFM. By patch-clamp technique, we confirmed that PlTX action involved the transformation of the Na(+),K(+)-ATPase into a channel and found that cell membrane capacitance was not changed by PlTX, indicating that the membrane surface area was not greatly affected in our model system. Overall, our findings show that the cytolytic response triggered by PlTX in MCF-7 cells includes a first phase, which is toxin-dependent and osmolyte-sensitive, priming cells to lytic events taking place in a separate phase, which does not require the presence of the toxin and is osmolyte-insensitive but is accompanied by marked reorganization of actin-based cytoskeleton and altered mechanical properties at the cell's surface. A model of the two-step process of PlTX-induced cytolysis is presented.

  6. A mechanical model for the role of the neck linker during kinesin stepping and gating

    Science.gov (United States)

    Wang, HaiYan; He, ChenJuan

    2011-12-01

    In this paper, considering the different elastic properties in the attached head and the free head, we propose a physical model, in which the free head undergoes a diffusive search in an entropic spring potential formed by undocking the neck linker, and there are asymmetric conformational changes in the attached head formed by docking the neck linker to support the load force and bias the diffusive search to the forward direction. By performing the thermodynamic analysis, we obtain the free energy difference between forward and backward binding sites. And using the Fokker-Planck equation with two absorbing boundaries, we obtain the dependence of the ratio of forward to backward steps on the backward force. Also, within the Michaelis-Menten model, we investigate the dependence of the velocity-load relationship on the effective length of the junction between the two heads. The results show that our model can provide a physical understanding for the processive movement of kinesin.

  7. The "step feature" of suprathermal ion distributions: a discriminator between acceleration processes?

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2012-09-01

    Full Text Available The discussion of exactly which process is causing the preferred build-up of v−5-power law tails of the velocity distribution of suprathermal particles in the solar wind is still ongoing. Criteria allowing one to discriminate between the various suggestions that have been made would be useful in order to clarify the physics behind these tails. With this study, we draw the attention to the so-called "step feature" of the velocity distributions and offer a criterion that allows one to distinguish between those scenarios that employ velocity diffusion, i.e. second-order Fermi processes, which are prime candidates in the present debate. With an analytical approximation to the self-consistently obtained velocity diffusion coefficient, we solve the transport equation for suprathermal particles. The numerical simulation reveals that this form of the diffusion coefficient naturally leads to the step feature of the velocity distributions. This finding favours – at least in regions of the appearance of the step feature (i.e. for heliocentric distances up to about 11 AU and at lower energies – the standard velocity diffusion as a consequence of the particle's interactions with the plasma wave turbulence as opposed to that caused by velocity fluctuation-induced compressions and rarefactions.

  8. Integration of protein processing steps on a droplet microfluidics platform for MALDI-MS analysis.

    Science.gov (United States)

    Chatterjee, Debalina; Ytterberg, A Jimmy; Son, Sang Uk; Loo, Joseph A; Garrell, Robin L

    2010-03-01

    A droplet-based (digital) microfluidics platform has been developed to prepare and purify protein samples for measurement by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Liquid droplets are moved in air by sequentially applying an electric potential to an array of electrodes patterned beneath a hydrophobic dielectric layer. We show that a complete integrated sequence of protein processing steps can be performed on this platform, including disulfide reduction, alkylation, and enzymatic digestion, followed by cocrystallization with a MALDI matrix and analysis of the sample in situ by MALDI-MS. Proteins carbonic anhydrase, cytochrome c, and ubiquitin were used to demonstrate the digestion and postdigestion steps; insulin, serum albumin, and lysozyme were used to illustrate the complete sequence of protein processing steps available with the platform. Several functional improvements in the platform are reported, notably, the incorporation of acetonitrile in the protein droplets to facilitate movement, and patterning the device surfaces to optimize sample crystallization. The method is fast, simple, repeatable, and results in lower reagent consumption and sample loss than conventional techniques for proteomics sample preparation.

  9. The "step feature" of suprathermal ion distributions: a discriminator between acceleration processes?

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.

    2012-09-01

    The discussion of exactly which process is causing the preferred build-up of v-5-power law tails of the velocity distribution of suprathermal particles in the solar wind is still ongoing. Criteria allowing one to discriminate between the various suggestions that have been made would be useful in order to clarify the physics behind these tails. With this study, we draw the attention to the so-called "step feature" of the velocity distributions and offer a criterion that allows one to distinguish between those scenarios that employ velocity diffusion, i.e. second-order Fermi processes, which are prime candidates in the present debate. With an analytical approximation to the self-consistently obtained velocity diffusion coefficient, we solve the transport equation for suprathermal particles. The numerical simulation reveals that this form of the diffusion coefficient naturally leads to the step feature of the velocity distributions. This finding favours - at least in regions of the appearance of the step feature (i.e. for heliocentric distances up to about 11 AU and at lower energies) - the standard velocity diffusion as a consequence of the particle's interactions with the plasma wave turbulence as opposed to that caused by velocity fluctuation-induced compressions and rarefactions.

  10. Fracture strength of GaAs solar cells as a function of manufacturing process steps

    Science.gov (United States)

    Chen, C. P.; Leipold, M. H.

    1985-01-01

    Fracture of single crystal GaAs substrate during the solar cell processing is an important factor in solar cell yield and cost. Fracture mechanics technique was utilized to evaluate cell cracking characteristics and changes in fracture strength of GaAs solar cells in a present state-of-the-art of manufacturing process for GaAs solar cells from wafer to complete cell of a typical production line. Considerable change in the fracture strength of GaAs solar cells as a function of cell processing was found. The strength data were described by Weibull statistical analysis and can be interpreted with the change of flaw distribution of each of the manufacturing process steps.

  11. The influence of random slowdown process and lock-step effect on the fundamental diagram of the nonlinear pedestrian dynamics: An estimating-correction cellular automaton

    Science.gov (United States)

    Fu, Zhijian; Zhou, Xiaodong; Chen, Yanqiu; Gong, Junhui; Peng, Fei; Yan, Zidan; Zhang, Taolin; Yang, Lizhong

    2015-03-01

    Random slowdown process and lock-step effect, observed from real-life observation and the experiments of other researchers, were investigated in the view of the pedestrian microscopic behaviors. Due to the limited controllability, repeatability and randomness of the pedestrian experiments, a new estimating-correction cellular automaton was established to research the influence of random slowdown process and lock-step effect on the fundamental diagram. The first step of the model is to estimate the next time-step status of the neighbor cell in front of the tracked pedestrian. The second step is to correct the status and confirm the position of the tracked pedestrian in the next time-step. It is found that the random slowdown process and lock-step have significant influence on the curve configuration and the characteristic parameters, including the concavity-convexity, the inflection point, the maximum flow rate and the critical density etc. The random slowdown process reduces the utilization of the available space between two adjacent pedestrians in the longitudinal direction, especially in the region of intermediate density. However, the lock-step effect enhances the utilization of the available space, especially in the region of high density.

  12. GREAT Process Modeller user manual

    OpenAIRE

    Rueda, Urko; España, Sergio; Ruiz, Marcela

    2015-01-01

    This report contains instructions to install, uninstall and use GREAT Process Modeller, a tool that supports Communication Analysis, a communication-oriented business process modelling method. GREAT allows creating communicative event diagrams (i.e. business process models), specifying message structures (which describe the messages associated to each communicative event), and automatically generating a class diagram (representing the data model of an information system that would support suc...

  13. TMS field modelling-status and next steps

    DEFF Research Database (Denmark)

    Thielscher, Axel

    2013-01-01

    In the recent years, an increasing number of studies used geometrically accurate head models and finite element (FEM) or finite difference methods (FDM) to estimate the electric field induced by non-invasive neurostimulation techniques such as transcranial magnetic stimulation (TMS) or transcranial......, field estimates based on accurate head models have already proven highly useful for a better understanding of the biophysics of non-invasive brain stimulation. The improved software tools now allow for systematic tests of the links between the estimated fields and the physiological effects in multi...... weak current stimulation (tCS; e.g., Datta et al., 2010; Thielscher et al., 2011). A general outcome was that the field estimates based on these more realistic models differ substantially from the results obtained with simpler head models. This suggests that the former models are indeed needed...

  14. Production of neutron-rich isotopes by one- and two-step processes in ISOL targets

    CERN Document Server

    Portillo, M; Gomes, I; Panteleev, V N; Fedorov, D V; Barzakh, A E; Beznosjuk, V I; Moroz, F V; Orlov, S Y; Volkov, Y M

    2002-01-01

    The results are presented for an experiment that compares the difference between a one- and two-step reaction setup using 1 GeV protons. The rates of production from an on-line isotope separator target containing UCx are measured for isotopes in the neutron mass region of Rb and Cs. Some details about the measured results and predictions by the Monte Carlo models are discussed. The effects of the delayed release on the extracted efficiency are generalized using analytical models for application to a wide range of nuclear decay lifetimes.

  15. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    By comparison with the solution of the time-dependent Schrodinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  16. Microstructural and mechanical evolutions during the forging step of the COBAPRESS, a casting/forging process

    Science.gov (United States)

    Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique

    Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.

  17. INNOVATION PROCESS MODELLING

    Directory of Open Access Journals (Sweden)

    JANUSZ K. GRABARA

    2011-01-01

    Full Text Available Modelling phenomena in accordance with the structural approach enables one to simplify the observed relations and to present the classification grounds. An example may be a model of organisational structure identifying the logical relations between particular units and presenting the division of authority, work.

  18. Changes in phenolics and antioxidant activity at each step of processing from pomegranate into nectar.

    Science.gov (United States)

    Surek, Ece; Nilufer-Erdil, Dilara

    2014-03-01

    Effect of all processing steps on polyphenols and antioxidant activity was investigated during an industrial scale pasteurized pomegranate nectar production, from which sampling was done at 12 steps of the process. Total phenolic (TPC), flavonoid (TFC), anthocyanin (TAC), tannin contents (TTC), antioxidant activity (TAA) (2,2'-azinobis-3-ethylbenzo-thiazoline-6-sulphonic acid diammonium salt (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing ability of plasma (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays), phenolic and anthocyanin profiles were analyzed in those samples. TPC, TFC, TTC and TAA were highest in whole pomegranate. For all analyses, peeling and processing into nectar resulted in significant losses, except for TAC data obtained for peeling. Losses at mashing (for TFC 24%), pressing (for TAC 13%, TTC 48%, TAA 21-63%), pasteurization (for TFC 76%, TAA 42-77%) and ultrafiltration (for TPC 18%, TFC 28%, AA 17-19%) were also significant. Pomegranate nectar, when compared with fresh edible fruit, retained 19% of TPC and 14% of TAC at the end of processing, however, as initial values were very high for pomegranate, pasteurized nectar is still a promising source of polyphenols.

  19. Pedagogic process modeling: Humanistic-integrative approach

    Directory of Open Access Journals (Sweden)

    Boritko Nikolaj M.

    2007-01-01

    Full Text Available The paper deals with some current problems of modeling the dynamics of the subject-features development of the individual. The term "process" is considered in the context of the humanistic-integrative approach, in which the principles of self education are regarded as criteria for efficient pedagogic activity. Four basic characteristics of the pedagogic process are pointed out: intentionality reflects logicality and regularity of the development of the process; discreteness (stageability in dicates qualitative stages through which the pedagogic phenomenon passes; nonlinearity explains the crisis character of pedagogic processes and reveals inner factors of self-development; situationality requires a selection of pedagogic conditions in accordance with the inner factors, which would enable steering the pedagogic process. Offered are two steps for singling out a particular stage and the algorithm for developing an integrative model for it. The suggested conclusions might be of use for further theoretic research, analyses of educational practices and for realistic predicting of pedagogical phenomena. .

  20. Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process

    Directory of Open Access Journals (Sweden)

    S. Aravindan

    2015-03-01

    Full Text Available Magnesium alloy (AZ91D composites reinforced with silicon carbide particle with different volume percentage were fabricated by two step stir casting process. The effect of changes in particle size and volume fraction of SiC particles on physical and mechanical properties of composites were evaluated under as cast and heat treated (T6 conditions. The experimental results were compared with the standard theoretical models. The results reveal that the mechanical properties of composites increased with increasing SiC particles and decrease with increasing particle size. Distribution of particles and fractured surface were studied through SEM and the presence of elements is revealed by EDS study.

  1. Some problems in adsorption and calorimetric studies of the steps of catalytic processes

    Institute of Scientific and Technical Information of China (English)

    Victor E. Ostrovskii

    2004-01-01

    Principal side factors as well as technical and procedural peculiarities capable of distorting the results of measurements of adsorbed and desorbed amounts, of falsifying the nature of the processes proceeding in the systems under study, and of promoting artifacts in calorimetric and other studies of gas chemisorption on powders are considered. Modified techniques and procedures allowing the elimination of sources of side phenomena and artifacts and freeing traditional glass static adsorption apparatuses and experimental procedures from undesirable factors and peculiarities are proposed.Some available chemisorption and calorimetric data representing artifacts and also some data that are not artifacts but,due to imperfections of chemisorption techniques, show up as artifacts are presented and discussed. Several applications of the improved techniques and procedures to calorimetric and adsorption studies of the steps of catalytic processes proceeding on the basis of natural gas and of products of its processing are presented and discussed.

  2. The Two-Step Student Teaching Model: Training for Accountability.

    Science.gov (United States)

    Corlett, Donna

    This model of student teaching preparation was developed in collaboration with public schools to focus on systematic experience in teaching and training for accountability in the classroom. In the two-semester plan, students begin with teacher orientation and planning days, serve as teacher aides, attend various methods courses, teach several…

  3. Selective catalytic two-step process for ethylene glycol from carbon monoxide

    Science.gov (United States)

    Dong, Kaiwu; Elangovan, Saravanakumar; Sang, Rui; Spannenberg, Anke; Jackstell, Ralf; Junge, Kathrin; Li, Yuehui; Beller, Matthias

    2016-01-01

    Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C–C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals. PMID:27377550

  4. Step by step control of a deep drawing process with piezo-electric actuators in serial operation

    Directory of Open Access Journals (Sweden)

    Bäume Tobias

    2015-01-01

    Full Text Available Due to the design-driven increase in complexity of forming car body parts, it becomes more difficult to ensure a stable forming process. Piezoelectric actuators can influence the material flow of stamping parts effectively. In this article the implementation of piezoelectric actuators in a large scale sheet metal forming tool of a car manufacturer is described. Additionally, it is shown that part quality can be assessed with the help of triangulation laser sensors, which are mounted on the blankholder. The resulting flange draw-in signals were used to reduce the occurrence of wrinkling or the rate of cracking. It was shown that process control improved the quality of the stamping parts significantly.

  5. BPMN Impact on Process Modeling

    OpenAIRE

    Polak, Przemyslaw

    2013-01-01

    Recent years have seen huge rise in popularity of BPMN in the area of business process modeling, especially among business analysts. This notation has characteristics that distinguish it significantly from the previously popular process modeling notations, such as EPC. The article contains the analysis of some important characteristics of BPMN and provides author’s conclusions on the impact that the popularity and specificity of BPMN can have on the practice of process modeling. Author's obse...

  6. A two-step patterning process increases the robustness of periodic patterning in the fly eye.

    Science.gov (United States)

    Gavish, Avishai; Barkai, Naama

    2016-06-01

    Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities ('noise') inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects. Author summary Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need

  7. MODELLING PURCHASING PROCESSES FROM QUALITY ASPECTS

    Directory of Open Access Journals (Sweden)

    Zora Arsovski

    2008-12-01

    Full Text Available Management has a fundamental task to identify and direct primary and specific processes within purchasing function, applying the up-to-date information infrastructure. ISO 9001:2000 defines a process as a number of interrelated or interactive activities transforming inputs and outputs, and the "process approach" as a systematic identification in management processes employed with the organization and particularly - relationships among the processes. To direct a quality management system using process approach, the organization is to determine the map of its general (basic processes. Primary processes are determined on the grounds of their interrelationship and impact on satisfying customers' needs. To make a proper choice of general business processes, it is necessary to determine the entire business flow, beginning with the customer demand up to the delivery of products or service provided. In the next step the process model is to be converted into data model which is essential for implementation of the information system enabling automation, monitoring, measuring, inspection, analysis and improvement of key purchase processes. In this paper are given methodology and some results of investigation of development of IS for purchasing process from aspects of quality.

  8. Aircraft flight data processing and parameter identification with iterative extended Kalman filter/smoother and two-step estimator

    Science.gov (United States)

    Yu, Qiuli

    2001-12-01

    Aircraft flight test data are processed by optimal estimation programs to estimate the aircraft state trajectory (3 DOF) and to identify the unknown parameters, including constant biases and scale factor of the measurement instrumentation system. The methods applied in processing aircraft flight test data are the iterative extended Kalman filter/smoother and fixed-point smoother (IEKFSFPS) method and the two-step estimator (TSE) method. The models of an aircraft flight dynamic system and measurement instrumentation system are established. The principles of IEKFSFPS and TSE methods are derived and summarized, and their algorithms are programmed with MATLAB codes. Several numerical experiments of flight data processing and parameter identification are carried out by using IEKFSFPS and TSE algorithm programs. Comparison and discussion of the simulation results with the two methods are made. The TSE+IEKFSFPS combination method is presented and proven to be effective and practical. Figures and tables of the results are presented.

  9. Process Model for Defining Space Sensing and Situational Awareness Requirements

    Science.gov (United States)

    2006-04-01

    process model for defining systems for space sensing and space situational awareness is presented. The paper concentrates on eight steps for determining the requirements to include: decision maker needs, system requirements, exploitation methods and vulnerabilities, critical capabilities, and identify attack scenarios. Utilization of the USAF anti-tamper (AT) implementation process as a process model departure point for the space sensing and situational awareness (SSSA...is presented. The AT implementation process model , as an

  10. Noise generated by model step lap core configurations of grain oriented electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Snell, David [Cogent Power Ltd., Development and Market Research, Orb Electrical Steels, Corporation Road, Newport, South Wales NP19 OXT (United Kingdom)], E-mail: Dave.snell@cogent-power.com

    2008-10-15

    Although it is important to reduce the power loss associated with transformer cores by use of electrical steel of the optimum grade, it is equally important to minimise the noise generated by the core. This paper discusses the effect of variations in the number of steps (3, 5, and 7) and the step overlap (2, 4, and 6 mm) on noise associated with model step lap cores of conventional, high permeability and ball unit domain refined high permeability grain oriented electrical steel. A-weighted sound pressure level noise measurements (LAeq) were made at various locations of the core over the frequency range 25-16,000 Hz. For all step lap cores investigated, the noise generated was dependent on the induction level, and on the number of steps and step overlap employed. The use of 3 step lap cores and step overlaps of 2 mm should be avoided, if low noise is to be achieved. There was very little difference between the noise emitted by the 5 and 7 step lap cores. Similar noise levels were noted for 27M0H material in the non-domain refined (NDR) and ball unit domain refined condition for a 5 step lap core with 6 mm step overlap.

  11. Radiolysis Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Wittman, Richard S.; Skomurski, Frances N.; Cantrell, Kirk J.; McNamara, Bruce K.; Soderquist, Chuck Z.

    2012-07-17

    Assessing the performance of spent (used) nuclear fuel in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water (including OH• and H• radicals, O2-, eaq, H2O2, H2, and O2) that may increase the waste form degradation rate and change radionuclide behavior. H2O2 is the dominant oxidant for spent nuclear fuel in an O2 depleted water environment, the most sensitive parameters have been identified with respect to predictions of a radiolysis model under typical conditions. As compared with the full model with about 100 reactions it was found that only 30-40 of the reactions are required to determine [H2O2] to one part in 10–5 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.

  12. Building self-consistent, short-term earthquake probability (STEP models: improved strategies and calibration procedures

    Directory of Open Access Journals (Sweden)

    Damiano Monelli

    2010-11-01

    Full Text Available We present here two self-consistent implementations of a short-term earthquake probability (STEP model that produces daily seismicity forecasts for the area of the Italian national seismic network. Both implementations combine a time-varying and a time-invariant contribution, for which we assume that the instrumental Italian earthquake catalog provides the best information. For the time-invariant contribution, the catalog is declustered using the clustering technique of the STEP model; the smoothed seismicity model is generated from the declustered catalog. The time-varying contribution is what distinguishes the two implementations: 1 for one implementation (STEP-LG, the original model parameterization and estimation is used; 2 for the other (STEP-NG, the mean abundance method is used to estimate aftershock productivity. In the STEP-NG implementation, earthquakes with magnitude up to ML= 6.2 are expected to be less productive compared to the STEP-LG implementation, whereas larger earthquakes are expected to be more productive. We have retrospectively tested the performance of these two implementations and applied likelihood tests to evaluate their consistencies with observed earthquakes. Both of these implementations were consistent with the observed earthquake data in space: STEP-NG performed better than STEP-LG in terms of forecast rates. More generally, we found that testing earthquake forecasts issued at regular intervals does not test the full power of clustering models, and future experiments should allow for more frequent forecasts starting at the times of triggering events.

  13. Modeling of column apparatus processes

    CERN Document Server

    Boyadjiev, Christo; Boyadjiev, Boyan; Popova-Krumova, Petya

    2016-01-01

    This book presents a new approach for the modeling of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. The convection-diffusion type models are used for a qualitative analysis of the processes and to assess the main, small and slight physical effects, and then reject the slight effects. As a result, the process mechanism can be identified. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze different processes (simple and complex chemical reactions, absorption, adsorption and catalytic reactions), and make it possible to model the processes of gas purification with sulfur dioxide, which form the basis of several patents.

  14. Effect of urea on formation of hydroxyapatite through double-step hydrothermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Parthiban, S. Prakash, E-mail: prakashparthiban@gmail.com; Kim, Ill Yong; Kikuta, Koichi; Ohtsuki, Chikara

    2011-10-10

    The effect of urea on the formation of hydroxyapatite (HAp) was studied by employing the double-step hydrothermal processing of a powder mixture of beta-tricalcium phosphate ({beta}-TCP) and dicalcium phosphate dihydrate (DCPD). Co-existence of urea was found to sustain morphology of HAp crystals in the compacts under an initial concentration of 2 mol dm{sup -3} and less. Homogenous morphology of needle-like crystals was observed on the compacts carbonated owing to decomposition of urea. Carbonate ions (CO{sub 3}{sup 2-}) was found to be substituted in both the phosphate and hydroxide sites of HAp lattice. The synthesized HAp was calcium deficient, as it had a Ca/P atomic ratio of 1.62 and the phase was identified as calcium deficient hydroxyapatite (CDHA). The release of CO{sub 3}{sup 2-} ions from urea during the hydrothermal treatment determined the morphology of the CDHA in the compacts. The usage of urea in the morphological control of carbonate-substituted HAp (CHAp) employing the double-step hydrothermal method is established. Highlights: {yields} Carbonate substituted hydroxyapatite (CHAp) compacts were developed by a new method, namely double-step hydrothermal processing. {yields} CHAp compacts with uniform micromorphology were obtained by using urea as solvent. {yields} Morphology was sustained even at higher concentration of urea, which emphasized the versatility of urea. {yields} Homogenous morphology of CHAp compacts were obtained for higher concentration of urea. Pores were also formed at higher concentration on the CHAp compacts. {yields} The slow dissociation of urea under hydrothermal conditions is the reason for morphology control.

  15. Operator Approach to the Master Equation for the One-Step Process

    Science.gov (United States)

    Hnatič, M.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastyanov, L. A.

    2016-02-01

    Background. Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. The expansion of the equation in a formal Taylor series (the so called Kramers-Moyal's expansion) is used in the procedure of stochastization of one-step processes. Purpose. However, this does not eliminate the need for the study of the master equation. Method. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). Results: This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. Conclusions: We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.

  16. Pirenzepine Promotes the Dimerization of Muscarinic M1 Receptors through a Three-step Binding Process*

    Science.gov (United States)

    Ilien, Brigitte; Glasser, Nicole; Clamme, Jean-Pierre; Didier, Pascal; Piemont, Etienne; Chinnappan, Raja; Daval, Sandrine B.; Galzi, Jean-Luc; Mely, Yves

    2009-01-01

    Ligand binding to G protein-coupled receptors is a complex process that involves sequential receptor conformational changes, ligand translocation, and possibly ligand-induced receptor oligomerization. Binding events at muscarinic acetylcholine receptors are usually interpreted from radioligand binding studies in terms of two-step ligand-induced receptor isomerization. We report here, using a combination of fluorescence approaches, on the molecular mechanisms for Bodipy-pirenzepine binding to enhanced green fluorescent protein (EGFP)-fused muscarinic M1 receptors in living cells. Real time monitoring, under steady-state conditions, of the strong fluorescence energy transfer signal elicited by this interaction permitted a fine kinetic description of the binding process. Time-resolved fluorescence measurements allowed us to identify discrete EGFP lifetime species and to follow their redistribution upon ligand binding. Fluorescence correlation spectroscopy, with EGFP brightness analysis, showed that EGFP-fused muscarinic M1 receptors predominate as monomers in the absence of ligand and dimerize upon pirenzepine binding. Finally, all these experimental data could be quantitatively reconciled into a three-step mechanism, with four identified receptor conformational states. Fast ligand binding to a peripheral receptor site initiates a sequence of conformational changes that allows the ligand to access to inner regions of the protein and drives ligand-receptor complexes toward a high affinity dimeric state. PMID:19451648

  17. Pirenzepine promotes the dimerization of muscarinic M1 receptors through a three-step binding process.

    Science.gov (United States)

    Ilien, Brigitte; Glasser, Nicole; Clamme, Jean-Pierre; Didier, Pascal; Piemont, Etienne; Chinnappan, Raja; Daval, Sandrine B; Galzi, Jean-Luc; Mely, Yves

    2009-07-17

    Ligand binding to G protein-coupled receptors is a complex process that involves sequential receptor conformational changes, ligand translocation, and possibly ligand-induced receptor oligomerization. Binding events at muscarinic acetylcholine receptors are usually interpreted from radioligand binding studies in terms of two-step ligand-induced receptor isomerization. We report here, using a combination of fluorescence approaches, on the molecular mechanisms for Bodipy-pirenzepine binding to enhanced green fluorescent protein (EGFP)-fused muscarinic M1 receptors in living cells. Real time monitoring, under steady-state conditions, of the strong fluorescence energy transfer signal elicited by this interaction permitted a fine kinetic description of the binding process. Time-resolved fluorescence measurements allowed us to identify discrete EGFP lifetime species and to follow their redistribution upon ligand binding. Fluorescence correlation spectroscopy, with EGFP brightness analysis, showed that EGFP-fused muscarinic M1 receptors predominate as monomers in the absence of ligand and dimerize upon pirenzepine binding. Finally, all these experimental data could be quantitatively reconciled into a three-step mechanism, with four identified receptor conformational states. Fast ligand binding to a peripheral receptor site initiates a sequence of conformational changes that allows the ligand to access to inner regions of the protein and drives ligand-receptor complexes toward a high affinity dimeric state.

  18. A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps.

    Science.gov (United States)

    Tugizimana, Fidele; Steenkamp, Paul A; Piater, Lizelle A; Dubery, Ian A

    2016-11-03

    Untargeted metabolomic studies generate information-rich, high-dimensional, and complex datasets that remain challenging to handle and fully exploit. Despite the remarkable progress in the development of tools and algorithms, the "exhaustive" extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants responding dynamically to infection by a fungal pathogen) were used. Raw data were pre-processed with MarkerLynx(TM) software (Waters Corporation, Manchester, UK). Here, two parameters were varied: the intensity threshold (50-100 counts) and the mass tolerance (0.005-0.01 Da). After the pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden) for more data cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc.) and data transformation (log and power) methods were explored. The results showed that the pre-processing parameters (or algorithms) influence the output dataset with regard to the number of defined features. Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model can explain and predict. The pre-processing and pre-treatment steps subsequently influence the number of statistically significant extracted/selected features (variables). Thus, as informed by the results, to maximize the value of untargeted metabolomic data, understanding

  19. UML in business process modeling

    Directory of Open Access Journals (Sweden)

    Bartosz Marcinkowski

    2013-03-01

    Full Text Available Selection and proper application of business process modeling methods and techniques have a significant impact on organizational improvement capabilities as well as proper understanding of functionality of information systems that shall support activity of the organization. A number of business process modeling notations were popularized in practice in recent decades. Most significant of the notations include Business Process Modeling Notation (OMG BPMN and several Unified Modeling Language (OMG UML extensions. In this paper, the assessment whether one of the most flexible and strictly standardized contemporary business process modeling notations, i.e. Rational UML Profile for Business Modeling, enable business analysts to prepare business models that are all-embracing and understandable by all the stakeholders. After the introduction, methodology of research is discussed. Section 2 presents selected case study results. The paper is concluded with a summary.

  20. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  1. Modeling Software Processes and Artifacts

    NARCIS (Netherlands)

    van den Berg, Klaas; Bosch, Jan; Mitchell, Stuart

    1997-01-01

    The workshop on Modeling Software Processes and Artifacts explored the application of object technology in process modeling. After the introduction and the invited lecture, a number of participants presented their position papers. First, an overview is given on some background work, and the aims, as

  2. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    . In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid......The subject of this thesis is to develop a methodological framework that can systematically guide mathematical model building for better understanding of multi-enzyme processes. In this way, opportunities for process improvements can be identified by analyzing simulations of either existing...... in the scientific literature. Reliable mathematical models of such multi-catalytic schemes can exploit the potential benefit of these processes. In this way, the best outcome of the process can be obtained understanding the types of modification that are required for process optimization. An effective evaluation...

  3. Business process modeling in healthcare.

    Science.gov (United States)

    Ruiz, Francisco; Garcia, Felix; Calahorra, Luis; Llorente, César; Gonçalves, Luis; Daniel, Christel; Blobel, Bernd

    2012-01-01

    The importance of the process point of view is not restricted to a specific enterprise sector. In the field of health, as a result of the nature of the service offered, health institutions' processes are also the basis for decision making which is focused on achieving their objective of providing quality medical assistance. In this chapter the application of business process modelling - using the Business Process Modelling Notation (BPMN) standard is described. Main challenges of business process modelling in healthcare are the definition of healthcare processes, the multi-disciplinary nature of healthcare, the flexibility and variability of the activities involved in health care processes, the need of interoperability between multiple information systems, and the continuous updating of scientific knowledge in healthcare.

  4. Modeling nuclear processes by Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  5. Modeling nuclear processes by Simulink

    Science.gov (United States)

    Rashid, Nahrul Khair Alang Md

    2015-04-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  6. The Distribution of Technetium in U/Pu Partition Step of Advanced Purex Process Based on Organic Reagents

    Institute of Scientific and Technical Information of China (English)

    WANG; Hui; WEI; Yan; LIU; Fang; JIA; Yong-fen; LIU; Zhan-yuan

    2012-01-01

    <正>Advanced Purex process based on organic reagents (APOR) is an advanced Purex process, where monomethylhydrazine (MMH)-dimethylhydroxylamine (DMHAN) are adopted as salt-free plutonium- reductant in the partition step. During this step, technetium mainly goes into aqueous plutonium stream, and the aim of our work is to explain this phenomena. Reaction kinetic experiments and process experiments with mixer-settler were carried out for this purpose.

  7. Application of Multi-Step Parameter Estimation Method Based on Optimization Algorithm in Sacramento Model

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-07-01

    Full Text Available The Sacramento model is widely utilized in hydrological forecast, of which the accuracy and performance are primarily determined by the model parameters, indicating the key role of parameter estimation. This paper presents a multi-step parameter estimation method, which divides the parameter estimation of Sacramento model into three steps and realizes optimization step by step. We firstly use the immune clonal selection algorithm (ICSA to solve the non-liner objective function of parameter estimation, and compare the parameter calibration result of ideal artificial data with Shuffled Complex Evolution (SCE-UA, Parallel Genetic Algorithm (PGA, and Serial Master-slaver Swarms Shuffling Evolution Algorithm Based on Particle Swarms Optimization (SMSE-PSO. The comparison result shows that ICSA has the best convergence, efficiency and precision. Then we apply ICSA to the parameter estimation of single-step and multi-step Sacramento model and simulate 32 floods based on application examples of Dongyang and Tantou river basins for validation. It is clearly shown that the results of multi-step method based on ICSA show higher accuracy and 100% qualified rate, indicating its higher precision and reliability, which has great potential to improve Sacramento model and hydrological forecast.

  8. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction.

    Science.gov (United States)

    Plank, Harald

    2015-02-06

    During the last decade, focused ion beam processing has been developed from traditionally used Ga(+) liquid ion sources towards higher resolution gas field ion sources (He(+) and Ne(+)). Process simulations not only improve the fundamental understanding of the relevant ion-matter interactions, but also enable a certain predictive power to accelerate advances. The historic 'gold' standard in ion-solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818-23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne(+) beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications.

  9. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    Science.gov (United States)

    Plank, Harald

    2015-02-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga+ liquid ion sources towards higher resolution gas field ion sources (He+ and Ne+). Process simulations not only improve the fundamental understanding of the relevant ion-matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion-solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818-23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne+ beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications.

  10. Step Flow Model of Radial Growth and Shape Evolution of Semiconductor Nanowires

    Science.gov (United States)

    Filimonov, S. N.; Hervieu, Yu. Yu.

    2016-12-01

    A model of radial growth of vertically aligned nanowires (NW) via formation and propagation of monoatomic steps at nanowire sidewalls is developed. The model allows to describe self-consistently the step dynamics and the axial growth of the NW. It is shown that formation of NWs with an abrupt change of wire diameter and a non-tapered section at the top might be explained by the bunching of sidewall steps due to the presence of a strong sink for adatoms at the NW top. The Ehrlich-Schwoebel barrier for the attachment of adatoms to the descending step favors the step bunching at the beginning of the radial growth and promotes the decay of the bunch at a later time of the NW growth.

  11. Two-dimensional modeling of stepped planing hulls with open and pressurized air cavities

    Directory of Open Access Journals (Sweden)

    Konstantin I. Matveev

    2012-06-01

    Full Text Available A method of hydrodynamic discrete sources is applied for two-dimensional modeling of stepped planing surfaces. The water surface deformations, wetted hull lengths, and pressure distribution are calculated at given hull attitude and Froude number. Pressurized air cavities that improve hydrodynamic performance can also be modeled with the current method. Presented results include validation examples, parametric calculations of a single-step hull, effect of trim tabs, and performance of an infinite series of periodic stepped surfaces. It is shown that transverse steps can lead to higher lift-drag ratio, although at reduced lift capability, in comparison with a stepless hull. Performance of a multi-step configuration is sensitive to the wave pattern between hulls, which depends on Froude number and relative hull spacing.

  12. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    Energy Technology Data Exchange (ETDEWEB)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the

  13. High-throughput process development of chromatography steps: advantages and limitations of different formats used.

    Science.gov (United States)

    Łącki, Karol M

    2012-10-01

    In the past, development of a chromatographic separation method has been accomplished by performing a series of experiments using either manual or automated chromatography systems. The screening of a vast experimental space became very expensive because all experiments had to be performed in a serial manner, and the chromatography systems used were designed for relatively large columns and, therefore, the experiments required large sample volumes. To address these issues, high-throughput miniaturized methods employing different operating principles and/or formats have been introduced. Herein, a technical review of the most common high-throughput formats used for the development of chromatographic purification steps is presented. The formats considered include minicolumns, prefilled pipette tips, and microtiter filter plates prefilled with chromatography resins. Advantages and limitations of each format are discussed through the prism of chromatographic theory, engineering principles, and known mass-transfer mechanisms. A roadmap for applicability of the different formats for process development purposes and implementation of a Quality by Design initiative for designing/optimization of chromatography steps is also discussed.

  14. Single-step chemistry model and transport coefficient model for hydrogen combustion

    Institute of Scientific and Technical Information of China (English)

    WANG ChangJian; WEN Jennifer; LU ShouXiang; GUO Jin

    2012-01-01

    To satisfy the needs of large-scale hydrogen combustion and explosion simulation,a method is presented to establish single-step chemistry model and transport model for fuel-air mixture.If the reaction formula for hydrogen-air mixture is H2+0.5O2→H2O,the reaction rate model is ω =1.13×1015[H2][O2]exp(-46.37T0/T) mol (cm3 s)-1,and the transport coefficient model is μ=K/Cp=pD=7.0×10-5T 0.7 g (cm s)-1.By using current models and the reference model to simulate steady Zeldovich-von Neumann-Doering (ZND) wave and free-propagating laminar flame,it is found that the results are well agreeable.Additionally,deflagration-to-detonation transition in an obstructed channel was also simulated.The numerical results are also well consistent with the experimental results.These provide a reasonable proof for current method and new models.

  15. Sato Processes in Default Modeling

    DEFF Research Database (Denmark)

    Kokholm, Thomas; Nicolato, Elisa

    In reduced form default models, the instantaneous default intensity is classically the modeling object. Survival probabilities are then given by the Laplace transform of the cumulative hazard defined as the integrated intensity process. Instead, recent literature has shown a tendency towards...... specifying the cumulative hazard process directly. Within this framework we present a new model class where cumulative hazards are described by self-similar additive processes, also known as Sato processes. Furthermore we also analyze specifications obtained via a simple deterministic time......-change of a homogeneous Levy process. While the processes in these two classes share the same average behavior over time, the associated intensities exhibit very different properties. Concrete specifications are calibrated to data on the single names included in the iTraxx Europe index. The performances are compared...

  16. Sato Processes in Default Modeling

    DEFF Research Database (Denmark)

    Kokholm, Thomas; Nicolato, Elisa

    2010-01-01

    In reduced form default models, the instantaneous default intensity is the classical modeling object. Survival probabilities are then given by the Laplace transform of the cumulative hazard defined as the integrated intensity process. Instead, recent literature tends to specify the cumulative...... hazard process directly. Within this framework we present a new model class where cumulative hazards are described by self-similar additive processes, also known as Sato processes. Furthermore, we analyze specifications obtained via a simple deterministic time-change of a homogeneous Lévy process. While...... the processes in these two classes share the same average behavior over time, the associated intensities exhibit very different properties. Concrete specifications are calibrated to data on all the single names included in the iTraxx Europe index. The performances are compared with those of the classical CIR...

  17. Enriching step-based product information models to support product life-cycle activities

    Science.gov (United States)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  18. Modeling delayed processes in biological systems

    Science.gov (United States)

    Feng, Jingchen; Sevier, Stuart A.; Huang, Bin; Jia, Dongya; Levine, Herbert

    2016-09-01

    Delayed processes are ubiquitous in biological systems and are often characterized by delay differential equations (DDEs) and their extension to include stochastic effects. DDEs do not explicitly incorporate intermediate states associated with a delayed process but instead use an estimated average delay time. In an effort to examine the validity of this approach, we study systems with significant delays by explicitly incorporating intermediate steps. We show that such explicit models often yield significantly different equilibrium distributions and transition times as compared to DDEs with deterministic delay values. Additionally, different explicit models with qualitatively different dynamics can give rise to the same DDEs revealing important ambiguities. We also show that DDE-based predictions of oscillatory behavior may fail for the corresponding explicit model.

  19. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    Science.gov (United States)

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  20. Two-step optimization of pressure and recovery of reverse osmosis desalination process.

    Science.gov (United States)

    Liang, Shuang; Liu, Cui; Song, Lianfa

    2009-05-01

    Driving pressure and recovery are two primary design variables of a reverse osmosis process that largely determine the total cost of seawater and brackish water desalination. A two-step optimization procedure was developed in this paper to determine the values of driving pressure and recovery that minimize the total cost of RO desalination. It was demonstrated that the optimal net driving pressure is solely determined by the electricity price and the membrane price index, which is a lumped parameter to collectively reflect membrane price, resistance, and service time. On the other hand, the optimal recovery is determined by the electricity price, initial osmotic pressure, and costs for pretreatment of raw water and handling of retentate. Concise equations were derived for the optimal net driving pressure and recovery. The dependences of the optimal net driving pressure and recovery on the electricity price, membrane price, and costs for raw water pretreatment and retentate handling were discussed.

  1. Optical Properties of ZnO Nanowires and Nanorods Synthesized by Two Step Oxidation Process

    Directory of Open Access Journals (Sweden)

    Vahid ghafouri

    2013-12-01

    Full Text Available ZnO nanowires with a diameter of 70 nm and nanorods with a diameter in the range of 100-150 nm and two micrometer in length were grown on glass substrates by resistive evaporation method and applying a two step oxidation process at low temperatures, without using any catalyst, template or buffer layer. XRD pattern of these nanostructures indicated a good crystallinity property with wurtzite hexagonal structure. Photoluminescence measurement revealed three band emissions; one sharp strong peak in the UV region and two weaker peaks in the visible region, indicate good optical properties of nanorods synthesized by this method. Heat treatment in oxygen-rich atmosphere results to decrease of deep-level emission intensity in the PL spectra. The relatively high intensity of UV emission implies that this approach is a simple and promising method for fabricating ZnO nanorods in order to be used in optoelectronic devices especially in the UV range of the spectrum.

  2. Corrosion Properties of Polydopamine Coatings Formed in One-Step Immersion Process on Magnesium.

    Science.gov (United States)

    Singer, Ferdinand; Schlesak, Magdalena; Mebert, Caroline; Höhn, Sarah; Virtanen, Sannakaisa

    2015-12-09

    Polydopamine layers were polymerized directly from Tris(hydroxymethyl)aminomethane-buffered solution in a one-step immersion process onto magnesium surface. Scanning electron microscopy showed successful formation of a ∼1 μm thick layer. ASTM D3359-09 "Tape test" revealed excellent adhesion of the layer. X-ray induced photoelectron spectroscopy and Fourier transform infrared spectroscopy verified the presence of polydopamine on the surface. Corrosion measurements were performed in 0.1 M NaCl solution investigating the influence of coating parameters: dopamine concentration, immersion time, solution pH, and immersion angle. Tafel analysis revealed strong improvement of corrosion behavior compared to bare magnesium. Polydopamine layers prepared with optimized coating procedure showed promising corrosion properties in Dulbecco's modified Eagle medium. In summary, polydopamine coatings offer a simple treatment for magnesium to improve the corrosion behavior and could further act as intermediate layer for further surface functionalization.

  3. Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating.

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad Reza; Zabihi, Fatemeh; Habibi, Mehran; Eslamian, Morteza

    2016-12-01

    In this paper, two-step sequential spin-dip and spin-spin coating, as well as one-step spin coating, methods are used to fabricate methylammonium lead mixed-halide perovskites to study the effect of process parameters, including the choice of the solvent, annealing temperature, spin velocity, and dipping time on the characteristics of the perovskite film. Our results show that using a mixture of DMF and DMSO, with volume ratio of 1:1, as the organic solvents for PbCl2 results in the best mixed-halide perovskite because of the effective coordination between DMSO and PbCl2. Surface dewetting due to two effects, i.e., crystallization and thin liquid film instability, is observed and discussed, where an intermediate spin velocity of about 4000 rpm is found suitable to suppress dewetting. The perovskite film fabricated using the one-step method followed by anti-solvent treatment shows the best perovskite conversion in XRD patterns, and the planar device fabricated using the same method exhibited the highest efficiency among the employed methods. The perovskite layer made by sequential spin-dip coating is found thicker with higher absorbance, but the device shows a lower efficiency because of the challenges associated with perovskite conversion in the sequential method. The one-step deposition method is found easier to control and more promising than the sequential deposition methods.

  4. Effects of Process Parameters on the Characteristics of Mixed-Halide Perovskite Solar Cells Fabricated by One-Step and Two-Step Sequential Coating

    Science.gov (United States)

    Ahmadian-Yazdi, Mohammad Reza; Zabihi, Fatemeh; Habibi, Mehran; Eslamian, Morteza

    2016-09-01

    In this paper, two-step sequential spin-dip and spin-spin coating, as well as one-step spin coating, methods are used to fabricate methylammonium lead mixed-halide perovskites to study the effect of process parameters, including the choice of the solvent, annealing temperature, spin velocity, and dipping time on the characteristics of the perovskite film. Our results show that using a mixture of DMF and DMSO, with volume ratio of 1:1, as the organic solvents for PbCl2 results in the best mixed-halide perovskite because of the effective coordination between DMSO and PbCl2. Surface dewetting due to two effects, i.e., crystallization and thin liquid film instability, is observed and discussed, where an intermediate spin velocity of about 4000 rpm is found suitable to suppress dewetting. The perovskite film fabricated using the one-step method followed by anti-solvent treatment shows the best perovskite conversion in XRD patterns, and the planar device fabricated using the same method exhibited the highest efficiency among the employed methods. The perovskite layer made by sequential spin-dip coating is found thicker with higher absorbance, but the device shows a lower efficiency because of the challenges associated with perovskite conversion in the sequential method. The one-step deposition method is found easier to control and more promising than the sequential deposition methods.

  5. Modelling of CWS combustion process

    Science.gov (United States)

    Rybenko, I. A.; Ermakova, L. A.

    2016-10-01

    The paper considers the combustion process of coal water slurry (CWS) drops. The physico-chemical process scheme consisting of several independent parallel-sequential stages is offered. This scheme of drops combustion process is proved by the particle size distribution test and research stereomicroscopic analysis of combustion products. The results of mathematical modelling and optimization of stationary regimes of CWS combustion are provided. During modeling the problem of defining possible equilibrium composition of products, which can be obtained as a result of CWS combustion processes at different temperatures, is solved.

  6. STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies

    Directory of Open Access Journals (Sweden)

    Hepburn Iain

    2012-05-01

    Full Text Available Abstract Background Models of cellular molecular systems are built from components such as biochemical reactions (including interactions between ligands and membrane-bound proteins, conformational changes and active and passive transport. A discrete, stochastic description of the kinetics is often essential to capture the behavior of the system accurately. Where spatial effects play a prominent role the complex morphology of cells may have to be represented, along with aspects such as chemical localization and diffusion. This high level of detail makes efficiency a particularly important consideration for software that is designed to simulate such systems. Results We describe STEPS, a stochastic reaction–diffusion simulator developed with an emphasis on simulating biochemical signaling pathways accurately and efficiently. STEPS supports all the above-mentioned features, and well-validated support for SBML allows many existing biochemical models to be imported reliably. Complex boundaries can be represented accurately in externally generated 3D tetrahedral meshes imported by STEPS. The powerful Python interface facilitates model construction and simulation control. STEPS implements the composition and rejection method, a variation of the Gillespie SSA, supporting diffusion between tetrahedral elements within an efficient search and update engine. Additional support for well-mixed conditions and for deterministic model solution is implemented. Solver accuracy is confirmed with an original and extensive validation set consisting of isolated reaction, diffusion and reaction–diffusion systems. Accuracy imposes upper and lower limits on tetrahedron sizes, which are described in detail. By comparing to Smoldyn, we show how the voxel-based approach in STEPS is often faster than particle-based methods, with increasing advantage in larger systems, and by comparing to MesoRD we show the efficiency of the STEPS implementation. Conclusion STEPS simulates

  7. The lost steps of infancy: symbolization, analytic process and the growth of the self.

    Science.gov (United States)

    Feldman, Brian

    2002-07-01

    In 'The Lost Steps' the Latin American novelist Alejo Carpentier describes the search by the protagonist for the origins of music among native peoples in the Amazon jungle. This metaphor can be utilized as a way of understanding the search for the pre-verbal origins of the self in analysis. The infant's experience of the tempo and rhythmicity of the mother/infant interaction and the bathing in words and sounds of the infant by the mother are at the core of the infant's development of the self. The infant observation method (Tavistock model) will be looked at as a way of developing empathy in the analyst to better understand infantile, pre-verbal states of mind. A case vignette from an adult analysis will be utilized to illustrate the theoretical concepts.

  8. Social Models: Blueprints or Processes?

    Science.gov (United States)

    Little, Graham R.

    1981-01-01

    Discusses the nature and implications of two different models for societal planning: (1) the problem-solving process approach based on Karl Popper; and (2) the goal-setting "blueprint" approach based on Karl Marx. (DC)

  9. Model feedstock supply processing plants

    Directory of Open Access Journals (Sweden)

    V. M. Bautin

    2013-01-01

    Full Text Available The model of raw providing the processing enterprises entering into vertically integrated structure on production and processing of dairy raw materials, differing by an orientation on achievement of cumulative effect by the integrated structure acting as criterion function which maximizing is reached by optimization of capacities, volumes of deliveries of raw materials and its qualitative characteristics, costs of industrial processing of raw materials and demand for dairy production is developed.

  10. Perovskite Hollow Fibers with Precisely Controlled Cation Stoichiometry via One-Step Thermal Processing.

    Science.gov (United States)

    Zhu, Jiawei; Zhang, Guangru; Liu, Gongping; Liu, Zhengkun; Jin, Wanqin; Xu, Nanping

    2017-05-01

    The practical applications of perovskite hollow fibers (HFs) are limited by challenges in producing these easily, cheaply, and reliably. Here, a one-step thermal processing approach is reported for the efficient production of high performance perovskite HFs, with precise control over their cation stoichiometry. In contrast to traditional production methods, this approach directly uses earth-abundant raw chemicals in a single thermal process. This approach can control cation stoichiometry by avoiding interactions between the perovskites and polar solvents/nonsolvents, optimizes sintering, and results in high performance HFs. Furthermore, this method saves much time and energy (≈ 50%), therefore pollutant emissions are greatly reduced. One successful example is Ba0.5Sr0.5Co0.8Fe0.2O3-δ HFs, which are used in an oxygen-permeable membrane. This exhibits high oxygen permeation flux values that exceed desired commercial targets and compares favorably with previously reported oxygen-permeable membranes. Studies on other perovskites have produced similarly successful results. Overall, this approach could lead to energy efficient, solid-state devices for industrial application in energy and environmental fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A rapid one-step electrodeposition process for fabrication of superhydrobic surfaces on anode and cathode

    Institute of Scientific and Technical Information of China (English)

    郝丽梅; 闫小乐; 解忧; 张涛; 陈志

    2016-01-01

    This work presents a method to solve the weak solubility of zinc chloride (ZnCl2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl2and myristic acid (CH3(CH2)12COOH). A rapid one-step electrodeposition process was developed to fabricate anodic (2.5 min) and cathodic (40 s) superhydrophobic surfaces of copper substrate (contact angle more than 150°) in an aqueous ethanol electrolyte. Morphology, composition, chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM, FTIR, XRD, and contact angle measurement, respectively. The results indicate that water ratio of the electrolyte can reduce the required deposition time, superhydrophobic surface needs over 30 min with anhydrous electrolyte, while it needs only 2.5 min with electrolyte including 10 mL water, and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°. Two copper electrode surfaces have different reactions in the process of electrodeposition time, and the anodic copper surface covers copper myristate (Cu[CH3(CH2)12COO]2) and cupric chloride (CuCl); while, zinc myristate (Zn[CH3(CH2)12COO]2) and pure zinc (Zn) appear on the cathodic surface.

  12. Effects of extra-cellular polymeric substances on organic pollutants biodegradation kinetics for A-step of adsorption-biodegradation process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The features of organic pollutants degradation mainly characterized by bio-flocculation for step-A of adsorption-biodegredation(AB) process were studied. By investigating the relationship of extracellular polymeric substances(EPS) with bioflocculation and introducing kinetic model of organic pollutant degradation into EPS, the kinetic model of organic pollutant degradation for step-A bioflocculation was deducted. And through the experiments,the kinetic constants were calculated as follows: k1 =0. 005 3; kc1 =1710.7 and vmax1=10 min-1.

  13. Determination of the mass transfer limiting step of dye adsorption onto commercial adsorbent by using mathematical models.

    Science.gov (United States)

    Marin, Pricila; Borba, Carlos Eduardo; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando R; de Oliveira, Silvia Priscila Dias; Kroumov, Alexander Dimitrov

    2014-01-01

    Reactive blue 5G dye removal in a fixed-bed column packed with Dowex Optipore SD-2 adsorbent was modelled. Three mathematical models were tested in order to determine the limiting step of the mass transfer of the dye adsorption process onto the adsorbent. The mass transfer resistance was considered to be a criterion for the determination of the difference between models. The models contained information about the external, internal, or surface adsorption limiting step. In the model development procedure, two hypotheses were applied to describe the internal mass transfer resistance. First, the mass transfer coefficient constant was considered. Second, the mass transfer coefficient was considered as a function of the dye concentration in the adsorbent. The experimental breakthrough curves were obtained for different particle diameters of the adsorbent, flow rates, and feed dye concentrations in order to evaluate the predictive power of the models. The values of the mass transfer parameters of the mathematical models were estimated by using the downhill simplex optimization method. The results showed that the model that considered internal resistance with a variable mass transfer coefficient was more flexible than the other ones and this model described the dynamics of the adsorption process of the dye in the fixed-bed column better. Hence, this model can be used for optimization and column design purposes for the investigated systems and similar ones.

  14. Computer Modelling of Dynamic Processes

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    2000-10-01

    Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.

  15. Command Process Modeling & Risk Analysis

    Science.gov (United States)

    Meshkat, Leila

    2011-01-01

    Commanding Errors may be caused by a variety of root causes. It's important to understand the relative significance of each of these causes for making institutional investment decisions. One of these causes is the lack of standardized processes and procedures for command and control. We mitigate this problem by building periodic tables and models corresponding to key functions within it. These models include simulation analysis and probabilistic risk assessment models.

  16. Path modeling and process control

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar; Rodionova, O.; Pomerantsev, A.

    2007-01-01

    and having three or more stages. The methods are applied to a process control of a multi-stage production process having 25 variables and one output variable. When moving along the process, variables change their roles. It is shown how the methods of path modeling can be applied to estimate variables...... of the next stage with the purpose of obtaining optimal or almost optimal quality of the output variable. An important aspect of the methods presented is the possibility of extensive graphic analysis of data that can provide the engineer with a detailed view of the multi-variate variation in data.......Many production processes are carried out in stages. At the end of each stage, the production engineer can analyze the intermediate results and correct process parameters (variables) of the next stage. Both analysis of the process and correction to process parameters at next stage should...

  17. Modelling Hospital Materials Management Processes

    Directory of Open Access Journals (Sweden)

    Raffaele Iannone

    2013-06-01

    integrated and detailed analysis and description model for hospital materials management data and tasks, which is able to tackle information from patient requirements to usage, from replenishment requests to supplying and handling activities. The model takes account of medical risk reduction, traceability and streamlined processes perspectives. Second, the paper translates this information into a business process model and mathematical formalization.The study provides a useful guide to the various relevant technology‐related, management and business issues, laying the foundations of an efficient reengineering of the supply chain to reduce healthcare costs and improve the quality of care.

  18. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin;

    2013-01-01

    Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from the product......Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... the production trait evaluation of Nordic Red dairy cattle. Genotyped bulls with daughters are used as training animals, and genotyped bulls and producing cows as candidate animals. For simplicity, size of the data is chosen so that the full inverses of the mixed model equation coefficient matrices can...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was...

  19. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling

    Science.gov (United States)

    Leandro, J.; Schumann, A.; Pfister, A.

    2016-04-01

    Some of the major challenges in modelling rainfall-runoff in urbanised areas are the complex interaction between the sewer system and the overland surface, and the spatial heterogeneity of the urban key features. The former requires the sewer network and the system of surface flow paths to be solved simultaneously. The latter is still an unresolved issue because the heterogeneity of runoff formation requires high detailed information and includes a large variety of feature specific rainfall-runoff dynamics. This paper discloses a methodology for considering the variability of building types and the spatial heterogeneity of land surfaces. The former is achieved by developing a specific conceptual rainfall-runoff model and the latter by defining a fully distributed approach for infiltration processes in urban areas with limited storage capacity dependent on OpenStreetMaps (OSM). The model complexity is increased stepwise by adding components to an existing 2D overland flow model. The different steps are defined as modelling levels. The methodology is applied in a German case study. Results highlight that: (a) spatial heterogeneity of urban features has a medium to high impact on the estimated overland flood-depths, (b) the addition of multiple urban features have a higher cumulative effect due to the dynamic effects simulated by the model, (c) connecting the runoff from buildings to the sewer contributes to the non-linear effects observed on the overland flood-depths, and (d) OSM data is useful in identifying pounding areas (for which infiltration plays a decisive role) and permeable natural surface flow paths (which delay the flood propagation).

  20. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept.

    Science.gov (United States)

    Yuan, Yuan; Macquarrie, Duncan J

    2015-12-01

    The biorefinery is an important concept for the development of alternative routes to a range of interesting and important materials from renewable resources. It ensures that the resources are used fully and that all parts of them are valorized. This paper develops this concept, using brown macroalgae Ascophyllum nodosum as an example, by assistance of microwave technology. A step-by-step process was designed to obtain fucoidan, alginates, sugars and biochar (alga residue) consecutively. The yields of fucoidan, alginates, sugars and biochar were 14.09%, 18.24%, 10.87% and 21.44%, respectively. To make an evaluation of the biorefinery process, seaweed sample was also treated for fucoidan extraction only, alginate extraction only and hydrothermal treatment for sugars and biochar only. The chemical composition and properties of each product were also analyzed. The results indicated that A. nodosum could be potentially used as feedstock for a biorefinery process to produce valuable chemicals and fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Self-administered treatment in stepped-care models of depression treatment.

    Science.gov (United States)

    Scogin, Forrest R; Hanson, Ashley; Welsh, Douglas

    2003-03-01

    Stepped behavioral health care models have begun to receive increased attention. Self-administered treatments deserve consideration as an element in these models for some disorders and for some consumers. Features suggesting inclusion include low cost, wide availability, and evidence-based status. We present a stepped-care model for depression inclusive of a self-administered treatment component. We also discuss cautions such as depression severity and consumer preference. Evaluation of the efficacy and cost effectiveness of this approach to depression treatment is necessary. Copyright 2003 Wiley Periodicals, Inc. J Clin Psychol 59: 341-349, 2003.

  2. TUNS/TCIS information model/process model

    Science.gov (United States)

    Wilson, James

    1992-01-01

    An Information Model is comprised of graphical and textual notation suitable for describing and defining the problem domain - in our case, TUNS or TCIS. The model focuses on the real world under study. It identifies what is in the problem and organizes the data into a formal structure for documentation and communication purposes. The Information Model is composed of an Entity Relationship Diagram (ERD) and a Data Dictionary component. The combination of these components provide an easy to understand methodology for expressing the entities in the problem space, the relationships between entities and the characteristics (attributes) of the entities. This approach is the first step in information system development. The Information Model identifies the complete set of data elements processed by TUNS. This representation provides a conceptual view of TUNS from the perspective of entities, data, and relationships. The Information Model reflects the business practices and real-world entities that users must deal with.

  3. A stochastical event-based continuous time step rainfall generator based on Poisson rectangular pulse and microcanonical random cascade models

    Science.gov (United States)

    Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph

    2017-04-01

    Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative

  4. Iron and steel industry process model

    Energy Technology Data Exchange (ETDEWEB)

    Sparrow, F.T.

    1978-07-01

    The model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modelled: fully integrated mills and minimills. User-determined inputs into the model are: (a) projected energy materials prices for the horizon; (b) projected costs of capacity expansion and replacement; (c) energy conserving options - both operating modes and investments; (d) internal rate of return required on projects; and (e) growth in finished steel demand. Nominal input choices in the model are: DOE baseline projections for oil, gas, distillates, residuals, and electricity for energy, and 1975 actual prices for materials; actual 1975 costs; adding new technologies; 15% after taxes; and 1975 actual demand with 1.5% growth/year. Output of the model includes: energy use by type, by process, and by time period, both in total and intensity (Btu/ton); energy-conservation options chosen; and utilization rates for existing capacity, and the capacity expansion decisions of the model.

  5. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization of the ferroelectric gamma-phase during the first step and enhancement of the PVDF film dense morphology during the second step. Moreover, when we extended the processing time of the second step, we obtained good hysteresis curves down to 1 Hz, the first such report for ferroelectric PVDF films. The PVDF films also exhibit a coercive field of 113 MV m-1 and a ferroelectric polarization of 5.4 μC cm-2. © The Royal Society of Chemistry 2015.

  6. One-Step Dynamic Classifier Ensemble Model for Customer Value Segmentation with Missing Values

    Directory of Open Access Journals (Sweden)

    Jin Xiao

    2014-01-01

    Full Text Available Scientific customer value segmentation (CVS is the base of efficient customer relationship management, and customer credit scoring, fraud detection, and churn prediction all belong to CVS. In real CVS, the customer data usually include lots of missing values, which may affect the performance of CVS model greatly. This study proposes a one-step dynamic classifier ensemble model for missing values (ODCEM model. On the one hand, ODCEM integrates the preprocess of missing values and the classification modeling into one step; on the other hand, it utilizes multiple classifiers ensemble technology in constructing the classification models. The empirical results in credit scoring dataset “German” from UCI and the real customer churn prediction dataset “China churn” show that the ODCEM outperforms four commonly used “two-step” models and the ensemble based model LMF and can provide better decision support for market managers.

  7. Representations used by mathematics student teachers in mathematical modeling process

    Directory of Open Access Journals (Sweden)

    Aytuğ Özaltun

    2014-02-01

    Full Text Available The purpose of this study is to determine representations used by mathematics student teachers in steps of mathematical modeling process based on their solutions of problems formed in the context of different classification of modeling. The study was conducted with fifteen secondary mathematics student teachers given a Mathematical Modeling course. The participants were separated into five collaboration groups of three students. Data were collected with the detailed written papers given by the groups for the problems and GeoGebra solution files. The groups benefited from verbal, algebraic, figural, tabular and dynamic representations while they were solving the problems. Considering all steps of the process, groups at most used verbal and algebraic representations. While they used only verbal representation in analyzing the problem, they benefited from at most verbal representation and then figural representation in establishing the systematic structure. The most used is algebraic and then verbal representations in the steps of mathematization, meta-mathematization, and mathematical analysis. In the steps of interpretation/evaluation and the model verification, the groups mainly benefited from verbal and then algebraic representations. Further researches towards why representations are preferred in the specific steps of the mathematical modeling process are suggested.Key Words: Mathematical modeling, modeling problems, mathematics student teachers, representations.

  8. Two-Step Process To Create "Roll-Off" Superamphiphobic Paper Surfaces.

    Science.gov (United States)

    Jiang, Lu; Tang, Zhenguan; Clinton, Rahmat M; Breedveld, Victor; Hess, Dennis W

    2017-03-15

    Surface modification of cellulose-based paper, which displays roll-off properties for water and oils (surface tension ≥23.8 mN·m(-1)) and good repellency toward n-heptane (20.1 mN·m(-1)), is reported. Droplets of water, diiodomethane, motor oil, hexadecane, and decane all "bead up", i.e., exhibit high contact angles, and roll off the treated surface under the influence of gravity. Unlike widely used approaches that rely on the deposition of nanoparticles or electrospun nanofibers to create superamphiphobic surfaces, our method generates a hierarchical structure as an inherent property of the substrate and displays good adhesion between the film and substrate. The two-step combination of plasma etching and vapor deposition used in this study enables fine-tuning of the nanoscale roughness and thereby facilitates enhanced fundamental understanding of the effect of micro- and nanoscale roughness on the paper wetting properties. The surfaces maintain their "roll-off" properties after dynamic impact tests, demonstrating their mechanical robustness. Furthermore, the superamphiphobic paper has high gas permeability due to pore-volume enhancement by plasma etching but maintains the mechanical flexibility and strength of untreated paper, despite the presence of nanostructures. The unique combination of the chemical and physical properties of the resulting superamphiphobic paper is of practical interest for a range of applications such as breathable and disposable medical apparel, antifouling biomedical devices, antifingerprint paper, liquid packaging, microfluidic devices, and medical testing strips through a simple surface etching plus coating process.

  9. Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor

    Directory of Open Access Journals (Sweden)

    Sahu Manoranjan

    2011-01-01

    Full Text Available Abstract Synthesis and characterization of long wavelength visible-light absorption Cu-doped TiO2 nanomaterials with well-controlled properties such as size, composition, morphology, and crystal phase have been demonstrated in a single-step flame aerosol reactor. This has been feasible by a detailed understanding of the formation and growth of nanoparticles in the high-temperature flame region. The important process parameters controlled were: molar feed ratios of precursors, temperature, and residence time in the high-temperature flame region. The ability to vary the crystal phase of the doped nanomaterials while keeping the primary particle size constant has been demonstrated. Results indicate that increasing the copper dopant concentration promotes an anatase to rutile phase transformation, decreased crystalline nature and primary particle size, and better suspension stability. Annealing the Cu-doped TiO2 nanoparticles increased the crystalline nature and changed the morphology from spherical to hexagonal structure. Measurements indicate a band gap narrowing by 0.8 eV (2.51 eV was achieved at 15-wt.% copper dopant concentration compared to pristine TiO2 (3.31 eV synthesized under the same flame conditions. The change in the crystal phase, size, and band gap is attributed to replacement of titanium atoms by copper atoms in the TiO2 crystal.

  10. Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor.

    Science.gov (United States)

    Sahu, Manoranjan; Biswas, Pratim

    2011-07-06

    Synthesis and characterization of long wavelength visible-light absorption Cu-doped TiO2 nanomaterials with well-controlled properties such as size, composition, morphology, and crystal phase have been demonstrated in a single-step flame aerosol reactor. This has been feasible by a detailed understanding of the formation and growth of nanoparticles in the high-temperature flame region. The important process parameters controlled were: molar feed ratios of precursors, temperature, and residence time in the high-temperature flame region. The ability to vary the crystal phase of the doped nanomaterials while keeping the primary particle size constant has been demonstrated. Results indicate that increasing the copper dopant concentration promotes an anatase to rutile phase transformation, decreased crystalline nature and primary particle size, and better suspension stability. Annealing the Cu-doped TiO2 nanoparticles increased the crystalline nature and changed the morphology from spherical to hexagonal structure. Measurements indicate a band gap narrowing by 0.8 eV (2.51 eV) was achieved at 15-wt.% copper dopant concentration compared to pristine TiO2 (3.31 eV) synthesized under the same flame conditions. The change in the crystal phase, size, and band gap is attributed to replacement of titanium atoms by copper atoms in the TiO2 crystal.

  11. ONE-STEP PROCESS TO MAKE ELECTRICALLY CONDUCTIVE THERMOPLASTIC VULCANIZATES FILLED WITH MWCNTs

    Institute of Scientific and Technical Information of China (English)

    Hao-sheng Wang; Xiao-hong Zhang; Yi-lei Zhu; Zhi-hai Song; Jin-liang Qiao

    2012-01-01

    Electrically conductive thermoplastic vulcanizates (TPVs) filled by multi-walled carbon nanotubes (MWCNTs)are prepared by a simple one-step melt mixing process,based on linear low density polyethylene (LLDPE) and ultrafine full-vulcanized rubber particles (UFRP).An ideal morphology with controlled localization of MWCNTs in continuous LLDPE matrix and appropriate size of finely-dispersed UFRP can be achieved at the same time.The controlled localization of MWCNTs in the continuous phase facilitates the formation of conductive pathway,and thus the volume resistivity of the as-prepared LLDPE/UFRP/MWCNTs thermoplastic vulcanizates is significantly decreased.The results show that both the blend ratio of LLDPE/UFRP and the loading of MWCNTs have remarkable effect on the volume resistivity.Significantly,the electrically conductive TPVs exhibit good mechanical properties duo to the fine dispersion of UFRP in LLDPE.The added MWCNTs are capable of imparting reinforcement effects to thermoplastic vulcanizates with just a slight loss of stretchability and elasticity.

  12. DNA pairing is an important step in the process of targeted nucleotide exchange.

    Science.gov (United States)

    Drury, Miya D; Kmiec, Eric B

    2003-02-01

    Modified single-stranded DNA oligonucleotides can direct the repair of genetic mutations in yeast, plant and mammalian cells. The mechanism by which these molecules exert their effect is being elucidated, but the first phase is likely to involve the homologous alignment of the single strand with its complementary sequence in the target gene. In this study, we establish the importance of such DNA pairing in facilitating the gene repair event. Oligonucleotide-directed repair occurs at a low frequency in an Escherichia coli strain (DH10B) lacking the RECA DNA pairing function. Repair activity can be rescued by using purified RecA protein to catalyze the assimilation of oligonucleotide vectors into a plasmid containing a mutant kanamycin resistance gene in vitro. Electroporation of the preformed complex into DH10B cells results in high levels of gene repair activity, evidenced by the appearance of kanamycin-resistant colonies. Gene repair is dependent on the formation of a double-displacement loop (double-D-loop), a recombination intermediate containing two single-stranded oligonucleotides hybridized to opposite strands of the plasmid at the site of the point mutation. The heightened level of stability of the double-D-loop enables it to serve as an active template for the DNA repair events. The data establish DNA pairing and the formation of the double-D-loop as important first steps in the process of gene repair.

  13. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products

    Directory of Open Access Journals (Sweden)

    Juan Asensio-Lozano

    2014-05-01

    Full Text Available 6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification’s requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg2Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg2Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found.

  14. ECONOMIC MODELING PROCESSES USING MATLAB

    Directory of Open Access Journals (Sweden)

    Anamaria G. MACOVEI

    2008-06-01

    Full Text Available To study economic phenomena and processes using mathem atical modeling, and to determine the approximatesolution to a problem we need to choose a method of calculation and a numerical computer program, namely thepackage of programs MatLab. Any economic process or phenomenon is a mathematical description of h is behavior,and thus draw up an economic and mathematical model that has the following stages: formulation of the problem, theanalysis process modeling, the production model and design verification, validation and implementation of the model.This article is presented an economic model and its modeling is using mathematical equations and software packageMatLab, which helps us approximation effective solution. As data entry is considered the net cost, the cost of direct andtotal cost and the link between them. I presented the basic formula for determining the total cost. Economic modelcalculations were made in MatLab software package and with graphic representation of its interpretation of the resultsachieved in terms of our specific problem.

  15. THREE PRE-PROCESSING STEPS TO INCREASE THE QUALITY OF KINECT RANGE DATA

    Directory of Open Access Journals (Sweden)

    M. Davoodianidaliki

    2013-09-01

    Full Text Available By developing technology with current rate, and increase in usage of active sensors in Close-Range Photogrammetry and Computer Vision, Range Images are the main extra data which has been added to the collection of present ones. Though main output of these data is point cloud, Range Images themselves can be considered important pieces of information. Being a bridge between 2D and 3D data enables it to hold unique and important attributes. There are 3 following properties that are taken advantage of in this study. First attribute to be considered is "Neighborhood of Null pixels" which will add a new field about accuracy of parameters into point cloud. This new field can be used later for data registration and integration. When there is a conflict between points of different stations we can abandon those with lower accuracy field. Next, polynomial fitting to known plane regions is applied. This step can help to soften final point cloud and just applies to some applications. Classification and region tracking in a series of images is needed for this process to be applicable. Finally, there is break-line created by errors of data transfer software. The break-line is caused by loss of some pixels in data transfer and store, and Image will shift along break-line. This error occurs usually when camera moves fast and processor can't handle transfer process entirely. The proposed method performs based on Edge Detection where horizontal lines are used to recognize break-line and near-vertical lines are used to determine shift value.

  16. Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing.

    Science.gov (United States)

    Aboelmagd, Ahmed; El-Safty, Sherif A; Shenashen, Mohamed A; Elshehy, Emad A; Khairy, Mohamed; Sakaic, Masaru; Yamaguchi, Hitoshi

    2015-11-01

    Nanomembrane canister-like architectures were fabricated by using hexagonal mesocylinder-shaped aluminosilica nanotubes (MNTs)-porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm-long membrane channel enabled the creation of unique canister-like channel necks and cavities. The open-tubular canister architecture design provides controllable, reproducible, and one-step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO3(2-)) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low-level detection limit of 0.0093 μM. Real analytical data showed that approximately 96% of SeO3(2-) anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of two-step functionalization of Ti by chemical processes on protein adsorption

    Science.gov (United States)

    Pisarek, M.; Roguska, A.; Andrzejczuk, M.; Marcon, L.; Szunerits, S.; Lewandowska, M.; Janik-Czachor, M.

    2011-07-01

    Titanium and its alloys are widely used for orthopedic and dental implants because of their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. However, it takes several months for titanium implants and bone tissue to reach integration. Hence, there is growing interest in shortening the process of osseointegration and thereby reducing surgical restrictions. Various surface modifications have been applied to form a bioactive titanium oxide layer on the metal surface, which is known to accelerate osseointegration. The present work shows that titanium dioxide (TiO 2) layers formed on titanium substrates by etching in a solution of sodium hydroxide (NaOH) or hydrogen peroxide/phosphoric acid (H 3PO 4/H 2O 2, with a volume ratio of 1:1) are highly suitable pre-treatments for apatite-like coating deposition. Using a two-step procedure (etching in an alkaline or acidic solution followed by soaking in Hanks' medium), biomimetic calcium phosphate coatings were deposited on porous TiO 2 layers. The combined effects of surface topography and chemistry on the formation of the calcium phosphate layer are presented. The topography of the TiO 2 layers was characterized using HR-SEM and AFM techniques. The nucleation and growth of calcium phosphate (Ca-P) coatings deposited on TiO 2 porous layers from Hanks' solution was investigated using HR-SEM microscopy. AES, XPS and FTIR surface analytical techniques were used to characterize the titanium dioxide layers before and after deposition of the calcium phosphate coatings, as well as after the process of protein adsorption. To evaluate the potential use of such materials for biomedical applications, the adsorption of serum albumin, the most abundant protein in the blood, was studied on such surfaces.

  18. Multi-Step Usage of in Vivo Models During Rational Drug Design and Discovery

    Directory of Open Access Journals (Sweden)

    Charles H. Williams

    2011-04-01

    Full Text Available In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design.

  19. Multi-step usage of in vivo models during rational drug design and discovery.

    Science.gov (United States)

    Williams, Charles H; Hong, Charles C

    2011-01-01

    In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET) properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design.

  20. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    Science.gov (United States)

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  1. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    Science.gov (United States)

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  2. Modeling of the Hydroentanglement Process

    Directory of Open Access Journals (Sweden)

    Ping Xiang

    2006-11-01

    Full Text Available Mechanical performance of hydroentangled nonwovens is determined by the degree of the fiber entanglement, which depends on parameters of the fibers, fiberweb, forming surface, water jet and the process speed. This paper develops a computational fluid dynamics model of the hydroentanglement process. Extensive comparison with experimental data showed that the degree of fiber entanglement is linearly related to flow vorticity in the fiberweb, which is induced by impinging water jets. The fiberweb is modeled as a porous material of uniform porosity and the actual geometry of forming wires is accounted for in the model. Simulation results are compared with experimental data for a Perfojet ® sleeve and four woven forming surfaces. Additionally, the model is used to predict the effect of fiberweb thickness on the degree of fiber entanglement for different forming surfaces.

  3. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...... tool to support process optimization, performance monitoring, diagnosis and process control at full-scale studies....

  4. Island-dynamics model for mound formation: effect of a step-edge barrier.

    Science.gov (United States)

    Papac, Joe; Margetis, Dionisios; Gibou, Frederic; Ratsch, Christian

    2014-08-01

    We formulate and implement a generalized island-dynamics model of epitaxial growth based on the level-set technique to include the effect of an additional energy barrier for the attachment and detachment of atoms at step edges. For this purpose, we invoke a mixed, Robin-type, boundary condition for the flux of adsorbed atoms (adatoms) at each step edge. In addition, we provide an analytic expression for the requisite equilibrium adatom concentration at the island boundary. The only inputs are atomistic kinetic rates. We present a numerical scheme for solving the adatom diffusion equation with such a mixed boundary condition. Our simulation results demonstrate that mounds form when the step-edge barrier is included, and that these mounds steepen as the step-edge barrier increases.

  5. Modified Claus process probabilistic model

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R. [Chemical Engineering Dept., Univ. of La Laguna (Spain)

    2006-03-15

    A model is proposed for the simulation of an industrial Claus unit with a straight-through configuration and two catalytic reactors. Process plant design evaluations based on deterministic calculations does not take into account the uncertainties that are associated with the different input variables. A probabilistic simulation method was applied in the Claus model to obtain an impression of how some of these inaccuracies influences plant performance. (orig.)

  6. Process Models for Security Architectures

    Directory of Open Access Journals (Sweden)

    Floarea NASTASE

    2006-01-01

    Full Text Available This paper presents a model for an integrated security system, which can be implemented in any organization. It is based on security-specific standards and taxonomies as ISO 7498-2 and Common Criteria. The functionalities are derived from the classes proposed in the Common Criteria document. In the paper we present the process model for each functionality and also we focus on the specific components.

  7. Information Search Process Model: How Freshmen Begin Research.

    Science.gov (United States)

    Swain, Deborah E.

    1996-01-01

    Investigates Kuhlthau's Search Process Model for information seeking using two Freshmen English classes. Data showed that students followed the six stages Kuhlthau proposed and suggest extensions to the model, including changing the order of the tasks, iterating and combining steps, and revising search goals based on social and interpersonal…

  8. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    The subject of this thesis is to develop a methodological framework that can systematically guide mathematical model building for better understanding of multi-enzyme processes. In this way, opportunities for process improvements can be identified by analyzing simulations of either existing...... are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...

  9. Modeling of biopharmaceutical processes. Part 2: Process chromatography unit operation

    DEFF Research Database (Denmark)

    Kaltenbrunner, Oliver; McCue, Justin; Engel, Philip;

    2008-01-01

    Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent...

  10. Single-step brazing process for mono-block joints and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S. [Politecnico di Torino, Materials Science and Chemical Engineering Dept., Torino (Italy); Merola, M. [ITER International Team, llER Joint Work Site, Cadarache, 13 - St Paul Lez Durance (France)

    2007-07-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non

  11. Continuum Limit of a Mesoscopic Model with Elasticity of Step Motion on Vicinal Surfaces

    Science.gov (United States)

    Gao, Yuan; Liu, Jian-Guo; Lu, Jianfeng

    2016-12-01

    This work considers the rigorous derivation of continuum models of step motion starting from a mesoscopic Burton-Cabrera-Frank-type model following the Xiang's work (Xiang in SIAM J Appl Math 63(1):241-258, 2002). We prove that as the lattice parameter goes to zero, for a finite time interval, a modified discrete model converges to the strong solution of the limiting PDE with first-order convergence rate.

  12. One-Step Dynamic Classifier Ensemble Model for Customer Value Segmentation with Missing Values

    OpenAIRE

    Jin Xiao; Bing Zhu; Geer Teng; Changzheng He; Dunhu Liu

    2014-01-01

    Scientific customer value segmentation (CVS) is the base of efficient customer relationship management, and customer credit scoring, fraud detection, and churn prediction all belong to CVS. In real CVS, the customer data usually include lots of missing values, which may affect the performance of CVS model greatly. This study proposes a one-step dynamic classifier ensemble model for missing values (ODCEM) model. On the one hand, ODCEM integrates the preprocess of missing values and the classif...

  13. Development of a three dimensional circulation model based on fractional step method

    Science.gov (United States)

    Abualtayef, Mazen; Kuroiwa, Masamitsu; Seif, Ahmed Khaled; Matsubara, Yuhei; Aly, Ahmed M.; Sayed, Ahmed A.; Sambe, Alioune Nar

    2010-03-01

    A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic.

  14. Uncertainty modeling process for semantic technology

    Directory of Open Access Journals (Sweden)

    Rommel N. Carvalho

    2016-08-01

    Full Text Available The ubiquity of uncertainty across application domains generates a need for principled support for uncertainty management in semantically aware systems. A probabilistic ontology provides constructs for representing uncertainty in domain ontologies. While the literature has been growing on formalisms for representing uncertainty in ontologies, there remains little guidance in the knowledge engineering literature for how to design probabilistic ontologies. To address the gap, this paper presents the Uncertainty Modeling Process for Semantic Technology (UMP-ST, a new methodology for modeling probabilistic ontologies. To explain how the methodology works and to verify that it can be applied to different scenarios, this paper describes step-by-step the construction of a proof-of-concept probabilistic ontology. The resulting domain model can be used to support identification of fraud in public procurements in Brazil. While the case study illustrates the development of a probabilistic ontology in the PR-OWL probabilistic ontology language, the methodology is applicable to any ontology formalism that properly integrates uncertainty with domain semantics.

  15. Network Model Building (Process Mapping)

    OpenAIRE

    Blau, Gary; Yih, Yuehwern

    2004-01-01

    12 slides Provider Notes:See Project Planning Video (Windows Media) Posted at the bottom are Gary Blau's slides. Before watching, please note that "process mapping" and "modeling" are mentioned in the video and notes. Here they are meant to refer to the NSCORT "project plan"

  16. A reduced-complexity model for sediment transport and step-pool morphology

    Science.gov (United States)

    Saletti, Matteo; Molnar, Peter; Hassan, Marwan A.; Burlando, Paolo

    2016-07-01

    A new particle-based reduced-complexity model to simulate sediment transport and channel morphology in steep streams in presented. The model CAST (Cellular Automaton Sediment Transport) contains phenomenological parameterizations, deterministic or stochastic, of sediment supply, bed load transport, and particle entrainment and deposition in a cellular-automaton space with uniform grain size. The model reproduces a realistic bed morphology and typical fluctuations in transport rates observed in steep channels. Particle hop distances, from entrainment to deposition, are well fitted by exponential distributions, in agreement with field data. The effect of stochasticity in both the entrainment and the input rate is shown. A stochastic parameterization of the entrainment is essential to create and maintain a realistic channel morphology, while the intermittent transport of grains in CAST shreds the input signal and its stochastic variability. A jamming routine has been added to CAST to simulate the grain-grain and grain-bed interactions that lead to particle jamming and step formation in a step-pool stream. The results show that jamming is effective in generating steps in unsteady conditions. Steps are created during high-flow periods and they survive during low flows only in sediment-starved conditions, in agreement with the jammed-state hypothesis of Church and Zimmermann (2007). Reduced-complexity models like CAST give new insights into the dynamics of complex phenomena such as sediment transport and bedform stability and are a useful complement to fully physically based models to test research hypotheses.

  17. Evaluating Bank Profitability in Ghana: A five step Du-Pont Model Approach

    Directory of Open Access Journals (Sweden)

    Baah Aye Kusi

    2015-09-01

    Full Text Available We investigate bank profitability in Ghana using periods before, during and after the globe financial crises with the five step du-pont model for the first time.We adapt the variable of the five step du-pont model to explain bank profitability with a panel data of twenty-five banks in Ghana from 2006 to 2012. To ensure meaningful generalization robust errors fixed and random effects models are used.Our empirical results suggests that bank operating activities (operating profit margin, bank efficiency (asset turnover, bank leverage (asset to equity and financing cost (interest burden  were positive and significant determinants of bank profitability (ROE during the period of study implying that bank in Ghana can boost return to equity holders through the above mentioned variables. We further report that the five step du-pont model better explains the total variation (94% in bank profitability in Ghana as compared to earlier findings suggesting that bank specific variables are keen in explaining ROE in banks in Ghana.We cited no empirical study that has employed five step du-pont model making our study unique and different from earlier studies as we assert that bank specific variables are core to explaining bank profitability.                

  18. Step process for selecting and testing surrogates and indicators of afrotemperate forest invertebrate diversity.

    Directory of Open Access Journals (Sweden)

    Charmaine Uys

    Full Text Available BACKGROUND: The diversity and complexity of invertebrate communities usually result in their exclusion from conservation activities. Here we provide a step process for assessing predominantly ground-dwelling Afrotemperate forest invertebrates' (earthworms, centipedes, millipedes, ants, molluscs potential as surrogates for conservation and indicators for monitoring. We also evaluated sampling methods (soil and litter samples, pitfall traps, active searching quadrats and tree beating and temporal (seasonal effects. METHODOLOGY/PRINCIPAL FINDINGS: Lack of congruence of species richness across taxa indicated poor surrogacy potential for any of the focus taxa. Based on abundance and richness, seasonal stability, and ease of sampling, molluscs were the most appropriate taxon for use in monitoring of disturbance impacts. Mollusc richness was highest in March (Antipodal late summer wet season. The most effective and efficient methods were active searching quadrats and searching litter samples. We tested the effectiveness of molluscs as indicators for monitoring by contrasting species richness and community structure in burned relative to unburned forests. Both species richness and community structure changed significantly with burning. Some mollusc species (e.g. Macroptychia africana showed marked negative responses to burning, and these species have potential for use as indicators. CONCLUSIONS/SIGNIFICANCE: Despite habitat type (i.e., Afrotemperate forest being constant, species richness and community structure varied across forest patches. Therefore, in conservation planning, setting targets for coarse filter features (e.g., habitat type requires fine filter features (e.g., localities for individual species. This is especially true for limited mobility taxa such as those studied here. Molluscs have high potential for indicators for monitoring, and this requires broader study.

  19. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    O Meglali; N Attaf; A Bouraiou; M S Aida; S Lakehal

    2014-10-01

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified twoelectrodes system. The films were deposited, during 5, 10, 15 and 20 min, from the deionized water solution consisting of CuCl2, InCl3 and SeO2 onto ITO-coated glass substrates. As-deposited films have been annealed under vacuum at 300 °C during 30 min. The structural, optical band gap and electrical resistivity of elaborated films were studied, respectively, using X-ray diffraction (XRD), Raman spectroscopy, UV spectrophotometer and four-point probe method. The micro structural parameters like lattice constants, crystallite size, dislocation density and strain have been evaluated. The XRD investigation proved that the film deposited at 20 min present CuInSe2 single phase in its chalcopyrite structure and with preferred orientation along (1 1 2) direction, whereas the films deposited at 5, 10 and 15 min show the CuInSe2 chalcopyrite structure with the In2Se3 as secondary phase. We have found that the formation mechanism of CuInSe2 depends on the In2Se3 phase. The optical band gap of the films is found to decrease from 1.17 to 1.04 eV with increase in deposition time. All films show Raman spectra with a dominant A1 mode at 174 cm-1, confirming the chalcopyrite crystalline quality of these films. The films exhibited a range of resistivity varying from 2.3 × 10-3 to 4.4 × 10-1 cm.

  20. The three steps of the carbonate biogenic dissolution process by microborers in coral reefs (New Caledonia).

    Science.gov (United States)

    Grange, J S; Rybarczyk, H; Tribollet, A

    2015-09-01

    Biogenic dissolution of carbonates by microborers is one of the main destructive forces in coral reefs and is predicted to be enhanced by eutrophication and ocean acidification by 2100. The chlorophyte Ostreobium sp., the main agent of this process, has been reported to be one of the most responsive of all microboring species to those environmental factors. However, very little is known about its recruitment, how it develops over successions of microboring communities, and how that influences rates of biogenic dissolution. Thus, an experiment with dead coral blocks exposed to colonization by microborers was carried out on a reef in New Caledonia over a year period. Each month, a few blocks were collected to study microboring communities and the associated rates of biogenic dissolution. Our results showed a drastic shift in community species composition between the 4th and 5th months of exposure, i.e., pioneer communities dominated by large chlorophytes such as Phaeophila sp. were replaced by mature communities dominated by Ostreobium sp. Prior the 4th month of exposure, large chlorophytes were responsible for low rates of biogenic dissolution while during the community shift, rates increased exponentially (×10). After 6 months of exposure, rates slowed down and reached a "plateau" with a mean of 0.93 kg of CaCO3 dissolved per m(2) of reef after 12 months of exposure. Here, we show that (a) Ostreobium sp. settled down in new dead substrates as soon as the 3rd month of exposure but dominated communities only after 5 months of exposure and (b) microbioerosion dynamics comprise three distinct steps which fully depend on community development stage and grazing pressure.

  1. Modeling of the reburning process

    Energy Technology Data Exchange (ETDEWEB)

    Rota, R.; Bonini, F.; Servida, A.; Morbidelli, M.; Carra, S. [Politecnico di Milano, Milano (Italy). Dip. di Chimica Fisica Applicata

    1997-07-01

    Reburning has become a popular method of abating NO{sub x} emission in power plants. Its effectiveness is strongly affected by the interaction between gas phase chemistry and combustion chamber fluid dynamics. Both the mixing of the reactant streams and the elementary reactions in the gas phase control the overall kinetics of the process. This work developed a model coupling a detailed kinetic mechanism to a simplified description of the fluid dynamics of the reburning chamber. The model was checked with reference to experimental data from the literature. Detailed kinetic modeling was found to be essential to describe the reburning process, since the fluid dynamics of the reactor have a strong influence on reactions within. 20 refs., 9 figs., 3 tabs.

  2. Towards Core Modelling Practices in Integrated Water Resource Management: An Interdisciplinary View of the Modelling Process

    Science.gov (United States)

    Jakeman, A. J.; Elsawah, S.; Pierce, S. A.; Ames, D. P.

    2016-12-01

    The National Socio-Environmental Synthesis Center (SESYNC) Core Modelling Practices Pursuit is developing resources to describe core practices for developing and using models to support integrated water resource management. These practices implement specific steps in the modelling process with an interdisciplinary perspective; however, the particular practice that is most appropriate depends on contextual aspects specific to the project. The first task of the pursuit is to identify the various steps for which implementation practices are to be described. This paper reports on those results. The paper draws on knowledge from the modelling process literature for environmental modelling (Jakeman et al., 2006), engaging stakeholders (Voinov and Bousquet, 2010) and general modelling (Banks, 1999), as well as the experience of the consortium members. We organise the steps around the four modelling phases. The planning phase identifies what is to be achieved, how and with what resources. The model is built and tested during the construction phase, and then used in the application phase. Finally, models that become part of the ongoing policy process require a maintenance phase. For each step, the paper focusses on what is to be considered or achieved, rather than how it is performed. This reflects the separation of the steps from the practices that implement them in different contexts. We support description of steps with a wide range of examples. Examples are designed to be generic and do not reflect any one project or context, but instead are drawn from common situations or from extremely different ones so as to highlight some of the issues that may arise at each step. References Banks, J. (1999). Introduction to simulation. In Proceedings of the 1999 Winter Simulation Conference. Jakeman, A. J., R. A. Letcher, and J. P. Norton (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling and Software 21, 602-614. Voinov, A

  3. Integrated modeling of high poloidal beta scenario for a next-step reactor

    Science.gov (United States)

    McClenaghan, J.; Garofalo, A. M.; Meneghini, O.; Smith, S. P.

    2015-11-01

    In order to fill the scientific and technological gaps between ITER and a nuclear fusion power plant DEMO, a next-step integrated nuclear test facility is critical. A high poloidal beta tokamak regime investigated in recent DIII-D experiments is a promising candidate for steady state operation in such a next-step device because the large bootstrap current fraction (~ 80 %) reduces the demands on the external current drive. Despite the large values of q95 ~10, the normalized fusion performance observed in the experiments meet the target for an economically attractive fusion power plant such as ARIES-ACT2. In this work, we will project the performance for a conducting and superconducting coil next-step steady state reactor using theory-based 0-D modeling and full 1.5D transport modeling. Work supported by U.S. DOE under DE-FC02-04ER54698.

  4. Application of a four-step HMX kinetic model to an impact-induced fraction ignition problems

    Energy Technology Data Exchange (ETDEWEB)

    Perry, William L [Los Alamos National Laboratory; Gunderson, Jake A [Los Alamos National Laboratory; Dickson, Peter M [Los Alamos National Laboratory

    2010-01-01

    al., deduced the kinetics and thermodynamics of the phase transition, providing Dickson, et al. with the information necessary to develop a four-step model that included a two-step nucleation and growth mechanism for the {beta}-{delta} phase transition. Initially, an irreversible scheme was proposed. That model accurately predicted the spatial and temporal cook off behavior of the small-scale radial experiment under slow heating conditions, but did not accurately capture the endothermic phase transition at a faster heating rate. The current version of the four-step model includes reversibility and accurately describes the small-scale radial experiment over a wide range of heating rates. We have observed impact-induced friction ignition of PBX 9501 with grit embedded between the explosive and the lower anvil surface. Observation was done using an infrared camera looking through the sapphire bottom anvil. Time to ignition and temperature-time behavior were recorded. The time to ignition was approximately 500 microseconds and the temperature was approximately 1000 K. The four step reversible kinetic scheme was previously validated for slow cook off scenarios. Our intention was to test the validity for significantly faster hot-spot processes, such as the impact-induced grit friction process studied here. We found the model predicted the ignition time within experimental error. There are caveats to consider when evaluating the agreement. The primary input to the model was friction work over an area computed by a stress analysis. The work rate itself, and the relative velocity of the grit and substrate both have a strong dependence on the initial position of the grit. Any errors in the analysis or the initial grit position would affect the model results. At this time, we do not know the sensitivity to these issues. However, the good agreement does suggest the four step kinetic scheme may have universal applicability for HMX systems.

  5. Palliative care for patients with Parkinson’s disease: an interdisciplinary review and next step model

    Directory of Open Access Journals (Sweden)

    Su KG

    2017-02-01

    Full Text Available Kimmy G Su,1 Julie H Carter,1 Keiran K Tuck,2 Tony Borcich,3 Linda A Bryans,4 Lisa L Mann,1 Jennifer L Wilhelm,5 Erik K Fromme6 1Department of Neurology, Oregon Health & Science University, 2The Oregon Clinic-Neurology, 3Parkinson’s Resources of Oregon, 4Northwest Clinic for Voice and Swallowing, Oregon Health and Science University, 5Rehabilitation Services, Oregon Health & Science University, 6Palliative Care Section, OHSU Knight Cancer Institute, Portland, OR, USA Abstract: Late stage Parkinson’s and Parkinson-plus patients have increased needs beyond motor symptom management that cannot be fully addressed in a typical neurology clinic visit. Complicating matters are the concurrent increasing emotional and physical demands on caregivers, which, if addressed, further stretch clinic time constraints. The complex and extensive patient and caregiver needs warrant a dedicated clinic to provide the necessary interdisciplinary care. In contrast to a typical model where the neurology clinician refers the patient to various ancillary treatment groups resulting in multiple separate clinic visits, the interdisciplinary model supports direct communication between the different disciplines during the clinic visit, allowing for a more coordinated response that takes into account multiple perspectives. Such an interdisciplinary model has been utilized in neurologic disorders with complex end-stage disease needs, such as amyotrophic lateral sclerosis with notable improvement in quality of life and survival. The Oregon Health & Science University Parkinson Center and Movement Disorders Clinic has developed an interdisciplinary clinic called Next Step composed of neurology clinicians, a physical therapist, a speech pathologist, a social worker, and a nursing coordinator. The clinic focuses on palliative care issues, including complex late stage motor symptoms, nonmotor symptoms, and quality of life goals of both the patient and caregiver(s. This article

  6. Analogue modelling of the effect of topographic steps in the development of strike-slip faults

    Science.gov (United States)

    Tomás, Ricardo; Duarte, João C.; Rosas, Filipe M.; Schellart, Wouter; Strak, Vincent

    2016-04-01

    Strike-slip faults often cut across regions of overthickened crust, such as oceanic plateaus or islands. These morphological steps likely cause a local variation in the stress field that controls the geometry of these systems. Such variation in the stress field will likely play a role in strain localization and associated seismicity. This is of particular importance since wrench systems can produce very high magnitude earthquakes. However, such systems have been generally overlooked and are still poorly understood. In this work we will present a set of analogue models that were designed with the objective of understanding how a step in the morphology affects the development of a strike-slip fault system. The models consist of a sand-cake with two areas with different thicknesses connected by a gentle ramp perpendicular to a dextral strike-slip basal fault. The sand-cake lies above two basal plates to which the dextral relative motion was imposed using a stepping-motor. Our results show that a Riedel fault system develops across the two flat areas. However, a very asymmetric fault pattern develops across the morphological step. A deltoid constrictional bulge develops in the thinner part of the model, which progressively acquires a sigmoidal shape with increasing offset. In the thicker part of the domain, the deformation is mostly accommodated by Riedel faults and the one closer to the step acquires a relatively lower angle. Associated to this Riedel fault a collapse area develops and amplifies with increasing offset. For high topographic steps, the propagation of the main fault across the step area only occurs in the final stages of the experiments, contrary to what happens when the step is small or inexistent. These results strongly suggest a major impact of the variation of topography on the development of strike-slip fault systems. The step in the morphology causes variations in the potential energy that changes the local stress field (mainly the vertical

  7. Perspective: Highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process

    Directory of Open Access Journals (Sweden)

    S. N. Heo

    2016-03-01

    Full Text Available We established a process for growing highly ordered MoS2 thin films. The process consists of four steps: MoO3 thermal evaporation, first annealing, sulfurization, and second annealing. The main feature of this process is that thermally deposited MoO3 thin films are employed as a precursor for the MoS2 films. The first deposition step enabled us to achieve precise control of the resulting thickness of the MoS2 films with high uniformity. The crystalline structures, surface morphologies, and chemical states at each step were characterized by X-ray diffraction, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Based on these characterizations and a careful optimization of the growth conditions, we successfully produced a highly oriented MoS2 thin film with a thickness of five monolayers over an entire one-centimeter-square sapphire substrate.

  8. Data sensitivity in a hybrid STEP/Coulomb model for aftershock forecasting

    Science.gov (United States)

    Steacy, S.; Jimenez Lloret, A.; Gerstenberger, M.

    2014-12-01

    Operational earthquake forecasting is rapidly becoming a 'hot topic' as civil protection authorities seek quantitative information on likely near future earthquake distributions during seismic crises. At present, most of the models in public domain are statistical and use information about past and present seismicity as well as b-value and Omori's law to forecast future rates. A limited number of researchers, however, are developing hybrid models which add spatial constraints from Coulomb stress modeling to existing statistical approaches. Steacy et al. (2013), for instance, recently tested a model that combines Coulomb stress patterns with the STEP (short-term earthquake probability) approach against seismicity observed during the 2010-2012 Canterbury earthquake sequence. They found that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. They suggested that the major reason for this discrepancy was uncertainty in the slip models and, in particular, in the geometries of the faults involved in each complex major event. Here we test this hypothesis by developing a number of retrospective forecasts for the Landers earthquake using hypothetical slip distributions developed by Steacy et al. (2004) to investigate the sensitivity of Coulomb stress models to fault geometry and earthquake slip, and we also examine how the choice of receiver plane geometry affects the results. We find that the results are strongly sensitive to the slip models and moderately sensitive to the choice of receiver orientation. We further find that comparison of the stress fields (resulting from the slip models) with the location of events in the learning period provides advance information on whether or not a particular hybrid model will perform better than STEP.

  9. X-Ray Computed Tomography: The First Step in Mars Sample Return Processing

    Science.gov (United States)

    Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.

    2017-01-01

    The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and

  10. A Quantum Logic Gate Representation of Quantum Measurement Reversing and Unifying the Two Steps of von Neumann's Model

    CERN Document Server

    Castagnoli, G C

    1999-01-01

    In former work, quantum computation has been shown to be a problem solving process essentially affected by both the reversible dynamics leading to the state before measurement, and the logical-mathematical constraints introduced by quantum measurement (in particular, the constraint that there is only one measurement outcome). This dual influence, originated by independent initial and final conditions, justifies the quantum computation speed-up and is not representable inside dynamics, namely as a one-way propagation. In this work, we reformulate von Neumann's model of quantum measurement at the light of above findings. We embed it in a broader representation based on the quantum logic gate formalism and capable of describing the interplay between dynamical and non-dynamical constraints. The two steps of the original model, namely (1) dynamically reaching a complete entanglement between pointer and quantum object and (2) enforcing the one-outcome-constraint, are unified and reversed. By representing step (2) r...

  11. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    Science.gov (United States)

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  12. Comparing uncertainty resulting from two-step and global regression procedures applied to microbial growth models.

    Science.gov (United States)

    Martino, K G; Marks, B P

    2007-12-01

    Two different microbial modeling procedures were compared and validated against independent data for Listeria monocytogenes growth. The most generally used method is two consecutive regressions: growth parameters are estimated from a primary regression of microbial counts, and a secondary regression relates the growth parameters to experimental conditions. A global regression is an alternative method in which the primary and secondary models are combined, giving a direct relationship between experimental factors and microbial counts. The Gompertz equation was the primary model, and a response surface model was the secondary model. Independent data from meat and poultry products were used to validate the modeling procedures. The global regression yielded the lower standard errors of calibration, 0.95 log CFU/ml for aerobic and 1.21 log CFU/ml for anaerobic conditions. The two-step procedure yielded errors of 1.35 log CFU/ml for aerobic and 1.62 log CFU/ ml for anaerobic conditions. For food products, the global regression was more robust than the two-step procedure for 65% of the cases studied. The robustness index for the global regression ranged from 0.27 (performed better than expected) to 2.60. For the two-step method, the robustness index ranged from 0.42 to 3.88. The predictions were overestimated (fail safe) in more than 50% of the cases using the global regression and in more than 70% of the cases using the two-step regression. Overall, the global regression performed better than the two-step procedure for this specific application.

  13. Fuzzy sets on step of planning of experiment for organization and management of construction processes

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy

    2016-01-01

    Full Text Available In this article, problems of mathematical modeling and experiment planning of the organization and management of construction. The authors designated the basic restrictions and the difficulties in this field. Concluded that the planning of research experiment is possible in the information sphere with using of heuristic, graphical, mathematical models, as well as neural networks and genetic algorithms. The authors note the need for use of expert information in the case of the formalization of quality parameters. The article presented an overview of the translation methods of qualitative information into mathematical language. Comparison of methods the qualimetry of USSR scientists, the analytic hierarchy process and fuzzy set theory were performed. The benefits of the latter for interpretation of qualitative parameters were identified. The authors have given many examples of application fuzzy sets for formalization of organizational factors of construction processes. Finally, there conclusion was made about progressiveness and effectiveness of fuzzy set theory to describe the qualitative parameters of organization and management of construction.

  14. Student Responses to a Context- and Inquiry-Based Three-Step Teaching Model

    Science.gov (United States)

    Walan, Susanne; Rundgren, Shu-Nu Chang

    2015-01-01

    Research has indicated that both context- and inquiry-based approaches could increase student interest in learning sciences. This case study aims to present a context- and inquiry-based combined teaching approach, using a three-step teaching model developed by the PROFILES project, and investigates Swedish students' responses to the activity. A…

  15. Student Responses to a Context- and Inquiry-Based Three-Step Teaching Model

    Science.gov (United States)

    Walan, Susanne; Rundgren, Shu-Nu Chang

    2015-01-01

    Research has indicated that both context- and inquiry-based approaches could increase student interest in learning sciences. This case study aims to present a context- and inquiry-based combined teaching approach, using a three-step teaching model developed by the PROFILES project, and investigates Swedish students' responses to the activity. A…

  16. Simulation step size analysis of a whole-cell computational model of bacteria

    Science.gov (United States)

    Abreu, Raphael; Castro, Maria Clicia S.; Silva, Fabrício Alves B.

    2016-12-01

    Understanding how complex phenotypes arise from individual molecules and their interactions is a major challenge in biology and, to meet this challenge, computational approaches are increasingly employed. As an example, a recent paper [1] proposed a whole-cell model Mycoplasma genitalium including all cell components and their interactions. 28 modules representing several cell functions were modeled independently, and then integrated into a single computational model. One assumption considered in the whole-cell model of M.Genitalium is that all 28 modules can be modeled independently given the 1 second step size used in simulations. This is a major assumption, since it simplifies the modeling of several cell functions and makes the modeling of the system as a whole feasible. In this paper we investigate the dependency of experimental results on that assumption. We have simulated the M.Genitalium cell cycle using several simulation time step sizes and compared the results to the ones obtained with the system using 1 second simulation time step.

  17. A permeation theory for single-file ion channels: One- and two-step models

    Science.gov (United States)

    Nelson, Peter Hugo

    2011-04-01

    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no

  18. Animal models and conserved processes

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2012-09-01

    Full Text Available Abstract Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is

  19. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  20. Face Processing: Models For Recognition

    Science.gov (United States)

    Turk, Matthew A.; Pentland, Alexander P.

    1990-03-01

    The human ability to process faces is remarkable. We can identify perhaps thousands of faces learned throughout our lifetime and read facial expression to understand such subtle qualities as emotion. These skills are quite robust, despite sometimes large changes in the visual stimulus due to expression, aging, and distractions such as glasses or changes in hairstyle or facial hair. Computers which model and recognize faces will be useful in a variety of applications, including criminal identification, human-computer interface, and animation. We discuss models for representing faces and their applicability to the task of recognition, and present techniques for identifying faces and detecting eye blinks.

  1. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    2011-01-01

    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process.......This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches...

  2. Switching Processes in Queueing Models

    CERN Document Server

    Anisimov, Vladimir V

    2008-01-01

    Switching processes, invented by the author in 1977, is the main tool used in the investigation of traffic problems from automotive to telecommunications. The title provides a new approach to low traffic problems based on the analysis of flows of rare events and queuing models. In the case of fast switching, averaging principle and diffusion approximation results are proved and applied to the investigation of transient phenomena for wide classes of overloading queuing networks.  The book is devoted to developing the asymptotic theory for the class of switching queuing models which covers  mode

  3. Biodiesel production from rice bran by a two-step in-situ process.

    Science.gov (United States)

    Shiu, Pei-Jing; Gunawan, Setiyo; Hsieh, Wen-Hao; Kasim, Novy S; Ju, Yi-Hsu

    2010-02-01

    The production of fatty acid methyl esters (FAMEs) by a two-step in-situ transesterification from two kinds of rice bran was investigated in this study. The method included an in-situ acid-catalyzed esterification followed by an in-situ base-catalyzed transesterification. Free fatty acids (FFAs) level was reduced to less than 1% for both rice bran A (initial FFAs content=3%) and rice bran B (initial FFAs content=30%) in the first step under the following conditions: 10 g rice bran, methanol to rice bran ratio 15 mL/g, H(2)SO(4) to rice bran mass ratio 0.18, 60 degrees C reaction temperature, 600 rpm stirring rate, 15 min reaction time. The organic phase of the first step product was collected and subjected to a second step reaction by adding 8 mL of 5N NaOH solution and allowing to react for 60 and 30 min for rice bran A and rice bran B, respectively. FAMEs yields of 96.8% and 97.4% were obtained for rice bran A and rice bran B, respectively, after this two-step in-situ reaction.

  4. Balancing Opposing Forces—A Nested Process Evaluation Study Protocol for a Stepped Wedge Designed Cluster Randomized Controlled Trial of an Experience Based Codesign Intervention

    Directory of Open Access Journals (Sweden)

    Victoria Jane Palmer

    2016-10-01

    Full Text Available Background: Process evaluations are essential to understand the contextual, relational, and organizational and system factors of complex interventions. The guidance for developing process evaluations for randomized controlled trials (RCTs has until recently however, been fairly limited. Method/Design: A nested process evaluation (NPE was designed and embedded across all stages of a stepped wedge cluster RCT called the CORE study. The aim of the CORE study is to test the effectiveness of an experience-based codesign methodology for improving psychosocial recovery outcomes for people living with severe mental illness (service users. Process evaluation data collection combines qualitative and quantitative methods with four aims: (1 to describe organizational characteristics, service models, policy contexts, and government reforms and examine the interaction of these with the intervention; (2 to understand how the codesign intervention works, the cluster variability in implementation, and if the intervention is or is not sustained in different settings; (3 to assist in the interpretation of the primary and secondary outcomes and determine if the causal assumptions underpinning the codesign interventions are accurate; and (4 to determine the impact of a purposefully designed engagement model on the broader study retention and knowledge transfer in the trial. Discussion: Process evaluations require prespecified study protocols but finding a balance between their iterative nature and the structure offered by protocol development is an important step forward. Taking this step will advance the role of qualitative research within trials research and enable more focused data collection to occur at strategic points within studies.

  5. An Examination of Higher-Order Treatments of Boundary Conditions in Split-Step Fourier Parabolic Equation Models

    Science.gov (United States)

    2015-06-01

    HIGHER-ORDER TREATMENTS OF BOUNDARY CONDITIONS IN SPLIT-STEP FOURIER PARABOLIC EQUATION MODELS by Savas Erdim June 2015 Thesis Advisor...CONDITIONS IN SPLIT-STEP FOURIER PARABOLIC EQUATION MODELS 5. FUNDING NUMBERS 6. AUTHOR(S) Savas Erdim 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES... Parabolic equation models solved using the split-step Fourier (SSF) algorithm, such as the Monterey Miami Parabolic Equation model, are commonly used

  6. Combustion Process Modelling and Control

    Directory of Open Access Journals (Sweden)

    Vladimír Maduda

    2007-10-01

    Full Text Available This paper deals with realization of combustion control system on programmable logic controllers. Control system design is based on analysis of the current state of combustion control systems in technological device of raw material processing area. Control system design is composed of two subsystems. First subsystem is represented by software system for measured data processing and for data processing from simulation of the combustion mathematical model. Outputs are parameters for setting of controller algorithms. Second subsystem consists from programme modules. The programme module is presented by specific control algorithm, for example proportional regulation, programmed proportional regulation, proportional regulation with correction on the oxygen in waste gas, and so on. According to the specific combustion control requirements it is possible built-up concrete control system by programme modules. The programme modules were programmed by Automation studio that is used for development, debugging and testing software for B&R controllers.

  7. Preparation of Silver Nanoshells on Silica Particles by a Simple Two-step Process

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Ming MA; Ning GU; Ling XU; Kun Ji CHEN

    2004-01-01

    A simple two-step method was developed to prepare silver nanoshells coated on silica paticles.The method involves two steps: concentration of reaction precursor (AgNO3) on particle surfaces and subsequent reduction by formaldehyde.The obtained composite particles were characterized by TEM, ED, and SEM-EDS measurements.The results show that the silver nanoshell is coated on silica particle surface in the form of a polycrystalline (cubic structure) layer with average thickness of 20 nm and weight percentage of 19%.

  8. Specification of a STEP Based Reference Model for Exchange of Robotics Models

    DEFF Research Database (Denmark)

    Haenisch, Jochen; Kroszynski, Uri; Ludwig, Arnold

    ESPRIT Project 6457: "Interoperability of Standards for Robotics in CIME" (InterRob) belongs to the Subprogram "Computer Integrated Manufacturing and Engineering" of ESPRIT, the European Specific Programme for Research and Development in Information Technology supported by the European Commision....... InterRob aims to develop an integrated solution to precision manufacturing by combining product data and database technologies with robotic off-line programming and simulation. Benefits arise from the use of high level simulation tools and developing standards for the exchange of product model data...... combining geometric, dynamic, process and robot specific data.The growing need for accurate information about manufacturing data (models of robots and other mechanisms) in diverse industrial applications has initiated ESPRIT Project 6457: InterRob. Besides the topics associated with standards for industrial...

  9. Physical modelling and scale effects of air-water flows on stepped spillways

    Institute of Scientific and Technical Information of China (English)

    CHANSON Hubert; GONZALEZ Carlos A.

    2005-01-01

    During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete),strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbulence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to prototypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels although little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.

  10. Modeling solute transport in distribution networks with variable demand and time step sizes.

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Chad E.; Bilisoly, Roger Lee; Buchberger, Steven G. (University of Cincinnati, Cincinnati, OH); McKenna, Sean Andrew; Yarrington, Lane

    2004-06-01

    The effect of variable demands at short time scales on the transport of a solute through a water distribution network has not previously been studied. We simulate flow and transport in a small water distribution network using EPANET to explore the effect of variable demand on solute transport across a range of hydraulic time step scales from 1 minute to 2 hours. We show that variable demands at short time scales can have the following effects: smoothing of a pulse of tracer injected into a distribution network and increasing the variability of both the transport pathway and transport timing through the network. Variable demands are simulated for these different time step sizes using a previously developed Poisson rectangular pulse (PRP) demand generator that considers demand at a node to be a combination of exponentially distributed arrival times with log-normally distributed intensities and durations. Solute is introduced at a tank and at three different network nodes and concentrations are modeled through the system using the Lagrangian transport scheme within EPANET. The transport equations within EPANET assume perfect mixing of the solute within a parcel of water and therefore physical dispersion cannot occur. However, variation in demands along the solute transport path contribute to both removal and distortion of the injected pulse. The model performance measures examined are the distribution of the Reynolds number, the variation in the center of mass of the solute across time, and the transport path and timing of the solute through the network. Variation in all three performance measures is greatest at the shortest time step sizes. As the scale of the time step increases, the variability in these performance measures decreases. The largest time steps produce results that are inconsistent with the results produced by the smaller time steps.

  11. Enhancing the Referral-Making Process to 12-Step Programs: Strategies for Social Workers

    Science.gov (United States)

    Dennis, Cory B.; Davis, Thomas D.

    2017-01-01

    Objectives: This study examines three preparatory strategies that can be used during treatment sessions to bridge the gap between clinician recommendations for client participation in 12-step programs (TSPs) and client adherence to such recommendations. Methods: A sample of 284 clinicians completed an online survey. Clinicians responded to items…

  12. Xylose Isomerization with Zeolites in a Two-Step Alcohol–Water Process

    DEFF Research Database (Denmark)

    Paniagua, Marta; Shunmugavel, Saravanamurugan; Melián Rodriguez, Mayra

    2015-01-01

    , and mordenite. The yield of xylulose obtained over H-USY (Si/Al=6) after 1 h of reaction at 1008C was 39%. After water hydrolysis in the second reaction step, the yield increased to 47%. Results obtained from pyridine adsorption studies confirm that H-USY (6) is a catalyst that combines Brønsted and Lewis acid...

  13. First step in the process of calculating the cross section for muonic antihydrogen

    CERN Document Server

    Maher, Niamh

    2016-01-01

    The end goal of the project is to measure the charge radius of the antiproton with muons. However a necessary step first is to calculate cross section of Muonium and antiprotons in the production of antihydrogen to determine the feasibility of such an experiment.

  14. How the Use of ICT can Contribute to a Misleading Picture of Conditions – A Five-Step Process

    Directory of Open Access Journals (Sweden)

    Stefan Holgersson

    2015-11-01

    Full Text Available This paper contributes to the limited research on roles ICT can play in impression-management strategies and is based on case studies done in the Swedish Police. It also gives a theoretical contribution by adopting a holistic approach to explain how ICT can contribute to giving a misleading picture of conditions. Output generated by ICT has nowadays a central role in follow-up activities and decision-making. Even if this type of output, often in colourful, presentable, graphical arrangements, gives the impression of being accurate and reliable there is a risk of defective data quality. The phenomena can be described as a process divided into five steps. The first step is about how the data is generated and/or collected. The second step is linked to how the data is registered. The third step is about the output generated from the ICT-systems. The fourth step is how the output of ICT is selected for presentation. The fifth step concerns how output generated by ICT is interpreted. This paper shows that ICT can easily be used in impression-management strategies. For example, that personnel take shortcuts to affect the statistics rather than applying methods that may give the desired effects.

  15. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots.

    Science.gov (United States)

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C

    2015-09-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real-world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real-world tasks. In this study, we took advantage of existing practice data from 5 simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by U.S. Federal Aviation Administration proficiency ratings). We developed a new Simultaneous Time Effects on Practice (STEP) model: (a) to model the simultaneous effects of practice and interval on performance of the 5 flights, and (b) to examine the effects of selected covariates (i.e., age, flight expertise, and 3 composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intraindividual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with practice or interval. Results indicated that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high-functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real-world tasks. (c) 2015 APA, all rights reserved).

  16. Initial Steps Toward a Hydrologic "Watershed" Model for the Ablation Zone of the Greenland Ice Sheet

    Science.gov (United States)

    Cooper, M. G.; Smith, L. C.; Rennermalm, A. K.; Pitcher, L. H.; Overstreet, B. T.; Chu, V. W.; Ryan, J.; Yang, K.

    2015-12-01

    Surface meltwater production on the Greenland Ice Sheet (GrIS) is a well-documented phenomenon but we lack understanding of the physical mechanisms that control the production, transport, and fate of the meltwater. To address this, we present initial steps toward the development of a novel hydrologic model for supraglacial streamflow on the GrIS. Ice ablation and surface meteorology were measured during a 6-day field campaign in a 112 km2 ablation zone of southwest Greenland. We modeled ablation using SnowModel, an energy balance snow- and ice-ablation model. The required model inputs included standard surface meteorology and a digital elevation model (DEM), and the model outputs include all components of the energy balance and surface meltwater production for each grid cell in the ice-sheet watershed. Our next steps toward developing a complete hydrologic model for supraglacial streamflow in the ablation zone of the GrIS include the application of the meltwater-routing model HydroFlow to compare with in-situ measurements of supraglacial river discharge.

  17. REVERSE ENGINEERING IN MODELING OF AIRCRAFT PROPELLER BLADE - FIRST STEP TO PRODUCT OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Muhammad Yasir Anwar

    2014-12-01

    Full Text Available ABSTRACT: Propeller aircrafts have had many ups and downs throughout their use in the aviation history. Due to the current economic recession and price hikes in fuels, propeller aircrafts may yet again be a choice for aerial transport and has thus re-emerged as an active area for research. On modern propeller aircrafts old aluminum propellers are being replaced with fiber reinforced composite propellers. However, owing to their reliability, strength, and integrity, aluminum propellers are still used in military aircrafts. One of the challenges that engineers of these aircraft-type have had to deal with is the non-availability of engineering drawings of these propellers. It is practically impossible to carry out any study, research or modification on such propellers in the absence of correct CAD data. This article proposes a methodology wherein a CAD model of a C-130 aircraft propeller blade can be constructed using reverse engineering techniques. Such a model would help in future aerodynamic as well as structural analyses which includes investigation on structural integrity and the fluid dynamics characteristics of propeller blades. Different steps involved in this process are discussed; starting from laser scanning to obtain the cloud of points data and subsequently generating a CAD model in a commercial CAD software. The model is then imported into an analysis software where quality surface meshes are generated using tetrahedral elements. The purpose is to prepare a meshed model for future computational analysis including CFD (Computational Fluid Dynamics and FE (Finite Element analysis. ABSTRAK: Pesawat bebaling mempunyai tempoh pasang surutnya sepanjang penggunaanya dalam sejarah penerbangan. Kini disebabkan oleh kemelesetan ekonomi dan kenaikan harga minyak, pesawat bebaling mungkin akan merupakan pengangkutan udara pilihan dan seterusnya muncul semula sebagai ruangan aktif penyelidikan. Pada pesawat bebaling moden, bebaling aluminium yang

  18. Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis

    OpenAIRE

    Cailloux, J.; Santana, O.O.; E. Franco-Urquiza; Bou, J. J.; F. Carrasco; J. Gamez-Perez; M. L. Maspoch

    2013-01-01

    One-step reactive extrusion-calendering process (REX-Calendering) was used in order to obtain sheets of 1mm from two PD,L-LA extrusion grades modified with a styrene-acrylic multifunctional oligomeric agent. In a preliminary internal mixer study, torque versus time was monitored in order to determine chain extender ratios and reaction time. Once all parameters were optimized, reactive extrusion experiments were performed. Independently of the processing method employed, under the same pro...

  19. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  20. Analytical model of LDMOS with a double step buried oxide layer

    Science.gov (United States)

    Yuan, Song; Duan, Baoxing; Cao, Zhen; Guo, Haijun; Yang, Yintang

    2016-09-01

    In this paper, a two-dimensional analytical model is established for the Buried Oxide Double Step Silicon On Insulator structure proposed by the authors. Based on the two-dimensional Poisson equation, the analytic expressions of the surface electric field and potential distributions for the device are achieved. In the BODS (Buried Oxide Double Step Silicon On Insulator) structure, the buried oxide layer thickness changes stepwise along the drift region, and the positive charge in the drift region can be accumulated at the corner of the step. These accumulated charge function as the space charge in the depleted drift region. At the same time, the electric field in the oxide layer also varies with the different drift region thickness. These variations especially the accumulated charge will modulate the surface electric field distribution through the electric field modulation effects, which makes the surface electric field distribution more uniform. As a result, the breakdown voltage of the device is improved by 30% compared with the conventional SOI structure. To verify the accuracy of the analytical model, the device simulation software ISE TCAD is utilized, the analytical values are in good agreement with the simulation results by the simulation software. That means the established two-dimensional analytical model for BODS structure is valid, and it also illustrates the breakdown voltage enhancement by the electric field modulation effect sufficiently. The established analytical models will provide the physical and mathematical basis for further analysis of the new power devices with the patterned buried oxide layer.

  1. How to Use the Actor-Partner Interdependence Model (APIM To Estimate Different Dyadic Patterns in MPLUS: A Step-by-Step Tutorial

    Directory of Open Access Journals (Sweden)

    Fitzpatrick, Josée

    2016-01-01

    Full Text Available Dyadic data analysis with distinguishable dyads assesses the variance, not only between dyads, but also within the dyad when members are distinguishable on a known variable. In past research, the Actor-Partner Interdependence Model (APIM has been the statistical model of choice in order to take into account this interdependence. Although this method has received considerable interest in the past decade, to our knowledge, no specific guide or tutorial exists to describe how to test an APIM model. In order to close this gap, this article will provide researchers with a step-by-step tutorial for assessing the most recent advancements of the APIM with the use of structural equation modeling (SEM. The present tutorial will also utilize the statistical program MPLUS.

  2. A procedure for Applying a Maturity Model to Process Improvement

    Directory of Open Access Journals (Sweden)

    Elizabeth Pérez Mergarejo

    2014-09-01

    Full Text Available A maturity model is an evolutionary roadmap for implementing the vital practices from one or moredomains of organizational process. The use of the maturity models is poor in the Latin-Americancontext. This paper presents a procedure for applying the Process and Enterprise Maturity Modeldeveloped by Michael Hammer [1]. The procedure is divided into three steps: Preparation, Evaluationand Improvement plan. The Hammer´s maturity model joint to the proposed procedure can be used byorganizations to improve theirs process, involving managers and employees.

  3. Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Hansen, Niels

    2008-01-01

    Due to structural and textural heterogeneities and a high content of stored energy, annealing of nanostructured metals is difficult to control in order to avoid non-uniform coarsening and recrystallization. The present research demonstrates a method to homogenize the structure by annealing at low...... temperature before annealing at high temperature. By this two-step process, the structure is homogenized and the stored energy is reduced significantly during the first annealing step. As an example, high-purity aluminum has been deformed to a total reduction of 98.4% (equivalent strain of 4...

  4. Principles of polymer processing modelling

    Directory of Open Access Journals (Sweden)

    Agassant Jean-François

    2016-01-01

    Full Text Available Polymer processing involves three thermo-mechanical stages: Plastication of solid polymer granules or powder to an homogeneous fluid which is shaped under pressure in moulds or dies and finally cooled and eventually drawn to obtain the final plastic part. Physical properties of polymers (high viscosity, non-linear rheology, low thermal diffusivity as well as the complex shape of most plastic parts make modelling a challenge. Several examples (film blowing extrusion dies, injection moulding, blow moulding are presented and discussed.

  5. BIOMAP A Daily Time Step, Mechanistic Model for the Study of Ecosystem Dynamics

    Science.gov (United States)

    Wells, J. R.; Neilson, R. P.; Drapek, R. J.; Pitts, B. S.

    2010-12-01

    BIOMAP simulates competition between two Plant Functional Types (PFT) at any given point in the conterminous U.S. using a time series of daily temperature (mean, minimum, maximum), precipitation, humidity, light and nutrients, with PFT-specific rooting within a multi-layer soil. The model employs a 2-layer canopy biophysics, Farquhar photosynthesis, the Beer-Lambert Law for light attenuation and a mechanistic soil hydrology. In essence, BIOMAP is a re-built version of the biogeochemistry model, BIOME-BGC, into the form of the MAPSS biogeography model. Specific enhancements are: 1) the 2-layer canopy biophysics of Dolman (1993); 2) the unique MAPSS-based hydrology, which incorporates canopy evaporation, snow dynamics, infiltration and saturated and unsaturated percolation with ‘fast’ flow and base flow and a ‘tunable aquifer’ capacity, a metaphor of D’Arcy’s Law; and, 3) a unique MAPSS-based stomatal conductance algorithm, which simultaneously incorporates vapor pressure and soil water potential constraints, based on physiological information and many other improvements. Over small domains the PFTs can be parameterized as individual species to investigate fundamental vs. potential niche theory; while, at more coarse scales the PFTs can be rendered as more general functional groups. Since all of the model processes are intrinsically leaf to plot scale (physiology to PFT competition), it essentially has no ‘intrinsic’ scale and can be implemented on a grid of any size, taking on the characteristics defined by the homogeneous climate of each grid cell. Currently, the model is implemented on the VEMAP 1/2 degree, daily grid over the conterminous U.S. Although both the thermal and water-limited ecotones are dynamic, following climate variability, the PFT distributions remain fixed. Thus, the model is currently being fitted with a ‘reproduction niche’ to allow full dynamic operation as a Dynamic General Vegetation Model (DGVM). While global simulations

  6. An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling

    Directory of Open Access Journals (Sweden)

    A. Iqbal

    2014-12-01

    Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.

  7. Tank tests of two models of flying-boat hulls to determine the effect of ventilating the step

    Science.gov (United States)

    Dawson, John R

    1937-01-01

    The results of tests made in the N.A.C.A. tank on two models of flying-boat hulls to determine the effect of ventilating the step are given graphically. The step of N.A.C.A. model 11-C was ventilated in several different ways and it was found that the resistance of the normal form is not appreciably affected by artificial ventilation in any of the forms tried. Further tests made with the depth of the step of model 11-C reduced likewise show no appreciable effect on the resistance from ventilation of the step. Tests were made on a model of the hull of the Navy P3M-1 flying-boat hull both with and without ventilation of the step. It was found that the discontinuity which is obtained in the resistance curves of this model is eliminated by ventilating the step.

  8. A Review of Process Modeling Language Paradigms

    Institute of Scientific and Technical Information of China (English)

    MA Qin-hai; GUAN Zhi-min; LI Ying; ZHAO Xi-nan

    2002-01-01

    Process representation or modeling plays an important role in business process engineering.Process modeling languages can be evaluated by the extent to which they provide constructs useful for representing and reasoning about the aspects of a process, and subsequently are chosen for a certain purpose.This paper reviews process modeling language paradigms and points out their advantages and disadvantages.

  9. Frequency-Speed Control Model Identification of Ultrasonic Motor Using Step Response

    Institute of Scientific and Technical Information of China (English)

    Shi Jingzhuo; Zhang Caixia

    2015-01-01

    Control model of ultrasonic motor is the foundation for high control performance .The frequency of driv-ing voltage is commonly used as control variable in the speed control system of ultrasonic motor .Speed control model with the input frequency can significantly improve speed control performance .Step response of rotating speed is tested .Then ,the transfer function model is identified through characteristic point method .Considering time-varying characteristics of the model parameters ,the variables are fitted with frequency and speed as the inde-pendent variables ,and the variable model of ultrasonic motor system is obtained ,with consideration of the nonlin-earity of ultrasonic motor system .The proposed model can be used in the design and analysis of the speed control system in ultrasonic motor .

  10. Development of a three dimensional circulation model based on fractional step method

    Directory of Open Access Journals (Sweden)

    Mazen Abualtayef

    2010-03-01

    Full Text Available A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.

  11. A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma

    Science.gov (United States)

    Zhang, Peng; Zhang, Na; Deng, Yuefan; Bluestein, Danny

    2015-03-01

    We developed a multiple time-stepping (MTS) algorithm for multiscale modeling of the dynamics of platelets flowing in viscous blood plasma. This MTS algorithm improves considerably the computational efficiency without significant loss of accuracy. This study of the dynamic properties of flowing platelets employs a combination of the dissipative particle dynamics (DPD) and the coarse-grained molecular dynamics (CGMD) methods to describe the dynamic microstructures of deformable platelets in response to extracellular flow-induced stresses. The disparate spatial scales between the two methods are handled by a hybrid force field interface. However, the disparity in temporal scales between the DPD and CGMD that requires time stepping at microseconds and nanoseconds respectively, represents a computational challenge that may become prohibitive. Classical MTS algorithms manage to improve computing efficiency by multi-stepping within DPD or CGMD for up to one order of magnitude of scale differential. In order to handle 3-4 orders of magnitude disparity in the temporal scales between DPD and CGMD, we introduce a new MTS scheme hybridizing DPD and CGMD by utilizing four different time stepping sizes. We advance the fluid system at the largest time step, the fluid-platelet interface at a middle timestep size, and the nonbonded and bonded potentials of the platelet structural system at two smallest timestep sizes. Additionally, we introduce parameters to study the relationship of accuracy versus computational complexities. The numerical experiments demonstrated 3000x reduction in computing time over standard MTS methods for solving the multiscale model. This MTS algorithm establishes a computationally feasible approach for solving a particle-based system at multiple scales for performing efficient multiscale simulations.

  12. Performance evaluation of a modified step-feed anaerobic/anoxic/oxic process for organic and nutrient removal

    Institute of Scientific and Technical Information of China (English)

    A.R. Majdi Nasab; S.M. Soleymani; M. Nosrati; S.M. Mousavi

    2016-01-01

    A pilot scale modified step-feed process was improved to increase nutrient (N and P) and organic removal operations from municipal wastewater. It combined the step-feed process and a method named“University of Cape Town (UCT)”. The effect of nutrient ratios and inflow distribution ratios were studied. The highest uptake efficiency of 95%for chemical oxygen demand (COD) has been achieved at the inflow distribution ratio of 40/35/25. However, maximum removal efficiency obtained for total nitrogen (TN) and phosphorus at 93%and 78%, respectively. The average mixed liquor suspended solids (MLSS) was 5500 mg·L−1. In addition, convenient values for dissolved oxygen (DO) concentration, and pH were obtained throughout different stages. The proposed system was identified to be an appropriate enhanced biological nutrient removal process for wastewater treatment plants owing to relatively high nutrient removal, sturdy sludge settle ability and COD removal.

  13. Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis.

    Science.gov (United States)

    Chethana, S; Nayak, Chetan A; Madhusudhan, M C; Raghavarao, K S M S

    2015-04-01

    C-phycocyanin, a natural food colorant, is gaining importance worldwide due to its several medical and pharmaceutical applications. In the present study, aqueous two-phase extraction was shown to be an attractive alternative for the downstream processing of C-phycocyanin from Spirulina platensis. By employing differential partitioning, C-phycocyanin selectively partitioned to the polymer rich (top) phase in concentrated form and contaminant proteins to the salt rich (bottom) phase. This resulted in an increase in the product purity (without losing much of the yield) in a single step without the need of multiple processing steps. Effect of process parameters such as molecular weight, tie line length, phase volume ratio, concentration of phase components on the partitioning behavior of C-phycocyanin was studied. The results were explained based on relative free volume of the phase systems. C-phycocyanin with a purity of 4.32 and yield of about 79 % was obtained at the standardized conditions.

  14. FIRST STEPS TOWARDS AN INTEGRATED CITYGML-BASED 3D MODEL OF VIENNA

    Directory of Open Access Journals (Sweden)

    G. Agugiaro

    2016-06-01

    This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  15. Business Process Modelling for Measuring Quality

    NARCIS (Netherlands)

    Heidari, F.; Loucopoulos, P.; Brazier, F.M.

    2013-01-01

    Business process modelling languages facilitate presentation, communication and analysis of business processes with different stakeholders. This paper proposes an approach that drives specification and measurement of quality requirements and in doing so relies on business process models as

  16. Business Process Modelling for Measuring Quality

    NARCIS (Netherlands)

    Heidari, F.; Loucopoulos, P.; Brazier, F.M.

    2013-01-01

    Business process modelling languages facilitate presentation, communication and analysis of business processes with different stakeholders. This paper proposes an approach that drives specification and measurement of quality requirements and in doing so relies on business process models as represent

  17. From representing to modelling knowledge: Proposing a two-step training for excellence in concept mapping

    Directory of Open Access Journals (Sweden)

    Joana G. Aguiar

    2017-09-01

    Full Text Available Training users in the concept mapping technique is critical for ensuring a high-quality concept map in terms of graphical structure and content accuracy. However, assessing excellence in concept mapping through structural and content features is a complex task. This paper proposes a two-step sequential training in concept mapping. The first step requires the fulfilment of low-order cognitive objectives (remember, understand and apply to facilitate novices’ development into good Cmappers by honing their knowledge representation skills. The second step requires the fulfilment of high-order cognitive objectives (analyse, evaluate and create to grow good Cmappers into excellent ones through the development of knowledge modelling skills. Based on Bloom’s revised taxonomy and cognitive load theory, this paper presents theoretical accounts to (1 identify the criteria distinguishing good and excellent concept maps, (2 inform instructional tasks for concept map elaboration and (3 propose a prototype for training users on concept mapping combining online and face-to-face activities. The proposed training application and the institutional certification are the next steps for the mature use of concept maps for educational as well as business purposes.

  18. A proposed adaptive step size perturbation and observation maximum power point tracking algorithm based on photovoltaic system modeling

    Science.gov (United States)

    Huang, Yu

    Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.

  19. Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein: towards a global multi-step design space.

    Science.gov (United States)

    Eon-duval, Alex; Valax, Pascal; Solacroup, Thomas; Broly, Hervé; Gleixner, Ralf; Strat, Claire L E; Sutter, James

    2012-10-01

    The article describes how Quality by Design principles can be applied to the drug substance manufacturing process of an Fc fusion protein. First, the quality attributes of the product were evaluated for their potential impact on safety and efficacy using risk management tools. Similarly, process parameters that have a potential impact on critical quality attributes (CQAs) were also identified through a risk assessment. Critical process parameters were then evaluated for their impact on CQAs, individually and in interaction with each other, using multivariate design of experiment techniques during the process characterisation phase. The global multi-step Design Space, defining operational limits for the entire drug substance manufacturing process so as to ensure that the drug substance quality targets are met, was devised using predictive statistical models developed during the characterisation study. The validity of the global multi-step Design Space was then confirmed by performing the entire process, from cell bank thawing to final drug substance, at its limits during the robustness study: the quality of the final drug substance produced under different conditions was verified against predefined targets. An adaptive strategy was devised whereby the Design Space can be adjusted to the quality of the input material to ensure reliable drug substance quality. Finally, all the data obtained during the process described above, together with data generated during additional validation studies as well as manufacturing data, were used to define the control strategy for the drug substance manufacturing process using a risk assessment methodology.

  20. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    Science.gov (United States)

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  1. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities

    Directory of Open Access Journals (Sweden)

    Maria Hayes

    2015-09-01

    Full Text Available Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  2. Transient Process of Transport Through a Quantum Dot in a Stepped Bias: a Numerical Approach

    Institute of Scientific and Technical Information of China (English)

    熊永建; 熊诗杰

    2001-01-01

    The time evolution of the current though a quantum dot responding to a stepped bias voltage is studied by a numerical approach in the mixed-valence regime and the Kondo regime. Our numerical results show the quasiperiodic oscillations of the current with a short damping time. When the deviation of the Fermi energy from the resonant dot level is increased by changing the gate voltage, the frequency of the oscillations is increased, but the average current decreases. The results also show a relatively slow oscillation in the Kondo regime.

  3. Optimized spray drying process for preparation of one-step calcium-alginate gel microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Popeski-Dimovski, Riste [Department of physic, Faculty of Natural Sciences and Mathematics, “ss. Cyril and Methodius” University, Arhimedova 3, 1000 Skopje, R. Macedonia (Macedonia, The Former Yugoslav Republic of)

    2016-03-25

    Calcium-alginate micro particles have been used extensively in drug delivery systems. Therefore we establish a one-step method for preparation of internally gelated micro particles with spherical shape and narrow size distribution. We use four types of alginate with different G/M ratio and molar weight. The size of the particles is measured using light diffraction and scanning electron microscopy. Measurements showed that with this method, micro particles with size distribution around 4 micrometers can be prepared, and SEM imaging showed that those particles are spherical in shape.

  4. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.

    Science.gov (United States)

    Rincón, B; Borja, R; Martín, M A; Martín, A

    2009-09-01

    A study of the second step or methanogenic stage of a two-stage anaerobic digestion process treating two-phase olive oil mill solid residue (OMSR) was conducted at mesophilic temperature (35 degrees C). The substrate fed to the methanogenic step was the effluent from a hydrolytic-acidogenic reactor operating at an organic loading rate (OLR) of 12.9 g chemical oxygen demand (COD) L(-1) d(-1) and at a hydraulic retention time (HRT) of 12.4 days; these OLR and HRT were found to be the best values to achieve the maximum total volatile fatty acid concentration (14.5 g L(-1) expressed as acetic acid) with a high concentration in acetic acid (57.5% of the total concentration) as the principal precursor of methane. The methanogenic stage was carried out in an anaerobic stirred tank reactor containing saponite as support media for the immobilization of microorganisms. OLRs of between 0.8 and 22.0 g COD L(-1) d(-1) were studied. These OLRs corresponded to HRTs of between 142.9 and 4.6 days. The methanogenic reactor operated with high stability for OLRs lower than 20.0 g COD L(-1) d(-1). This behaviour was shown by the total volatile fatty acids/total alkalinity ratio, whose values were always kept 0.12 for HRTs>4.6 days. The total COD (T-COD) removed was in the range of 94.3-61.3% and the volatile solids (VS) removed between 92.8% and 56.1% for OLRs between 0.8 and 20.0 g COD L(-1) d(-1). In the same way, a reduction of 43.8% was achieved for phenolic content. The low concentration of total volatile fatty acids (TVFA) observed (below 1 g L(-1) expressed as CH(3)COOH) in the methanogenic reactor effluents showed the high percentage of consumption and conversion of these acids to methane. A methane yield of 0.268+/-0.003 L CH(4) at standard temperature and pressure conditions (STP) g(-1) COD eliminated was achieved.

  5. Steps to a formal analysis of the cognitive-energetic model of stress and human performance

    NARCIS (Netherlands)

    P.C.M. Molenaar; M.W. van der Molen

    1986-01-01

    A. F. Sanders's cognitive-energetic model of stress and human performance attempts to bridge linear stage and capacity models of information processing. It is argued that the identifiability of effects of variations of some subset of component processes can only be properly evaluated through an appr

  6. A green two-step process for adipic acid production from cyclohexene. A study on parameters affecting selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Cavani, F.; Macchia, F.; Pino, R.; Raabova, K.; Rozhko, E. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; Alini, S.; Accorinti, P.; Babini, G. [Radici Chimica SpA, Novara (Italy)

    2011-07-01

    In this paper, we report about the effect of reaction parameters on catalytic behavior in a twostep process aimed at the synthesis of adipic acid from cyclohexene. In the first step, cyclohexene reacts with an aqueous solution of hydrogen peroxide, under conditions leading to the formation of trans-1,2-cyclohexandiol as the prevailing product; the reaction is catalysed by tungstic acid, in the presence of phosphoric acid and of a PT agent. In the second step, 1,2-cyclohexandiol is oxidized with air, in the presence of an heterogeneous catalyst made of alumina-supported Ru(OH){sub 3}. This process is aimed at using the minimal amount of the costly hydrogen peroxide, since only one mole is theoretically needed per mole of cyclohexene. The first step afforded very high yield to the glycol, using only a slight excess of hydrogen peroxide. However, the second step turned out to be the more critical one, since the selectivity to adipic acid was very low because of the concomitant occurrence of several undesired side reactions. The latter were in part due to the reaction conditions used, which were necessary for the activation of cyclohexandiol. (orig.)

  7. SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control

    Institute of Scientific and Technical Information of China (English)

    钟伟民; 何国龙; 皮道映; 孙优贤

    2005-01-01

    A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.

  8. How to define 'best practice' for use in Knowledge Translation research: a practical, stepped and interactive process.

    Science.gov (United States)

    Bosch, Marije; Tavender, Emma; Bragge, Peter; Gruen, Russell; Green, Sally

    2013-10-01

    Defining 'best practice' is one of the first and crucial steps in any Knowledge Translation (KT) research project. Without a sound understanding of what exactly should happen in practice, it is impossible to measure the extent of existing gaps between 'desired' and 'actual' care, set implementation goals, and monitor performance. The aim of this paper is to present a practical, stepped and interactive process to develop best practice recommendations that are actionable, locally applicable and in line with the best available research-based evidence, with a view to adapt these into process measures (quality indicators) for KT research purposes. Our process encompasses the following steps: (1) identify current, high-quality clinical practice guidelines (CPGs) and extract recommendations; (2) select strong recommendations in key clinical management areas; (3) update evidence and create evidence overviews; (4) discuss evidence and produce agreed 'evidence statements'; (5) discuss the relevance of the evidence with local stakeholders; and (6) develop locally applicable actionable best practice recommendations, suitable for use as the basis of quality indicators. Actionable definitions of local best practice are a prerequisite for doing KT research. As substantial resources go into rigorously synthesizing evidence and developing CPGs, it is important to make best use of such available resources. We developed a process for efficiently developing locally applicable actionable best practice recommendations from existing high-quality CPGs that are in line with current research evidence. © 2012 John Wiley & Sons Ltd.

  9. Model for Simulating a Spiral Software-Development Process

    Science.gov (United States)

    Mizell, Carolyn; Curley, Charles; Nayak, Umanath

    2010-01-01

    ), productivity (number of lines of code per hour), and number of defects per source line of code. The user provides the number of resources, the overall percent of effort that should be allocated to each process step, and the number of desired staff members for each step. The output of PATT includes the size of the product, a measure of effort, a measure of rework effort, the duration of the entire process, and the numbers of injected, detected, and corrected defects as well as a number of other interesting features. In the development of the present model, steps were added to the IEEE 12207 waterfall process, and this model and its implementing software were made to run repeatedly through the sequence of steps, each repetition representing an iteration in a spiral process. Because the IEEE 12207 model is founded on a waterfall paradigm, it enables direct comparison of spiral and waterfall processes. The model can be used throughout a software-development project to analyze the project as more information becomes available. For instance, data from early iterations can be used as inputs to the model, and the model can be used to estimate the time and cost of carrying the project to completion.

  10. Reovirus: evidence for a second step in the intracellular uncoating and transcriptase activation process

    Energy Technology Data Exchange (ETDEWEB)

    Borsa, J.; Sargent, M.D.; Lievaart, P.A.; Copps, T.P.

    1981-01-01

    Intracellular uncoating of reovirus has been reexamined. Biochemical and electron microscopy techniques were used. Present findings demonstrated that intracellular uncoating to the level of activated transcriptase proceeds via at least two distinct steps. In the first step, intact virions are converted to subviral particles (ISVP) generated in vitro. The endogenous transcriptase in such particles is in a switched-off-state. Cells were infected with ISVP in an attempt to demonstrate further uncoating. Incubation of ISVP-infected cells at 37/sup 0/ for an appropriate time interval converts the input ISVP, which are totally refractory to proteolytic digestion, to a form in which a single major polypeptide is either lost or becomes protease sensitive. In electron micrographs of thin sections of cells which have been infected with ISVP, and subsequently incubated at 37/sup 0/, virus particles of reduced diameter can be seen within the cytoplasm. Particles with activated transcriptase can be estracted from infected cells which have been incubated at 37/sup 0/ for an appropriate time. Extraction of these particles requires treatment of the cell homogenate with proteinase K. No active particles can be extracted with identical treatment of infected cells which have been incubated at 37/sup 0/ prior to cell homogenization. These findings strongly suggest that the intracellular uncoating of reovirus to the level of active transcriptase proceeds via a pathway which is mechanistically identical to that elucidated for uncoating and transcriptase activation in vitro.

  11. Sheets of branched poly(lactic acid obtained by one step reactive extrusion calendering process: Melt rheology analysis

    Directory of Open Access Journals (Sweden)

    J. Cailloux

    2013-03-01

    Full Text Available One-step reactive extrusion-calendering process (REX-Calendering was used in order to obtain sheets of 1mm from two PD,L-LA extrusion grades modified with a styrene-acrylic multifunctional oligomeric agent. In a preliminary internal mixer study, torque versus time was monitored in order to determine chain extender ratios and reaction time. Once all parameters were optimized, reactive extrusion experiments were performed. Independently of the processing method employed, under the same processing conditions, PD,L-LA with the lower D enantiomer molar content revealed a higher reactivity towards the reactive agent, induced by its higher thermal sensitivity. REXCalendering process seemed to minimize the degradations reactions during processing, although a competition between degradation and chain extension/branching reactions took place in both processes. Finally, the rheological characterization revealed a higher degree of modification in the melt rheological behaviour for REX-Calendered samples.

  12. STEP-NC oriented process planning optimization based on hybrid genetic algorithm%面向STEP-NC基于混合式遗传算法的工艺路线优化

    Institute of Scientific and Technical Information of China (English)

    欧阳华兵; 沈斌

    2012-01-01

    为适应STEP-NC技术的发展需求,解决基于STEP-NC非线性工艺路线优化问题,在深入分析STEP-NC基于加工特征的数据模型基础上,探讨了工艺路线优化中存在的问题及其相关约束,提出采用基于操作优先图的智能搜索与遗传算法相结合的混合式算法。首先考虑加工操作排序中的强制性约束,采用基于操作优先图的智能搜索算法,获取多个可行的加工操作顺序,并将其作为遗传算法的初始化种群;然后综合考虑机床选择、刀具选择和刀具运动方向选择,以加工成本最低为目标函数,根据优化约束条件,通过遗传算法的复制、交叉和变异等操作实现有效工艺路线的优化决策,得到满足车间要求的最优或接近最优的工艺路线。通过实例,验证了该算法在面向STEP-NC加工特征的零件工艺路线优化上的可行性和有效性。%To meet the requirements of STEP-NC technology and to solve the non-linear process planning problem,the existing problems in process planning optimization and its related constraints were discussed on the basis of analyzing STEP-NC data model based on machining features.The hybrid algorithm was proposed by integrating intelligent search of operation precedence graph with genetic algorithm.The compulsive constraints were firstly considered in the sequence of operations,and the alternative operation sequences were acquired by intelligent search algorithm based on operation precedence graph.This algorithm was acted as the initial population for the next genetic algorithm.The selections of machine tool,tool and tool approach direction were all taken into account,by taking the lowest machining cost as optimization objective function,the effective process planning optimization decision was achieved through operation of genetic algorithm's copy,cross and variation according to optimization constraints.The optimal or near optimal process route which satified the workshop

  13. First Steps Towards AN Integrated Citygml-Based 3d Model of Vienna

    Science.gov (United States)

    Agugiaro, G.

    2016-06-01

    This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. The work described in this paper is embedded within the European Marie-Curie ITN project "Ci-nergy, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  14. Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium.

    Science.gov (United States)

    Carrillo-Reyes, Julian; Buitrón, Germán

    2016-12-01

    A native microalgae consortium treated under thermal-acidic hydrolysis was used to produce hydrogen and methane in a two-step sequential process. Different acid concentrations were tested, generating hydrogen and methane yields of up to 45mLH2gVS(-1) and 432mLCH4gVS(-1), respectively. The hydrogen production step solubilized the particulate COD (chemical oxygen demand) up to 30%, creating considerable amounts of volatile fatty acids (up to 10gCODL(-1)). It was observed that lower acid concentration presented higher hydrogen and methane production potential. The results revealed that thermal acid hydrolysis of a native microalgae consortium is a simple but effective strategy for producing hydrogen and methane in the sequential process. In addition to COD removal (50-70%), this method resulted in an energy recovery of up to 15.9kJ per g of volatile solids of microalgae biomass, one of the highest reported.

  15. Single step process for the synthesis of carbon nanotubes and metal/alloy-filled multiwalled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Shaijumon MM

    2007-01-01

    Full Text Available AbstractA single-step approach for the synthesis of multi-walled nanotubes (MWNT filled with nanowires of Ni/ternary Zr based hydrogen storage alloy has been illustrated. We also demonstrate the generation of CO-free hydrogen by methane decomposition over alloy hydride catalyst. The present work also highlights the formation of single-walled nanotubes (SWNT and MWNTs at varying process conditions. These carbon nanostructures have been characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, high resolution TEM (HRTEM, Energy dispersive X-ray analysis (EDX and Raman spectroscopy. This new approach overcomes the existing multi-step process limitation, with possible impact on the development of future fuel cell, nano-battery and hydrogen sensor technologies.

  16. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...

  17. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction

    Science.gov (United States)

    Kraft, Timothy W.

    2016-01-01

    Purpose To examine the predictions of alternative models for the stochastic shut-off of activated rhodopsin (R*) and their implications for the interpretation of experimentally recorded single-photon responses (SPRs) in mammalian rods. Theory We analyze the transitions that an activated R* molecule undergoes as a result of successive phosphorylation steps and arrestin binding. We consider certain simplifying cases for the relative magnitudes of the reaction rate constants and derive the probability distributions for the time to arrestin binding. In addition to the conventional model in which R* catalytic activity declines in a graded manner with successive phosphorylations, we analyze two cases in which the activity is assumed to occur not via multiple small steps upon each phosphorylation but via a single large step. We refer to these latter two cases as the binary R* shut-off and three-state R* shut-off models. Methods We simulate R*’s stochastic reactions numerically for the three models. In the simplifying cases for the ratio of rate constants in the binary and three-state models, we show that the probability distribution of the time to arrestin binding is accurately predicted. To simulate SPRs, we then integrate the differential equations for the downstream reactions using a standard model of the rod outer segment that includes longitudinal diffusion of cGMP and Ca2+. Results Our simulations of SPRs in the conventional model of graded shut-off of R* conform closely to the simulations in a recent study. However, the gain factor required to account for the observed mean SPR amplitude is higher than can be accounted for from biochemical experiments. In addition, a substantial minority of the simulated SPRs exhibit features that have not been reported in published experiments. Our simulations of SPRs using the model of binary R* shut-off appear to conform closely to experimental results for wild type (WT) mouse rods, and the required gain factor conforms to

  18. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    Science.gov (United States)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  19. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    Science.gov (United States)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave

  20. A Review Paper : Noise Models in Digital Image Processing

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Boyat

    2015-04-01

    Full Text Available Noise is always presents in digital images during image acquisition, coding, transmission, and processing steps. Noise is very difficult to remove it from the digital images without the prior knowledge of noise model. That is why, review of noise models are essential in the study of image denoising techniques. In this paper, we express a brief overview of various noise models. These noise models can be selected by analysis of their origin. In this way, we present a complete and quantitative analysis of noise models available in digital images.

  1. Analytical model of LDMOS with a single step buried oxide layer

    Science.gov (United States)

    Yuan, Song; Duan, Baoxing; Cao, Zhen; Guo, Haijun; Yang, Yintang

    2016-09-01

    In this paper, a two-dimensional analytical model is established for the Single-Step Buried Oxide SOI structure proposed by the authors. Based on the two-dimensional Poisson equation, the analytic expression of the surface electric field and potential distributions for the device is achieved. In the SBOSOI (Single-Step Buried Oxide Silicon On Insulator) structure, the buried oxide layer thickness changes stepwise along the drift region, and the electric field in the oxide layer also varies with the different buried oxide layer thickness. These variations will modulate the surface electric field distribution through the electric field modulation effects, which makes the surface electric field distribution more uniform. As a result, the breakdown voltage of the device is improved by 60% compared with the conventional SOI structure. To verify the accuracy of the analytical model, the device simulation software ISE TCAD is utilized, the analytical values are in good agreement with the simulation results by the simulation software. The results verified the established two-dimensional analytical model for SBOSOI structure is valid, and it also illustrates the breakdown voltage enhancement by the electric field modulation effect sufficiently. The established analytical models will provide the physical and mathematical basis for further analysis of the new power devices with the patterned buried oxide layer.

  2. modeling grinding modeling grinding processes as micro processes ...

    African Journals Online (AJOL)

    eobe

    workpiece material dynamics thus allowing for process planning, optimization, and control. In spite of the .... arrangement of the grain vertices at the wheel active surface. ...... on Workpiece Roughness and Process Vibration” J. of the Braz.

  3. Managing Analysis Models in the Design Process

    Science.gov (United States)

    Briggs, Clark

    2006-01-01

    Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.

  4. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    Energy Technology Data Exchange (ETDEWEB)

    Gesta, E. [Ingénierie des Matériaux Polymères - UMR CNRS 5223, Université de Lyon - Université Lyon 1, Bâtiment POLYTECH Lyon - 15 boulevard Latarjet, 69622, Villeurbanne (France); Intelligent Insect Control, 118 Chemin des Alouettes, Castelnau-le-Lez, 34170 (France); Skovmand, O., E-mail: osk@insectcontrol.net [Intelligent Insect Control, 118 Chemin des Alouettes, Castelnau-le-Lez, 34170 (France); Espuche, E., E-mail: eliane.espuche@univ-lyon1.fr; Fulchiron, R., E-mail: rene.fulchiron@univ-lyon1.fr [Ingénierie des Matériaux Polymères - UMR CNRS 5223, Université de Lyon - Université Lyon 1, Bâtiment POLYTECH Lyon - 15 boulevard Latarjet, 69622, Villeurbanne (France)

    2015-12-17

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.

  5. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil

    Energy Technology Data Exchange (ETDEWEB)

    Zullaikah, S.; Lai, Chao Chin; Vali, S.R.; Ju, Yi Hsu [National Taiwan Univ. of Science and Technology, Taipei (China). Dept. of Chemical Engineering

    2005-11-15

    A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 {sup o}C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 {sup o}C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as {gamma}-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%). (author)

  6. Demystifying process mapping: a key step in neurosurgical quality improvement initiatives.

    Science.gov (United States)

    McLaughlin, Nancy; Rodstein, Jennifer; Burke, Michael A; Martin, Neil A

    2014-08-01

    Reliable delivery of optimal care can be challenging for care providers. Health care leaders have integrated various business tools to assist them and their teams in ensuring consistent delivery of safe and top-quality care. The cornerstone to all quality improvement strategies is the detailed understanding of the current state of a process, captured by process mapping. Process mapping empowers caregivers to audit how they are currently delivering care to subsequently strategically plan improvement initiatives. As a community, neurosurgery has clearly shown dedication to enhancing patient safety and delivering quality care. A care redesign strategy named NERVS (Neurosurgery Enhanced Recovery after surgery, Value, and Safety) is currently being developed and piloted within our department. Through this initiative, a multidisciplinary team led by a clinician neurosurgeon has process mapped the way care is currently being delivered throughout the entire episode of care. Neurosurgeons are becoming leaders in quality programs, and their education on the quality improvement strategies and tools is essential. The authors present a comprehensive review of process mapping, demystifying its planning, its building, and its analysis. The particularities of using process maps, initially a business tool, in the health care arena are discussed, and their specific use in an academic neurosurgical department is presented.

  7. Fabrication of an array-like freeform molding tool for UV-replication using a step and repeat process

    Science.gov (United States)

    Dunkel, J.; Wippermann, F.; Brückner, A.; Reimann, A.; Bräuer, A.

    2013-05-01

    Artificial compound eye cameras are a prominent approach of next generation wafer level cameras for consumer electronics due to their lower z-height compared to conventional single aperture objectives. In order to address low cost and high volume markets, their fabrication is based on a wafer level UV-replication process. The image quality of compound eye cameras can be increased significantly by the use of refractive freeform arrays (RFFA) instead of conventional microlens arrays. Therefore, we present the fabrication of a RFFA wafer level molding tool by a step and repeat process for the first time. The surface qualities of the fabricated structures were characterized with a white light interferometer.

  8. Large-scale fabrication of In2S3 porous films via one-step hydrothermal process.

    Science.gov (United States)

    Chen, Fei; Deng, Dan; Lei, Yinlin

    2013-10-01

    Large-scale indium sulfide (In2S3) porous films were fabricated via a facile one-step and non-template hydrothermal process using L-cysteine as a capping agent. The impact of reaction conditions such as reaction time, temperatures, and capping agents on the synthesis of the In2S3 porous films were studied. The morphology, structure, and phase composition of In2S3 porous films were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The formation process and the optical property of the In2S3 porous films were also evaluated.

  9. A Novel Single-Step Surface-Treatment Process for Forming Cr-Nitride Coatings on Steels

    Science.gov (United States)

    Lu, X. J.; Xiang, Z. D.

    2017-02-01

    A novel single-step surface-treatment process is demonstrated for forming Cr-nitride coatings on steels. The process was carried out at 1327 K (1100 °C) for two steel grades with differing carbon concentrations. For steel grade with 0.42 to 0.5C (wt pct), the coatings formed consisted of an outer Cr2N layer and an inner Cr-carbide layer with a Cr-enriched interdiffusion zone underneath. However, for steel grade with C ≤ 0.17 wt pct, the inner Cr-carbide layer was absent.

  10. A stepped-care model of post-disaster child and adolescent mental health service provision

    Directory of Open Access Journals (Sweden)

    Brett M. McDermott

    2014-07-01

    Full Text Available Background: From a global perspective, natural disasters are common events. Published research highlights that a significant minority of exposed children and adolescents develop disaster-related mental health syndromes and associated functional impairment. Consistent with the considerable unmet need of children and adolescents with regard to psychopathology, there is strong evidence that many children and adolescents with post-disaster mental health presentations are not receiving adequate interventions. Objective: To critique existing child and adolescent mental health services (CAMHS models of care and the capacity of such models to deal with any post-disaster surge in clinical demand. Further, to detail an innovative service response; a child and adolescent stepped-care service provision model. Method: A narrative review of traditional CAMHS is presented. Important elements of a disaster response – individual versus community recovery, public health approaches, capacity for promotion and prevention and service reach are discussed and compared with the CAMHS approach. Results: Difficulties with traditional models of care are highlighted across all levels of intervention; from the ability to provide preventative initiatives to the capacity to provide intense specialised posttraumatic stress disorder interventions. In response, our over-arching stepped-care model is advocated. The general response is discussed and details of the three tiers of the model are provided: Tier 1 communication strategy, Tier 2 parent effectiveness and teacher training, and Tier 3 screening linked to trauma-focused cognitive behavioural therapy. Conclusion: In this paper, we argue that traditional CAMHS are not an appropriate model of care to meet the clinical needs of this group in the post-disaster setting. We conclude with suggestions how improved post-disaster child and adolescent mental health outcomes can be achieved by applying an innovative service approach.

  11. Cupola Furnace Computer Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  12. Calibration process of highly parameterized semi-distributed hydrological model

    Science.gov (United States)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group

  13. A Two-Step Model for Gamma-Ray Bursts Associated with Supernovae

    CERN Document Server

    Cheng, K S

    1999-01-01

    We here propose a two-step model for gamma-ray bursts (GRBs) associated with supernovae. In the first step, the core collapse of a star with mass $\\ge 19M_\\odot$ leads to a massive neutron star and a normal supernova, and subsequently hypercritical accretion of the neutron star from the supernova ejecta may give rise to a jet through neutrino annihilation along the stellar rotation axis. However, because of too much surrounding matter, this jet rapidly enters a nonrelativistic phase and evolves to a large bubble. In the second step, the neutron star promptly implodes to a rapidly rotating black hole surrounded by a torus when the mass of the star increases to the maximum mass and meanwhile its rotation frequency increases to the upper limit due to the accreted angular momentum. The gravitational binding energy of the torus may be dissipated by a magnetized relativistic wind, which may then be absorbed by the supernova ejecta, thus producing an energetic hypernova. The rotational energy of the black hole may b...

  14. Computer Aided Continuous Time Stochastic Process Modelling

    DEFF Research Database (Denmark)

    Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

    2001-01-01

    A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

  15. Process Correlation Analysis Model for Process Improvement Identification

    Directory of Open Access Journals (Sweden)

    Su-jin Choi

    2014-01-01

    software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.

  16. Drying: a key-step of your industrial process; Le sechage: une etape cle de votre process industriel

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, D. [Ecole Nationale Superieure d' Ingenieurs en Arts Chimiques et Technologiques, ENSIACET, 31 - Toulouse (France); Leconte, J.M. [NEU Sechage Industriel, 59 - Templemars (France); Gayot, A. [Faculte de Pharmacie de Lille, 59 (France)] [and others

    2001-03-01

    This document brings together 13 testimonies of experts about the drying techniques used in industrial processes. The following points are approached: understanding and mastering of drying parameters: characterization of the products do be dried, affinity between product and solvent, humidity retaking, energy transfer..; domains of applications of the main drying techniques: conduction drying, atomization process, fluidized bed drying, microwave drying; which help drying engineering can provide to industrial processes (optimization and operation); industrial applications and case studies in pharmacy, chemistry and agriculture and food industry. (J.S.)

  17. A Process Model for Establishing Business Process Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Nguyen Hoang Thuan

    2017-06-01

    Full Text Available Crowdsourcing can be an organisational strategy to distribute work to Internet users and harness innovation, information, capacities, and variety of business endeavours. As crowdsourcing is different from other business strategies, organisations are often unsure as to how to best structure different crowdsourcing activities and integrate them with other organisational business processes. To manage this problem, we design a process model guiding how to establish business process crowdsourcing. The model consists of seven components covering the main activities of crowdsourcing processes, which are drawn from a knowledge base incorporating diverse knowledge sources in the domain. The built model is evaluated using case studies, suggesting the adequateness and utility of the model.

  18. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    Science.gov (United States)

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  19. Single step preparation of nanosilver loaded calcium phosphate by low temperature co-conversion process.

    Science.gov (United States)

    Suwanprateeb, J; Thammarakcharoen, F; Wasoontararat, K; Chokevivat, W; Phanphiriya, P

    2012-09-01

    The preparation and characterization of nanosilver loaded calcium phosphate aiming to enhance the bactericidal performance by a single step co-conversion technique using low temperature ion exchange phosphorization in combination with Tollen's reaction were performed. Silver nitrate was used as a silver ion supply source (0.001-0.1 M) and glucose was employed as a reducing agent. After conversion, surface and shell zones of all samples comprised hydroxyapatite and metallic silver as the main phases regardless of silver nitrate concentration. However, hydroxyapatite, residual calcium sulfate and monetite were found in the core zone when using silver nitrate concentration lower than 0.1 M. The microstructure of all samples comprised the distribution of spherical-shaped silver nanoparticles within the cluster of calcium phosphate nanocrystals. Total silver content (range, 0.09-6.5 %) in the converted samples was found to linearly increase with increasing silver nitrate content. Flexural modulus and strength of converted samples generally decreased with increasing silver content. Effective antibacterial activity of two selected samples (0.001 and 0.005 M AgNO(3)) against two bacterial strains (Pseudomonas aeruginosa and Staphylococcus aureus) was observed. Cytotoxic potentials by MTT assay of both samples were observed at 24 and 48 h extraction respectively.

  20. One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS

    Science.gov (United States)

    Satheeshkumar, Elumalai; Makaryan, Taron; Melikyan, Armen; Minassian, Hayk; Gogotsi, Yury; Yoshimura, Masahiro

    2016-08-01

    We report on one-step hybridization of silver, gold and palladium nanoparticles from solution onto exfoliated two-dimensional (2D) Ti3C2 titanium carbide (MXene) nanosheets. The produced hybrid materials can be used as substrates for surface-enhanced Raman spectroscopy (SERS). An approximate analytical approach is also developed for the calculation of the surface plasmon resonance (SPR) frequency of nanoparticles immersed in a medium, near the interface of two dielectric media with different dielectric constants. We obtained a good match with the experimental data for SPR wavelengths, 440 nm and 558 nm, respectively for silver and gold nanoparticles. In the case of palladium, our calculated SPR wavelength for the planar geometry was 160 nm, demonstrating that non-spherical palladium nanoparticles coupled with 2D MXene yield a broad, significanlty red-shifted SPR band with a peak at 230 nm. We propose a possible mechanism of the plasmonic hybridization of nanoparticles with MXene. The as-prepared noble metal nanoparticles on MXene show a highly sensitive SERS detection of methylene blue (MB) with calculated enhancement factors on the order of 105. These findings open a pathway for extending visible-range SERS applications of novel 2D hybrid materials in sensors, catalysis, and biomedical applications.

  1. A double-step truncation procedure for large-scale shell-model calculations

    CERN Document Server

    Coraggio, L; Itaco, N

    2016-01-01

    We present a procedure that is helpful to reduce the computational complexity of large-scale shell-model calculations, by preserving as much as possible the role of the rejected degrees of freedom in an effective approach. Our truncation is driven first by the analysis of the effective single-particle energies of the original large-scale shell-model hamiltonian, so to locate the relevant degrees of freedom to describe a class of isotopes or isotones, namely the single-particle orbitals that will constitute a new truncated model space. The second step is to perform an unitary transformation of the original hamiltonian from its model space into the truncated one. This transformation generates a new shell-model hamiltonian, defined in a smaller model space, that retains effectively the role of the excluded single-particle orbitals. As an application of this procedure, we have chosen a realistic shell-model hamiltonian defined in a large model space, set up by seven and five proton and neutron single-particle orb...

  2. Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations

    Directory of Open Access Journals (Sweden)

    H. Nakajima

    2006-05-01

    Full Text Available Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore pressure were measured during the tests at multiple gravity levels. Based on the scaling law of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40 g, the optimized unsaturated parameters compared well when accurate pore pressure measurements were included along with cumulative outflow as input data. The centrifuge modeling technique with its capability to implement variety of instrumentations under well controlled initial and boundary conditions, shortens testing time and can provide significant information for the parameter estimation procedure.

  3. Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations

    Directory of Open Access Journals (Sweden)

    H. Nakajima

    2006-01-01

    Full Text Available Centrifuge modeling of one-step outflow tests were carried out using a 2-m radius geotechnical centrifuge, and the cumulative outflow and transient pore water pressure were measured during the tests at multiple gravity levels. Based on the scaling laws of centrifuge modeling, the measurements generally showed reasonable agreement with prototype data calculated from forward simulations with input parameters determined from standard laboratory tests. The parameter optimizations were examined for three different combinations of input data sets using the test measurements. Within the gravity level examined in this study up to 40g, the optimized unsaturated parameters compared well when accurate pore water pressure measurements were included along with cumulative outflow as input data. With its capability to implement variety of instrumentations under well controlled initial and boundary conditions and to shorten testing time, the centrifuge modeling technique is attractive as an alternative experimental method that provides more freedom to set inverse problem conditions for the parameter estimation.

  4. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2006-10-15

    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  5. Rheomolding -- A one-step process for producing semi-solid metal castings with lowest porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Peng, H.; Wang, K.K. [Cornell Univ., Ithaca, NY (United States). Sibley School of Mechanical and Aerospace Engineering

    1996-10-01

    Rheomolding is a new idea of combining rheocasting in an injection-molding-like apparatus to achieve net-shape manufacturing of semi-solid metal parts with lowest porosity. Through a prototype rheomolding machine, extensive experiments have been carried out with Sn-15%Pb alloy. In this paper, some details on temperature control and resulting process quality are discussed. Metallographic examinations show that the semi-solid metal generated with a cycle time ranging from one to several minutes has resulted in well-separated solid crystals of spherical shape with little agglomeration, even at a solid fraction of over 40%. The flow lengths in a spiral mold at different process conditions were measured to study the process behavior. Porosity measurements in the molded spirals indicate that the semi-solid Sn-15%Pb by rheomolding values below 1%. By adjusting the ram speed, parts with essentially zero porosity are achieved with Sn-15%Pb alloy in semi-solid state.

  6. Carbon stripping - a critical process step in chemical looping combustion of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, M.; Thon, A.; Hartge, E.U.; Heinrich, S.; Werther, J. [Hamburg University of Technology, Institute of Solids Process Engineering and Particle Technology, Hamburg (Germany)

    2012-03-15

    In chemical looping combustion of solid fuels the well-mixed solids flow from the fuel reactor consisting of char, ash, and oxygen carrier particles cannot be completely separated into its constituents before it enters the air reactor. The slip of carbon will thus lead to char oxidation in the wrong reactor. Process simulation was applied to investigate the carbon stripping process in chemical looping combustion of solid fuels. Depending on the fuel choice, without carbon stripping CO{sub 2} capture rates below 50 % are calculated for 4 min of solids residence time in the fuel reactor. In a process with carbon stripper, however, CO{sub 2} capture rates exceeding 90 % can be achieved for both fuels investigated in this work. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Detecting Location Shifts during Model Selection by Step-Indicator Saturation

    Directory of Open Access Journals (Sweden)

    Jennifer L. Castle

    2015-04-01

    Full Text Available To capture location shifts in the context of model selection, we propose selecting significant step indicators from a saturating set added to the union of all of the candidate variables. The null retention frequency and approximate non-centrality of a selection test are derived using a ‘split-half’ analysis, the simplest specialization of a multiple-path block-search algorithm. Monte Carlo simulations, extended to sequential reduction, confirm the accuracy of nominal significance levels under the null and show retentions when location shifts occur, improving the non-null retention frequency compared to the corresponding impulse-indicator saturation (IIS-based method and the lasso.

  8. Instability Criterion of One-Dimensional Detonation Wave with Three-Step Chain Branching Reaction Model

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; JIANG Zong-Lin

    2011-01-01

    @@ One-dimensional detonation waves are simulated with the three-step chain branching reaction model, and the instability criterion is studied.The ratio of the induction zone length and the reaction zone length may be used to decide the instability, and the detonation becomes unstable with the high ratio.However, the ratio is not invariable with different heat release values.The critical ratio, corresponding to the transition from the stable detonation to the unstable detonation, has a negative correlation with the heat release.An empirical relation of the Chapman-Jouguet Mach number and the length ratio is proposed as the instability criterion.

  9. Ultrasonic inspection of rocket fuel model using laminated transducer and multi-channel step pulser

    Science.gov (United States)

    Mihara, T.; Hamajima, T.; Tashiro, H.; Sato, A.

    2013-01-01

    For the ultrasonic inspection for the packing of solid fuel in a rocket booster, an industrial inspection is difficult. Because the signal to noise ratio in ultrasonic inspection of rocket fuel become worse due to the large attenuation even using lower frequency ultrasound. For the improvement of this problem, we tried to applied the two techniques in ultrasonic inspection, one was the step function pulser system with the super wideband frequency properties and the other was the laminated element transducer. By combining these two techniques, we developed the new ultrasonic measurement system and demonstrated the advantages in ultrasonic inspection of rocket fuel model specimen.

  10. CONVERGENCE TO PROCESS ORGANIZATION BY MODEL OF PROCESS MATURITY

    Directory of Open Access Journals (Sweden)

    Blaženka Piuković Babičković

    2015-06-01

    Full Text Available With modern business process orientation binds primarily, process of thinking and process organizational structure. Although the business processes are increasingly a matter of writing and speaking, it is a major problem among the business world, especially in countries in transition, where it has been found that there is a lack of understanding of the concept of business process management. The aim of this paper is to give a specific contribution to overcoming the identified problem, by pointing out the significance of the concept of business process management, as well as the representation of the model for review of process maturity and tools that are recommended for use in process management.

  11. Defining process design space for a hydrophobic interaction chromatography (HIC) purification step: application of quality by design (QbD) principles.

    Science.gov (United States)

    Jiang, Canping; Flansburg, Lisa; Ghose, Sanchayita; Jorjorian, Paul; Shukla, Abhinav A

    2010-12-15

    The concept of design space has been taking root under the quality by design paradigm as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. This paper outlines the development of a design space for a hydrophobic interaction chromatography (HIC) process step. The design space included the impact of raw material lot-to-lot variability and variations in the feed stream from cell culture. A failure modes and effects analysis was employed as the basis for the process characterization exercise. During mapping of the process design space, the multi-dimensional combination of operational variables were studied to quantify the impact on process performance in terms of yield and product quality. Variability in resin hydrophobicity was found to have a significant influence on step yield and high-molecular weight aggregate clearance through the HIC step. A robust operating window was identified for this process step that enabled a higher step yield while ensuring acceptable product quality.

  12. Event-driven process execution model for process virtual machine

    Institute of Scientific and Technical Information of China (English)

    WU Dong-yao; WEI Jun; GAO Chu-shu; DOU Wen-shen

    2012-01-01

    Current orchestration and choreography process engines only serve with dedicate process languages. To solve these problems, an Even~driven Process Execution Model (EPEM) was developed. Formalization and map- ping principles of the model were presented to guarantee the correctness and efficiency for process transformation. As a case study, the EPEM descriptions of Web Services Business Process Execution Language (WS~BPEL) were represented and a Process Virtual Machine (PVM)-OncePVM was implemented in compliance with the EPEM.

  13. Capture of micrococcin biosynthetic intermediates reveals C-terminal processing as an obligatory step for in vivo maturation

    Science.gov (United States)

    Bewley, Kathryn D.; Bennallack, Philip R.; Burlingame, Mark A.; Robison, Richard A.; Griffitts, Joel S.

    2016-01-01

    Thiopeptides, including micrococcins, are a growing family of bioactive natural products that are ribosomally synthesized and heavily modified. Here we use a refactored, modular in vivo system containing the micrococcin P1 (MP1) biosynthetic genes (TclIJKLMNPS) from Macrococcus caseolyticus str 115 in a genetically tractable Bacillus subtilis strain to parse the processing steps of this pathway. By fusing the micrococcin precursor peptide to an affinity tag and coupling it with catalytically defective enzymes, biosynthetic intermediates were easily captured for analysis. We found that two major phases of molecular maturation are separated by a key C-terminal processing step. Phase-I conversion of six Cys residues to thiazoles (TclIJN) is followed by C-terminal oxidative decarboxylation (TclP). This TclP-mediated oxidative decarboxylation is a required step for the peptide to progress to phase II. In phase II, Ser/Thr dehydration (TclKL) and peptide macrocycle formation (TclM) occurs. A C-terminal reductase, TclS, can optionally act on the substrate peptide, yielding MP1, and is shown to act late in the pathway. This comprehensive characterization of the MP1 pathway prepares the way for future engineering efforts. PMID:27791142

  14. Analog modelling of obduction processes

    Science.gov (United States)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2012-04-01

    Obduction corresponds to one of plate tectonics oddities, whereby dense, oceanic rocks (ophiolites) are presumably 'thrust' on top of light, continental ones, as for the short-lived, almost synchronous Peri-Arabic obduction (which took place along thousands of km from Turkey to Oman in c. 5-10 Ma). Analog modelling experiments were performed to study the mechanisms of obduction initiation and test various triggering hypotheses (i.e., plate acceleration, slab hitting the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises (1) an upper mantle, modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and (2) high-viscosity silicone plates (Rhodrosil Gomme with PDMS iron fillers to reproduce densities of continental or oceanic plates), located at the centre of the tank above the syrup to simulate the subducting and the overriding plates - and avoid friction on the sides of the tank. Convergence is simulated by pushing on a piston at one end of the model with velocities comparable to those of plate tectonics (i.e., in the range 1-10 cm/yr). The reference set-up includes, from one end to the other (~60 cm): (i) the piston, (ii) a continental margin containing a transition zone to the adjacent oceanic plate, (iii) a weakness zone with variable resistance and dip (W), (iv) an oceanic plate - with or without a spreading ridge, (v) a subduction zone (S) dipping away from the piston and (vi) an upper, active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as is known to have been the case in Oman). Several configurations were tested and over thirty different parametric tests were performed. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Displacements, together with along-strike and across-strike internal deformation in all

  15. Business process modeling for processing classified documents using RFID technology

    Directory of Open Access Journals (Sweden)

    Koszela Jarosław

    2016-01-01

    Full Text Available The article outlines the application of the processing approach to the functional description of the designed IT system supporting the operations of the secret office, which processes classified documents. The article describes the application of the method of incremental modeling of business processes according to the BPMN model to the description of the processes currently implemented (“as is” in a manual manner and target processes (“to be”, using the RFID technology for the purpose of their automation. Additionally, the examples of applying the method of structural and dynamic analysis of the processes (process simulation to verify their correctness and efficiency were presented. The extension of the process analysis method is a possibility of applying the warehouse of processes and process mining methods.

  16. Model medication management process in Australian nursing homes using business process modeling.

    Science.gov (United States)

    Qian, Siyu; Yu, Ping

    2013-01-01

    One of the reasons for end user avoidance or rejection to use health information systems is poor alignment of the system with healthcare workflow, likely causing by system designers' lack of thorough understanding about healthcare process. Therefore, understanding the healthcare workflow is the essential first step for the design of optimal technologies that will enable care staff to complete the intended tasks faster and better. The often use of multiple or "high risk" medicines by older people in nursing homes has the potential to increase medication error rate. To facilitate the design of information systems with most potential to improve patient safety, this study aims to understand medication management process in nursing homes using business process modeling method. The paper presents study design and preliminary findings from interviewing two registered nurses, who were team leaders in two nursing homes. Although there were subtle differences in medication management between the two homes, major medication management activities were similar. Further field observation will be conducted. Based on the data collected from observations, an as-is process model for medication management will be developed.

  17. A Risk Management Process for Consumers: The Next Step in Information Security

    NARCIS (Netherlands)

    van Cleeff, A.

    2010-01-01

    Simply by using information technology, consumers expose themselves to considerable security risks. Because no technical or legal solutions are readily available, and awareness programs have limited impact, the only remedy is to develop a risk management process for consumers. Consumers need to

  18. Scapegoating: Another Step towards Understanding the Processes Generating Bullying in Groups?

    Science.gov (United States)

    Dixon, Roz

    2007-01-01

    Within the group therapy literature scapegoating is understood as an unconscious process that plays an important function in preventing groups from being split asunder as a result of unexpressed frustration towards the leader. When a group successfully challenges its leader to share power, the need for a scapegoat passes. In the search for theory…

  19. A multi-step assembly process: drawing, flanging and hemming of metallic sheets

    Science.gov (United States)

    Manach, P. Y.; Le Maoût, N.; Thuillier, S.

    2010-06-01

    This paper presents hemming tests on complex geometries, combining curved surfaces and radii of curvature in the plane. The samples are firstly prestrained in order to obtain a strain history prior to flanging and hemming. The choice of the sample geometries as well as prior plastic strains is based on a survey of current geometries hemmed in automotive doors. A device has been designed to hem these samples both by classical and roll-hemming processes and to allow a comparison between both technologies. Roll-in, which characterizes the change of geometry of the hemmed zone between flanging and hemming, and loads are obtained during this multistep process. Results show that roll-in observed in roll-hemming is lower than in classical hemming and that its evolution greatly differs between the two processes. The analysis of the results on different samples shows that it is difficult to establish rules on the variation of other parameters in such a complex multistep process and that it requires an intensive use of numerical simulation.

  20. A multi-step assembly process: drawing, flanging and hemming of metallic sheets

    Directory of Open Access Journals (Sweden)

    Thuillier S.

    2010-06-01

    Full Text Available This paper presents hemming tests on complex geometries, combining curved surfaces and radii of curvature in the plane. The samples are firstly prestrained in order to obtain a strain history prior to flanging and hemming. The choice of the sample geometries as well as prior plastic strains is based on a survey of current geometries hemmed in automotive doors. A device has been designed to hem these samples both by classical and roll-hemming processes and to allow a comparison between both technologies. Roll-in, which characterizes the change of geometry of the hemmed zone between flanging and hemming, and loads are obtained during this multistep process. Results show that roll-in observed in roll-hemming is lower than in classical hemming and that its evolution greatly differs between the two processes. The analysis of the results on different samples shows that it is difficult to establish rules on the variation of other parameters in such a complex multistep process and that it requires an intensive use of numerical simulation.

  1. Back-End Synthesis: Another Step in the Performance Technology Process.

    Science.gov (United States)

    Thiagarajan, Sivasailam

    1987-01-01

    Described back-end synthesis as the creation and integration of the secondary intervention required for efficient and cost-effective implementation of performance improvement programs. Involving analysis, design, evaluation, revision, and implementation, this process is related to front-end analysis, and a sample application in a performance…

  2. Process correlation analysis model for process improvement identification.

    Science.gov (United States)

    Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.

  3. Modelling of Thermal Advective Reactive Flow in Hydrothermal Mineral Systems Using an Implicit Time-stepped Finite Element Method.

    Science.gov (United States)

    Hornby, P. G.

    2005-12-01

    Understanding chemical and thermal processes taking place in hydrothermal mineral deposition systems could well be a key to unlocking new mineral reserves through improved targeting of exploration efforts. To aid in this understanding it is very helpful to be able to model such processes with sufficient fidelity to test process hypotheses. To gain understanding, it is often sufficient to obtain semi-quantitative results that model the broad aspects of the complex set of thermal and chemical effects taking place in hydrothermal systems. For example, it is often sufficient to gain an understanding of where thermal, geometric and chemical factors converge to precipitate gold (say) without being perfectly precise about how much gold is precipitated. The traditional approach is to use incompressible Darcy flow together with the Boussinesq approximation. From the flow field, the heat equation is used to advect-conduct the heat. The flow field is also used to transport solutes by solving an advection-dispersion-diffusion equation. The reactions in the fluid and between fluid and rock act as source terms for these advection-dispersion equations. Many existing modelling systems that are used for simulating such systems use explicit time marching schemes and finite differences. The disadvantage of this approach is the need to work on rectilinear grids and the number of time steps required by the Courant condition in the solute transport step. The second factor can be particularly significant if the chemical system is complex, requiring (at a minimum) an equilibrium calculation at each grid point at each time step. In the approach we describe, we use finite elements rather than finite differences, and the pressure, heat and advection-dispersion equations are solved implicitly. The general idea is to put unconditional numerical stability of the time integration first, and let accuracy assume a secondary role. It is in this sense that the method is semi-quantiative. However

  4. ACSEPT a European project for a new step in the future demonstration of advanced fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, S.; Hill, C. [CEA, DRCP - Bat 181, CEA Marcoule, BP17171, 30207 Bagnols/Ceze (France); Caravaca, C.; Espartero, A. [CIEMAT, Avda. Complutense, 22 - 28040 Madrid (Spain); Rhodes, C.; Taylor, R.; Harrison, M. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); EKBERG, C. [Chalmers tekniska hoegskola, Institutionen foer kemi- och bioteknik, Aemnesomraadets namn, 412 96 Goeteborg (Sweden); GEIST, A. [Forschungszentrum Karlsruhe, Institut fuer Nukleare Entsorgungstechnik, P.O.B. 3640, D-76021 Karlsruhe (Germany); Modolo, G. [Forschungszentrum Juelich - FZJ, D-52425 Juelich (Germany); Cassayre, L. [CNRS, Laboratoire de Genie Chimique, Toulouse (France); Malmbeck, R. [JRC-ITU, Karlsruhe (Germany); De Angelis, G. [ENEA, Casaccia, Rome (Italy); Bouvet, S. [Rio Tinto Alcan, Centre de Recherche de Voreppe, Voreppe (France); Klaassen, F. [NRG, PO Box 25, NL-1755 ZG Petten (Netherlands)

    2010-07-01

    For more than fifteen years, a European scientific community has joined its effort to develop and optimise processes for the partitioning of actinides from fission products. In an international context of 'nuclear renaissance', the upcoming of a new generation of nuclear reactor (Gen IV) will require the development of associated advanced closed fuel cycles which answer the needs of a sustainable nuclear energy: the minimization of the production of long lived radioactive waste but also the optimization of the use of natural resources with an increased resistance to proliferation. Actually, Partitioning and Transmutation (P and T), associated to a multi-recycling of all transuranics (TRUs), should play a key role in the development of this sustainable nuclear energy. By joining together 34 Partners coming from European universities, nuclear research bodies and major industrial players in a multidisciplinary consortium, the FP7 EURATOM-Fission Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), started in 2008 for four year duration, provides the sound basis and fundamental improvements for future demonstrations of fuel treatment in strong connection with fuel fabrication techniques. Consistently with potentially viable recycling strategies, ACSEPT therefore provides a structured R and D framework to develop chemical separation processes compatible with fuel fabrication techniques, with a view to their future demonstration at the pilot level. ACSEPT is organized into three technical domains: (i) Considering technically mature aqueous separation processes, ACSEPT works to optimize and select the most promising ones dedicated either to actinide partitioning or to group actinide separation. (ii) Concerning high temperature pyrochemical separation processes, ACSEPT focuses on the enhancement of the two reference cores of process selected within previous projects. R and D efforts are now devoted to key scientific and technical

  5. Biohydrogen production from cheese whey wastewater in a two-step anaerobic process.

    Science.gov (United States)

    Rai, Pankaj K; Singh, S P; Asthana, R K

    2012-07-01

    Cheese whey-based biohydrogen production was seen in batch experiments via dark fermentation by free and immobilized Enterobacter aerogenes MTCC 2822 followed by photofermentation of VFAs (mainly acetic and butyric acid) in the spent medium by Rhodopseudomonas BHU 01 strain. E. aerogenes free cells grown on cheese whey diluted to 10 g lactose/L, had maximum lactose consumption (∼79%), high production of acetic acid (1,900 mg/L), butyric acid (537.2 mg/L) and H(2) yield (2.04 mol/mol lactose; rate,1.09 mmol/L/h). The immobilized cells improved lactose consumption (84%), production of acetic acid (2,100 mg/L), butyric acid (718 mg/L) and also H(2) yield (3.50 mol/mol lactose; rate, 1.91 mmol/L/h). E. aerogenes spent medium (10 g lactose/L) when subjected to photofermentation by free Rhodopseudomonas BHU 01 cells, the H(2) yield reached 1.63 mol/mol acetic acid (rate, 0.49 mmol/L/h). By contrast, immobilized Rhodopseudomonas cells improved H(2) yield to 2.69 mol/mol acetic acid (rate, 1.87 mmol/L/h). The cumulative H(2) yield for free and immobilized bacterial cells was 3.40 and 5.88 mol/mol lactose, respectively. Bacterial cells entrapped in alginate, had a sluggish start of H(2) production but outperformed the free cells subsequently. Also, the concomitant COD reduction for free cells (29.5%) could be raised to 36.08% by immobilized cells. The data suggest that two-step fermentative H(2) production from cheese whey involving immobilized bacterial cells, offers greater substrate to- hydrogen conversion efficiency, and the effective removal of organic load from the wastewater in the long-term.

  6. Process mapping evaluation of medication reconciliation in academic teaching hospitals: a critical step in quality improvement

    Science.gov (United States)

    Holbrook, Anne; Bowen, James M; Patel, Harsit; O'Brien, Chris; You, John J; Tahavori, Roshan; Doleweerd, Jeff; Berezny, Tim; Perri, Dan; Nieuwstraten, Carmine; Troyan, Sue; Patel, Ameen

    2016-01-01

    Background Medication reconciliation (MedRec) has been a mandated or recommended activity in Canada, the USA and the UK for nearly 10 years. Accreditation bodies in North America will soon require MedRec for every admission, transfer and discharge of every patient. Studies of MedRec have revealed unintentional discrepancies in prescriptions but no clear evidence that clinically important outcomes are improved, leading to widely variable practices. Our objective was to apply process mapping methodology to MedRec to clarify current processes and resource usage, identify potential efficiencies and gaps in care, and make recommendations for improvement in the light of current literature evidence of effectiveness. Methods Process engineers observed and recorded all MedRec activities at 3 academic teaching hospitals, from initial emergency department triage to patient discharge, for general internal medicine patients. Process maps were validated with frontline staff, then with the study team, managers and patient safety leads to summarise current problems and discuss solutions. Results Across all of the 3 hospitals, 5 general problem themes were identified: lack of use of all available medication sources, duplication of effort creating inefficiency, lack of timeliness of completion of the Best Possible Medication History, lack of standardisation of the MedRec process, and suboptimal communication of MedRec issues between physicians, pharmacists and nurses. Discussion MedRec as practised in this environment requires improvements in quality, timeliness, consistency and dissemination. Further research exploring efficient use of resources, in terms of personnel and costs, is required. PMID:28039294

  7. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-07-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  8. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea

    Science.gov (United States)

    Clementi, Emanuela; Oddo, Paolo; Drudi, Massimiliano; Pinardi, Nadia; Korres, Gerasimos; Grandi, Alessandro

    2017-10-01

    This work describes the first step towards a fully coupled modelling system composed of an ocean circulation and a wind wave model. Sensitivity experiments are presented for the Mediterranean Sea where the hydrodynamic model NEMO is coupled with the third-generation wave model WaveWatchIII (WW3). Both models are implemented at 1/16° horizontal resolution and are forced by ECMWF 1/4° horizontal resolution atmospheric fields. The models are two-way coupled at hourly intervals exchanging the following fields: sea surface currents and temperature are transferred from NEMO to WW3 by modifying the mean momentum transfer of waves and the wind speed stability parameter, respectively. The neutral drag coefficient computed by WW3 is then passed to NEMO, which computes the surface stress. Five-year (2009-2013) numerical experiments were carried out in both uncoupled and coupled mode. In order to validate the modelling system, numerical results were compared with coastal and drifting buoys and remote sensing data. The results show that the coupling of currents with waves improves the representation of the wave spectrum. However, the wave-induced drag coefficient shows only minor improvements in NEMO circulation fields, such as temperature, salinity, and currents.

  9. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21

    Energy Technology Data Exchange (ETDEWEB)

    Verma, G.; Singh, D.; Chaudhary, K. [CCS Haryana Agricultural Univ., Hisar (India). Dept. of Biotechnology and Molecular Biology; Nigam, P. [Ulster Univ., Coleraine, Northern Ireland (United Kingdom). School of Applied Biological and Chemical Sciences

    2000-05-01

    Ethanol production by a coculture of Saccharomyces diastaticus and Saccharomyces cerevisiae 21 was 24.8 g/l using raw unhydrolysed starch in a single-step fermentation. This was 48% higher than the yield obtained with the monoculture of S. diastaticus (16.8 g/l). The maximum ethanol fermentation efficiency was achieved (93% of the theoretical value) using 60 g/l starch concentration. In another coculture fermentation with E. capsularis and S. cerevisiae 21, maximum ethanol yield was 16.0 g/l, higher than the yield with the monoculture of Endomycopsis capsularis. In batch fermentations using cocultures maximum ethanol production occurred in 48 h of fermentation at 30{sup o}C using 60 g/l starch. Fermentation efficiency was found lower in a two-step process using {alpha}-amylase and glucoamylase-treated starch. (Author)

  10. Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M.H. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Saramad, S., E-mail: ssaramad@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Hafez Avenue, Tehran (Iran, Islamic Republic of); Tabaian, S.H.; Marashi, S.P. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zolfaghari, A. [Chemistry and Chemical Engineering Research Centre of Iran, Tehran (Iran, Islamic Republic of); Mohammadalinezhad, M. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2009-10-15

    Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 deg. C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.

  11. Development and validation of a near infrared method for the analytical control of a pharmaceutical preparation in three steps of the manufacturing process.

    Science.gov (United States)

    Blanco, M; Coello, J; Iturriaga, H; Maspoch, S; Pou, N

    2000-11-01

    A near infrared diffuse reflectance spectroscopy (NIRS) procedure for the quantitative control analysis of the active compound (otilonium bromide) in a pharmaceutical preparation in three steps of the production process (blended product, cores and coated tablets) and a methodology for its validation are proposed. The analytical procedure is composed by two consecutive steps. First, the sample is identified by comparing its spectrum with a second derivative spectral library. If the sample is positively identified, the active compound is quantified by using a previously established partial least squares (PLS) calibration model. The procedure was validated by studying repeatability, intermediate precision, accuracy and linearity. To this end, an adaptation of ICH (International Conference on Harmonisation) validation methodology to an NIR multivariate calibration procedure is proposed. The relative standard error of prediction (RSEP) was < or = 1% and the suitability of the procedure for control analysis was confirmed by the results obtained analysing new production samples produced over a three-month period.

  12. Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition

    Science.gov (United States)

    Derrida, Bernard; Gerschenfeld, Antoine

    2009-07-01

    For the symmetric simple exclusion process on an infinite line, we calculate exactly the fluctuations of the integrated current Q t during time t through the origin when, in the initial condition, the sites are occupied with density ρ a on the negative axis and with density ρ b on the positive axis. All the cumulants of Q t grow like sqrt{t} . In the range where Qt˜ sqrt{t} , the decay exp [- Q {/t 3}/ t] of the distribution of Q t is non-Gaussian. Our results are obtained using the Bethe ansatz and several identities derived recently by Tracy and Widom for exclusion processes on the infinite line.

  13. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  14. ACSEPT, a European project for a new step in the future demonstration of advanced fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, S. [CEA Marcoule 30 (France); Hill, C. [CEA Saclay, 91 - Gif sur Yvette (France); Caravaca, C.; Espartero, A. [Ciemat, Madrid (Spain); Rhodes, C.; Taylor, R.; Harrison, M. [National Nuclear Laboratory (United Kingdom); Geist, A. [Fachinformationszentrum Karlsruhe - INE (Germany); Modolo, G. [Forschungszentrum Juelich - FZJ (Germany); Cassayre, L. [Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (France); Malmbeck, R. [Joint Research Centre (JRC) - Institute for Transuranium Elements (ITU) (Germany); De Angelis, G. [ENEA, Bologna (Italy); Bouvet, S. [Alcan, 92 - Courbevoie (France); Klaassen, F. [Nuclear Research and consultancy Group (NRG) (Netherlands); Ekber, C.

    2010-11-15

    Partitioning and transmutation, associated to a multi-recycling of all transuranics should play a key role in the development of sustainable nuclear energy. By joining together 34 partners coming from European universities, nuclear research laboratories and major industrial players, in a multi-disciplinary consortium, the FP7-Euratom-Fission collaborative project ACSEPT (Actinide recycling by separation and transmutation), provides the sound basis and future improvements for future demonstrations of fuel treatment in strong connection with fuel fabrication techniques. ACSEPT is organized into 3 technical domains: 1) selecting and optimizing mature aqueous separation processes (Diamex-Sanex, Ganex); 2) high temperature pyrochemical separation processes, and 3) carrying out engineering and systems studies on hydro- and pyro-chemical processes to prepare for future demonstration at a pilot level. After 2 years of work, 2 successful hot-tests were performed in hydrometallurgy, validating the Sanex and i-Sanex routes. Efforts are now devoted to the Ganex concept. Progress was also made in fuel dissolution and fuel re-fabrication. In pyrometallurgy, promising routes are almost demonstrated for the actinide recovery from aluminium. (A.C.)

  15. THE PROCESSING STEPS IN THE RENEW OF PLUG-FORMING DETAILS OF PIPELINE FITTINGS

    Directory of Open Access Journals (Sweden)

    Vladimir A. Skryabin

    2016-06-01

    Full Text Available Introduction. In production and repairs of pipeline armature grinding (debugging is considered as one of the major technological operations. The main task is the providing of impermeability of breech-block. Whatever problems did not arise up in the achievement of impermeability, diagnosis of reason, practically, always one - the process of grinding in of fine surfaces is well not enough conducted. There is a large stake of truth in such answer, however, its not all and problem not only in grinding in. Grinding in is the finish operation of polishing of compressions and effective of its application depends not only on the exact observance of the recommended terms and modes of process. A major value of the the stages is the forming of quality and preceding to grinding in of the operation of treatment of compressions. If prior actions are executed off grade, then efficiency of realization of portable radio operations of grinding in will be. Materials and Methods. To the article a growing requirement is driven in the improvement of quality, increment of productivity and increment of longevity and reliability of machines and wares. The process of grinding (polishing in allows to get the surfaces of processed details with high quality descriptions. Quality of implementation of finishing operation is estimated on following criteria: it is exactly in size, it is an error of form, they are indices of waviness of surface, indices of roughness of surface, the light reflect¬ing ability and quality descriptions of surface layer. For renewal of corps of wedge bolt by a main task providing of impermeability of breech-block. For its implementation hard requirements are produced, namely; a small roughness of surface, form and location. Thus fine surface of corps of wedge bolt must be homogeneous. Results. In order to attain the set roughness of fine surface, the trajectory of motion of instrument must have certain character. Because on this machine-tool a

  16. Modeling of Step-up Grid-Connected Photovoltaic Systems for Control Purposes

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez

    2012-06-01

    Full Text Available This paper presents modeling approaches for step-up grid-connected photovoltaic systems intended to provide analytical tools for control design. The first approach is based on a voltage source representation of the bulk capacitor interacting with the grid-connected inverter, which is a common model for large DC buses and closed-loop inverters. The second approach considers the inverter of a double-stage PV system as a Norton equivalent, which is widely accepted for open-loop inverters. In addition, the paper considers both ideal and realistic models for the DC/DC converter that interacts with the PV module, providing four mathematical models to cover a wide range of applications. The models are expressed in state space representation to simplify its use in analysis and control design, and also to be easily implemented in simulation software, e.g., Matlab. The PV system was analyzed to demonstrate the non-minimum phase condition for all the models, which is an important aspect to select the control technique. Moreover, the system observability and controllability were studied to define design criteria. Finally, the analytical results are illustrated by means of detailed simulations, and the paper results are validated in an experimental test bench.

  17. A Step Forward to Closing the Loop between Static and Dynamic Reservoir Modeling

    Directory of Open Access Journals (Sweden)

    Cancelliere M.

    2014-12-01

    Full Text Available The current trend for history matching is to find multiple calibrated models instead of a single set of model parameters that match the historical data. The advantage of several current workflows involving assisted history matching techniques, particularly those based on heuristic optimizers or direct search, is that they lead to a number of calibrated models that partially address the problem of the non-uniqueness of the solutions. The importance of achieving multiple solutions is that calibrated models can be used for a true quantification of the uncertainty affecting the production forecasts, which represent the basis for technical and economic risk analysis. In this paper, the importance of incorporating the geological uncertainties in a reservoir study is demonstrated. A workflow, which includes the analysis of the uncertainty associated with the facies distribution for a fluvial depositional environment in the calibration of the numerical dynamic models and, consequently, in the production forecast, is presented. The first step in the workflow was to generate a set of facies realizations starting from different conceptual models. After facies modeling, the petrophysical properties were assigned to the simulation domains. Then, each facies realization was calibrated separately by varying permeability and porosity fields. Data assimilation techniques were used to calibrate the models in a reasonable span of time. Results showed that even the adoption of a conceptual model for facies distribution clearly representative of the reservoir internal geometry might not guarantee reliable results in terms of production forecast. Furthermore, results also showed that realizations which seem fully acceptable after calibration were not representative of the true reservoir internal configuration and provided wrong production forecasts; conversely, realizations which did not show a good fit of the production data could reliably predict the reservoir

  18. Analysis and evaluation of effects of processing steps on dimensional tolerance of PIM parts

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; LOU Jia; YUE Jian-ling

    2005-01-01

    The factors affecting the dimensional tolerance of powder injection molding (PIM), such as the selection of the powder and binder, the feedstock homogeneity, the feedstock thermal properties, the feedstock rheologic behavior, the debinding schedule and atmosphere and sintering temperature gradient were discussed. An attempt was made to develop a model to estimate the influence of important variables. The results show that a better understanding of these factors can provide some useful theoretical instructions for large scale production.

  19. An Open Platform for Processing IFC Model Versions

    Institute of Scientific and Technical Information of China (English)

    Mohamed Nour; Karl Beucke

    2008-01-01

    The IFC initiative from the International Alliance of Interoperability has been developing since the mid-nineties through several versions.This paper addresses the problem of binding the growing number of IFC versions and their EXPRESS definitions to programming environments (Java and.NET).The solution developed in this paper automates the process of generating early binding classes,whenever a new version of the IFC model is released.Furthermore, a runtime instantiation of the generated eady binding classes takes place by importing IFC-STEP ISO 10303-P21 models.The user can navigate the IFC STEP model with relevance to the defining EXPRESS-schema,modify,deletem,and create new instances.These func-tionalities are considered to be a basis for any IFC based implementation.It enables researchers to experi-ment the IFC model independently from any software application.

  20. Overview of the 2nd State of the Carbon Cycle Report Process, results and next steps

    Science.gov (United States)

    Cavallaro, N.; Shrestha, G.; Najjar, R.; Romero-Lankao, P.; Mayes, M. A.; Reed, S.; Birdsey, R.; Zhu, Z.; Shrestha, G.; Cavallaro, N.; Zhu, Z.; Cavallaro, N.; Zhu, Z.; Shrestha, G.

    2016-12-01

    With official kick-off in public engagement and writing in the early Spring of 2016, the 2nd State of the Carbon Cycle Report (SOCCR-2) is now set to be completed and published by the U.S. Government as a Highly Influential Scientific (Interagency) Assessment, a product of the Sustained National Climate Assessment, in late 2017. This presentation will highlight the planning process, the achievements so far, public engagement needs and the scientific community's contribution in the production of SOCCR-2.

  1. Use of Anion Exchange Resins for One-Step Processing of Algae from Harvest to Biofuel

    Directory of Open Access Journals (Sweden)

    Martin Poenie

    2012-07-01

    Full Text Available Some microalgae are particularly attractive as a renewable feedstock for biodiesel production due to their rapid growth, high content of triacylglycerols, and ability to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost prohibitive in part due to the need to pump and process large volumes of dilute algal suspensions. In an effort to circumvent this problem, we have explored the use of anion exchange resins for simplifying the processing of algae to biofuel. Anion exchange resins can bind and accumulate the algal cells out of suspension to form a dewatered concentrate. Treatment of the resin-bound algae with sulfuric acid/methanol elutes the algae and regenerates the resin while converting algal lipids to biodiesel. Hydrophobic polymers can remove biodiesel from the sulfuric acid/methanol, allowing the transesterification reagent to be reused. We show that in situ transesterification of algal lipids can efficiently convert algal lipids to fatty acid methyl esters while allowing the resin and transesterification reagent to be recycled numerous times without loss of effectiveness.

  2. Fermentable sugar production from paddy straw by two steps chemical pretreatment and hydrolysis process

    Science.gov (United States)

    Lee, Vivian J. Q.; Salimi, M. N.; Yusoff, Ahm

    2017-04-01

    Paddy straw is one of the most abundant lignocellulose wastes and has potential as a feedstock for sugar production. In this study, dilute acid pretreatment and enzymatic hydrolysis are the process that selected for the production of sugar. The paddy straw was pretreated with 1% (v/v) of sulfuric acid at 95 °C for 60 minutes followed by enzymatic hydrolysis. Optimization of enzymatic hydrolysis is desirable to achieve high yield of sugar from solid residues with high cellulose content. The optimization has been carried out by using Central composite design (CCD) to analyze the effect of pH, temperature and enzyme dosing for the enzymatic hydrolysis. For both the process, the concentration of sugar was analyzed by using Dinitrosalicylic acid (DNS) reagent with the aid of the standard glucose curve. The results showed the highest sugar yield from dilute acid pre-treatment was 1.14 g/L. For the optimum condition for enzymatic hydrolysis was at pH 5, 50 °C and 0.10 mL of enzyme and this produced 4.55 g/L of fermentable sugar.

  3. The next step in real time data processing for large scale physics experiments

    CERN Document Server

    Paramesvaran, Sudarshan

    2016-01-01

    Run 2 of the LHC represents one of the most challenging scientific environments for real time data analysis and processing. The steady increase in instantaneous luminosity will result in the CMS detector producing around 150 TB/s of data, only a small fraction of which is useful for interesting Physics studies. During 2015 the CMS collaboration will be completing a total upgrade of its Level 1 Trigger to deal with these conditions. In this talk a description of the major components of this complex system will be described. This will include a discussion of custom-designed electronic processing boards, built to the uTCA specification with AMC cards based on Xilinx 7 FPGAs and a network of high-speed optical links. In addition, novel algorithms will be described which deliver excellent performance in FPGAs and are combined with highly stable software frameworks to ensure a minimal risk of downtime. This upgrade is planned to take data from 2016. However a system of parallel running has been developed that will ...

  4. Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Matthew J., E-mail: matthew.webb@cantab.net; Lundstedt, Anna; Grennberg, Helena [Department of Chemistry—BMC, Uppsala University, Box 576, SE-751 23 Uppsala (Sweden); Polley, Craig; Niu, Yuran; Zakharov, Alexei A.; Balasubramanian, Thiagarajan [MAX IV Laboratory, Lund University, 22100 Lund (Sweden); Dirscherl, Kai [DFM—Danish Fundamental Metrology, Matematiktorvet 307, DK-2800 Lyngby (Denmark); Burwell, Gregory; Guy, Owen J. [College of Engineering, Faraday Tower, Singleton Park, Swansea University, Swansea SA2 8PP (United Kingdom); Palmgren, Pål [VG Scienta Scientific AB, Box 15120, Vallongatan 1, SE-750 15 Uppsala (Sweden); Yakimova, Rositsa [Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-08-25

    By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemical potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces.

  5. Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene

    Science.gov (United States)

    Webb, Matthew J.; Polley, Craig; Dirscherl, Kai; Burwell, Gregory; Palmgren, Pâl; Niu, Yuran; Lundstedt, Anna; Zakharov, Alexei A.; Guy, Owen J.; Balasubramanian, Thiagarajan; Yakimova, Rositsa; Grennberg, Helena

    2014-08-01

    By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemical potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces.

  6. Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches

    Science.gov (United States)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.

  7. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  8. One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production

    Science.gov (United States)

    Manurung, Renita; Ramadhani, Debbie Aditia; Maisarah, Siti

    2017-06-01

    Biodiesel production by using sludge palm oil (SPO) as raw material is generally synthesized in two step reactions, namely esterification and transesterification, because the free fatty acid (FFA) content of SPO is relatively high. However, the presence of choline chloride (ChCl), glycerol based deep eutectic solvent (DES), in transesterification may produce biodiesel from SPO in just one step. In this study, DES was produced by the mixture of ChCl and glycerol at molar ratio of 1:2 at a temperature of 80°C and stirring speed of 400 rpm for 1 hour. DES was characterized by its density and viscosity. The transesterification process was performed at reaction temperature of 70 °C, ethanol to oil molar with ratio of 9:1, sodium hydroxide as catalyst concentration of 1 % wt, DES as cosolvent with concentration of 0 to 5 % wt, stirring speed of 400 rpm, and one hour reaction time. The obtained biodiesel was then assessed with density, viscosity, and ester content as the parameters. FFA content of SPO as the raw material was 7.5290 %. In this case, DES as cosolvent in one step transesterification process of low feedstock could reduce the side reaction (saponification), decrease the time reaction, decrease the surface tension between ethanol and oil, and increase the mass transfer that simultaneously simplified the purification process and obtained the highest yield. The esters properties met the international standards of ASTM D 6751, with the highest yield obtained was 83.19% with 99.55% of ester content and the ratio of ethanol:oil of 9:1, concentration of DES of 4%, catalyst amount of 1%, temperature of reaction at 70°C and stirring speed of 400 rpm.

  9. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.

    Science.gov (United States)

    Kinahan, David J; Kearney, Sinéad M; Dimov, Nikolay; Glynn, Macdara T; Ducrée, Jens

    2014-07-01

    The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from

  10. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Heng [Pacific Northwest National Laboratory, Richland Washington USA; Ye, Ming [Department of Scientific Computing, Florida State University, Tallahassee Florida USA; Walker, Anthony P. [Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge Tennessee USA; Chen, Xingyuan [Pacific Northwest National Laboratory, Richland Washington USA

    2017-04-01

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averaging methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.

  11. One step phase separation process to fabricate superhydrophobic PVC films and its corrosion prevention for AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Na; Li, Jicheng; Bai, Ningning; Xu, Lan; Li, Qing, E-mail: liqingswu@163.com

    2016-07-15

    Graphical abstract: - Highlights: • Independent superhydrophobic polyvinyl chloride (PVC) film was prepared by phase separation process. • The superhydrophobic PVC film showed excellent stability in acid, alkali and salt corrosive solutions. • This film was prepared on magnesium surface protecting it from corrosion. • This method was simple and universal. - Abstract: A one step, simple fabrication method to prepare independent superhydrophobic polyvinyl chloride (PVC) coating is reported in this paper. The rough surface structure and low surface energy could be simply obtained only by a phase separation process. The independent PVC superhydrophobic film was also applied on AZ91D magnesium alloy. Scanning electron microscopy (SEM), water contact angle measurements, electrochemical test and adhesion tests have been performed to characterize the surface morphology, wettability, anti-corrosion and adhesion strength of independent PVC film and superhydrophobic magnesium alloy respectively. The results indicated that whether it was the PVC film or superhydrophobic magnesium, they show static contact angles higher than 150°, excellent anti-corrosion effect and adhesion strength. We believed that the presented method could provide a straightforward and simple route to fabricate low-cost and anti-corrosion coating on various substrate materials. Moreover, this one step process may find potential application in the field of industry because of its simplicity and universality.

  12. Process steps for the preparation of purified fractions of alpha-lactalbumin and beta-lactoglobulin from whey protein concentrates.

    Science.gov (United States)

    Gésan-Guiziou, G; Daufin, G; Timmer, M; Allersma, D; van der Horst, C

    1999-05-01

    Fractions enriched with alpha-lactalbumin (alpha-la) and beta-lactoglobulin (beta-lg) were produced by a process comprising the following successive steps: clarification-defatting of whey protein concentrate, precipitation of alpha-lactalbumin, separation of soluble beta-lactoglobulin, washing the precipitate, solubilization of the precipitate, concentration and purification of alpha-la. The present study evaluated the performance of the process, firstly on a laboratory scale with acid whey and then on a pilot scale with Gouda cheese whey. In both cases soluble beta-lg was separated from the precipitate using diafiltration or microfiltration and the purities of alpha-la and beta-lg were in the range 52-83 and 85-94% respectively. The purity of the beta-lg fraction was higher using acid whey, which does not contain caseinomacropeptide, than using sweet whey. With the pilot scale plant, the recoveries (6% for alpha-la; 51% for beta-lg) were disappointing, but ways of improving each step in the process are discussed.

  13. Hydrothermal extraction and micronization of polysaccharides from Ganoderma lucidum in a one-step process

    Directory of Open Access Journals (Sweden)

    Wahyudiono

    2013-02-01

    Full Text Available Ganoderma lucidum (G. lucidum is a mushroom-forming white rot fungus that contains a wide variety of bioactive components (glucans. In this study, G. lucidum was utilized for the extraction of polysaccharides by hot compressed water at a temperature of 160oC and a pressure of 4.0 MPa using a semi-batch system. Under these conditions, thermal softening of G. lucidum occurred, allowing the removal of the polysaccharides protecting other constituents in G. lucidum via hydrolysis. Next, the extract was directly atomized by spray drying to remove the water. Scanning electron microscope (SEM images showed that the particles formed were spherical and dimpled or shriveled with diameters varying from 1 to 6 m. Based on these results it is proposed that this process is applicable to isolate polysaccharides from other types of biomass and may result in advances in extraction technology to obtain plant biomass components.

  14. Properties of spatial Cox process models

    DEFF Research Database (Denmark)

    Møller, Jesper

    Probabilistic properties of Cox processes of relevance for statistical modelling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment propertie...

  15. THE BC CRIBS & TRENCHES GEOPHYSICAL CHARACTERIZATION PROJECT ONE STEP FORWARD IN HANFORDS CLEANUP PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    BENECKE, MN.W.

    2006-02-22

    A geophysical characterization project was conducted at the BC Cribs and Trenches Area, located south of 200 East at the Hanford Site. The area consists of 26 waste disposal trenches and cribs, which received approximately 30 million gallons of liquid waste from the uranium recovery process and the ferrocyanide processes associated with wastes generated by reprocessing nuclear fuel. Waste discharges to BC Cribs contributed perhaps the largest liquid fraction of contaminants to the ground in the 200 Areas. The site also includes possibly the largest inventory of Tc-99 ever disposed to the soil at Hanford with an estimated quantity of 400 Ci. Other waste constituents included high volumes of nitrate and U-238. The geophysical characterization at the 50 acre site primarily included high resolution resistivity (HRR). The resistivity technique is a non-invasive method by which electrical resistivity data are collected along linear transects, and data are presented as continuous profiles of subsurface electrical properties. The transects ranged in size from about 400-700 meters and provided information down to depths of 60 meters. The site was characterized by a network of 51 HRR lines with a total of approximately 19.7 line kilometers of data collected parallel and perpendicular to the trenches and cribs. The data were compiled to form a three-dimensional representation of low resistivity values. Low resistivity, or high conductivity, is indicative of high ionic strength soil and porewater resulting from the migration of nitrate and other inorganic constituents through the vadose zone. High spatial density soil data from a single borehole, that included coincident nitrate concentrations, electrical conductivity, and Tc-99, were used to transform the electrical resistivity data into a nitrate plume. The plume was shown to extend laterally beyond the original boundaries of the waste site and, in one area, to depths that exceeded the characterization strategy. It is

  16. From seed production to seedling establishment: Important steps in an invasive process

    Science.gov (United States)

    Ferreras, Ana Elisa; Galetto, Leonardo

    2010-03-01

    It is widely accepted that exotic invasive species are one of the most important ecological and economic problems. Reproductive and establishment traits are considered key features of a population expansion process, but few works have studied many of these simultaneously. This work examines how large the differences are in reproductive and establishment traits between two Fabaceae, the exotic invasive, Gleditsia triacanthos and the native, Acacia aroma. Gleditsia is a serious leguminous woody invader in various parts of the world and Acacia is a common native tree of Argentina. Both species have similar dispersal mechanisms and their reproductive phenology overlaps. We chose 17 plants of each species in a continuous forest of the Chaco Serrano Forest of Córdoba, Argentina. In each plant we measured fruit production, fruit removal (exclusion experiments), seed predation (pre- and post-dispersal), seed germination, seed bank (on each focal tree, three sampling periods during the year), and density of seedlings (around focal individuals and randomly in the study site). Gleditsia presented some traits that could favour the invasion process, such as a higher number of seeds per plant, percentage of scarified seed germination and density of seedlings around the focal individuals, than Acacia. On the other hand, Gleditsia presented a higher percentage of seed predation. The seed bank was persistent in both species and no differences were observed in fruit removal. This work highlights the importance of simultaneously studying reproductive and establishment variables involved in the spreading of an exotic invasive species. It also gives important insight into the variables to be considered when planning management strategies. The results are discussed from the perspective of some remarkable hypotheses on invasive species and may contribute to rethinking some aspects of the theory on invasive species.

  17. Application of an Aided System to Multi-Step Deep Drawing Process in the Brass Pieces Manufacturing

    Science.gov (United States)

    Javier Ramírez, Francisco; Domingo, Rosario

    2009-11-01

    In general, pieces manufacturing procedure, through deep drawing, requires operations that must be carried out in several phases that extend the time and the cost of the process. Material determination, by considering shape, dimensions, mechanical characteristics, etc., can provoke an overdose at estimating proportions with the consequent increase of the manufacturing costs. Furthermore, the processes improvement with its simultaneous reduction of costs, provides to a company a higher profit in competitive markets. Thus, this paper introduces an aided system that allows the technological design of multi-step deep drawing processes, by the optimization of both initial material and process associated costs, and moreover, their application to brass pieces, in particular in CuZn30 alloy (UNS C26000). The aided system considers process technological constraints and pursues a reduction of manufacturing times, by means of the optimization process and fitting. The results show that this system provides, in each stage of the process, a homogenous distribution of the drawing coefficient, thickness reduction, required force and height of the piece, as well as a saving in times.

  18. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process

  19. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process improv

  20. Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Physical Aging and Fracture Behaviour

    OpenAIRE

    Cailloux, Jonathan; Santana Pérez, Orlando Onofre; FRANCO URQUIZA, EDGAR ADRIAN; Bou Serra, Jordi; Carrasco Alonso, Félix Ángel; Maspoch Rulduà, Mª Lluïsa

    2014-01-01

    The architectural modifications of a linear poly(D,L-Lactide) acid (PD,L-LA) commercial grade were induced by a one-step reactive extrusion-calendering process using a styrene-glycidyl acrylate copolymer as reactive agent. The melt degradation was counteracted by chain extension and branching reactions, leading to a stabilization of the melt properties and an increase in the molecular weight. For such modified samples [poly(lactic acid) (PLA)-reactive extrusion (REX)], the rate of physical ag...

  1. Modelling spatiotemporal olfactory data in two steps: from binary to Hodgkin-Huxley neurones.

    Science.gov (United States)

    Quenet, Brigitte; Dubois, Rémi; Sirapian, Sevan; Dreyfus, Gérard; Horn, David

    2002-01-01

    Network models of synchronously updated McCulloch-Pitts neurones exhibit complex spatiotemporal patterns that are similar to activities of biological neurones in phase with a periodic local field potential, such as those observed experimentally by Wehr and Laurent (1996, Nature 384, 162-166) in the locust olfactory pathway. Modelling biological neural nets with networks of simple formal units makes the dynamics of the model analytically tractable. It is thus possible to determine the constraints that must be satisfied by its connection matrix in order to make its neurones exhibit a given sequence of activity (see, for instance, Quenet et al., 2001, Neurocomputing 38-40, 831-836). In the present paper, we address the following question: how can one construct a formal network of Hodgkin-Huxley (HH) type neurones that reproduces experimentally observed neuronal codes? A two-step strategy is suggested in the present paper: first, a simple network of binary units is designed, whose activity reproduces the binary experimental codes; second, this model is used as a guide to design a network of more realistic formal HH neurones. We show that such a strategy is indeed fruitful: it allowed us to design a model that reproduces the Wehr-Laurent olfactory codes, and to investigate the robustness of these codes to synaptic noise.

  2. 基于STEP-NC的工艺规划优化方法研究%Optimal Methods of Process Plans Based on STEP-NC

    Institute of Scientific and Technical Information of China (English)

    李亮; 孙军; 王军; 李仁堂; 王淑红

    2006-01-01

    在重点分析零件特征典型加工方案及加工方案组合优化原则的基础上,基于STEP-NC应用遗传算法建立了零件加工方案组合优化的数学模型.并将该方法应用到具体零件的工艺排序决策过程中,通过编码、杂交、复制、变异等得到满足零件要求的最优或接近最优的工艺路线.验证了遗传算法在STEP-NC工艺路线排序中的有效性.

  3. Grey matter hypometabolism and atrophy in Parkinson's disease with cognitive impairment: a two-step process.

    Science.gov (United States)

    González-Redondo, Rafael; García-García, David; Clavero, Pedro; Gasca-Salas, Carmen; García-Eulate, Reyes; Zubieta, José L; Arbizu, Javier; Obeso, José A; Rodríguez-Oroz, María C

    2014-08-01

    The pathophysiological process underlying cognitive decline in Parkinson's disease is not well understood. Cerebral atrophy and hypometabolism have been described in patients with Parkinson's disease and dementia or mild cognitive impairment with respect to control subjects. However, the exact relationships between atrophy and hypometabolism are still unclear. To determine the extension and topographical distribution of hypometabolism and atrophy in the different cognitive states of Parkinson's disease, we examined 46 patients with Parkinson's disease (19 female, 27 male; 71.7 ± 5.9 years old; 14.6 ± 4.2 years of disease evolution; modified Hoehn and Yahr mean stage 3.1 ± 0.7). Cognitive status was diagnosed as normal in 14 patients, as mild cognitive impairment in 17 and as dementia in 15 patients. Nineteen normal subjects (eight female, 11 male; 68.1 ± 3.2 years old) were included as controls. (18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging scans were obtained, co-registered, corrected for partial volume effect and spatially normalized to the Montreal Neurological Institute space in each subject. Smoothing was applied to the positron emission tomography and magnetic resonance imaging scans to equalize their effective smoothness and resolution (10 mm and 12 mm full-width at half-maximum and Gaussian kernel, respectively). Z-score maps for atrophy and for hypometabolism were obtained by comparing individual images to the data set of control subjects. For each group of patients, a paired Student's t-test was performed to statistically compare the two Z-map modalities (P mild cognitive impairment, hypometabolism exceeded atrophy in the angular gyrus, occipital, orbital and anterior frontal lobes. In patients with dementia, the hypometabolic areas observed in the group with mild cognitive impairment were replaced by areas of atrophy, which were surrounded by extensive zones of hypometabolism. Areas where atrophy was more

  4. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models

    Science.gov (United States)

    Lensink, Marc F.; Petta, Andrea; Serra, Luigi; Scarano, Vittorio; Cavallo, Luigi; Oliva, Romina

    2016-01-01

    Correctly scoring protein-protein docking models to single out native-like ones is an open challenge. It is also an object of assessment in CAPRI (Critical Assessment of PRedicted Interactions), the community-wide blind docking experiment. We introduced in the field the first pure consensus method, CONSRANK, which ranks models based on their ability to match the most conserved contacts in the ensemble they belong to. In CAPRI, scorers are asked to evaluate a set of available models and select the top ten ones, based on their own scoring approach. Scorers’ performance is ranked based on the number of targets/interfaces for which they could provide at least one correct solution. In such terms, blind testing in CAPRI Round 30 (a joint prediction round with CASP11) has shown that critical cases for CONSRANK are represented by targets showing multiple interfaces or for which only a very small number of correct solutions are available. To address these challenging cases, CONSRANK has now been modified to include a contact-based clustering of the models as a preliminary step of the scoring process. We used an agglomerative hierarchical clustering based on the number of common inter-residue contacts within the models. Two criteria, with different thresholds, were explored in the cluster generation, setting either the number of common contacts or of total clusters. For each clustering approach, after selecting the top (most populated) ten clusters, CONSRANK was run on these clusters and the top-ranked model for each cluster was selected, in the limit of 10 models per target. We have applied our modified scoring approach, Clust-CONSRANK, to SCORE_SET, a set of CAPRI scoring models made recently available by CAPRI assessors, and to the subset of homodimeric targets in CAPRI Round 30 for which CONSRANK failed to include a correct solution within the ten selected models. Results show that, for the challenging cases, the clustering step typically enriches the ten top ranked

  5. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models

    KAUST Repository

    Chermak, Edrisse

    2016-11-15

    Correctly scoring protein-protein docking models to single out native-like ones is an open challenge. It is also an object of assessment in CAPRI (Critical Assessment of PRedicted Interactions), the community-wide blind docking experiment. We introduced in the field the first pure consensus method, CONSRANK, which ranks models based on their ability to match the most conserved contacts in the ensemble they belong to. In CAPRI, scorers are asked to evaluate a set of available models and select the top ten ones, based on their own scoring approach. Scorers\\' performance is ranked based on the number of targets/interfaces for which they could provide at least one correct solution. In such terms, blind testing in CAPRI Round 30 (a joint prediction round with CASP11) has shown that critical cases for CONSRANK are represented by targets showing multiple interfaces or for which only a very small number of correct solutions are available. To address these challenging cases, CONSRANK has now been modified to include a contact-based clustering of the models as a preliminary step of the scoring process. We used an agglomerative hierarchical clustering based on the number of common inter-residue contacts within the models. Two criteria, with different thresholds, were explored in the cluster generation, setting either the number of common contacts or of total clusters. For each clustering approach, after selecting the top (most populated) ten clusters, CONSRANK was run on these clusters and the top-ranked model for each cluster was selected, in the limit of 10 models per target. We have applied our modified scoring approach, Clust-CONSRANK, to SCORE_SET, a set of CAPRI scoring models made recently available by CAPRI assessors, and to the subset of homodimeric targets in CAPRI Round 30 for which CONSRANK failed to include a correct solution within the ten selected models. Results show that, for the challenging cases, the clustering step typically enriches the ten top ranked

  6. Toward a General Research Process for Using Dubin's Theory Building Model

    Science.gov (United States)

    Holton, Elwood F.; Lowe, Janis S.

    2007-01-01

    Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…

  7. Toward a General Research Process for Using Dubin's Theory Building Model

    Science.gov (United States)

    Holton, Elwood F.; Lowe, Janis S.

    2007-01-01

    Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…

  8. Highly Magneto-Responsive Elastomeric Films Created by a Two-Step Fabrication Process

    KAUST Repository

    Marchi, Sophie

    2015-08-24

    An innovative method for the preparation of elastomeric magnetic films with increased magneto-responsivity is presented. Polymeric films containing aligned magnetic microchains throughout their thickness are formed upon the magnetophoretic transport and assembly of microparticles during polymer curing. The obtained films are subsequently magnetized at a high magnetic field of 3 T directed parallel to the orientation of the microchains. We prove that the combination of both alignment of the particles along a favorable direction during curing and the subsequent magnetization of the solid films induces an impressive increase of the films’ deflection. Specifically, the displacements reach few millimeters, up to 85 times higher than those of the nontreated films with the same particle concentration. Such a process can improve the performance of the magnetic films without increasing the amount of magnetic fillers and, thus, without compromising the mechanical properties of the resulting composites. The proposed method can be used for the fabrication of magnetic films suitable as components in systems in which large displacements at relatively low magnetic fields are required, such as sensors and drug delivery or microfluidic systems, especially where remote control of valves is requested to achieve appropriate flow and mixing of liquids.

  9. Context Based Reasoning in Business Process Models

    OpenAIRE

    Balabko, Pavel; Wegmann, Alain

    2003-01-01

    Modeling approaches often are not adapted to human reasoning: models are ambiguous and imprecise. A same model element may have multiple meanings in different functional roles of a system. Existing modeling approaches do not relate explicitly these functional roles with model elements. A principle that can solve this problem is that model elements should be defined in a context. We believe that the explicit modeling of context is especially useful in Business Process Modeling (BPM) where the ...

  10. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements.

    Science.gov (United States)

    Gjoka, Xhorxhi; Gantier, Rene; Schofield, Mark

    2017-01-20

    The goal of this study was to adapt a batch mAb purification chromatography platform for continuous operation. The experiments and rationale used to convert from batch to continuous operation are described. Experimental data was used to design chromatography methods for continuous operation that would exceed the threshold for critical quality attributes and minimize the consumables required as compared to batch mode of operation. Four unit operations comprising of Protein A capture, viral inactivation, flow-through anion exchange (AEX), and mixed-mode cation exchange chromatography (MMCEX) were integrated across two Cadence BioSMB PD multi-column chromatography systems in order to process a 25L volume of harvested cell culture fluid (HCCF) in less than 12h. Transfer from batch to continuous resulted in an increase in productivity of the Protein A step from 13 to 50g/L/h and of the MMCEX step from 10 to 60g/L/h with no impact on the purification process performance in term of contaminant removal (4.5 log reduction of host cell proteins, 50% reduction in soluble product aggregates) and overall chromatography process yield of recovery (75%). The increase in productivity, combined with continuous operation, reduced the resin volume required for Protein A and MMCEX chromatography by more than 95% compared to batch. The volume of AEX membrane required for flow through operation was reduced by 74%. Moreover, the continuous process required 44% less buffer than an equivalent batch process. This significant reduction in consumables enables cost-effective, disposable, single-use manufacturing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals.

    Science.gov (United States)

    Kasper, Julia Christina; Friess, Wolfgang

    2011-06-01

    Lyophilization is a common, but cost-intensive, drying process to achieve protein formulations with long-term stability. In the past, typical process optimization has focused on the drying steps and the freezing step was rather ignored. However, the freezing step is an equally important step in lyophilization, as it impacts both process performance and product quality. While simple in concept, the freezing step is presumably the most complex step in lyophilization. Therefore, in order to get a more comprehensive understanding of the processes that occur during freezing, the physico-chemical fundamentals of freezing are first summarized. The available techniques that can be used to manipulate or directly control the freezing process in lyophilization are also reviewed. In addition, the consequences of the freezing step on quality attributes, such as sample morphology, physical state of the product, residual moisture content, reconstitution time, and performance of the primary and secondary drying phase, are discussed. A special focus is given to the impact of the freezing process on protein stability. This review aims to provide the reader with an awareness of not only the importance but also the complexity of the freezing step in lyophilization and its impact on quality attributes of biopharmaceuticals and process performance. With a deeper understanding of freezing and the possibility to directly control or at least manipulate the freezing behavior, more efficient lyophilization cycles can be developed, and the quality and stability of lyophilized biopharmaceuticals can be improved. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Adsorption and Step Elution of Urokinase Using, Affinity Chromatography -Comparison of Data with Rate Model Simulation

    Institute of Scientific and Technical Information of China (English)

    MohammadRezaAboudzadehRovais; JiawenZhu; BinWu

    2004-01-01

    A non-equilibrium chromatographic rate model was employed to simulate the affinity chromatography of urokinase. The chromatography process was developed to a yield of high purity product of urokinase from crude materials. The affinity gel used in the process was prepared by an epichlorohydrin-activation method using epichlorohydrin activated Sepharose 4B as a matrix and p-aminobenzamidine as a ligand. The chromatographic process were numerically simulated and analyzed with the aid of VERSE-LC computer simulator. Considering the basic principles, rate model with the back mixing in column inlet was utilized in simulating and studying the effect of the column inlet pattern on other parameters. Comparison of the simulation results with the experimental data showed that the rate model can be used to describe the affinity chromatography of urokinase in a fixed bed column with satisfactory accuracy.

  13. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  14. Birth/death process model

    Science.gov (United States)

    Solloway, C. B.; Wakeland, W.

    1976-01-01

    First-order Markov model developed on digital computer for population with specific characteristics. System is user interactive, self-documenting, and does not require user to have complete understanding of underlying model details. Contains thorough error-checking algorithms on input and default capabilities.

  15. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    2011-01-01

    This chapter covers the basic principles of steady state modelling and simulation using a number of case studies. Two principal approaches are illustrated that develop the unit operation models from first principles as well as through application of standard flowsheet simulators. The approaches i...

  16. A software framework for process flow execution of stochastic multi-scale integrated models

    NARCIS (Netherlands)

    Schmitz, Oliver; de Kok, Jean Luc; Karssenberg, Derek

    2016-01-01

    Dynamic environmental models use a state transition function, external inputs and parameters to simulate the change of real-world processes over time. Modellers specify the state transition function and the external inputs required in the process calculation of each time step in a component model, a

  17. Development of a multi-step leukemogenesis model of MLL-rearranged leukemia using humanized mice.

    Directory of Open Access Journals (Sweden)

    Kunihiko Moriya

    Full Text Available Mixed-lineage-leukemia (MLL fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ(-/- (NOG mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification. We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia.

  18. Modeling business processes: theoretical and practical aspects

    Directory of Open Access Journals (Sweden)

    V.V. Dubininа

    2015-06-01

    Full Text Available The essence of process-oriented enterprise management has been examined in the article. The content and types of information technology have been analyzed in the article, due to the complexity and differentiation of existing methods, as well as the specificity of language, terminology of the enterprise business processes modeling. The theoretical aspects of business processes modeling have been reviewed and the modern traditional modeling techniques received practical application in the visualization model of retailers activity have been studied in the article. In the process of theoretical analysis of the modeling methods found that UFO-toolkit method that has been developed by Ukrainian scientists due to it systemology integrated opportunities, is the most suitable for structural and object analysis of retailers business processes. It was designed visualized simulation model of the business process "sales" as is" of retailers using a combination UFO-elements with the aim of the further practical formalization and optimization of a given business process.

  19. Influence of simulation time-step (temporal-scale) on optimal parameter estimation and runoff prediction performance in hydrological modeling

    Science.gov (United States)

    Loizu, Javier; Álvarez-Mozos, Jesús; Casalí, Javier; Goñi, Mikel

    2015-04-01

    Nowadays, most hydrological catchment models are designed to allow their use for streamflow simulation at different time-scales. While this permits models to be applied for broader purposes, it can also be a source of error in hydrological processes simulation at catchment scale. Those errors seem not to affect significantly simple conceptual models, but this flexibility may lead to large behavior errors in physically based models. Equations used in processes such as those related to soil moisture time-variation are usually representative at certain time-scales but they may not characterize properly water transfer in soil layers at larger scales. This effect is especially relevant as we move from detailed hourly scale to daily time-step, which are common time scales used at catchment streamflow simulation for different research and management practices purposes. This study aims to provide an objective methodology to identify the degree of similarity of optimal parameter values when hydrological catchment model calibration is developed at different time-scales. Thus, providing information for an informed discussion of physical parameter significance on hydrological models. In this research, we analyze the influence of time scale simulation on: 1) the optimal values of six highly sensitive parameters of the TOPLATS model and 2) the streamflow simulation efficiency, while optimization is carried out at different time scales. TOPLATS (TOPMODEL-based Land-Atmosphere Transfer Scheme) has been applied on its lumped version on three catchments of varying size located in northern Spain. The model has its basis on shallow groundwater gradients (related to local topography) that set up spatial patterns of soil moisture and are assumed to control infiltration and runoff during storm events and evaporation and drainage in between storm events. The model calculates the saturated portion of the catchment at each time step based on Topographical Index (TI) intervals. Surface

  20. Minimal Mechanochemical Model for the Processivity of Myosin VI

    Science.gov (United States)

    Yang, Yubo; Lowe, Ian; Tehver, Riina

    2014-03-01

    Myosin VI is an ATPase responsible for force generation in cells. It dimerizes upon actin binding, and is proposed to walk along the actin filament. Single headed reaction mechanism of myosin VI is well understood but much of its walking mechanism remains unclear. We aim to construct a minimum model for the myosin VI walking mechanism and explore the minimal requirements for processivity. We constructed a kinetic model for the stepping mechanism of Myosin VI using minimum assumptions. The kinetics of the myosin VI dimer is modeled as a three state linear reaction network with reaction rates extracted from relevant experiments. The time limiting step in in-vitro experiments (low APT concentration) is the diffusion of detached head. In this process the myosin dimer is modeled as a tethered polymer with a flexible joint at the dimerization site. The relevance of this polymer model is checked with coarse-grained simulation. We found that the motor maintains processivity for a wide range of kinetic parameters, however long persistence length for the lever arm is crucial for processivity especially under resistive load.

  1. A Comparative of business process modelling techniques

    Science.gov (United States)

    Tangkawarow, I. R. H. T.; Waworuntu, J.

    2016-04-01

    In this era, there is a lot of business process modeling techniques. This article is the research about differences of business process modeling techniques. For each technique will explain about the definition and the structure. This paper presents a comparative analysis of some popular business process modelling techniques. The comparative framework is based on 2 criteria: notation and how it works when implemented in Somerleyton Animal Park. Each technique will end with the advantages and disadvantages. The final conclusion will give recommend of business process modeling techniques that easy to use and serve the basis for evaluating further modelling techniques.

  2. Technological steps and yeast biomass as factors affecting the lipid content of beer during the brewing process.

    Science.gov (United States)

    Bravi, Elisabetta; Perretti, Giuseppe; Buzzini, Pietro; Della Sera, Rolando; Fantozzi, Paolo

    2009-07-22

    Knowledge of lipid content and composition in the brewing process enables the quality control of the final product. Lipids have a beneficial effect on yeast growth during fermentation as well as deleterious effects on end-product quality. The lipid content of a beer affects its ability to form a stable head of foam and plays an important role in beer staling. Lipid oxidation during wort production is of great interest because of its effect on beer quality: both lipids and their oxidation products are known to have adverse effects on beer flavor, whereas interactions between lipids and protein films stabilizing the gas bubbles are thought to cause the collapse of foam. In this background, the aim of this research was the characterization of the lipid content during a brewing process for evaluating the influence of both technological steps and yeast biomass in the lipid composition of beer. Lipid contents and their fatty acid profile were evaluated in brewing raw materials, wort, and beer. A high-resolution gas chromatography-flame ionization detector (HRGC-FID) system was used for fatty acid determination in lipid extracts. The results of the present study highlighted that the main technological steps influencing the lipid content in brewing byproduct and beer were clarification in a whirlpool and filtration. Moreover, the presence of metabolically active yeast cells (used as starter culture) were found to have a great influence on the fatty acids composition of lipids.

  3. Removal of polycyclic aromatic hydrocarbons and phenols from coking wastewater by simultaneously synthesized organobentonite in a one-step process

    Institute of Scientific and Technical Information of China (English)

    Zhenhua Wu; Lizhong Zhu

    2012-01-01

    The optimal condition for a one-step process removing organic compounds from coiking wastewater by simultaneously synthesized organobentonite as a pretreatment was investigated.Results showed that sorption of organic compounds by organobentonite was positively correlated to the cation surfactant exchange on the bentonite and the octanol-water partition coefficient (Kow) of the solutes.With 0.75 g/L bentonite and 180 mg/L (60% of bentonite cation exchange capacity) cetyltrimethylammonium bromide,the removal efficiencies of the 16 polycyclic aromatic hydrocarbon (PAHs) specified by the US Environmental Protection Agency in coking waste0water except naphthalene were more than 90%,and that of benzo(a)pyrene was 99.5%.At the same time,the removal efficiencies of CODCr,NH3-N,volatile phenols,colour and turbidity were 28.6%,13.2%,8.9%,55% and 84.3%,respectively,and the ratio of BOD5/CODcr increased from 0.31 to 0.41.These results indicated that the one-step process had high removal efficiency for toxic and refractory hydrophobic organic compounds,and could improve the biodegradability of the coking wastewater.Therefore it could be a promising technology for the pretreatment of toxic and refractory organic wastewater.

  4. Synthesis of porous carbon nanofiber with bamboo-like carbon nanofiber branches by one-step carbonization process

    Science.gov (United States)

    Yoo, Seung Hwa; Joh, Han-Ik; Lee, Sungho

    2017-04-01

    Porous carbon nanofibers (PCNFs) with CNF branches (PCNF/bCNF) were synthesized by a simple heat treatment method. Conventional methods to synthesize this unique structure usually follow a typical route, which consists of CNF preparation, catalyst deposition, and secondary CNF growth. In contrast, our method utilized a one-step carbonization process of polymer nanofibers, which were electrospun from a one-pot solution consisted of polyacrylonitrile, polystyrene (PS), and iron acetylacetonate. Various structures of PCNF/CNF were synthesized by changing the solution composition and molecular weight of PS. It was verified that the content and molecular weight of PS were critical for the growth of catalyst particles and subsequent growth of CNF branches. The morphology, phase of catalyst, and carbon structure of PCNF/bCNF were analyzed at different temperature steps during carbonization. It was found that pores were generated by the evaporation of PS and the catalyst particles were formed on the surface of PCNF at 700 °C. The gases originated from the evaporation of PS acted as a carbon source for the growth of CNF branches that started at 900 °C. Finally, when the carbonization process was finished at 1200 °C, uniform and abundant CNF branches were formed on the surface of PCNF.

  5. Modeling Events with Cascades of Poisson Processes

    CERN Document Server

    Simma, Aleksandr

    2012-01-01

    We present a probabilistic model of events in continuous time in which each event triggers a Poisson process of successor events. The ensemble of observed events is thereby modeled as a superposition of Poisson processes. Efficient inference is feasible under this model with an EM algorithm. Moreover, the EM algorithm can be implemented as a distributed algorithm, permitting the model to be applied to very large datasets. We apply these techniques to the modeling of Twitter messages and the revision history of Wikipedia.

  6. Clinical value of susceptibility-weighted imaging for studying the multi-step hepatocarcinogenic process of cirrhotic liver nodules

    Directory of Open Access Journals (Sweden)

    ZENG Mengsu

    2013-01-01

    Full Text Available Early detection, diagnosis, and effective treatment markedly improves the 5-year survival rate of patients with hepatocellular carcinoma (HCC. Initiation of the multi-step hepatocarcinogenesis process often involves a cirrhotic nodule. After the regenerative nodule develops into a dysplastic nodule (DN, it continues to advance from a low degree DN to a high degree DN. The high degree DN may then further develop to early HCC/small HCC or even progressed/advanced HCC. Previous studies have shown that endogenous iron within the nodule can inhibit or resolve the hepatocarcinogenic process. This review discusses the clinical utility of magnetic resonance (MR susceptibility-weighted imaging for detecting and monitoring changes in nodular iron and the implications of this technology when combined with T2WI, diffusion weighted imaging, and dynamic contrast enhancement for improving clinical decision-making, thereby enhancing diagnostic efficacy for early HCC/small HCC in the cirrhotic background.

  7. Integration of anaerobic process steps in composting plants. Potentials and concepts; Integration anaerober Verfahrensstufen in Kompostwerken. Potenziale und Konzepte

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Matthias [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany). Abt. Verfahrenstechnik; Ruehl, Ottomar [Kompostwerk Goettingen GmbH, Goettingen (Germany); Faulstich, Martin [Technische Univ. Muenchen, Straubing (Germany). Lehrstuhl fuer Rohstoff- und Energietechnologie

    2008-07-01

    The high energy potential of bio wastes can be used by means of integration of anaerobic component processes in composting plants. The authors of the contribution under consideration report on the integration of anaerobic process steps and present selected concepts for the integration of fermentation stages in composting plants. The composting of bio waste enables an important contribution in Germany to humus production and nutrient supply. Replacements of investments under consideration open up perspectives for an economic integration of anaerobic procedure concepts. However, a multiplicity of fermentation procedures faces a visible number of composting procedures. Apart from a detailed examination of economy, in the concrete individual case that variant should be identified which enables the most extensive integration of the already existing infrastructure.

  8. Competitive inhibition reaction mechanisms for the two-step model of protein aggregation.

    Science.gov (United States)

    Whidden, Mark; Ho, Allison; Ivanova, Magdalena I; Schnell, Santiago

    2014-01-01

    We propose three new reaction mechanisms for competitive inhibition of protein aggregation for the two-step model of protein aggregation. The first mechanism is characterized by the inhibition of native protein, the second is characterized by the inhibition of aggregation-prone protein and the third mechanism is characterized by the mixed inhibition of native and aggregation-prone proteins. Rate equations are derived for these mechanisms, and a method is described for plotting kinetic results to distinguish these three types of inhibitors. The derived rate equations provide a simple way of estimating the inhibition constant of native or aggregation-prone protein inhibitors in protein aggregation. The new approach is used to estimate the inhibition constants of different peptide inhibitors of insulin aggregation.

  9. The Computer-Aided Analytic Process Model. Operations Handbook for the Analytic Process Model Demonstration Package

    Science.gov (United States)

    1986-01-01

    Research Note 86-06 THE COMPUTER-AIDED ANALYTIC PROCESS MODEL : OPERATIONS HANDBOOK FOR THE ANALYTIC PROCESS MODEL DE ONSTRATION PACKAGE Ronald G...ic Process Model ; Operations Handbook; Tutorial; Apple; Systems Taxonomy Mod--l; Training System; Bradl1ey infantry Fighting * Vehicle; BIFV...8217. . . . . . . .. . . . . . . . . . . . . . . . * - ~ . - - * m- .. . . . . . . item 20. Abstract -continued companion volume-- "The Analytic Process Model for

  10. The development and evaluation of single cell suspension from wheat and barley as a model system; a first step towards functional genomics application

    DEFF Research Database (Denmark)

    Dong, Jing; Bowra, Steve; Vincze, Éva

    2010-01-01

    suspension culture from both species. Results We established growth conditions to allow routine culturing of somatic cells in 24 well microtiter plate format. Evaluation of the wheat and barley cell suspension as model cell system is a multi step process. As an initial step in the evaluation procedure we......Background The overall research objective was to develop single cell plant cultures as a model system to facilitate functional genomics of monocots, in particular wheat and barley. The essential first step towards achieving the stated objective was the development of a robust, viable single cell...... chose to study the impact of selected abiotic stress elicitors at the physiological, biochemical and molecular level. We report the results of osmotic stress imposed by NaCl and PEG. As proline is an important osmoprotectant of the cereal cells, colorimetric assay for proline detection was developed...

  11. Nanowire growth process modeling and reliability models for nanodevices

    Science.gov (United States)

    Fathi Aghdam, Faranak

    Nowadays, nanotechnology is becoming an inescapable part of everyday life. The big barrier in front of its rapid growth is our incapability of producing nanoscale materials in a reliable and cost-effective way. In fact, the current yield of nano-devices is very low (around 10 %), which makes fabrications of nano-devices very expensive and uncertain. To overcome this challenge, the first and most important step is to investigate how to control nano-structure synthesis variations. The main directions of reliability research in nanotechnology can be classified either from a material perspective or from a device perspective. The first direction focuses on restructuring materials and/or optimizing process conditions at the nano-level (nanomaterials). The other direction is linked to nano-devices and includes the creation of nano-electronic and electro-mechanical systems at nano-level architectures by taking into account the reliability of future products. In this dissertation, we have investigated two topics on both nano-materials and nano-devices. In the first research work, we have studied the optimization of one of the most important nanowire growth processes using statistical methods. Research on nanowire growth with patterned arrays of catalyst has shown that the wire-to-wire spacing is an important factor affecting the quality of resulting nanowires. To improve the process yield and the length uniformity of fabricated nanowires, it is important to reduce the resource competition between nanowires during the growth process. We have proposed a physical-statistical nanowire-interaction model considering the shadowing effect and shared substrate diffusion area to determine the optimal pitch that would ensure the minimum competition between nanowires. A sigmoid function is used in the model, and the least squares estimation method is used to estimate the model parameters. The estimated model is then used to determine the optimal spatial arrangement of catalyst arrays

  12. REDUCING PROCESS VARIABILITY BY USING DMAIC MODEL: A CASE STUDY IN BANGLADESH

    OpenAIRE

    Ripon Kumar Chakrabortty; Tarun Kumar Biswas; Iraj Ahmed

    2013-01-01

    Now-a-day's many leading manufacturing industry have started to practice Six Sigma and Lean manufacturing concepts to boost up their productivity as well as quality of products. In this paper, the Six Sigma approach has been used to reduce process variability of a food processing industry in Bangladesh. DMAIC (Define,Measure, Analyze, Improve, & Control) model has been used to implement the Six Sigma Philosophy. Five phases of the model have been structured step by step respectively. Differen...

  13. Pavement maintenance optimization model using Markov Decision Processes

    Science.gov (United States)

    Mandiartha, P.; Duffield, C. F.; Razelan, I. S. b. M.; Ismail, A. b. H.

    2017-09-01

    This paper presents an optimization model for selection of pavement maintenance intervention using a theory of Markov Decision Processes (MDP). There are some particular characteristics of the MDP developed in this paper which distinguish it from other similar studies or optimization models intended for pavement maintenance policy development. These unique characteristics include a direct inclusion of constraints into the formulation of MDP, the use of an average cost method of MDP, and the policy development process based on the dual linear programming solution. The limited information or discussions that are available on these matters in terms of stochastic based optimization model in road network management motivates this study. This paper uses a data set acquired from road authorities of state of Victoria, Australia, to test the model and recommends steps in the computation of MDP based stochastic optimization model, leading to the development of optimum pavement maintenance policy.

  14. An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models

    KAUST Repository

    Gharamti, M. E.

    2015-05-11

    The ensemble Kalman filter (EnKF) is a popular method for state-parameters estimation of subsurface flow and transport models based on field measurements. The common filtering procedure is to directly update the state and parameters as one single vector, which is known as the Joint-EnKF. In this study, we follow the one-step-ahead smoothing formulation of the filtering problem, to derive a new joint-based EnKF which involves a smoothing step of the state between two successive analysis steps. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. This new algorithm bears strong resemblance with the Dual-EnKF, but unlike the latter which first propagates the state with the model then updates it with the new observation, the proposed scheme starts by an update step, followed by a model integration step. We exploit this new formulation of the joint filtering problem and propose an efficient model-integration-free iterative procedure on the update step of the parameters only for further improved performances. Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model

  15. Process evaluation of a stepped-care program to prevent depression in primary care: patients' and practice nurses' experiences.

    Science.gov (United States)

    Pols, Alide D; Schipper, Karen; Overkamp, Debbie; van Dijk, Susan E; Bosmans, Judith E; van Marwijk, Harm W J; Adriaanse, Marcel C; van Tulder, Maurits W

    2017-02-23

    Depression is common in patients with diabetes type 2 (DM2) and/or coronary heart disease (CHD), with high personal and societal burden and may even be preventable. Recently, a cluster randomized trial of stepped care to prevent depression among patients with DM2 and/or CHD and subthreshold depression in Dutch primary care (Step-Dep) versus usual care showed no effectiveness. This paper presents its process evaluation, exploring in-depth experiences from a patient and practice nurse perspective to further understand the results. A qualitative study was conducted. Using a purposive sampling strategy, data were collected through semi-structured interviews with 24 participants (15 patients and nine practice nurses). All interviews were audiotaped and transcribed verbatim. Atlas.ti 5.7.1 software was used for coding and structuring of themes. A thematic analysis of the data was performed. The process evaluation showed, even through a negative trial, that Step-Dep was perceived as valuable by both patients and practice nurses; perceived effectiveness on improving depressive symptoms varied greatly, but most felt that it had been beneficial for patients' well-being. Facilitators were: increased awareness of mental health problems in chronic disease management and improved accessibility and decreased experienced stigma of receiving mental health care. The Patient Health Questionnaire 9 (PHQ-9), used to determine depression severity, functioned as a useful starting point for the conversation on mental health and patients gained more insight into their mental health by regularly filling out the PHQ-9. However, patients and practice nurses did not widely support its use for monitoring depressive symptoms or making treatment decisions. Monitoring mental health was deemed important in chronically ill patients by both patients and practice nurses and was suggested to start at the time of diagnosis of a chronic disease. Appointed barriers were that patients were primarily

  16. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations.

    Directory of Open Access Journals (Sweden)

    Conor Lawless

    Full Text Available Increases in cellular Reactive Oxygen Species (ROS concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells.One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage. However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS. We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence.

  17. Alcoholics Anonymous and twelve-step recovery: a model based on social and cognitive neuroscience.

    Science.gov (United States)

    Galanter, Marc

    2014-01-01

    In the course of achieving abstinence from alcohol, longstanding members of Alcoholics Anonymous (AA) typically experience a change in their addiction-related attitudes and behaviors. These changes are reflective of physiologically grounded mechanisms which can be investigated within the disciplines of social and cognitive neuroscience. This article is designed to examine recent findings associated with these disciplines that may shed light on the mechanisms underlying this change. Literature review and hypothesis development. Pertinent aspects of the neural impact of drugs of abuse are summarized. After this, research regarding specific brain sites, elucidated primarily by imaging techniques, is reviewed relative to the following: Mirroring and mentalizing are described in relation to experimentally modeled studies on empathy and mutuality, which may parallel the experiences of social interaction and influence on AA members. Integration and retrieval of memories acquired in a setting like AA are described, and are related to studies on storytelling, models of self-schema development, and value formation. A model for ascription to a Higher Power is presented. The phenomena associated with AA reflect greater complexity than the empirical studies on which this article is based, and certainly require further elucidation. Despite this substantial limitation in currently available findings, there is heuristic value in considering the relationship between the brain-based and clinical phenomena described here. There are opportunities for the study of neuroscientific correlates of Twelve-Step-based recovery, and these can potentially enhance our understanding of related clinical phenomena. © American Academy of Addiction Psychiatry.

  18. Systematic approach for the identification of process reference models

    CSIR Research Space (South Africa)

    Van Der Merwe, A

    2009-02-01

    Full Text Available Process models are used in different application domains to capture knowledge on the process flow. Process reference models (PRM) are used to capture reusable process models, which should simplify the identification process of process models...

  19. Ada COCOMO and the Ada Process Model

    Science.gov (United States)

    1989-01-01

    language, the use of incremental development, and the use of the Ada process model capitalizing on the strengths of Ada to improve the efficiency of software...development. This paper presents the portions of the revised Ada COCOMO dealing with the effects of Ada and the Ada process model . The remainder of...this section of the paper discusses the objectives of Ada COCOMO. Section 2 describes the Ada Process Model and its overall effects on software

  20. Simulation Modeling of Software Development Processes

    Science.gov (United States)

    Calavaro, G. F.; Basili, V. R.; Iazeolla, G.

    1996-01-01

    A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.