WorldWideScience

Sample records for model pressure profile

  1. Modelling the Pressure Profile for Optical Cables in Ducts

    NARCIS (Netherlands)

    Snippe, A.; Bresser, O.R.; Hoekstra, Sipke; Griffioen, A.

    2013-01-01

    The longitudinal pressure profile is an important parameter when calculating the correct blowing force during the process of installing optical fiber cables using the viscous flow of air. This paper presents a model of the pressure inside the duct that contains a moving cable. This new model of the

  2. Pressure and velocity profiles in a static mechanical hemilarynx model

    Science.gov (United States)

    Alipour, Fariborz; Scherer, Ronald C.

    2002-12-01

    This study examined pressure and velocity profiles in a hemilarynx mechanical model of phonation. The glottal section had parallel walls and was fabricated from hard plastic. Twelve pressure taps were created in the vocal fold surface and connected to a differential pressure transducer through a pressure switch. The glottal gap was measured with feeler gauges and the uniform glottal duct was verified by use of a laser system. Eight pressure transducers were placed in the flat wall opposite the vocal fold. Hot-wire anemometry was used to obtain velocity profiles upstream and downstream of the glottis. The results indicate that the pressure distribution on the vocal fold surface was consistent with pressure change along a parallel duct, whereas the pressures on the opposite flat wall typically were lower (by 8%-40% of the transglottal pressure just past mid-glottis). The upstream velocity profiles were symmetric regardless of the constriction shape and size. The jet flow downstream of the glottis was turbulent even for laminar upstream conditions. The front of the jet was consistently approximately 1.5 mm from the flat wall for glottal gaps of 0.4, 0.8 and 1.2 mm. The turbulence intensity also remained approximately at the same location of about 4 mm from the flat wall for the two larger gaps.

  3. PEP-II vacuum system pressure profile modeling using EXCEL

    International Nuclear Information System (INIS)

    Nordby, M.; Perkins, C.

    1994-06-01

    A generic, adaptable Microsoft EXCEL program to simulate molecular flow in beam line vacuum systems is introduced. Modeling using finite-element approximation of the governing differential equation is discussed, as well as error estimation and program capabilities. The ease of use and flexibility of the spreadsheet-based program is demonstrated. PEP-II vacuum system models are reviewed and compared with analytical models

  4. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  5. On the Accurate Determination of Shock Wave Time-Pressure Profile in the Experimental Models of Blast-Induced Neurotrauma

    Directory of Open Access Journals (Sweden)

    Maciej Skotak

    2018-02-01

    Full Text Available Measurement issues leading to the acquisition of artifact-free shock wave pressure-time profiles are discussed. We address the importance of in-house sensor calibration and data acquisition sampling rate. Sensor calibration takes into account possible differences between calibration methodology in a manufacturing facility, and those used in the specific laboratory. We found in-house calibration factors of brand new sensors differ by less than 10% from their manufacturer supplied data. Larger differences were noticeable for sensors that have been used for hundreds of experiments and were as high as 30% for sensors close to the end of their useful lifetime. These observations were despite the fact that typical overpressures in our experiments do not exceed 50 psi for sensors that are rated at 1,000 psi maximum pressure. We demonstrate that sampling rate of 1,000 kHz is necessary to capture the correct rise time values, but there were no statistically significant differences between peak overpressure and impulse values for low-intensity shock waves (Mach number <2 at lower rates. We discuss two sources of experimental errors originating from mechanical vibration and electromagnetic interference on the quality of a waveform recorded using state-of-the-art high-frequency pressure sensors. The implementation of preventive measures, pressure acquisition artifacts, and data interpretation with examples, are provided in this paper that will help the community at large to avoid these mistakes. In order to facilitate inter-laboratory data comparison, common reporting standards should be developed by the blast TBI research community. We noticed the majority of published literature on the subject limits reporting to peak overpressure; with much less attention directed toward other important parameters, i.e., duration, impulse, and dynamic pressure. These parameters should be included as a mandatory requirement in publications so the results can be properly

  6. Effects of parental hypertension on longitudinal trends in blood pressure and plasma metabolic profile: mixed-effects model analysis.

    Science.gov (United States)

    Mitsumata, Kaneto; Saitoh, Shigeyuki; Ohnishi, Hirofumi; Akasaka, Hiroshi; Miura, Tetsuji

    2012-11-01

    The mechanism underlying the association of parental hypertension with cardiovascular events in offspring remains unclear. In this study, the effects of parental hypertension on longitudinal trends of blood pressure and metabolic parameters were examined by mixed-effects model analysis. From 1977 to 2006, 5198 subjects participated in the Tanno-Sobetsu Study, and we selected 2607 subjects (1095 men and 1512 women) for whom data on parental history of hypertension were available. In both men and women with and without parental hypertension, systolic blood pressure and fasting blood glucose levels consistently increased from the third to eighth decades of life, whereas diastolic blood pressure and serum triglyceride levels followed biphasic (inverted U shape) time courses during that period. However, the relationships between the parameters and age were significantly shifted upward (by ≈5.3 mm Hg in systolic blood pressure, 2.8 mm Hg in diastolic blood pressure, 0.30 mmol/L in blood glucose, and 0.09 mmol/L in triglyceride) in the group with parental hypertension compared with those in the group without parental hypertension. Both paternal and maternal histories of hypertension were determinants of systolic blood pressure and diastolic blood pressure, and there was no significant interaction between the sides of parental history. There were no significant effects of parental hypertension on age-dependent or body mass index-dependent changes in serum low-density lipoprotein cholesterol or high-density lipoprotein cholesterol level. The present results indicate that parental hypertension has an age-independent impact on elevation of blood pressure, plasma glucose, and triglyceride levels, which may underlie the reported increase in cardiovascular events by family history of hypertension.

  7. Rotor with Flattened Exit Pressure Profile

    Science.gov (United States)

    Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)

    2015-01-01

    A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.

  8. Ambulatory blood pressure profiles in familial dysautonomia.

    Science.gov (United States)

    Goldberg, Lior; Bar-Aluma, Bat-El; Krauthammer, Alex; Efrati, Ori; Sharabi, Yehonatan

    2018-02-12

    Familial dysautonomia (FD) is a rare genetic disease that involves extreme blood pressure fluctuations secondary to afferent baroreflex failure. The diurnal blood pressure profile, including the average, variability, and day-night difference, may have implications for long-term end organ damage. The purpose of this study was to describe the circadian pattern of blood pressure in the FD population and relationships with renal and pulmonary function, use of medications, and overall disability. We analyzed 24-h ambulatory blood pressure monitoring recordings in 22 patients with FD. Information about medications, disease severity, renal function (estimated glomerular filtration, eGFR), pulmonary function (forced expiratory volume in 1 s, FEV1) and an index of blood pressure variability (standard deviation of systolic pressure) were analyzed. The mean (± SEM) 24-h blood pressure was 115 ± 5.6/72 ± 2.0 mmHg. The diurnal blood pressure variability was high (daytime systolic pressure standard deviation 22.4 ± 1.5 mmHg, nighttime 17.2 ± 1.6), with a high frequency of a non-dipping pattern (16 patients, 73%). eGFR, use of medications, FEV1, and disability scores were unrelated to the degree of blood pressure variability or to dipping status. This FD cohort had normal average 24-h blood pressure, fluctuating blood pressure, and a high frequency of non-dippers. Although there was evidence of renal dysfunction based on eGFR and proteinuria, the ABPM profile was unrelated to the measures of end organ dysfunction or to reported disability.

  9. Self-enhancement and cardiovascular reactivity: limitations of the hemodynamic profile-compensation deficit (HP-CD) model of blood pressure regulation.

    Science.gov (United States)

    Why, Yong Peng; Chen, Maximillian Ruyang

    2013-02-01

    We examined the consistency of results obtained when examining the relationship between self-enhancement and cardiovascular reactivity via analysing raw cardiovascular data and compared this with the hemodynamic profile-compensation deficit (HP-CD) model of blood pressure regulation (James et al., 2012) method. A sample of 112 male participants underwent a computer-based task three times in three weeks. Our results indicate that significant results for self-enhancement and hemodynamic cardiovascular reactivity found using raw cardiovascular data were non-significant when HP-CD model was used. Furthermore, the HP-CD model also obfuscates significant baseline changes with reactivity. We also found that the correlations between blood pressure reactivity and hemodynamic processes obtained in the laboratory setting was reduced rather than enhanced with the use of the HP-CD model. Our results suggest that the HP-CD model should be used cautiously and could contribute to inconsistent results when examining the role of psychological factors in biological outcomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Cognitive Profile of Idiopathic Normal Pressure Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Makoto Saito

    2011-07-01

    Full Text Available Background/Aims: Frontal lobe dysfunction is believed to be a primary cognitive symptom in idiopathic normal pressure hydrocephalus (iNPH; however, the neuropsychology of this disorder remains to be fully investigated. The objective of this study was to delineate a comprehensive profile of cognitive dysfunction in iNPH and evaluate the effects of cerebrospinal fluid (CSF shunt surgery on cognitive dysfunction. Methods: A total of 32 iNPH patients underwent neuropsychological testing of memory, attention, language, executive function, and visuoperceptual and visuospatial abilities. Of these 32 patients, 26 were reevaluated approximately 1 year following CSF shunt surgery. The same battery of tests was performed on 32 patients with Alzheimer’s disease (AD and 30 healthy elderly controls. Results: The iNPH patients displayed baseline deficits in attention, executive function, memory, and visuoperceptual and visuospatial functions. Impairments of attention, executive function, and visuoperceptual and visuospatial abilities in iNPH patients were more severe than in those with AD, whereas the degree of memory impairment was comparable to that in AD patients. A significant improvement in executive function was observed following shunt surgery. Conclusion: Patients with iNPH are impaired in various aspects of cognition involving both ‘frontal’ executive functions and ‘posterior cortical’ functions. Shunt treatment can ameliorate executive dysfunction.

  11. Anthropometric characteristics, blood pressure profile and medical ...

    African Journals Online (AJOL)

    BMI) and waist-hip ratio (WHR) were calculated, and the blood pressure of the ... Contraceptive use was significantly associated with BMI classification (P=0.000), blood pressure classification (P=0.000) and history of hypertension among the ...

  12. Arterial pressure profile in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens H; Fuglsang, Stefan; Bendtsen, Flemming

    2012-01-01

    Patients with cirrhosis have cardiovascular dysfunction and altered mechanical properties of large and small arteries. This study was undertaken in order to analyze the arterial pressure curve in relation to mean arterial pressure level, stroke volume, and severity of liver disease....

  13. The main features of self-consistent pressure profile formation

    NARCIS (Netherlands)

    Razumova, K. A.; Andreev, V. F.; Dnestrovskij, A. Y.; Kislov, A. Y.; Kirneva, N. A.; Lysenko, S. E.; Pavlov, Y. D.; Poznyak, V. I.; Shafranov, T. V.; Trukhina, E. V.; Zhuravlev, V. A.; Donne, A. J. H.; Hogeweij, G. M. D.

    2008-01-01

    The self-organization of a tokamak plasma is a fundamental turbulent plasma phenomenon, which leads to the formation of a self-consistent pressure profile. This phenomenon has been investigated in the T-10 tokamak in different experiments, excluding profiles with pronounced transport barriers. It

  14. Blood Pressure Guided Profiling of Ultrafiltration during Hemodialysis

    Directory of Open Access Journals (Sweden)

    Schmidt Reinhard

    2001-01-01

    Full Text Available Hemodialysis-induced hypotension is still a common complication in spite of the progress achieved in hemodialysis (HD treatment. Due to its multifactorial nature, dialysis-induced hypotension cannot be reliably prevented by conventional profiling of ultrafiltration in open-loop systems since they are unable to adapt themselves to actual decreases in blood pressure. A blood pressure guided closed-loop system for prevention of dialysis-induced hypotension by biofeedback-controlled profiling of ultrafiltration was clinically tested in 94 HD treatments of four patients prone to hypotension. Automatic profiling of ultrafiltration was based on frequent measurements of blood pressure at intervals of five minutes. Proper adaptation of control features to patients′ conditions was provided by the lower limit of systolic pressure which was individually set by the physician at the beginning of each treatment. During the initial and medium phases of the HD sessions, ultrafiltration rates up to 200% of the average rates were applied as long as this was tolerated. The additional ultrafiltrate volume was used for blood pressure stabilization by lowering the ultrafiltration rates in the final phase of HD session. Biofeedback-controlled profiling of ultrafiltration provides reliable blood pressure stabilization in all phases of HD. During the first half of treatment, the frequency of hypotensive episodes remained below that with conventional therapy although ultrafiltration rates up to 200% were used. During the second half of treatment, blood pressure guided reduction of ultrafiltration rate provided a decreasing frequency of hypotensive episodes in contrast to the increasing trend during conventional therapy. Stable blood pressure trends during the last hour of HD were achieved in 91% of biofeedback-controlled treatments in comparison with only 32% of conventional treatments. Ultrafiltration rates of 150%-200% and blood pressure measurements at intervals of

  15. High Resolution Cluster Pressure Profile Measurements with MUSTANG and Bolocam

    Science.gov (United States)

    Romero, Charles; Mason, Brian S.; Sayers, Jack; Young, Alexander; Dicker, Simon; Mroczkowski, Tony; Reese, Erik D.; Sarazin, Craig L.; Czakon, Nicole G.; Devlin, Mark J.; Korngut, Phillip

    2015-01-01

    Accurate high-resolution intracluster medium (ICM) pressure profiles will help further constrain cosmological parameters as well as baryonic physics in the cores of clusters of galaxies. MUSTANG, a 90 GHz bolometer array on the Green Bank Telescope (GBT) is among the highest resolution (9' FWHM) instruments at 90 GHz, and is among the best instruments to observe the ICM given its sensitivity. We present results from a sub-sample of the Cluster Lensing And Supernova with Hubble (CLASH) clusters of galaxies observed with both MUSTANG and Bolocam. Bolocam, a 150 GHz bolometer array on the CSO with 58' FWHM, and MUSTANG data probe different, and highly complementary, angular (size) scales. We jointly fit spherical electron pressure profiles to the two datasets and find that the addition of the high resolution MUSTANG data can considerably improve constraints on the pressure profiles. A major asset of our fitting algorithm is the ability to uniquely fit for contaminants such as point sources, and thus allowing us to determine the signal from the underlying ICM. We compare our best fit profiles to X-ray determined pressure profiles (provided by ACCEPT), where we find good agreement. Finally we investigate the implications of our results and describe ongoing work to extend this analysis to the full set of CLASH clusters viewable by the GBT, and to obtain even better results with the MUSTANG-1.5 camera

  16. Numerical Investigation of Pressure Profile in Hydrodynamic Lubrication Thrust Bearing.

    Science.gov (United States)

    Najar, Farooq Ahmad; Harmain, G A

    2014-01-01

    Reynolds equation is solved using finite difference method (FDM) on the surface of the tilting pad to find the pressure distribution in the lubricant oil film. Different pressure profiles with grid independence are described. The present work evaluates pressure at various locations after performing a thorough grid refinement. In recent similar works, this aspect has not been addressed. However, present study shows that it can have significant effect on the pressure profile. Results of a sector shaped pad are presented and it is shown that the maximum average value of pressure is 12% (approximately) greater than the previous results. Grid independence occurs after 24 × 24 grids. A parameter "ψ" has been proposed to provide convenient indicator of obtaining grid independent results. ψ = |(P refinedgrid - P Refrence-grid)/P refinedgrid|, ψ ≤ ε, where "ε" can be fixed to a convenient value and a constant minimum film thickness value of 75 μm is used in present study. This important parameter is highlighted in the present work; the location of the peak pressure zone in terms of (r, θ) coordinates is getting shifted by changing the grid size which will help the designer and experimentalist to conveniently determine the position of pressure measurement probe.

  17. Blood Pressure Profile and Hypertension in Adolescents in Port ...

    African Journals Online (AJOL)

    This study was undertaken to determine the blood pressure profile, prevalence of hypertension in apparently healthy secondary school children in Port Harcourt and the relationship between body mass index and hypertension. Materials and Methods: A cross sectional study of 1,056 adolescents, aged 10-18 years, selected ...

  18. A Method for Recording Urethral Pressure Profiles in Female Rats.

    Directory of Open Access Journals (Sweden)

    Shengfei Xu

    Full Text Available Urethral pressure profile (UPP and leak-point pressure (LPP measurements as well as external urethral sphincter (EUS electromyography (EMG and videourodynamic analyses are the primary methods for evaluating urethral function in humans. However, UPP recording in female rats, a widely used animal model, is challenging due to their small body sizes. This study reports a novel method for recording UPP in female rats.Seventeen anesthetized female rats were studied. LPP data for 14 rats were included. The other 3 rats were excluded because of death or abnormal urogenital organs. UPP curves were recorded using a modified water-perfusion catheter system, with the lateral hole facing the 3-, 6-, 9-, and 12-o'clock positions in a randomized sequence. LPP, functional urethral length (FUL and maximum urethral closure pressure (MUCP were analyzed.The mean LPP was 64.39 ± 20.29 cm H2O. The mean FUL and MUCP values at the 3-, 6-, 9-, and 12-o'clock positions were 12.90 ± 1.20, 16.70 ± 1.95, 13.90 ± 2.42, and 11.60 ± 0.97 mm, respectively, and 38.70 ± 11.85, 33.90 ± 11.82, 37.40 ± 11.95, and 71.90 ± 23.01 cm H2O, respectively. The FUL at the 6-o'clock position and MUCP at the 12-o'clock position were significantly greater than those at the other 3 positions. The FUL and MUCP of repeated UPP recordings were not significantly different than those of the first recordings.UPP recording using a modified method based on a water-perfusion catheter system is feasible and replicable in female rats. It produces UPP curves that sensitively and appreciably reflect detailed pressure changes at different points within the urethra and thus provides opportunity to evaluate urethral structures, especially the urethral sphincter, in detail. These results may enhance the utility of female rat models in research of urinary sphincter mechanisms.

  19. Effect of Ramadan Fasting on Blood Pressure and Lipid Profiles

    Directory of Open Access Journals (Sweden)

    Maryam sadat Amirkalali sijavandi

    2015-09-01

    Full Text Available Introduction: Ramadan is a holy month for Muslims during which avoid from eating, drinking and sexual intercourse for about 13-17 hours. The aim of this study was surveying the effects of Islamic fasting in Ramadan on lipid profile and blood pressure.Materials and Methods: we designed this study in two phases, a week before and a week after Ramadan month. Eighty nine healthy subjects with 20-50 years old were participated in this study. Blood sampling for lipid profile measurement was done in the morning and blood pressure was measured in the afternoon with digital sphygmomanometer. Statistical analysis was performed with SPSS version 16.0 software.Results: In a week after Ramadan, body weight and body mass index (BMI decreased in both sexes, comparing with the week before Ramadan measurements (p

  20. EFFECT OF KIMCHI INTAKE ON LIPID PROFILES AND BLOOD PRESSURE

    OpenAIRE

    Ju Kim, Hyun; Han, Ji-Sook; Han, Eung-Soo; Song, Yeong-Ok

    2012-01-01

    Kimchi is a Korean fermented vegetable and has recognized as a healthy food. Some interventional studies have reported an inverse association between kimchi intake and higher lipid levels in healthy and obese people. However, kimchi intake and hypertention were still uncertain. This study is carried out to investigate whether the serum lipid profiles and blood pressure would be influenced by the amount of kimchi intake. Design for the clinical study by controlling the meal consumption and phy...

  1. Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kaylea; Nagai, Daisuke [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Lau, Erwin T., E-mail: kaylea.nelson@yale.edu [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States)

    2014-09-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

  2. Monitoring pressure profiles across an airfoil with a fiber Bragg grating sensor array

    Science.gov (United States)

    Papageorgiou, Anthony W.; Parkinson, Luke A.; Karas, Andrew R.; Hansen, Kristy L.; Arkwright, John W.

    2018-02-01

    Fluid flow over an airfoil section creates a pressure difference across the upper and lower surfaces, thus generating lift. Successful wing design is a combination of engineering design and experience in the field, with subtleties in design and manufacture having significant impact on the amount of lift produced. Current methods of airfoil optimization and validation typically involve computational fluid dynamics (CFD) and extensive wind tunnel testing with pressure sensors embedded into the airfoil to measure the pressure over the wing. Monitoring pressure along an airfoil in a wind tunnel is typically achieved using surface pressure taps that consist of hollow tubes running from the surface of the airfoil to individual pressure sensors external to the tunnel. These pressure taps are complex to configure and not ideal for in-flight testing. Fiber Bragg grating (FBG) pressure sensing arrays provide a highly viable option for both wind tunnel and inflight pressure measurement. We present a fiber optic sensor array that can detect positive and negative pressure suitable for validating CFD models of airfoil profile sections. The sensing array presented here consists of 6 independent sensing elements, each capable of a pressure resolution of less than 10 Pa over the range of 70 kPa to 120 kPa. The device has been tested with the sensor array attached to a 90mm chord length airfoil section subjected to low velocity flow. Results show that the arrays are capable of accurately detecting variations of the pressure profile along the airfoil as the angle of attack is varied from zero to the point at which stall occurs.

  3. Computer Profiling Based Model for Investigation

    OpenAIRE

    Neeraj Choudhary; Nikhil Kumar Singh; Parmalik Singh

    2011-01-01

    Computer profiling is used for computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgments as to the probable usage and evidentiary value of a comp...

  4. Simulations of the pressure profiles of the PETRAIII frontends

    International Nuclear Information System (INIS)

    Amann, C; Uhahn; Hesse, M; Schulte-Schrepping, H

    2008-01-01

    PETRA III will be a high brilliance third generation synchrotron radiation source. The undulators will provide photon beams with small beam size and therefore the components in the frontend are as compact as feasible. The resulting narrow cross sections of the vacuum system will yield a small conductance in the whole beamline. The design of the frontends has reached an advanced state so that the initial design of the vacuum system can be finalized now. The vacuum specification of the beamline components demands for a hydrocarbon and dust free vacuum systems. To provide this, the beamline will be initially pumped down with dry pumping stations to a pressure of at least 10 -6 mbar. At this pressure a set of ion pumps will be switched on to pump the beamline continuously. For lifetime reasons of the ion pumps it is necessary that during operation the pressure in the pumps is below 10 -6 mbar. During the start up of the beamline system a high amount of gas will be photo desorbed especially at the high power slit systems. To cope with this, the pumping concept of the beamline has been revised. Monte Carlo simulations of the pressure profiles in the beamline show that additional pumping near the slit systems is mandatory for a long lifetime of the ion-pumps. The paper reports the layout process of the pumping system

  5. Flavor release measurement by atmospheric pressure chemical ionization ion trap mass spectrometry, construction of interface and mathematical modeling of release profiles

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Madsen, Henrik; Smedsgaard, Jørn

    2003-01-01

    An instrumental on-line retronasal flavor analysis was developed to obtain information about the release of flavor compounds in expired air from humans during eating. The volatile flavor compounds were measured by ion trap mass spectrometry with an atmospheric pressure chemical ionization source...... (APCI). An interface was designed to sample the breath directly from the nose. The repeat-ability in vitro for seven different flavor compounds came out with relative standard derivation less than 10% in most cases, which is acceptable. In vitro quantification was carried out by a determination...... of the concentration in the gas phase over a flavor solution by GC/MS, followed by measurements of intensities by the APCI ion trap. Ion suppression by acetone in the breath was negligible at concentration levels relevant in these experiments. The instrumental limits of detection for menthone and menthol coincide...

  6. Model tests for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Stoever, R.

    1975-01-01

    Investigations with models of reactor pressure vessels are used to check results of three dimensional calculation methods and to predict the behaviour of the prototype. Model tests with 1:50 elastic pressure vessel models and with a 1:5 prestressed concrete pressure vessel are described and experimental results are presented. (orig.) [de

  7. Modeling the wafer temperature profile in a multiwafer LPCVD furnace

    Energy Technology Data Exchange (ETDEWEB)

    Badgwell, T.A. [Rice Univ., Houston, TX (United States). Dept. of Chemical Engineering; Trachtenberg, I.; Edgar, T.F. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1994-01-01

    A mathematical model has been developed to predict wafer temperatures within a hot-wall multiwafer low pressure chemical vapor deposition (LPCVD) reactor. The model predicts both axial (wafer-to-wafer) and radial (across-wafer) temperature profiles. Model predictions compare favorably with in situ wafer temperature measurements described in an earlier paper. Measured axial and radial temperature nonuniformities are explained in terms of radiative heat-transfer effects. A simulation study demonstrates how changes in the outer tube temperature profile and reactor geometry affect wafer temperatures. Reactor design changes which could improve the wafer temperature profile are discussed.

  8. [Salt intake profile and blood pressure in cystic fibrosis].

    Science.gov (United States)

    Campuzano Martín, S H; Díaz Martín, J J; Perillán Méndez, C; Argüelles Luis, J; Vijande Vázquez, M; Málaga Guerrero, S

    2009-05-01

    High blood pressure (BP) is not considered a problem in patients with cystic fibrosis (CF). The loss of sodium in these patients may affect their sensitivity to the taste of salt. To study the BP in a group of patients with CF and to analyse their salt intake profile and the relationship with their BP levels. Cross-sectional analytical study with control group. Index group: 20 subjects, 4-30 years old with diagnosis of CF. 73 healthy subjects. Physical examination, BP measurement and specific tests to determine the salt ingestion profile. Systolic BP (SBP) and diastolic BP (DBP) values were lower in the CF group. SBP: 99.63+/-9.11mmHg vs. 111.94+/-10.71mmHg, P: 0.001. DBP: 57.84+/-7.40mmHg vs. 70.05+/-8.11mmHg, P: 0.001. When these values were adjusted for age, sex, weight and height of the participants, differences did not remain statistically significant. Values of the salt intake profile did not differ significantly between the two groups. While the control group showed a significant negative correlation between SBP and salt taste sensitivity (r: -0.341, P=0.003), this correlation was not confirmed in CF patients (r: -0.115 P=0.6). BP values and the salt intake profile values in CF patients are equivalent to the normal population values when their differences are adjusted to the potential confounding factors. There is no correlation between BP levels and salt taste sensitivity in patients with CF.

  9. Blood pressure and lipid profiles in adolescents with hypertensive parents

    Directory of Open Access Journals (Sweden)

    Julia Fitriany

    2016-11-01

    Full Text Available Background Adolescent hypertension is a significant health problem of increasing prevalence and causes high morbidity and mortality. It is found primarily in young males, with a familial history of hypertension and/or cardiovascular disease. Examination of lipid profiles has been used to detect the risk of hypertension in adolescents. Objective To compare blood pressure and lipid profiles in adolescents with and without a parental history of hypertension. Methods This cross-sectional study was conducted from January to February 2012 on students from a senior high school in the Toba Samosir District, North Sumatera. Sixty-eight adolescents were included, aged 15 to 18 years. Group I comprised 34 adolescents with hypertensive parents, and group II comprised 34 adolescents with normotensive parents. Subjects were selected based on questionnaires. Subjects’ blood pressures were measured at rest. Three measurements were made in intervals of 10-15 minutes, then averaged for both systolic and diastolic blood pressures. Lipid profiles were measured using the CardioCheck cholesterol test after subjects had fasted for 12 hours. Results The median systolic blood pressures (SBP in groups I and II were 110 mmHg (range 93.3-123.3 and 106.7 mmHg (range 96.7-123.3, respectively, (P=0.584. The median diastolic blood pressures (DBP were 73.3 mmHg (range 66.7-83.3 and 71.7 mmHg (range 63.3-80.0, respectively, (P=0.953. Total cholesterol and low-density lipoprotein cholesterol (LDL-C levels in group I were significantly higher than those levels in group II [median total cholesterol: 162.0 (range 158-170 vs. 159.0 (range 150-170, respectively; (P=0.001; and mean LDL-C: 103.5 (SD 3.72 vs. 99.1 (SD 4.63, respectively; (P=0.001. Multivariate analysis revealed a correlation of moderate strength between parental history of hypertension and increased LDL-C (P<0.001 in adolescents. Conclusion Adolescents with and without familial history of hypertension have no

  10. Model-based current profile control at DIII-D

    International Nuclear Information System (INIS)

    Yongsheng Ou; Schuster, E.; Luce, T.; Ferron, J.; Walker, M.; Humphreys, D.

    2006-01-01

    There is consensus in the fusion community that control of the radial profiles of various plasma quantities (current, pressure, rotation, etc.) will be key to the optimization of burning plasma scenarios. It has been suggested, for instance, that global current profile control, eventually combined with pressure profile control, can be an effective mechanism for neoclassical tearing mode (NTM) control and avoidance. It has been also suggested that simultaneous real-time control of the current and pressure profiles could lead to the steady state sustainment of an internal transport barrier (ITB) and so to a stationary optimized plasma regime. A key goal in control of an advanced tokamak (AT) discharge is to maintain safety factor (q) and pressure profiles that are compatible with both MHD stability at high toroidal beta and a high fraction of the self-generated bootstrap current. This will enable high fusion gain and noninductive sustainment of 100% of the plasma current for steady-state operation. Active feedback control of the q profile evolution at DIII-D has been already demonstrated [J.R. Ferron, et al., '' Control of DIII-D Advanced Tokamak Discharges '', 32 nd EPS Conference on Plasma Physics, Tarragona, 27 June - 1 July 2005, ECA vol. 29C, p. 1,069 (2005)]. In this work we report progress towards enabling model-based active control of the current profile during both plasma current ramp-up and flattop phases. Initial results on modeling and simulation of the dynamic evolution of the poloidal flux profile are presented. Dynamic models will allow the exploitation of recent developments in the field of (nonlinear) control of distributed-parameter systems to solve present profile control problems in magnetic fusion energy. (author)

  11. Criteria and procedures to obtain the maximum operational pressure profile in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Leonardo Motta; Krause, Philipe Barroso; Pires, Luis Fernando G. [Pontificia Universidade Catolica (PUC-Rio), RJ (Brazil)

    2009-07-01

    This study analyses the most reliable criteria and procedures used for thermal-hydraulic simulations to acquire the maximum pipeline pressure and the influence of different configurations on the pipeline project. The maximum pressure profile of a pipeline must obey certain criteria and procedures to ensure the operational safety, obeying the standard ASME B31.4. To obtain the maximum pressure curve, a computer model of the pipeline is created and the pressure along its length is simulated. The simulation calculates the steady state of each product transported by the pipeline and the transient of possible operational failures. The pressure control valve (PCV), installed at the downstream of pumps or at the upstream of the receiving terminal can alter the maximum pressure results if they are active during the transient state. The controller's PID (Proportional-Integral-Derivative) of a PCV can also affect the results. If the PCV fails, the fail safe mode (open, close or remain at the same position) also have to be considered. The interlocks also change the maximum pressure results when considered. The interlocks can be local (linked directly to a pressure gauge near a pump, for example) or remote (for instance, a satellite connection that stops the pump when the receiving end block valve closes). The remote interlock should only be considered if the communication of the remote system if reliable. This paper presents the requirements to obtain the Maximum Allowed Operating Pressure and studies the criteria and procedures to obtain the Maximum Operating Pressure and the Maximum Transient Pressure. (author)

  12. Mathematical Modelling of Intraretinal Oxygen Partial Pressure ...

    African Journals Online (AJOL)

    Purpose: The aim of our present work is to develop a simple steady state model for intraretinal oxygen partial pressure distribution and to investigate the effect of various model parameters on the partial pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model ...

  13. Analytical calculations of the rotational transform angles in the torsatron systems with different plasma pressure profiles

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.K.; Pinos, I.B.; Tyupa, V.I.

    1999-01-01

    With formulas for averaging over magnetic surfaces general analytical expressions are here deduced to determine the rotational transform angles in stellarator systems having different plasma pressure profiles

  14. EFFECT OF KIMCHI INTAKE ON LIPID PROFILES AND BLOOD PRESSURE

    Directory of Open Access Journals (Sweden)

    Hyun Ju Kim

    2012-06-01

    Full Text Available Kimchi is a Korean fermented vegetable and has recognized as a healthy food. Some interventional studies have reported an inverse association between kimchi intake and higher lipid levels in healthy and obese people. However, kimchi intake and hypertention were still uncertain. This study is carried out to investigate whether the serum lipid profiles and blood pressure would be influenced by the amount of kimchi intake. Design for the clinical study by controlling the meal consumption and physical activity of the subjects for 7 days was approved by IRB at P Hospital (No.2011075. For the study, 100 volunteers assigned into 2 groups, low (15 g/day, n=50 and high kimchi intake group (210 g/day, n=50, temporarily stayed together at the dormitory during the 7-day experimental period. Three meals with different amount of kimchi were provided and subjects were asked to maintain the normal physical activity as usual. Significant decrease in the concentration of fasting blood glucose, TG, total-C, and LDL-C for the both group was observed after 7 days of kimchi intake regardless of amount of kimchi intake. Only FBG suppression effect was significantly different (p<0.01. Furthermore, people with hypercholesterolemia (≤19 mg/dL showed greater improvements in total cholesterol levels in high kimchi intake group. One notable finding in this study was that urinary Na excretion for the high kimchi intake group was significantly increased (p<0.05. There was no significant difference in the BP reductions by kimchi intake. Higher intake of kimchi appears to be a modest beneficial effect to lipid lowering, without any effect on blood pressure in spite of increased sodium excretion. Long-term study should be clarified whether kimchi intake associated with hypertension.

  15. Curvature generation and pressure profile modulation in membrane by lysolipids: insights from coarse-grained simulations.

    Science.gov (United States)

    Yoo, Jejoong; Cui, Qiang

    2009-10-21

    Although many membrane additives are known to modulate the activities of membrane proteins via perturbing the properties of lipid membrane, the underlying mechanism is often not precisely understood. In this study, we investigate the impact of asymmetrically incorporating single-tailed lysophosphatidylcholine (LPC) into a membrane bilayer using coarse-grained molecular dynamics simulations. Using a simple computational protocol designed to approximately mimic a micropipette setting, we show that asymmetric incorporation of LPC can lead to significant curvature in a bilayer. Detailed analysis of geometrical and mechanical properties (pressure profile) of the resulting mound structure indicates that the degree of pressure profile perturbation is determined not by the local curvature per se but by the packing of lipid headgroups (i.e., area-per-lipid). The findings help provide a concrete basis for understanding the activation mechanism of mechanosensitive channels by asymmetric incorporation of LPC into membrane patches in patch-clamp experiments. The calculated local pressure profiles are valuable to the construction of realistic membrane models for the analysis of mechanosensation in a continuum mechanics framework.

  16. Cylindrically-Symmetric Equilibria in Ideal MHD with Fractal Pressure Profiles

    Science.gov (United States)

    Kraus, Brian; Hudson, Stuart

    2016-10-01

    In ideal magnetohydrodynamics, unphysical, pressure-driven currents exist where flux surfaces with rational rotational transform coincide with pressure gradients, a situation Grad termed ``pathological''. As an alternative, we construct a non-trivial, continuous pressure profile that is flat on sufficiently wide intervals near each rational surface. Such a profile must be self-similar and thus fractal, because intervals of flat pressure exist around high-order rational surfaces at all scales. This infinite-resolution fractal pressure is analyzed as a homeomorphism of the Cantor set. Additionally, an algorithm has been written to numerically produce an approximation of the pressure profile, where only a finite number of rational surfaces are considered. Using this algorithm, we investigate the magnetic field and current profiles associated with the fractal pressure and a given rotational transform in cylindrical geometry. This work was supported by DOE contract DE-AC02-09CH11466.

  17. VHBORE: A code to compute borehole fluid conductivity profiles with pressure changes in the borehole

    International Nuclear Information System (INIS)

    Hale, F.V.; Tsang, C.F.

    1994-06-01

    This report describes the code VHBORE which can be used to model fluid electric conductivity profiles in a borehole intersecting fractured rock under conditions of changing pressure in the well bore. Pressure changes may be due to water level variations caused by pumping or fluid density effects as formation fluid is drawn into the borehole. Previous reports describe the method of estimating the hydrologic behavior of fractured rock using a time series of electric conductivity logs and an earlier code, BORE, to generate electric conductivity logs under constant pressure and flow rate conditions. The earlier model, BORE, assumed a constant flow rate, q i , for each inflow into the well bore. In the present code the user supplies the location, constant pressure, h i , transmissivity, T i , and storativity, S i , for each fracture, as well as the initial water level in the well, h w (0), In addition, the input data contains changes in the water level at later times, Δh w (t), typically caused by turning a pump on or off. The variable density calculation also requires input of the density of each of the inflow fluids, ρ i , and the initial uniform density of the well bore fluid, ρ w (0). These parameters are used to compute the flow rate for each inflow point at each time step. The numerical method of Jacob and Lohman (1952) is used to compute the flow rate into or out of the fractures based on the changes in pressure in the wellbore. A dimensionless function relates flow rate as a function of time in response to an imposed pressure change. The principle of superposition is used to determine the net flow rate from a time series of pressure changes. Additional reading on the relationship between drawdown and flow rate can be found in Earlougher (1977), particularly his Section 4.6, open-quotes Constant-Pressure Flow Testingclose quotes

  18. Comparison of pressure profiles of massive relaxed galaxy clusters using the Sunyaev-Zel'dovich and x-ray data

    International Nuclear Information System (INIS)

    Bonamente, Massimiliano; Hasler, Nicole; Bulbul, Esra; Landry, David; Carlstrom, John E; Culverhouse, Thomas L; Gralla, Megan; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M; Plagge, Thomas; Pryke, Clem; Hawkins, David; Lamb, James W; Muchovej, Stephen; Joy, Marshall; Kolodziejczak, Jeffery; Marrone, Daniel P; Miller, Amber; Mroczkowski, Tony

    2012-01-01

    We present the Sunyaev-Zel'dovich (SZ) effect observations of a sample of 25 massive relaxed galaxy clusters observed with the Sunyaev-Zel'dovich array (SZA), an eight-element interferometer that is part of the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We performed an analysis of new SZA data and archival Chandra observations of this sample to investigate the integrated pressure—a proxy for cluster mass—determined from x-ray and SZ observations, two independent probes of the intra-cluster medium (ICM). This analysis makes use of a model for the ICM introduced by Bulbul (2010 Astrophys. J. 720 1038) which can be applied simultaneously to the SZ and x-ray data. With this model, we estimated the pressure profile for each cluster using a joint analysis of the SZ and x-ray data, and using the SZ data alone. We found that the integrated pressures measured from the x-ray and SZ data are consistent. This conclusion is in agreement with recent results obtained using WMAP and Planck data, confirming that SZ and x-ray observations of massive clusters detect the same amount of thermal pressure from the ICM. To test for possible biases introduced by our choice of model, we also fitted the SZ data using the universal pressure profile proposed by Arnaud (2010 Astron. Astrophys. 517 A92) and found consistency between the two models out to r 500 in the pressure profiles and integrated pressures. (paper)

  19. Pressurizer model for Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Parkansky, D.G.; Bedrossian, G.C.

    1993-01-01

    Since the models normally used for he simulation of eventual accidents at the Embalse nuclear power plant with the FIREBIRD III code did not work satisfactorily when the pressurizer becomes empty of liquid, a new model was developed. This report presents the governing equations as well as the calculation technique, for which a computer program was made. An example of application is also presented. The results show that this new model can easily solve the problem of lack of liquid in the pressurizer, as it lets the fluid enter and exit freely, according to the pressure transient at the reactor outlet headers. (author)

  20. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    pressure distribution under adapted conditions of light and darkness.. Method: A simple eight-layered mathematical model for intraretinal oxygen partial pressure distribution was developed using Fick's law of diffusion, Michaelis-Menten kinetics, and oxygen delivery in the inner retina. The system of non-linear differential ...

  1. Mathematical Modelling of Intraretinal Oxygen Partial Pressure

    African Journals Online (AJOL)

    Erah

    This minimum pressure may fall below the critical level of oxygen partial pressure and affect the retinal function. In order to restore normal retinal function, extreme hyperoxia may assist to make the choroid capable of supplying oxygen to the whole retina during total retinal artery occlusion. Keywords: Mathematical modeling ...

  2. Pressure And Thermal Modeling Of Rocket Launches

    Science.gov (United States)

    Smith, Sheldon D.; Myruski, Brian L.; Farmer, Richard C.; Freeman, Jon A.

    1995-01-01

    Report presents mathematical model for use in designing rocket-launching stand. Predicts pressure and thermal environment, as well as thermal responses of structures to impinging rocket-exhaust plumes. Enables relatively inexperienced analyst to determine time-varying distributions and absolute levels of pressure and heat loads on structures.

  3. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  4. Modeling of Pressure Effects in HVDC Cables

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole; Strøbech, Esben

    1999-01-01

    A model is developed for the prediction of pressure effects in HVDC mass impregnatedcables as a result of temperature changes.To test the model assumptions, experiments were performed in cable like geometries.It is concluded that the model may predict the formation of gas cavities....

  5. Multichannel urethral pressure profiles: reproducibility and three-dimensional representation

    NARCIS (Netherlands)

    Messelink, E. J.; Dabhoiwala, N. F.; Vrij, V.; Dijkhuizen, T.; Schneider, P.; Dobbe, I.; Lettinga, K.; Kurth, K. H.

    1997-01-01

    Urethral pressure profilometry (UPP) is used to investigate the pressure distribution in the urethra. Single UPP is dependent on the orientation of the catheter during the study. To circumvent this problem, we developed a system for multichannel profilometry (MCUPP) that can be used in daily

  6. Retransformation bias in a stem profile model

    Science.gov (United States)

    Raymond L. Czaplewski; David Bruce

    1990-01-01

    An unbiased profile model, fit to diameter divided by diameter at breast height, overestimated volume of 5.3-m log sections by 0.5 to 3.5%. Another unbiased profile model, fit to squared diameter divided by squared diameter at breast height, underestimated bole diameters by 0.2 to 2.1%. These biases are caused by retransformation of the predicted dependent variable;...

  7. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  8. Note: Interpolation for evaluation of a two-dimensional spatial profile of plasma densities at low gas pressures

    International Nuclear Information System (INIS)

    Oh, Se-Jin; Kim, Young-Chul; Chung, Chin-Wook

    2011-01-01

    An interpolation algorithm for the evaluation of the spatial profile of plasma densities in a cylindrical reactor was developed for low gas pressures. The algorithm is based on a collisionless two-dimensional fluid model. Contrary to the collisional case, i.e., diffusion fluid model, the fitting algorithm depends on the aspect ratio of the cylindrical reactor. The spatial density profile of the collisionless fitting algorithm is presented in two-dimensional images and compared with the results of the diffusion fluid model.

  9. Reservoir pressure evolution model during exploration drilling

    Directory of Open Access Journals (Sweden)

    Korotaev B. A.

    2017-03-01

    Full Text Available Based on the analysis of laboratory studies and literature data the method for estimating reservoir pressure in exploratory drilling has been proposed, it allows identify zones of abnormal reservoir pressure in the presence of seismic data on reservoir location depths. This method of assessment is based on developed at the end of the XX century methods using d- and σ-exponentials taking into account the mechanical drilling speed, rotor speed, bit load and its diameter, lithological constant and degree of rocks' compaction, mud density and "regional density". It is known that in exploratory drilling pulsation of pressure at the wellhead is observed. Such pulsation is a consequence of transferring reservoir pressure through clay. In the paper the mechanism for transferring pressure to the bottomhole as well as the behaviour of the clay layer during transmission of excess pressure has been described. A laboratory installation has been built, it has been used for modelling pressure propagation to the bottomhole of the well through a layer of clay. The bulge of the clay layer is established for 215.9 mm bottomhole diameter. Functional correlation of pressure propagation through the layer of clay has been determined and a reaction of the top clay layer has been shown to have bulge with a height of 25 mm. A pressure distribution scheme (balance has been developed, which takes into account the distance from layers with abnormal pressure to the bottomhole. A balance equation for reservoir pressure evaluation has been derived including well depth, distance from bottomhole to the top of the formation with abnormal pressure and density of clay.

  10. Modeling pressure rise in gas targets

    Science.gov (United States)

    Jahangiri, P.; Lapi, S. E.; Publicover, J.; Buckley, K.; Martinez, D. M.; Ruth, T. J.; Hoehr, C.

    2017-05-01

    The purpose of this work is to introduce a universal mathematical model to explain a gas target behaviour at steady-state time scale. To obtain our final goal, an analytical model is proposed to study the pressure rise in the targets used to produce medical isotopes on low-energy cyclotrons. The model is developed based on the assumption that during irradiation the system reaches steady-state. The model is verified by various experiments performed at different beam currents, gas type, and initial pressures at 13 MeV cyclotron at TRIUMF. Excellent agreement is achieved.

  11. APPLICATION OF A SELF-SIMILAR PRESSURE PROFILE TO SUNYAEV-ZEL'DOVICH EFFECT DATA FROM GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Mroczkowski, Tony; Miller, Amber; Bonamente, Max; Carlstrom, John E.; Culverhouse, Thomas L.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Marrone, Daniel P.; Pryke, Clem; Sharp, Matthew; Hawkins, David; Lamb, James W.; Woody, David; Joy, Marshall; Maughan, Ben; Muchovej, Stephen; Nagai, Daisuke

    2009-01-01

    We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments-such as the Sunyaev-Zel'dovich Array (SZA)-are capable of probing clusters over a large range in a physical scale. A model is therefore required that can accurately describe a cluster's pressure profile over a broad range of radii from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high-quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.

  12. Stratospheric and Mesospheric Pressure-Temperature Profiles from the Rotational Analysis of CO subscript2 Lines

    Science.gov (United States)

    Gunson, M.; Lowes, L.; Abrams, M.; Raper, O.; Farmer, C.; Stiller, G.; Zander, R.; Rinsland, C.

    1994-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument.

  13. MGS RS: ATMOSPHERIC TEMPERATURE-PRESSURE PROFILES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains over 21000 temperature-pressure profiles (TPS files) of the neutral atmosphere derived from Mars Global Surveyor (MGS) radio occultation data....

  14. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  15. Element-specific density profiles in interacting biomembrane models

    International Nuclear Information System (INIS)

    Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Gochev, Georgi; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg

    2017-01-01

    Surface interactions involving biomembranes, such as cell–cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure–distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces. (paper)

  16. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  17. Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2009-02-01

    Full Text Available Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.

  18. Blood pressure profile in Nigerian children | Hamidu | East African ...

    African Journals Online (AJOL)

    Objective: To observe blood pressure (BP) pattern and its correlates in primary school children of northern Nigeria. Design: Sitting BP and pulse were measured in quadruplicate, then repeated after four weeks in 1,721 healthy children aged five to 16 years. Body weight and height were also measured in their school ...

  19. Modelling of pressure loads in a pressure suppression pool

    International Nuclear Information System (INIS)

    Timperi, A.; Chauhan, M.; Paettikangas, T.; Niemi, J.

    2013-06-01

    Rapid collapse of a large steam bubble is analyzed by using CFD and FEM calculations. In addition, a 1D code is written which takes into account the finite condensation rate. The 1D simulations are compared with the PPOOLEX experiment COL-01. By adjusting the condensation rate, the calculated pressure peak near the vent outlet could be made same as in the experiment. Scaling of the measured pressure loads to full-scale is studied by dimensional analyses and by review of the analysis of Sonin (1981). The structural response of containment during chugging is studied by using an FEM of containment with simplified geometry and loading which was created based on experimental data. The results are compared to the case in which desynchronization is absent, and chugging occurs simultaneously in every vent pipe. The desynchronized loading is created by giving random initiation times for chugs out of distribution corresponding to the desynchronization time presented by Kukita and Namatame (1985). CFD simulations of the PPOOLEX experiment MIX-03 were performed. In the experiment, clear chugging behavior was observed. In the simulation, the interphasial surface was much more stable and oscillation occurred at a higher frequency than in the experiment. The differences are likely caused by the turbulence model and too coarse numerical mesh, which causes numerical diffusion. (Author)

  20. Modeling detector response for neutron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J. [National Inst. of Standards and Technology, Boulder, CO (United States); Downing, R.G. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Lamaze, G.P. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hofsaess, H.C. [Konstanz Univ. (Germany); Biegel, J. [Konstanz Univ. (Germany); Ronning, C. [Konstanz Univ. (Germany)

    1995-11-21

    In Neutron Depth Profiling (NDP), inferences about the concentration profile of an element in a material are based on the energy spectrum of charged particles emitted due to specific nuclear reactions. The detector response function relates the depth of emission to the expected energy spectrum of the emitted particles. Here, the detector response function is modeled for arbitrary source and detector geometries based on a model for the stopping power of the material, energy straggling, multiple scattering and random detector measurement error. At the NIST Cold Neutron Research Facility, a NDP spectrum was collected for a diamond-like carbon (DLC) sample doped with boron. A vertical slit was placed in front of the detector for collimation. Based on the computed detector response function, a model for the depth profile of boron is fit to the observed NDP spectrum. The contribution of straggling to overall variability was increased by multiplying the Bohr Model prediction by a ramp factor. The adjustable parameter in the ramp was selected to give the best agreement between the fitted profile and the expected shape of the profile. The expected shape is determined from experimental process control measurements. (orig.).

  1. Inferred pressure gradient and fluid flow in a condensing sessile droplet based on the measured thickness profile

    Science.gov (United States)

    Gokhale, Shripad J.; Plawsky, Joel L.; Wayner, Peter C.; DasGupta, Sunando

    2004-06-01

    The thickness and curvature profiles of partially wetting condensing drops of 2-propanol on a quartz surface were measured using image analyzing interferometry and a new data analysis procedure. The profiles give fundamental insight into the phenomena of phase change, pressure gradient, fluid flow and spreading in a condensing drop, and the physics of interfacial phenomena in the contact line region of a polar fluid. The precursor adsorbed film and interfacial slope (a measure of the contact angle) and curvature profiles are consistent with previous concepts based on interfacial models. The curvature profiles, which were obtained using a new data reduction procedure, clearly demonstrate the convex nature of the drop near the thicker part (negative value of curvature), whereas, in the thinner region, the drop is concave (positive curvature) where the partially wetting liquid merges with a flat adsorbed film. The pressure profiles inside the drop are calculated from the augmented Young-Laplace equation showing that the pressure gradient increases with an increase in the spreading velocity (rates of condensation) to support the higher liquid flow rates associated with the growth of the drop. Internal flow is towards the point of maximum positive curvature from both the thin film and convex regions. Apolar and polar components of the spreading coefficient help describe the interfacial phenomena occurring. The experimental techniques are relatively simple but very revealing.

  2. A lidar system for measuring atmospheric pressure and temperature profiles

    Science.gov (United States)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  3. Pressure profiles of the BRing based on the simulation used in the CSRm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.C., E-mail: wangjiachen@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, P., E-mail: lipeng@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang, J.C.; Yuan, Y.J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wu, B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chai, Z.; Luo, C. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Dong, Z.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zheng, W.H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, H.; Ruan, S.; Wang, G.; Liu, J.; Chen, X.; Wang, K.D.; Qin, Z.M. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yin, B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-07-11

    HIAF-BRing, a new multipurpose accelerator facility of the High Intensity heavy-ion Accelerator Facility project, requires an extremely high vacuum lower than 10{sup −11} mbar to fulfill the requirements of radioactive beam physics and high energy density physics. To achieve the required process pressure, the bench-marked codes of VAKTRAK and Molflow+ are used to simulate the pressure profiles of the BRing system. In order to ensure the accuracy of the implementation of VAKTRAK, the computational results are verified by measured pressure data and compared with a new simulation code BOLIDE on the current synchrotron CSRm. Since the verification of VAKTRAK has been done, the pressure profiles of the BRing are calculated with different parameters such as conductance, out-gassing rates and pumping speeds. According to the computational results, the optimal parameters are selected to achieve the required pressure for the BRing.

  4. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    Science.gov (United States)

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  5. Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates

    Directory of Open Access Journals (Sweden)

    Maryam Kahali Moghaddam

    2015-03-01

    Full Text Available The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy’s law in porous media to control the resin flow during infusion.

  6. Depth profiling of hydrogen under an atmospheric pressure

    International Nuclear Information System (INIS)

    Yonemura, H.; Kitaoka, Y.; Sekiba, D.; Matsuzaki, H.; Ogura, S.; Matsumoto, M.; Iwamura, Y.; Ito, T.; Narusawa, T.; Fukutani, K.

    2011-01-01

    Nuclear reaction analysis of hydrogen with a use of the 1 H( 15 N,αγ) 12 C reaction was performed under a atmospheric condition. A 100 nm-thick silicon nitride membrane coated with gold of 10 nm was used for the extraction of the 15 N beam into the sample chamber filled with gas molecules. Hydrogen contained in a Y film with a thickness of 80 nm was detected in N 2 of 10 5 Pa. This nuclear reaction analysis (NRA) setup was also applied to H 2 gas, and the yield curve revealed a plateau feature. The plateau level was, furthermore, found to be constant independent of the H 2 pressure. We show that this plateau intensity can be used to obtain the detection efficiency of a NRA setup.

  7. Fish oil affects blood pressure and the plasma lipid profile in healthy Danish infants

    DEFF Research Database (Denmark)

    Damsgaard, C.T.; Schack-Nielsen, L.; Michaelsen, K.F.

    2006-01-01

    Animal and epidemiologic studies indicate that early nutrition has lasting effects on metabolism and cardiovascular disease risk. In adults, (n-3) long-chain PUFA (LCPUFA) from fish oils improve blood pressure, the lipid profile, and possibly cardiovascular disease mortality. This randomized trial...... is the first to investigate the effects of fish oil on blood pressure and the lipid profile in infancy. Healthy term 9-mo old infants In 83) were randomly assigned to 5 mL fish oil daily or no fish oil for 3 mo and to 2 different milk types. Before and after the intervention, blood pressure was measured...... with an oscillometric device, and blood was sampled for analysis of erythrocyte fatty acid composition and the plasma lipid profile. This paper examines the effects of the fish oil supplement, with adjustment for the effects of the milk intervention when relevant. The fish oil intervention increased erythrocyte (n-3...

  8. Variation of Compton Profiles of the CO2 at different pressures

    Science.gov (United States)

    Gürol, Ali; Şakar, Erdem

    2017-04-01

    In this study, it has been measured the Compton Profile of the CO2 gas at different pressures by using a Compton Profile Spectrometer with an annular Am-241 radioactive source and a HPGe detector. CO2 gas molecules sealed in a gas chamber at different pressures. The gas pressure had been set by using an analog manometer before the measurements. The γ-rays emitted from source was incident into the gas from a hostaphan window. The detector recorded the scattered photons from molecules. To obtain correct Compton Profile values, the raw data were corrected for some effects; i.e. scattering from the gas chamber's walls, absorption effects of windows on gas chamber and detector, and multiple scattering corrections. A Matlab Code has been used for all calculations. The results clearly demonstrate the valance electronic structure of the materials is highly depending on the pressure. According to our experimental results, when the pressure in the gas chamber increase the Compton Profiles of valance electrons changes ˜ 8,0%.

  9. Comparative Study of the Scaling Effect on Pressure Profiles in Capillary Underfill Process

    Science.gov (United States)

    Ng, Fei Chong; Abas, Aizat; Abdullah, M. Z.; Ishak, M. H. H.; Yuen Chong, Gean

    2017-05-01

    Optimization of the capillary underfill (CUF) encapsulation process is vital to enhance the package’s reliability. Therefore, the design and sizing of the newly developed ball grid array (BGA) device must be considered so that it is compatible with the CUF process. The scaling effect of BGA on CUF flow and its dynamic properties is thoroughly investigated by means of fluid-structure interaction (FSI) numerical simulation. This paper generally highlighted the differences in CUF flow behaviours, together with the pressure distributions between the actual industrial size BGA and the scaled up models for large BGA setup. While flow front profiles appeared to be similar across BGA of various sizes at relative error less than 10%, the CUF filling time gradually increases as the BGA become larger. The scaling limit is found to be at 20, based on the analysis of dimensionless number. The entrant pressure however decreases when the BGA device being scaled up. These findings will assist in the future BGA designs for various sizes used in the CUF encapsulation process.

  10. Hydrodynamic Simulation of Non-thermal Pressure Profiles of Galaxy Clusters

    OpenAIRE

    Nelson, Kaylea; Lau, Erwin T.; Nagai, Daisuke

    2014-01-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate....

  11. Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra

    Science.gov (United States)

    Rinsland, C. P.; Russell, J. M., III; Park, J. H.; Namkung, J.

    1987-01-01

    Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments.

  12. Middle and upper atmosphere pressure-temperature profiles and the abundances of CO2 and CO in the upper atmosphere from ATMOS/Spacelab 3 observations

    Science.gov (United States)

    Rinsland, C. P.; Gunson, M. R.; Zander, R.; Lopez-Puertas, M.

    1992-01-01

    An improved method for retrieving pressure-temperature profiles is described and is used to retrieve profiles of the kinetic-temperature and atmospheric-pressure profiles between 20 and 116 km altitudes and the CO2 and CO volume-mixing ratios between 70 and 116 km, using the IR occultation spectra recorded by the Spacelab 3 atmospheric trace molecular spectroscopy (ATMOS) Fourier transform spectrometer between April 29 and May 6, 1985. Profiles are derived for six ATMOS occultations. The CO2 and CO volume-mixing profiles are compared with previous observations and model predictions. Evidence is found for vibrational non-LTE by analyzing the lines of the (nu-2 + nu-3 - nu-2) (C-12)(O-16) band. Results are used for deriving (C-12)(O-16) (010) vibrational temperatures, which are compared with the retrieved kinetic temperatures and the predictions of non-LTE effects by recent models.

  13. CFD modeling of the IRIS pressurizer dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2015-07-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  14. Linear pressure profile estimation along a penstock associated with transients due to severe defects

    International Nuclear Information System (INIS)

    Kueny, J L; Clary, V; Combes, G; Lourenço, M; Ballester, J L

    2014-01-01

    The purpose of this article is to show how the pressure load profile along a penstock of an hydroplant and the corresponding flow rate is obtained from the pressure signal using a code called ACHYL CF. In particular the paper will present how it is possible to reconstruct the history of the incident after a strong transient state, in the case of two plants with Pelton turbines and one DSPCF device on a branch of the circuit. For plant 1 the DSPCF device observes an overrun of the maximal allowed pressure after the filling of the injector branch and for plant 2 , a strong transient leads to the rupture of the penstock

  15. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    Science.gov (United States)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  16. Effects of flexible and rigid rocker profiles on in-shoe pressure

    NARCIS (Netherlands)

    Reints, Roy; Hijmans, Juha M.; Burgerhof, Johannes G. M.; Postema, Klaas; Verkerke, Gijsbertus J.

    2017-01-01

    Rocker profiles are commonly used in the prevention of diabetic foot ulcers. Rockers are mostly stiffened to restrict toe plantarflexion to ensure proper offloading. It is also described that toe dorsiflexion should be restricted. However, the difference in effect on plantar pressure between rigid

  17. Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures

    NARCIS (Netherlands)

    Gu, Z.; Witschas, B.; van der Water, W.; Ubachs, W.M.G.

    2013-01-01

    Rayleigh-Brillouin (RB) scattering profiles for air have been recorded for the temperature range from 255 to 340 K and the pressure range from 640 to 3300 mbar, covering the conditions relevant for the Earth's atmosphere and for planned atmospheric light detection and ranging (LIDAR) missions. The

  18. Modeling of low pressure plasma sources for microelectronics fabrication

    Science.gov (United States)

    Agarwal, Ankur; Bera, Kallol; Kenney, Jason; Likhanskii, Alexandre; Rauf, Shahid

    2017-10-01

    Chemically reactive plasmas operating in the 1 mTorr-10 Torr pressure range are widely used for thin film processing in the semiconductor industry. Plasma modeling has come to play an important role in the design of these plasma processing systems. A number of 3-dimensional (3D) fluid and hybrid plasma modeling examples are used to illustrate the role of computational investigations in design of plasma processing hardware for applications such as ion implantation, deposition, and etching. A model for a rectangular inductively coupled plasma (ICP) source is described, which is employed as an ion source for ion implantation. It is shown that gas pressure strongly influences ion flux uniformity, which is determined by the balance between the location of plasma production and diffusion. The effect of chamber dimensions on plasma uniformity in a rectangular capacitively coupled plasma (CCP) is examined using an electromagnetic plasma model. Due to high pressure and small gap in this system, plasma uniformity is found to be primarily determined by the electric field profile in the sheath/pre-sheath region. A 3D model is utilized to investigate the confinement properties of a mesh in a cylindrical CCP. Results highlight the role of hole topology and size on the formation of localized hot-spots. A 3D electromagnetic plasma model for a cylindrical ICP is used to study inductive versus capacitive power coupling and how placement of ground return wires influences it. Finally, a 3D hybrid plasma model for an electron beam generated magnetized plasma is used to understand the role of reactor geometry on plasma uniformity in the presence of E  ×  B drift.

  19. Time-resolved wave profile measurements in copper to Megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  20. Modelling chemical depletion profiles in regolith

    Science.gov (United States)

    Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.

    2008-01-01

    Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.

  1. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  2. Beam Profile Measurement in MTA Beam Line for High Pressure RF Cavity Beam Test

    International Nuclear Information System (INIS)

    Jana, M.R.; Bross, A.; Chung, M.; Greer, S.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.; Leonova, M.; Moretti, A.; Popovic, M.; Schwartz, T.

    2012-01-01

    Recent High Pressure RF (HPRF) cavity experiment at MuCool Test Area (MTA) has used 400 MeV Linac proton beam to study the beam loading effect. When the energetic proton beam passes through the cavity, it ionizes the inside gas and produces the electrons. These electrons consume RF power inside the cavity. Number of electrons produced per cm inside the cavity (at 950 psi Hydrogen gas) per incident proton is ∼ 1200. The measurement of beam position and profile are necessary. MTA is flammable gas (Hydrogen) hazard zone so we have developed a passive beam diagnostic instrument using Chromox-6 scintillation screen and CCD camera. This paper presents quantitative information about beam position and beam profile. Neutral density filter was used to avoid saturation of CCD camera. Image data is filtered and fitted with Gaussian function to compute the beam size. The beam profile obtained from scintillation screen shall be compared with multi-wire beam profile.

  3. Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Castex, G.

    2013-01-01

    that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 × R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole......Taking advantage of the all-sky coverage and broadfrequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates...... flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0,c500,γ, α,β] = [6.41,1.81,0.31,1.33,4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts...

  4. Modeling and diagnostic techniques applicable to the analysis of pressure noise in pressurized water reactors and pressure-sensing systems

    International Nuclear Information System (INIS)

    Mullens, J.A.; Thie, J.A.

    1984-01-01

    Pressure noise data from a PWR are interpreted by means of a computer-implemented model. The model's parameters, namely hydraulic impedances and noise sources, are either calculated or deduced from fits to data. Its accuracy is encouraging and raises the possibility of diagnostic assistance for nuclear plant monitoring. A number of specific applications of pressure noise in the primary system of a PWR and in a pressure sensing system are suggested

  5. Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures

    Energy Technology Data Exchange (ETDEWEB)

    Tashakor, S. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School; Islamic Azad Univ., Shiraz (Iran, Islamic Republic of). Dept. of Nuclear Engineering; Zarifi, E. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School; Salehi, A.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Nuclear Energy

    2015-12-15

    The High-Performance Light Water Reactor (HPLWR) is the European version of the advance nuclear energy power plant at Supercritical-pressure. A light water reactor at supercritical pressure, being currently under design, is the new generation of nuclear reactors. The aim of this study is to predict the HPLWR neutronic behavior of the axial enrichment profile with an average enrichment of 5 w/o U-235. Neutronic calculations are performed using WIMS and CITATION codes. Changes in neutronic parameter, such as Power Peaking Factor (PPF) are discussed in this paper.

  6. Pressure Sensitive Paint Applied to Flexible Models

    Data.gov (United States)

    National Aeronautics and Space Administration — One gap in current pressure-measurement technology is a high-spatial-resolution method for accurately measuring pressures on spatially and temporally varying...

  7. Experimental modelling of core debris dispersion from the vault under a PWR pressure vessel: Part 1

    International Nuclear Information System (INIS)

    Macbeth, R.V.; Trenberth, R.

    1987-12-01

    Modelling experiments have been done on a 1/25 scale model in Perspex of the vault under a PWR pressure vessel. Various liquids have been used to simulate molten core debris assumed to have fallen on to the vault floor from a breach at the bottom of the pressure vessel. High pressure air and helium have been used to simulate the discharge of steam and gas from the breach. The dispersion of liquid via the vault access shafts has been measured. Photographs have been taken of fluid flow patterns and velocity profiles have been obtained. The requirements for further experiments are indicated. (author)

  8. Tackifier Mobility in Model Pressure Sensitive Adhesives

    Science.gov (United States)

    Paiva, Adriana; Li, Xiaoqing

    1997-03-01

    A systematic study of the molecular mobility of tackifier in a pressure sensitive adhesive (PSA) has been done for the first time. The objective is to relate changes in adhesive performance with tackifier loading to tackifier mobility. Study focused first on a model PSA consisting of anionically polymerized polyisoprene (PI) (Mw=300,000 Mw/Mn 1.05) and a single simple tackifier, n-butyl ester of abietic acid. This model system is fully miscible at room temperature, and its tack performance has been studied. Tackifier mobility was measured using Pulsed-Gradient Spin-Echo NMR as a function of tackifier concentration and temperature. The concentration dependence observed for this adhesive with modestly enhanced performance was weak, indicating the tackifier neither acts to plasticize or antiplasticize appreciably. Diffusion in a two-phase system of hydrogenated PI with the same tackifier is similar, though the tack of that adhesive varies much more markedly with composition. In contrast, tackifier mobility varies strongly with composition in a PSA composed of PI with a commercial tackifier chemically similar to the model tackifier, but having a higher molecular weight and glass transition temperature. * Supported in part by US DOD: ARO(DAAH04-93-G-0410)

  9. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  10. Radial profiles of velocity and pressure for condensation-induced hurricanes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2011-01-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  11. Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study

    Science.gov (United States)

    Schuster, Roman; Schafler, Erhard; Schell, Norbert; Kunz, Martin; Abart, Rainer

    2017-11-01

    Calcite aggregates were deformed to high strain using high-pressure torsion and applying confining pressures of 1-6 GPa and temperatures between room temperature and 450 °C. The run products were characterized by X-ray diffraction, and key microstructural parameters were extracted employing X-ray line profile analysis. The dominant slip system was determined as r { 10 1 bar 4 } ⟨ 2 bar 021 ⟩ with edge dislocation character. The resulting dislocation density and the size of the coherently scattering domains (CSD) exhibit a systematic dependence on the P-T conditions of deformation. While high pressure generally impedes recovery through reducing point defect mobility, the picture is complicated by pressure-induced phase transformations in the CaCO3 system. Transition from the calcite stability field to those of the high-pressure polymorphs CaCO3-II, CaCO3-III and CaCO3-IIIb leads to a change of the microstructural evolution with deformation. At 450 °C and pressures within the calcite stability field, dislocation densities and CSD sizes saturate at shear strains exceeding 10 in agreement with earlier studies at lower pressures. In the stability field of CaCO3-II, the dislocation density exhibits a more complex behavior. Furthermore, at a given strain and strain rate, the dislocation density increases and the CSD size decreases with increasing pressure within the stability fields of either calcite or of the high-pressure polymorphs. There is, however, a jump from high dislocation densities and small CSDs in the upper pressure region of the calcite stability field to lower dislocation densities and larger CSDs in the low-pressure region of the CaCO3-II stability field. This jump is more pronounced at higher temperatures and less so at room temperature. The pressure influence on the deformation-induced evolution of dislocation densities implies that pressure variations may change the rheology of carbonate rocks. In particular, a weakening is expected to occur at

  12. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  13. Can pyrene probes be used to measure lateral pressure profiles of lipid membranes? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Franova, M. D.; Vattulainen, I.; Ollila, O. H. S.

    2014-01-01

    simulations, since established methods to measure the lateral pressure profile experimentally have not been available. The only experiments that have attempted to gauge the lateral pressure profile have been done by using di-pyrenyl-phosphatidylcholine (di-pyr-PC) probes. In these experiments, the excimer......The lateral pressure profile of lipid bilayers has gained a lot of attention, since changes in the pressure profile have been suggested to shift the membrane protein conformational equilibrium. This relation has been mostly studied with theoretical methods, especially with molecular dynamics....../monomer fluorescence ratio has been assumed to represent the lateral pressure in the location of the pyrene moieties. Here, we consider the validity of this assumption through atomistic molecular dynamics simulations in a DOPC (dioleoylphosphatidylcholine) membrane, which hosts di-pyr-PC probes with different acyl...

  14. Continuum damage modeling through theoretical and experimental pressure limit formulas

    Directory of Open Access Journals (Sweden)

    Fatima Majid

    2018-01-01

    Full Text Available In this paper, we developed a mathematical modeling to represent the damage of thermoplastic pipes. On the one hand, we adapted the theories of the rupture pressure to fit the High Density Polyethylene (HDPE case. Indeed, the theories for calculating the rupture pressure are multiple, designed originally for steels and alloys. For polymer materials, we have found that these theories can be adapted using a coefficient related to the nature of the studied material. The HDPE is characterized by two important values of pressure, deduced from the ductile form of the internal pressures evolution until burst. For this reason, we have designed an alpha coefficient taking into account these two pressures and giving a good approximation of the evolution of the experimental burst pressures through the theoretically corrected ones, using Faupel㒒s pressure formula. Then, we can deduce the evolution of the theoretical damage using the calculated pressures. On the other hand, two other mathematical models were undertaken. The first one has given rise to an adaptive model referring to an expression of the pressure as a function of the life fraction, the characteristic pressures and the critical life fraction. The second model represents a continuum damage model incorporating the pressure equations as a function of the life fraction and based on the burst pressure�s static damage model. These models represent important tools for industrials to assess the failure of thermoplastic pipes and proceed quick checks

  15. Parent Prevention Communication Profiles and Adolescent Substance Use: A Latent Profile Analysis and Growth Curve Model

    Science.gov (United States)

    Choi, Hye Jeong; Miller-Day, Michelle; Shin, YoungJu; Hecht, Michael L.; Pettigrew, Jonathan; Krieger, Janice L.; Lee, JeongKyu; Graham, John W.

    2017-01-01

    This current study identifies distinct parent prevention communication profiles and examines whether youth with different parental communication profiles have varying substance use trajectories over time. Eleven schools in two rural school districts in the Midwestern United States were selected, and 784 students were surveyed at three time points from the beginning of 7th grade to the end of 8th grade. A series of latent profile analyses were performed to identify discrete profiles/subgroups of substance-specific prevention communication (SSPC). The results revealed a 4-profile model of SSPC: Active-Open, Passive-Open, Active-Silent, and Passive-Silent. A growth curve model revealed different rates of lifetime substance use depending on the youth’s SSPC profile. These findings have implications for parenting interventions and tailoring messages for parents to fit specific SSPC profiles. PMID:29056872

  16. HMMEditor: a visual editing tool for profile hidden Markov model

    Directory of Open Access Journals (Sweden)

    Cheng Jianlin

    2008-03-01

    Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.

  17. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  18. Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes

    Science.gov (United States)

    He, Jun; Zhang, Fan; Han, Yan

    2017-01-01

    Abstract Background: This meta-analysis aimed to systematically evaluate the effects of probiotics on blood lipid and blood pressure among patients with type 2 diabetes mellitus (T2DM) based on the randomized controlled studies. Methods: PubMed, Cochrane, Embase, Wanfang, China National Knowledge Infrastructure, and VIP database were searched by the index words to identify the qualified randomized control trial. The latest research was done in the January 2017. Mean difference (MD) along with 95% confidence interval (CI) was used to analyze the included outcomes. Results: Ten trials were included at last with 297 patients in the treatment group and 294 patients in the control group. Probiotics significantly decreased the value of total cholesterol (SMD −0.57, 95% CI −0.92 to 0.21), triglyceride (SMD −0.66, 95% CI −0.93 to 0.39), low-density lipoprotein (SMD −0.40, 95% CI −0.79 to 0.01), systolic blood pressure (WMD −5.04, 95% CI −8.8 to 1.20), diastolic blood pressure (SMD −0.39, 95% CI −0.62 to 0.17), fasting blood glucose (FBG) (SMD 3.54, 95% CI 1.94–5.15) compared with the placebo treatment. Apart from this, probiotics could significantly improve the value of high-density lipoprotein (SMD 0.38, 95% CI 0.03–0.73). Conclusion: Probiotics may decrease the indexes of lipid profile, blood pressure, and FBG in patients with T2DM; application of probiotics might be a new method for lipid profiles and blood pressure management in T2DM. PMID:29390450

  19. Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel’dovich Effect Observations with MUSTANG and Bolocam. II. Joint Analysis of 14 Clusters

    Science.gov (United States)

    Romero, Charles E.; Mason, Brian S.; Sayers, Jack; Mroczkowski, Tony; Sarazin, Craig; Donahue, Megan; Baldi, Alessandro; Clarke, Tracy E.; Young, Alexander H.; Sievers, Jonathan; Dicker, Simon R.; Reese, Erik D.; Czakon, Nicole; Devlin, Mark; Korngut, Phillip M.; Golwala, Sunil

    2017-04-01

    We present pressure profiles of galaxy clusters determined from high-resolution Sunyaev-Zel’dovich (SZ) effect observations of 14 clusters, which span the redshift range of 0.25MUSTANG and Bolocam data. In this analysis, we adopt the generalized NFW parameterization of pressure profiles to produce our models. Our constraints on ensemble-average pressure profile parameters, in this study γ, C 500, and P 0, are consistent with those in previous studies, but for individual clusters we find discrepancies with the X-ray derived pressure profiles from the ACCEPT2 database. We investigate potential sources of these discrepancies, especially cluster geometry, electron temperature of the intracluster medium, and substructure. We find that the ensemble mean profile for all clusters in our sample is described by the parameters [γ ,{C}500,{P}0]=[{0.3}-0.1+0.1,{1.3}-0.1+0.1,{8.6}-2.4+2.4], cool core clusters are described by [γ ,{C}500,{P}0] =[{0.6}-0.1+0.1,{0.9}-0.1+0.1,{3.6}-1.5+1.5], and disturbed clusters are described by [γ ,{C}500,{P}0]=[{0.0}-0.0+0.1,{1.5}-0.2+0.1,{13.8}-1.6+1.6]. Of the 14 clusters, 4 have clear substructure in our SZ observations, while an additional 2 clusters exhibit potential substructure.

  20. Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds.

    Directory of Open Access Journals (Sweden)

    Mary Cloud B Ammons

    Full Text Available Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.

  1. Signaling pathway-focused gene expression profiling in pressure overloaded hearts

    Directory of Open Access Journals (Sweden)

    Marco Musumeci

    2011-01-01

    Full Text Available The β-blocker propranolol displays antihypertrophic and antifibrotic properties in the heart subjected to pressure overload. Yet the underlying mechanisms responsible for these important effects remain to be completely understood. The purpose of this study was to determine signaling pathway-focused gene expression profile associated with the antihypertrophic action of propranolol in pressure overloaded hearts. To address this question, a focused real-time PCR array was used to screen left ventricular RNA expression of 84 gene transcripts representative of 18 different signaling pathways in C57BL/6 mice subjected to transverse aortic constriction (TAC or sham surgery. On the surgery day, mice received either propranolol (80 mg/kg/day or vehicle for 14 days. TAC caused a 49% increase in the left ventricular weight-to-body weight (LVW/BW ratio without changing gene expression. Propranolol blunted LVW/BW ratio increase by approximately 50% while causing about a 3-fold increase in the expression of two genes, namely Brca1 and Cdkn2a, belonging to the TGF-beta and estrogen pathways, respectively. In conclusion, after 2 weeks of pressure overload, TAC hearts show a gene expression profile superimposable to that of sham hearts. Conversely, propranolol treatment is associated with an increased expression of genes which negatively regulate cell cycle progression. It remains to be established whether a mechanistic link between gene expression changes and the antihypertrophic action of propranolol occurs.

  2. Oscillations in the proximal intratubular pressure: a mathematical model

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Leyssac, P P

    1987-01-01

    This study presents a dynamic continuous time model of the regulation of the renal proximal intratubular pressure in the rat. The model integrates a functional model of the glomerulus, a tubular model, a feedback model, and an afferent arteriolar model. The model has one equilibrium solution...

  3. Gene Profiling of Aortic Valve Interstitial Cells under Elevated Pressure Conditions: Modulation of Inflammatory Gene Networks

    Directory of Open Access Journals (Sweden)

    James N. Warnock

    2011-01-01

    Full Text Available The study aimed to identify mechanosensitive pathways and gene networks that are stimulated by elevated cyclic pressure in aortic valve interstitial cells (VICs and lead to detrimental tissue remodeling and/or pathogenesis. Porcine aortic valve leaflets were exposed to cyclic pressures of 80 or 120 mmHg, corresponding to diastolic transvalvular pressure in normal and hypertensive conditions, respectively. Linear, two-cycle amplification of total RNA, followed by microarray was performed for transcriptome analysis (with qRT-PCR validation. A combination of systems biology modeling and pathway analysis identified novel genes and molecular mechanisms underlying the biological response of VICs to elevated pressure. 56 gene transcripts related to inflammatory response mechanisms were differentially expressed. TNF-α, IL-1α, and IL-1β were key cytokines identified from the gene network model. Also of interest was the discovery that pentraxin 3 (PTX3 was significantly upregulated under elevated pressure conditions (41-fold change. In conclusion, a gene network model showing differentially expressed inflammatory genes and their interactions in VICs exposed to elevated pressure has been developed. This system overview has detected key molecules that could be targeted for pharmacotherapy of aortic stenosis in hypertensive patients.

  4. Galaxy Cluster Pressure Profiles, as Determined by Sunyaev-Zeldovich Effect Observations with MUSTANG and Bolocam. I. Joint Analysis Technique

    Science.gov (United States)

    Romero, Charles E.; Mason, Brian S.; Sayers, Jack; Young, Alexander H.; Mroczkowski, Tony; Clarke, Tracy E.; Sarazin, Craig; Sievers, Jonathon; Dicker, Simon R.; Reese, Erik D.; Czakon, Nicole; Devlin, Mark; Korngut, Phillip M.; Golwala, Sunil

    2015-07-01

    We present a technique to constrain galaxy cluster pressure profiles by jointly fitting Sunyaev-Zeldovich effect (SZE) data obtained with MUSTANG and Bolocam for the clusters Abell 1835 and MACS0647. Bolocam and MUSTANG probe different angular scales and are thus highly complementary. We find that the addition of the high-resolution MUSTANG data can improve constraints on pressure profile parameters relative to those derived solely from Bolocam. In Abell 1835 and MACS0647, we find gNFW inner slopes of γ ={0.36}-0.21+0.33 and γ ={0.38}-0.25+0.20, respectively, when α and β are constrained to 0.86 and 4.67, respectively. The fitted SZE pressure profiles are in good agreement with X-ray derived pressure profiles.

  5. Evaluation of simplified analytical models for CO2 plume movement and pressure buildup

    Science.gov (United States)

    Oruganti, Y.; Mishra, S.

    2011-12-01

    CO2 injection into the sub-surface is emerging as a viable technology for reducing anthropogenic CO2 emissions into the atmosphere. When large amounts of CO2 are sequestered, pressure buildup is an associated risk, along with plume movement beyond the injected domain. In this context, simple modeling tools become valuable assets in preliminary CO2 injection project screening and implementation phases. This study presents an evaluation of two commonly used simplified analytical models for plume movement and pressure buildup, (1) the sharp interface model of Nordbotten et al. (2005), and the corresponding pressure distribution solution of Mathias et al. (2008), and (2) the 3-region model of Burton et al. (2008) based on fractional flow and steady-state pressure gradient considerations. The three-region model of Burton et al. assumes a constant pressure outer boundary. In this study, we incorporate the radius of investigation of the pressure front as the transient pressure boundary, in order to represent an infinite-acting system. The sharp-interface model also assumes the system to be infinite-acting. Temperature and pressure conditions used in these models correspond to the "warm, shallow" and "cold, deep" aquifer conditions as defined by Nordbotten et al. The saturation and pressure profiles as well as injection-well pressure buildup predicted by the analytical models are compared with those from the numerical simulator STOMP in order to provide a verification of the simplified modeling assumptions. Both the STOMP results and the three-region model show two sharp fronts (the drying and two-phase fronts), and a good match is obtained between the front positions at any time. For the sharp interface model, the vertically averaged gas saturation does not exhibit two sharp fronts as seen in the STOMP simulations, but shows a gradual change in saturation with radial distance over the two-phase region. The pressure profiles from STOMP and the analytical model are

  6. Fish oil affects blood pressure and the plasma lipid profile in healthy Danish infants

    DEFF Research Database (Denmark)

    Damsgaard, C.T.; Schack-Nielsen, L.; Michaelsen, K.F.

    2006-01-01

    with an oscillometric device, and blood was sampled for analysis of erythrocyte fatty acid composition and the plasma lipid profile. This paper examines the effects of the fish oil supplement, with adjustment for the effects of the milk intervention when relevant. The fish oil intervention increased erythrocyte (n-3.......04) than infants not administered fish oil. Plasma triacylglycerol was inversely associated with the erythrocyte content of eicosapentaenoic acid (r = 0.34, P dose. The observed effects of fish oil are in accordance with findings in adults. The long-term health implications......Animal and epidemiologic studies indicate that early nutrition has lasting effects on metabolism and cardiovascular disease risk. In adults, (n-3) long-chain PUFA (LCPUFA) from fish oils improve blood pressure, the lipid profile, and possibly cardiovascular disease mortality. This randomized trial...

  7. Indirect measurement of near-surface velocity and pressure fields based on measurement of moving free surface profiles

    International Nuclear Information System (INIS)

    Sibamoto, Yasuteru; Nakamura, Hideo

    2005-01-01

    A non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving fluid surface is developed. The technique is based on the measurement of fluid surface profile. The velocity and pressure fields are derived with use of the boundary element method (BEM) by seeking for an incompressible flow field that satisfies the kinematic boundary condition imposed by the time-dependent fluid surface profile. The proposed technique is tested by deriving the velocity and pressure fields inversely from the fluid surface profiles obtained by a forward BEM calculation of fluid surface response to externally-imposed pressure. The inverse calculation results show good agreement with the imposed pressure distribution in the forward calculation. (author)

  8. The pressure profile in the Lund Pelletron accelerator with the newly installed terminal pumping in use

    International Nuclear Information System (INIS)

    Persson, P.; Hellborg, R.; Kiisk, M.; Skog, G.; Stenstroem, K.

    2003-01-01

    Terminal pumping has recently been installed in the Lund tandem Pelletron electrostatic accelerator. The equipment allows a higher gas density in the stripper and an improved vacuum in the accelerator tubes compared to the former system. This improvement has led to an increased beam transmission and to superior measurements for our accelerator mass spectrometry programme. The pressure profile of the stripper system as well as of the accelerator tubes has been calculated using kinetic gas theory. The result will be used to identify possible technical improvements in the future

  9. The pressure profile in the Lund Pelletron accelerator with the newly installed terminal pumping in use

    Science.gov (United States)

    Persson, P.; Hellborg, R.; Kiisk, M.; Skog, G.; Stenström, K.

    2003-03-01

    Terminal pumping has recently been installed in the Lund tandem Pelletron electrostatic accelerator. The equipment allows a higher gas density in the stripper and an improved vacuum in the accelerator tubes compared to the former system. This improvement has led to an increased beam transmission and to superior measurements for our accelerator mass spectrometry programme. The pressure profile of the stripper system as well as of the accelerator tubes has been calculated using kinetic gas theory. The result will be used to identify possible technical improvements in the future.

  10. Pressure Sensitive Paint Applied to Flexible Models Project

    Science.gov (United States)

    Schairer, Edward T.; Kushner, Laura Kathryn

    2014-01-01

    One gap in current pressure-measurement technology is a high-spatial-resolution method for accurately measuring pressures on spatially and temporally varying wind-tunnel models such as Inflatable Aerodynamic Decelerators (IADs), parachutes, and sails. Conventional pressure taps only provide sparse measurements at discrete points and are difficult to integrate with the model structure without altering structural properties. Pressure Sensitive Paint (PSP) provides pressure measurements with high spatial resolution, but its use has been limited to rigid or semi-rigid models. Extending the use of PSP from rigid surfaces to flexible surfaces would allow direct, high-spatial-resolution measurements of the unsteady surface pressure distribution. Once developed, this new capability will be combined with existing stereo photogrammetry methods to simultaneously measure the shape of a dynamically deforming model in a wind tunnel. Presented here are the results and methodology for using PSP on flexible surfaces.

  11. Progressive or degressive compression pressure profile in patients with chronic venous disorders of the lower limb

    Directory of Open Access Journals (Sweden)

    Giovanni Mosti

    2014-03-01

    Full Text Available Graduated compression devices are considered the standard care for management of venous and lymphatic disorders. Recently compression devices exerting a pressure over the calf higher than over the ankle have been proved to be more effective than traditional graduated devices in increasing the impaired ejection fraction (EF from the lower leg in patients with venous disease. Aim of this work is presenting an overview of the new concept on progressive compression, its potential benefits and limits. In different series of tests, the EF from the lower leg was assessed in 70 patients with severe reflux in the great saphenous vein (GSV. EF was measured by strain gauge plethysmography, in baseline conditions and after applying graduated compression devices or the new inversely graduated or progressive compression (PC devices. The interface pressure was recorded, simultaneously with the EF, both in the gaiter area (B1 point and at the calf (C point in order to assess the compression pressure profile. EF, severely impaired in patients with GSV reflux, was increased by compression. So called PC devices (both PC elastic stocking and PC inelastic bandages were significantly more effective than graduated compression in increasing the ejection fraction. The higher the pressure on the calf the higher the EF improvement. Maintaining the same strong pressure over the calf by means of two progressive stockings and increasing the pressure only over the calf to restore a graduated compression didn’t improve the EF. To improve venous pumping function in the ambulant patient stronger compression of the calf is more effective than graduated compression. This can be explained by the higher amount of blood volume pooled in the calf veins.

  12. [LEVELS OF OBESITY, METABOLIC PROFILE, CONSUMPTION OF TABACO AND BLOOD PRESSURE IN SEDENTARY YOUTHS].

    Science.gov (United States)

    Caamaño Navarrete, Felipe; Alarcón Hormazábal, Manuel; Delgado Floody, Pedro

    2015-11-01

    in Chile, the National Health Survey (ENS) conducted in 2009-2010 reported high prevalence of overweight, sedentary lifestyle, high cholesterol and metabolic syndrome in the population. to determine the prevalence in young sedentary obesity and consumption of tabaco and analyze their association with the metabolic profile, body fat percentage and blood pressure. 125 young sedentary, 26 men and 99 women, aged between 17 and 29 years old were evaluated. Body mass index (BMI), percent body fat (% fat), waist contour (CC), systolic and diastolic blood pressure, total cholesterol, HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), triglycerides: measurements were performed, glycemia and consumption of snuff. HDL-C (p = 0.000) and% MG (p = 0.043) were higher in women. 37.6% of young people turned smoker. 35, 2% of the sample showed excessive malnutrition. Obese subjects had higher levels: waist contour (p = 0.000) and% FM (p = 0.000). When analyzing obesity DC, this showed significant differences in BMI,% fat, systolic and diastolic blood pressure. BMI presented positive association with CC,% fat, total cholesterol, triglycerides, LDL, systolic and diastolic blood pressure (p consumption of tabaco in the study sample, while other variables are not high-risk categories, it is an opportune time to intervene and reverse these negative health trends now. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Modelling of the urban wind profile

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, Ekaterina

    2008-01-01

    Analysis of meteorological measurements from tall masts in rural and urban areas show that the height of the boundary layer influences the wind profile even in the lowest hundreds of meters. A parameterization of the wind profile for the entire boundary layer is formulated with emphasis...... on the lowest 200-300 m and presented here. Results are shown from applying the parameterization of the wind profile on independent measurements from an urban experimental campaign that was carried out in Sofia, Bulgaria in 2003....

  14. Prospective Chemistry Teachers' Mental Models of Vapor Pressure

    Science.gov (United States)

    Tumay, Halil

    2014-01-01

    The main purpose of this study was to identify prospective chemistry teachers' mental models of vapor pressure. The study involved 85 students in the Chemistry Teacher Training Department of a state university in Turkey. Participants' mental models of vapor pressure were explored using a concept test that involved qualitative comparison tasks.…

  15. Pressure in an exactly solvable model of active fluid

    Science.gov (United States)

    Marini Bettolo Marconi, Umberto; Maggi, Claudio; Paoluzzi, Matteo

    2017-07-01

    We consider the pressure in the steady-state regime of three stochastic models characterized by self-propulsion and persistent motion and widely employed to describe the behavior of active particles, namely, the Active Brownian particle (ABP) model, the Gaussian colored noise (GCN) model, and the unified colored noise approximation (UCNA) model. Whereas in the limit of short but finite persistence time, the pressure in the UCNA model can be obtained by different methods which have an analog in equilibrium systems, in the remaining two models only the virial route is, in general, possible. According to this method, notwithstanding each model obeys its own specific microscopic law of evolution, the pressure displays a certain universal behavior. For generic interparticle and confining potentials, we derive a formula which establishes a correspondence between the GCN and the UCNA pressures. In order to provide explicit formulas and examples, we specialize the discussion to the case of an assembly of elastic dumbbells confined to a parabolic well. By employing the UCNA we find that, for this model, the pressure determined by the thermodynamic method coincides with the pressures obtained by the virial and mechanical methods. The three methods when applied to the GCN give a pressure identical to that obtained via the UCNA. Finally, we find that the ABP virial pressure exactly agrees with the UCNA and GCN results.

  16. Pre-pregnancy weight status, early pregnancy lipid profile and blood pressure course during pregnancy: The ABCD study

    NARCIS (Netherlands)

    Oostvogels, Adriëtte J. J. M.; Busschers, Wim B.; Spierings, Eline J. M.; Roseboom, Tessa J.; Gademan, Maaike G. J.; Vrijkotte, Tanja G. M.

    2017-01-01

    Although pre-pregnancy weight status and early pregnancy lipid profile are known to influence blood pressure course during pregnancy, little is known about how these two factors interact. The association between pre-pregnancy weight status and blood pressure course during pregnancy was assessed in

  17. A Prediction Model of the Capillary Pressure J-Function.

    Directory of Open Access Journals (Sweden)

    W S Xu

    Full Text Available The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative.

  18. Low-pressure reversible axial fan with straight profile blades and relatively high efficiency

    Directory of Open Access Journals (Sweden)

    Spasić Živan T.

    2012-01-01

    Full Text Available The paper presents the design and operating characteristics of a model of reversible axial fan with only one impeller, whose reversibility is achieved by changing the direction of rotation. The fan is designed for the purpose of providing alternating air circulation in wood dryers in order to reduce the consumption of electricity for the fan and increase energy efficiency of the entire dryer. To satisfy the reversibility of flow, the shape of the blade profile is symmetrical along the longitudinal and transversal axes of the profile. The fan is designed with equal specific work of all elementary stages, using the method of lift forces. The impeller blades have straight mean line profiles. The shape of the blade profile was adopted after the numerical simulations were carried out and high efficiency was achieved. Based on the calculation and conducted numerical simulations, a physical model of the fan was created and tested on a standard test rig, with air loading at the suction side of the fan. The operating characteristics are shown for different blade angles. The obtained maximum efficiency was around 0.65, which represents a rather high value for axial fans with straight profile blades.

  19. Modeling of Natural Self-Pressurized Circulation Circuits

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Delmastro, Dario

    2003-01-01

    In this work, HUARPE code models for self-pressurized two-phase natural convection systems are improved.A drift-flux model is included, allowing the modeling of the relative velocity between phases.The model of steam dome structures is improved, with a thermal resistance scheme, in order to model the material thermal conductivity.This allows improving thermal losses modeling and structures dynamic.'Shape functions' are implemented based on analytic solutions for pressure derivative and density in each node, which allows less diffusive solving schemes, more appropriate for analyzing cases involving density waves phenomena.Finally, pressure evolutions during a pressurization transient are analyzed, comparing the new models and the previous version results.These results are also checked against RELAP code ones, obtained with different dome nodalizations. Moreover, modeling problems are analyzed for each case

  20. Real-time measurements of temperature, pressure and moisture profiles in High-Performance Concrete exposed to high temperatures during neutron radiography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toropovs, N., E-mail: nikolajs.toropovs@rtu.lv [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Lo Monte, F. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Wyrzykowski, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Weber, B. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); Sahmenko, G. [Riga Technical University, Institute of Materials and Structures, Riga (Latvia); Vontobel, P. [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Felicetti, R. [Politecnico di Milano, Department of Civil and Environmental Engineering, Milan (Italy); Lura, P. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland); ETH Zürich, Institute for Building Materials (IfB), Zürich (Switzerland)

    2015-02-15

    High-Performance Concrete (HPC) is particularly prone to explosive spalling when exposed to high temperature. Although the exact causes that lead to spalling are still being debated, moisture transport during heating plays an important role in all proposed mechanisms. In this study, slabs made of high-performance, low water-to-binder ratio mortars with addition of superabsorbent polymers (SAP) and polypropylene fibers (PP) were heated from one side on a temperature-controlled plate up to 550 °C. A combination of measurements was performed simultaneously on the same sample: moisture profiles via neutron radiography, temperature profiles with embedded thermocouples and pore pressure evolution with embedded pressure sensors. Spalling occurred in the sample with SAP, where sharp profiles of moisture and temperature were observed. No spalling occurred when PP-fibers were introduced in addition to SAP. The experimental procedure described here is essential for developing and verifying numerical models and studying measures against fire spalling risk in HPC.

  1. Bladder pressure sensors in an animal model

    NARCIS (Netherlands)

    Koldewijn, E. L.; van Kerrebroeck, P. E.; Schaafsma, E.; Wijkstra, H.; Debruyne, F. M.; Brindley, G. S.

    1994-01-01

    Urinary incontinence due to detrusor hyperreflexia might be inhibited on demand if changes in bladder pressure could be detected by sensors and transferred into pudendal nerve electrostimulation. The aim of this study is to investigate how the bladder wall reacts on different sensor implants.

  2. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  3. High pressure common rail injection system modeling and control.

    Science.gov (United States)

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Characterization of a Murine Pressure Ulcer Model to Assess Efficacy of Adipose-derived Stromal Cells.

    Science.gov (United States)

    Strong, Amy L; Bowles, Annie C; MacCrimmon, Connor P; Lee, Stephen J; Frazier, Trivia P; Katz, Adam J; Gawronska-Kozak, Barbara; Bunnell, Bruce A; Gimble, Jeffrey M

    2015-03-01

    As the world's population lives longer, the number of individuals at risk for pressure ulcers will increase considerably in the coming decades. In developed countries, up to 18% of nursing home residents suffer from pressure ulcers and the resulting hospital costs can account for up to 4% of a nation's health care budget. Although full-thickness surgical skin wounds have been used as a model, preclinical rodent studies have demonstrated that repeated cycles of ischemia and reperfusion created by exposure to magnets most closely mimic the human pressure ulcer condition. This study uses in vivo and in vitro quantitative parameters to characterize the temporal kinetics and histology of pressure ulcers in young, female C57BL/6 mice exposed to 2 or 3 ischemia-reperfusion cycles. This pressure ulcer model was validated further in studies examining the efficacy of adipose-derived stromal/stem cell administration. Optimal results were obtained with the 2-cycle model based on the wound size, histology, and gene expression profile of representative angiogenic and reparative messenger RNAs. When treated with adipose-derived stromal/stem cells, pressure ulcer wounds displayed a dose-dependent and significant acceleration in wound closure rates and improved tissue histology. These findings document the utility of this simplified preclinical model for the evaluation of novel tissue engineering and medical approaches to treat pressure ulcers in humans.

  5. TSTAR: Stratospheric temperature and pressure profiles retrievals using on-orbit star pairs observation.

    Science.gov (United States)

    Gordley, L. L.; Lachance, R. L.; Marshall, B. T.; Stockwell, B.; Wan, K.

    2015-12-01

    TSTAR (Temperature profiles using Star Pairs) is a revolutionary sensor which observes occulting star pairs from orbiting sensors. As star pairs are being compressed during descent through the atmospheric limb, refraction angle change is computed for deducing density profile, which in turn by inversion allows getting stratospheric temperature and pressure profiles. This instrument is intended to be a new source of global high altitude temperature fields, providing global coverage from cloud-top (tropopause ≈8-17 km) to 45 km at a horizontal resolution better than 100 km. Such a system works with standard visible cameras, not requiring complex cooled detectors. Moreover, refractive angle resolution is not limited by the optical resolution of the instrument, and by using orbital mechanics, accurate computation can be done without precise spacecraft attitude knowledge. This technically simple, compact, and low cost hardware will also provide a valuable data set for improving weather forecasting. This concept has just completed the conceptual phase and feasibility analysis. The next step is to form key collaborations for developing a demonstration sensor. In due course, as few as a dozen of nanosatellites could get the Earth covered.

  6. Reliability of transpulmonary pressure-time curve profile to identify tidal recruitment/hyperinflation in experimental unilateral pleural effusion.

    Science.gov (United States)

    Formenti, P; Umbrello, M; Graf, J; Adams, A B; Dries, D J; Marini, J J

    2017-08-01

    The stress index (SI) is a parameter that characterizes the shape of the airway pressure-time profile (P/t). It indicates the slope progression of the curve, reflecting both lung and chest wall properties. The presence of pleural effusion alters the mechanical properties of the respiratory system decreasing transpulmonary pressure (Ptp). We investigated whether the SI computed using Ptp tracing would provide reliable insight into tidal recruitment/overdistention during the tidal cycle in the presence of unilateral effusion. Unilateral pleural effusion was simulated in anesthetized, mechanically ventilated pigs. Respiratory system mechanics and thoracic computed tomography (CT) were studied to assess P/t curve shape and changes in global lung aeration. SI derived from airway pressure (Paw) was compared with that calculated by Ptp under the same conditions. These results were themselves compared with quantitative CT analysis as a gold standard for tidal recruitment/hyperinflation. Despite marked changes in tidal recruitment, mean values of SI computed either from Paw or Ptp were remarkably insensitive to variations of PEEP or condition. After the instillation of effusion, SI indicates a preponderant over-distension effect, not detected by CT. After the increment in PEEP level, the extent of CT-determined tidal recruitment suggest a huge recruitment effect of PEEP as reflected by lung compliance. Both SI in this case were unaffected. We showed that the ability of SI to predict tidal recruitment and overdistension was significantly reduced in a model of altered chest wall-lung relationship, even if the parameter was computed from the Ptp curve profile.

  7. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  8. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  9. Ocean bottom pressure modeling for detection of seafloor vertical deformation

    Science.gov (United States)

    Inazu, D.; Hino, R.; Fujimoto, H.

    2009-12-01

    Detection of seafloor crustal deformation is a difficult problem in marine geodesy. Horizontal displacement of the ocean bottom has been detected with accuracy of several centimeters per year by the GPS/Acoustic positioning of seafloor reference points (Spiess et al. 1998). Meanwhile, bottom pressure observations can record the vertical deformation of seafloor and there have been many challenges to detect vertical seafloor displacement. However, ocean bottom pressure variations are highly dominated by oceanic signals such as tidal and subinertial motions. The tidal and other oceanic variations in bottom pressure records are mostly equivalent to several tens and several centimeters water height anomalies, respectively. Generally, the ocean tide is efficiently corrected. Non-tidal components are required to be accurately removed from the bottom pressure records so that the vertical displacement of less than ten centimeters, the expected amount of displacement caused by slow slip events often observed in several subduction zones, is detected by continuous bottom pressure monitoring. We examine the bottom pressure estimations derived from the Kalman filter and smoother runs of the ECCO (Estimating the Circulation & Climate of the Ocean) product to compare in-situ bottom pressure records. The assimilated bottom pressure moderately represents the seasonal variation, and hardly represents the variation with periods less than a few months. This high frequency variation is mainly explained by the barotropic phenomena induced by meteorological disturbances. Hirose et al. (2001) and Carrère and Lyard (2003) modeled the barotropic ocean motion with the forcing of atmospheric pressure loading and wind over global oceans for the sake of the correction of satellite observations. This study addresses the accurate bottom pressure modeling, which enables us to detect vertical displacement of several centimeters from the in-situ bottom pressure observations. We develop accurate

  10. Modeling blood pressure: Comparative study of seemingly unrelated ...

    African Journals Online (AJOL)

    Most authors have focused on Systolic Blood Pressure(SBP) and Diastolic Blood Pressure(DBP) separately. The effect of some identified risk factors on SBP and DBP can be estimated separately since they are affected by different factors.This study is aimed at developing a model that can appropriately capture the ...

  11. Modeling the Radial Color Profile of M31

    Directory of Open Access Journals (Sweden)

    Semionov D.

    2003-12-01

    Full Text Available We present a preliminary study of a fragment of the radial color profile of the spiral galaxy M 31 in terms of 2-D model accounting for internal extinction in the disk. The two stellar population disk model was assumed. The old dust-free disk population is represented by the double exponential law, and the young disk population, well mixed with the dust, resides in spiral arms of various scale-heights. We find a good agreement among the radial color B-R profiles produced by this simple model and the profile measured around the spiral arm S4 of M 31.

  12. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  13. The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZ - M500 relation

    Science.gov (United States)

    Arnaud, M.; Pratt, G. W.; Piffaretti, R.; Böhringer, H.; Croston, J. H.; Pointecouteau, E.

    2010-07-01

    We investigate the regularity of cluster pressure profiles with REXCESS, a representative sample of 33 local (z history and non-gravitational physics. Comparison with scaled data from several state of the art numerical simulations shows good agreement outside the core. Combining the observational data in the radial range [0.03-1] R500 with simulation data in the radial range [1-4] R500, we derive a robust measure of the universal pressure profile, that, in an analytical form, defines the physical pressure profile of clusters as a function of mass and redshift up to the cluster "boundary". Using this profile and direct spherical integration of the observed pressure profiles, we estimate the integrated Compton parameter Y and investigate its scaling with M500 and LX, the soft band X-ray luminosity. We consider both the spherically integrated quantity, Ysph(R), proportional to the gas thermal energy, and the cylindrically integrated quantity, Ycyl(R)=YSZ DA2, which is directly related to the Sunyaev-Zel'dovich (SZ) effect signal. From the low scatter of the observed Ysph(R500) - YX relation we show that variations in pressure profile shape do not introduce extra scatter into the Ysph(R500) - M500 relation as compared to that from the YX - M500 relation. The Ysph(R500) - M500 and Ysph(R500) - LX relations derived from the data are in excellent agreement with those expected from the universal profile. This profile is used to derive the expected YSZ - M500 and YSZ - LX relations for any aperture.

  14. Mediterranean diet and insulin sensitivity, lipid profile and blood pressure levels, in overweight and obese people; The Attica study

    Directory of Open Access Journals (Sweden)

    Zampelas Antonis

    2007-09-01

    Full Text Available Abstract Background We aimed to investigate if overweight and obese adults "close" to Mediterranean diet present better insulin, lipids profile and better pressure levels, compared to individuals close to a more Westernized diet. Methods The ATTICA study is a population-based cohort that has randomly enrolled 3042 adult men and women, stratified by age – gender, from the greater area of Athens, during 2001–2002. Of them, in this work were have studied 1762 participants with excess body weight, meaning overweight (BMI: 25–29.9 kg/m2 and obese (BMI>30 kg/m2. 1064 were men and 698 women (20–89 years old. Adherence to Mediterranean diet was assessed through a diet-score that was based on a validated food-frequency questionnaire. Blood pressure was measured and also fasting glucose, insulin and blood lipids. Insulin sensitivity was also assessed by the homeostasis model assessment (HOMA approach (glucose × insulin/22.5. Results Individuals with excess bodyweight in the highest tertile of diet score, were more insulin sensitive than those in the lowest tertile (11.4% lower HOMA, p = 0.06, had 13% lower levels of total cholesterol (p = 0.001 and 3 mmHg decrease of systolic blood pressure levels (p Conclusion Adherence to Mediterranean diet is modeslty associated with a better insulin sensitivity, lower levels of total cholesterol and lower levels of systolic blood pressure in overweight and obese subjects. This may suggest that compared to general population, the beneficial effect of this diet in cardiovascular system of excess body weight people is limited.

  15. Multivariate Modeling of Body Mass Index, Pulse Pressure, Systolic and Diastolic Blood Pressure in Chinese Twins

    DEFF Research Database (Denmark)

    Wu, Yili; Zhang, Dongfeng; Pang, Zengchang

    2015-01-01

    Systolic and diastolic blood pressure, pulse pressure (PP), and body mass index (BMI) are heritable traits in human metabolic health but their common genetic and environmental backgrounds are not well investigated. The aim of this article was to explore the phenotypic and genetic associations among...... PP, systolic blood pressure (SBP), diastolic blood pressure (DBP), and BMI. The studied sample contained 615 twin pairs (17-84 years) collected in the Qingdao municipality. Univariate and multivariate structural equation models were fitted for assessing the genetic and environmental contributions....... The AE model combining additive genetic (A) and unique environmental (E) factors produced the best fit for each four phenotypes. Heritability estimated in univariate analysis ranged from 0.42 to 0.74 with the highest for BMI (95% CI 0.70-0.78), and the lowest for PP (95% CI 0.34-0.49). The multivariate...

  16. Impact of lipid profile and high blood pressure on endothelial damage.

    Science.gov (United States)

    Sugiura, Tomonori; Dohi, Yasuaki; Yamashita, Sumiyo; Yamamoto, Koji; Wakamatsu, Yoshimasa; Tanaka, Satoru; Kimura, Genjiro

    2011-01-01

    Endothelial damage is an early component of atherosclerosis; however, the impact of cardiovascular risk factors on endothelial function is not clearly understood. We investigated the impact of lipid profiles and high blood pressure on damage. Japanese male outpatients with grade I or II hypertension, along with gender and age-matched normotensive subjects (both n = 25), were enrolled. Subjects with severe cardiovascular risk factors or illness or those taking medications were excluded. Blood was sampled for laboratory analysis and endothelial function was assessed by flow-mediated dilation (FMD). Total cholesterol to high-density lipoprotein cholesterol ratio (total-C/HDL-C) was inversely correlated with the FMD value and positively correlated with both malondialdehyde-modified low-density lipoprotein and high-sensitivity C-reactive protein values. Stepwise regression analysis revealed total-C/HDL-C and systolic blood pressure were significant determinants of FMD. Hypertensive subjects had lower FMD values and similar lipid profiles to normotensive subjects. Grouping subjects according to total-C/HDL-C levels showed that those with high values had lower FMD values. Hypertensive subjects with low total-C/HDL-C had similar endothelial index values to those in normotensive subjects with high total-C/HDL-C. Logistic regression indicated hypertension and high total-C/HDL-C were significantly associated with low FMD values. Impaired endothelial function was associated with increased total-C/HDL-C values, possibly as the result of increased vascular oxidative stress and inflammation. In the early stages of atherosclerosis, the impact of both total-C/HDL-C and BP may be similar in terms of endothelial damage. Copyright © 2011 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  17. Modeling Cyclic Variation of Intracranial Pressure

    National Research Council Canada - National Science Library

    Daley, M

    2001-01-01

    ...) recording during mechanical ventilation are due to cyclic extravascular compressional modulation primarily of the cerebral venous bed, an established isovolumetric model of cerebrospinal fluid...

  18. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Science.gov (United States)

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  19. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Directory of Open Access Journals (Sweden)

    Ahmad Tamimi

    Full Text Available Profile Hidden Markov Model (Profile-HMM is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  20. A fast method for Stokes profile synthesis. Radiative transfer modeling for ZDI and Stokes profile inversion

    Science.gov (United States)

    Carroll, T. A.; Kopf, M.; Strassmeier, K. G.

    2008-09-01

    Context: The major challenges for a fully polarized radiative transfer driven approach to Zeeman-Doppler imaging are still the enormous computational requirements. In every cycle of the iterative interplay between the forward process (spectral synthesis) and the inverse process (derivative based optimization) the Stokes profile synthesis requires several thousand evaluations of the polarized radiative transfer equation for a given stellar surface model. Aims: To cope with these computational demands and to allow for the incorporation of a full Stokes profile synthesis into Doppler- and Zeeman-Doppler imaging applications as well as into large scale solar Stokes profile inversions, we present a novel fast and accurate synthesis method for calculating local Stokes profiles. Methods: Our approach is based on artificial neural network models, which we use to approximate the complex non-linear mapping between the most important atmospheric parameters and the corresponding Stokes profiles. A number of specialized artificial neural networks, are used to model the functional relation between the model atmosphere, magnetic field strength, field inclination, and field azimuth, on one hand and the individual components (I,Q,U,V) of the Stokes profiles, on the other hand. Results: We performed an extensive statistical evaluation and show that our new approach yields accurate local as well as disk-integrated Stokes profiles over a wide range of atmospheric conditions. The mean rms errors for the Stokes I and V profiles are well below 0.2% compared to the exact numerical solution. Errors for Stokes Q and U are in the range of 1%. Our approach does not only offer an accurate approximation to the LTE polarized radiative transfer it, moreover, accelerates the synthesis by a factor of more than 1000.

  1. Computational model for transient studies of IRIS pressurizer behavior

    International Nuclear Information System (INIS)

    Rives Sanz, R.; Montesino Otero, M.E.; Gonzalez Mantecon, J.; Rojas Mazaira, L.

    2014-01-01

    International Reactor Innovative and Secure (IRIS) excels other Small Modular Reactor (SMR) designs due to its innovative characteristics regarding safety. IRIS integral pressurizer makes the design of larger pressurizer system than the conventional PWR, without any additional cost. The IRIS pressurizer volume of steam can provide enough margins to avoid spray requirement to mitigate in-surge transient. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial finite volume Computational Fluid Dynamic code CFX 14. A symmetric tridimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of three phases: liquid, steam, and vapor bubbles in liquid volume. Additionally, it takes into account the heat losses between the pressurizer and primary circuit. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX by using expressions in CFX Command Language (CCL) format. Moreover, several additional variables are defined for improving the convergence and allow monitoring of boron dilution sequences and condensation-evaporation rate in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences such as the in/out-surge transients and boron dilution sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  2. Self-organization of hot plasmas the canonical profile transport model

    CERN Document Server

    Dnestrovskij, Yu N

    2015-01-01

    In this monograph the author presents the Canonical Profile Transport Model or CPTM as a rather general mathematical framework to simulate plasma discharges.The description of hot plasmas in a magnetic fusion device is a very challenging task and many plasma properties still lack a physical explanation. One important property is plasma self-organization.It is very well known from experiments that the radial profile of the plasma pressure and temperature remains rather unaffected by changes of the deposited power or plasma density. The attractiveness of the CPTM is that it includes the effect o

  3. Measurements of Pfirsch-Schlueter current and pressure profile for the high density ECH plasmas in Heliotron DR

    International Nuclear Information System (INIS)

    Morimoto, S.; Yanagi, N.; Nakasuga, M.; Obiki, T.; Iiyoshi, A.; Uo, K.

    1988-01-01

    The Pfirsch-Schlueter current and pressure profiles are estimated from magnetic measurements for high density electron cyclotron heating (ECH) plasmas (n-bar e =(2-3)x10 13 cm -3 , T e0 =200-400 eV, (β) 0 (1-(r/a) 2 ) s , is about two in macroscopically stable plasmas. A fast loss of plasma energy from the centre to the periphery is observed during the onset of the MHD instability. This method of measuring the pressure profile shape is simple and useful for heliotron type devices. (author). 20 refs, 8 figs, 1 tab

  4. A mathematical model for pressure-based organs behaving as biological pressure vessels.

    Science.gov (United States)

    Casha, Aaron R; Camilleri, Liberato; Gauci, Marilyn; Gatt, Ruben; Sladden, David; Chetcuti, Stanley; Grima, Joseph N

    2018-04-26

    We introduce a mathematical model that describes the allometry of physical characteristics of hollow organs behaving as pressure vessels based on the physics of ideal pressure vessels. The model was validated by studying parameters such as body and organ mass, systolic and diastolic pressures, internal and external dimensions, pressurization energy and organ energy output measurements of pressure-based organs in a wide range of mammals and birds. Seven rules were derived that govern amongst others, lack of size efficiency on scaling to larger organ sizes, matching organ size in the same species, equal relative efficiency in pressurization energy across species and direct size matching between organ mass and mass of contents. The lung, heart and bladder follow these predicted theoretical relationships with a similar relative efficiency across various mammalian and avian species; an exception is cardiac output in mammals with a mass exceeding 10kg. This may limit massive body size in mammals, breaking Cope's rule that populations evolve to increase in body size over time. Such a limit was not found in large flightless birds exceeding 100kg, leading to speculation about unlimited dinosaur size should dinosaurs carry avian-like cardiac characteristics. Copyright © 2018. Published by Elsevier Ltd.

  5. Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model

    Directory of Open Access Journals (Sweden)

    F. Cao

    Full Text Available A numerical procedure has been developed to deduce the plasma pressure and anisotropy from the Tsyganenko magnetic field model. The Tsyganenko empirical field model, which is based on vast satellite field data, provides a realistic description of magnetic field configuration in the magnetosphere. When the force balance under the static condition is assumed, the electromagnetic J×B force from the Tsyganenko field model can be used to infer the plasma pressure and anisotropy distributions consistent with the field model. It is found that the J×B force obtained from the Tsyganenko field model is not curl-free. The curl-free part of the J×B force in an empirical field model can be balanced by the gradient of the isotropic pressure, while the nonzero curl of the J×B force can only be associated with the pressure anisotropy. The plasma pressure and anisotropy in the near-Earth plasma sheet are numerically calculated to obtain a static equilibrium consistent with the Tsyganenko field model both in the noon-midnight meridian and in the equatorial plane. The plasma pressure distribution deduced from the Tsyganenko 1989 field model is highly anisotropic and shows this feature early in the substorm growth phase. The pressure anisotropy parameter αP, defined as αP=1-PVertP, is typically ~0.3 at x ≈ -4.5RE and gradually decreases to a small negative value with an increasing tailward distance. The pressure anisotropy from the Tsyganenko 1989 model accounts for 50% of the cross-tail current at maximum and only in a highly localized region near xsim-10RE. In comparison, the plasma pressure anisotropy inferred from the Tsyganenko 1987 model is much smaller. We also find that the boundary

  6. Modelling beach profile response during a storm in Praia de Faro, Portugal: Comparison of three beach profile models

    Science.gov (United States)

    Vousdoukas, M. I.; Almeida, L. M.; Ferreira; Karambas, T. V.

    2009-12-01

    The aim of the present contribution is to compare three numerical models on the grounds of their performance in simulating beach profile response on a monitored storm event in the Praia de Faro, South Portugal. The discussed storm occurred on February 1st, 2009, with duration ~24 hours and WSW waves, with maximum observed significant wave height and peak period, around 5 m and 8.5 s, respectively. The event was the most intense of the year, with a 3 years return period. Three models were run: the open source XBeach, a Bussinesq model (Karambas, T.V. and Koutitas, C., 2002. J. Wat, Port, Coas. & Oc. Eng., 128 (3)) and a linear energetics-approach model (Vousdoukas et al., Cont. Shelf Res., in press). Models were run for five profiles distributed along the whole study site, with circa 500 m spacing between each other; and beachface steepness increasing westwards (ranging from ~6% to 10%). All studied profiles showed signs of berm erosion and off-shore bar formation, with the impacts of the storm becoming less prominent, from the steeper NW profiles to the milder sloped ones, found on the SE boundary. All models overestimated the berm erosion, especially on the steeper profiles for which an unrealistic erosive scarp appeared, coupled with enhanced bar formation. Such behaviour was weaker on the Bousinesq model; which was calibrated for milder avalanching and produced overall improved results (rms errors between 0.2-0.35 m), with the cost of increased computational times. The performance of the energetics approach model was comparable to the other two, despite the significantly reduced computational times (~one order of magnitude). The overall rms errors ranged from 0.2 to 0.5 m, with the higher values corresponding to the western steeper profiles. Apart from a weakness of such profile models to simulate morphological response on reflective beaches, some other factors may account for the differences between predictions and observations: e.g. longshore transport, the

  7. Halo Pressure Profile through the Skew Cross-power Spectrum of the Sunyaev–Zel’dovich Effect and CMB Lensing in Planck

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Nicholas; Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Keating, Brian [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-11-01

    We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .

  8. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  9. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation

    International Nuclear Information System (INIS)

    Schranz, C; Möller, K; Becher, T; Schädler, D; Weiler, N

    2014-01-01

    Mechanical ventilation carries the risk of ventilator-induced-lung-injury (VILI). To minimize the risk of VILI, ventilator settings should be adapted to the individual patient properties. Mathematical models of respiratory mechanics are able to capture the individual physiological condition and can be used to derive personalized ventilator settings. This paper presents model-based calculations of inspiration pressure (p I ), inspiration and expiration time (t I , t E ) in pressure-controlled ventilation (PCV) and a retrospective evaluation of its results in a group of mechanically ventilated patients. Incorporating the identified first order model of respiratory mechanics in the basic equation of alveolar ventilation yielded a nonlinear relation between ventilation parameters during PCV. Given this patient-specific relation, optimized settings in terms of minimal p I and adequate t E can be obtained. We then retrospectively analyzed data from 16 ICU patients with mixed pathologies, whose ventilation had been previously optimized by ICU physicians with the goal of minimization of inspiration pressure, and compared the algorithm's ‘optimized’ settings to the settings that had been chosen by the physicians. The presented algorithm visualizes the patient-specific relations between inspiration pressure and inspiration time. The algorithm's calculated results highly correlate to the physician's ventilation settings with r = 0.975 for the inspiration pressure, and r = 0.902 for the inspiration time. The nonlinear patient-specific relations of ventilation parameters become transparent and support the determination of individualized ventilator settings according to therapeutic goals. Thus, the algorithm is feasible for a variety of ventilated ICU patients and has the potential of improving lung-protective ventilation by minimizing inspiratory pressures and by helping to avoid the build-up of clinically significant intrinsic positive end

  10. A human cadaver fascial compartment pressure measurement model.

    Science.gov (United States)

    Messina, Frank C; Cooper, Dylan; Huffman, Gretchen; Bartkus, Edward; Wilbur, Lee

    2013-10-01

    Fresh human cadavers provide an effective model for procedural training. Currently, there are no realistic models to teach fascial compartment pressure measurement. We created a human cadaver fascial compartment pressure measurement model and studied its feasibility with a pre-post design. Three faculty members, following instructions from a common procedure textbook, used a standard handheld intra-compartment pressure monitor (Stryker(®), Kalamazoo, MI) to measure baseline pressures ("unembalmed") in the anterior, lateral, deep posterior, and superficial posterior compartments of the lower legs of a fresh human cadaver. The right femoral artery was then identified by superficial dissection, cannulated distally towards the lower leg, and connected to a standard embalming machine. After a 5-min infusion, the same three faculty members re-measured pressures ("embalmed") of the same compartments on the cannulated right leg. Unembalmed and embalmed readings for each compartment, and baseline readings for each leg, were compared using a two-sided paired t-test. The mean baseline compartment pressures did not differ between the right and left legs. Using the embalming machine, compartment pressure readings increased significantly over baseline for three of four fascial compartments; all in mm Hg (±SD): anterior from 40 (±9) to 143 (±44) (p = 0.08); lateral from 22 (±2.5) to 160 (±4.3) (p measurable fascial compartment pressure measurement model in a fresh human cadaver using a standard embalming machine. Set-up is minimal and the model can be incorporated into teaching curricula. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  12. Model of a stationary microwave argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-01-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v en , and gas temperature T g . The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T g are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≅ 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number

  13. Design, modeling, and simulation of MEMS pressure sensors

    Science.gov (United States)

    Geca, Mateusz; Kociubiński, Andrzej

    2013-10-01

    This paper focuses on the design and analysis of a MEMS piezoresistive pressure sensor. The absolute pressure sensor with a 150μm wide and 3μm thick silicon membrane is modeled and simulated using CoventorWare™ softwareprofiting from a finite element method (FEM) implemented to determine specific electro-mechanical parameter values characterizing MEMS structure being designed. Optimization of piezoresistor parameters has been also performed to determine optimum dimensions of piezoresistors and their location referred to the center on the pressure sensor diaphragm. The output voltage measured on a piezoresistive Wheatstone bridge has been obtained and compared for two different resistor materials along with and linearity error analysis.

  14. Modeling of the Peeling Process of Pressure-sensitive Adhesive Tapes with the Combination of Maxwell Elements

    Science.gov (United States)

    Sato, Katsuhiko; Toda, Akihiko

    2004-08-01

    A simple model for the peeling process of pressure-sensitive adhesive tape is presented. The model consists of linear springs and dashpots and can be solved analytically. Based on the modeling, the curved profile of the peeling tape is spontaneously determined in terms of viscoelastic properties of adhesives. Using this model, two experimental results are discussed: critical peel rates in the peel force and the peel rate dependence of the detachment process of adhesive from the substrate.

  15. Modeling the pyrolysis study of non-charring polymers under reduced pressure environments

    Science.gov (United States)

    Zong, Ruowen; Kang, Ruxue; Hu, Yanghui; Zhi, Youran

    2018-04-01

    In order to study the pyrolysis of non-charring polymers under reduced pressure environments, a series of experiments based on black acrylonitrile butadiene styrene (ABS) was conducted in a reduced pressure chamber under different external heat fluxes. The temperatures of the top surface and the bottom of the sample and the mass loss during the whole process were measured in real time. A one-dimensional numerical model was developed to predict the top surface and the bottom surface temperatures of ABS during the pyrolysis at different reduced pressures and external heat fluxes, and the model was validated by the experimental data. The results of the study indicate that the profiles of the top surface and the bottom surface temperatures are different at different pressures and heat fluxes. The temperature and the mass loss rate of the sample under a lower heat flux decreased significantly as the pressure was increased. However, under a higher heat flux, the temperature and the mass loss rate showed little sensitivity to the pressure. The simulated results fitted the experimental results better at the higher heat flux than at the lower heat flux.

  16. Uniform relativistic universe models with pressure. Part 2. Observational tests

    International Nuclear Information System (INIS)

    Krempec, J.; Krygier, B.

    1977-01-01

    The magnitude-redshift and angular diameter-redshift relations are discussed for the uniform (homogeneous and isotropic) relativistic Universe models with pressure. The inclusion of pressure into the energy-momentum tensor has given larger values of the deceleration parameter q. An increase of the deceleration parameter has led to the brightening of objects as well as to a little larger angular diameters. (author)

  17. Model of Structural Fragmentation Induced by High Pressure Torsion

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin; Sedláček, R.

    2010-01-01

    Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf

  18. Wind-Tunnel Investigations on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution Measurements

    Science.gov (United States)

    Krueger, W.

    1947-01-01

    Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.

  19. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    Science.gov (United States)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  20. Electronic structure computation and differential capacitance profile in δ-doped FET as a function of hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Carlos-Pinedo, C.; Rodríguez-Vargas, I.; Martínez-Orozco, J. C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas. Calzada Solidaridad Esquina con Paseo la Bufa S/N. C.P. 98060, Zacatecas, Zac. (Mexico)

    2014-05-15

    In this work we present the results obtained from the calculation of the level structure of a n-type delta-doped well Field Effect Transistor when is subjected to hydrostatic pressure. We study the energy level structure as a function of hydrostatic pressure within the range of 0 to 6 kbar for different Schottky barrier height (SBH). We use an analytical expression for the effect of hydrostatic pressure on the SBH and the pressure dependence of the basic parameters of the system as the effective mass m(P) and the dielectric constant ε(P) of GaAs. We found that due to the effects of hydrostatic pressure, in addition to electronic level structure alteration, the profile of the differential capacitance per unit area C{sup −2} is affected.

  1. Electronic structure computation and differential capacitance profile in δ-doped FET as a function of hydrostatic pressure

    International Nuclear Information System (INIS)

    Carlos-Pinedo, C.; Rodríguez-Vargas, I.; Martínez-Orozco, J. C.

    2014-01-01

    In this work we present the results obtained from the calculation of the level structure of a n-type delta-doped well Field Effect Transistor when is subjected to hydrostatic pressure. We study the energy level structure as a function of hydrostatic pressure within the range of 0 to 6 kbar for different Schottky barrier height (SBH). We use an analytical expression for the effect of hydrostatic pressure on the SBH and the pressure dependence of the basic parameters of the system as the effective mass m(P) and the dielectric constant ε(P) of GaAs. We found that due to the effects of hydrostatic pressure, in addition to electronic level structure alteration, the profile of the differential capacitance per unit area C −2 is affected

  2. Modeling Profiles and Signatures of Enrichments

    Science.gov (United States)

    Ali, A.; Qualls, C.; Lucas, S. G.; Lombari, G.; Appenzeller, O.

    2014-12-01

    Anthropogenic and geochemical enrichment of soils and living matter have been well documented 1, 2, 3.Here we report on geochemical, anthropogenic and biological enrichments with heavy metals in Modern Peru and compared this to Modern and ancient data from New Mexico, USA. We established a signature derived from the quantities of 25 metals in various biological, fossil and soil materials. We also speculate that human adaptation to mercury toxicity may occur in remarkably short time spans during the Holocene. We found mercury concentrations in Modern pigeon feathers and llama wool from free foraging birds and animals in Albuquerque, NM, ranging from 0.006 to 0.019 mg/Kg of tissue. The values for Modern Peru ranged from 22.0 to 556 mg/Kg for the same tissues. We discovered, in 64 million-year-old fossilized plants from New Mexico (Paleocene Nacimiento Formation, San Juan Basin), a mercury concentration of 1.11 mg/Kg of fossil, whereas Modern plant material from the Rio Grande Basin in New Mexico contained no mercury. Profiling of metal content of these samples suggests that mercury is a proxy for anthropogenic rather than geochemical enrichment in the localities we examined. We found no overt signs of mercury toxicity in contemporaneous inhabitants of Huancavelica4, Peru; one of the ten most mercury-polluted places in the world and the mercury concentration in their hair is well below modern admissible levels. However, assessment of their annual scalp hair growth-rate showed marked reduction in growth (~ 5cm/yr) versus ~ 16cm/year for normal scalp hair from other continents4. This is consistent with a toxic effect of heavy metals on human metabolism and especially autonomic nervous system function in Huancavelica, Peru. Contemporaneous anthropogenic activities are known to increase heavy metal content in the biosphere with potentially toxic effects on humans. However, signs of human evolutionary adaptation to such toxins might already be evident in Peru4.

  3. Modelling Baryonic Effects on Galaxy Cluster Mass Profiles

    Science.gov (United States)

    Shirasaki, Masato; Lau, Erwin T.; Nagai, Daisuke

    2018-03-01

    Gravitational lensing is a powerful probe of the mass distribution of galaxy clusters and cosmology. However, accurate measurements of the cluster mass profiles are limited by uncertainties in cluster astrophysics. In this work, we present a physically motivated model of baryonic effects on the cluster mass profiles, which self-consistently takes into account the impact of baryons on the concentration as well as mass accretion histories of galaxy clusters. We calibrate this model using the Omega500 hydrodynamical cosmological simulations of galaxy clusters with varying baryonic physics. Our model will enable us to simultaneously constrain cluster mass, concentration, and cosmological parameters using stacked weak lensing measurements from upcoming optical cluster surveys.

  4. PEMBUATAN MODEL PROFIL MAHASISWA FAKULTAS TEKNIK UNIVERSITAS PANCASILA

    Directory of Open Access Journals (Sweden)

    Paryudi Paryudi

    2009-01-01

    Full Text Available Promotion is a must for a university to get students. With the innocence of the promotion team about the existing student profile, it will cause the team does not know which segment should be the promotion target. The consequence is that the promotion cost will be higher. In order to have a better promotion, we can use direct marketing method. In this method, a profile model of the existing students must be first created. With this profile model, promotion team can focus the promotion only to candidate student match with the model. The advantages of this method are: promotion cost can be reduced, response rate increase, and profit also increase. In order to create a model in direct marketing, we need previous promotion data. Since previous promotion data is not available, two methods in creating preliminary models are proposed. Next, the preliminary models will be tested using data mining software available in the market. Model with minimal accuracy of 75% will be chosen. If there are more than one model with minimal accuracy of 75%, then model with the highest accuracy will be chosen. Abstract in Bahasa Indonesia: Promosi merupakan suatu keharusan bagi sebuah universitas untuk mendapatkan mahasiswa. Dengan masih awamnya tim promosi terhadap profil mahasiswa yang sudah ada, maka tim promosi melakukan promosi tanpa melihat segmen pasar yang harus dituju. Konsekuensinya adalah biaya promosi menjadi lebih mahal. Untuk melakukan promosi dengan lebih baik, dapat menggunakan metode direct marketing. Pada metode ini, model profil dari mahasiswa yang sudah ada harus dibuat terlebih dulu. Dengan menggunakan model profil ini, tim promosi dapat memfokuskan promosi hanya pada calon-calon mahasiswa yang sesuai dengan model. Keuntungan dari metode promosi ini adalah biaya promosi dapat dikurangi, tingkat respon meningkat, dan keuntungan juga meningkat. Untuk membuat model pada direct marketing dibutuhkan data dari promosi sebelumnya. Karena data promosi

  5. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng.

    Science.gov (United States)

    Lee, Mee Youn; Singh, Digar; Kim, Sung Han; Lee, Sang Jun; Lee, Choong Hwan

    2016-06-22

    Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.

  6. THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Benson, B. A.; Vikhlinin, A.; Aird, K. A.; Allen, S. W.; Bautz, M.; Bayliss, M.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Miller, E. D.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.; Zenteno, A.

    2014-09-24

    We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg(2) South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < r < 1.5R (500), which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < z < 1.2) clusters are slightly (~30%) cooler both in the inner (r < 0.1R (500)) and outer (r > R (500)) regions than their low-z (0.3 < z < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence of strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R (500) of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r lsim 0.7R (500)—this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r gsim R (500) in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3×) rate at which group-mass (~2

  7. High-pressure intrapleural chemotherapy: feasibility in the pig model

    Directory of Open Access Journals (Sweden)

    Facy Olivier

    2012-02-01

    Full Text Available Abstract Background The usual treatments for pleural malignancies are mostly palliative. In contrast, peritoneal malignancies are often treated with a curative intent by cytoreductive surgery and intraperitoneal chemotherapy. As pressure has been shown to increase antitumor efficacy, we applied the concept of high-pressure intracavitary chemotherapy to the pleural space in a swine model. Methods Cisplatin and gemcitabine were selected because of their antineoplasic efficacy in vitro in a wide spectrum of cancer cell lines. The pleural cavity of 21 pigs was filled with saline solution; haemodynamic and respiratory parameters were monitored. The pressure was increased to 15-25 cm H2O. This treatment was associated with pneumonectomy in 6 pigs. Five pigs were treated with chemotherapy under pressure. Results The combination of gemcitabine (100 mg/l and cisplatin (30 mg/l was highly cytotoxic in vitro. The maximum tolerated pressure was 20 cm H20, due to haemodynamic failure. Pneumonectomy was not tolerated, either before or after pleural infusion. Five pigs survived intrapleural chemotherapy associating gemcitabine and cisplatin with 20 cm H2O pressure for 60 min. Conclusions High-pressure intrapleural chemotherapy is feasible in pigs. Further experiments will establish the pharmacokinetics and determine whether the benefit already shown in the peritoneum is also obtained in the pleura.

  8. Tyre pressure monitoring using a dynamical model-based estimator

    Science.gov (United States)

    Reina, Giulio; Gentile, Angelo; Messina, Arcangelo

    2015-04-01

    In the last few years, various control systems have been investigated in the automotive field with the aim of increasing the level of safety and stability, avoid roll-over, and customise handling characteristics. One critical issue connected with their integration is the lack of state and parameter information. As an example, vehicle handling depends to a large extent on tyre inflation pressure. When inflation pressure drops, handling and comfort performance generally deteriorate. In addition, it results in an increase in fuel consumption and in a decrease in lifetime. Therefore, it is important to keep tyres within the normal inflation pressure range. This paper introduces a model-based approach to estimate online tyre inflation pressure. First, basic vertical dynamic modelling of the vehicle is discussed. Then, a parameter estimation framework for dynamic analysis is presented. Several important vehicle parameters including tyre inflation pressure can be estimated using the estimated states. This method aims to work during normal driving using information from standard sensors only. On the one hand, the driver is informed about the inflation pressure and he is warned for sudden changes. On the other hand, accurate estimation of the vehicle states is available as possible input to onboard control systems.

  9. Modeling beam-front dynamics at low gas pressures

    International Nuclear Information System (INIS)

    Briggs, R.J.; Yu, S.

    1982-01-01

    The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development

  10. Pressure Changes before and after Explosive Rhyolitic Bomb Ejection at Chaiten, Chile Recorded By Water Diffusion Profiles Around Tuffisite Veins

    Science.gov (United States)

    Tuffen, H.; McGowan, E.; Castro, J. M.; Berlo, K.; James, M. R.; Owen, J.; Schipper, C. I.; Wadsworth, F. B.; Saubin, E.; Wehbe, K.

    2014-12-01

    The recent rhyolitic eruptions at Chaitén and Cordón Caulle have provided valuable new insights into the relationship between explosive and effusive activity, and the gas escape mechanisms that permit rapid effusion of degassed lava[1,2]. Bombs ejected during mixed explosive-effusive activity host spectacular tuffisite veins cutting both dense obsidian (Fig 1a) and highly-expanded pumice. Tuffisite veins are ash-filled fracture networks that act as ephemeral permeable pathways for gas escape in shallow conduits and lava domes. Previous studies have revealed water depletion adjacent to tuffisite veins, leading to models of fracture-triggered pressure release[2] and estimates of gas escape timescales[2,3]. We have characterised water diffusion profiles from a new suite of tuffisite-bearing Chaitén bombs, using synchrotron-source FTIR at the Diamond Light Source, Oxford, UK. Unexpectedly, one exceptionally large tuffisite vein, which is 30 mm thick (Fig. 1a, b) is mantled by zones of strong water enrichment, which enclose the usual narrow depletion zones immediately adjacent to the vein (Fig. 1c). Consistent results from different branches of this vein (Fig. 1b) indicate a similar history. The plausible range of diffusion model solutions points towards ~2-4 hours of vein pressurisation, followed by a brief pre-quench period of lower pressure conditions. In our model the vein opened during a period of overpressure at the lava dome base, sustained by gas influx from a deeper catchment extending hundreds of metres into the upper conduit. Overpressure culminated in violent bomb ejection, after which vein pressure decreased due to gas leakage to the atmosphere through the incompletely welded vein, as observed in rhyolitic bombs from Cordón Caulle (Fig. 1d). Commonly-seen water depletion zones[2,3] may therefore merely record post-fragmentation degassing. However, the enrichment zone points towards the type of deep pressurisation associated with cycles of tilt and

  11. Nonlinear model predictive control of managed pressure drilling.

    Science.gov (United States)

    Nandan, Anirudh; Imtiaz, Syed

    2017-07-01

    A new design of nonlinear model predictive controller (NMPC) is proposed for managed pressure drilling (MPD) system. The NMPC is based on output feedback control architecture and employs offset-free formulation proposed in [1]. NMPC uses active set method for computing control inputs. The controller implements an automatic switching from constant bottom hole pressure (CBHP) regulation to flow control mode in the event of a reservoir kick. In the flow control mode the controller automatically raises the bottom hole pressure setpoint, and thereby keeps the reservoir fluid flow to the surface within a tunable threshold. This is achieved by exploiting constraint handling capability of NMPC. In addition to kick mitigation the controller demonstrated good performance in containing the bottom hole pressure (BHP) during the pipe connection sequence. The controller also delivered satisfactory performance in the presence of measurement noise and uncertainty in the system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. AMPTRACT: an algebraic model for computing pressure tube circumferential and steam temperature transients under stratified channel coolant conditions

    International Nuclear Information System (INIS)

    Gulshani, P.; So, C.B.

    1986-10-01

    In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution

  13. Error budget analysis of SCIAMACHY limb ozone profile retrievals using the SCIATRAN model

    Directory of Open Access Journals (Sweden)

    N. Rahpoe

    2013-10-01

    Full Text Available A comprehensive error characterization of SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY limb ozone profiles has been established based upon SCIATRAN transfer model simulations. The study was carried out in order to evaluate the possible impact of parameter uncertainties, e.g. in albedo, stratospheric aerosol optical extinction, temperature, pressure, pointing, and ozone absorption cross section on the limb ozone retrieval. Together with the a posteriori covariance matrix available from the retrieval, total random and systematic errors are defined for SCIAMACHY ozone profiles. Main error sources are the pointing errors, errors in the knowledge of stratospheric aerosol parameters, and cloud interference. Systematic errors are of the order of 7%, while the random error amounts to 10–15% for most of the stratosphere. These numbers can be used for the interpretation of instrument intercomparison and validation of the SCIAMACHY V 2.5 limb ozone profiles in a rigorous manner.

  14. Lifetime injury prevention: the sport profile model.

    Science.gov (United States)

    Webborn, Nick

    2012-03-01

    Participation in sporting activities carries an injury risk. Conversely, the increased awareness that physical inactivity is a major risk factor for disease has led government agencies and the medical community to encourage increased levels of physical activity. Many people will achieve this through participation in sport. Injury inevitably leads to a reduction in participation on a temporary or permanent basis, but the injury experience may also influence the lifelong physical activity behaviour. Few studies adequately examine the possible long-term consequences of sport participation after the competitive period has been completed, but by understanding the patterns of injuries in different sports one test can develop strategies to prevent and better manage the conditions that occur and promote lifelong physical activity. There is a need to develop models of understanding of injury risk at different life phases and levels of participation in a specific sport. The risk assessment of sport participation has to be relevant to a particular sport, the level of participation, skill, age and potential future health consequences. This article describes a sport-specific model which will improve guidance for coaches and healthcare professionals. It poses questions for sports physicians, healthcare providers, educators and for governing bodies of sports to address in a systematic fashion. Additionally the governing body, as an employer, will need to meet the requirements for risk assessment for professional sport and its ethical responsibility to the athlete.

  15. Initialization of a mesoscale model with satellite derived temperature profiles

    Science.gov (United States)

    Kalb, Michael W.

    1986-01-01

    The abilities of rawinsonde data and Tiros-N satellite derived temperature profile data to depict mesoscale precipitation accumulation are evaluated. Four mesoscale simulations using combinations of temperature, low-level wind, and low-level wind initialization were performed with the limited area mesoscale prediction system (LAMPS) model. Comparisons of the simulations with operational LFM forecast accumulations reveal that the LAMPS model simulations provide a better depiction of the observed precipitation accumulation than the LFM forecasts, and the satellite temperature profiles produce better mesoscale precipitation accumulation forecasts than the rawinsonde temperature data.

  16. Conditioning a segmented stem profile model for two diameter measurements

    Science.gov (United States)

    Raymond L. Czaplewski; Joe P. Mcclure

    1988-01-01

    The stem profile model of Max and Burkhart (1976) is conditioned for dbh and a second upper stem measurement. This model was applied to a loblolly pine data set using diameter outside bark at 5.3m (i.e., height of 17.3 foot Girard form class) as the second upper stem measurement, and then compared to the original, unconditioned model. Variance of residuals was reduced...

  17. Model for radial gas fraction profiles in vertical pipe flow

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2001-01-01

    A one-dimensional model is presented, which predicts the radial volume fraction profiles from a given bubble size distribution. It bases on the assumption of an equilibrium of the forces acting on a bubble perpendicularly to the flow path (non drag forces). For the prediction of the flow pattern this model could be used within an procedure together with appropriate models for local bubble coalescence and break-up. (orig.)

  18. Diagnostics and modeling of high pressure streamer induced discharges

    International Nuclear Information System (INIS)

    Marode, E.; Dessante, P.; Deschamps, N.; Deniset, C.

    2001-01-01

    A great variety of diagnostic has been applied to gain information on basic parameter governing high pressure nonthermal filamentary plasmas (and namely streamer induced filamentary discharges). Apart from electrical diagnostics, gas discharge, in contrast with solid state physics, can greatly benefit from all optical techniques owing to its ''transparent'' state. Emission and absorption spectroscopy, as well as LIF or CARS (talk are given during this meeting on these two techniques) are among such specific possibilities. The figures gained from these diagnostic measurements has generally no meaning by itself. They must be worked out, by means of calibrated former results, and/or by using them as input in high pressure plasma modeling. Mixing experimental and modeling approach is necessary for reaching relevant physical knowledge of the high pressure filamentary discharges processes. It is shown that diffusion, and thermal space and time distribution, must fully be taken into account

  19. High temperature- and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets.

    Science.gov (United States)

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong; Kim, Mee Ree

    2012-05-01

    Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague-Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (Ptemperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles.

  20. A novel model of human skin pressure ulcers in mice.

    Directory of Open Access Journals (Sweden)

    Andrés A Maldonado

    Full Text Available INTRODUCTION: Pressure ulcers are a prevalent health problem in today's society. The shortage of suitable animal models limits our understanding and our ability to develop new therapies. This study aims to report on the development of a novel and reproducible human skin pressure ulcer model in mice. MATERIAL AND METHODS: Male non-obese, diabetic, severe combined immunodeficiency mice (n = 22 were engrafted with human skin. A full-thickness skin graft was placed onto 4×3 cm wounds created on the dorsal skin of the mice. Two groups with permanent grafts were studied after 60 days. The control group (n = 6 was focused on the process of engraftment. Evaluations were conducted with photographic assessment, histological analysis and fluorescence in situ hybridization (FISH techniques. The pressure ulcer group (n = 12 was created using a compression device. A pressure of 150 mmHg for 8 h, with a total of three cycles of compression-release was exerted. Evaluations were conducted with photographic assessment and histological analysis. RESULTS: Skin grafts in the control group took successfully, as shown by visual assessment, FISH techniques and histological analysis. Pressure ulcers in the second group showed full-thickness skin loss with damage and necrosis of all the epidermal and dermal layers (ulcer stage III in all cases. Complete repair occurred after 40 days. CONCLUSIONS: An inexpensive, reproducible human skin pressure ulcer model has been developed. This novel model will facilitate the development of new clinically relevant therapeutic strategies that can be tested directly on human skin.

  1. Postural effects on intracranial pressure: modeling and clinical evaluation.

    Science.gov (United States)

    Qvarlander, Sara; Sundström, Nina; Malm, Jan; Eklund, Anders

    2013-11-01

    The physiological effect of posture on intracranial pressure (ICP) is not well described. This study defined and evaluated three mathematical models describing the postural effects on ICP, designed to predict ICP at different head-up tilt angles from the supine ICP value. Model I was based on a hydrostatic indifference point for the cerebrospinal fluid (CSF) system, i.e., the existence of a point in the system where pressure is independent of body position. Models II and III were based on Davson's equation for CSF absorption, which relates ICP to venous pressure, and postulated that gravitational effects within the venous system are transferred to the CSF system. Model II assumed a fully communicating venous system, and model III assumed that collapse of the jugular veins at higher tilt angles creates two separate hydrostatic compartments. Evaluation of the models was based on ICP measurements at seven tilt angles (0-71°) in 27 normal pressure hydrocephalus patients. ICP decreased with tilt angle (ANOVA: P < 0.01). The reduction was well predicted by model III (ANOVA lack-of-fit: P = 0.65), which showed excellent fit against measured ICP. Neither model I nor II adequately described the reduction in ICP (ANOVA lack-of-fit: P < 0.01). Postural changes in ICP could not be predicted based on the currently accepted theory of a hydrostatic indifference point for the CSF system, but a new model combining Davson's equation for CSF absorption and hydrostatic gradients in a collapsible venous system performed well and can be useful in future research on gravity and CSF physiology.

  2. The coefficient of restitution of pressurized balls: a mechanistic model

    Science.gov (United States)

    Georgallas, Alex; Landry, Gaëtan

    2016-01-01

    Pressurized, inflated balls used in professional sports are regulated so that their behaviour upon impact can be anticipated and allow the game to have its distinctive character. However, the dynamics governing the impacts of such balls, even on stationary hard surfaces, can be extremely complex. The energy transformations, which arise from the compression of the gas within the ball and from the shear forces associated with the deformation of the wall, are examined in this paper. We develop a simple mechanistic model of the dependence of the coefficient of restitution, e, upon both the gauge pressure, P_G, of the gas and the shear modulus, G, of the wall. The model is validated using the results from a simple series of experiments using three different sports balls. The fits to the data are extremely good for P_G > 25 kPa and consistent values are obtained for the value of G for the wall material. As far as the authors can tell, this simple, mechanistic model of the pressure dependence of the coefficient of restitution is the first in the literature. *%K Coefficient of Restitution, Dynamics, Inflated Balls, Pressure, Impact Model

  3. Thermodynamic modelling and optimization of a dual pressure ...

    Indian Academy of Sciences (India)

    The exergetic losses in CC system are compared with each other. The present DPRH HRSG model has been compared and validated with the plant and published data. Keywords. Combined cycle; dual pressure; deaerator; exergy analysis; heat recovery steam generator. 1. Introduction. Combined cycle (CC) power plants ...

  4. Validated Analytical Model of a Pressure Compensation Drip Irrigation Emitter

    Science.gov (United States)

    Shamshery, Pulkit; Wang, Ruo-Qian; Taylor, Katherine; Tran, Davis; Winter, Amos

    2015-11-01

    This work is focused on analytically characterizing the behavior of pressure-compensating drip emitters in order to design low-cost, low-power irrigation solutions appropriate for off-grid communities in developing countries. There are 2.5 billion small acreage farmers worldwide who rely solely on their land for sustenance. Drip, compared to flood, irrigation leads to up to 70% reduction in water consumption while increasing yields by 90% - important in countries like India which are quickly running out of water. To design a low-power drip system, there is a need to decrease the pumping pressure requirement at the emitters, as pumping power is the product of pressure and flow rate. To efficiently design such an emitter, the relationship between the fluid-structure interactions that occur in an emitter need to be understood. In this study, a 2D analytical model that captures the behavior of a common drip emitter was developed and validated through experiments. The effects of independently changing the channel depth, channel width, channel length and land height on the performance were studied. The model and the key parametric insights presented have the potential to be optimized in order to guide the design of low-pressure, clog-resistant, pressure-compensating emitters.

  5. Gravel beaches nourishment: Modelling the equilibrium beach profile.

    Science.gov (United States)

    López, I; Aragonés, L; Villacampa, Y; Navarro-González, F J

    2018-04-01

    The erosion of the world's coasts and the shortage of sand to mitigate beach erosion are leading to the increasingly common use of gravel for coastal protection and beach nourishment. Therefore, in order to determine the amount of gravel required for such actions, it is important to know perfectly the equilibrium profile of gravel beaches. However, at present, this profile is obtained from formulas obtained mainly after channel tests, and therefore most of them do not adapt to the real profiles formed by gravel beaches in nature. In this article, 31 variables related to sedimentology, waves, morphology and marine vegetation present on the beaches are studied to determine which are the most influential in the profile. From the study carried out, it is obtained that these variables are the steepness and probability of occurrence of the wave perpendicular to the coast, the profile starting slope (between MWL and -2m), the energy reduction coefficient due to Posidonia oceanica as well as the width of the meadow. Using these variables, different numerical models were generated to predict accurately the gravel beach profile, which will lead to a saving in the volume of material used in the order of 1300m 3 /ml of beach with respect to current formulations, and a greater certainty that the beach nourishment carried out will have the desired effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Transient modelling of a natural circulation loop under variable pressure

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2017-07-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  7. Stochastic analysis and prioritization of the influence of parameter uncertainty on the predicted pressure profile in heterogeneous, unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Paleologos, Evan K. [Department of Geological Sciences, University of South Carolina, Columbia, SC 29208 (United States)]. E-mail: epal@geol.sc.edu; Avanidou, T. [Department of Geological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Mylopoulos, N. [Department of Civil Engineering, University of Thessaly, Volos 38221 (Greece)

    2006-08-10

    This article utilizes a Monte Carlo stochastic framework to investigate the influence on the mean and variance of the predicted mean pressure head profile of statistical assumptions regarding the parameters that enter the mathematical description of the problem of infiltration in unsaturated, heterogeneous layers. The parameters are treated as random functions with an exponential auto-covariance function expressing their spatial continuity. Four different truncated distributions are taken to describe the parameters according to field observations and various phases of site characterization campaigns. The exponential distribution is seen to produce the largest (in absolute value) mean and variance in the pressure head profile. For all distributions the variance in pressure head increases with increasing mean pressure. A second topic of this article is to investigate, the relative importance of each parameter, in terms of the mean and the variance of the predicted pressure. For uniformly or triangularly distributed parameters the saturated hydraulic conductivity appears to dominate the mean-behavior and the uncertainty in the system's solution. For lognormally or exponentially distributed parameters another parameter, the van Genuchten pore-size distribution index, is the dominant factor.

  8. The impact of hydraulic flow unit & reservoir quality index on pressure profile and productivity index in multi-segments reservoirs

    Directory of Open Access Journals (Sweden)

    Salam Al-Rbeawi

    2017-12-01

    Full Text Available The objective of this paper is studying the impact of the hydraulic flow unit and reservoir quality index (RQI on pressure profile and productivity index of horizontal wells acting in finite reservoirs. Several mathematical models have been developed to investigate this impact. These models have been built based on the pressure distribution in porous media, depleted by a horizontal well, consist of multi hydraulic flow units and different reservoir quality index. The porous media are assumed to be finite rectangular reservoirs having different configurations and the wellbores may have different lengths. Several analytical models describing flow regimes have been derived wherein hydraulic flow units and reservoir quality index have been included in addition to rock and fluid properties. The impact of these two parameters on reservoir performance has also been studied using steady state productivity index.It has been found that both pressure responses and flow regimes are highly affected by the existence of multiple hydraulic flow units in the porous media and the change in reservoir quality index for these units. Positive change in the RQI could lead to positive change in both pressure drop required for reservoir fluids to move towards the wellbore and hence the productivity index.

  9. Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic

    Science.gov (United States)

    Gutierrez-Lemini, Danton; Ehle, Curt

    2003-01-01

    An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting

  10. Analysis on atmospheric pressure, temperature, and wind speed profiles during total solar eclipse 9 March 2016 using time series clustering

    Science.gov (United States)

    Septem Riza, Lala; Wihardi, Yaya; Nurdin, Enjang Ali; Dwi Ardi, Nanang; Puji Asmoro, Cahyo; Wijaya, Agus Fany Chandra; Aria Utama, Judhistira; Bayu Dani Nandiyanto, Asep

    2016-11-01

    Air temperature, pressure, and wind speed measurements on the surface taken during the Total Solar Eclipse (TSE) of March 9, 2016, are made. They were taken in Terentang Beach, Bangka Island, Indonesia. In this paper, we propose to analyze them by using time series clustering. The following steps are conducted: data collecting, splitting, smoothing, distance calculation, and clustering. The final results show cluster memberships of the three parameters on 3 time frames: one day before, the TSE day, and one day after. After doing some simulations, it can be seen that the profiles of temperature and pressure on the TSE day are on the same cluster while the wind-speed profile on the TSE day is the same as on the one day after.

  11. OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING

    Directory of Open Access Journals (Sweden)

    Asterios KOSMARAS

    2017-05-01

    Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.

  12. Modeling of a Piezoelectric MEMS Micropump Dedicated to Insulin Delivery and Experimental Validation Using Integrated Pressure Sensors: Application to Partial Occlusion Management

    Directory of Open Access Journals (Sweden)

    S. Fournier

    2017-01-01

    Full Text Available A numerical model based on equivalent electrical networks has been built to simulate the dynamic behavior of a positive-displacement MEMS micropump dedicated to insulin delivery. This device comprises a reservoir in direct communication with the inlet check valve, a pumping membrane actuated by a piezo actuator, two integrated piezoresistive pressure sensors, an anti-free-flow check valve at the outlet, and finally a fluidic pathway up to the patient cannula. The pressure profiles delivered by the sensors are continuously analyzed during the therapy in order to detect failures like occlusion. The numerical modeling is a reliable way to better understand the behavior of the micropump in case of failure. The experimental pressure profiles measured during the actuation phase have been used to validate the numerical modeling. The effect of partial occlusion on the pressure profiles has been also simulated. Based on this analysis, a new management of partial occlusion for MEMS micropump is finally proposed.

  13. Computer modeling of homogenization of boric acid in IRIS pressurizer

    International Nuclear Information System (INIS)

    Rives Sanz, Ronny; Montesinos Otero, Maria Elena; Gonzalez Mantecon, Javier

    2015-01-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system; which is usually used to mitigate in-surge transient and help to boron homogenization. The study of transients with deficiencies in the boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The aim of the present research is to model the IRIS pressurizer using the CFX code searching for designs alternatives that guaranteed its intrinsic security, focused on the phenomena before mentioned. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The relationships are programmed and incorporated into the code. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of the analyzed IRIS transients could be applied to the design of the pressurizer internal structures and components. (Author)

  14. Association of physical activity and physical fitness with blood pressure profile in maharashtrian adolescent boys and girls

    OpenAIRE

    Suchitra B Parkhad; Sachin B Palve

    2014-01-01

    The current study was conducted to determine how physical activity level and physical fitness affects the blood pressure profile of Maharashtrian adolescents to help in developing preventive strategies for the local population, as ethnic differences exist in the aetiopathogenesis of hypertension. A cross-sectional study was conducted on 485 Marathi Indian adolescent girls and boys of age group 14 -18 years. Physical activity level was assessed using Johnson Space Center/NASA Physical Activity...

  15. Comprehensive Validation of an Intermittency Transport Model for Transitional Low-Pressure Turbine Flows

    Science.gov (United States)

    Suzen, Y. B.; Huang, P. G.

    2005-01-01

    A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment. and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, Mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, acceleration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.

  16. Modelling of blowdown of steam in the pressurized PPOOLEX facility

    International Nuclear Information System (INIS)

    Paettikangas, T.; Niemi, J.; Timperi, A.

    2009-12-01

    PPOOLEX experiment WLL-04-02 on condensation of vapour is studied with CFD simulations. Wall condensation model has been adapted to an Euler-Euler multiphase model of the Fluent CFD code for this purpose. In addition, a simple direct-contact condensation model has also been included in the code. The main focus of the CFD modelling work was on modelling condensation in the drywell. The amount of condensation found in the CFD calculation was in fair agreement with the experiment. The present simulation was so short that the gas flowing into the wetwell contained significant amount of air. The mole fraction of vapour at the outlet of the vent pipe had the maximum value of about 0.3. Therefore, the noncondensable gas strongly affected the direct-contact condensation in the water pool. Much longer simulations are needed in order to study jugging and condensation oscillations. FSI calculations of the experiments were performed by using the Star-CD, ABAQUS and MpCCI codes. An approximate method that makes possible numerically stable FSI calculations for the experimental facilities was used. The method is based on linear perturbation method which necessitates small structural deformations. The calculations showed that FSI has to be taken into account for the POOLEX facility which has relatively light structures. A way for determining the pressure source for the acoustic model from pressure measured at the pool bottom was also examined. Separation of the pressure component due to wall motion from the blowdown load was attempted by conducting a Fourier analysis on the measured displacement signal. The study showed that in practise sufficiently accurate acceleration signal cannot be obtained this way because the transformed signal gets easily out of phase. A measurement system was proposed which could be used for determining the pressure fluctuations. (author)

  17. Modelling of blowdown of steam in the pressurized PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))

    2009-12-15

    PPOOLEX experiment WLL-04-02 on condensation of vapour is studied with CFD simulations. Wall condensation model has been adapted to an Euler-Euler multiphase model of the Fluent CFD code for this purpose. In addition, a simple direct-contact condensation model has also been included in the code. The main focus of the CFD modelling work was on modelling condensation in the drywell. The amount of condensation found in the CFD calculation was in fair agreement with the experiment. The present simulation was so short that the gas flowing into the wetwell contained significant amount of air. The mole fraction of vapour at the outlet of the vent pipe had the maximum value of about 0.3. Therefore, the noncondensable gas strongly affected the direct-contact condensation in the water pool. Much longer simulations are needed in order to study jugging and condensation oscillations. FSI calculations of the experiments were performed by using the Star-CD, ABAQUS and MpCCI codes. An approximate method that makes possible numerically stable FSI calculations for the experimental facilities was used. The method is based on linear perturbation method which necessitates small structural deformations. The calculations showed that FSI has to be taken into account for the POOLEX facility which has relatively light structures. A way for determining the pressure source for the acoustic model from pressure measured at the pool bottom was also examined. Separation of the pressure component due to wall motion from the blowdown load was attempted by conducting a Fourier analysis on the measured displacement signal. The study showed that in practise sufficiently accurate acceleration signal cannot be obtained this way because the transformed signal gets easily out of phase. A measurement system was proposed which could be used for determining the pressure fluctuations. (author)

  18. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    Science.gov (United States)

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (Pgarlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  19. Investigation and modeling of CPL mask profiles using OCD

    Science.gov (United States)

    Chen, Hsuan-Chen; Lin, Ren-Hao; Chen, Chien-Cheng; Huang, Cheng-Hsuan; Lien, Ta-Cheng; Chen, Chia-Jen; Lee, Gaston; Lee, Hsin-Chang; Yen, Anthony

    2016-05-01

    Mask profile of chromeless phase-shifting lithography (CPL) defined by OCD has been investigated. In CPL masks, unbalanced bombardments caused by different ion accelerations lead to the formation of micro-notch structures. A better understanding of micro-notch structures is essential for quality gating of mask processes to improve of CPL mask profiles. By measuring 12 of 16 elements of Mueller matrix, we are able to set up a model to simulate the depth of micro-notch structure profile which shows good correlation with TEM images. Moreover, values of CD, quartz etching depth and side wall angle acquired by OCD are presented and compared with those obtained by SEM, TEM and AFM, respectively.

  20. Psychological profiling of sexual murders: an empirical model.

    Science.gov (United States)

    Kocsis, Richard N; Cooksey, Ray W; Irwin, Harvey J

    2002-10-01

    Psychological profiling represents the investigative technique of analyzing crime behaviors for the identification of probable offender characteristics. Profiling has progressively been incorporated into police procedures despite a surprising lack of empirical research to support its validity. Indeed, in the study of sexual murder for the purpose of profiling, very few quantitative, academically reviewed studies exist. This article reports on the results of a 4-year study into Australian sexual murders for the development of psychological profiling. The study involved 85 cases of sexual murder sampled from all Australian police jurisdictions. The statistical procedure of multidimensional scaling was employed. This analysis produced a five-cluster model of sexual murder behavior. First, a central cluster of behaviors was identified that represents common behaviors to all patterns of sexual murder. Next, four distinct outlying patterns--predator, fury, perversion, and rape--were identified that each demonstrated distinct offense styles. Further analysis of these patterns also identified distinct offender characteristics that allow for the use of empirically robust offender profiles in future sexual murder investigations.

  1. Modeling of an implantable device for remote arterial pressure measurement

    Science.gov (United States)

    Miguel, J. A.; Lechuga, Y.; Mozuelos, R.; Martinez, M.

    2013-05-01

    Cardiovascular diseases are the leading causes of illness and death in Europe, having a major impact on healthcare costs. An intelligent stent (e-stent), capable of obtaining and transmitting measurements of physiological parameters, can be a useful tool for real-time monitorization of arterial blockage without patient hospitalization. In this paper, a behavioral model of a pressure sensing-based e-stent is proposed and simulated under several restenosis conditions. Special attention has been given to the need of an accurate fault model, obtained from realistic finite-element simulations, to ensure long-term reliability; particularly for those faults whose behavior cannot be described by usual analytical models.

  2. Study of flow profile distortions and efficiency in counter pressure moderated partial filling micellar electrokinetic chromatography in relation to the relative buffer zone lengths.

    Science.gov (United States)

    Michalke, Daniela; Welsch, Thomas

    2002-06-25

    The influence of the relative buffer zone lengths on the efficiency was investigated in partial filling micellar electrokinetic chromatography using sodium dodecyl sulfate as separation additive. Varying relative zone lengths were obtained by applying identical initial separation zone lengths but different total lengths of the capillaries. Plate numbers of a homologous series of omega-phenylalcohols were measured to indicate the effect of both a changing relative zone length during the run and a counter pressure applied on the cathodic buffer reservoir. The magnitude and the course of these plate numbers are discussed on the basis of models for flow profile superposition and flow profile deformation which are caused by an intersegmental pressure arising at the boundary between the two buffer zones with different electroosmotic flow velocities. Calculation of the intersegmental pressure and of the resulting laminar flow components in the buffer zones on the basis of some equations for electroosmotic and hydrodynamic flow supported the interpretation that a long background buffer zone should be avoided

  3. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Effects of supervised exercise on lipid profiles and blood pressure control in people with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Hayashino, Yasuaki; Jackson, Jeffrey L; Fukumori, Norio; Nakamura, Fumiaki; Fukuhara, Shunichi

    2012-12-01

    Our study's purpose was to perform a systematic review to assess the effect of supervised exercise interventions on lipid profiles and blood pressure control. We searched electronic databases and selected studies that evaluated the effect of supervised exercise intervention on cardiovascular risk factors in adult people with type 2 diabetes. We used random effect models to derive weighted mean differences of exercise on lipid profiles and blood pressure control. Forty-two RCTs (2808 subjects) met inclusion criteria and are included in our meta-analysis. Structured exercise was associated with a change in systolic blood pressure (SBP) of -2.42 mmHg (95% CI, -4.39 to -0.45 mmHg), diastolic blood pressure (DBP) of -2.23 mmHg (95% CI, -3.21 to -1.25 mmHg), high-density lipoprotein cholesterol (HDL-C) of 0.04 mmol/L (95% CI, 0.02-0.07 mmol/L), and low-density lipoprotein cholesterol (LDL-C) of -0.16 mmol/L (95% CI, -0.30 to -0.01 mmol/L). Heterogeneity was partially explained by age, dietary co-intervention and the duration and intensity of the exercise. Supervised exercise is effective in improving blood pressure control, lowering LDL-C, and elevating HDL-C levels in people with diabetes. Physicians should recommend exercise for their adult patients with diabetes who can safely do so. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Integral bubble and jet models with pressure forces

    Science.gov (United States)

    Vulfson, A. N.; Nikolaev, P. V.

    2017-07-01

    Modifications of integral bubble and jet models including the pressure force are proposed. Exact solutions are found for the modified model of a stationary convective jet from a point source of buoyancy and momentum. The exact solutions are compared against analytical solutions of the integral models for a stationary jet that are based on the approximation of the vertical boundary layer. It is found that the modified integral models of convective jets retain the power-law dependences on the altitude for the vertical velocity and buoyancy obtained in classical models. For a buoyant jet in a neutrally stratified atmosphere, the inclusion of the pressure force increases the amplitude of buoyancy and decreases the amplitude of vertical velocity. The total amplitude change is about 10%. It is shown that in this model there is a dynamic invariant expressing the law of a uniform distribution of the potential and kinetic energy along the jet axis. For a spontaneous jet rising in an unstably stratified atmosphere, the inclusion of the pressure force retains the amplitude of buoyancy and increases the amplitude of vertical velocity by about 15%. It is shown that in the model of a spontaneous jet there is a dynamic invariant expressing the law of a uniform distribution of the available potential and kinetic energy along the jet axis. The results are of interest for the problems of anthropogenic pollution diffusion in the air and water environments and the formulation of models for statistical and stochastic ensembles of thermals in a mass-flux parameterization of turbulent moments.

  6. A study on variations of the low cycle fatigue life of a high pressure turbine nozzle caused by inlet temperature profiles and installation conditions

    International Nuclear Information System (INIS)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho; Seo, Do Young

    2015-01-01

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones

  7. Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations

    Directory of Open Access Journals (Sweden)

    Marius Schneider

    2017-12-01

    Full Text Available An algorithm is presented generating a complete set of inlet boundary conditions for Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD of high-pressure turbines to investigate their interaction with lean and rich burn combustors. The method shall contribute to understanding the sensitivities of turbine aerothermal performance in a systematic approach. The boundary conditions are based on a set of input parameters controlling velocity, temperature, and turbulence fields. All other quantities are derived from operating conditions and additional modelling assumptions. The algorithm is coupled with a CFD solver by applying the generated profiles as inlet boundary conditions. The successive steps to derive consistent flow profiles are described and results are validated against flow fields extracted from combustor CFD.

  8. Assessment of the Quality of the Version 1.07 Temperature-Versus-Pressure Profiles of the Middle Atmosphere from TIMED/SABER

    Science.gov (United States)

    Remsberg, E. E.; Marshall, B. T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G. S.; Martin-Torres, J.; Mlynczak, M. G.; Russell, J. M., III; Smith, A. K.; Zhao, Y.; hide

    2008-01-01

    The quality of the retrieved temperature-versus-pressure (or T(p)) profiles is described for the middle atmosphere for the publicly available Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) Version 1.07 (V1.07) data set. The primary sources of systematic error for the SABER results below about 70 km are (1) errors in the measured radiances, (2) biases in the forward model, and (3) uncertainties in the corrections for ozone and in the determination of the reference pressure for the retrieved profiles. Comparisons with other correlative data sets indicate that SABER T(p) is too high by 1-3 K in the lower stratosphere but then too low by 1 K near the stratopause and by 2 K in the middle mesosphere. There is little difference between the local thermodynamic equilibrium (LTE) algorithm results below about 70 km from V1.07 and V1.06, but there are substantial improvements/differences for the non-LTE results of V1.07 for the upper mesosphere and lower thermosphere (UMLT) region. In particular, the V1.07 algorithm uses monthly, diurnally averaged CO2 profiles versus latitude from the Whole Atmosphere Community Climate Model. This change has improved the consistency of the character of the tides in its kinetic temperature (T(sub k)). The T(sub k) profiles agree with UMLT values obtained from ground-based measurements of column-averaged OH and O2 emissions and of the Na lidar returns, at least within their mutual uncertainties. SABER T(sub k) values obtained near the mesopause with its daytime algorithm also agree well with the falling sphere climatology at high northern latitudes in summer. It is concluded that the SABER data set can be the basis for improved, diurnal-to-interannual-scale temperatures for the middle atmosphere and especially for its UMLT region.

  9. Further Examining Berry’s Model: The Applicability of Latent Profile Analysis to Acculturation

    Science.gov (United States)

    Fox, Rina S.; Merz, Erin L.; Solórzano, Martha T.; Roesch, Scott C.

    2017-01-01

    This study used latent profile analysis (LPA) to identify acculturation profiles. A 3-profile solution fit the data best, and comparisons on demographic and psychosocial outcomes as a function of profile yielded expected results. The findings support using LPA as a parsimonious way to model acculturation without anticipating profiles in advance. PMID:28819336

  10. Further Examining Berry's Model: The Applicability of Latent Profile Analysis to Acculturation

    Science.gov (United States)

    Fox, Rina S.; Merz, Erin L.; Solórzano, Martha T.; Roesch, Scott C.

    2013-01-01

    This study used latent profile analysis (LPA) to identify acculturation profiles. A three-profile solution fit the data best, and comparisons on demographic and psychosocial outcomes as a function of profile yielded expected results. The findings support using LPA as a parsimonious way to model acculturation without anticipating profiles in…

  11. MODELLING AND VIBRATION ANALYSIS OF A ROAD PROFILE MEASURING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. B. Patel

    2010-06-01

    Full Text Available During a vehicle development program, load data representing severe customer usage is required. The dilemma faced by a design engineer during the design process is that during the initial stage, only predicted loads estimated from historical targets are available, whereas the actual loads are available only at the fag end of the process. At the same time, changes required, if any, are easier and inexpensive during the initial stages of the design process whereas they are extremely costly in the latter stages of the process. The use of road profiles and vehicle models to predict the load acting on the whole vehicle is currently being researched. This work hinges on the ability to accurately measure road profiles. The objective of the work is to develop an algorithm, using MATLAB Simulink software, to convert the input signals into measured road profile. The algorithm is checked by the MATLAB Simulink 4 degrees of freedom half car model. To make the whole Simulink model more realistic, accelerometer and laser sensor properties are introduced. The present work contains the simulation of the mentioned algorithm with a half car model and studies the results in distance, time, and the frequency domain.

  12. Velocity profiles in idealized model of human respiratory tract

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available This article deals with numerical simulation focused on velocity profiles in idealized model of human upper airways during steady inspiration. Three r gimes of breathing were investigated: Resting condition, Deep breathing and Light activity which correspond to most common regimes used for experiments and simulations. Calculation was validated with experimental data given by Phase Doppler Anemometry performed on the model with same geometry. This comparison was made in multiple points which form one cross-section in trachea near first bifurcation of bronchial tree. Development of velocity profile in trachea during steady inspiration was discussed with respect for common phenomenon formed in trachea and for future research of transport of aerosol particles in human respiratory tract.

  13. Clustering disaggregated load profiles using a Dirichlet process mixture model

    International Nuclear Information System (INIS)

    Granell, Ramon; Axon, Colin J.; Wallom, David C.H.

    2015-01-01

    Highlights: • We show that the Dirichlet process mixture model is scaleable. • Our model does not require the number of clusters as an input. • Our model creates clusters only by the features of the demand profiles. • We have used both residential and commercial data sets. - Abstract: The increasing availability of substantial quantities of power-use data in both the residential and commercial sectors raises the possibility of mining the data to the advantage of both consumers and network operations. We present a Bayesian non-parametric model to cluster load profiles from households and business premises. Evaluators show that our model performs as well as other popular clustering methods, but unlike most other methods it does not require the number of clusters to be predetermined by the user. We used the so-called ‘Chinese restaurant process’ method to solve the model, making use of the Dirichlet-multinomial distribution. The number of clusters grew logarithmically with the quantity of data, making the technique suitable for scaling to large data sets. We were able to show that the model could distinguish features such as the nationality, household size, and type of dwelling between the cluster memberships

  14. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee

    2009-06-01

    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  15. Modeling pressure-driven assembly of polymer coated nanoparticles

    Science.gov (United States)

    Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Fan, Hongyou

    2017-06-01

    High-pressure experiments have successfully produced a variety of gold nanostructures by compressing polymer coated spherical nanoparticles. We apply atomistic simulation to understand the role of the soft polymer response in determining the pressure-driven assembly of gold nanostructures. Quasi-isentropic experiments have shown that 1D, 2D and 3D nanostructures can be formed and recovered from dynamic compression of fcc superlattices of alkanethiol-coated gold nanocrystals on Sandia's Veloce pulsed power accelerator. Molecular modeling has shown that the dimensionality of the final structures depends on the orientation of the superlattice and the uniaxial loading. We describe the role of coating ligand length and grafting density, on ligand migration and deformation processes during pressure-driven coalescence of the cores into permanent nanowires, nanosheets and 3D structures. The role of uniaxial vs isotropic pressure and the effects of compression along various superlattice orientations will be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Rupture tests with reactor pressure vessel head models

    International Nuclear Information System (INIS)

    Talja, H.; Keinaenen, H.; Hosio, E.; Pankakoski, P.H.; Rahka, K.

    2003-01-01

    In the LISSAC project (LImit Strains in Severe ACcidents), partly funded by the EC Nuclear Fission and Safety Programme within the 5th Framework programme, an extensive experimental and computational research programme is conducted to study the stress state and size dependence of ultimate failure strains. The results are aimed especially to make the assessment of severe accident cases more realistic. For the experiments in the LISSAC project a block of material of the German Biblis C reactor pressure vessel was available. As part of the project, eight reactor pressure vessel head models from this material (22 NiMoCr 3 7) were tested up to rupture at VTT. The specimens were provided by Forschungszentrum Karlsruhe (FzK). These tests were performed under quasistatic pressure load at room temperature. Two specimens sizes were tested and in half of the tests the specimens contain holes describing the control rod penetrations of an actual reactor pressure vessel head. These specimens were equipped with an aluminium liner. All six tests with the smaller specimen size were conducted successfully. In the test with the large specimen with holes, the behaviour of the aluminium liner material proved to differ from those of the smaller ones. As a consequence the experiment ended at the failure of the liner. The specimen without holes yielded results that were in very good agreement with those from the small specimens. (author)

  17. Achieving the Optimal Peri-implant Soft Tissue Profile by the Selective Pressure Method via Provisional Restorations in the Esthetic Zone.

    Science.gov (United States)

    Nam, Jung; Aranyarachkul, Prasit

    2015-01-01

    For the successful single-tooth implant therapy in the esthetics zone, achieving an ideal peri-implant soft tissue profile is paramount. It can achieve by the manipulation of the provisional restorations. This clinical report demonstrate the selective pressure method and concave transmucosal profile of the provisional restorations to achieve the ideal and stable gingival profile in esthetic single tooth implant restorations. The selective pressure method and the concave transmucosal profile in implant provisional restorations facilitate stable and harmonized peri-implant gingival tissue in the esthetic zone. © 2015 Wiley Periodicals, Inc.

  18. A veracity preserving model for synthesizing scalable electricity load profiles

    OpenAIRE

    Huang, Yunyou; Zhan, Jianfeng; Luo, Chunjie; Wang, Lei; Wang, Nana; Zheng, Daoyi; Fan, Fanda; Ren, Rui

    2018-01-01

    Electricity users are the major players of the electric systems, and electricity consumption is growing at an extraordinary rate. The research on electricity consumption behaviors is becoming increasingly important to design and deployment of the electric systems. Unfortunately, electricity load profiles are difficult to acquire. Data synthesis is one of the best approaches to solving the lack of data, and the key is the model that preserves the real electricity consumption behaviors. In this...

  19. Inverse Modeling of Emissions and their Time Profiles

    Czech Academy of Sciences Publication Activity Database

    Resler, Jaroslav; Eben, Kryštof; Juruš, Pavel; Liczki, Jitka

    2010-01-01

    Roč. 1, č. 4 (2010), s. 288-295 ISSN 1309-1042 R&D Projects: GA MŽP SP/1A4/107/07 Grant - others:COST(XE) ES0602 Institutional research plan: CEZ:AV0Z10300504 Keywords : 4DVar * inverse modeling * diurnal time profile of emission * CMAQ adjoint * satellite observations Subject RIV: DG - Athmosphere Sciences, Meteorology

  20. Modeling irradiation embrittlement in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 10, numerical modeling of irradiation embrittlement in reactor vessel steels are introduced. Physically-based models are developed and their role in advancing the state-of-the-art of predicting irradiation embrittlement of RPV steels is stressed

  1. Reactor pressure vessel embrittlement: Insights from neural network modelling

    Science.gov (United States)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  2. Ionospheric topside models compared with experimental electron density profiles

    Directory of Open Access Journals (Sweden)

    S. M. Radicella

    2005-06-01

    Full Text Available Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC.

  3. Density functional study of pressure profile for hard-sphere fluids confined in a nano-cavity

    Directory of Open Access Journals (Sweden)

    Zongli Sun

    2014-02-01

    Full Text Available To gain a deeper understanding and to master the mechanical properties of classical fluids confined in nano-geometry, the pressure tensor applicable to confined fluids is derived by taking into account more correlation among the particles. First, based on classical statistical theory, the expression for the pressure tensor is calculated by expanding the stress tensor and considering further the correlation effect among the particles. Our numerical result is compared with that of molecular dynamics simulation and the agreement between them is quite good. Then, the dependence of the bulk density and the dimension of the cavity on the pressure profile is computed and studied. The curvature dependence of contact pressure and net pressure on the cavity wall is also studied. Finally, the solid–fluid interfacial tension is calculated and compared with Monte Carlo results. The results derived in this work indicate the importance and necessity of correlation among particles in the prediction of the mechanical properties of confined fluids.

  4. Simultaneous Effect of Plunger Motion Profile, Pressure, and Temperature on the Quality of High-Pressure Die-Cast Aluminum Alloys

    Science.gov (United States)

    Fiorese, Elena; Bonollo, Franco

    2016-12-01

    High-pressure die casting has been used widely to manufacture a large variety of products with high dimensional accuracy and productivity. Although this process has a considerably lower cycle time than the other metal forming processes, it is not yet optimized, due to the complexity of the process and the number of parameters to be controlled. Hence, the identification of the parameters affecting quality of castings is the current challenge toward efficient and effective production. In their previous work, the authors proposed and validated some novel kinematic parameters of the plunger, which explain and forecast both the static mechanical properties and the internal quality of castings. The present work extends such an approach by including two other meaningful parameters, which describe the effect of upset pressure and temperature on the final outcome. These parameters are here formulated and have been validated by means of a statistically significant sample manufactured with different plunger motion profiles, upset pressures, and temperatures of the melt and die. The quality of the castings was assessed through static mechanical properties and density measurements. As further proof, internal defects were analyzed on the fracture surfaces of some meaningful castings.

  5. Modeling methods for merging computational and experimental aerodynamic pressure data

    Science.gov (United States)

    Haderlie, Jacob C.

    This research describes a process to model surface pressure data sets as a function of wing geometry from computational and wind tunnel sources and then merge them into a single predicted value. The described merging process will enable engineers to integrate these data sets with the goal of utilizing the advantages of each data source while overcoming the limitations of both; this provides a single, combined data set to support analysis and design. The main challenge with this process is accurately representing each data source everywhere on the wing. Additionally, this effort demonstrates methods to model wind tunnel pressure data as a function of angle of attack as an initial step towards a merging process that uses both location on the wing and flow conditions (e.g., angle of attack, flow velocity or Reynold's number) as independent variables. This surrogate model of pressure as a function of angle of attack can be useful for engineers that need to predict the location of zero-order discontinuities, e.g., flow separation or normal shocks. Because, to the author's best knowledge, there is no published, well-established merging method for aerodynamic pressure data (here, the coefficient of pressure Cp), this work identifies promising modeling and merging methods, and then makes a critical comparison of these methods. Surrogate models represent the pressure data for both data sets. Cubic B-spline surrogate models represent the computational simulation results. Machine learning and multi-fidelity surrogate models represent the experimental data. This research compares three surrogates for the experimental data (sequential--a.k.a. online--Gaussian processes, batch Gaussian processes, and multi-fidelity additive corrector) on the merits of accuracy and computational cost. The Gaussian process (GP) methods employ cubic B-spline CFD surrogates as a model basis function to build a surrogate model of the WT data, and this usage of the CFD surrogate in building the WT

  6. Race and Sex Differences of Long-Term Blood Pressure Profiles From Childhood and Adult Hypertension: The Bogalusa Heart Study.

    Science.gov (United States)

    Shen, Wei; Zhang, Tao; Li, Shengxu; Zhang, Huijie; Xi, Bo; Shen, Hongbing; Fernandez, Camilo; Bazzano, Lydia; He, Jiang; Chen, Wei

    2017-07-01

    This study aims to characterize longitudinal blood pressure (BP) trajectories from childhood in black-white and sex groups and examine the association between childhood level-independent trajectories of BP and adult hypertension. The longitudinal cohort consisted of 2732 adults who had body mass index and BP measured 4 to 15 times from childhood (4-19 years) to adulthood (20-51 years). Model-estimated levels and linear slopes of BP and body mass index at childhood age points were calculated at 1-year intervals using the growth curve parameters and their first derivatives, respectively. Linear and nonlinear curve parameters differed significantly between race-sex groups; BP levels showed race and sex differences 15 years of age onward. Hypertensives had higher long-term BP levels than normotensives in race-sex groups. Although linear and nonlinear slope parameters of BP were race and sex specific, they differed consistently, significantly between hypertension and normotension groups. BP trajectories during young adulthood (20-35 years) were significantly greater in hypertensives than in normotensives; however, the trajectories during middle-aged adulthood (36-51 years) were significantly smaller in hypertensives than in normotensives. Level-independent linear slopes of systolic BP showed significantly negative associations (odds ratio=0.50≈0.76; P hypertension, adjusting for covariates. These associations were consistent across race-sex groups. These observations indicate that adult hypertension originates in childhood, with different longitudinal BP trajectory profiles during young and middle-aged adulthood in black-white and sex groups. Puberty is a crucial period for the development of hypertension in later life. © 2017 American Heart Association, Inc.

  7. A prediction model for two-dimensional pressure distribution from underwater shock wave focusing by an ellipsoidal reflector.

    Science.gov (United States)

    Liu, Lei; Guo, Rui; Chen, Liang; Cao, Yu; Yang, Yongliang; Zhao, Bobo

    2016-12-01

    Underwater shock wave focusing by ellipsoidal reflector is an important method for medical treatment, detection, and acoustic warfare. However, its pressure field is difficult to predict due to complicated physics. In this study, the pressure by focusing is modeled based on theories of shock wave propagation, nonlinear reflection, and nonlinear focusing, and the calculation domain is determined by approximate equations of wave fronts and lines. The pressure field during the whole process is described by combining direct and focusing pressures in the time and space domains. On this basis, the focusing behavior is simulated, and obtained pressure profiles are compared with experimental results, and the influence of reflector length on focusing performance is also discussed. The results indicate that although there are some rough assumptions, this model can simulate the underwater focusing in some detail and does a good job of predicting the pressure distribution, especially for the positive peak pressure, with an error below 10%; as the reflector length increases, the dynamic focus tends to move linearly forward to the other geometric focus, and the pressure gain increases continuously but the growth rate decreases.

  8. Analysis of ambulatory blood pressure monitor data using a hierarchical model incorporating restricted cubic splines and heterogeneous within-subject variances.

    Science.gov (United States)

    Lambert, P C; Abrams, K R; Jones, D R; Halligan, A W; Shennan, A

    2001-12-30

    Hypertensive disorders of pregnancy are associated with significant maternal and foetal morbidity. Measurement of blood pressure remains the standard way of identifying individuals at risk. There is growing interest in the use of ambulatory blood pressure monitors (ABPM), which can record an individual's blood pressure many times over a 24-hour period. From a clinical perspective interest lies in the shape of the blood pressure profile over a 24-hour period and any differences in the profile between groups. We propose a two-level hierarchical linear model incorporating all ABPM data into a single model. We contrast a classical approach with a Bayesian approach using the results of a study of 206 pregnant women who were asked to wear an ABPM for 24 hours after referral to an obstetric day unit with high blood pressure. As the main interest lies in the shape of the profile, we use restricted cubic splines to model the mean profiles. The use of restricted cubic splines provides a flexible way to model the mean profiles and to make comparisons between groups. From examining the data and the fit of the model it is apparent that there were heterogeneous within-subject variances in that some women tend to have more variable blood pressure than others. Within the Bayesian framework it is relatively easy to incorporate a random effect to model the between-subject variation in the within-subject variances. Although there is substantial heterogeneity in the within-subject variances, allowing for this in the model has surprisingly little impact on the estimates of the mean profiles or their confidence/credible intervals. We thus demonstrate a powerful method for analysis of ABPM data and also demonstrate how heterogeneous within-subject variances can be modelled from a Bayesian perspective. Copyright 2001 John Wiley & Sons, Ltd.

  9. Flux limitation in ultrafiltration: Osmotic pressure model and gel layer model

    NARCIS (Netherlands)

    Wijmans, J.G.; Nakao, S.; Smolders, C.A.

    1984-01-01

    The characteristic permeate flux behaviour in ultrafiltration, i.e., the existence of a limiting flux which is independent of applied pressure and membrane resistance and a linear plot of the limiting flux versus the logarithm of the feed concentration, is explained by the osmotic pressure model. In

  10. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  11. A Universal Velocity Dispersion Profile for Pressure Supported Systems: Evidence for MONDian Gravity across Seven Orders of Magnitude in Mass

    Energy Technology Data Exchange (ETDEWEB)

    Durazo, R.; Hernandez, X.; Sánchez, S. F. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264 C.P. 04510 México D.F., México (Mexico); Sodi, B. Cervantes [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-03-10

    For any MONDian extended theory of gravity where the rotation curves of spiral galaxies are explained through a change in physics rather than the hypothesis of dark matter, a generic dynamical behavior is expected for pressure supported systems: an outer flattening of the velocity dispersion profile occurring at a characteristic radius, where both the amplitude of this flat velocity dispersion and the radius at which it appears are predicted to show distinct scalings with the total mass of the system. By carefully analyzing the dynamics of globular clusters and elliptical galaxies, we are able to significantly extend the astronomical diversity of objects in which MONDian gravity has been tested, from spiral galaxies to the much larger mass range covered by pressure supported systems. We show that a universal projected velocity dispersion profile accurately describes various classes of pressure supported systems, and further, that the expectations of extended gravity are met across seven orders of magnitude in mass. These observed scalings are not expected under dark matter cosmology, and would require particular explanations tuned at the scales of each distinct astrophysical system.

  12. Prevention of Pressure Oscillations in Modeling a Cavitating Acoustic Fluid

    Directory of Open Access Journals (Sweden)

    B. Klenow

    2010-01-01

    Full Text Available Cavitation effects play an important role in the UNDEX loading of a structure. For far-field UNDEX, the structural loading is affected by the formation of local and bulk cavitation regions, and the pressure pulses resulting from the closure of the cavitation regions. A common approach to numerically modeling cavitation in far-field underwater explosions is Cavitating Acoustic Finite Elements (CAFE and more recently Cavitating Acoustic Spectral Elements (CASE. Treatment of cavitation in this manner causes spurious pressure oscillations which must be treated by a numerical damping scheme. The focus of this paper is to investigate the severity of these oscillations on the structural response and a possible improvement to CAFE, based on the original Boris and Book Flux-Corrected Transport algorithm on structured meshes [6], to limit oscillations without the energy loss associated with the current damping schemes.

  13. A multi-model analysis of vertical ozone profiles

    Science.gov (United States)

    Jonson, J. E.; Stohl, A.; Fiore, A. M.; Hess, P.; Szopa, S.; Wild, O.; Zeng, G.; Dentener, F. J.; Lupu, A.; Schultz, M. G.; Duncan, B. N.; Sudo, K.; Wind, P.; Schulz, M.; Marmer, E.; Cuvelier, C.; Keating, T.; Zuber, A.; Valdebenito, A.; Dorokhov, V.; de Backer, H.; Davies, J.; Chen, G. H.; Johnson, B.; Tarasick, D. W.; Stübi, R.; Newchurch, M. J.; von der Gathen, P.; Steinbrecht, W.; Claude, H.

    2010-06-01

    A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-range Transboundary Air Pollution (LRTAP). Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations. In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further. At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and emissions reduced by 20% by region

  14. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2010-06-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and

  15. Development of a Numerical Model of Hypervelocity Impact into a Pressurized Composite Overwrapped Pressure Vessel

    Science.gov (United States)

    Garcia, M. A.; Davis, B. A.; Miller, J. E.

    2017-01-01

    . Also seen in the figure is the eroded projectile that had passed into the COPV vessel with the generated shock wave in the pressurant propagating just ahead of the material. In this paper, pertinent experimental details and the development of the material constitutive models necessary for this work along with the efforts to validate their use are dis-cussed. The simulation results are presented and compared with the NASA experimental observations. While work is on-going from this effort, early observations pertinent to the failure threshold are presented.

  16. Impact of urbanization on obesity, anthropometric profile and blood pressure in the Igbos of Nigeria.

    Science.gov (United States)

    Ekezie, Jervase; Anyanwu, Emeka G; Danborno, Barnabas; Anthony, Ugochukwu

    2011-05-01

    Hypertension in developing setting is often attributed to westernization of life style and stresses of urbanization, some of these increases have been noted in Nigeria. This is a study on rural-urban differences on the blood pressure, obesity and anthropometrics among a major ethnic group in Nigeria. A total of 325 men and 242 women aged 20 to 80 years, of the Igbo ethnicity were selected for this study. The samples were selected from the rural and urban subgroups of the Igbo population. Systolic and diastolic blood pressure, body mass index, waist- hip ratio, waist-height ratio, waist circumference, triceps, subscapular, calf and sum of the three skin fold thicknesses and other anthropometric measurements were obtained using standard procedures. Blood pressure correlated with age and most of the anthropometric parameters (pblood pressure indicators were higher in the urban than in the rural sample. Women showed higher predisposition to both general and abdominal obesities in both samples. High blood pressure occurred more often in the urban sample than the rural. Urban men had the highest mean blood pressure (pHigh blood pressure appeared much connected with the pressures of city life. Regression formulae were derived for all the adiposity measures of Igbos in both rural and urban locations. High rates of obesity and hypertension are noted among Igbos in both rural and urban areas. This is especially in the urban setting. The finding is indicative of a low level of attention on hypertension and obesity in the Igbos. The data reported here call for intervention programs on the risks, preventions and management of obesity and obesity related conditions.

  17. Effect of antioxidant rich diets on lipid profile and blood pressure in cardiovascular patients

    International Nuclear Information System (INIS)

    Akhtar, M.S.; Ashraf, S.; Bhatty, N.; Ahmad, N.

    2006-01-01

    A sample of 200 patients was randomly selected and interviewed. Various data related to their food consumption in previous weeks and other behavioral attitudes were recorded. Their blood pressure was measured and blood was analyzed for total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG). Spearman's correlation coefficient was worked out between blood pressure, serum lipid parameters and tea, vitamin C and fibre intake. Tea showed significant correlation with diastolic blood pressure (DBP) (-0.2373; P<0.02), systolic blood pressure (SBP) (-0.2299; P<0.02) and TC (-0.3454; P<0.01). Vitamin C showed a negatively significant correlation with TC (-0.4676; P<0.01), and LDL-C (-2661; P<0.01) and significant positive correlation with HDL-C (+0.2227; P < 0.05). The tea intake was found strongly correlated with blood pressure as compared to vitamin C, while vitamin C had stronger correlation with TC as compared to tea intake. Fibre was not found significantly correlated with any of the studied parameters. A 30-day control trial on 50 subjects revealed that antioxidant therapy during fat-restricted diet period significantly affected blood pressure and serum lipids. Comparative effect showed that lemon juice showed best results. Lemon juice decreased DBP, SBP, TC, TG and increased HDL-C, while tea added with lemon only significantly decreased DBP, SBP and TC. Salad, especially onion, only improved HDL-C and LDLC levels. Vitamin C supplement also significantly lowered DBP, SBP, TC, LDL-C and TG. Tea had negative correlation with blood pressure and TC, while vitamin C has showed relationship with TC, LDL-C and positive with HDL-C. It is conceivable, therefore, that dietary antioxidants cause a significant improvement in blood pressure and serum lipids than vitamin C supplement and simple fat-restricted diets. (author)

  18. Profiles

    International Nuclear Information System (INIS)

    2004-01-01

    Profiles is a synthetic overview of more than 100 national energy markets in the world, providing insightful facts and key energy statistics. A Profile is structured around 6 main items and completed by key statistics: Ministries, public agencies, energy policy are concerned; main companies in the oil, gas, electricity and coal sectors, status, shareholders; reserve, production, imports and exports, electricity and refining capacities; deregulation of prices, subsidies, taxes; consumption trends by sector, energy market shares; main energy projects, production and consumption prospects. Statistical Profiles are present in about 3 pages the main data and indicators on oil, gas, coal and electricity. (A.L.B.)

  19. Temperature profile, pressure, and nutrients data from bottle in South Atlantic Ocean from 24 November 1987 to 12 March 1989 (NODC Accession 0000196)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, pressure, and nutrients data were collected using bottle in the South Atlantic Ocean from 24 November 1987 to 12 March 1989. Data were collected...

  20. Temperature profile and pressure data from CTD casts in the Northwest Atlantic Ocean from 19 April 2001 to 15 December 2001 (NODC Accession 0000370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected from the NAVIGATION RESPONSE TEAM 2 from April 19, 2001 to December 15, 2001. Data were submitted by National...

  1. Reduced Lorenz models for anomalous transport and profile resilience

    DEFF Research Database (Denmark)

    Rypdal, K.; Garcia, Odd Erik

    2007-01-01

    The physical basis for the Lorenz equations for convective cells in stratified fluids, and for magnetized plasmas imbedded in curved magnetic fields, are reexamined with emphasis on anomalous transport. It is shown that the Galerkin truncation leading to the Lorenz equations for the closed boundary...... problem is incompatible with finite fluxes through the system in the limit of vanishing diffusion. An alternative formulation leading to the Lorenz equations is proposed, invoking open boundaries and the notion of convective streamers and their back-reaction on the profile gradient, giving rise...... to resilience of the profile. Particular emphasis is put on the diffusionless limit, where these equations reduce to a simple dynamical system depending only on one single forcing parameter. This model is studied numerically, stressing experimentally observable signatures, and some of the perils of dimension...

  2. Functional morphology of the lower esophageal sphincter and crural diaphragm determined by three-dimensional high-resolution esophago-gastric junction pressure profile and CT imaging.

    Science.gov (United States)

    Mittal, Ravinder K; Zifan, Ali; Kumar, Dushyant; Ledgerwood-Lee, Melissa; Ruppert, Erika; Ghahremani, Gary

    2017-09-01

    The smooth muscles of the lower esophageal sphincter (LES) and skeletal muscles of the crural diaphragm (CD) provide a closure/antireflux barrier mechanism at the esophago-gastric junction (EGJ). A number of questions in regard to the pressure profile of the LES and CD remain unclear, e.g., 1 ) Why is the LES pressure profile circumferentially asymmetric, 2 ) Is the crural diaphragm (CD) contraction also circumferentially asymmetric, and 3 ) Where is the LES and CD pressure profile located in the anatomy of the esophagus and stomach? The three-dimensional (3-D) high-resolution esophageal manometry (HRM) catheter can record a detailed profile of the EGJ pressure; however, it does not allow the determination of the circumferential orientation of individual pressure transducers in vivo. We used computed tomography (CT) scan imaging in combination with 3-D EGJ pressure recordings to determine the functional morphology of the LES and CD and its relationship to the EGJ anatomy. A 3-D-HRM catheter with 96 transducers (12 rings, 7.5 mm apart, located over 9-cm length of the catheter, with eight transducers in each ring, 45° apart (Medtronics), was used to record the EGJ pressure in 10 healthy subjects. A 0.5-mm diameter metal ball (BB) was taped to the catheter, adjacent to transducer 1 of the catheter. The EGJ was recorded under the following conditions: 1 ) end-expiration (LES pressure) before swallow, after swallow, and after edrophonium hydrochloride; and 2 ) peak inspiration (crural diaphragm contraction) for tidal inspiration and forced maximal inspiration. A CT scan was performed to localize the circumferential orientation of the BB. The CT scan imaging allowed the determination of the circumferential orientation of the LES and CD pressure profiles. The LES pressure under the three end-expiration conditions were different; however, the shape of the pressure profile was unique with the LES length longer toward the lesser curvature of the stomach as compared with the

  3. Visual Modelling of Data Warehousing Flows with UML Profiles

    Science.gov (United States)

    Pardillo, Jesús; Golfarelli, Matteo; Rizzi, Stefano; Trujillo, Juan

    Data warehousing involves complex processes that transform source data through several stages to deliver suitable information ready to be analysed. Though many techniques for visual modelling of data warehouses from the static point of view have been devised, only few attempts have been made to model the data flows involved in a data warehousing process. Besides, each attempt was mainly aimed at a specific application, such as ETL, OLAP, what-if analysis, data mining. Data flows are typically very complex in this domain; for this reason, we argue, designers would greatly benefit from a technique for uniformly modelling data warehousing flows for all applications. In this paper, we propose an integrated visual modelling technique for data cubes and data flows. This technique is based on UML profiling; its feasibility is evaluated by means of a prototype implementation.

  4. The influence of electrode configuration on light emission profiles and electrical characteristics of an atmospheric-pressure plasma jet

    Science.gov (United States)

    Maletić, Dejan; Puač, Nevena; Malović, Gordana; Đorđević, Antonije; Petrović, Zoran Lj

    2017-04-01

    In this paper we focus on the influence of the type of electrodes, their dimensions and inter-electrode gap on the formation of a helium plasma jet. Plasma emission profiles are recorded by an ICCD camera simultaneously with volt-ampere characteristics for three different copper electrode configurations. The delivered power was up to 6.5 W, but it may be set and controlled to 0.1 W. This study shows how the electrode configuration shapes and controls temporal and spatial plasma development as well as electrical characteristics of an atmospheric pressure plasma jet. It is shown that, in our system, the width of the grounded electrode has no significant influence on the formation and properties of pulsed atmospheric-pressure streamers (PAPS) outside the tube, while the width of the powered electrode is crucial in their formation.

  5. Active earth pressure model tests versus finite element analysis

    Directory of Open Access Journals (Sweden)

    Pietrzak Magdalena

    2017-01-01

    Full Text Available The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction ‘from the soil” (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  6. Active earth pressure model tests versus finite element analysis

    Science.gov (United States)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  7. Aspects of Mathematical Modelling of Pressure Retarded Osmosis

    Science.gov (United States)

    Anissimov, Yuri G.

    2016-01-01

    In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters. Therefore, PRO can add significantly to existing renewable power generation capacity if economical constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane that is permeable to water and impermeable to salt. Mathematical modelling plays an important part in understanding flows of water and salt near and across semipermeable membranes and helps to optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed and discussed. PMID:26848696

  8. Aspects of Mathematical Modelling of Pressure Retarded Osmosis.

    Science.gov (United States)

    Anissimov, Yuri G

    2016-02-03

    In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters. Therefore, PRO can add significantly to existing renewable power generation capacity if economical constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane that is permeable to water and impermeable to salt. Mathematical modelling plays an important part in understanding flows of water and salt near and across semipermeable membranes and helps to optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed and discussed.

  9. Magnetic diagnostics: general principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2000-04-01

    The restrictions of the magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, they follow from the fundamental laws of electromagnetism. A series of particular examples demonstrating the strength of these restrictions is given and analyzed. A general rule is emphasized that the information obtained from external magnetic measurements is obviously insufficient for the reliable evaluation of plasma current and pressure profiles in tokamaks or in stellarators. The underlying reason is that outside the plasma the own field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface only. (author)

  10. Measurements and modeling of VLLE at elevated pressures

    DEFF Research Database (Denmark)

    Laursen, Torben

    and pure component calibration. Samples from the different liquid phases in the high-pressure cell is taken using a moveable needle. The systems investigated have been a combination of the components: CO2, N2, di-methyl ether (DME), water, methanol, ethanol and 1-propanol. 41 isotherms have been measured...... has traditionally been considered very time consuming. This work aims at developing and operating an equipment which allows routine measurements of both VLE and VLLE, in the temperature range of 25-45°C and pressure range of 1-100 bar. This has been done by taking advantage of on-line sampling...... and of these 18 were VLLE systems and 32 have not previously been published. Some of the experimental results have been modelled using an equation of state, SRK combined with the MHV1 mixing rule for the a-parameter and the NRTL model for the Gibbs excess energy. The Mathias-Copeman model was used...

  11. Tongue pressure profile training for dysphagia post stroke (TPPT): study protocol for an exploratory randomized controlled trial.

    Science.gov (United States)

    Steele, Catriona M; Bayley, Mark A; Péladeau-Pigeon, Melanie; Stokely, Shauna L

    2013-05-07

    It is estimated that approximately 50% of stroke survivors will experience swallowing difficulty, or dysphagia. The associated sequelae of dysphagia include dehydration, malnutrition, and aspiration pneumonia, all of which have can have serious medical consequences. To improve swallowing safety and efficiency, alternative nutritional intake methods (for example, a feeding tube) or a modified diet texture (such as pureed foods or thickened liquids) may be recommended but these modifications may negatively affect quality of life. An alternative approach to treating dysphagia has emerged over the past few years, targeting stronger lingual muscles through maximal isometric pressure tasks. Although these studies have shown promising results, thin-liquid bolus control continues to be challenging for patients with dysphagia. Previous work investigating lingual pressures when healthy participants swallow has suggested that greater task specificity in lingual exercises may yield improved results with thin liquids. This is a small, exploratory randomized clinical trial being conducted with post-stroke patients 4 to 20 weeks after onset of dysphagia secondary to impaired lingual control. At enrollment, participants are randomly assigned to one of two treatment protocols, either tongue pressure profile training (TPPT) or the control treatment, tongue pressure strength-and-accuracy training (TPSAT). Each treatment protocol consists of 24 sessions of treatment over 8 to 12 weeks with monitoring of tongue pressure as well as a baseline and outcome videofluoroscopic swallowing study. Tongue pressure measures, videofluoroscopic measures, and functional outcome measures will be obtained following training of 60 participants (30 in each condition), to determine whether TPPT yields better outcomes. This study will continue to explore options beyond tube feeding and modified diets for people with neurogenic dysphagia following stroke. Should the novel protocol, TPPT, prove to be more

  12. Raster-Based Approach to Solar Pressure Modeling

    Science.gov (United States)

    Wright, Theodore W. II

    2013-01-01

    An algorithm has been developed to take advantage of the graphics processing hardware in modern computers to efficiently compute high-fidelity solar pressure forces and torques on spacecraft, taking into account the possibility of self-shading due to the articulation of spacecraft components such as solar arrays. The process is easily extended to compute other results that depend on three-dimensional attitude analysis, such as solar array power generation or free molecular flow drag. The impact of photons upon a spacecraft introduces small forces and moments. The magnitude and direction of the forces depend on the material properties of the spacecraft components being illuminated. The parts of the components being lit depends on the orientation of the craft with respect to the Sun, as well as the gimbal angles for any significant moving external parts (solar arrays, typically). Some components may shield others from the Sun. The purpose of this innovation is to enable high-fidelity computation of solar pressure and power generation effects of illuminated portions of spacecraft, taking self-shading from spacecraft attitude and movable components into account. The key idea in this innovation is to compute results dependent upon complicated geometry by using an image to break the problem into thousands or millions of sub-problems with simple geometry, and then the results from the simpler problems are combined to give high-fidelity results for the full geometry. This process is performed by constructing a 3D model of a spacecraft using an appropriate computer language (OpenGL), and running that model on a modern computer's 3D accelerated video processor. This quickly and accurately generates a view of the model (as shown on a computer screen) that takes rotation and articulation of spacecraft components into account. When this view is interpreted as the spacecraft as seen by the Sun, then only the portions of the craft visible in the view are illuminated. The view as

  13. Pressure sintering and creep deformation: a joint modeling approach

    International Nuclear Information System (INIS)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials

  14. Pressure sintering and creep deformation: a joint modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Notis, M.R.

    1979-10-01

    Work related to microchemical and microstructural aspects of the joint modeling of pressure sintering and creep in ceramic oxides is reported. Quantitative techniques for the microchemical analysis of ceramic oxides and for the examination of impurity segregation effects in polycrystalline ceramic materials were developed. This has included fundamental absorption corrections for the oxygen anion species as a function of foil thickness. The evolution in microstructure during the transition from intermediate stage to final stage densification during hot pressing of cobalt oxide and preliminary studies with doped oxides were studied. This work shows promise in using time-integrated microstructural effects to elucidate the role of impurities in the sintering of ceramic materials.

  15. An Efficiency Model For Hydrogen Production In A Pressurized Electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Smoglie, Cecilia; Lauretta, Ricardo

    2010-09-15

    The use of Hydrogen as clean fuel at a world wide scale requires the development of simple, safe and efficient production and storage technologies. In this work, a methodology is proposed to produce Hydrogen and Oxygen in a self pressurized electrolyzer connected to separate containers that store each of these gases. A mathematical model for Hydrogen production efficiency is proposed to evaluate how such efficiency is affected by parasitic currents in the electrolytic solution. Experimental set-up and results for an electrolyzer are also presented. Comparison of empirical and analytical results shows good agreement.

  16. Modeling unsteady forces and pressures on a rapidly pitching airfoil

    Science.gov (United States)

    Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.

    2014-11-01

    This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.

  17. Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: An observational study.

    Directory of Open Access Journals (Sweden)

    Hadie Adams

    2017-07-01

    Full Text Available Both intracranial pressure (ICP and the cerebrovascular pressure reactivity represent the dysregulation of pathways directly involved in traumatic brain injury (TBI pathogenesis and have been used to inform clinical management. However, how these parameters evolve over time following injury and whether this evolution has any prognostic importance have not been studied.We analysed the temporal profile of ICP and pressure reactivity index (PRx, examined their relation to TBI-specific mortality, and determined if the prognostic relevance of these parameters was affected by their temporal profile using mixed models for repeated measures of ICP and PRx for the first 240 hours from the time of injury. A total of 601 adults with TBI, admitted between September 2002 to January 2016, and with high-resolution continuous monitoring from a single centre, were studied. At 6 months postinjury, 133 (19% patients had a fatal outcome; of those, 88 (78% died from nonsurvivable TBI or brain death. The difference in mean ICP between those with a fatal outcome and functional survivors was only significant for the first 168 hours after injury (all p < 0.05. For PRx, those patients with a fatal outcome also had a higher (more impaired PRx throughout the first 120 hours after injury (all p < 0.05. The separation of ICP and PRx was greatest in the first 72 hours after injury. Mixed models demonstrated that the explanatory power of the PRx decreases over time; therefore, the prognostic weight assigned to PRx should similarly decrease. However, the ability of ICP to predict a fatal outcome remained relatively stable over time. As control of ICP is the central purpose of TBI management, it is likely that some of the information that is reflected in the natural history of ICP changes is no longer apparent because of therapeutic intervention.We demonstrated the temporal evolution of ICP and PRx and their relationship with fatal outcome, indicating a potential early

  18. Five-Factor Model personality profiles of drug users

    Directory of Open Access Journals (Sweden)

    Crum Rosa M

    2008-04-01

    Full Text Available Abstract Background Personality traits are considered risk factors for drug use, and, in turn, the psychoactive substances impact individuals' traits. Furthermore, there is increasing interest in developing treatment approaches that match an individual's personality profile. To advance our knowledge of the role of individual differences in drug use, the present study compares the personality profile of tobacco, marijuana, cocaine, and heroin users and non-users using the wide spectrum Five-Factor Model (FFM of personality in a diverse community sample. Method Participants (N = 1,102; mean age = 57 were part of the Epidemiologic Catchment Area (ECA program in Baltimore, MD, USA. The sample was drawn from a community with a wide range of socio-economic conditions. Personality traits were assessed with the Revised NEO Personality Inventory (NEO-PI-R, and psychoactive substance use was assessed with systematic interview. Results Compared to never smokers, current cigarette smokers score lower on Conscientiousness and higher on Neuroticism. Similar, but more extreme, is the profile of cocaine/heroin users, which score very high on Neuroticism, especially Vulnerability, and very low on Conscientiousness, particularly Competence, Achievement-Striving, and Deliberation. By contrast, marijuana users score high on Openness to Experience, average on Neuroticism, but low on Agreeableness and Conscientiousness. Conclusion In addition to confirming high levels of negative affect and impulsive traits, this study highlights the links between drug use and low Conscientiousness. These links provide insight into the etiology of drug use and have implications for public health interventions.

  19. Five-Factor Model personality profiles of drug users.

    Science.gov (United States)

    Terracciano, Antonio; Löckenhoff, Corinna E; Crum, Rosa M; Bienvenu, O Joseph; Costa, Paul T

    2008-04-11

    Personality traits are considered risk factors for drug use, and, in turn, the psychoactive substances impact individuals' traits. Furthermore, there is increasing interest in developing treatment approaches that match an individual's personality profile. To advance our knowledge of the role of individual differences in drug use, the present study compares the personality profile of tobacco, marijuana, cocaine, and heroin users and non-users using the wide spectrum Five-Factor Model (FFM) of personality in a diverse community sample. Participants (N = 1,102; mean age = 57) were part of the Epidemiologic Catchment Area (ECA) program in Baltimore, MD, USA. The sample was drawn from a community with a wide range of socio-economic conditions. Personality traits were assessed with the Revised NEO Personality Inventory (NEO-PI-R), and psychoactive substance use was assessed with systematic interview. Compared to never smokers, current cigarette smokers score lower on Conscientiousness and higher on Neuroticism. Similar, but more extreme, is the profile of cocaine/heroin users, which score very high on Neuroticism, especially Vulnerability, and very low on Conscientiousness, particularly Competence, Achievement-Striving, and Deliberation. By contrast, marijuana users score high on Openness to Experience, average on Neuroticism, but low on Agreeableness and Conscientiousness. In addition to confirming high levels of negative affect and impulsive traits, this study highlights the links between drug use and low Conscientiousness. These links provide insight into the etiology of drug use and have implications for public health interventions.

  20. An improved LTE model of a high pressure sulfur discharge

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, C W; Heijden, H W P van der; Hartgers, A; Garloff, K; Dijk, J van; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2004-01-21

    An existing LTE model (Johnston C W et al 2002 J. Phys. D: Appl. Phys. 35 342) of a high pressure sulfur discharge is improved upon by more accurate and complete treatment of each term in the energy balance. The simulation program PLASIMO (Janssen G M et al 1999 Plasma Sources Sci. Technol. 8 1, van Dijk J 2001 Modelling of plasma light sources: an object-oriented approach PhD Thesis Eindhoven University of Technology, The Netherlands, ISBN 90-386-1819-0), which is an integrated environment for construction and execution of plasma models, has been used to define and solve all aspects of the model. The electric field is treated as being dc, and the temperature dependent nature of species interactions is incorporated in determination of transport coefficients. In addition to the main radiative transition, B3{sup {sigma}}{sub g}{sup -}, several others in S{sub 2} are included. These are B''3{sup {pi}}{sub u} {yields} X3{sup {sigma}}{sub g}{sup -}, B'3{sup {pi}}{sub g} {yields} {l_brace}A3{sup {sigma}}{sub u}{sup +}, A'3{sup {delta}}{sub u}{r_brace} and e1{sup {pi}}{sub g} {yields} c1{sup {sigma}}{sub u}{sup -}. The S{sub 3} molecule is also included in the composition as an absorbing particle. Furthermore, radiation production is treated quantum mechanically. The principle improvement over the previous work is that both the position of the spectral maximum and the pressure shift are quantitatively described by the current model. Both are chiefly due to the presence of S{sub 3}.

  1. Modelling and analysis of a compensator burst after a check valve slam with the pressure surge code DYVRO mod. 3

    International Nuclear Information System (INIS)

    Neuhaus, Thorsten; Schaffrath, Andreas

    2009-01-01

    In this contribution the analysis and calculation of a compensator burst after a pump start and check valve slam with the pressure surge code DYVRO mod. 3 are presented. The compensator burst occurred in the essential service water system (ESWS) of a pressurized water reactor (PWR) in a deviant operation mode. Due to lack of knowledge about the causes a systematic investigation has been performed by TUV NORD SysTec GmbH and Co. KG. The following scenario was identified as most likely: Because of maintenance a heat exchanger was shut off from the ESWS by a closed valve. Due to the hydrostatic pressure profile air had been sucked in through this leaky closed valve forming an air bubble. After the pump start the water was accelerated against the closed valve where the air bubble was compressed. The subsequent backflow resulted in a fast closing of a check valve and a pressure surge that caused the compensator burst. Calculations have been performed with the self developed and validated pressure surge computer code DYVRO mod. 3. The present paper is focussed on the modelling of the pipe system, the pump, the check valve and the behaviour of the air bubble as well as the simulation of the incident. The calculated maximum pressure in the ESWS is above 3 MPa, which is approx. four times higher than the design pressure of 0.7 MPa. This pressure increase has led most likely to the abrupt compensator failure. (author)

  2. A model for quantification of temperature profiles via germination times

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Adolf, Verena Isabelle; Jacobsen, Sven-Erik

    2013-01-01

    Current methodology to quantify temperature characteristics in germination of seeds is predominantly based on analysis of the time to reach a given germination fraction, that is, the quantiles in the distribution of the germination time of a seed. In practice interpolation between observed...... germination fractions at given monitoring times is used to obtain the time to reach a given germination fraction. As a consequence the obtained value will be highly dependent on the actual monitoring scheme used in the experiment. In this paper a link between currently used quantile models for the germination...... time and a specific type of accelerated failure time models is provided. As a consequence the observed number of germinated seeds at given monitoring times may be analysed directly by a grouped time-to-event model from which characteristics of the temperature profile may be identified and estimated...

  3. A self-consistent LTE model of a microwave-driven, high-pressure sulfur lamp

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, C.W.; Mullen, J.J.A.M. van der [Department of Applied Physics, Eindhoven University of Technology (Netherlands)]. E-mails: C.W.Johnston@tue.nl; J.J.A.M.v.d.Mullen@tue.nl; Heijden, H.W.P. van der; Janssen, G.M.; Dijk, J. van [Department of Applied Physics, Eindhoven University of Technology (Netherlands)

    2002-02-21

    A one-dimensional LTE model of a microwave-driven sulfur lamp is presented to aid our understanding of the discharge. The energy balance of the lamp is determined by Ohmic input on one hand and transport due to conductive heat transfer and molecular radiation on the other. We discuss the origin of operational trends in the spectrum, present the model and discuss how the material properties of the plasma are determined. Not only are temperature profiles and electric field strengths simulated but also the spectrum of the lamp from 300 to 900 nm under various conditions of input power and lamp filling pressure. We show that simulated spectra demonstrate observed trends and that radiated power increases linearly with input power as is also found from experiment. (author)

  4. Pressure profile and morphology of the arteries along the giraffe limb

    DEFF Research Database (Denmark)

    Østergaard, Kristine Hovkjær; Bertelsen, Mads Frost; Brøndum, Emil Toft

    2011-01-01

    -fold higher innervation density than the immediate distal and proximal regions. The sudden narrowing was also observed in the hind legs of neonates, indicating that it does not develop as an adaptation to the high transmural pressure in the standing giraffe. More likely it represents a preadaptation...

  5. Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos

    DEFF Research Database (Denmark)

    Lin, Lin; Luo, Yonglun; Sørensen, Peter

    2014-01-01

    Handmade cloning (HMC) has been used to generate transgenic pigs for biomedical research. Recently, we found that parthenogenetic activation (PA) of porcine oocytes and improved HMC efficiency could be achieved by treatment with sublethal high hydrostatic pressure (HHP). However, the molecular...

  6. Relationships of blood pressure to fibrinolysis : influence of anthropometry, metabolic profile and behavioural variables

    NARCIS (Netherlands)

    Cigolini, M; Targher, G; Seidell, J C; Tonoli, M; Schiavon, R; Agostino, G; de Sandre, G

    OBJECTIVE: To investigate the relationship between blood pressure and the plasma fibrinolytic system and to verify whether this association was independent or mediated by one or more potential confounding factor. DESIGN: A random sample of 94 males aged 38 years subdivided into normotensives,

  7. Blood pressure and lipid profile in young women: the role of anthropometric measurement

    Directory of Open Access Journals (Sweden)

    Marcelo Custódio Rubira

    2014-12-01

    Full Text Available Body composition has fundamental importance in the quality of life and is a powerful predictor of mortality and morbidity in humans. The identification and monitoring of the amount of body fat have been receiving special attention in aspects related to health promotion, not just for its actions in the prevention and in the control of cardiovascular diseases but also for their induction and association with risk factors, especially in the plasmatic lipid levels and arterial pressure. It was investigated the relationship between body mass index (BMI and body fat percentage (%BF by bioelectrical impedance analysis (BIA with the blood pressure levels (systolic and diastolic and serum lipids (TC, HDL-c, LDL-c, VLDL-c, TG. In a group of fifty seven women (aged 18 to 26 years old , obesity was detected in 5 and 19 women by BMI (≥ 30 kg/m2 and %BF (≥ 30%, respectively. BMI and % BF were positively correlated with blood pressure (systolic and diastolic, and highly significant in the obese group by %BF. Moreover, BMI and % BF were significantly correlated with all lipids and lipoprotein fractions VLDL-c and triglyceride, respectively. These results suggest that %BF is a good indicator of “occult obesity” in subjects with normal body mass index. The associated use of BMI and %BF to better evaluate obesity may improve the study of blood pressure levels and serum lipid changes that are commonly associated with obesity.

  8. Observation-based Model of Evolution of the Lyman-Alpha Line Profile During the Solar Cycle

    Science.gov (United States)

    Kowalska-Leszczyńska, I.; Bzowski, M.; Sokol, J. M.; Kubiak, M. A.

    2017-12-01

    Recent studies of interstellar neutral (ISN) hydrogen observed by the Interstellar Boundary Explorer (IBEX) suggested that present understanding of the radiation pressure acting on hydrogen atoms in the heliosphere should be revised. There is a significant discrepancy between theoretical predictions of the ISN H signal based on the currently used model of the solar Lyman-alpha profile and the signal due to interstellar neutral H observed by IBEX-Lo in energy range from 0.01 to 0.07 keV. We have developed a new model of evolution of the solar Lyman-alpha profile that takes into account all available observations of the full-disk solar Lyman-alpha profiles from SUMER/SOHO, provided by Lemaire et al. 2015, and covering practically the entire solar cycle. The model has three components that reproduce different features of the profile. The main shape of the emission line that is produced in the chromosphere is modelled by the Kappa function; the central reversal due to absorption in the transition region is modelled by the Gauss function; the spectral background is represented by the linear function. We verified that with this model, all of the individual profiles can be reproduced quite accurately. The profile for an arbitrary day is parameterized by just one parameter either the composite Lyman-alpha flux available from LASP or alternatively by the F10.7 solar radio flux, however we have noticed that the agreement of the model with the data is a little worse but still within the uncertainties of the data for the latter one The new model features potentially important differences in comparison with the model by Tarnopolski & Bzowski 2007, which was based on a limited set of observations. In addition to the model itself, we will demonstrate some consequences resulting from this model on predicted distributions of interstellar hydrogen in the inner heliosphere, as well as on probabilities of survival calculated for heliospheric energetic neutral atoms.

  9. Analysis and Modelling of an Industrial Pressure Filtration using Process Data

    DEFF Research Database (Denmark)

    Bähner, F. D.; Santacoloma, P. A.; Abildskov, J.

    2017-01-01

    In order to understand a series of pressure leaf filters located in the downstreamline of a bio-based production site, historical process data have been analysed. In general, changing raw materials induce variability into the pressure profiles and thereby cycle durations of the manually reinitial...

  10. A random-walk model for pore pressure accumulation in marine soils

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Cheng, Niang-Sheng

    1999-01-01

    A numerical random-walk model has been developed for the pore-water pressure. The model is based on the analogy between the variation of the pore pressure and the diffusion process of any passive quantity such as concentration. The pore pressure in the former process is analogous to the concentra......A numerical random-walk model has been developed for the pore-water pressure. The model is based on the analogy between the variation of the pore pressure and the diffusion process of any passive quantity such as concentration. The pore pressure in the former process is analogous...

  11. The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial.

    Science.gov (United States)

    Ivey, K L; Hodgson, J M; Kerr, D A; Thompson, P L; Stojceski, B; Prince, R L

    2015-01-01

    Despite strong mechanistic data, and promising results from in vitro and animal studies, the ability of probiotic bacteria to improve blood pressure and serum lipid concentrations in humans remains uncertain. The aim of this study was to determine the effect of Lactobacillus acidophilus La5 and Bifidobacterium animalis subsp lactis Bb12, provided in either yoghurt or capsule form, on home blood pressure and serum lipid profile. Following a 3-week washout period, 156 overweight men and women over 55 y were randomized to a 6-week double-blinded, factorial, parallel study. The four intervention groups were: A) probiotic yoghurt plus probiotic capsules; B) probiotic yoghurt plus placebo capsules; C) control milk plus probiotic capsules; and D) control milk plus placebo capsules. Each probiotic test article provided a minimum L. acidophilus La5 and B. animalis subsp. lactis Bb12 dose of 3.0 × 10⁹ CFU/d. Home blood pressure monitoring, consisting of 7-day bi-daily repeat measurements, were collected at baseline and week 6. Fasting total cholesterol, low density lipoprotein cholesterol (LDLC), high density lipoprotein cholesterol (HDLC), and serum triglyceride were performed at baseline and week 6. When compared to control milk, probiotic yoghurt did not significantly alter blood pressure, heart rate or serum lipid concentrations (P > 0.05). Similarly, when compared to placebo capsules, supplementation with probiotic capsules did not alter blood pressure or concentrations of total cholesterol LDLC, HDLC, or triglycerides (P > 0.05). The probiotic strains L. acidophilus La5 and B. animalis subsp. lactis Bb12 did not improve cardiovascular risk factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Artificial plasma membrane models based on lipidomic profiling.

    Science.gov (United States)

    Essaid, Donia; Rosilio, Véronique; Daghildjian, Katia; Solgadi, Audrey; Vergnaud, Juliette; Kasselouri, Athena; Chaminade, Pierre

    2016-11-01

    Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Empirical Modeling of Solar Radiation Pressure Forces Affecting GPS Satellites

    Science.gov (United States)

    Sibthorpe, A.; Weiss, J. P.; Harvey, N.; Kuang, D.; Bar-Sever, Y.

    2010-12-01

    At an altitude of approximately 20,000km above the Earth, Solar Radiation Pressure (SRP) forces on Global Positioning System (GPS) satellites are second in magnitude only to the gravitational attractive forces exerted by the Earth, Sun and Moon. As GPS orbit processing strategies reach unprecedented levels of precision and accuracy, subtle effects from different GPS SRP models are beginning to emerge above the noise floor. We present an updated approach to the empirical modeling of SRP forces on GPS satellites using 14 years of data. We assess the models via orbit prediction and orbit determination using a suite of internal and external metrics. Our new model results in >10% average improvement of 8th-day orbit prediction differences (3D RMS) for block IIA and IIR satellites against our best final orbit solutions. Internal orbit overlaps from precise orbit determination improve by 7%. We additionally assess the impacts of the updated SRP models on satellite laser range residuals, carrier phase ambiguity resolution, and estimation of earth orientation parameters.

  14. Inverse modeling of FIB milling by dose profile optimization

    International Nuclear Information System (INIS)

    Lindsey, S.; Waid, S.; Hobler, G.; Wanzenböck, H.D.; Bertagnolli, E.

    2014-01-01

    FIB technologies possess a unique ability to form topographies that are difficult or impossible to generate with binary etching through typical photo-lithography. The ability to arbitrarily vary the spatial dose distribution and therefore the amount of milling opens possibilities for the production of a wide range of functional structures with applications in biology, chemistry, and optics. However in practice, the realization of these goals is made difficult by the angular dependence of the sputtering yield and redeposition effects that vary as the topography evolves. An inverse modeling algorithm that optimizes dose profiles, defined as the superposition of time invariant pixel dose profiles (determined from the beam parameters and pixel dwell times), is presented. The response of the target to a set of pixel dwell times in modeled by numerical continuum simulations utilizing 1st and 2nd order sputtering and redeposition, the resulting surfaces are evaluated with respect to a target topography in an error minimization routine. Two algorithms for the parameterization of pixel dwell times are presented, a direct pixel dwell time method, and an abstracted method that uses a refineable piecewise linear cage function to generate pixel dwell times from a minimal number of parameters. The cage function method demonstrates great flexibility and efficiency as compared to the direct fitting method with performance enhancements exceeding ∼10× as compared to direct fitting for medium to large simulation sets. Furthermore, the refineable nature of the cage function enables solutions to adapt to the desired target function. The optimization algorithm, although working with stationary dose profiles, is demonstrated to be applicable also outside the quasi-static approximation. Experimental data confirms the viability of the solutions for 5 × 7 μm deep lens like structures defined by 90 pixel dwell times

  15. Pressure profile and morphology of the arteries along the giraffe limb.

    Science.gov (United States)

    Østergaard, Kristine Hovkjaer; Bertelsen, Mads F; Brøndum, Emil T; Aalkjaer, Christian; Hasenkam, J Michael; Smerup, Morten; Wang, Tobias; Nyengaard, Jens Randel; Baandrup, Ulrik

    2011-07-01

    Giraffes are the tallest animals on earth and the effects of gravity on their cardiovascular system have puzzled physiologists for centuries. The authors measured arterial and venous pressure in the foreleg of anesthetized giraffes, suspended in upright standing position, and determined the ratio between tunica media and lumen areas along the length of the femoral/tibial arteries in the hindleg. Volume fraction of elastin, density of vasa vasorum and innervations was estimated by stereology. Immunohistological staining with S100 was used to examine the innervation. The pressure increase in the artery and vein along the foreleg was not significantly different from what was expected on basis of gravity. The area of the arterial lumen in the hindleg decreased towards the hoof from 11.2 ± 4.2 to 0.6 ± 0.5 mm(2) (n = 10, P = 0.001), but most of this narrowing occurred within 2-4 cm immediately below the knee. This abrupt narrowing was associated with a marked increase in media to lumen area ratio (from 1.2 ± 0.5 to 7.8 ± 2.5; P = 0.001), and a decrease in mean volume fraction of elastin from 38 ± 6% proximal to the narrowing to 5.8 ± 1.1% distally (P = 0.001). The narrowing had a six-fold higher innervation density than the immediate distal and proximal regions. The sudden narrowing was also observed in the hind legs of neonates, indicating that it does not develop as an adaptation to the high transmural pressure in the standing giraffe. More likely it represents a preadaptation to the high pressures experienced by adult giraffes.

  16. Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes

    OpenAIRE

    He, Jun; Zhang, Fan; Han, Yan

    2017-01-01

    Abstract Background: This meta-analysis aimed to systematically evaluate the effects of probiotics on blood lipid and blood pressure among patients with type 2 diabetes mellitus (T2DM) based on the randomized controlled studies. Methods: PubMed, Cochrane, Embase, Wanfang, China National Knowledge Infrastructure, and VIP database were searched by the index words to identify the qualified randomized control trial. The latest research was done in the January 2017. Mean difference (MD) along with...

  17. Analytical solution for charged fluid pressure profiles - circulation in combined electromagnetic field

    Science.gov (United States)

    Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey

    2017-12-01

    We introduce a general transformation leading to an integral form of pressure equations characterizing equilibrium configurations of charged perfect fluid circling in strong gravitational and combined electromagnetic fields. The transformation generalizes our recent analytical treatment applicable to electric or magnetic fields treated separately along with the gravitational one. As an example, we present a particular solution for a fluid circling close to a charged rotating black hole immersed in an asymptotically uniform magnetic field.

  18. Blood pressure and antihypertensive medication profile in a multiethnic Asian population of stable chronic kidney disease patients.

    Science.gov (United States)

    Teo, Boon Wee; Chua, Horng Ruey; Wong, Weng Kin; Haroon, Sabrina; Subramanian, Srinivas; Loh, Ping Tyug; Sethi, Sunil; Lau, Titus

    2016-05-01

    Clinical practice guidelines recommend different blood pressure (BP) goals for chronic kidney disease (CKD) patients. Usage of antihypertensive medication and attainment of BP targets in Asian CKD patients remain unclear. This study describes the profile of antihypertensive agents used and BP components in a multiethnic Asian population with stable CKD. Stable CKD outpatients with variability of serum creatinine levels 3 months apart, were recruited. Mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured using automated manometers, according to practice guidelines. Serum creatinine was assayed and the estimated glomerular filtration rate (GFR) calculated using the CKD Epidemiology Collaboration equation. BP and antihypertensive medication profile was examined using univariate analyses. 613 patients (55.1% male; 74.7% Chinese, 6.4% Indian, 11.4% Malay; 35.7% diabetes mellitus) with a mean age of 57.8 ± 14.5 years were recruited. Mean SBP was 139 ± 20 mmHg, DBP was 74 ± 11 mmHg, serum creatinine was 166 ± 115 µmol/L and GFR was 53 ± 32 mL/min/1.73 m(2). At a lower GFR, SBP increased (p < 0.001), whereas DBP decreased (p = 0.0052). Mean SBP increased in tandem with the number of antihypertensive agents used (p < 0.001), while mean DBP decreased when ≥ 3 antihypertensive agents were used (p = 0.0020). Different targets are recommended for each BP component in CKD patients. A majority of patients cannot attain SBP targets and/or exceed DBP targets. Research into monitoring and treatment methods is required to better define BP targets in CKD patients. Copyright: © Singapore Medical Association.

  19. Mass movement hazard assessment model in the slope profile

    Science.gov (United States)

    Colangelo, A. C.

    2003-04-01

    The central aim of this work is to assess the spatial behaviour of critical depths for slope stability and the behaviour of their correlated variables in the soil-regolith transition along slope profiles over granite, migmatite and mica-schist parent materials in an humid tropical environment. In this way, we had making measures of shear strength for residual soils and regolith materials with soil "Cohron Sheargraph" apparatus and evaluated the shear stress tension behaviour at soil-regolith boundary along slope profiles, in each referred lithology. In the limit equilibrium approach applied here we adapt the infinite slope model for slope analysis in whole slope profile by means of finite element solution like in Fellenius or Bishop methods. In our case, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. For each slice, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, slope gradient, top of subsurface flow gradient, apparent soil bulk density. The correlations showed the relative weight of cohesion, internal friction angle, apparent bulk density of soil materials and slope gradient variables with respect to the evaluation of critical depth behaviour for different simulated soil moisture content levels at slope profile scale. Some important results refer to the central role of behaviour of soil bulk-density variable along slope profile during soil evolution and in present day, because the intense clay production, mainly Kaolinite and Gibbsite at B and C-horizons, in the humid tropical environment. A increase in soil clay content produce a fall of friction angle and bulk density of material, specially when some montmorillonite or illite clay are present. We have observed too at threshold conditions, that a slight change in soil bulk-density value may disturb drastically the equilibrium of

  20. Bayesian Predictive Modeling Based on Multidimensional Connectivity Profiling

    Science.gov (United States)

    Herskovits, Edward

    2015-01-01

    Dysfunction of brain structural and functional connectivity is increasingly being recognized as playing an important role in many brain disorders. Diffusion tensor imaging (DTI) and functional magnetic resonance (fMR) imaging are widely used to infer structural and functional connectivity, respectively. How to combine structural and functional connectivity patterns for predictive modeling is an important, yet open, problem. We propose a new method, called Bayesian prediction based on multidimensional connectivity profiling (BMCP), to distinguish subjects at the individual level based on structural and functional connectivity patterns. BMCP combines finite mixture modeling and Bayesian network classification. We demonstrate its use in distinguishing young and elderly adults based on DTI and resting-state fMR data. PMID:25924166

  1. Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind

    Science.gov (United States)

    Jakubowski, A. L.; Schetz, J. A.; Moore, C. L.; Joag, R.

    1985-01-01

    An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets.

  2. Modelling of heat transfer to fluids at a supercritical pressure

    International Nuclear Information System (INIS)

    Shuisheng, He

    2014-01-01

    A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such

  3. Modeling of thermal explosion under pressure in metal ceramic systems

    International Nuclear Information System (INIS)

    Shapiro, M.; Dudko, V.; Skachek, B.; Matvienko, A.; Gotman, I.; Gutmanas, E.Y.

    1998-01-01

    The process of reactive in situ synthesis of dense ceramic matrix composites in Ti-B-C, Ti-B-N, Ti-Si-N systems is modeled. These ceramics are fabricated on the basis of compacted blends of ceramic powders, namely Ti-B 4 C and/or Ti-BN. The objectives of the project are to identify and investigate the optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends are investigated during monotonous heating at a constant rate. This process is modeled using a heat transfer-combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed are further used to describe the thermal explosion synthesis in a restrained die under pressure. It is shown that heat removal from the reaction zone affects the combustion process and the final phase composition

  4. Column properties and flow profiles of a flat, wide column for high-pressure liquid chromatography.

    Science.gov (United States)

    Mriziq, Khaled S; Guiochon, Georges

    2008-04-11

    The design and the construction of a pressurized, flat, wide column for high-performance liquid chromatography (HPLC) are described. This apparatus, which is derived from instruments that implement over-pressured thin layer chromatography, can carry out only uni-dimensional chromatographic separations. However, it is intended to be the first step in the development of more powerful instruments that will be able to carry out two-dimensional chromatographic separations, in which case, the first separation would be a space-based separation, LC(x), taking place along one side of the bed and the second separation would be a time-based separation, LC(t), as in classical HPLC but proceeding along the flat column, not along a tube. The apparatus described consists of a pressurization chamber made of a Plexiglas block and a column chamber made of stainless steel. These two chambers are separated by a thin Mylar membrane. The column chamber is a cavity which is filled with a thick layer (ca. 1mm) of the stationary phase. Suitable solvent inlet and outlet ports are located on two opposite sides of the sorbent layer. The design allows the preparation of a homogenous sorbent layer suitable to be used as a chromatographic column, the achievement of effective seals of the stationary phase layer against the chamber edges, and the homogenous flow of the mobile phase along the chamber. The entire width of the sorbent layer area can be used to develop separations or elute samples. The reproducible performance of the apparatus is demonstrated by the chromatographic separations of different dyes. This instrument is essentially designed for testing detector arrays to be used in a two-dimensional LC(x) x LC(t) instrument. The further development of two-dimension separation chromatographs based on the apparatus described is sketched.

  5. Marginal stability effects and pressure profile evolution in an Extrap Z-pinch

    International Nuclear Information System (INIS)

    Drake, J.R.

    1985-12-01

    Non-circular Z-pinch discharges, generated in the Extrap experiments, exhibit improved stability against global fluid instabilities. In this paper we discuss how marginally stable equilibria can develop in the Extrap configuration. During the build-up of the discharge, unstable equilibria are initially produced. Fluctuations associated with these instabilities lead to increased mass transport which alters the equilibrium. In the Extrap configuration marginally stable profiles can evolve because of the boundary conditions in this configuration. An Extrap Z-pinch is a pinch discharge where the current channel has a characteristic non-circular cross-section achieved by bounding the discharge by a magnetic separatrix produced when vacuum octupole magnetic field, generated by currents in external conductors, combines with the self-magnetic field produced by the discharge current. The pinch boundary is changed from a free (plasma-vacuum) boundary to an interface between a high-beta pinch plasma and a low-beta plasma contained in the vacuum magnetic field. The presence of the warm, low-beta plasma scrape-off layer, which provides a boundary condition on the pinch, makes it possible for equilibrium profiles to evolve that are marginally stable against global fluid modes. (author)

  6. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model.

    Science.gov (United States)

    Babbs, Charles F

    2012-08-22

    The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering. A new analysis of relevant anatomy, physiology and physics reveals the mechanisms underlying the production of cuff pressure oscillations as well as a way to extract systolic and diastolic pressures from the envelope of oscillations in any individual subject. Stiffness characteristics of the compressed artery segment can be extracted from the envelope shape to create an individualized mathematical model. The model is tested with a matrix of possible systolic and diastolic pressure values, and the minimum least squares difference between observed and predicted envelope functions indicates the best fit choices of systolic and diastolic pressure within the test matrix. The model reproduces realistic cuff pressure oscillations. The regression procedure extracts systolic and diastolic pressures accurately in the face of varying pulse pressure and arterial stiffness. The root mean squared error in extracted systolic and diastolic pressures over a range of challenging test scenarios is 0.3 mmHg. A new algorithm based on physics and physiology allows accurate extraction of systolic and diastolic pressures from cuff pressure oscillations in a way that can be validated, criticized, and updated in the public domain.

  7. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model

    Directory of Open Access Journals (Sweden)

    Babbs Charles F

    2012-08-01

    Full Text Available Abstract Background The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering. Methods A new analysis of relevant anatomy, physiology and physics reveals the mechanisms underlying the production of cuff pressure oscillations as well as a way to extract systolic and diastolic pressures from the envelope of oscillations in any individual subject. Stiffness characteristics of the compressed artery segment can be extracted from the envelope shape to create an individualized mathematical model. The model is tested with a matrix of possible systolic and diastolic pressure values, and the minimum least squares difference between observed and predicted envelope functions indicates the best fit choices of systolic and diastolic pressure within the test matrix. Results The model reproduces realistic cuff pressure oscillations. The regression procedure extracts systolic and diastolic pressures accurately in the face of varying pulse pressure and arterial stiffness. The root mean squared error in extracted systolic and diastolic pressures over a range of challenging test scenarios is 0.3 mmHg. Conclusions A new algorithm based on physics and physiology allows accurate extraction of systolic and diastolic pressures from cuff pressure oscillations in a way that can be validated, criticized, and updated in the public domain.

  8. Improvements To Solar Radiation Pressure Modeling For Jason-2

    Science.gov (United States)

    Zelensky, N. P.; Lemoine, F. G.; Melachroinos, S.; Pavlis, D.; Bordyugov, O.

    2011-12-01

    Jason-2 is the follow-on to the Jason-1 and TOPEX/Poseidon radar altimetry missions observing the sea surface. The computed orbit is used to reference the altimeter measurement to the center of the Earth, and thus the accuracy and stability of the orbit are critical to the sea surface observation accuracy. A 1-cm Jason-2 radial orbit accuracy goal is required for meeting the 2.5 cm altimeter measurement goal. Also mean sea level change estimated from altimetry requires orbit stability to well below 1 mm/yr. Although 1-cm orbits have been achieved, unresolved large draconitic period error signatures remain and are believed to be due to mis-modeling of the solar radiation pressure (SRP) forces acting on the satellite. Such error may easily affect the altimeter data, and can alias into any number of estimated geodetic quantities using Jason-2. Precision orbit determination (POD) at GSFC and other analysis centers employs an 8-panel "macromodel" representation of the satellite geometry and optical properties to model SRP. Telemetered attitude and modeled solar array pitch angles (SAPA) are used to orient the macromodel. Several possible improvements to SRP modeling are evaluated and include: 1) using telemetered SAPA values, 2) using the SRP model developed at UCL for the very similar Jason-1, 3) re-tuning the macromodel, 4) modifying POD strategy to estimate a coefficient of reflectivity (CR) for every arc, or else using the reduced-dynamic approach. Improvements to POD modeling are evaluated through analysis of tracking data residuals, estimated empirical accelerations, and orbit differences.

  9. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    S-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization...... be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on accurate description of the reservoir fluid behavior under...... HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive...

  10. Alterations of urinary metabolite profile in model diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Stec, Donald F. [Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Wang, Suwan; Stothers, Cody [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Avance, Josh [Berea College, 1916 CPO, Berea, KY 40404 (United States); Denson, Deon [Choctaw Central High School, Philadelphia, MS 39350 (United States); Harris, Raymond [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Voziyan, Paul, E-mail: paul.voziyan@vanderbilt.edu [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2015-01-09

    Highlights: • {sup 1}H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be

  11. Alterations of urinary metabolite profile in model diabetic nephropathy

    International Nuclear Information System (INIS)

    Stec, Donald F.; Wang, Suwan; Stothers, Cody; Avance, Josh; Denson, Deon; Harris, Raymond; Voziyan, Paul

    2015-01-01

    Highlights: • 1 H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS −/− C57BLKS and eNOS −/− C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS −/− C57BLKS and eNOS −/− C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be useful new tools in

  12. The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments.

    Science.gov (United States)

    Tejada-Ortigoza, Viridiana; García-Amezquita, Luis Eduardo; Serna-Saldívar, Sergio O; Welti-Chanes, Jorge

    2017-07-01

    The effect of high hydrostatic pressure (HHP) and temperature on composition of non-conventional dietary fiber (DF) sources and functional properties were evaluated. Mango, orange, or prickly pear peels were processed at 600 MPa during 10 min at 22 ℃ and 55 ℃. Total (TDF), soluble (SDF), and insoluble (IDF) dietary fiber, water/oil holding, and retention capacity, solubility, swelling capacity, and bulk density were assayed. An increment in the SDF content was observed due to the effect of pressure with the greatest changes noticed in mango peel, increasing from 37.4% (control) to 45.7% (SDF/TDF) in the HHP-treated (55 ℃) sample. Constant values of TDF after the treatments suggest a conversion of IDF to SDF in mango (38.9%-40.5% dw) and orange (49.0%-50.8% dw) peels. The highest fiber solubility values were observed for mango peel ranging between 80.3% and 83.9%, but the highest increase, from 55.1% to 62.3%, due to treatment was displayed in orange peel processed at 22 ℃. A relationship between DF modifications induced by HHP treatment and changes in the functional properties of the materials was established. Application of HHP opens up the opportunity to modify non-conventional sources of DF and to obtain novel functional properties for different food applications.

  13. High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models

    Science.gov (United States)

    Engwirda, Darren; Kelley, Maxwell; Marshall, John

    2017-08-01

    Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.

  14. A model for simulating autoclave-reactor pressure histories

    Energy Technology Data Exchange (ETDEWEB)

    Thorsness, C.B.

    1995-11-01

    Small heated-batch reactors, frequently referred to as autoclave reactors, are often used in developing information for a proposed new chemical/physical processing step. These systems often entail considerable pressure buildup during the course of operation. This report describes a model formulated to simulate well mixed autoclave reactors. The model solves a system of differential and algebraic equations which describe vapor/liquid equilibrium and chemical reactions in the reactor during a heating and cooling cycle. The model allows any number of chemical species to be defined. Phase equilibrium considerations are limited to systems with one liquid and one vapor phase, although some provisions for dealing with a second pure water liquid phase are considered. Equilibrium constraints are formulated using fugacity and activity coefficients. A new version of the general purpose differential-algebraic system solver DASSL, called DASPK, has been used to solve the system of equations. This solver has been found to work well in test problems. Selected results from a number of example problems are described. The example systems are water/nitrogen; crude oil/water; hexane/toluene; hexane/heptadecane; water/carbon dioxide; and a biomass system.

  15. MEASURING NEUTRON STAR RADII VIA PULSE PROFILE MODELING WITH NICER

    Energy Technology Data Exchange (ETDEWEB)

    Özel, Feryal; Psaltis, Dimitrios; Bauböck, Michi [Astronomy Department, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Arzoumanian, Zaven [Center for Research and Exploration in Space Science and Technology/USRA, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Morsink, Sharon, E-mail: fozel@email.arizona.edu [Department of Physics, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E1 (Canada)

    2016-11-20

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station . Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.

  16. Structural acoustics model of the violin radiativity profile.

    Science.gov (United States)

    Bissinger, George

    2008-12-01

    Violin radiativity profiles are dominated by the Helmholtz-like A0 cavity mode ( approximately 280 Hz), first corpus bending modes B1(-) and B1(+) ( approximately 500 Hz), and BH and bridge-filter peaks ( approximately 2.4 kHz and approximately 3.5 kHz, respectively), with falloff above approximately 4 kHz. The B1 modes-dependent on two low-lying free-plate modes--are proposed to excite A0 via coupling to B1-driven in-phase f-hole volume flows. VIOCADEAS data show that A0 radiativity increases primarily as A0-B1(-) frequency difference decreases, consistent with Meinel's 1937 experiment for too-thick/too-thin plate thicknesses, plus sound post removal and violin octet baritone results. The vibration-->acoustic energy filter, F(RAD), computed from shape-material-independent radiation and total damping, peaks at the critical frequency f(crit), estimated from a free-plate mode by analogy to flat-plate bending. Experimentally, f(crit) decreased as this plate mode (and B1(+)) frequency increased. Simulations show that increasing plate thicknesses lowers f(crit), reduces F(RAD), and moves the spectral balance toward lower frequencies. Incorporating string-->corpus filters (including bridge versus bridge-island impedances) provides a model for overall violin radiativity. This model-with B1 and A0-B1 couplings, and f(crit) (computed from a free-plate mode important to B1) strongly affecting the lowest and highest parts of the radiativity profile-substantiates prior empirical B1--sound quality linkages.

  17. Fetal programming of blood pressure in a transgenic mouse model of altered intrauterine environment.

    Science.gov (United States)

    Chiossi, Giuseppe; Costantine, Maged M; Tamayo, Esther; Hankins, Gary D V; Saade, George R; Longo, Monica

    2016-12-01

    Nitric oxide is essential in the vascular adaptation to pregnancy, as knockout mice lacking nitric oxide synthase (NOS3) have abnormal utero-placental perfusion, hypertension and growth restriction. We previously showed with ex vivo studies on transgenic animals lacking NOS3 that adverse intrauterine environment alters fetal programming of vascular reactivity in adult offspring. The current research shows that altered vascular reactivity correlates with higher blood pressure in vivo. Our data suggest that higher blood pressure depends on both genetic background (NOS3 deficiency) and uterine environment, becomes more evident with age (> 7 postnatal weeks), activity and stress, is gender specific (preponderant among males), and can be affected by the sleep-awake cycle. In utero or early postnatal life (programming is associated with abnormal blood pressure (BP) profiles in vivo. Mice lacking a functional endothelial nitric oxide synthase (KO, NOS3 -/- ) and wild-type mice (WT, NOS3 +/+ ) were crossbred to generate homozygous NOS3 -/- (KO), maternally derived heterozygous NOS3 +/- (KOM: mother with adverse intrauterine environment from NOS3 deficiency), paternally derived heterozygous NOS3 +/- (KOP: mother with normal in utero milieu) and NOS3 +/+ (WT) litters. BP was measured in vivo at 7, 14 and 21 weeks of age. After univariate analysis, multivariate population-averaged linear regression models were used to identify factors affecting BP. When compared to WT offspring, systolic (SBP), diastolic (DBP) and mean (MAP) BP progressively increased from KOP, to KOM, and peaked among KO (P 7 postnatal weeks), higher locomotor activity, daytime recordings, and recent blood pressure transducer insertion (P < 0.001). Post hoc analysis showed that KOM had higher SBP than KOP (P < 0.05). Our study indicates that adverse intrauterine environment contributes, along with multiple other factors, to account for hypertension; moreover, in utero or early postnatal life may represent

  18. Twenty-four-hour blood pressure profile, orthostatic hypotension, and cardiac dysautonomia in elderly type 2 diabetic hypertensive patients.

    Science.gov (United States)

    Costa, Alfredo; Bosone, Daniele; Ramusino, Matteo Cotta; Ghiotto, Natascia; Guaschino, Elena; Zoppi, Annalisa; D'Angelo, Angela; Fogari, Roberto

    2016-12-01

    The aim of this study was to evaluate the relationship between orthostatic hypotension (OH), defined as a decrease in systolic blood pressure (SBP) ≥20 mmHg and/or a decrease in diastolic blood pressure (DBP) ≥10 mmHg, and 24-h ambulatory BP profile in elderly hypertensive type 2 diabetic patients. After a 2-week antihypertensive wash-out period, 200 hypertensive well-controlled diabetic outpatients, aged 65-75 years, underwent a clinical examination, including BP measurements, ECG, 24-h ABP monitoring (ABPM), an orthostatic test, and three tests for cardiovascular autonomic function assessment [deep breathing, heart rate (HR) variability, resting HR]. According to their nighttime BP profile, patients were divided into three groups: dippers (n = 86) (BP fall during nighttime ≥10 %), non-dippers (n = 80) (BP fall during nighttime 0-10 %), and reverse dippers (n = 34) (nighttime BP > daytime BP). Orthostatic test produced a significantly greater orthostatic SBP fall in dippers and even more in reverse dippers. In these latter, a significant fall was observed also in DBP. Prevalence of OH was 9.3 % in dippers, 30 % in non-dippers, and 79.4 % in reverse dippers. In elderly hypertensive type 2 diabetics, a blunted nocturnal BP fall is associated with OH and autonomic dysfunction. These data suggest that ABPM should be performed in the assessment of hypertensive diabetic patients in whom the cardiovascular dysautonomia is suspected or the signs of it are present (such as OH).

  19. ASSESSMENT OF RILMENIDINE EFFICIENCY IN PATIENTS WITH ARTERIAL HYPERTENSION WITH DETERIORATION OF DAILY PROFILE OF BLOOD PRESSURE

    Directory of Open Access Journals (Sweden)

    P. P. Tikhonov

    2005-01-01

    Full Text Available Aim. To estimate an efficiency and tolerability of rilmenidine in hypertensive patients with different types of blood pressure (BP daily profile – dipper and non-dipper.Methods. 23 patients with essential hypertension (EH, I-II stages, were included into the study. They were treated with rilmeneidine 1 mg daily during one month. Ambulatory BP monitoring (ABPM and office BP measurements were made before and after the treatment. Based on ABPM results all patients were divided into two groups: with adequate decrease of BP at nighttime (dipper, D, and with insufficient decrease of BP at nighttime (non-dipper, ND.Results. One month rilmenidine monotherapy resulted in BP normalization in 52% of patients. Decrease in 24-hour BP, daytime and nighttime BP, burden with BP and BP variability during daytime was observed in both groups. A distinction in rilmenidine influence on BP daily index was revealed: initially normal BP daily index didn’t change in D group, while initially decreased BP daily index increased in ND group. Rilmenidine reduced the speed of morning BP rise in patients of ND group.Conclusion. Results of the study testify efficiency and satisfactory tolerability of monotherapy with rilmenidine 1 mg daily in patients with EH of I-II stages. For patients with insufficient decrease in BP during nighttime rilmenidine provides normalization of BP daily profile intensifying BP night decrease and reducing the speed of morning BP rise.

  20. 1.4D quasistatic profile model of transport in a field-reversed configuration (FRC)

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    Global confinement models are useful for determining how a given transport mechanism (dependent on local parameters) translates into global confinement times. Such models are also useful for inferring the overall magnitudes of transport rates, and limited information about their spatial profiles. They are especially important in a field reversed configuration (FRC) where the equilibrium and transport rates are so intimately coupled, and where the flux loss time is such an important factor. An earlier global FRC confinement model, sometimes called QUASI, was based on the assumption of a quasi-steady equilibrium. The equilibrium was assumed to have square-ends with some features of 2D equilibria: (1) equal pressure on inner and outer branches of the flux lines; and (2) average-beta relation. Models of this type have been called 1-1/4D transport models. The same general approach has now been applied in a straightforward way to an equilibrium with realistic axial structure. This might be called a 1.4D quasisteady transport model. The assumed axial structure can be that of an analytic equilibrium, or a more complicated computed equilibrium as desired. The example used here is an elongated Hill's vortex equilibrium. As will be shown later, the equilibrium is reflected by two integral quantities that appear in the quasistatic diffusion equation

  1. Prediction of friction pressure drop for low pressure two-phase flows on the basis of approximate analytical models

    Science.gov (United States)

    Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.

    2017-12-01

    Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable

  2. Urethrotonography - a radiological and manometrical combination technique to diagnose urinary stress incontinance in comparison with urethral pressure profile recording

    International Nuclear Information System (INIS)

    Wess, H.

    1982-01-01

    The study described here was carried out in order to gain more insight into the pathogenesis of urinary stress incontinance and the related urethrovesical functions. The pathophysiological changes in the urogenital tract that are associated with urinary stress incontinance are described just as well as the clinical symptoms and signs differentiating the individual forms of incontinance from each other. Account is further taken of the various manometrical and radiological techniques used in the diagnosis of urinary stress incontinance. In this study, which included a total of 100 patients, comparative evaluations were made of the pressure behaviour of the bladder during the filling-up phase and the closing mechanism of the urethra both at rest and under stress using the following procedures: - Method developed by Brown and Wickham for urethral pressure profile recording; visualisation of the bladder and urethra with the aid of X-rays and a balloon catheter especially developed by us. The latter technique may help to solve the problems usually arising when given morphological factors are to be connected with certain medical views or theories concerning the vesical and urethral functions as well as the pathogenesis of urinary stress incontinance. It may thus enable more straightforward diagnosis to be made. (TRV) [de

  3. Profiling Patients’ Healthcare Needs to Support Integrated, Person-Centered Models for Long-Term Disease Management (Profile: Research Design

    Directory of Open Access Journals (Sweden)

    Arianne MJ Elissen

    2016-04-01

    Full Text Available Background: This article presents the design of PROFILe, a study investigating which (biomedical and non-(biomedical patient characteristics should guide more tailored chronic care. Based on this insight, the project aims to develop and validate ‘patient profiles’ that can be used in practice to determine optimal treatment strategies for subgroups of chronically ill with similar healthcare needs and preferences. Methods/Design: PROFILe is a practice-based research comprising four phases. The project focuses on patients with type 2 diabetes. During the first study phase, patient profiles are drafted based on a systematic literature research, latent class growth modeling, and expert collaboration. In phase 2, the profiles are validated from a clinical, patient-related and statistical perspective. Phase 3 involves a discrete choice experiment to gain insight into the patient preferences that exist per profile. In phase 4, the results from all analyses are integrated and recommendations formulated on which patient characteristics should guide tailored chronic care. Discussion: PROFILe is an innovative study which uses a uniquely holistic approach to assess the healthcare needs and preferences of chronically ill. The patient profiles resulting from this project must be tested in practice to investigate the effects of tailored management on patient experience, population health and costs.

  4. Flashback behavior in a model swirl combustor at elevated pressure

    Science.gov (United States)

    Ranjan, Rakesh; Ebi, Dominik; Clemens, Noel

    2014-11-01

    Understanding of combustion physics at high pressure is essential for safe and efficient operation of gas turbine combustors. A new optically-accessible elevated pressure combustion facility has been developed for this purpose. The modular design of the chamber allows applying various optical diagnostic techniques and the installation of different types of combustors. In the current study, the effect of pressure on boundary layer flashback in lean-premixed swirl flames is investigated. Mixtures of hydrogen and methane at different equivalence ratios are tested. High-speed chemiluminescence imaging is employed to study the upstream flame propagation inside the mixing tube, which allows comparison to previous results of flashback at atmospheric pressure.

  5. Average waiting time profiles of uniform DQDB model

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.S.V. [Oak Ridge National Lab., TN (United States); Maly, K.; Olariu, S.; Dharanikota, S.; Zhang, L.; Game, D. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Computer Science

    1993-09-07

    The Distributed Queue Dual Bus (DQDB) system consists of a linear arrangement of N nodes that communicate with each other using two contra-flowing buses; the nodes use an extremely simple protocol to send messages on these buses. This simple, but elegant, system has been found to be very challenging to analyze. We consider a simple and uniform abstraction of this model to highlight the fairness issues in terms of average waiting time. We introduce a new approximation method to analyze the performance of DQDB system in terms of the average waiting time of a node expressed as a function of its position. Our approach abstracts the intimate relationship between the load of the system and its fairness characteristics, and explains all basic behavior profiles of DQDB observed in previous simulation. For the uniform DQDB with equal distance between adjacent nodes, we show that the system operates under three basic behavior profiles and a finite number of their combinations that depend on the load of the network. Consequently, the system is not fair at any load in terms of the average waiting times. In the vicinity of a critical load of 1 {minus} 4/N, the uniform network runs into a state akin to chaos, where its behavior fluctuates from one extreme to the other with a load variation of 2/N. Our analysis is supported by simulation results. We also show that the main theme of the analysis carries over to the general (non-uniform) DQDB; by suitably choosing the inter-node distances, the DQDB can be made fair around some loads, but such system will become unfair as the load changes.

  6. Precision Modeling of Solar Energetic Particle Intensity and Anisotropy Profiles

    Science.gov (United States)

    Ruffolo, D.; Sáiz, A.; Bieber, J. W.; Evenson, P.; Pyle, R.; Rujiwarodom, M.; Tooprakai, P.; Wechakama, M.; Khumlumlert, T.

    2006-12-01

    A focused transport equation for solar energetic particles is sufficiently complex that simple analytic approximations are generally inadequate, but the physics is sufficiently well established to permit precise numerical modeling of high energy particle observations at various distances from the Sun. We demonstrate how observed profiles of intensity and anisotropy vs. time can be quantitatively fit to determine an optimal injection profile at the Sun, scattering mean free path λ, and magnetic configuration. For several ground level enhancements (GLE) of solar energetic particles at energies ~ 1 GeV, the start time of injection has been determined to 1 or 2 minutes. In each case this start time coincides, within that precision, to the soft X-ray peak time, when the flare's primary energy release has ended. This is not inconsistent with acceleration at a coronal mass ejection (CME)-driven shock, though the rapid timescale is challenging to understand. For the GLE of 2005 January 20, λ decreases substantially over ~ 10 minutes, which is consistent with concepts of proton-amplified waves. The GLE of 2000 July 14 is properly fit only when a magnetic bottleneck beyond Earth is taken into account, a feature later confirmed by NEAR observations. The long-standing puzzle of the 1989 October 22 event can now be explained by simultaneous injection of relativistic solar particles along both legs of a closed interplanetary magnetic loop, while other reasonable explanations fail the test of quantitative fitting. The unusually long λ (confirming many previous reports) and a low turbulent spectral index hint at unusual properties of turbulence in the loop. While the early GLE peak on 2003 October 28 remains a mystery, the main peak's strong anisotropy is inconsistent with a suggestion of injection along the far leg of a magnetic loop; quantitative fitting fails because of reverse focusing during Sunward motion. With these modeling capabilities, one is poised to take full

  7. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    Science.gov (United States)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  8. Deep-depletion physics-based analytical model for scanning capacitance microscopy carrier profile extraction

    International Nuclear Information System (INIS)

    Wong, K. M.; Chim, W. K.

    2007-01-01

    An approach for fast and accurate carrier profiling using deep-depletion analytical modeling of scanning capacitance microscopy (SCM) measurements is shown for an ultrashallow p-n junction with a junction depth of less than 30 nm and a profile steepness of about 3 nm per decade change in carrier concentration. In addition, the analytical model is also used to extract the SCM dopant profiles of three other p-n junction samples with different junction depths and profile steepnesses. The deep-depletion effect arises from rapid changes in the bias applied between the sample and probe tip during SCM measurements. The extracted carrier profile from the model agrees reasonably well with the more accurate carrier profile from inverse modeling and the dopant profile from secondary ion mass spectroscopy measurements

  9. Personality profile of adult ADHD: the alternative five factor model.

    Science.gov (United States)

    Valero, Sergi; Ramos-Quiroga, Antoni; Gomà-i-Freixanet, Montserrat; Bosch, Rosa; Gómez-Barros, Nuria; Nogueira, Mariana; Palomar, Gloria; Corrales, Montse; Casas, Miquel

    2012-06-30

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most frequently diagnosed disorders in childhood affecting around 3% to 5% of adults worldwide. Most of the studies have been carried out using the Five Factor Model (FFM). Given the value and importance of describing adult ADHD in terms of general personality structure for a better conceptualization of this disorder, this study contributes adding new data on an Alternative Five Factor Model (AFFM) of personality. The aim of the present study is twofold: To assess the personality profile of adults with ADHD under the AFFM perspective, and to test the discriminant validity of the Zuckerman-Kuhlman Personality Questionnaire (ZKPQ) in differentiating ADHD subjects vs. normal range controls. A sample of 217 adults (64% male) meeting ADHD diagnosis (DSM-IV) was paired by age and sex with 434 normal-range controls. Logistic regression analysis showed that high scores on Neuroticism-Anxiety, Impulsivity and General Activity, and low on Work Activity were the most powerful predictors of being endorsed with an ADHD diagnosis. Results may suggest refinements in the personality assessment of ADHD as it seems that the ZKPQ provides more specific subscales for the description and conceptualization of this disorder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Data description and quality assessment of ionospheric electron density profiles for ARPA modeling project. Technical report

    International Nuclear Information System (INIS)

    Conkright, R.O.

    1977-03-01

    This report presents a description of the automated method used to produce electron density (N(h)) profiles from ionograms recorded on 35mm film and an assessment of the resulting data base. A large data base of about 30,000 profiles was required for an ionospheric modeling project. This motivated a search for an automated method of producing profiles. The automated method used is fully described, the resulting data are given a quality grade, and the noon and midnight profiles are presented. Selected portions of this data base are compared with profiles produced by the standard profiling method in use by the Environmental Data Service at Boulder, Colorado

  11. Modeling Blood Pressure:Comparative Study Of Seemingly ...

    African Journals Online (AJOL)

    Blood pressure and the T174M and M235T polymorphisms of the angiotensinogen gene. Ann Epidemiol, 9(4)245-53. [41] Olatunbosun,S.T. Kaufman, J.S., Cooper, R.S. and Bella, A.F.(2000).Hypertension in a black population: prevalence and biosocial determinants of high blood pressure in a group of urban Nigerians.

  12. A novel MOEMS pressure sensor: Modelling and experimental ...

    Indian Academy of Sciences (India)

    the pressurized gas and does not require a sealed cavity. Hence, compared to MEMS pres- sure sensors that are based on sealed cavities and require bonding, the structure is inherently free of mechanical 'creep' due to pressure cycling. In addition, a major advantage of using the MFPD sensor for the measurement of ...

  13. Driving the Model to Its Limit: Profile Likelihood Based Model Reduction.

    Science.gov (United States)

    Maiwald, Tim; Hass, Helge; Steiert, Bernhard; Vanlier, Joep; Engesser, Raphael; Raue, Andreas; Kipkeew, Friederike; Bock, Hans H; Kaschek, Daniel; Kreutz, Clemens; Timmer, Jens

    2016-01-01

    In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.

  14. Driving the Model to Its Limit: Profile Likelihood Based Model Reduction.

    Directory of Open Access Journals (Sweden)

    Tim Maiwald

    Full Text Available In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.

  15. Validation of Pressure Drop Models for PHWR-type Fuel Elements

    International Nuclear Information System (INIS)

    Brasnarof Daniel; Daverio, H.

    2003-01-01

    In the present work an one-dimensional pressure drop analytical model and the COBRA code, are validated with experimental data of CANDU and Atucha fuel bundles in low and high pressure experimental test loops.Models have very good agreement with the experimental data, having less than 5 % of discrepancy. The analytical model results were compared with COBRA code results, having small difference between them in a wide range of pressure, temperature and mass flow

  16. Effect of Sitagliptin on Glycemic Control, Body Weight, Blood Pressure and Serum Lipid Profile in Type 2 Diabetic Hyperlipidemic Patients

    International Nuclear Information System (INIS)

    Hussain, M.; Atif, M. A.; Akhtar, L.; Ali, B.; Tunio, A. G.; Serwar, G.

    2016-01-01

    Background: Dyslipidaemia is a global health issue in developed as well as in developing countries. People with type 2 Diabetes mellitus are more susceptible to develop dyslipidaemia and its related complications. The objective of the study was to assess the effect of sitagliptin a (DPP-4 inhibitor) oral antidiabetic drug on blood sugar, body weight, blood pressure and dyslipidaemia in type 2 diabetic patients. Methods: This 12 weeks open label observational study was conducted at outdoor of diabetic clinic of Sheikh Zayed Medical College/Hospital, Rahim Yar Khan in which newly diagnosed type 2 diabetic patients (n=78) with poor glycaemic control(HbA1c >7.2 percent) were selected. The patient received sitagliptin 50 mg twice daily for 12 weeks. Results: After 12 weeks treatment with sitagliptin, there was a significant reduction in the value of HbA1c from 8.184 percent±0.467 at baseline to 7.0200 percent±0.459 at 12 weeks (p<0.05). Body weight also decreased significantly from 80.21kg±7.156 at baseline to 71.74 kg±6.567 at 12 weeks (p<0.05).Systolic blood pressure decreased (SBP) decreased significantly from 138.17±6.050 mmHg at baseline to 131.22±6.311 mmHg at 12 weeks (p<0.05). Significant changes were also seen in diastolic blood pressure which decreased from 83.14±6.714 mmHg at baseline to 75.28±6.481 mmHg at 12 weeks (p<0.05). Significant reduction in the serum level of total Cholesterol (TC), triglycerides (TG) and Low density lipoprotein cholesterol (LDL-C) were detected (TC: 222.09±13.538 to 209.41±13.475 mg/dl, p<0.05; TG: 170.99±6.940 to 143.45±8.279 mg/dl, p<0.05; LDL-C 120.00±5.804 to 109.06±6.278 mg/dl, p<0.05). High density lipoprotein cholesterol (HDL-C) increased significantly from 42.99±4.836 mg/dl at baseline to 49.97±3.490 mg/dl at 12 weeks. Conclusion: Sitagliptin not only improves blood glucose control but also body weight, blood pressure and lipid profile in type 2 diabetic hyperlipidaemia patients. (author)

  17. Development of a commercial Transducer for Measuring Pressure and Friction on the Model Die Surface

    DEFF Research Database (Denmark)

    Andersen, Claus Bo; Ravn, Bjarne Gottlieb; Wanheim, Tarras

    2001-01-01

    deflection in the tool causes incorrect shape of the final component. The dinemsions of the die-cavity have to be corrected taking into account die deflection due to the high internal pressure. The modelling material technique is suitable for measuring internal pressure, but so far only a transducer...... to measure normal pressure has been available....

  18. An improved model to predict nonuniform deformation of Zr-2.5 Nb pressure tubes

    International Nuclear Information System (INIS)

    Lei, Q.M.; Fan, H.Z.

    1997-01-01

    Present circular pressure-tube ballooning models in most fuel channel codes assume that the pressure tube remains circular during ballooning. This model provides adequate predictions of pressure-tube ballooning behaviour when the pressure tube (PT) and the calandria tube (CT) are concentric and when a small (<100 degrees C) top-to-bottom circumferential temperature gradient is present on the pressure tube. However, nonconcentric ballooning is expected to occur under certain postulated CANDU (CANada Deuterium Uranium) accident conditions. This circular geometry assumption prevents the model from accurately predicting nonuniform pressure-tube straining and local PT/CT contact when the pressure tube is subjected to a large circumferential temperature gradient and consequently deforms in a noncircular pattern. This paper describes an improved model that predicts noncircular pressure-tube deformation. Use of this model (once fully validated) will reduce uncertainties in the prediction of pressure-tube ballooning during a postulated loss-of-coolant accident (LOCA) in a CANDU reactor. The noncircular deformation model considers a ring or cross-section of a pressure tube with unit axial length to calculate deformation in the radial and circumferential directions. The model keeps track of the thinning of the pressure-tube wall as well as the shape deviation from a reference circle. Such deviation is expressed in a cosine Fourier series for the lateral symmetry case. The coefficients of the series for the first m terms are calculated by solving a set of algebraic equations at each time step. The model also takes into account the effects of pressure-tube sag or bow on ballooning, using an input value of the offset distance between the centre of the calandria tube and the initial centre of the pressure tube for determining the position radius of the pressure tube. One significant improvement realized in using the noncircular deformation model is a more accurate prediction in

  19. CODE's new solar radiation pressure model for GNSS orbit determination

    Science.gov (United States)

    Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.

    2015-08-01

    The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which

  20. EFFECT OF MORNING AND EVENING RAMIPRIL TAKING ON AMBULATORY BLOOD PRESSURE PROFILE IN PATIENTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    V. M. Gorbunov

    2016-01-01

    Full Text Available Aim. To compare antihypertensive effect of ramipril monotherapy at morning and evening taking.Material and methods. 22 patients (10 men, 12 women; aged 62,1±1,9 y.o. with arterial hypertension of 1-2 stage were involved into the open randomized crossover study. Patients were randomized into 2 groups depending on ramipril taking time (morning or evening. Ambulatory blood pressure (BP monitoring (ABPM was performed. Patients of both groups were comparable in basic clinical characteristics and initial ABPM indices. Analysis of peak and phase characteristics of 24 hour BP profile was used as well as standard evaluation. Treatment duration was 3 weeks. Ramipril dose titration was made in 1,5 weeks. The average daily dose of ramipril was 6,1 mg in the morning taking, and 5,0 mg in the evening taking.Results. 20 patients finished study completely. 24 hour initial level of systolic (SBP and diastolic BP (DBP was 141,5±1,6/85,3±1,1 mm Hg. After ramipril monotherapy with evening taking BP reduced to 132,6±1,6/79,8±1,1 mm Hg (p<0,001 and with morning taking – to 131,8±1,6/79,2±1,1 mm Hg (p<0,001. Evening ramipril taking led to significant improvement of 24 hour BP profile. Night SBP/DBP reduction became deeper from 7,7±1,2/11,5±1,3% to 12,5±1,2/19,1±1,3 % (p<0,01. Morning taking did not have significant influence on these indices. Ramipril did not result in clinically significant hypotension including night one.Conclusion. Evening ramipril taking is effective and safe. It can be recommended to patients with insufficient night BP dipping (non dippers. 

  1. EFFECT OF MORNING AND EVENING RAMIPRIL TAKING ON AMBULATORY BLOOD PRESSURE PROFILE IN PATIENTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    V. M. Gorbunov

    2009-01-01

    Full Text Available Aim. To compare antihypertensive effect of ramipril monotherapy at morning and evening taking.Material and methods. 22 patients (10 men, 12 women; aged 62,1±1,9 y.o. with arterial hypertension of 1-2 stage were involved into the open randomized crossover study. Patients were randomized into 2 groups depending on ramipril taking time (morning or evening. Ambulatory blood pressure (BP monitoring (ABPM was performed. Patients of both groups were comparable in basic clinical characteristics and initial ABPM indices. Analysis of peak and phase characteristics of 24 hour BP profile was used as well as standard evaluation. Treatment duration was 3 weeks. Ramipril dose titration was made in 1,5 weeks. The average daily dose of ramipril was 6,1 mg in the morning taking, and 5,0 mg in the evening taking.Results. 20 patients finished study completely. 24 hour initial level of systolic (SBP and diastolic BP (DBP was 141,5±1,6/85,3±1,1 mm Hg. After ramipril monotherapy with evening taking BP reduced to 132,6±1,6/79,8±1,1 mm Hg (p<0,001 and with morning taking – to 131,8±1,6/79,2±1,1 mm Hg (p<0,001. Evening ramipril taking led to significant improvement of 24 hour BP profile. Night SBP/DBP reduction became deeper from 7,7±1,2/11,5±1,3% to 12,5±1,2/19,1±1,3 % (p<0,01. Morning taking did not have significant influence on these indices. Ramipril did not result in clinically significant hypotension including night one.Conclusion. Evening ramipril taking is effective and safe. It can be recommended to patients with insufficient night BP dipping (non dippers. 

  2. Thermal Modeling and Analysis of a Cryogenic Tank Design Exposed to Extreme Heating Profiles

    Science.gov (United States)

    Stephens, Craig A.; Hanna, Gregory J.

    1991-01-01

    A cryogenic test article, the Generic Research Cryogenic Tank, was designed to qualitatively simulate the thermal response of transatmospheric vehicle fuel tanks exposed to the environment of hypersonic flight. One-dimensional and two-dimensional finite-difference thermal models were developed to simulate the thermal response and assist in the design of the Generic Research Cryogenic Tank. The one-dimensional thermal analysis determined the required insulation thickness to meet the thermal design criteria and located the purge jacket to eliminate the liquefaction of air. The two-dimensional thermal analysis predicted the temperature gradients developed within the pressure-vessel wall, estimated the cryogen boiloff, and showed the effects the ullage condition has on pressure-vessel temperatures. The degree of ullage mixing, location of the applied high-temperature profile, and the purge gas influence on insulation thermal conductivity had significant effects on the thermal behavior of the Generic Research Cryogenic Tank. In addition to analysis results, a description of the Generic Research Cryogenic Tank and the role it will play in future thermal structures and transatmospheric vehicle research at the NASA Dryden Flight Research Facility is presented.

  3. Sensor System for Super-Pressure Balloon Performance Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-duration balloon flights are an exciting new area of scientific ballooning, enabled by the development of large super-pressure balloons. As these balloons...

  4. The use of source and Green's functions to model pressure ...

    African Journals Online (AJOL)

    . Appropriate flow period delineation methods are discussed. Results show that as an enlarged reservoir, flow attains pseudosteady state at late times when reservoir dimensionless pressure is inversely proportional to the reservoir ...

  5. Ambulatory blood pressure monitoring profile in urban African black and European white untreated hypertensive patients matched for age and sex.

    Science.gov (United States)

    Polónia, Jorge; Madede, Tavares; Silva, José A; Mesquita-Bastos, José; Damasceno, Albertino

    2014-08-01

    The aim of this study was to compare the 24-h ambulatory blood pressure (ABP) profile in never-treated black hypertensive patients living in Africa, Mozambique (20-80 years), versus never-treated white hypertensive patients living in Europe. ABP recordings of untreated black hypertensive patients and white hypertensive patients with 24-h ABP of 130/80 mmHg or more were retrospectively selected from two computerized database records of ABP and matched for age by decades, sex, and BMI. Black hypertensive patients were n=548, 47 ± 12 years, 52% women, BMI=28.0 ± 8.2 kg/m(2), 7% smokers, 7% diabetics; white hypertensive patients were n=604, 47 ± 15 years, 52% women, BMI=27.4 ± 5.1 kg/m(2), 8.4% diabetics, and 18% smokers (Pwhite hypertensive patients showed higher casual blood pressure (BP) 160/104 ± 19/14 versus 149/97 ± 18/12 mmHg, 24-h ABP 146/92 ± 16/13 versus 139/85 ± 11/10 mmHg, daytime ABP 150/95 ± 16/13 versus 143/88 ± 13/11 mmHg, night-time BP 139/84 ± 17/13 versus 130/78 ± 13/10 mmHg (all Pwhite hypertensive patients for all spectra of age distribution. This might be the reason for the worse cardiovascular prognosis described in black hypertensive patients compared with white hypertensive patients.

  6. Evolution of radial profiles in regular Lemaitre-Tolman-Bondi dust models

    International Nuclear Information System (INIS)

    Sussman, Roberto A

    2010-01-01

    We undertake a comprehensive and rigorous analytic study of the evolution of radial profiles of covariant scalars in regular LemaItre-Tolman-Bondi (LTB) dust models. We consider specifically the phenomenon of 'profile inversions' in which an initial clump profile of density, spatial curvature or the expansion scalar might evolve into a void profile (and vice versa). Previous work in the literature on models with density void profiles and/or allowing for density profile inversions is given full generalization, with some erroneous results corrected. We prove rigorously that if an evolution without shell crossings is assumed, then only the 'clump to void' inversion can occur in density profiles, and only in hyperbolic models or regions with negative spatial curvature. The profiles of spatial curvature follow similar patterns as those of the density, with 'clump to void' inversions only possible for hyperbolic models or regions. However, profiles of the expansion scalar are less restrictive, with profile inversions necessarily taking place in elliptic models. We also examine radial profiles in special LTB configurations: closed elliptic models, models with a simultaneous big bang singularity, as well as a locally collapsing elliptic region surrounded by an expanding hyperbolic background. The general analytic statements that we obtain allow for setting up the right initial conditions to construct fully regular LTB models with any specific qualitative requirements for the profiles of all scalars and their time evolution. The results presented can be very useful in guiding future numerical work on these models and in revising previous analytic work on all their applications.

  7. Continuous Positive Airway Pressure Thresholds for Nasolacrimal Air Regurgitation in a Cadaveric Model.

    Science.gov (United States)

    Blandford, Alexander D; Cherfan, Daniel G; Drake, Richard L; McBride, Jennifer M; Hwang, Catherine J; Perry, Julian D; Cheng, Olivia T

    2018-01-10

    To elucidate the mechanisms underlying nasolacrimal air regurgitation (AR) in the setting of continuous positive airway pressure therapy. Twelve nasolacrimal systems of 6 fresh female human cadavers were evaluated individually for AR using continuous positive airway pressure therapy before any nasolacrimal procedure. Cadavers were then randomly assigned to undergo nasolacrimal duct probing or endoscopic dacryocystorhinostomy and then each hemisystem was again evaluated for AR. The pressure where AR was first observed (discovery pressure) or maximum possible pressure in systems without AR was recorded. In systems that demonstrated AR, the pressure was then gradually decreased to the lowest pressure where regurgitation persisted. This pressure was recorded as the secondary threshold pressure. None of the 12 unoperated nasolacrimal systems or the 6 systems that underwent nasolacrimal duct probing demonstrated AR through the maximum continuous positive airway pressure therapy (30 cm H2O). After endoscopic dacryocystorhinostomy, all 6 nasolacrimal systems demonstrated AR. The mean discovery pressure was 16.0 cm H2O (range, 14.0-18.0 cm H2O) and mean secondary threshold pressure was 7.25 cm H2O (range, 6.5-8.0 cm H2O). Air regurgitation during continuous positive airway pressure therapy in the setting of prior endoscopic dacryocystorhinostomy can be replicated in a cadaver model. The secondary threshold pressures required for AR in this model were similar to AR pressures reported clinically. Prior to dacryocystorhinostomy, patients using continuous positive airway pressure therapy should be counseled on AR, and physicians should consider this phenomenon when evaluating ophthalmic complaints in postoperative patients on positive airway pressure therapy.

  8. The influence of adding tomato extract and acetylsalicylic acid to hypotensive therapy on the daily blood pressure profiles of patients with arterial hypertension and high cardiovascular risk.

    Science.gov (United States)

    Osińska, Angelika N; Begier-Krasińska, Beata; Rzymski, Piotr; Krasińska, Aleksandra; Tykarski, Andrzej; Krasiński, Zbigniew

    2017-12-01

    Arterial hypertension (HT) is one of the most common diseases around the world and constitutes a significant medical, social, and economic problem. Lifestyle changes, including adequate fruit and vegetable consumption, play an important role in controlling blood pressure (BP) and other cardiovascular risk factors. To compare the influence of adding acetylsalicylic acid (ASA) or standardized tomato extract (STE) to standard hypotensive therapy on the values of arterial pressure and the daily blood pressure profiles of patients with hypertension and high cardiovascular risk. The study included 65 patients with arterial hypertension and high cardiovascular risk. High-risk patients with primary hypertension were randomly allocated in a blinded fashion to one of two groups (ASA or STE). In each case, two visits were made: the first - before the treatment, and the second - after 4 weeks of treatment. During each visit, the patients underwent a clinical measurement of arterial pressure and an ambulatory blood pressure measurement (ABPM). Blood platelet aggregation was assessed using the VerifyNow analyzer. After 4 weeks of treatment, the blood pressure values during the day (p < 0.001), during the night ( p < 0.05), and in 24-h BP profiles ( p < 0.01) obtained with ABPM were significantly lower in the STE group in comparison to the ASA group. The addition of STE to standard hypotensive treatment resulted in a favorable increase in the nocturnal fall of diastolic blood pressure (DBP) (by 6.5%) and mean arterial pressure (MAP) (by 3.3%). The use of STE is significant in HT patients with high total cardiovascular risk; it is associated with better BP control and improvements in the daily BP profile.

  9. Central Pressure Appraisal: Clinical Validation of a Subject-Specific Mathematical Model.

    Directory of Open Access Journals (Sweden)

    Francesco Tosello

    Full Text Available Current evidence suggests that aortic blood pressure has a superior prognostic value with respect to brachial pressure for cardiovascular events, but direct measurement is not feasible in daily clinical practice.The aim of the present study is the clinical validation of a multiscale mathematical model for non-invasive appraisal of central blood pressure from subject-specific characteristics.A total of 51 young male were selected for the present study. Aortic systolic and diastolic pressure were estimated with a mathematical model and were compared to the most-used non-invasive validated technique (SphygmoCor device, AtCor Medical, Australia. SphygmoCor was calibrated through diastolic and systolic brachial pressure obtained with a sphygmomanometer, while model inputs consist of brachial pressure, height, weight, age, left-ventricular end-systolic and end-diastolic volumes, and data from a pulse wave velocity study.Model-estimated systolic and diastolic central blood pressures resulted to be significantly related to SphygmoCor-assessed central systolic (r = 0.65 p <0.0001 and diastolic (r = 0.84 p<0.0001 blood pressures. The model showed a significant overestimation of systolic pressure (+7.8 (-2.2;14 mmHg, p = 0.0003 and a significant underestimation of diastolic values (-3.2 (-7.5;1.6, p = 0.004, which imply a significant overestimation of central pulse pressure. Interestingly, model prediction errors mirror the mean errors reported in large meta-analysis characterizing the use of the SphygmoCor when non-invasive calibration is performed.In conclusion, multi-scale mathematical model predictions result to be significantly related to SphygmoCor ones. Model-predicted systolic and diastolic aortic pressure resulted in difference of less than 10 mmHg in the 51% and 84% of the subjects, respectively, when compared with SphygmoCor-obtained pressures.

  10. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development.

    Directory of Open Access Journals (Sweden)

    Bruno Ricardo de Castro Leite Júnior

    Full Text Available This study investigated the effect of high pressure homogenization (HPH (up to 190 MPa on porcine pepsin (proteolytic and milk-clotting activities, and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure. Although the proteolytic activity (PA was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G' value 92% higher after 90 minutes when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network and lower porosity (evidenced by confocal microscopy. These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese.

  11. High Pressure Homogenization of Porcine Pepsin Protease: Effects on Enzyme Activity, Stability, Milk Coagulation Profile and Gel Development.

    Science.gov (United States)

    Leite Júnior, Bruno Ricardo de Castro; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2015-01-01

    This study investigated the effect of high pressure homogenization (HPH) (up to 190 MPa) on porcine pepsin (proteolytic and milk-clotting activities), and the consequences of using the processed enzyme in milk coagulation and gel formation (rheological profile, proteolysis, syneresis, and microstructure). Although the proteolytic activity (PA) was not altered immediately after the HPH process, it reduced during enzyme storage, with a 5% decrease after 60 days of storage for samples obtained with the enzyme processed at 50, 100 and 150 MPa. HPH increased the milk-clotting activity (MCA) of the enzyme processed at 150 MPa, being 15% higher than the MCA of non-processed samples after 60 days of storage. The enzyme processed at 150 MPa produced faster aggregation and a more consistent milk gel (G' value 92% higher after 90 minutes) when compared with the non-processed enzyme. In addition, the gels produced with the enzyme processed at 150 MPa showed greater syneresis after 40 minutes of coagulation (forming a more compact protein network) and lower porosity (evidenced by confocal microscopy). These effects on the milk gel can be associated with the increment in MCA and reduction in PA caused by the effects of HPH on pepsin during storage. According to the results, HPH stands out as a process capable of changing the proteolytic characteristics of porcine pepsin, with improvements on the milk coagulation step and gel characteristics. Therefore, the porcine pepsin submitted to HPH process can be a suitable alternative for the production of cheese.

  12. A multi-instrument non-parametric reconstruction of the electron pressure profile in the galaxy cluster CLJ1226.9+3332

    Science.gov (United States)

    Romero, C.; McWilliam, M.; Macías-Pérez, J.-F.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; de Petris, M.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2018-04-01

    Context. In the past decade, sensitive, resolved Sunyaev-Zel'dovich (SZ) studies of galaxy clusters have become common. Whereas many previous SZ studies have parameterized the pressure profiles of galaxy clusters, non-parametric reconstructions will provide insights into the thermodynamic state of the intracluster medium. Aim. We seek to recover the non-parametric pressure profiles of the high redshift (z = 0.89) galaxy cluster CLJ 1226.9+3332 as inferred from SZ data from the MUSTANG, NIKA, Bolocam, and Planck instruments, which all probe different angular scales. Methods: Our non-parametric algorithm makes use of logarithmic interpolation, which under the assumption of ellipsoidal symmetry is analytically integrable. For MUSTANG, NIKA, and Bolocam we derive a non-parametric pressure profile independently and find good agreement among the instruments. In particular, we find that the non-parametric profiles are consistent with a fitted generalized Navaro-Frenk-White (gNFW) profile. Given the ability of Planck to constrain the total signal, we include a prior on the integrated Compton Y parameter as determined by Planck. Results: For a given instrument, constraints on the pressure profile diminish rapidly beyond the field of view. The overlap in spatial scales probed by these four datasets is therefore critical in checking for consistency between instruments. By using multiple instruments, our analysis of CLJ 1226.9+3332 covers a large radial range, from the central regions to the cluster outskirts: 0.05 R500 generation of SZ instruments such as NIKA2 and MUSTANG2.

  13. Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2014-01-01

    Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.

  14. Model for hydrogen isotope backscattering, trapping and depth profiles in C and a-Si

    International Nuclear Information System (INIS)

    Cohen, S.A.; McCracken, G.M.

    1979-03-01

    A model of low energy hydrogen trapping and backscattering in carbon and a-silicon is described. Depth profiles are calculated and numerical results presented for various incident angular and energy distributions. The calculations yield a relation between depth profiles and the incident ion energy distribution. The use of this model for tokamak plasma diagnosis is discussed

  15. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling

    Science.gov (United States)

    Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne

    2010-05-01

    Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are

  16. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    A new aerodynamic modelling approach is proposed for the longitudinal static characteristics of a simple delta wing. It captures the static variation of normal force and pitching moment characteristics throughout the angle of attack range. The pressure model is based on parametrizing the surface pressure distribution on a ...

  17. Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models

    NARCIS (Netherlands)

    Wognum, Silvia; Huyghe, Jacques M.; Baaijens, Frank P. T.

    2006-01-01

    An experimental hydrogel model and a numerical mixture model were used to investigate why the disc herniates while osmotic pressure is decreasing. To investigate the influence of decreasing osmotic pressure on the opening of cracks in the disc. In the degeneration process, the disc changes structure

  18. Correlation between 24-hour profile of blood pressure and ventricular arrhythmias and their prognostic significance in patients with arterial hypertension

    Directory of Open Access Journals (Sweden)

    Đorđević Dragan

    2008-01-01

    Full Text Available Background/Aim. Left ventricular hypertrophy (LVH, apart from arterial hypertension, is a risk factor for electrophysiologic heart condition disorder and sudden cardiac death. The aim of this study was to examine a relationship between complex ventricular arrhythmias and parameters of 24-hour ambulatory blood pressure monitoring in the patients with arterial hypertension and left ventricular hypertrophy (LVH, as well as their prognostic significance during a five-year follow-up. Methods. Ninety patients with arterial hypertension and LVH were included in this study (mean age 55.2±8.3 years. There were 35 healthy people in the control group (mean age 54.5±7.1 years. Left ventricular mass index was 171.9±32.4 g/m2 in the LVH group and 102.4±13.3 g/m2 in the control group. Clinical examination, echocardiogram, 24-hour ambulatory blood pressure monitoring and 24-hour holter monitoring were done in all of the examined persons. Ventricular arrhythmias were classified by the Lown classification. Results. In the LVH group there were 54 (60.0% of the patients with ≥ III Lown class. The best predictor of a Lown class were left ventricular mass index by using multivariate stepwise regression analyses (β = 0.212; p < 0.05 and small decrease of diastolic blood pressure during the night (β = -0.293; p < 0.01. The main predictor of bad prognosis was left ventricular mass index during a five year follow-up (β = 0.302; p < 0.01, for stepwise regression model: F = 8.828; p < 0.01, adjusted R2 = 0.091. Conclusion. Left ventricular arrhythmias are frequent in patients with lower decrease of blood pressure during the night. There was no correlation between the degree of ventricular arrhythmias and parameters from 24-hour blood pressure monitoring and a five-year prognosis in the patients with arterial hypertension and LVH. A bad five-year follow-up outcome of hypertensive disease depends on left ventricular mass index.

  19. Composite Pressure Vessel Variability in Geometry and Filament Winding Model

    Science.gov (United States)

    Green, Steven J.; Greene, Nathanael J.

    2012-01-01

    Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.

  20. Mechanical modelling of a structural performance of a pressure vessel submitted to the creep phenomenon

    International Nuclear Information System (INIS)

    Taroco, E.; Feijoo, R.A.; Monteiro, Edson; Freire, J.L.F.; Bevilacqua, L.; Miranda, P.E.V. de; Silveira, T.L. da

    1982-01-01

    A pressure vessel is analized using different mechanical models for the creep phenomenon. The numerical results obtained through these models enable us to recommend on the way verifications of creep damage accumulation is structures should be made. (Author) [pt

  1. Application of stability enhancing minimum interfacial pressure force model for MARS

    International Nuclear Information System (INIS)

    Lee, Won Jae; Lim, Ho Gon; Kim, Kyung Doo; Ha, Kwi Seok

    2001-04-01

    For thermal-hydraulic modeling of two-phase flow systems, two-fluid model, which assumes that the pressures of liquid, vapor and interface are identical, a so-called single-pressure model, is commonly used in codes for nuclear reactor safety analyses. Typical two-phase model with single pressure assumption possesses complex characteristics that result in system being ill-posed. As a result, typical single pressure model may cause the unbounded growth of instabilities. In order to overcome the ill-posedness of single-pressure two-fluid model, a hyperbolic equation system has been developed by introducing an interfacial pressure force into single pressure two-fluid model. The potential impact of the present model on the stability of finite difference solution has been examined by Von-Neumann stability analysis. The obvious improvement in numerical stability has been found when a semi-implicit time advancement scheme is used. Numerical experiments using the pilot code were also performed for the conceptual problems. It was found that the result was consistent with numerical stability test. The new model was implemented to MARS using Two-step approach. Through the conceptual stability test problems and benchmark problems, the applicability of the new model was verified

  2. The influence of profiled ceilings on sports hall acoustics : Ground effect predictions and scale model measurements

    NARCIS (Netherlands)

    Wattez, Y.C.M.; Tenpierik, M.J.; Nijs, L.

    2018-01-01

    Over the last few years, reverberation times and sound pressure levels have been measured in many sports halls. Most of these halls, for instance those made from stony materials, perform as predicted. However, sports halls constructed with profiled perforated steel roof panels have an unexpected

  3. Modified pressure loss model for T-junctions of engine exhaust manifold

    Science.gov (United States)

    Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao

    2014-11-01

    The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.

  4. Thermodynamic modelling and optimization of a dual pressure ...

    Indian Academy of Sciences (India)

    In this work, attention was focused on a dual pressure reheat (DPRH) HRSG to maximize the heat recovery and hence performance of CC. Deaerator, an essential open feed water ... Author Affiliations. T Srinivas1. School of Mechanical and Building Sciences, Vellore Institute of Technology University, Vellore 632 014 ...

  5. Modelling surface pressure fluctuation on medium-rise buildings

    NARCIS (Netherlands)

    Snæbjörnsson, J.T.; Geurts, C.P.W.

    2006-01-01

    This paper describes the results of two experiments into the fluctuating characteristics of windinduced pressures on buildings in a built-up environment. The experiments have been carried out independently in Iceland and The Netherlands and can be considered to represent two separate cases of

  6. Non-LTE profiles of the Al I autoionization lines. [for solar model atmospheres

    Science.gov (United States)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    A non-LTE formulation is given for the transfer of radiation in the autoionizing lines of neutral aluminum at 1932 and 1936 A through both the Bilderberg and Harvard-Smithsonian model atmospheres. Numerical solutions for the common source function of these lines and their theoretical line profiles are calculated and compared with the corresponding LTE profiles. The results show that the non-LTE profiles provide a better match with the observations. They also indicate that the continuous opacity of the standard solar models should be increased in this wavelength region if the center-limb variations of observed and theoretical profiles of these lines are to be in reasonable agreement.

  7. Physical model of lean suppression pressure oscillation phenomena: steam condensation in the light water reactor pressure suppression system (PSS)

    International Nuclear Information System (INIS)

    McCauley, E.W.; Holman, G.S.; Aust, E.; Schwan, H.; Vollbrandt, J.

    1980-01-01

    Using the results of large scale multivent tests conducted by GKSS, a physical model of chugging is developed. The unique combination of accurate digital data and cinematic data has provided the derivation of a detailed, quantified correlation between the dynamic physical variables and the associated two-phase thermo-hydraulic phenomena occurring during lean suppression (chugging) phases of the loss-of-coolant accident in a boiling water reactor pressure suppression system

  8. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...... that result from the models clarify why temperature profiles in many tokamaks are often characterized as exhibiting a high degree of 'profile consistency'. Global transport scaling laws are also derived from the two models. The non-linear model with χ ∝ dT/dr produces a non-linear energy confinement time (L......-mode) scaling with input power, . The constant heat pinch or excess temperature gradient model leads to the offset linear law for the total stored energy W with Pin, W = τinc Pin + W(0), which describes JET auxiliary heating data quite well. It also provides definitions for the incremental energy confinement...

  9. The analytical calibration model of temperature effects on a silicon piezoresistive pressure sensor

    Directory of Open Access Journals (Sweden)

    Meng Nie

    2017-03-01

    Full Text Available Presently, piezoresistive pressure sensors are highly demanded for using in various microelectronic devices. The electrical behavior of these pressure sensor is mainly dependent on the temperature gradient. In this paper, various factors,which includes effect of temperature, doping concentration on the pressure sensitive resistance, package stress, and temperature on the Young’s modulus etc., are responsible for the temperature drift of the pressure sensor are analyzed. Based on the above analysis, an analytical calibration model of the output voltage of the sensor is proposed and the experimental data is validated through a suitable model.

  10. Net-erosion profile model and simulation experiments

    International Nuclear Information System (INIS)

    Sagara, Akio

    2001-01-01

    Estimation of net-erosion profile is requisite for evaluating the lifetime of divertor plates under high heat and particle fluxes of fusion plasmas. As a reference in benchmark tests of numerical calculation codes, a self-consistent analytical solution is presented for a simplified divertor condition, wherein the magnetic field line is normal to the target plate and the ionization mean free path of sputtered particles is assumed constant. The primary flux profile of hydrogen and impurities are externally given as well as the return ratio of sputtered atoms to the target. In the direction along the divertor trace, all conditions are uniform. The analytical solution is compared with net-erosion experiments carried out using the Compact Helical System (CHS). The deposition profiles of Ti and O impurities are in very good agreement with the analytical predictions. Recent preliminary results observed on divertor plates in the Large Helical Device (LHD) are briefly presented. (author)

  11. A Mathematical Model for Non-monotonic Deposition Profiles in Deep Bed Filtration Systems

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2011-01-01

    . The numerical modeling results highly agree with the experimental observations, which proves the ability of the model to catch a non-monotonic deposition profile in practice. An additional equation describing a mobile population behaving differently from the injected population seems to be a sufficient...... by advection and diffusion/dispersion. The proposed model is able to produce a nonmonotonic deposition profile. A set of methods for estimating the modeling parameters is provided in the case of minimal particle release. The estimation can be easily performed with available experimental information...... condition for producing non-monotonic deposition profiles. The described physics by the additional equation may be different in different experimental settings....

  12. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    Science.gov (United States)

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  13. A comparative study of the effect of green tea and sour tea on blood pressure and lipid profile in healthy adult men

    Science.gov (United States)

    Kafeshani, Marzieh; Entezari, Mohammad Hasan; Karimian, Jahangir; Pourmasoumi, Makan; Maracy, Mohammad Reza; Amini, Mohammad Reza; Hadi, Amir

    2017-01-01

    BACKGROUND Cardiovascular diseases (CVD) are a set of metabolic disorders affecting heart and blood vessels. Green tea and sour tea (Hibiscus sabdariffa L.) have attracted significant attention recently due to their high popularity, nutrient profile and therapeutic effects. The aim of the present study was to compare the effects of green tea and sour tea supplementation on blood pressure and lipid profile in healthy adult men. METHODS This randomized, double-blind, placebo-controlled trial included 54 healthy adult men. The participants were randomly assigned to two intervention groups receiving 450 mg green tea or sour tea and one placebo group which consumed 450 mg placebo (maltodextrin) for 6 weeks. Blood pressure, lipid profile, dietary intake and physical activity were measured pre- and post-intervention and compared. RESULTS After 6 weeks of intervention, sour tea supplementation led to a significant decrease in systolic blood pressure (SBP) compared with the placebo group. However, we faild to find any significant difference in SBP between green tea and control groups. Also, no significant changes were observed in diastolic blood pressure (DBP) and lipid profile between the three groups. In comparison with baseline, there was a significant increase in the mean level of serum high-density lipoprotein cholesterol (HDL-C) in green tea and sour tea groups. Also, the interventions resulted in significant decrease in the mean levels of serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and DBP in the sour tea group compared with the pre-intervention value. CONCLUSION On the basis of our findings, sour tea supplementation led to decreased SBP in healthy men compared with the placebo, but there was no significant difference between their effects on DBP and lipid profile. PMID:29147120

  14. Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models with Factor Structures

    Science.gov (United States)

    Jeon, Minjeong; Rabe-Hesketh, Sophia

    2012-01-01

    In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be…

  15. Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.

    Science.gov (United States)

    Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu

    2017-07-05

    We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers

  16. A random-walk model for pore pressure accumulation in marine soils

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Cheng, Niang-Sheng

    1999-01-01

    A numerical random-walk model has been developed for the pore-water pressure. The model is based on the analogy between the variation of the pore pressure and the diffusion process of any passive quantity such as concentration. The pore pressure in the former process is analogous...... to the concentration in the latter. In the simulation, particles are released in the soil, and followed as they travel through the statistical field variables. The model has been validated (1) against the Terzaghi consolidation process, and (2) against the process where the pore pressure builds up under progressive...... waves. The model will apparently enable the researcher to handle complex geometries (such as a pipeline buried in a soil) relatively easily. Early results with regard to the latter example, namely the buildup of pore pressure around a buried pipeline subject to a progressive wave, are encouraging....

  17. Semianalytical Solution of the Nonlinear Dual-Porosity Flow Model with the Quadratic Pressure Gradient Term

    Directory of Open Access Journals (Sweden)

    Jiang-Tao Li

    2015-01-01

    Full Text Available The nonlinear dual-porosity flow model, specifically considering the quadratic pressure gradient term, wellbore storage coefficient, well skin factor, and interporosity flow of matrix to natural fractures, was established for well production in a naturally fractured formation and then solved using a semianalytical method, including Laplace transform and a transformation of the pressure function. Analytical solution of the model in Laplace space was converted to numerical solution in real space using Stehfest numerical inversion. Nonlinear flow process for well production in a naturally fractured formation with different external boundaries was simulated and analyzed using standard pressure curves. Influence of the quadratic pressure gradient coefficient on pressure curves was studied qualitatively and quantitatively in conditions of a group of fixed model parameters. The research results show that the semianalytical modelling method is applicable in simulating the nonlinear dual-porosity flow behavior.

  18. COMPARISON OF NEBIVOLOL AND ATENOLOL ON BLOOD PRESSURE, BLOOD SUGAR AND LIPID PROFILE IN PATIENTS WITH ESSENTIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    Anand Dev

    2016-08-01

    Full Text Available BACKGROUND Beta-blocker is considered to be a very effective antihypertensive drug to control hypertension. But National Institute for Health and Clinical Excellence (NICE recommended that it should no longer be used as first-line drug as the treatment of uncomplicated hypertension. This recommendation was based on the various studies showing increased risk of new onset Diabetes Mellitus and derangement of lipid metabolism with the use of beta-blocker. These studies were mainly based on Atenolol with or without diuretics. We are in need of a beta-blocker that has effective antihypertensive properties without altering the metabolic profile like blood sugar level and lipid metabolism. Nebivolol, a b1-selective blocker, has got more or less the similar properties. It increases insulin sensitivity in patients with insulin resistance due to its vasodilator properties. Also, antioxidant properties of nebivolol, and increase in nitric oxide properties by reducing its oxidative inactivation may be responsible for beneficial lipid and carbohydrate metabolic profile. MATERIALS AND METHOD A prospective study was conducted between December 2011 to August 2013 on 60 patients at medicine outpatient department (OPD of Katihar Medical College, Katihar, after getting approval from the Institutional Ethics Committee. The patients meeting the inclusion criteria were explained in detail about the nature of the trial, its purpose, procedures, and followup. They were provided with detailed trial information sheet. Written informed consent was obtained from those who volunteered to participate in the trial. RESULTS In our study, the mean difference of systolic blood pressure from baseline and at 24 weeks was 40.20±1.74 in the Atenolol group and 43.80±1.405 in the Nebivolol group. Similarly, in Atenolol group, diastolic blood pressure is decreased by 17±1.3 and 19.4±1.223 in Nebivolol group. In our study, the mean difference of blood sugar level from baseline and

  19. Leak Detection of High Pressure Feedwater Heater Using Empirical Models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Song Kyu; Kim, Eun Kee [Korea Power Engineering Company, Daejeon (Korea, Republic of); Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); An, Sang Ha [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-10-15

    Even small leak from tube side or pass partition within the high pressure feedwater heater (HPFWH) causes a significant deficiency in its performance. Plant operation under the HPFWH leak condition for long time will result in cost increase. Tube side leak within HPFWH can produce the high velocity jet of water and it can cause neighboring tube failures. However, most of plants are being operated without any information for internal leaks of HPFWH, even though it is prone to be damaged under high temperature and high pressure operating conditions. Leaks from tubes and/or pass partition of HPFWH occurred in many nuclear power plants, for example, Mihama PS-2, Takahama PS-2 and Point Beach Nuclear Plant Unit 1. If the internal leaks of HPFWH are monitored, the cost can be reduced by inexpensive repairs relative to loss in performance and moreover plant shutdown as well as further tube damages can be prevented.

  20. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms.

    Science.gov (United States)

    Buzrul, Sencer

    2017-09-07

    Modeling of microbial inactivation by high hydrostatic pressure (HHP) requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log 10 reduction and ≥5 data points including the atmospheric pressure value ( P = 0.1 MPa), and with holding time ≤10 min) for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log 10 ( P ₅) inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P ₅ values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R² adj ) and highest mean square error (MSE) values), while the Fermi equation had the best fit (the highest R² adj and lowest MSE values). Parameters of the models and also P ₅ values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P ₅ values at given conditions. The procedure given in this study can also be extended

  1. Treating asphericity in fuel particle pressure vessel modeling

    Science.gov (United States)

    Miller, Gregory K.; Wadsworth, Derek C.

    1994-07-01

    The prototypical nuclear fuel of the New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) consists of spherical TRISO-coated particles suspended in graphite cylinders. The coating layers surrounding the fuel kernels in these particles consist of pyrolytic carbon layers and a silicon carbide layer. These coating layers act as a pressure vessel which retains fission product gases. In the operating conditions of the NP-MHTGR, a small percentage of these particles (pressure vessels) are expected to fail due to the pressure loading. The fuel particles of the NP-MHTGR deviate to some degree from a true spherical shape, which may have some effect on the failure percentages. A method is presented that treats the asphericity of the particles in predicting failure probabilities for particle samples. It utilizes a combination of finite element analysis and Monte Carlo sampling and is based on the Weibull statistical theory. The method is used here to assess the effects of asphericity in particles of two common geometric shapes, i.e. faceted particles and ellipsoidal particles. The method presented could be used to treat particle anomalies other than asphericity.

  2. Pressure Transient Model of Water-Hydraulic Pipelines with Cavitation

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    2018-03-01

    Full Text Available Transient pressure investigation of water-hydraulic pipelines is a challenge in the fluid transmission field, since the flow continuity equation and momentum equation are partial differential, and the vaporous cavitation has high dynamics; the frictional force caused by fluid viscosity is especially uncertain. In this study, due to the different transient pressure dynamics in upstream and downstream pipelines, the finite difference method (FDM is adopted to handle pressure transients with and without cavitation, as well as steady friction and frequency-dependent unsteady friction. Different from the traditional method of characteristics (MOC, the FDM is advantageous in terms of the simple and convenient computation. Furthermore, the mechanism of cavitation growth and collapse are captured both upstream and downstream of the water-hydraulic pipeline, i.e., the cavitation start time, the end time, the duration, the maximum volume, and the corresponding time points. By referring to the experimental results of two previous works, the comparative simulation results of two computation methods are verified in experimental water-hydraulic pipelines, which indicates that the finite difference method shows better data consistency than the MOC.

  3. USING THE 3D MODEL IN THE MANUFACTURING AND CONTROL PROCESS OF THE CYCLOID PROFILE WHEELS

    OpenAIRE

    DĂSCĂLESCU Anamaria

    2006-01-01

    In the vibroacoustic performances of the cycloid gear reducer, major influences have the technological parameters: the shape errors of the wells’ tooth and the roughness of the active cycloid profile. The classic manufacturing process of the cycloid profile involves important technological problems. Therefore, in this paper we propose a computational method of manufacturing the cycloid real profile of the cycloid wheels, also a control process, based on the theoretical 3D model ob...

  4. High Pressure phase transition in some alkali halides using interatomic potential model

    International Nuclear Information System (INIS)

    Yazar, H.R.

    2002-01-01

    We have predicted the phase transition pressure in some alkali halides using an interatomic potential approach based on rigid ion model.The phase transition pressures(28.69 and 2.4 GPa) obtained by us for two alkali halides (NaCl and KCl ) are in closer agreement with their corresponding experimental data(29.0 and 2.0 GPa).This potential is promising with respect to prediction of the phase transition pressure of other alkali halides as well

  5. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  6. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling.

    Science.gov (United States)

    De Swaef, Tom; Hanssens, Jochen; Cornelis, Annelies; Steppe, Kathy

    2013-02-01

    Upward water movement in plants via the xylem is generally attributed to the cohesion-tension theory, as a response to transpiration. Under certain environmental conditions, root pressure can also contribute to upward xylem water flow. Although the occurrence of root pressure is widely recognized, ambiguity exists about the exact mechanism behind root pressure, the main influencing factors and the consequences of root pressure. In horticultural crops, such as tomato (Solanum lycopersicum), root pressure is thought to cause cells to burst, and to have an important impact on the marketable yield. Despite the challenges of root pressure research, progress in this area is limited, probably because of difficulties with direct measurement of root pressure, prompting the need for indirect and non-destructive measurement techniques. A new approach to allow non-destructive and non-invasive estimation of root pressure is presented, using continuous measurements of sap flow and stem diameter variation in tomato combined with a mechanistic flow and storage model, based on cohesion-tension principles. Transpiration-driven sap flow rates are typically inversely related to stem diameter changes; however, this inverse relationship was no longer valid under conditions of low transpiration. This decoupling between sap flow rates and stem diameter variations was mathematically related to root pressure. Root pressure can be estimated in a non-destructive, repeatable manner, using only external plant sensors and a mechanistic model.

  7. A Simple Model for Complex Fabrication of MEMS based Pressure Sensor: A Challenging Approach

    Directory of Open Access Journals (Sweden)

    Himani SHARMA

    2010-08-01

    Full Text Available In this paper we have presented the simple model for complex fabrication of MEMS based absolute micro pressure sensor. This kind of modeling is extremely useful for determining its complexity in fabrication steps and provides complete information about process sequence to be followed during manufacturing. Therefore, the need for test iteration decreases and cost, time can be reduced significantly. By using DevEdit tool (part of SILVACO tool, a behavioral model of pressure sensor have been presented and implemented.

  8. Strain rate and fuel composition dependence of chemiluminescent species profiles in non-premixed counterflow flames: comparison with model results

    Science.gov (United States)

    Prabasena, B.; Röder, M.; Kathrotia, T.; Riedel, U.; Dreier, T.; Schulz, C.

    2012-06-01

    A detailed comparison has been conducted between chemiluminescence (CL) species profiles of OH∗, CH∗, and C2 ∗, obtained experimentally and from detailed flame kinetics modeling, respectively, of atmospheric pressure non-premixed flames formed in the forward stagnation region of a fuel flow ejected from a porous cylinder and an air counterflow. Both pure methane and mixtures of methane with hydrogen (between 10 and 30 % by volume) were used as fuels. By varying the air-flow velocities methane flames were operated at strain rates between 100 and 350 s-1, while for methane/hydrogen flames the strain rate was fixed at 200 s-1. Spatial profiles perpendicular to the flame front were extracted from spectrograms recorded with a spectrometer/CCD camera system and evaluating each spectral band individually. Flame kinetics modeling was accomplished with an in-house chemical mechanism including C1-C4 chemistry, as well as elementary steps for the formation, removal, and electronic quenching of all measured active species. In the CH4/air flames, experiments and model results agree with respect to trends in profile peak intensity and position. For the CH4/H2/air flames, with increasing H2 content in the fuel the experimental CL peak intensities decrease slightly and their peak positions shift towards the fuel side, while for the model the drop in mole fraction is much stronger and the peak positions move closer to the fuel side. For both fuel compositions the modeled profiles peak closer to the fuel side than in the experiments. The discrepancies can only partly be attributed to the limited attainable spatial resolution but may also necessitate revised reaction mechanisms for predicting CL species in this type of flame.

  9. Dependence of ECH deposition profile on the modeling of incident wave energy

    International Nuclear Information System (INIS)

    Kritz, A.H.; Hsuan, H.; Matsuda, K.

    1986-06-01

    The ray tracing code, TORAY, is used to investigate the importance of modeling assumptions utilized in describing Electron Cyclotron Heating (ECH). In particular, we examine the dependence of the ECH deposition profile on the antenna pattern. We demonstrate that different assumptions for representing the incident wave energy by a finite number of rays lead to significantly different results for the energy deposition profile

  10. Market segment derivation and profiling via a finite mixture model framework

    NARCIS (Netherlands)

    Wedel, M; Desarbo, WS

    The Marketing literature has shown how difficult it is to profile market segments derived with finite mixture models. especially using traditional descriptor variables (e.g., demographics). Such profiling is critical for the proper implementation of segmentation strategy. we propose a new finite

  11. A UML Profile Oriented to the Requirements Modeling in Intelligent Tutoring Systems Projects

    OpenAIRE

    Guedes , Gilleanes Thorwald Araujo; Vicari , Rosa Maria

    2010-01-01

    International audience; This paper describes a proposal for the creation of a UML profile oriented to the intelligent tutoring systems project. In this paper we shall describe the proposed profile as well as its application into the modeling of the AMEA intelligent tutoring system.

  12. Charnock's Roughness Length Model and Non-dimensional Wind Profiles Over the Sea

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik

    2008-01-01

    An analysis tool for the study of wind speed profiles over the water has been developed. The profiles are analysed using a modified dimensionless wind speed and dimensionless height, assuming that the sea surface roughness can be predicted by Charnock's roughness length model. In this form, the r...

  13. Modeling the high pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products

    DEFF Research Database (Denmark)

    Hereu, A.; Dalgaard, Paw; Garriga, M.

    2012-01-01

    provided the best fit to the HP-inactivation kinetics. The relationships between the primary kinetic parameters (log kmax and log Nres) and pressure treatments were described by a polynomial secondary model. To estimate HP-inactivation of L. monocytogenes in log (N/N0) over time, a one-step global fitting......High pressure (HP) inactivation curves of Listeria monocytogenes CTC1034 (ca. 107CFU/g) on sliced RTE cooked meat products (ham and mortadella) were obtained at pressures from 300 to 800MPa. A clear tail shape was observed at pressures above 450MPa and the log-linear with tail primary model...... procedure was applied. The secondary model was integrated into the primary model and the combined equation was fitted to the entire data-set to readjust parameter values. Validation of the developed models both under dynamic conditions and using external independent data supported their suitability...

  14. Stress singularities in a model of a wood disk under sinusoidal pressure

    Science.gov (United States)

    Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson

    2005-01-01

    A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...

  15. Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors

    NARCIS (Netherlands)

    Zarikos, I.|info:eu-repo/dai/nl/413577473; Hassanizadeh, S.M.|info:eu-repo/dai/nl/074974424; van Oosterhout, L.M.|info:eu-repo/dai/nl/413490475; van Oordt, Wim

    The measurement of fluid pressure inside pores is a major challenge in experimental studies of two-phase flow in porous media. In this paper, we describe the manufacturing procedure of a micro-model with integrated fibre optic pressure sensors. They have a circular measurement window with a diameter

  16. Comparison of Iterative Methods for Computing the Pressure Field in a Dynamic Network Model

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan; Banerjee, Srilekha

    1999-01-01

    In dynamic network models, the pressure map (the pressure in the pores) must be evaluated at each time step. This calculation involves the solution of a large number of nonlinear algebraic systems of equations and accounts for more than 80 of the total CPU-time. Each nonlinear system requires...

  17. Testing a Model of Resistance to Peer Pressure among Mexican-Origin Adolescents

    Science.gov (United States)

    Bamaca, Mayra Y.; Umana-Taylor, Adriana J.

    2006-01-01

    This study examined the factors associated with resistance to peer pressure toward antisocial behaviors among a sample of Mexican-origin adolescents (n=564) living in a large Southwestern city in the U.S. A model examining the influence of generational status, emotional autonomy from parents, and self-esteem on resistance to peer pressure was…

  18. Deformation, Stress, and Pore Fluid Pressure in an Evolving Supra-salt Basin: A Finite-element Modeling

    Science.gov (United States)

    Luo, G.; Flemings, P. B.; Hudec, M. R.; Nikolinakou, M. A.

    2015-12-01

    Many driving mechanisms have been proposed to explain rise of a salt structure and formation of a minibasin. However, these studies mainly focus on qualitative discussion and analog modeling on these mechanisms. Quantitative studies such as numerical modeling are much needed. In this study, we apply a commercial finite-element software package, ELFEN, to develop two-dimensional plane-strain large-deformation coupled poromechanical finite-element models. We simulate initiation and rise of a salt wall from a flat salt body driven by differential topographic loading during sedimentation processes. We run drained and transient analyses, and investigate deformation, stress and pore fluid overpressure in the evolving supra-salt basin. Our model results show that 1) horizontal stress increases even higher than vertical stress at the flank of the salt wall and in the minibasin due to horizontal pushing out of the rising salt wall; 2) orientations of principal stresses in the minibasin rotate relative to far-field stress field; 3) overpressure varies much through different vertical profiles across the minibasin: relative to far-field overpressure, the overpressure near the salt wall and within the minibasin is largely perturbed by the rising salt wall. Through comparing our finite-element model overpressure with that predicted by traditional pore pressure prediction methods such as normal compaction trend approach and mean stress model, we find that the perturbations of pore pressure near the salt wall and within the minibasin, can not be resolved by these traditional prediction methods. Hence we propose to develop and apply a general Modified Cam Clay soil model to predict pore pressure. These results in this study help geoscientists understand near-salt deformation, stress, and pore fluid overpressure, provide insights into near-salt overpressure prediction, and provide implications for near-salt wellbore drilling programs.

  19. Bifactor Approach to Modeling Multidimensionality of Physical Self-Perception Profile

    Science.gov (United States)

    Chung, ChihMing; Liao, Xiaolan; Song, Hairong; Lee, Taehun

    2016-01-01

    The multi-dimensionality of Physical Self-Perception Profile (PSPP) has been acknowledged by the use of correlated-factor model and second-order model. In this study, the authors critically endorse the bifactor model, as a substitute to address the multi-dimensionality of PSPP. To cross-validate the models, analyses are conducted first in…

  20. Computational Modeling of Meteor-Generated Ground Pressure Signatures

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.; Brown, Peter G.

    2017-01-01

    We present a thorough validation of a computational approach to predict infrasonic signatures of centimeter-sized meteoroids. We assume that the energy deposition along the meteor trail is dominated by atmospheric drag and simulate the steady, inviscid flow of air in thermochemical equilibrium to compute the meteoroid's near-body pressure signature. This signature is then propagated through a stratified and windy atmosphere to the ground using a methodology adapted from aircraft sonic-boom analysis. An assessment of the numerical accuracy of the near field and the far field solver is presented. The results show that when the source of the signature is the cylindrical Mach-cone, the simulations closely match the observations. The prediction of the shock rise-time, the zero-peak amplitude of the waveform, and the duration of the positive pressure phase are consistently within 10% of the measurements. Uncertainty in the shape of the meteoroid results in a poorer prediction of the trailing part of the waveform. Overall, our results independently verify energy deposition estimates deduced from optical observations.

  1. Artificial arterial blood pressure artifact models and an evaluation of a robust blood pressure and heart rate estimator

    Directory of Open Access Journals (Sweden)

    Mark Roger G

    2009-07-01

    Full Text Available Abstract Background Within the intensive care unit (ICU, arterial blood pressure (ABP is typically recorded at different (and sometimes uneven sampling frequencies, and from different sensors, and is often corrupted by different artifacts and noise which are often non-Gaussian, nonlinear and nonstationary. Extracting robust parameters from such signals, and providing confidences in the estimates is therefore difficult and requires an adaptive filtering approach which accounts for artifact types. Methods Using a large ICU database, and over 6000 hours of simultaneously acquired electrocardiogram (ECG and ABP waveforms sampled at 125 Hz from a 437 patient subset, we documented six general types of ABP artifact. We describe a new ABP signal quality index (SQI, based upon the combination of two previously reported signal quality measures weighted together. One index measures morphological normality, and the other degradation due to noise. After extracting a 6084-hour subset of clean data using our SQI, we evaluated a new robust tracking algorithm for estimating blood pressure and heart rate (HR based upon a Kalman Filter (KF with an update sequence modified by the KF innovation sequence and the value of the SQI. In order to do this, we have created six novel models of different categories of artifacts that we have identified in our ABP waveform data. These artifact models were then injected into clean ABP waveforms in a controlled manner. Clinical blood pressure (systolic, mean and diastolic estimates were then made from the ABP waveforms for both clean and corrupted data. The mean absolute error for systolic, mean and diastolic blood pressure was then calculated for different levels of artifact pollution to provide estimates of expected errors given a single value of the SQI. Results Our artifact models demonstrate that artifact types have differing effects on systolic, diastolic and mean ABP estimates. We show that, for most artifact types

  2. A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method

    Science.gov (United States)

    Aboelkassem, Yasser; Virag, Zdravko

    2016-11-01

    For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.

  3. Two-phase pressurized thermal shock investigations using a 3D two-fluid modeling of stratified flow with condensation

    International Nuclear Information System (INIS)

    Yao, W.; Coste, P.; Bestion, D.; Boucker, M.

    2003-01-01

    In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow

  4. Development of a model for Retran-3D for pressure losses at T-junctions

    International Nuclear Information System (INIS)

    Barten, W.; Coddington, P.; Sullivan, J.

    2001-01-01

    For Nuclear Power Plants, both for PWRs and BWRs, there are many instances in normal operation, accidents and transients when it is important to know the pressure drop and quality of the flow, at a flow junction. In this paper two-phase pressure drops in a horizontal T-junction with equal areas are assessed in the case of separating flow using the RETRAN-3D code. Therefore applying the RETRAN-3D code first recoverable pressure drops are calculated for different flow rate ratios, inlet qualities and system pressures for steam-water mixtures. These pressure drops are then compared to analytical expressions by Soliman and Ebadian (1994) developed from the analysis of a wide range of two-phase experimental pressure drop data for equal-sided junctions with horizontal inlet and side branches both for steam-water and air-water flow. With these comparisons the experimental pressure loss is separated into a recoverable part (i.e. that calculated by RETRAN-3D) and an irrecoverable. A model for the irrecoverable pressure losses is derived for the RETRAN-3D code by comparing the RETRAN-3D total momentum equation with the expressions generally used for pressure changes at T-junctions. The results of this model are compared to the experimental data through the expressions of Soliman and Ebadian and are shown to produce very good comparisons particularly for the range of conditions consistent with the experimental data. (author)

  5. Profile construction in experimental choice designs for mixed logit models

    NARCIS (Netherlands)

    Sandor, Z; Wedel, M

    2002-01-01

    A computationally attractive model for the analysis of conjoint choice experiments is the mixed multinomial logit model, a multinomial logit model in which it is assumed that the coefficients follow a (normal) distribution across subjects. This model offers the advantage over the standard

  6. A practical model for pressure probe system response estimation (with review of existing models)

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  7. Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels

    Science.gov (United States)

    Sikora, Małgorzata; Bohdal, Tadeusz

    2017-12-01

    Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.

  8. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    Science.gov (United States)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2017-04-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  9. Stable and unstable crack growth in pressure vessel models

    International Nuclear Information System (INIS)

    Smith, G.C.; Canonico, D.A.; Stelzman, W.J.

    1978-01-01

    Three identical steel pressure vessels with 254-mm (10-in.) dia, 38-mm (1.5-in.) wall thicknesses and long, deep machined and sharpened axially oriented flaws were tested at three different temperatures. The vessels were assembled by electron-beam welding cylindrical sections with substantially different toughnesses due to different heat treatments. Crack extension initiated in relatively brittle sections, and the cracks extended both stably and unstably, depending on test temperature, toward the tougher sections where crack arrest did and did not occur. Charpy impact specimens and both slow-bend and dynamic precracked Charpy specimens were used for material characterization. The behavior of the vessels is described and related to the Charpy data

  10. Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models

    Science.gov (United States)

    Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.

    2011-01-01

    Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.

  11. FINITE ELEMENT MODELS FOR COMPUTING SEISMIC INDUCED SOIL PRESSURES ON DEEPLY EMBEDDED NUCLEAR POWER PLANT STRUCTURES.

    Energy Technology Data Exchange (ETDEWEB)

    XU, J.; COSTANTINO, C.; HOFMAYER, C.

    2006-06-26

    PAPER DISCUSSES COMPUTATIONS OF SEISMIC INDUCED SOIL PRESSURES USING FINITE ELEMENT MODELS FOR DEEPLY EMBEDDED AND OR BURIED STIFF STRUCTURES SUCH AS THOSE APPEARING IN THE CONCEPTUAL DESIGNS OF STRUCTURES FOR ADVANCED REACTORS.

  12. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis

  13. Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a modeled radar attenuation rate profile, showing the predicted contributions from pure ice and impurities to radar attenuation at the Vostok...

  14. An Energy Budget Model to Calculate the Low Atmosphere Profiles of Effective Sound Speed at Night

    National Research Council Canada - National Science Library

    Tunick, Arnold

    2003-01-01

    ...) for generating low atmosphere profiles of effective sound speed at night. The alternate model is based on the solution of a quartic equation for surface temperature, which assumes a balance between the net long wave...

  15. Modelling and measurements of bunch profiles at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, S. [Crete U.; Antoniou, F. [Liverpool U.; Argyropoulos, T. [CERN; Fitterer, M. [Fermilab; Hostettler, M. [CERN; Papaphilippou, Y. [CERN

    2017-07-20

    The bunch profiles in the LHC are often observed to be non-Gaussian, both at Flat Bottom (FB) and Flat Top (FT) energies. Especially at FT, an evolution of the tail population in time is observed. In this respect, the Monte-Carlo Software for IBS and Radiation effects (SIRE) is used to track different types of beam distributions. The impact of the distribution shape on the evolution of bunch characteristics is studied. The results are compared with observations from the LHC Run 2 data.

  16. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    Science.gov (United States)

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Evaluation of parameters of color profile models of LCD and LED screens

    Science.gov (United States)

    Zharinov, I. O.; Zharinov, O. O.

    2017-12-01

    The purpose of the research relates to the problem of parametric identification of the color profile model of LCD (liquid crystal display) and LED (light emitting diode) screens. The color profile model of a screen is based on the Grassmann’s Law of additive color mixture. Mathematically the problem is to evaluate unknown parameters (numerical coefficients) of the matrix transformation between different color spaces. Several methods of evaluation of these screen profile coefficients were developed. These methods are based either on processing of some colorimetric measurements or on processing of technical documentation data.

  18. Evaluation of Progressive Failure Analysis and Modeling of Impact Damage in Composite Pressure Vessels

    Science.gov (United States)

    Sanchez, Christopher M.

    2011-01-01

    NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.

  19. Model Study of the Pressure Build-Up during Subcutaneous Injection

    DEFF Research Database (Denmark)

    Thomsen, Maria; Hernandez Garcia, Anier; Mathiesen, Joachim

    2014-01-01

    of a porous medium. For equivalent injection forces we measure the change in the infusion rate between injections in air at atmospheric pressure and in tissue. From a best fit with our model, we then determine the flow permeability as well as the bulk modulus of the tissue, estimated to be of the order 10......In this study we estimate the subcutaneous tissue counter pressure during drug infusion from a series of injections of insulin in type 2 diabetic patients using a non-invasive method. We construct a model for the pressure evolution in subcutaneous tissue based on mass continuity and the flow laws...

  20. Box-wing model approach for solar radiation pressure modelling in a multi-GNSS scenario

    Science.gov (United States)

    Tobias, Guillermo; Jesús García, Adrián

    2016-04-01

    The solar radiation pressure force is the largest orbital perturbation after the gravitational effects and the major error source affecting GNSS satellites. A wide range of approaches have been developed over the years for the modelling of this non gravitational effect as part of the orbit determination process. These approaches are commonly divided into empirical, semi-analytical and analytical, where their main difference relies on the amount of knowledge of a-priori physical information about the properties of the satellites (materials and geometry) and their attitude. It has been shown in the past that the pre-launch analytical models fail to achieve the desired accuracy mainly due to difficulties in the extrapolation of the in-orbit optical and thermic properties, the perturbations in the nominal attitude law and the aging of the satellite's surfaces, whereas empirical models' accuracies strongly depend on the amount of tracking data used for deriving the models, and whose performances are reduced as the area to mass ratio of the GNSS satellites increases, as it happens for the upcoming constellations such as BeiDou and Galileo. This paper proposes to use basic box-wing model for Galileo complemented with empirical parameters, based on the limited available information about the Galileo satellite's geometry. The satellite is modelled as a box, representing the satellite bus, and a wing representing the solar panel. The performance of the model will be assessed for GPS, GLONASS and Galileo constellations. The results of the proposed approach have been analyzed over a one year period. In order to assess the results two different SRP models have been used. Firstly, the proposed box-wing model and secondly, the new CODE empirical model, ECOM2. The orbit performances of both models are assessed using Satellite Laser Ranging (SLR) measurements, together with the evaluation of the orbit prediction accuracy. This comparison shows the advantages and disadvantages of

  1. Modelling of NOx emissions from pressurized fluidized bed combustion - A parameter study

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik

    1997-01-01

    Simulations with a mathematical model of a pressurized bubbling fluidized-bed combustor (PFBC) combined with a kinetic model for NO formation and reduction are reported. The kinetic model for NO formation and reduction considers NO and NH3 as the fixed nitrogen species, and includes homogeneous r...

  2. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    OpenAIRE

    Simão, Mariana; Mora-Rodriguez, Jesus; Ramos, Helena

    2015-01-01

    The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI) are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC) using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation...

  3. Personalized modeling for real-time pressure ulcer prevention in sitting posture.

    Science.gov (United States)

    Luboz, Vincent; Bailet, Mathieu; Boichon Grivot, Christelle; Rochette, Michel; Diot, Bruno; Bucki, Marek; Payan, Yohan

    2018-02-01

    Ischial pressure ulcer is an important risk for every paraplegic person and a major public health issue. Pressure ulcers appear following excessive compression of buttock's soft tissues by bony structures, and particularly in ischial and sacral bones. Current prevention techniques are mainly based on daily skin inspection to spot red patches or injuries. Nevertheless, most pressure ulcers occur internally and are difficult to detect early. Estimating internal strains within soft tissues could help to evaluate the risk of pressure ulcer. A subject-specific biomechanical model could be used to assess internal strains from measured skin surface pressures. However, a realistic 3D non-linear Finite Element buttock model, with different layers of tissue materials for skin, fat and muscles, requires somewhere between minutes and hours to compute, therefore forbidding its use in a real-time daily prevention context. In this article, we propose to optimize these computations by using a reduced order modeling technique (ROM) based on proper orthogonal decompositions of the pressure and strain fields coupled with a machine learning method. ROM allows strains to be evaluated inside the model interactively (i.e. in less than a second) for any pressure field measured below the buttocks. In our case, with only 19 modes of variation of pressure patterns, an error divergence of one percent is observed compared to the full scale simulation for evaluating the strain field. This reduced model could therefore be the first step towards interactive pressure ulcer prevention in a daily set-up. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  4. Kinetic analysis and modelling of combined high-pressure-temperature inactivation of the yeast Zygosaccharomyces bailii.

    Science.gov (United States)

    Reyns, K M; Soontjens, C C; Cornelis, K; Weemaes, C A; Hendrickx, M E; Michiels, C W

    2000-06-01

    Eight foodborne yeasts were screened for sensitivity to high-pressure (HP) inactivation under a limited number of pressure-temperature combinations. The most resistant strains were Zygoascus hellenicus and Zygosaccharomyces bailii. The latter was taken for a detailed study of inactivation kinetics over a wide range of pressures (120-320 MPa) and temperatures (-5 to 45 degrees C). Isobaric and isothermal inactivation experiments were conducted in Tris-HCl buffer pH 6.5 for 48 different combinations of pressure and temperature. Inactivation was biphasic, with a first phase encompassing four to six decades and being described by first-order kinetics, followed by a tailing phase. Decimal reduction times (D) were calculated for the first-order inactivation phase and their temperature and pressure dependence was described. At constant temperature, D decreased with increasing pressure as expected. At constant pressure, D showed a maximum at around 20 degrees C, and decreased both at lower and at higher temperatures. A mathematical expression was developed to describe accurately the inactivation of Z. bailii as a function of pressure and temperature under the experimental conditions employed. A limited number of experiments in buffer at low pH (3-6) suggest that the model is, in principle, applicable at low pH. In apple and orange juice however, higher inactivation than predicted by the model was achieved.

  5. Effects of gas types and models on optimized gas fuelling station reservoir's pressure

    Directory of Open Access Journals (Sweden)

    M. Farzaneh-Gord

    2013-06-01

    Full Text Available There are similar algorithms and infrastructure for storing gas fuels at CNG (Compressed Natural Gas and CHG (Compressed Hydrogen Gas fuelling stations. In these stations, the fuels are usually stored in the cascade storage system to utilize the stations more efficiently. The cascade storage system generally divides into three reservoirs, commonly termed low, medium and high-pressure reservoirs. The pressures within these reservoirs have huge effects on performance of the stations. In the current study, based on the laws of thermodynamics, conservation of mass and real/ideal gas assumptions, a theoretical analysis has been constructed to study the effects of gas types and models on performance of the stations. It is intended to determine the optimized reservoir pressures for these stations. The results reveal that the optimized pressure differs between the gas types. For ideal and real gas models in both stations (CNG and CHG, the optimized non-dimensional low pressure-reservoir pressure is found to be 0.22. The optimized non-dimensional medium-pressure reservoir pressure is the same for the stations, and equal to 0.58.

  6. Modelling of pressure increase protection system for the vacuum vessel of W7-X device

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, Tadas, E-mail: tadas.kaliatka@lei.lt; Uspuras, Eugenijus; Kaliatka, Algirdas

    2016-11-01

    Highlights: • Two in-vessel LOCAs (partial and guillotine break of 40 mm diameter pipe of cooling system) for Wendelstein 7-X fusion device were analyzed. • The analysis of the processes in the cooling system, vacuum vessel and pressure increase protection system were performed using thermal-hydraulic RELAP5 Mod3.3 code. • The suitability of pressure increase protection system was assessed. - Abstract: In fusion devices, plasma is contained in a vacuum vessel. The vacuum vessel cannot withstand a pressure above atmospheric. Any damage of in-vessel components could lead to water ingress and may lead to pressure increase and possible damage of vacuum vessel. In order to avoid such undesirable consequences, the pressure increase protection system is designed. In this article, the processes occurring in the vacuum vessel and pressure increase protection system of W7-X device during LOCA (small and guillotine pipe break) event are analyzed. The model of W7-X cooling system, vacuum vessel and pressure increase protection system was developed using RELAP5 code. Numerical analysis of partial and guillotine break of 40 mm diameter pipe of cooling system was performed. Calculation results showed that burst disc of the pressure increase protection system does not open when the cross section area of partial break in the cooling system is smaller than 1 mm{sup 2}. During the guillotine break of cooling system, the burst disc opens, but pressure increase protection system is capable to prevent overpressure of the vacuum vessel.

  7. Pressure Measurement Techniques for Abdominal Hypertension: Conclusions from an Experimental Model.

    Science.gov (United States)

    Chopra, Sascha Santosh; Wolf, Stefan; Rohde, Veit; Freimann, Florian Baptist

    2015-01-01

    Introduction. Intra-abdominal pressure (IAP) measurement is an indispensable tool for the diagnosis of abdominal hypertension. Different techniques have been described in the literature and applied in the clinical setting. Methods. A porcine model was created to simulate an abdominal compartment syndrome ranging from baseline IAP to 30 mmHg. Three different measurement techniques were applied, comprising telemetric piezoresistive probes at two different sites (epigastric and pelvic) for direct pressure measurement and intragastric and intravesical probes for indirect measurement. Results. The mean difference between the invasive IAP measurements using telemetric pressure probes and the IVP measurements was -0.58 mmHg. The bias between the invasive IAP measurements and the IGP measurements was 3.8 mmHg. Compared to the realistic results of the intraperitoneal and intravesical measurements, the intragastric data showed a strong tendency towards decreased values. The hydrostatic character of the IAP was eliminated at high-pressure levels. Conclusion. We conclude that intragastric pressure measurement is potentially hazardous and might lead to inaccurately low intra-abdominal pressure values. This may result in missed diagnosis of elevated abdominal pressure or even ACS. The intravesical measurements showed the most accurate values during baseline pressure and both high-pressure plateaus.

  8. Meta-Model and UML Profile for Requirements Management of Software and Embedded Systems

    Directory of Open Access Journals (Sweden)

    Arpinen Tero

    2011-01-01

    Full Text Available Software and embedded system companies today encounter problems related to requirements management tool integration, incorrect tool usage, and lack of traceability. This is due to utilized tools with no clear meta-model and semantics to communicate requirements between different stakeholders. This paper presents a comprehensive meta-model for requirements management. The focus is on software and embedded system domains. The goal is to define generic requirements management domain concepts and abstract interfaces between requirements management and system development. This leads to a portable requirements management meta-model which can be adapted with various system modeling languages. The created meta-model is prototyped by translating it into a UML profile. The profile is imported into a UML tool which is used for rapid evaluation of meta-model concepts in practice. The developed profile is associated with a proof of concept report generator tool that automatically produces up-to-date documentation from the models in form of web pages. The profile is adopted to create an example model of embedded system requirement specification which is built with the profile.

  9. Generalized enthalpy model of a high-pressure shift freezing process

    KAUST Repository

    Smith, N. A. S.

    2012-05-02

    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work, we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition, the significant heat-transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature. © 2012 The Royal Society.

  10. [Multivariate response model with multilevel and its application in the influencing factors of blood pressure].

    Science.gov (United States)

    Yang, Yongli; Fu, Pengyu; Xie, Jing; Zhang, Weidong; Zhang, Meixi; Wang, Chongjian; Ping, Zhiguang; Hu, Dongsheng

    2009-09-01

    To explore the application of multivariate response model with multilevel in the influencing factors of blood pressure. Two response model with three-level was fitted under MLwin 2.02 software. The correlation coefficient between systolic blood pressure (SBP) and diastolic blood pressure (DBP) was 0.949 at region level, and 0.701 at individual level. SBP and DBP level increased with age, while the regression coefficient of age on SBP was significantly higher than on DBP, beta was 0.720 (SBP) and 0.118 (DBP) individually (chi2 = 4284.56, P response model with multilevel can be used to analyze the hierarchy structure data, and it is also a good tool to analyze the influencing factors of blood pressure.

  11. A New Profile Learning Model for Recommendation System based on Machine Learning Technique

    Directory of Open Access Journals (Sweden)

    Shereen H. Ali

    2016-03-01

    Full Text Available Recommender systems (RSs have been used to successfully address the information overload problem by providing personalized and targeted recommendations to the end users. RSs are software tools and techniques providing suggestions for items to be of use to a user, hence, they typically apply techniques and methodologies from Data Mining. The main contribution of this paper is to introduce a new user profile learning model to promote the recommendation accuracy of vertical recommendation systems. The proposed profile learning model employs the vertical classifier that has been used in multi classification module of the Intelligent Adaptive Vertical Recommendation (IAVR system to discover the user’s area of interest, and then build the user’s profile accordingly. Experimental results have proven the effectiveness of the proposed profile learning model, which accordingly will promote the recommendation accuracy.

  12. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2015-11-01

    Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.

  13. The Contemporary Adaptive Model for the Expatriates’ Profile

    Directory of Open Access Journals (Sweden)

    Catalin Popa

    2016-12-01

    Full Text Available Considering the global realities and the technological evolution, within a knowledge-based economy, many organizations aim at the human capital development, setting up not just organizational standards but promoting environmentally HR’s adjustment criteria in order to provide sustainability for recruitment and selection processes. Therefore, developing an adapted employee profile for expatriates should be one of the major imperatives for International Human Resources Management (IHRM function. The work paper pleads for considering IHRM as an important organizational dimension, responsible for adjusting the international employee’s behaviour in accordance with the organizational and external domestic environment, in order to promote the overall value of foreign employees for national economy, culture and society.

  14. Physical and numerical modelling of earth pressure on anchored sheet pile walls in sand

    DEFF Research Database (Denmark)

    Krogsbøll, Anette Susanne; Fuglsang, Leif D

    2006-01-01

    The influence of wall flexibility on earth pressure, bending moments and failure modes is studied. Numerical models are compared to results from model tests carried out in a geotechnical centrifuge. The back-fill is dry sand and failure is introduced by allowing the wall to rotate around the anchor......-model showed the right behaviour in pre-failure as well as failure for both flexible and stiff walls, whereas the MC-model showed some shortcomings when stiff walls were modelled....

  15. Physical and numerical modelling of earth pressure on anchored sheet pile walls in sand

    DEFF Research Database (Denmark)

    Krogsbøll, Anette Susanne; Fuglsang, Leif D

    The influence of wall flexibility on earth pressure, bending moments and failure modes is studied. Numerical models are compared to results from model tests carried out in a geotechnical centrifuge. The back-fill is dry sand and failure is introduced by allowing the wall to rotate around the anchor......-model showed the right behaviour in pre-failure as well as failure for both flexible and stiff walls, whereas the MC-model showed some shortcomings when stiff walls were modelled....

  16. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, John Carl [Illinois Inst. of Technology, Chicago, IL (United States)

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system.

  17. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    International Nuclear Information System (INIS)

    Brubaker, J.C.

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system

  18. Numerical modelling of pressure suppression pools with CFD and FEM codes

    Energy Technology Data Exchange (ETDEWEB)

    Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))

    2011-06-15

    Experiments on large-break loss-of-coolant accident for BWR is modeled with computational fluid (CFD) dynamics and finite element calculations. In the CFD calculations, the direct-contact condensation in the pressure suppression pool is studied. The heat transfer in the liquid phase is modeled with the Hughes-Duffey correlation based on the surface renewal model. The heat transfer is proportional to the square root of the turbulence kinetic energy. The condensation models are implemented with user-defined functions in the Euler-Euler two-phase model of the Fluent 12.1 CFD code. The rapid collapse of a large steam bubble and the resulting pressure source is studied analytically and numerically. Pressure source obtained from simplified calculations is used for studying the structural effects and FSI in a realistic BWR containment. The collapse results in volume acceleration, which induces pressure loads on the pool walls. In the case of a spherical bubble, the velocity term of the volume acceleration is responsible of the largest pressure load. As the amount of air in the bubble is decreased, the peak pressure increases. However, when the water compressibility is accounted for, the finite speed of sound becomes a limiting factor. (Author)

  19. A Statistical Model for Natural Gas Standardized Load Profiles

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Konár, Ondřej; Malý, Marek; Pelikán, Emil; Vondráček, Jiří

    2009-01-01

    Roč. 58, č. 1 (2009), s. 123-139 ISSN 0035-9254 R&D Projects: GA AV ČR 1ET400300513 Institutional research plan: CEZ:AV0Z10300504 Keywords : disaggregation * generalized additive models * multiplicative model * non-linear effects * segmentation * semiparametric regression model Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 1.060, year: 2009

  20. A model of CT dose profiles in Banach space; with applications to CT dosimetry

    Science.gov (United States)

    Weir, Victor J.

    2016-07-01

    In this paper the scatter component of computed tomography dose profiles is modeled using the solution to a nonlinear ordinary differential equation. This scatter function is summed with a modeled primary function of approximate trapezoidal shape. The primary dose profile is modeled to include the analytic continuation of the Heaviside step function. A mathematical theory is developed in a Banach space. The modeled function is used to accurately fit data from a 256-slice GE Revolution scanner. A 60 cm long body phantom is assembled and used for data collection with both a pencil chamber and a Farmer-type chamber.

  1. Oscillations in the proximal intratubular pressure: a mathematical model

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Leyssac, P P

    1987-01-01

    for the dependent variables (equilibrium point) for each set of independent variables. An equilibrium point, chosen to be in accordance with experimental data from Sprague-Dawley rats, was used as the initial value for the dependent variables. The model is shown to have parameter ranges in which sustained stable...

  2. New empirically-derived solar radiation pressure model for GPS satellites

    Science.gov (United States)

    Bar-Sever, Y.; Kuang, D.

    2003-04-01

    We derive a new and improved GPS solar pressure model by estimating model parameters using least square approximation to four and a half years of GPS precise orbit data. The new solar radiation model for Block IIR satellites provides 90% improvement over to the best pre-launch model, as measured by orbit fits and orbit prediction quality. The new model of Block II/IIA realizes a more modest improvement of the previous JPL empirical model. The empirical model is constructed as a set of Fourier functions of the Earth-Probe-Sun angle, to represent the solar radiation pressure forces in the coordinate system tied to the nominal solar panel surface orientation. The model derivation reveals a number of systematic patterns, some of which can be explained in terms of properties of the GPS attitude control system, and some are yet to be explained. Finally, we will discuss the overall orbit determination improvements using the new models.

  3. Available pressure amplitude of linear compressor based on phasor triangle model

    Science.gov (United States)

    Duan, C. X.; Jiang, X.; Zhi, X. Q.; You, X. K.; Qiu, L. M.

    2017-12-01

    The linear compressor for cryocoolers possess the advantages of long-life operation, high efficiency, low vibration and compact structure. It is significant to study the match mechanisms between the compressor and the cold finger, which determines the working efficiency of the cryocooler. However, the output characteristics of linear compressor are complicated since it is affected by many interacting parameters. The existing matching methods are simplified and mainly focus on the compressor efficiency and output acoustic power, while neglecting the important output parameter of pressure amplitude. In this study, a phasor triangle model basing on analyzing the forces of the piston is proposed. It can be used to predict not only the output acoustic power, the efficiency, but also the pressure amplitude of the linear compressor. Calculated results agree well with the measurement results of the experiment. By this phasor triangle model, the theoretical maximum output pressure amplitude of the linear compressor can be calculated simply based on a known charging pressure and operating frequency. Compared with the mechanical and electrical model of the linear compressor, the new model can provide an intuitionistic understanding on the match mechanism with faster computational process. The model can also explain the experimental phenomenon of the proportional relationship between the output pressure amplitude and the piston displacement in experiments. By further model analysis, such phenomenon is confirmed as an expression of the unmatched design of the compressor. The phasor triangle model may provide an alternative method for the compressor design and matching with the cold finger.

  4. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    Science.gov (United States)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  5. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Science.gov (United States)

    Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto

    2012-01-01

    Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics. PMID:24957767

  6. Mental Models about Seismic Effects: Students' Profile Based Comparative Analysis

    Science.gov (United States)

    Moutinho, Sara; Moura, Rui; Vasconcelos, Clara

    2016-01-01

    Nowadays, meaningful learning takes a central role in science education and is based in mental models that allow the representation of the real world by individuals. Thus, it is essential to analyse the student's mental models by promoting an easier reconstruction of scientific knowledge, by allowing them to become consistent with the curricular…

  7. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  8. Modelling individual temperature profiles from an isolated perfused bovine tongue

    NARCIS (Netherlands)

    Raaymakers, B. W.; Crezee, J.; Lagendijk, J. J.

    2000-01-01

    To predict the temperature distribution during hyperthermia treatments a thermal model that accounts for the thermal effect of blood flow is mandatory. The DIscrete VAsculature (DIVA) thermal model developed at our department is able to do so; geometrically described vessels are handled individually

  9. An ex vivo porcine skin model to evaluate pressure-reducing devices of different mechanical properties used for pressure ulcer prevention.

    Science.gov (United States)

    Yeung, Ching-Yan C; Holmes, David F; Thomason, Helen A; Stephenson, Christian; Derby, Brian; Hardman, Matthew J

    2016-11-01

    Pressure ulcers are complex wounds caused by pressure- and shear-induced trauma to skin and underlying tissues. Pressure-reducing devices, such as dressings, have been shown to successfully reduce pressure ulcer incidence, when used in adjunct to pressure ulcer preventative care. While pressure-reducing devices are available in a range of materials, with differing mechanical properties, understanding of how a material's mechanical properties will influence clinical efficacy remains limited. The aim of this study was to establish a standardized ex vivo model to allow comparison of the cell protection potential of two gel-like pressure-reducing devices with differing mechanical properties (elastic moduli of 77 vs. 35 kPa). The devices also displayed differing energy dissipation under compressive loading, and resisted strain differently under constant load in compressive creep tests. To evaluate biological efficacy we employed a new ex vivo porcine skin model, with a confirmed elastic moduli closely matching that of human skin (113 vs. 119 kPa, respectively). Static loads up to 20 kPa were applied to porcine skin ex vivo with subsequent evaluation of pressure-induced cell death and cytokine release. Pressure application alone increased the percentage of epidermal apoptotic cells from less than 2% to over 40%, and increased cellular secretion of the pro-inflammatory cytokine TNF-alpha. Co-application of a pressure-reducing device significantly reduced both cellular apoptosis and cytokine production, protecting against cellular damage. These data reveal new insight into the relationship between mechanical properties of pressure-reducing devices and their biological effects. After appropriate validation of these results in clinical pressure ulcer prevention with all tissue layers present between the bony prominence and external surface, this ex vivo porcine skin model could be widely employed to optimize design and evaluation of devices aimed at reducing pressure

  10. Electrode design and insertional depth-dependent intra-cochlear pressure changes: a model experiment.

    Science.gov (United States)

    Mittmann, P; Ernst, A; Todt, I

    2018-03-01

    Preservation of residual hearing is one of the major goals in modern cochlear implant surgery. Intra-cochlear fluid pressure changes influence residual hearing, and should be kept low before, during and after cochlear implant insertion. Experiments were performed in an artificial cochlear model. A pressure sensor was inserted in the apical part. Five insertions were performed on two electrode arrays. Each insertion was divided into three parts, and statistically evaluated in terms of pressure peak frequency and pressure peak amplitude. The peak frequency over each third part of the electrode increased in both electrode arrays. A slight increase was seen in peak amplitude in the lateral wall electrode array, but not in the midscalar electrode array. Significant differences were found in the first third of both electrode arrays. The midscalar and lateral wall electrode arrays have different intra-cochlear fluid pressure changes associated with intra-cochlear placement, electrode characteristics and insertion.

  11. Comparison of Finite Element Modeling and Experimental Pressure Distribution in a Diamond Anvil Cell

    Science.gov (United States)

    Kondrat'yev, Andreiy I.; Murphy, Michael J.; Weir, Samuel T.; Vohra, Yogesh K.

    2002-10-01

    Ultra high pressures can be obtained in a Diamond Anvil Cell (DAC) device by optimizing the geometrical shape of diamond anvil and by use of high strength gasket materials. Radial pressure distribution in a diamond-coated rhenium gasket was measured by the micro-collimated X-ray diffraction techniques at NSLS, Brookhaven National Laboratory up to peak pressure of 220 GPa. The process of DAC compression was described by finite element analysis using NIKE-2D software. The mechanical properties of the diamond-coated gasket material were modeled and radial pressure distribution obtained was in good agreement with the experimental data. The calculated shear stress in diamond in the axial direction was shown to depend strongly on the yield strength of the gasket material and may limit the ultimate pressure that can be obtained with the use of high strength gasket materials. Supported by the National Science Foundation (NSF) Grant No. DMR-0203779.

  12. Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: A meta-analysis of RCTs.

    Science.gov (United States)

    He, Jun; Zhang, Fan; Han, Yan

    2017-12-01

    This meta-analysis aimed to systematically evaluate the effects of probiotics on blood lipid and blood pressure among patients with type 2 diabetes mellitus (T2DM) based on the randomized controlled studies. PubMed, Cochrane, Embase, Wanfang, China National Knowledge Infrastructure, and VIP database were searched by the index words to identify the qualified randomized control trial. The latest research was done in the January 2017. Mean difference (MD) along with 95% confidence interval (CI) was used to analyze the included outcomes. Ten trials were included at last with 297 patients in the treatment group and 294 patients in the control group. Probiotics significantly decreased the value of total cholesterol (SMD -0.57, 95% CI -0.92 to 0.21), triglyceride (SMD -0.66, 95% CI -0.93 to 0.39), low-density lipoprotein (SMD -0.40, 95% CI -0.79 to 0.01), systolic blood pressure (WMD -5.04, 95% CI -8.8 to 1.20), diastolic blood pressure (SMD -0.39, 95% CI -0.62 to 0.17), fasting blood glucose (FBG) (SMD 3.54, 95% CI 1.94-5.15) compared with the placebo treatment. Apart from this, probiotics could significantly improve the value of high-density lipoprotein (SMD 0.38, 95% CI 0.03-0.73). Probiotics may decrease the indexes of lipid profile, blood pressure, and FBG in patients with T2DM; application of probiotics might be a new method for lipid profiles and blood pressure management in T2DM. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  13. Transducer modeling and compensation in high-pressure dynamic calibration

    Science.gov (United States)

    Gong, Chikun; Li, Yongxin

    2005-12-01

    When the RBF neural network is used to establish and compensate the transducer model, the numbers of cluster need to be given in advance by using Kohonen algorithm, the RLS algorithm is complicated and the computational burden is much heavier by using it to regulate the output weights. In order to overcome the weakness, a new approach is proposed. The cluster center is decided by the subtractive clustering, and LMS algorithm is used to regulate the output weights. The noise elimination with correlative threshold plus wavelet packet transformation is used to improve the SNR. The study result shows that the network structure is simple and astringency is fast, the modeling and compensation by using the new algorithm is effective to correct the nonlinear dynamic character of transducer, and noise elimination with correlative threshold plus wavelet packet transformation is superior to conventional noise elimination methods.

  14. Network Modelling of Capillary Pressure Curves, Permeability, and Diffusivity.

    Czech Academy of Sciences Publication Activity Database

    Čapek, P.; Hejtmánek, Vladimír; Brabec, Libor; Zikánová, Arlette; Kočiřík, Milan

    2007-01-01

    Roč. 62, 18-20 (2007) , s. 5117-5122 ISSN 0009-2509 R&D Projects: GA ČR(CZ) GA203/05/0347 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40400503 Keywords : porous media * pore network model * stochastic reconstruction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.775, year: 2007

  15. Distensibility and pressure-flow relationship of the pulmonary circulation. I. Single-vessel model.

    Science.gov (United States)

    Bshouty, Z; Younes, M

    1990-04-01

    To ascertain the relative contributions of vascular distensibility and nonhomogeneous behavior within the pulmonary circulation to the distinctive nonlinear relationship between inflow pressure (Pin) and flow [pressure-flow (P-F) relationship] and between Pin and outflow pressure (Pout) at constant flow (Pin-Pout relationship), we developed a multibranched model in which the elastic behavior of, and forces acting on, individual branches can be varied independently. The response of the multibranched model is described in the companion article (J. Appl. Physiol. 68: 1514-1527, 1990). Here we describe the methods used and the responses of single components of the larger model. Perivascular pressure is modeled as a function of intravascular and transpulmonary pressures (Pv and Ptp, respectively) and vessel length as a function of lung volume. These and the relationship between vascular area (A) and transmural pressure (Ptm) were modeled primarily from the dog data of Smith and Mitzner (J. Appl. Physiol. 48: 450-467, 1980). Vasomotor tone is modeled as a radial collapsing pressure (Pt) in the same plane as Ptm. In view of lack of information about the relationship between Pt and A for a given active state, different patterns were assumed that span a wide range of possible relationships. The P-F and Pin-Pout relationships of single vessels were very similar to those reported for the entire intact circulation. Of note, the slope of the Pin-Pout relationship in the low Pout range (0-5 Torr) was very low (less than 0.25) and increased gradually with Pout toward unity. Vasomotor tone caused an apparent parallel shift in the P-F relationship in the physiological flow range of the dog (2-8 l/min) regardless of the pattern used to model the Pt vs. A relationship; different patterns affected the P-F relationship only over the low flow range before the parallel shift was established.

  16. Modeling the effects of dissolved helium pressurant on a liquid hydrogen rocket propellant tank

    Science.gov (United States)

    Richardson, I. A.; Leachman, J. W.

    2017-12-01

    A model was developed using NASA’s Generalized Fluid System Simulation Program (GFSSP) for the self-pressurization of a liquid hydrogen propellant tank due to boil-off to determine the significance of mixture non-idealities. The GFSSP model compared the tank performance for the traditional model that assumes no helium pressurant dissolves into the liquid hydrogen propellant to an updated model that accounts for dissolved helium pressurant. Traditional NASA models have been unable to account for this dissolved helium due to a lack of fundamental property information. Recent measurements of parahydrogen-helium mixtures enabled the development of the first multi-phase Equation Of State (EOS) for parahydrogen-helium mixtures. The self-pressurization GFSSP model was run assuming that the liquid propellant was pure liquid hydrogen and assuming helium dissolved into the liquid utilizing the new helium-hydrogen EOS. The analysis shows that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate for typical tank conditions (-423 °F and 30 psia).

  17. Modeling of temperature profile during magnetic thermotherapy for cancer treatment

    Science.gov (United States)

    Sawyer, Carolyn A.; Habib, Ashfaque H.; Miller, Kelsey; Collier, Kelly N.; Ondeck, Courtney L.; McHenry, Michael E.

    2009-04-01

    Magnetic nanoparticles (MNPs) used as heat sources for cancer thermotherapy have received much recent attention. While the mechanism for power dissipation in MNPs in a rf field is well understood, a challenge in moving to clinical trials is an inadequate understanding of the power dissipation in MNP-impregnated systems and the discrepancy between the predicted and observed heating rates in the same. Here we use the Rosensweig [J. Magn. Magn. Mater. 252, 370 (2002)] model for heat generation in a single MNP, considering immediate heating of the MNPs, and the double spherical-shell heat transfer equations developed by Andrä et al. [J. Magn. Magn. Mater. 194, 197 (1999)] to model the heat distribution in and around a ferrofluid sample or a tumor impregnated with MNPs. We model the heat generated at the edge of a 2.15 cm spherical sample of FeCo/(Fe,Co)3O4 agglomerates containing 95 vol % MNPs with mean radius of 9 nm, dispersed at 1.5-1.6 vol % in bisphenol F. We match the model against experimental data for a similar system produced in our laboratory and find good agreement. Finite element models, extensible to more complex systems, have also been developed and checked against the analytical model and the data.

  18. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2017-09-01

    Full Text Available Modeling of microbial inactivation by high hydrostatic pressure (HHP requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa, and with holding time ≤10 min for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5 inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj and highest mean square error (MSE values, while the Fermi equation had the best fit (the highest R2adj and lowest MSE values. Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for

  19. Climatological assessment of maritime atmospheric profiles: model-based and LIDAR-based approaches

    Science.gov (United States)

    McBryde, Kevin; Hammel, Stephen; Campbell, James

    2017-09-01

    Local meteorological conditions drive variability of vertical extinction profiles over both short and long timescales. Wind speed and relative humidity, in particular, are associated with production modes for maritime aerosols. We model climatological variability of profiles based upon surface layer historical measurements of meteorological parameters using the International Comprehensive Ocean Atmosphere Data Set (ICOADS). We have generated a database of profiles using a unique methodology, optimizing computational time by computing profiles over a mesh of relative humidity and wind speed. The profiles are weighted and sorted based upon ICOADS data for a region in southern California coastal waters. Climatological vertical extinction profiles based on this methodology are computed using the aerosol model LEEDR and compared with a new database of space-based LIDAR profiles from the CALIOP instrument aboard NASA's CALIPSO satellite. We also compare Aerosol Optical Depth (AOD) among CALIOP, LEEDR, and the Aerosol Robotic Network (AERONET), a network of ground-based sun photometers. We discuss agreement and discrepancies among the three datasets.

  20. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  1. LINEAR KERNEL SUPPORT VECTOR MACHINES FOR MODELING PORE-WATER PRESSURE RESPONSES

    Directory of Open Access Journals (Sweden)

    KHAMARUZAMAN W. YUSOF

    2017-08-01

    Full Text Available Pore-water pressure responses are vital in many aspects of slope management, design and monitoring. Its measurement however, is difficult, expensive and time consuming. Studies on its predictions are lacking. Support vector machines with linear kernel was used here to predict the responses of pore-water pressure to rainfall. Pore-water pressure response data was collected from slope instrumentation program. Support vector machine meta-parameter calibration and model development was carried out using grid search and k-fold cross validation. The mean square error for the model on scaled test data is 0.0015 and the coefficient of determination is 0.9321. Although pore-water pressure response to rainfall is a complex nonlinear process, the use of linear kernel support vector machine can be employed where high accuracy can be sacrificed for computational ease and time.

  2. Modelling the pressurization induced by solar radiation on above ground installations of LPG pipeline systems

    Science.gov (United States)

    Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.

    2017-11-01

    Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.

  3. Model etch profiles for ion energy distribution functions in an inductively coupled plasma reactor

    International Nuclear Information System (INIS)

    Chen, W.; Abraham-Shrauner, B.; Woodworth, J.R.

    1999-01-01

    Rectangular trench profiles are modeled with analytic etch rates determined from measured ion distribution functions. The pattern transfer step for this plasma etch is for trilayer lithography. Argon and chlorine angular ion energy distribution functions measured by a spherical collector ring analyzer are fit to a sum of drifting Maxwellian velocity distribution functions with anisotropic temperatures. The fit of the model ion distribution functions by a simulated annealing optimization procedure converges adequately for only two drifting Maxwellians. The etch rates are proportional to analytic expressions for the ion energy flux. Numerical computation of the etch profiles by integration of the characteristic equations for profile points and connection of the profiles points is efficient. copyright 1999 American Vacuum Society

  4. Ambulatory blood pressure responses and the circumplex model of mood: a 4-day study.

    Science.gov (United States)

    Jacob, R G; Thayer, J F; Manuck, S B; Muldoon, M F; Tamres, L K; Williams, D M; Ding, Y; Gatsonis, C

    1999-01-01

    The relation between mood or emotions and concurrent ambulatory blood pressure responses holds both fundamental and clinical interest. The primary sample consisted of 69 normotensive or borderline hypertensive but otherwise healthy adult males. The validation sample consisted of 85 healthy male undergraduate college students. Both samples underwent half-hourly 24-hour ambulatory blood pressure measurements on four separate workdays, 1 week apart. At each ambulatory measurement, subjects recorded their behavior, environment, and mood. The circular mood scale, a circular visual analogue scale based on the circumplex model of mood, was used to reflect the totality of a participant's affective state space. Longitudinal random effects regression models were applied in the data analysis. The results for both samples were quite similar. Sleep and posture had the greatest influence on ambulatory blood pressure and heart rate. The effects of the environmental setting, social setting, and consumption were modest but statistically significant. Independent of these covariates, mood exerted a significant effect on blood pressure and heart rate. Relative to the "mellow" default category, blood pressure increased both for "anxious/annoyed" and "elated/happy" and decreased during "disengaged/sleepy" mood. The range of mood-related blood pressure estimates was 6.0/3.7 mm Hg. The pattern of blood pressure responses suggests that they were related to the degree of engagement of a mood rather than the degree of unpleasantness. The hypothesis that posits that negative affect-related cardiovascular reactivity mediates the observed correlation between negative affect and disease risk should be reconsidered.

  5. Model of canonical profiles for time-dependent problems with variation of the total current

    International Nuclear Information System (INIS)

    Dnestrovskii, Yu.D.; Lysenko, S.E.

    1992-01-01

    The regimes in which the current varies in TFTR, JET, and ASDEX are analyzed. It is shown that the principle of profile consistency holds at the periphery of the plasma column, and the shape of the canonical profile is determined by the value of the safety factor q in the gradient region. A modified transport model is developed for the canonical profiles, which allows the time lag of the energy content of the plasma with relative to the current variation to be explained reasonably. 9 refs., 8 figs

  6. A new model for simulation of pressurizers in PWR type reactors

    International Nuclear Information System (INIS)

    Madeira, A.A.; Oliveira Barroso, A.C. de

    1981-01-01

    The pressurizer is treated as three-homogeneous region thermodynamic system, whith movable boundaries, all regions considered under the same pressure. In Normal operation, the two botton regions are occupied by water (liquid), and steam occupies the top region. Normal and spray induced condensation processes, evaporation and heat transfer cross the steam-water interface are analysed. The liquid region at the very botton of the pressurizer is treated in a simplyfied manner in order to retain the computacional advantages of the two-region models. (Author) [pt

  7. Temperature profile and pressure data collected from bottle casts in Banda Sea and other areas from BARUNA JAYA I from 08 August 1993 to 25 February 1994 (NODC Accession 0000436)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using bottle casts in the Banda Sea, Celebes Sea, Ceram Sea, and Java Sea from BARUNA JAYA I. Data were...

  8. Pressure and temperature profile data collected by the NOAA vessel Bay Hydrographer during survey operations along the NE US coast, 03 February 2005 to 21 November 2005 (NODC Accession 0002670)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure and temperature profile data were collected using CTD casts from the NOAA Survey Vessel BAY HYDROGRAPHER. Data were collected in the Chesapeake Bay from...

  9. Temperature profile and pressure data from CTD casts from NOAA Ship RONALD H. BROWN and NOAA Ship KA'IMIMOANA in the TOGA area of Pacific Ocean from 1997-08-05 to 1999-06-28 (NODC Accession 9900141)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using CTD casts in the TOGA area of Pacific Ocean from NOAA Ship RONALD H. BROWN and NOAA Ship KA'IMIMOANA from...

  10. Temperature profile and pressure data from CTD casts in the TOGA area of the Pacific Ocean from NOAA Ship DISCOVERER from 1994-05-11 to 1994-11-19 (NODC Accession 9600136)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using CTD casts from NOAA Ship DISCOVERER in the TOGA area of the Pacific Ocean from 11 May 1994 to 19 November...

  11. Temperature profile and pressure data from CTD casts from the MALCOLM BALRDIGE and other platforms from the TOGA area of Pacific Ocean from 1993-02-28 to 1997-06-27 (NODC Accession 9700222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using CTD casts in the TOGA area of the Pacific Ocean from NOAA Ship MALCOLM BALDRIGE and other platforms from...

  12. Temperature profile and pressure data from CTD casts in the TOGA area of the Pacific Ocean from NOAA Ship DISCOVERER from 1992-09-06 to 1992-12-08 (NODC Accession 9400195)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and pressure data were collected using CTD casts from NOAA Ship DISCOVERER in the TOGA area of the Pacific Ocean from 06 September 1992 to 08...

  13. Pressure/temperature/salinity profiler measurements collected in the Sea of Japan, 2001-06 to July 2001, under the sponsorship of the Office of Naval Research (NODC Accession 0002416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure/temperature/salinty profiles collected in support of a study to investigate the shallow and deep current variability in the southwest Japan/East Sea....

  14. Modeling Social Pressures Toward Political Instability in the United Kingdom after 1960: A Demographic Structural Analysis

    Directory of Open Access Journals (Sweden)

    Oscar Ortmans

    2017-12-01

    Full Text Available In the current paper, we investigate the predictive ability of Goldstone’s demographic structural model. In particular we seek to apply Turchin’s version of it to modeling the social pressures for political instability in the UK. It is then demonstrated that Turchin’s analysis of ‘demographic structural’ pressures in the US presents similar conditions that developed under neoliberalism during the same time periods in both countries. It is also demonstrated that the modeling of social pressures toward political instability in the UK and the USA performed by Peter Turchin and us can throw some light on the factors and patterns of the global sociopolitical destabilization wave of the 2010s. Thus, Goldstone’s demographic structural model might have some predictive potential not only at the national level, but also global scale.

  15. Solution-diffusion with defects model for pressure-assisted forward osmosis

    KAUST Repository

    Duan, Jintang

    2014-11-01

    An osmosis transport model is presented that combines the standard internal and external concentration polarization equations in the forward osmosis (FO) field with the selective layer transport equations first proposed by Sherwood in 1967. The Sherwood model describes water flux as the sum of a solute-selective, diffusive component driven by the sum of osmotic pressure and hydraulic pressure differences, and a nonselective, convective component driven by hydraulic pressure difference only. This solution-diffusion with defects (SDWD) model and the solution-diffusion (SD) model were compared against data collected using polyamide thin-film-composite (PA-TFC) and integrally-skinned asymmetric cellulose triacetate (CTA) membranes, evaluated in various configurations. When tested with pure water on the porous support side and 1.5. M (π=72.7. bar) sodium chloride solution on the selective layer side, applying 1.25. bar of hydraulic pressure to the porous support side increased water flux by an order of magnitude for PA-TFC membranes, but had negligible effect on CTA membrane flux. These large flux variations can be explained by the SDWD model, but not the SD model. To confirm the existence of defects, a PA-TFC membrane was coated with a uniform, highly water-permeable, nonselective polymer. After coating to block convection through defects, the influence of hydraulic pressure on water flux through this membrane essentially disappeared. Water flux through these defects is low (<1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. But in pressure-assisted forward osmosis (PAFO) or pressure-retarded osmosis (PRO), convective transport through defects affects the solute concentration difference across the membrane selective layer, increasing or decreasing water flux through defect-free regions. The presence of defects may explain why membrane power density in PRO is lower than that predicted based on

  16. Light radiation pressure upon a wrinkled membrane – parametrization of an optically orthotropic model

    Science.gov (United States)

    Nerovny, N. A.; Zimin, V. N.

    2018-04-01

    In this paper, the problem of representing the light pressure force upon the surface of a thin wrinkled film is discussed. The common source of wrinkles is the shear deformation of the membrane sample. The optical model of such a membrane is assumed to be optically orthotropic and an analytic equation for infinitesimal light pressure force is written. A linear regression model in the case of wrinkle geometry, where a surface element can have different optical parameters, is constructed and the Bayesian approach is used to calculate the parameters of this model.

  17. Improvement of the RELAP5 subcooled boiling model for low pressure conditions

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2000-01-01

    The RELAP5/MOD3.2.2 Gamma code was assessed against low pressure subcooled boiling experiments performed by Zeitoun and Shoukri [1] in a vertical annulus. The predictions of subcooled boiling bubbly flow showed that the present version of the RELAP5 code underestimates the void fraction growth along the tube. To improve the void fraction prediction at low pressure conditions a set of model changes is proposed, which includes modifications of bubbly-slug transition criterion, drift-flux model, interphase heat transfer coefficient and wall evaporation modeling. The improved experiment predictions with the modified RELAP5 code are presented and analysed. (author)

  18. Biological profiling and dose-response modeling tools ...

    Science.gov (United States)

    Through its ToxCast project, the U.S. EPA has developed a battery of in vitro high throughput screening (HTS) assays designed to assess the potential toxicity of environmental chemicals. At present, over 1800 chemicals have been tested in up to 600 assays, yielding a large number of concentration-response data sets. Standard processing of these data sets involves finding a best fitting mathematical model and set of model parameters that specify this model. The model parameters include quantities such as the half-maximal activity concentration (or “AC50”) that have biological significance and can be used to inform the efficacy or potency of a given chemical with respect to a given assay. All of this data is processed and stored in an online-accessible database and website: http://actor.epa.gov/dashboard2. Results from these in vitro assays are used in a multitude of ways. New pathways and targets can be identified and incorporated into new or existing adverse outcome pathways (AOPs). Pharmacokinetic models such as those implemented EPA’s HTTK R package can be used to translate an in vitro concentration into an in vivo dose; i.e., one can predict the oral equivalent dose that might be expected to activate a specific biological pathway. Such predicted values can then be compared with estimated actual human exposures prioritize chemicals for further testing.Any quantitative examination should be accompanied by estimation of uncertainty. We are developing met

  19. A measurement model of multiple intelligence profiles of management graduates

    Science.gov (United States)

    Krishnan, Heamalatha; Awang, Siti Rahmah

    2017-05-01

    In this study, developing a fit measurement model and identifying the best fitting items to represent Howard Gardner's nine intelligences namely, musical intelligence, bodily-kinaesthetic intelligence, mathematical/logical intelligence, visual/spatial intelligence, verbal/linguistic intelligence, interpersonal intelligence, intrapersonal intelligence, naturalist intelligence and spiritual intelligence are the main interest in order to enhance the opportunities of the management graduates for employability. In order to develop a fit measurement model, Structural Equation Modeling (SEM) was applied. A psychometric test which is the Ability Test in Employment (ATIEm) was used as the instrument to measure the existence of nine types of intelligence of 137 University Teknikal Malaysia Melaka (UTeM) management graduates for job placement purposes. The initial measurement model contains nine unobserved variables and each unobserved variable is measured by ten observed variables. Finally, the modified measurement model deemed to improve the Normed chi-square (NC) = 1.331; Incremental Fit Index (IFI) = 0.940 and Root Mean Square of Approximation (RMSEA) = 0.049 was developed. The findings showed that the UTeM management graduates possessed all nine intelligences either high or low. Musical intelligence, mathematical/logical intelligence, naturalist intelligence and spiritual intelligence contributed highest loadings on certain items. However, most of the intelligences such as bodily kinaesthetic intelligence, visual/spatial intelligence, verbal/linguistic intelligence interpersonal intelligence and intrapersonal intelligence possessed by UTeM management graduates are just at the borderline.

  20. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  1. Computations for the 1:5 model of the THTR pressure vessel compared with experimental results

    International Nuclear Information System (INIS)

    Stangenberg, F.

    1972-01-01

    In this report experimental results measured at the 1:5-model of the prestressed concrete pressure vessel of the THTR-nuclear power station Schmehausen in 1971, are compared with the results of axis-symmetrical computations. Linear-elastic computations were performed as well as approximate computations for overload pressures taking into consideration the influences of the load history (prestressing, temperature, creep) and the effects of the steel components. (orig.) [de

  2. Aspects Concerning Modelling Contact Pressure of Polymeric Materials Used in Robotic Soft Elements

    Directory of Open Access Journals (Sweden)

    Florina-Carmen Ciornei

    2015-06-01

    Full Text Available Compliant materials are used in applications of robotics for final elements of robotic systems. Contact pressure between a spherical indenter and a linear viscoelastic halfspace is modeled for a cosine normal load. The Maxwell viscoelastic halfspace is described by relaxation function and creep function. For the working frequency domain, the material does not present obvious relaxation. Only for very low frequencies, the pressure variation presents a maximum during approaching delayed with respect to maximum force

  3. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  4. Development of a wear model for the wheel profile optimisation on railway vehicles

    Science.gov (United States)

    Ignesti, M.; Innocenti, A.; Marini, L.; Meli, E.; Rindi, A.

    2013-09-01

    The modelling and the reduction of wear due to wheel-rail interaction is a fundamental aspect in the railway field, mainly correlated to safety, maintenance interventions and costs. In this work, the authors present two innovative wheel profiles, specifically designed with the aim of improving the wear and stability behaviour of the standard ORE S1002 wheel profile matched with the UIC60 rail profile canted at 1/20 rad, which represents the wheel-rail combination adopted in the Italian railway line. The two wheel profiles, conventionally named CD1 and DR2, have been developed by the authors in collaboration with Trenitalia S.p.A. The CD1 profile has been designed with the purpose of spreading the contact points in the flange zone on a larger area in order to reduce wear phenomena and having a constant equivalent conicity for small lateral displacements of the wheelset with respect to the centred position in the track. The DR2 wheel profile is instead designed to guarantee the same kinematic characteristics of the matching formed by ORE S1002 wheel profile and UIC60 rail profile with laying angle α p equal to 1/40 rad, widely common in European railways and characterised by good performances in both wear and kinematic behaviour. The evolution of wheel profiles due to wear has been evaluated through a wear model developed and validated by the authors in previous works. The wear model comprises two mutually interactive units: a vehicle model for the dynamic simulations and a model for the wear assessment. The whole model is based on a discrete process: each discrete step consists in one dynamic simulation and one profile update by means of the wear model while, within the discrete step, the profiles are supposed to be constant. The choice of an appropriate step is crucial in terms of precision and computational effort: the particular strategy adopted in the current work has been chosen for its capacity in representing the nonlinear wear evolution and for the low

  5. Modeling Encapsulated Microbubble Dynamics at High Pressure Amplitudes

    Science.gov (United States)

    Heyse, Jan F.; Bose, Sanjeeb; Iaccarino, Gianluca

    2017-11-01

    Encapsulated microbubbles are commonly used in ultrasound contrast imaging and are of growing interest in therapeutic applications where local cavitation creates temporary perforations in cell membranes allowing for enhanced drug delivery. Clinically used microbubbles are encapsulated by a shell commonly consisting of protein, polymer, or phospholipid; the response of these bubbles to externally imposed ultrasound waves is sensitive to the compressibility of the encapsulating shell. Existing models approximate the shell compressibility via an effective surface tension (Marmottant et al. 2005). We present simulations of microbubbles subjected to high amplitude ultrasound waves (on the order of 106 Pa) and compare the results with the experimental measurements of Helfield et al. (2016). Analysis of critical points (corresponding to maximum and minimum expansion) in the governing Rayleigh-Plesset equation is used to make estimates of the parameters used to characterize the effective surface tension of the encapsulating shell. Stanford Graduate Fellowship.

  6. Major differences between human atopic dermatitis and murine models as determined by global transcriptomic profiling

    DEFF Research Database (Denmark)

    Ewald, David Adrian; Noda, Shinji; Oliva, Margeaux

    2017-01-01

    , and a comparison of these models with the human AD transcriptomic fingerprint is lacking. We sought to evaluate the transcriptomic profiles of six common murine models and determine how they relate to human AD skin. Transcriptomic profiling was performed using microarrays and qRT-PCR on biopsies from NC/Nga, flaky-tail....../Nga, and oxazolone-challenged mice show the largest homology with our human meta-analysis derived AD (MADAD) transcriptome (37%, 18%, 17%, respectively). Similar to human AD, robust Th1, Th2, and also Th17 activation are seen in IL-23-injected and NC/Nga mice, with similar, but weaker, inflammation in ovalbumin......-challenged mice. Oxazolone-challenged mice show a Th1-centered reaction and flaky-tail mice demonstrate a strong Th17 polarization. Flg-mutated mice display FLG down-regulation without significant inflammation. No single murine model fully captures all aspects of the AD profile; instead, each model reflects...

  7. Longitudinal modeling in sports: young swimmers' performance and biomechanics profile.

    Science.gov (United States)

    Morais, Jorge E; Marques, Mário C; Marinho, Daniel A; Silva, António J; Barbosa, Tiago M

    2014-10-01

    New theories about dynamical systems highlight the multi-factorial interplay between determinant factors to achieve higher sports performances, including in swimming. Longitudinal research does provide useful information on the sportsmen's changes and how training help him to excel. These questions may be addressed in one single procedure such as latent growth modeling. The aim of the study was to model a latent growth curve of young swimmers' performance and biomechanics over a season. Fourteen boys (12.33 ± 0.65 years-old) and 16 girls (11.15 ± 0.55 years-old) were evaluated. Performance, stroke frequency, speed fluctuation, arm's propelling efficiency, active drag, active drag coefficient and power to overcome drag were collected in four different moments of the season. Latent growth curve modeling was computed to understand the longitudinal variation of performance (endogenous variables) over the season according to the biomechanics (exogenous variables). Latent growth curve modeling showed a high inter- and intra-subject variability in the performance growth. Gender had a significant effect at the baseline and during the performance growth. In each evaluation moment, different variables had a meaningful effect on performance (M1: Da, β = -0.62; M2: Da, β = -0.53; M3: η(p), β = 0.59; M4: SF, β = -0.57; all P < .001). The models' goodness-of-fit was 1.40 ⩽ χ(2)/df ⩽ 3.74 (good-reasonable). Latent modeling is a comprehensive way to gather insight about young swimmers' performance over time. Different variables were the main responsible for the performance improvement. A gender gap, intra- and inter-subject variability was verified. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach

    Science.gov (United States)

    Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.

    1990-01-01

    The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

  9. Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach

    Science.gov (United States)

    Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.

    1991-01-01

    The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

  10. Limitations of demand- and pressure-driven modeling for large deficient networks

    Directory of Open Access Journals (Sweden)

    M. Braun

    2017-10-01

    Full Text Available The calculation of hydraulic state variables for a network is an important task in managing the distribution of potable water. Over the years the mathematical modeling process has been improved by numerous researchers for utilization in new computer applications and the more realistic modeling of water distribution networks. But, in spite of these continuous advances, there are still a number of physical phenomena that may not be tackled correctly by current models. This paper will take a closer look at the two modeling paradigms given by demand- and pressure-driven modeling. The basic equations are introduced and parallels are drawn with the optimization formulations from electrical engineering. These formulations guarantee the existence and uniqueness of the solution. One of the central questions of the French and German research project ResiWater is the investigation of the network resilience in the case of extreme events or disasters. Under such extraordinary conditions where models are pushed beyond their limits, we talk about deficient network models. Examples of deficient networks are given by highly regulated flow, leakage or pipe bursts and cases where pressure falls below the vapor pressure of water. These examples will be presented and analyzed on the solvability and physical correctness of the solution with respect to demand- and pressure-driven models.

  11. A Direct inverse model to determine permeability fields from pressure and flow rate measurements

    NARCIS (Netherlands)

    Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.

    2008-01-01

    The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard

  12. Limitations of demand- and pressure-driven modeling for large deficient networks

    Science.gov (United States)

    Braun, Mathias; Piller, Olivier; Deuerlein, Jochen; Mortazavi, Iraj

    2017-10-01

    The calculation of hydraulic state variables for a network is an important task in managing the distribution of potable water. Over the years the mathematical modeling process has been improved by numerous researchers for utilization in new computer applications and the more realistic modeling of water distribution networks. But, in spite of these continuous advances, there are still a number of physical phenomena that may not be tackled correctly by current models. This paper will take a closer look at the two modeling paradigms given by demand- and pressure-driven modeling. The basic equations are introduced and parallels are drawn with the optimization formulations from electrical engineering. These formulations guarantee the existence and uniqueness of the solution. One of the central questions of the French and German research project ResiWater is the investigation of the network resilience in the case of extreme events or disasters. Under such extraordinary conditions where models are pushed beyond their limits, we talk about deficient network models. Examples of deficient networks are given by highly regulated flow, leakage or pipe bursts and cases where pressure falls below the vapor pressure of water. These examples will be presented and analyzed on the solvability and physical correctness of the solution with respect to demand- and pressure-driven models.

  13. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance

    NARCIS (Netherlands)

    Bruinsma, P.; Arts, T.; Dankelman, J.; Spaan, J. A.

    1988-01-01

    The effect of pressure-dependent changes in vascular volume, resistance and capacitance in the coronary micro-circulation, has been studied by a distributed mathematical model of the coronary micro-vasculature in the left ventricular wall. The model does not include regulation of coronary blood flow

  14. Modelling and experimental evaluation of high-pressure expression of cocoa nibs

    NARCIS (Netherlands)

    Venter, M.J.; Kuipers, N.J.M.; de Haan, A.B.

    2007-01-01

    The ability of the Shirato model to describe the expression of dry cocoa nibs in a hydraulic press at pressures of 20–80 MPa was compared with that of a numerically solved conservation laws model based on mass and momentum balances. Experimental data were used to determine the material constants

  15. A cardiovascular system model for lower-body negative pressure response

    Science.gov (United States)

    Mitchell, B. A., Jr.; Giese, R. P.

    1971-01-01

    Mathematical models used to study complex physiological control systems are discussed. Efforts were made to modify a model of the cardiovascular system for use in studying lower body negative pressure. A computer program was written which allows orderly, straightforward expansion to include exercise, metabolism (thermal stress), respiration, and other body functions.

  16. Finite element model of intermuscular pressure during isometric contraction of skeletal muscle

    NARCIS (Netherlands)

    Jenkyn, T.R.; Koopman, B.; Huijing, P.A.J.B.M.; Lieber, R.L.; Kaufman, K.R.

    2002-01-01

    The measurement of in vivo intramuscular pressure (IMP) has recently become practical and IMP appears well correlated with muscle tension. A numerical model of skeletal muscle was developed to examine the mechanisms producing IMP. Unipennate muscle is modelled as a two-dimensional material continuum

  17. Summarized presentation of the numerical model used for the pressurizer of a light water nuclear reactor. Description and validation

    International Nuclear Information System (INIS)

    Siarry, P.

    1981-12-01

    The pressurizer model is first described together with its coupling to the nuclear unit. The different stages involved in the validation are then presented: validation of overall qualitative behavior; validation of the open loop pressurizer model; validation of the various units for controlling pressures and levels; simulation of two large transients (Bugey plant) [fr

  18. A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Yan Zeng

    2018-01-01

    Full Text Available Multistage fractured horizontal wells (MFHWs have become the main technology for shale gas exploration. However, the existing models have neglected the percolation mechanism in nanopores of organic matter and failed to consider the differences among the reservoir properties in different areas. On that account, in this study, a modified apparent permeability model was proposed describing gas flow in shale gas reservoirs by integrating bulk gas flow in nanopores and gas desorption from nanopores. The apparent permeability was introduced into the macroseepage model to establish a dynamic pressure analysis model for MFHWs dual-porosity formations. The Laplace transformation and the regular perturbation method were used to obtain an analytical solution. The influences of fracture half-length, fracture permeability, Langmuir volume, matrix radius, matrix permeability, and induced fracture permeability on pressure and production were discussed. Results show that fracture half-length, fracture permeability, and induced fracture permeability exert a significant influence on production. A larger Langmuir volume results in a smaller pressure and pressure derivative. An increase in matrix permeability increases the production rate. Besides, this model fits the actual field data relatively well. It has a reliable theoretical foundation and can preferably describe the dynamic changes of pressure in the exploration process.

  19. A path analysis model for explaining unsafe behavior in workplaces: the effect of perceived work pressure.

    Science.gov (United States)

    Ghasemi, Fakhradin; Kalatpour, Omid; Moghimbeigi, Abbas; Mohhamadfam, Iraj

    2018-06-01

    Unsafe behavior is closely related to occupational accidents. Work pressure is one the main factors affecting employees' behavior. The aim of the present study was to provide a path analysis model for explaining how work pressure affects safety behavior. Using a self-administered questionnaire, six variables supposed to affect safety employees' behavior were measured. The path analysis model was constructed based on several hypotheses. The goodness of fit of the model was assessed using both absolute and comparative fit indices. Work pressure was determined not to influence safety behavior directly. However, it negatively influenced other variables. Group attitude and personal attitude toward safety were the main factors mediating the effect of work pressure on safety behavior. Among the variables investigated in the present study, group attitude, personal attitude and work pressure had the strongest effects on safety behavior. Managers should consider that in order to improve employees' safety behavior, work pressure should be reduced to a reasonable level, and concurrently a supportive environment, which ensures a positive group attitude toward safety, should be provided. Replication of the study is recommended.

  20. Synchronous Surface Pressure and Velocity Measurements of standard model in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Zhijun Sun

    2018-01-01

    Full Text Available Experiments in the Hypersonic Wind tunnel of NUAA(NHW present synchronous measurements of bow shockwave and surface pressure of a standard blunt rotary model (AGARD HB-2, which was carried out in order to measure the Mach-5-flow above a blunt body by PIV (Particle Image Velocimetry as well as unsteady pressure around the rotary body. Titanium dioxide (Al2O3 Nano particles were seeded into the flow by a tailor-made container. With meticulous care designed optical path, the laser was guided into the vacuum experimental section. The transient pressure was obtained around model by using fast-responding pressure-sensitive paint (PSPsprayed on the model. All the experimental facilities were controlled by Series Pulse Generator to ensure that the data was time related. The PIV measurements of velocities in front of the detached bow shock agreed very well with the calculated value, with less than 3% difference compared to Pitot-pressure recordings. The velocity gradient contour described in accord with the detached bow shock that showed on schlieren. The PSP results presented good agreement with the reference data from previous studies. Our work involving studies of synchronous shock-wave and pressure measurements proved to be encouraging.

  1. An ontologically well-founded profile for UML conceptual models

    NARCIS (Netherlands)

    Guizzardi, G.; Wagner, Gerd; van Sinderen, Marten J.; Guarino, Nicola; Persson, Anne; Stirna, Janis

    2004-01-01

    UML class diagrams can be used as a language for expressing a conceptual model of a domain. In a series of papers [1,2,3] we have been using the General Ontological Language (GOL) and its underlying upper level ontology, proposed in [4,5], to evaluate the ontological correctness of a conceptual UML

  2. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    International Nuclear Information System (INIS)

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  3. Taking individual scaling differences into account by analyzing profile data with the Mixed Assessor Model

    DEFF Research Database (Denmark)

    Brockhoff, Per Bruun; Schlich, Pascal; Skovgaard, Ib

    2015-01-01

    Scale range differences between individual assessors will often constitute a non-trivial part of the assessor-by-product interaction in sensory profile data (Brockhoff, 2003, 1998; Brockhoff and Skovgaard, 1994). We suggest a new mixed model ANOVA analysis approach, the Mixed Assessor Model (MAM...

  4. Incorporating additional tree and environmental variables in a lodgepole pine stem profile model

    Science.gov (United States)

    John C. Byrne

    1993-01-01

    A new variable-form segmented stem profile model is developed for lodgepole pine (Pinus contorta) trees from the northern Rocky Mountains of the United States. I improved estimates of stem diameter by predicting two of the model coefficients with linear equations using a measure of tree form, defined as a ratio of dbh and total height. Additional improvements were...

  5. Novel Profiling Model and Side Effects of Helical Scan Silicon Heads

    NARCIS (Netherlands)

    Hozoi, A.; Groenland, J.P.J.; Albertini, J.B.; Lodder, J.C.

    2002-01-01

    Partial erasure of track edges was directly measured from triple-track patterns using a novel model to interpret the output profiles. The model is based on representing the read head as the sum of a reference width, wavelength independent, and two side reading effective widths that are wavelength

  6. Fine bakery wares with label claims in Europe and their categorisation by nutrient profiling models.

    Science.gov (United States)

    Trichterborn, J; Harzer, G; Kunz, C

    2011-03-01

    This study assesses a range of commercially available fine bakery wares with nutrition or health related on-pack communication against the criteria of selected nutrient profiling models. Different purposes of the application of nutrient profiles were considered, including front-of-pack signposting and the regulation of claims or advertising. More than 200 commercially available fine bakery wares carrying claims were identified in Germany, France, Spain, Sweden and United Kingdom and evaluated against five nutrient profiling models. All models were assessed regarding their underlying principles, generated results and inter-model agreement levels. Total energy, saturated fatty acids, sugars, sodium and fibre were critical parameters for the categorisation of products. The Choices Programme was the most restrictive model in this category, while the Food and Drug Administration model allowed the highest number of products to qualify. According to all models, more savoury than sweet products met the criteria. On average, qualifying products contained less than half the amounts of nutrients to limit and more than double the amount of fibre compared with all the products in the study. None of the models had a significant impact on the average energy contents. Nutrient profiles can be applied to identify fine bakery wares with a significantly better nutritional composition than the average range of products positioned as healthier. Important parameters to take into account include energy, saturated fatty acids, sugars, sodium and fibre. Different criteria sets for subcategories of fine bakery wares do not seem necessary.

  7. Profile-driven regression for modeling and runtime optimization of mobile networks

    DEFF Research Database (Denmark)

    McClary, Dan; Syrotiuk, Violet; Kulahci, Murat

    2010-01-01

    of throughput in a mobile ad hoc network, a self-organizing collection of mobile wireless nodes without any fixed infrastructure. The intermediate models generated in profile-driven regression are used to fit an overall model of throughput, and are also used to optimize controllable factors at runtime. Unlike...

  8. Modeling of breath methane concentration profiles during exercise on an ergometer*

    Science.gov (United States)

    Szabó, Anna; Unterkofler, Karl; Mochalski, Pawel; Jandacka, Martin; Ruzsanyi, Vera; Szabó, Gábor; Mohácsi, Árpád; Teschl, Susanne; Teschl, Gerald; King, Julian

    2016-01-01

    We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane. PMID:26828421

  9. Fragility Modeling of Aging Containment Metallic Pressure Boundaries

    International Nuclear Information System (INIS)

    Cherry, J.L.; Ellingwood, B.R.

    1999-01-01

    The containment in a nuclear power plant (NPP) provides a barrier against the release of radioactivity in the event of an accident. Corrosion that has been observed in some steel containments and liners of reinforced concrete containments has raised questions about their ability to perform this function. The performance of corroded containments during events at or beyond the design basis is impacted by numerous sources of uncertainty. A fragility model of the containment provides a relatively simple depiction of the impact of uncertainties on structural performance and a basis for decision-making in the presence of uncertainty. Moreover, it is a necessary ingredient of any time-dependent structural reliability analysis. A nonlinear finite element analysis of containment response furnishes the necessary platform to perform numerical experiments to determine containment fragility. A statistically-based sampling plan minimizes the finite element computations required to develop the fragility curve. The -percentile (or other fractile) then gives a statistically based indication of the lower bound on containment capacity, and can be used as a screening tool to determine whether more refined further analysis or tests to support service life evaluations are warranted

  10. The selection pressures induced non-smooth infectious disease model and bifurcation analysis

    International Nuclear Information System (INIS)

    Qin, Wenjie; Tang, Sanyi

    2014-01-01

    Highlights: • A non-smooth infectious disease model to describe selection pressure is developed. • The effect of selection pressure on infectious disease transmission is addressed. • The key factors which are related to the threshold value are determined. • The stabilities and bifurcations of model have been revealed in more detail. • Strategies for the prevention of emerging infectious disease are proposed. - Abstract: Mathematical models can assist in the design strategies to control emerging infectious disease. This paper deduces a non-smooth infectious disease model induced by selection pressures. Analysis of this model reveals rich dynamics including local, global stability of equilibria and local sliding bifurcations. Model solutions ultimately stabilize at either one real equilibrium or the pseudo-equilibrium on the switching surface of the present model, depending on the threshold value determined by some related parameters. Our main results show that reducing the threshold value to a appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation

  11. Effects of metformin on the glycemic control, lipid profile, and arterial blood pressure of type 2 diabetic patients with metabolic syndrome already on insulin

    Directory of Open Access Journals (Sweden)

    C.A. Mourão-Júnior

    2006-04-01

    Full Text Available Fifty-seven type 2 diabetic patients with metabolic syndrome and on insulin were assessed by a paired analysis before and 6 months after addition of metformin as combination therapy to evaluate the impact of the association on glycemic control, blood pressure, and lipid profile. This was a historical cohort study in which the files of type 2 diabetic patients with metabolic syndrome on insulin were reviewed. The body mass index (BMI, waist circumference, lipid profile, A1C level, fasting blood glucose level, daily dose of NPH insulin, systolic blood pressure, and diastolic blood pressure were assessed in each patient before the start of metformin and 6 months after the initiation of combination therapy. Glycemic control significantly improved (P < 0.001 after the addition of metformin (1404.4 ± 565.5 mg/day, with 14% of the 57 patients reaching A1C levels up to 7%, and 53% reaching values up to 8%. There was a statistically significant reduction (P < 0.05 of total cholesterol (229.0 ± 29.5 to 214.2 ± 25.0 mg/dL, BMI (30.7 ± 5.4 to 29.0 ± 4.0 kg/m², waist circumference (124.6 ± 11.7 to 117.3 ± 9.3 cm, and daily necessity of insulin. The reduction of total cholesterol occurred independently of the reductions of A1C (9.65 ± 1.03 to 8.18 ± 1.01% and BMI and the reduction of BMI and WC did not interfere with the improvement of A1C. In conclusion, our study showed the efficacy of the administration of metformin and insulin simultaneously without negative effects. No changes were detected in HDL-cholesterol or blood pressure.

  12. Effect of the flow profile on separation efficiency in pressure-assisted reversed-polarity capillary zone electrophoresis of anions: Simulation and experimental evaluation.

    Science.gov (United States)

    Jarvas, Gabor; Szigeti, Marton; Guttman, Andras

    2018-02-19

    Capillary electrophoresis connected to electrospray ionization mass spectrometry is a promising combination to analyze complex biological samples. The use of sheathless electrospray ionization interfaces, such as a porous nanoelectrospray capillary emitter, requires the application of forward flow (either by pressure or electroosmosis) to maintain the electrospray process. The analysis of solute molecules with strong negative charges (e.g., aminopyrenetrisulfonate labeled glycans) necessitates a reversed-polarity capillary electrophoresis separation mode, in which case the electroosmotic flow is counter current, thus pressure assistance is necessary. In this study, we compared the effect of forced convection with and without counter electroosmotic flow on the resulting separation efficiency in capillary electrophoresis based on flow profile simulations by computational fluid dynamics technique and by actual experiments. The efficiencies of the detected peaks were calculated from the resulting electropherograms and found approximately 790 000 plates/m for electrophoresis with counter electroosmotic flow, 16 000 plates/m with pressure only (such as would be in open tubular liquid chromatography) and 400 000 plates/m for electrophoresis with simultaneous counter electroosmotic flow and forward pressure assistance, which validates the simulation data. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Evolution, gene expression profiling and 3D modeling of CSLD proteins in cotton.

    Science.gov (United States)

    Li, Yanpeng; Yang, Tiegang; Dai, Dandan; Hu, Ying; Guo, Xiaoyang; Guo, Hongxia

    2017-07-10

    Among CESA-like gene superfamily, the cellulose synthase-like D (CSLD) genes are most similar to cellulose synthase genes and have been reported to be involved in tip-growing cell and stem development. However, there has been no genome-wide characterization of this gene subfamily in cotton. We thus sought to analyze the evolution and functional characterization of CSLD proteins in cotton based on fully sequenced cotton genomes. A total of 23 full-length CSLD proteins were identified in Gossypium raimondii, Gossypium arboreum and Gossypium hirsutum. The phylogenetic tree divided the CSLD proteins into five clades with strong support: CSLD1, CSLD2/3, CSLD4, CSLD5 and CSLD6. The total expression of GhCSLD genes was the highest in androecium & gynoecium (mostly contributed by CSLD1 and CSLD4) compared with other CSL genes. CSLD1 and CSLD4 were only highly expressed in androecium & gynoecium (A&G), and showed tissue-specific expression. The total expression of CSLD2/3, 5 and 6 was highest in the specific tissues. These results suggest that CSLD genes showed the different pattern of expression. Cotton CSLD proteins were subjected to different evolutionary pressures, and the CSLD1 and CSLD4 proteins exhibited episodic and long-term shift positive selection. The predicted three-dimensional structure of GrCSLD1 suggested that GrCSLD1 belongs to glycosyltransferase family 2. The amino acid residues under positive selection in the CSLD1 lineage are positioned in a region adjacent to the class-specific region (CSR), β1-strand and transmembrane helices (TMHs) in the GrCSLD1structure. Our results characterized the CSLD proteins by an integrated approach containing phylogeny, transcriptional profiling and 3D modeling. The study added to the understanding about the importance of the CSLD family and provide a useful reference for selecting candidate genes and their associations with the biosynthesis of the cell wall in cotton.

  14. Experimental analysis of a nuclear reactor prestressed concrete pressure vessels model

    International Nuclear Information System (INIS)

    Vallin, C.

    1980-01-01

    A comprehensible analysis was made of the performance of each set of sensors used to measure the strain and displacement of a 1/20 scale Prestressed Concrete Pressure Vessel (PCPV) model tested at the Instituto de Pesquisas Energeticas e Nucleares (IPEN). Among the three Kinds of sensors used (strain gage, displacement transducers and load cells) the displacement transducers showed the best behavior. The displacemente transducers data was statistically analysed and a linear behavior of the model was observed during the first pressurizations tests. By means of a linear statistical correlation between experimental and expected theoretical data it was found that the model looses the linearity at a pressure between 110-125 atm. (Author) [pt

  15. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    DEFF Research Database (Denmark)

    Orešič, Matej; Anderson, Gabriella; Mattila, Ismo

    2018-01-01

    ) and brain tumors (BT). Blood samples were collected from 27 NPH and 20 BT patients. The profiles of 21 metabolites were examined. Additionally, data from 37 AD patients and 46 controls from a previous study were analyzed together with the newly acquired data. No differences in 2,4-DHB were found across AD...

  16. Pressure prediction model based on artificial neural network optimized by genetic algorithm and its application in quasi-static calibration of piezoelectric high-pressure sensor.

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Jiang, Jian; Shang, Fei; Chen, Jing

    2016-12-01

    This paper applies back propagation neural network (BPNN) optimized by genetic algorithm (GA) for the prediction of pressure generated by a drop-weight device and the quasi-static calibration of piezoelectric high-pressure sensors for the measurement of propellant powder gas pressure. The method can effectively overcome the slow convergence and local minimum problems of BPNN. Based on test data of quasi-static comparison calibration method, a mathematical model between each parameter of drop-weight device and peak pressure and pulse width was established, through which the practical quasi-static calibration without continuously using expensive reference sensors could be realized. Compared with multiple linear regression method, the GA-BPNN model has higher prediction accuracy and stability. The percentages of prediction error of peak pressure and pulse width are less than 0.7% and 0.3%, respectively.

  17. New Indicated Mean Effective Pressure (IMEP) model for predicting crankshaft movement

    International Nuclear Information System (INIS)

    Omran, Rabih; Younes, Rafic; Champoussin, Jean-Claude; Outbib, Rachid

    2011-01-01

    Highlights: → IMEP is essential to estimate the indicated torque in internal combustion engine. → We proposed model which describes the IMEP-Low pressure and the IMEP-High pressure. → We studied the evolution of the IMEP with respect to the engine's variables. → We deduced the variables of influence that can be used to develop the models. → The IMEP model is compared to transient experimental New European Driving Cycle. - Abstract: Indicated Mean Effective Pressure models (IMEP) are essential to estimate the indicated torque in internal combustion engine; they also provide important information about the mechanical efficiency of the engine thermodynamic cycle which describes the conversion of the fuel combustion energy into mechanical work. In the past, many researches were made to improve the IMEP prediction and measurement techniques at different engine operating conditions. In this paper, we proposed a detailed IMEP model which separately describes the IMEP-Low pressure and the IMEP-High pressure of a modern diesel engine; the IMEP is the direct subtraction result between these two variables. We firstly studied the evolution of the IMEP HP and IMEP LP with respect to the engine's variables and then we deduced the variables of influence and the form of the equations that can be used to develop the models. Finally, the models' coefficients were determined based on experimental data collected on a steady state test bench and using the least square regression method. In addition, the IMEP HP model results were compared to transient experimental data collected on a chassis dynamometer test bench; the model results are in excellent agreement with the experimental data.

  18. Cartilage contact pressure elevations in dysplastic hips: a chronic overload model

    Directory of Open Access Journals (Sweden)

    Grosland Nicole M

    2006-10-01

    Full Text Available Abstract Background Developmental dysplasia of the hip (DDH is a condition in which bone growth irregularities subject articular cartilage to higher mechanical stresses, increase susceptibility to subluxation, and elevate the risk of early osteoarthritis. Study objectives were to calculate three-dimensional cartilage contact stresses and to examine increases of accumulated pressure exposure over a gait cycle that may initiate the osteoarthritic process in the human hip, in the absence of trauma or surgical intervention. Methods Patient-specific, non-linear, contact finite element models, constructed from computed tomography arthrograms using a custom-built meshing program, were subjected to normal gait cycle loads. Results Peak contact pressures for dysplastic and asymptomatic hips ranged from 3.56 – 9.88 MPa. Spatially discriminatory cumulative contact pressures ranged from 2.45 – 6.62 MPa per gait cycle. Chronic over-pressure doses, for 2 million cycles per year over 20 years, ranged from 0.463 – 5.85 MPa-years using a 2-MPa damage threshold. Conclusion There were significant differences between the normal control and the asymptomatic hips, and a trend towards significance between the asymptomatic and symptomatic hips of patients afflicted with developmental dysplasia of the hip. The magnitudes of peak cumulative contact pressure differed between apposed articular surfaces. Bone irregularities caused localized pressure elevations and an upward trend between chronic over-pressure exposure and increasing Severin classification.

  19. Modeling and Experimental Investigation of Pressure Field in the Grinding Zone with Nanoparticle Jet of MQL

    Directory of Open Access Journals (Sweden)

    C. H. Li

    2013-01-01

    Full Text Available Solid nano particles were added in minimum quantity lubrication (MQL fluid medium to make nanofluids, that is, after the mixing and atomization of nanoparticle, lubricants and high pressure gas, to inject solid nano particle in the grinding zone with the form of jet flow. The mathematical model of two-phase flow pressure field of grinding zone with nanoparticle jet flow of MQL was established, and the simulation study was conducted. The results show that pressures in the grinding zone increased with the acceleration of grinding wheel, sharply decreased with the increased minimum clearance, and increased with the acceleration of jet flow. At three spraying angles of nozzles, when the nozzle angle was 15°, the pressure of grinding zone along the speed of grinding wheel was larger than the rest two angles. On the experimental platform built by KP-36 precision grinder and nanoparticle jet flow feed way, CY3018 pressure sensor was used to test the regularities of pressure field variations. The impact of the speed of grinding wheel, the gap between workpiece and grinding wheel, jet flow velocity, and spraying angles of nozzles on the pressure field of grinding zone was explored. The experimental result was generally consistent with the theoretical simulation, which verified the accuracy of the theoretical analysis.

  20. Hidden Markov model to predict the amino acid profile

    Science.gov (United States)

    Handamari, Endang Wahyu

    2017-12-01

    Sequence alignment is the basic method in sequence analysis, which is the process of composing or aligning two or more primary sequences so that the sequence similarity is apparent. One of the uses of this method is to predict the structure or function of an unknown protein by using a known protein information structure or function if the protein has the same sequence in database. Protein are macromolecules that make up more than half of the cell. Proteins are a chain of 20 amino acid combinations. Each type of protein has a unique number and sequence of amino acids. The method that can be applied for sequence alignment is the Genetic Algorithm, the other method is related to the Hidden Markov Model (HMM). The Hidden Markov Model (HMM) is a developmental form of the Markov Chain, which can be applied in cases that can not be directly observed. As Observed State (O) for sequence alignment is the sequence of amino acids in three categories: deletion, insertion and match. As for the Hidden State is the amino acid residue, which can determine the family protein corresponds to observation O.