WorldWideScience

Sample records for model prerequisites validation

  1. Investigating Validity of Math 105 as Prerequisite to Math 201 among Undergraduate Students, Nigeria

    Science.gov (United States)

    Zakariya, Yusuf F.

    2016-01-01

    In this study, the author examined the validity of MATH 105 as a prerequisite to MATH 201. The data for this study was extracted directly from the examination results logic of the university. Descriptive statistics in form of correlations and linear regressions were used to analyze the obtained data. Three research questions were formulated and…

  2. A Tale of Two Curricula: The Case for Pre-Requisites in the IS Model Curriculum

    Science.gov (United States)

    Reynolds, John H.; Ferguson, Roger C.; Leidig, Paul M.

    2016-01-01

    The most recent Information Systems (IS) Model Curriculum recommendations is IS2010. While the goal of this revision was to update the curriculum from IS2002, the end result was a change in curriculum design philosophy whereby a pre-requisite structure that fostered increasing depth of knowledge was flattened to make the curriculum easier to…

  3. Prerequisites for sustainable care improvement using the reflective team as a work model

    Directory of Open Access Journals (Sweden)

    Lise-Lotte Jonasson

    2014-10-01

    Full Text Available Several work models for care improvement have been developed in order to meet the requirement for evidence-based care. This study examines a work model for reflection, entitled the reflective team (RT. The main idea behind RTs is that caring skills exist among those who work closest to the patients. The team leader (RTL encourages sustainable care improvement, rooted in research and proven experience, by using a lifeworld perspective to stimulate further reflection and a developmental process leading to research-based caring actions within the team. In order to maintain focus, it is important that the RTL has a clear idea of what sustainable care improvement means, and what the prerequisites are for such improvement. The aim of the present study is, therefore, to explore the prerequisites for improving sustainable care, seeking to answer how RTLs perceive these and use RTs for concrete planning. Nine RTLs were interviewed, and their statements were phenomenographically analysed. The analysis revealed three separate qualitative categories, which describe personal, interpersonal, and structural aspects of the prerequisites. In the discussion, these categories are compared with previous research on reflection, and the conclusion is reached that the optimal conditions for RTs to work, when focussed on sustainable care improvement, occur when the various aspects of the prerequisites are intertwined and become a natural part of the reflective work.

  4. Prerequisites for sustainable care improvement using the reflective team as a work model.

    Science.gov (United States)

    Jonasson, Lise-Lotte; Carlsson, Gunilla; Nyström, Maria

    2014-01-01

    Several work models for care improvement have been developed in order to meet the requirement for evidence-based care. This study examines a work model for reflection, entitled the reflective team (RT). The main idea behind RTs is that caring skills exist among those who work closest to the patients. The team leader (RTL) encourages sustainable care improvement, rooted in research and proven experience, by using a lifeworld perspective to stimulate further reflection and a developmental process leading to research-based caring actions within the team. In order to maintain focus, it is important that the RTL has a clear idea of what sustainable care improvement means, and what the prerequisites are for such improvement. The aim of the present study is, therefore, to explore the prerequisites for improving sustainable care, seeking to answer how RTLs perceive these and use RTs for concrete planning. Nine RTLs were interviewed, and their statements were phenomenographically analysed. The analysis revealed three separate qualitative categories, which describe personal, interpersonal, and structural aspects of the prerequisites. In the discussion, these categories are compared with previous research on reflection, and the conclusion is reached that the optimal conditions for RTs to work, when focussed on sustainable care improvement, occur when the various aspects of the prerequisites are intertwined and become a natural part of the reflective work.

  5. Constraints of Compound Systems: Prerequisites for Thermodynamic Modeling Based on Shannon Entropy

    Directory of Open Access Journals (Sweden)

    Martin Pfleger

    2014-05-01

    Full Text Available Thermodynamic modeling of extensive systems usually implicitly assumes the additivity of entropy. Furthermore, if this modeling is based on the concept of Shannon entropy, additivity of the latter function must also be guaranteed. In this case, the constituents of a thermodynamic system are treated as subsystems of a compound system, and the Shannon entropy of the compound system must be subjected to constrained maximization. The scope of this paper is to clarify prerequisites for applying the concept of Shannon entropy and the maximum entropy principle to thermodynamic modeling of extensive systems. This is accomplished by investigating how the constraints of the compound system have to depend on mean values of the subsystems in order to ensure additivity. Two examples illustrate the basic ideas behind this approach, comprising the ideal gas model and condensed phase lattice systems as limiting cases of fluid phases. The paper is the first step towards developing a new approach for modeling interacting systems using the concept of Shannon entropy.

  6. The Curriculum Prerequisite Network: Modeling the Curriculum as a Complex System

    Science.gov (United States)

    Aldrich, Preston R.

    2015-01-01

    This article advances the prerequisite network as a means to visualize the hidden structure in an academic curriculum. Networks have been used to represent a variety of complex systems ranging from social systems to biochemical pathways and protein interactions. Here, I treat the academic curriculum as a complex system with nodes representing…

  7. The curriculum prerequisite network: Modeling the curriculum as a complex system.

    Science.gov (United States)

    Aldrich, Preston R

    2015-01-01

    This article advances the prerequisite network as a means to visualize the hidden structure in an academic curriculum. Networks have been used to represent a variety of complex systems ranging from social systems to biochemical pathways and protein interactions. Here, I treat the academic curriculum as a complex system with nodes representing courses and links between nodes the course prerequisites as readily obtained from a course catalogue. I show that the catalogue data can be rendered as a directed acyclic graph, which has certain desirable analytical features. Using metrics developed in mathematical graph theory, I characterize the overall structure of the undergraduate curriculum of Benedictine University along with that of its Biochemistry and Molecular Biology program. The latter program is shown to contain hidden community structure that crosses disciplinary boundaries. The overall curriculum is seen as partitioned into numerous isolated course groupings, the size of the groups varying considerably. Individual courses serve different roles in the organization, such as information sources, hubs, and bridges. The curriculum prerequisite network represents the intrinsic, hard-wired constraints on the flow of information in a curriculum, and is the organizational context within which learning occurs. I explore some applications for advising and curriculum reform. © 2015 The International Union of Biochemistry and Molecular Biology.

  8. Model Validation Status Review

    International Nuclear Information System (INIS)

    E.L. Hardin

    2001-01-01

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M and O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  9. Model Validation Status Review

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  10. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...

  11. HEDR model validation plan

    International Nuclear Information System (INIS)

    Napier, B.A.; Gilbert, R.O.; Simpson, J.C.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1993-06-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computational ''tools'' for estimating the possible radiation dose that individuals may have received from past Hanford Site operations. This document describes the planned activities to ''validate'' these tools. In the sense of the HEDR Project, ''validation'' is a process carried out by comparing computational model predictions with field observations and experimental measurements that are independent of those used to develop the model

  12. Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    model structure suggested by University of Lund the WP4 leader. This particular model structure has the advantages that it fits better into the control design frame work used by WP3-4 compared to the model structures previously developed in WP2. The different model structures are first summarised....... Then issues dealing with optimal experimental design is considered. Finally the parameters are estimated in the chosen static and dynamic models and a validation is performed. Two of the static models, one of them the additive model, explains the data well. In case of dynamic models the suggested additive...

  13. Integrated Spatial Modeling using Geoinformatics: A Prerequisite for Natural Resources Management

    Science.gov (United States)

    Katpatal, Y. B.

    2014-12-01

    Every natural system calls for complete visualization for its holistic and sustainable development. Many a times, especially in developing countries, the approaches deviate from this basic paradigm and results in ineffective management of the natural resources. This becomes more relevant in these countries which are witnessing heavy exodus of the rural population to urban areas increasing the pressures on the basic commodities. Spatial technologies which provide the opportunity to enhance the knowledge visualization of the policy makers and administrators which facilitates technical and scientific management of the resources. Increasing population has created negative impacts on the per capita availability of several resources, which has been well accepted in the statistical records of several developing countries. For instance, the per capita availability of water in India has decreased substantially in last decade and groundwater depletion is on the rise. There is hence a need of tool which helps in restoring the resource through visualization and evaluation temporally. Geological parameters play an important role in operation of several natural systems and earth sciences parameters may not be ignored. Spatial technologies enables application of 2D as well as 3D modeling taking into account variety of natural parameters related to diverse areas. The paper presents case studies where spatial technology has helped in not only understanding the natural systems but also providing solutions, especially in Indian context. The case studies relate to Groundwater Management, Watershed and Basin Management, Groundwater recharge, Environment sustainability using spatial technology. Key Words: Spatial model, Groundwater, Hydrogeology, Geoinformatics, Sustainable Development.

  14. Modelling and data prerequisites for specific applications of PSA in the management of nuclear plant safety

    International Nuclear Information System (INIS)

    1994-04-01

    The IAEA has a programme which supports the performance and use of probabilistic safety assessments (PSAS) to improve nuclear safety internationally. The assistance offered in this areas by the IAEA to Member States has traditionally focused on planning, performance and peer review of PSAs. PSA activities within the IAEA's programme in the area of applications are presently being expanded. The various applications of PSAs require that PSAs being developed have certain characteristics in terms of their scope, the degree of details in the modelling, the flexibility in performing desired calculations, the quality and type of the data used, and the assumptions made in treating safety significant aspects. In many cases, existing PSAs or PSAs being completed can be extended to fulfill the requirements for uses in many applications to enhance the safety of nuclear power plants. This report provides information on how to carry such extensions by matching PSA characteristics to various applications that are being considered. This report was prepared by consultants together with the IAEA following the recommendations of a Technical Committee Meeting on PSA Requirements for Use in Safety Management, held by the IAEA in co-operation with the Swedish Nuclear Power Inspectorate in Stockholm, Sweden, 16-20 September 1991. 42 refs, 1 tab

  15. Changes in Math Prerequisites and Student Performance in Business Statistics: Do Math Prerequisites Really Matter?

    OpenAIRE

    Jeffrey J. Green; Courtenay C. Stone; Abera Zegeye; Thomas A. Charles

    2007-01-01

    We use a binary probit model to assess the impact of several changes in math prerequisites on student performance in an undergraduate business statistics course. While the initial prerequisites did not necessarily provide students with the necessary math skills, our study, the first to examine the effect of math prerequisite changes, shows that these changes were deleterious to student performance. Our results helped convince the College of Business to change the math prerequisite again begin...

  16. Validating Animal Models

    Directory of Open Access Journals (Sweden)

    Nina Atanasova

    2015-06-01

    Full Text Available In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of experimental protocols and strengthening their reliability are well justified and they foster rather than preclude the validity of neurobiological knowledge. Thus, their presence indicates thriving rather than crisis of experimental neurobiology.

  17. Definition of the construct to be measured is a prerequisite for the assessment of validity. The Neck Disability Index as an example.

    NARCIS (Netherlands)

    Ailliet, L.; Knol, D.L.; Rubinstein, S.M.; de Vet, H.C.W.; van Tulder, M.W.; Terwee, C.B.

    2013-01-01

    Objective: To determine the content, structural, and construct validity of the Dutch version of the Neck Disability Index (NDI). Study Design and Setting: To assess content validity, 11 neck pain experts and 10 patients commented on the construct, comprehensiveness, and relevance of the NDI.

  18. Validation of Computer Models for Homeland Security Purposes

    International Nuclear Information System (INIS)

    Schweppe, John E.; Ely, James; Kouzes, Richard T.; McConn, Ronald J.; Pagh, Richard T.; Robinson, Sean M.; Siciliano, Edward R.; Borgardt, James D.; Bender, Sarah E.; Earnhart, Alison H.

    2005-01-01

    At Pacific Northwest National Laboratory, we are developing computer models of radiation portal monitors for screening vehicles and cargo. Detailed models of the radiation detection equipment, vehicles, cargo containers, cargos, and radioactive sources have been created. These are used to determine the optimal configuration of detectors and the best alarm algorithms for the detection of items of interest while minimizing nuisance alarms due to the presence of legitimate radioactive material in the commerce stream. Most of the modeling is done with the Monte Carlo code MCNP to describe the transport of gammas and neutrons from extended sources through large, irregularly shaped absorbers to large detectors. A fundamental prerequisite is the validation of the computational models against field measurements. We describe the first step of this validation process, the comparison of the models to measurements with bare static sources

  19. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets to...

  20. Validating Dart Model

    Directory of Open Access Journals (Sweden)

    Mazur Jolanta

    2014-12-01

    Full Text Available The primary objective of the study was to quantitatively test the DART model, which despite being one of the most popular representations of co-creation concept was so far studied almost solely with qualitative methods. To this end, the researchers developed a multiple measurement scale and employed it in interviewing managers. The statistical evidence for adequacy of the model was obtained through CFA with AMOS software. The findings suggest that the DART model may not be an accurate representation of co-creation practices in companies. From the data analysis it was evident that the building blocks of DART had too much of conceptual overlap to be an effective framework for quantitative analysis. It was also implied that the phenomenon of co-creation is so rich and multifaceted that it may be more adequately captured by a measurement model where co-creation is conceived as a third-level factor with two layers of intermediate latent variables.

  1. Large-scale external validation and comparison of prognostic models: an application to chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Guerra, Beniamino; Haile, Sarah R.; Lamprecht, Bernd; Ramírez, Ana S.; Martinez-Camblor, Pablo; Kaiser, Bernhard; Alfageme, Inmaculada; Almagro, Pere; Casanova, Ciro; Esteban-González, Cristóbal; Soler-Cataluña, Juan J.; de-Torres, Juan P.; Miravitlles, Marc; Celli, Bartolome R.; Marin, Jose M.; ter Riet, Gerben; Sobradillo, Patricia; Lange, Peter; Garcia-Aymerich, Judith; Antó, Josep M.; Turner, Alice M.; Han, MeiLan K.; Langhammer, Arnulf; Leivseth, Linda; Bakke, Per; Johannessen, Ane; Oga, Toru; Cosio, Borja; Ancochea-Bermúdez, Julio; Echazarreta, Andres; Roche, Nicolas; Burgel, Pierre-Régis; Sin, Don D.; Soriano, Joan B.; Puhan, Milo A.

    2018-01-01

    External validations and comparisons of prognostic models or scores are a prerequisite for their use in routine clinical care but are lacking in most medical fields including chronic obstructive pulmonary disease (COPD). Our aim was to externally validate and concurrently compare prognostic scores

  2. Prerequisites for Affective Signal Processing (ASP) - Part II

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; Healey, Jennifer A.; van der Zwaag, Marjolein; Fred, A.; Filipe, J.; Gamboa, H.

    2010-01-01

    Last year, in van den Broek et al. (2009a), a start was made with defining prerequisites for affective signal processing (ASP). Four prerequisites were identified: validation (e.g., mapping of constructs on signals), triangulation, a physiology-driven approach, and contributions of the signal

  3. Prerequisites for Affective Signal Processing (ASP) - Part III

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; van der Zwaag, Marjolein D.; Healey, Jennifer A.; Fred, A.; Filipe, J.; Gamboa, H.

    2010-01-01

    This is the third part in a series on prerequisites for affective signal processing (ASP). So far, six prerequisites were identified: validation (e.g., mapping of constructs on signals), triangulation, a physiology-driven approach, and contributions of the signal processing community (van den Broek

  4. [Transparency as a prerequisite of innovation in health services research: deficits in the reporting of model projects concerning managed care].

    Science.gov (United States)

    Wiethege, J; Ommen, O; Ernstmann, N; Pfaff, H

    2010-10-01

    Currently, elements of managed care are being implemented in the German health-care system. The legal basis for these innovations are § 140, § 73, § 137, and §§ 63 et seq. of the German Social Code - Part 5 (SGB V). For the model projects according to §§ 63 et seq. of the German Social Code a scientific evaluation and publication of the evaluation results is mandatory. The present study examines the status of evaluation of German model projects. The present study has a mixed method design: A mail and telephone survey with the German Federal Social Insurance Authority, the health insurance funds, and the regional Associations of Statutory Health Insurance Physicians has been conducted. Furthermore, an internet research on "Medpilot" and "Google" has been accomplished to search for model projects and their evaluation reports. 34 model projects met the inclusion criteria. 13 of these projects had been terminated up to 30/9/2008. 6 of them have published an evaluation report. 4 model projects have published substantial documents. One model project in progress has published a meaningful interim report. 12 model projects failed to give information concerning the evaluator or the duration of the model projects. The results show a significant deficit in the mandatory reporting of the evaluation of model projects in Germany. There is a need for action for the legislator and the health insurance funds in terms of promoting the evaluation and the publication of the results. The institutions evaluating the model projects should obligate themselves to publish the evaluation results. The publication is an essential precondition for the development of managed care structures in the health-care system and in the development of scientific evaluation methods. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition

    Science.gov (United States)

    Woodward, Bill

    2016-01-01

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition. PMID:27077845

  6. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    Science.gov (United States)

    Bland, Michael T.; McKinnon, William B.

    2018-01-01

    Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that

  7. Validation process of simulation model

    International Nuclear Information System (INIS)

    San Isidro, M. J.

    1998-01-01

    It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs

  8. Statistical validation of stochastic models

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, N.F. [Los Alamos National Lab., NM (United States). Engineering Science and Analysis Div.; Barney, P.; Paez, T.L. [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.; Ferregut, C.; Perez, L. [Univ. of Texas, El Paso, TX (United States). Dept. of Civil Engineering

    1996-12-31

    It is common practice in structural dynamics to develop mathematical models for system behavior, and the authors are now capable of developing stochastic models, i.e., models whose parameters are random variables. Such models have random characteristics that are meant to simulate the randomness in characteristics of experimentally observed systems. This paper suggests a formal statistical procedure for the validation of mathematical models of stochastic systems when data taken during operation of the stochastic system are available. The statistical characteristics of the experimental system are obtained using the bootstrap, a technique for the statistical analysis of non-Gaussian data. The authors propose a procedure to determine whether or not a mathematical model is an acceptable model of a stochastic system with regard to user-specified measures of system behavior. A numerical example is presented to demonstrate the application of the technique.

  9. Verification and validation of models

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkinson, D.P.; Jackson, C.P.; Lever, D.A.; Robinson, P.C.

    1986-12-01

    The numerical accuracy of the computer models for groundwater flow and radionuclide transport that are to be used in repository safety assessment must be tested, and their ability to describe experimental data assessed: they must be verified and validated respectively. Also appropriate ways to use the codes in performance assessments, taking into account uncertainties in present data and future conditions, must be studied. These objectives are being met by participation in international exercises, by developing bench-mark problems, and by analysing experiments. In particular the project has funded participation in the HYDROCOIN project for groundwater flow models, the Natural Analogues Working Group, and the INTRAVAL project for geosphere models. (author)

  10. Calculating the spatio-temporal variability of bedrock exposure on seasonal hydrograph timescales as a prerequisite to modeling bedrock river evolution

    Science.gov (United States)

    Hurst, A. A.; Anderson, R. S.; Tucker, G. E.

    2017-12-01

    Erosion of bedrock river channels exerts significant control on landscape evolution because it communicates climatic and tectonic signals across a landscape by setting the lower erosional boundaries for hillslopes. Hillslope erosion delivers sediment to the channels, which then either store or transport the sediment. At times of high storage, access to the bedrock floor of the channel is limited, inhibiting bedrock erosion. This affects the timescale of channel response to imposed base-level lowering, which in turn affects hillslope erosion. Because occasional exposure of the bedrock bed is a minimum prerequisite for bedrock erosion, we seek to understand the evolution of sediment cover, or scour history, with sufficient resolution to answer when and where the bed is exposed. The scour history at a site is governed by grain size, bed and channel morphology, sediment concentration in the water, and seasonal flow conditions (hydrograph). The transient nature of bedrock exposure during high-flow events implies that short-term sediment cover dynamics are important for predicting long-term bedrock incision rates. Models of channel profile evolution, or of landscape evolution, generally ignore evolution of sediment cover on the hydrograph timescale. To develop insight into the necessary and sufficient conditions for bedrock exposure followed by reburial, we have developed a 1-D model of the evolution of alluvial cover thickness in a long channel profile in response to a seasonal hydrograph. This model tracks erosion, deposition, and the concentration of sediment in the water column separately, and generates histories of scour and fill over the course of the hydrograph. We compare the model's predictions with net-scour measurements in tributaries of the Grand Canyon and with scour-chain and accelerometer measurements in the Cedar River, Washington. By addressing alluvial scour on short timescales, we acknowledge the processes required to allow bedrock incision and

  11. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  12. Discovering Prerequisite Structure of Skills through Probabilistic Association Rules Mining

    Science.gov (United States)

    Chen, Yang; Wuillemin, Pierre-Henr; Labat, Jean-Marc

    2015-01-01

    Estimating the prerequisite structure of skills is a crucial issue in domain modeling. Students usually learn skills in sequence since the preliminary skills need to be learned prior to the complex skills. The prerequisite relations between skills underlie the design of learning sequence and adaptation strategies for tutoring systems. The…

  13. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  14. Geochemistry Model Validation Report: External Accumulation Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Zarrabi

    2001-09-27

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  15. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    Zarrabi, K.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  16. PRICES - PREREQUISITE OF MARKET DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    VĂDUVA MARIA

    2017-08-01

    Full Text Available Prices are the key points of transfer and interactions. Balance means knowing the real demand and adapting thier supply at its level and structure. In studying the prices, the knowledge of economic content and the mechanism of their formation in exchange process is a crucial prerequisites to accomplish the transition from theoretical foundations to practical foundations of concrete modalities, of pricing techniques. If demand can assimilate the production of considered enterprises, then the manufacturer is concerned to determine that level of production for which will get maximum profit, profitability threshold, elasticity of supply compared with the price, to choose the best outlet. Price depends on the intersection of demand and supply

  17. Validation of systems biology models

    NARCIS (Netherlands)

    Hasdemir, D.

    2015-01-01

    The paradigm shift from qualitative to quantitative analysis of biological systems brought a substantial number of modeling approaches to the stage of molecular biology research. These include but certainly are not limited to nonlinear kinetic models, static network models and models obtained by the

  18. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  19. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  20. Model validation: Correlation for updating

    Indian Academy of Sciences (India)

    Department of Mechanical Engineering, Imperial College of Science, ... If we are unable to obtain a satisfactory degree of correlation between the initial theoretical model and the test data, then it is extremely unlikely that any form of model updating (correcting the model to match the test data) will succeed. Thus, a successful ...

  1. Base Flow Model Validation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets to...

  2. Validating EHR clinical models using ontology patterns.

    Science.gov (United States)

    Martínez-Costa, Catalina; Schulz, Stefan

    2017-12-01

    Clinical models are artefacts that specify how information is structured in electronic health records (EHRs). However, the makeup of clinical models is not guided by any formal constraint beyond a semantically vague information model. We address this gap by advocating ontology design patterns as a mechanism that makes the semantics of clinical models explicit. This paper demonstrates how ontology design patterns can validate existing clinical models using SHACL. Based on the Clinical Information Modelling Initiative (CIMI), we show how ontology patterns detect both modeling and terminology binding errors in CIMI models. SHACL, a W3C constraint language for the validation of RDF graphs, builds on the concept of "Shape", a description of data in terms of expected cardinalities, datatypes and other restrictions. SHACL, as opposed to OWL, subscribes to the Closed World Assumption (CWA) and is therefore more suitable for the validation of clinical models. We have demonstrated the feasibility of the approach by manually describing the correspondences between six CIMI clinical models represented in RDF and two SHACL ontology design patterns. Using a Java-based SHACL implementation, we found at least eleven modeling and binding errors within these CIMI models. This demonstrates the usefulness of ontology design patterns not only as a modeling tool but also as a tool for validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  4. Evidential Model Validation under Epistemic Uncertainty

    Directory of Open Access Journals (Sweden)

    Wei Deng

    2018-01-01

    Full Text Available This paper proposes evidence theory based methods to both quantify the epistemic uncertainty and validate computational model. Three types of epistemic uncertainty concerning input model data, that is, sparse points, intervals, and probability distributions with uncertain parameters, are considered. Through the proposed methods, the given data will be described as corresponding probability distributions for uncertainty propagation in the computational model, thus, for the model validation. The proposed evidential model validation method is inspired by the idea of Bayesian hypothesis testing and Bayes factor, which compares the model predictions with the observed experimental data so as to assess the predictive capability of the model and help the decision making of model acceptance. Developed by the idea of Bayes factor, the frame of discernment of Dempster-Shafer evidence theory is constituted and the basic probability assignment (BPA is determined. Because the proposed validation method is evidence based, the robustness of the result can be guaranteed, and the most evidence-supported hypothesis about the model testing will be favored by the BPA. The validity of proposed methods is illustrated through a numerical example.

  5. Model validation: Correlation for updating

    Indian Academy of Sciences (India)

    of refining the theoretical model which will be used for the design optimisation process. There are many different names given to the tasks involved in this refinement. .... slightly from the ideal line but in a systematic rather than a random fashion as this situation suggests that there is a specific characteristic responsible for the ...

  6. Validating the passenger traffic model for Copenhagen

    DEFF Research Database (Denmark)

    Overgård, Christian Hansen; VUK, Goran

    2006-01-01

    The paper presents a comprehensive validation procedure for the passenger traffic model for Copenhagen based on external data from the Danish national travel survey and traffic counts. The model was validated for the years 2000 to 2004, with 2004 being of particular interest because the Copenhagen...... matched the observed traffic better than those of the transit assignment model. With respect to the metro forecasts, the model over-predicts metro passenger flows by 10% to 50%. The wide range of findings from the project resulted in two actions. First, a project was started in January 2005 to upgrade...

  7. BIOMOVS: an international model validation study

    International Nuclear Information System (INIS)

    Haegg, C.; Johansson, G.

    1988-01-01

    BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (author)

  8. BIOMOVS: An international model validation study

    International Nuclear Information System (INIS)

    Haegg, C.; Johansson, G.

    1987-01-01

    BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (orig.)

  9. On validation of multibody musculoskeletal models

    DEFF Research Database (Denmark)

    Lund, Morten Enemark; de Zee, Mark; Andersen, Michael Skipper

    2012-01-01

    This paper reviews the opportunities to validate multibody musculoskeletal models in view of the current transition of musculoskeletal modelling from a research topic to a practical simulation tool in product design, healthcare and other important applications. This transition creates a new need...

  10. Validation of models with proportional bias

    Directory of Open Access Journals (Sweden)

    Salvador Medina-Peralta

    2017-01-01

    Full Text Available Objective. This paper presents extensions to Freese’s statistical method for model-validation when proportional bias (PB is present in the predictions. The method is illustrated with data from a model that simulates grassland growth. Materials and methods. The extensions to validate models with PB were: the maximum anticipated error for the original proposal, hypothesis testing, and the maximum anticipated error for the alternative proposal, and the confidence interval for a quantile of error distribution. Results. The tested model had PB, which once removed, and with a confidence level of 95%, the magnitude of error does not surpass 1225.564 kg ha-1. Therefore, the validated model can be used to predict grassland growth. However, it would require a fit of its structure based on the presence of PB. Conclusions. The extensions presented to validate models with PB are applied without modification in the model structure. Once PB is corrected, the confidence interval for the quantile 1-α of the error distribution enables a higher bound for the magnitude of the prediction error and it can be used to evaluate the evolution of the model for a system prediction.

  11. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  12. Validation of the IMS CORE Diabetes Model.

    Science.gov (United States)

    McEwan, Phil; Foos, Volker; Palmer, James L; Lamotte, Mark; Lloyd, Adam; Grant, David

    2014-09-01

    The IMS CORE Diabetes Model (CDM) is a widely published and validated simulation model applied in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) analyses. Validation to external studies is an important part of demonstrating model credibility. Because the CDM is widely used to estimate long-term clinical outcomes in diabetes patients, the objective of this analysis was to validate the CDM to contemporary outcomes studies, including those with long-term follow-up periods. A total of 112 validation simulations were performed, stratified by study follow-up duration. For long-term results (≥15-year follow-up), simulation cohorts representing baseline Diabetes Control and Complications Trial (DCCT) and United Kingdom Prospective Diabetes Study (UKPDS) cohorts were generated and intensive and conventional treatment arms were defined in the CDM. Predicted versus observed macrovascular and microvascular complications and all-cause mortality were assessed using the coefficient of determination (R(2)) goodness-of-fit measure. Across all validation studies, the CDM simulations produced an R(2) statistic of 0.90. For validation studies with a follow-up duration of less than 15 years, R(2) values of 0.90 and 0.88 were achieved for T1DM and T2DM respectively. In T1DM, validating against 30-year outcomes data (DCCT) resulted in an R(2) of 0.72. In T2DM, validating against 20-year outcomes data (UKPDS) resulted in an R(2) of 0.92. This analysis supports the CDM as a credible tool for predicting the absolute number of clinical events in DCCT- and UKPDS-like populations. With increasing incidence of diabetes worldwide, the CDM is particularly important for health care decision makers, for whom the robust evaluation of health care policies is essential. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. A discussion on validation of hydrogeological models

    International Nuclear Information System (INIS)

    Carrera, J.; Mousavi, S.F.; Usunoff, E.J.; Sanchez-Vila, X.; Galarza, G.

    1993-01-01

    Groundwater flow and solute transport are often driven by heterogeneities that elude easy identification. It is also difficult to select and describe the physico-chemical processes controlling solute behaviour. As a result, definition of a conceptual model involves numerous assumptions both on the selection of processes and on the representation of their spatial variability. Validating a numerical model by comparing its predictions with actual measurements may not be sufficient for evaluating whether or not it provides a good representation of 'reality'. Predictions will be close to measurements, regardless of model validity, if these are taken from experiments that stress well-calibrated model modes. On the other hand, predictions will be far from measurements when model parameters are very uncertain, even if the model is indeed a very good representation of the real system. Hence, we contend that 'classical' validation of hydrogeological models is not possible. Rather, models should be viewed as theories about the real system. We propose to follow a rigorous modeling approach in which different sources of uncertainty are explicitly recognized. The application of one such approach is illustrated by modeling a laboratory uranium tracer test performed on fresh granite, which was used as Test Case 1b in INTRAVAL. (author)

  14. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  15. Global precipitation measurements for validating climate models

    Science.gov (United States)

    Tapiador, F. J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G. J.; Kidd, C.; Kucera, P. A.; Kummerow, C. D.; Masunaga, H.; Petersen, W. A.; Roca, R.; Sánchez, J.-L.; Tao, W.-K.; Turk, F. J.

    2017-11-01

    The advent of global precipitation data sets with increasing temporal span has made it possible to use them for validating climate models. In order to fulfill the requirement of global coverage, existing products integrate satellite-derived retrievals from many sensors with direct ground observations (gauges, disdrometers, radars), which are used as reference for the satellites. While the resulting product can be deemed as the best-available source of quality validation data, awareness of the limitations of such data sets is important to avoid extracting wrong or unsubstantiated conclusions when assessing climate model abilities. This paper provides guidance on the use of precipitation data sets for climate research, including model validation and verification for improving physical parameterizations. The strengths and limitations of the data sets for climate modeling applications are presented, and a protocol for quality assurance of both observational databases and models is discussed. The paper helps elaborating the recent IPCC AR5 acknowledgment of large observational uncertainties in precipitation observations for climate model validation.

  16. Validation of Hadronic Models in GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Koi, Tatsumi; Wright, Dennis H.; /SLAC; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Truscott,; Lei, Fan; /QinetiQ; Wellisch, Hans-Peter

    2007-09-26

    Geant4 is a software toolkit for the simulation of the passage of particles through matter. It has abundant hadronic models from thermal neutron interactions to ultra relativistic hadrons. An overview of validations in Geant4 hadronic physics is presented based on thin target measurements. In most cases, good agreement is available between Monte Carlo prediction and experimental data; however, several problems have been detected which require some improvement in the models.

  17. Prerequisites for affective signal processing (ASP)

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; Westerink, Joyce H.D.M.; Healey, Jennifer A.; Encarnacao, P.; Veloso, A.

    2009-01-01

    Although emotions are embraced by science, their recognition has not reached a satisfying level. Through a concise overview of affect, its signals, features, and classification methods, we provide understanding for the problems encountered. Next, we identify the prerequisites for successful

  18. Prerequisites for Correctness in Legal Argumentation

    OpenAIRE

    Mackuvienė, Eglė

    2011-01-01

    A phenomenon called legal argumentation is analyzed in the dissertation. The aim of the thesis is to identify the prerequisites that allow to consider the legal argumentation to be correct, also to evaluate those prerequisites logically. Legal argumentation is analyzed as a phenomenon per se, without relating it to any particular arguing subject. Other dimensions of the process of making a legal decision, such as legal reasoning, legal discourse, interpretation of law and others are discu...

  19. Calibration and validation of rockfall models

    Science.gov (United States)

    Frattini, Paolo; Valagussa, Andrea; Zenoni, Stefania; Crosta, Giovanni B.

    2013-04-01

    Calibrating and validating landslide models is extremely difficult due to the particular characteristic of landslides: limited recurrence in time, relatively low frequency of the events, short durability of post-event traces, poor availability of continuous monitoring data, especially for small landslide and rockfalls. For this reason, most of the rockfall models presented in literature completely lack calibration and validation of the results. In this contribution, we explore different strategies for rockfall model calibration and validation starting from both an historical event and a full-scale field test. The event occurred in 2012 in Courmayeur (Western Alps, Italy), and caused serious damages to quarrying facilities. This event has been studied soon after the occurrence through a field campaign aimed at mapping the blocks arrested along the slope, the shape and location of the detachment area, and the traces of scars associated to impacts of blocks on the slope. The full-scale field test was performed by Geovert Ltd in the Christchurch area (New Zealand) after the 2011 earthquake. During the test, a number of large blocks have been mobilized from the upper part of the slope and filmed with high velocity cameras from different viewpoints. The movies of each released block were analysed to identify the block shape, the propagation path, the location of impacts, the height of the trajectory and the velocity of the block along the path. Both calibration and validation of rockfall models should be based on the optimization of the agreement between the actual trajectories or location of arrested blocks and the simulated ones. A measure that describe this agreement is therefore needed. For calibration purpose, this measure should simple enough to allow trial and error repetitions of the model for parameter optimization. In this contribution we explore different calibration/validation measures: (1) the percentage of simulated blocks arresting within a buffer of the

  20. A methodology for PSA model validation

    International Nuclear Information System (INIS)

    Unwin, S.D.

    1995-09-01

    This document reports Phase 2 of work undertaken by Science Applications International Corporation (SAIC) in support of the Atomic Energy Control Board's Probabilistic Safety Assessment (PSA) review. A methodology is presented for the systematic review and evaluation of a PSA model. These methods are intended to support consideration of the following question: To within the scope and depth of modeling resolution of a PSA study, is the resultant model a complete and accurate representation of the subject plant? This question was identified as a key PSA validation issue in SAIC's Phase 1 project. The validation methods are based on a model transformation process devised to enhance the transparency of the modeling assumptions. Through conversion to a 'success-oriented' framework, a closer correspondence to plant design and operational specifications is achieved. This can both enhance the scrutability of the model by plant personnel, and provide an alternative perspective on the model that may assist in the identification of deficiencies. The model transformation process is defined and applied to fault trees documented in the Darlington Probabilistic Safety Evaluation. A tentative real-time process is outlined for implementation and documentation of a PSA review based on the proposed methods. (author). 11 refs., 9 tabs., 30 refs

  1. Paleoclimate validation of a numerical climate model

    International Nuclear Information System (INIS)

    Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.

    1994-01-01

    An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE's Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented

  2. Validation of the STAFF-5 computer model

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Fields, S.R.

    1981-04-01

    STAFF-5 is a dynamic heat-transfer-fluid-flow stress model designed for computerized prediction of the temperature-stress performance of spent LWR fuel assemblies under storage/disposal conditions. Validation of the temperature calculating abilities of this model was performed by comparing temperature calculations under specified conditions to experimental data from the Engine Maintenance and Dissassembly (EMAD) Fuel Temperature Test Facility and to calculations performed by Battelle Pacific Northwest Laboratory (PNL) using the HYDRA-1 model. The comparisons confirmed the ability of STAFF-5 to calculate representative fuel temperatures over a considerable range of conditions, as a first step in the evaluation and prediction of fuel temperature-stress performance

  3. SPR Hydrostatic Column Model Verification and Validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Gram, Inc. Albuquerque, NM (United States)

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  4. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    Lever, D.A.

    1987-08-01

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  5. Predictive validation of an influenza spread model.

    Directory of Open Access Journals (Sweden)

    Ayaz Hyder

    Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve

  6. Predictive Validation of an Influenza Spread Model

    Science.gov (United States)

    Hyder, Ayaz; Buckeridge, David L.; Leung, Brian

    2013-01-01

    Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive

  7. Seclazone Reactor Modeling And Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Osinga, T. [ETH-Zuerich (Switzerland); Olalde, G. [CNRS Odeillo (France); Steinfeld, A. [PSI and ETHZ (Switzerland)

    2005-03-01

    A numerical model is formulated for the SOLZINC solar chemical reactor for the production of Zn by carbothermal reduction of ZnO. The model involves solving, by the finite-volume technique, a 1D unsteady state energy equation that couples heat transfer to the chemical kinetics for a shrinking packed bed exposed to thermal radiation. Validation is accomplished by comparison with experimentally measured temperature profiles and Zn production rates as a function of time, obtained for a 5-kW solar reactor tested at PSI's solar furnace. (author)

  8. Turbulence Modeling Validation, Testing, and Development

    Science.gov (United States)

    Bardina, J. E.; Huang, P. G.; Coakley, T. J.

    1997-01-01

    The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

  9. Validation of a phytoremediation computer model

    International Nuclear Information System (INIS)

    Corapcioglu, M.Y.; Sung, K.; Rhykerd, R.L.; Munster, C.; Drew, M.

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg -1 ] TNT, PBB and chrysene. Vegetated and unvegetated treatments were conducted in triplicate to obtain data regarding contaminant concentrations in the soil, plant roots, root distribution, microbial activity, plant water use and soil moisture. When given the parameters of time and depth, the model successfully predicted contaminant concentrations under actual field conditions. Other model parameters are currently being evaluated. 15 refs., 2 figs

  10. Towards policy relevant environmental modeling: contextual validity and pragmatic models

    Science.gov (United States)

    Miles, Scott B.

    2000-01-01

    "What makes for a good model?" In various forms, this question is a question that, undoubtedly, many people, businesses, and institutions ponder with regards to their particular domain of modeling. One particular domain that is wrestling with this question is the multidisciplinary field of environmental modeling. Examples of environmental models range from models of contaminated ground water flow to the economic impact of natural disasters, such as earthquakes. One of the distinguishing claims of the field is the relevancy of environmental modeling to policy and environment-related decision-making in general. A pervasive view by both scientists and decision-makers is that a "good" model is one that is an accurate predictor. Thus, determining whether a model is "accurate" or "correct" is done by comparing model output to empirical observations. The expected outcome of this process, usually referred to as "validation" or "ground truthing," is a stamp on the model in question of "valid" or "not valid" that serves to indicate whether or not the model will be reliable before it is put into service in a decision-making context. In this paper, I begin by elaborating on the prevailing view of model validation and why this view must change. Drawing from concepts coming out of the studies of science and technology, I go on to propose a contextual view of validity that can overcome the problems associated with "ground truthing" models as an indicator of model goodness. The problem of how we talk about and determine model validity has much to do about how we perceive the utility of environmental models. In the remainder of the paper, I argue that we should adopt ideas of pragmatism in judging what makes for a good model and, in turn, developing good models. From such a perspective of model goodness, good environmental models should facilitate communication, convey—not bury or "eliminate"—uncertainties, and, thus, afford the active building of consensus decisions, instead

  11. Concepts of Model Verification and Validation

    International Nuclear Information System (INIS)

    Thacker, B.H.; Doebling, S.W.; Hemez, F.M.; Anderson, M.C.; Pepin, J.E.; Rodriguez, E.A.

    2004-01-01

    Model verification and validation (VandV) is an enabling methodology for the development of computational models that can be used to make engineering predictions with quantified confidence. Model VandV procedures are needed by government and industry to reduce the time, cost, and risk associated with full-scale testing of products, materials, and weapon systems. Quantifying the confidence and predictive accuracy of model calculations provides the decision-maker with the information necessary for making high-consequence decisions. The development of guidelines and procedures for conducting a model VandV program are currently being defined by a broad spectrum of researchers. This report reviews the concepts involved in such a program. Model VandV is a current topic of great interest to both government and industry. In response to a ban on the production of new strategic weapons and nuclear testing, the Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship Program (SSP). An objective of the SSP is to maintain a high level of confidence in the safety, reliability, and performance of the existing nuclear weapons stockpile in the absence of nuclear testing. This objective has challenged the national laboratories to develop high-confidence tools and methods that can be used to provide credible models needed for stockpile certification via numerical simulation. There has been a significant increase in activity recently to define VandV methods and procedures. The U.S. Department of Defense (DoD) Modeling and Simulation Office (DMSO) is working to develop fundamental concepts and terminology for VandV applied to high-level systems such as ballistic missile defense and battle management simulations. The American Society of Mechanical Engineers (ASME) has recently formed a Standards Committee for the development of VandV procedures for computational solid mechanics models. The Defense Nuclear Facilities Safety Board (DNFSB) has been a proponent of model

  12. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  13. Assessment model validity document FARF31

    International Nuclear Information System (INIS)

    Elert, Mark; Gylling Bjoern; Lindgren, Maria

    2004-08-01

    The prime goal of model validation is to build confidence in the model concept and that the model is fit for its intended purpose. In other words: Does the model predict transport in fractured rock adequately to be used in repository performance assessments. Are the results reasonable for the type of modelling tasks the model is designed for. Commonly, in performance assessments a large number of realisations of flow and transport is made to cover the associated uncertainties. Thus, the flow and transport including radioactive chain decay are preferably calculated in the same model framework. A rather sophisticated concept is necessary to be able to model flow and radionuclide transport in the near field and far field of a deep repository, also including radioactive chain decay. In order to avoid excessively long computational times there is a need for well-based simplifications. For this reason, the far field code FARF31 is made relatively simple, and calculates transport by using averaged entities to represent the most important processes. FARF31 has been shown to be suitable for the performance assessments within the SKB studies, e.g. SR 97. Among the advantages are that it is a fast, simple and robust code, which enables handling of many realisations with wide spread in parameters in combination with chain decay of radionuclides. Being a component in the model chain PROPER, it is easy to assign statistical distributions to the input parameters. Due to the formulation of the advection-dispersion equation in FARF31 it is possible to perform the groundwater flow calculations separately.The basis for the modelling is a stream tube, i.e. a volume of rock including fractures with flowing water, with the walls of the imaginary stream tube defined by streamlines. The transport within the stream tube is described using a dual porosity continuum approach, where it is assumed that rock can be divided into two distinct domains with different types of porosity

  14. Assessment model validity document FARF31

    Energy Technology Data Exchange (ETDEWEB)

    Elert, Mark; Gylling Bjoern; Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden)

    2004-08-01

    The prime goal of model validation is to build confidence in the model concept and that the model is fit for its intended purpose. In other words: Does the model predict transport in fractured rock adequately to be used in repository performance assessments. Are the results reasonable for the type of modelling tasks the model is designed for. Commonly, in performance assessments a large number of realisations of flow and transport is made to cover the associated uncertainties. Thus, the flow and transport including radioactive chain decay are preferably calculated in the same model framework. A rather sophisticated concept is necessary to be able to model flow and radionuclide transport in the near field and far field of a deep repository, also including radioactive chain decay. In order to avoid excessively long computational times there is a need for well-based simplifications. For this reason, the far field code FARF31 is made relatively simple, and calculates transport by using averaged entities to represent the most important processes. FARF31 has been shown to be suitable for the performance assessments within the SKB studies, e.g. SR 97. Among the advantages are that it is a fast, simple and robust code, which enables handling of many realisations with wide spread in parameters in combination with chain decay of radionuclides. Being a component in the model chain PROPER, it is easy to assign statistical distributions to the input parameters. Due to the formulation of the advection-dispersion equation in FARF31 it is possible to perform the groundwater flow calculations separately.The basis for the modelling is a stream tube, i.e. a volume of rock including fractures with flowing water, with the walls of the imaginary stream tube defined by streamlines. The transport within the stream tube is described using a dual porosity continuum approach, where it is assumed that rock can be divided into two distinct domains with different types of porosity

  15. Validation of the filament winding process model

    Science.gov (United States)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  16. Atmospheric corrosion: statistical validation of models

    International Nuclear Information System (INIS)

    Diaz, V.; Martinez-Luaces, V.; Guineo-Cobs, G.

    2003-01-01

    In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs

  17. SDG and qualitative trend based model multiple scale validation

    Science.gov (United States)

    Gao, Dong; Xu, Xin; Yin, Jianjin; Zhang, Hongyu; Zhang, Beike

    2017-09-01

    Verification, Validation and Accreditation (VV&A) is key technology of simulation and modelling. For the traditional model validation methods, the completeness is weak; it is carried out in one scale; it depends on human experience. The SDG (Signed Directed Graph) and qualitative trend based multiple scale validation is proposed. First the SDG model is built and qualitative trends are added to the model. And then complete testing scenarios are produced by positive inference. The multiple scale validation is carried out by comparing the testing scenarios with outputs of simulation model in different scales. Finally, the effectiveness is proved by carrying out validation for a reactor model.

  18. Prerequisites for Successful Strategic Partnerships for Sustainable Building Renovation

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Johansen, Jakob Berg; Thuesen, Christian

    The purpose of this paper is to identify the prerequisites for establishing successful strategic partnerships in relation to renovating buildings sustainably. Establishing strategic partnerships is in the paper seen as a potential way to make building renovation more sustainable in Denmark...... and analysis of strategic partnerships models as well as typical processes used in building renovation. Experiences from development of new strategic partnerships have particularly been found in the UK and Sweden. Based on two workshops with practitioners representing the whole value chain in the construction...... industry and analyses of two exemplary cases the paper suggests prerequisites for establishing successful strategic partnerships for sustainable building renovation. The results show that strategic partnerships are collaborations set up between two or more organizations that remain independent...

  19. Unit testing, model validation, and biological simulation.

    Science.gov (United States)

    Sarma, Gopal P; Jacobs, Travis W; Watts, Mark D; Ghayoomie, S Vahid; Larson, Stephen D; Gerkin, Richard C

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  20. PREREQUISITES OF THE RESOLUTION OF A CONTRACT

    Directory of Open Access Journals (Sweden)

    Vlad-Victor OCHEA

    2017-05-01

    Full Text Available I herein want to emphasise the prerequisites of the resolution of a contract according to the Romanian Civil Code of 2009. The prerequisites of the resolution of a contract are substantially different from those identified under the former fundamental civil legislation (the Romanian Civil code of 1864. This study aims at a better understanding of the new prerequisites of the resolution of a contract: a. a fundamental non-performance of the obligation; b. an unjustified non-performance of the obligation; c. mora debitoris The analysis of these prerequisites reveals a new possible trait of the resolution: a remedy for the non-performance of the contract rather than a sanction or a variety of contractual liability. Thus the modern legislator of the Romanian Civil Code of 2009 proposed to partially change the physiognomy of the resolution of a contract, different from the former institution and here we are in front of a new law institution. The resolution of a contract under the Romanian Civil Code of 2009 is regulated under The 5th Book – The Obligations, The second chapter – The enforcement of the Obligations, The 5th Section – Resolution of the Contract, respectively under the Article 1549 – 1554. As will be shown below, the resolution of a contract has a homogeneous structure without being spread in different parts of the Civil code. The earning lies in the action of organism the new legal provisions, apparently enriched in comparison to those found in the Romanian Civil Code of 1864. Most notably, the Romanian Civil Code of 2009 preserves the Roman legacy. The modern legislator had a difficult task: 146 years of legal doctrine and jurisprudence transposed into a new legislation which, of course, has its flaws. Nevertheless, it should be praised, as it encompasses useful tools to regulate social relations

  1. Validation of A Global Hydrological Model

    Science.gov (United States)

    Doell, P.; Lehner, B.; Kaspar, F.; Vassolo, S.

    due to the precipitation mea- surement errors. Even though the explicit modeling of wetlands and lakes leads to a much improved modeling of both the vertical water balance and the lateral transport of water, not enough information is included in WGHM to accurately capture the hy- drology of these water bodies. Certainly, the reliability of model results is highest at the locations at which WGHM was calibrated. The validation indicates that reliability for cells inside calibrated basins is satisfactory if the basin is relatively homogeneous. Analyses of the few available stations outside of calibrated basins indicate a reason- ably high model reliability, particularly in humid regions.

  2. Validation of HEDR models. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid.

  3. Geochemistry Model Validation Report: Material Degradation and Release Model

    Energy Technology Data Exchange (ETDEWEB)

    H. Stockman

    2001-09-28

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).

  4. Geochemistry Model Validation Report: Material Degradation and Release Model

    International Nuclear Information System (INIS)

    Stockman, H.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17)

  5. Validating agent based models through virtual worlds.

    Energy Technology Data Exchange (ETDEWEB)

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  6. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    Ding Shouguo; Yang Ping; Weng Fuzhong; Liu Quanhua; Han Yong; Delst, Paul van; Li Jun; Baum, Bryan

    2011-01-01

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ 30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  7. The Prerequisites for a Degrowth Paradigm Shift

    DEFF Research Database (Denmark)

    Buch-Hansen, Hubert

    2018-01-01

    What would it take for a degrowth paradigm shift to take place? Drawing on contemporary critical political economy scholarship, this article identifies four prerequisites for socio-economic paradigm shifts: deep crisis, an alternative political project, a comprehensive coalition of social forces...... currently facing humanity. On the other hand, the prospects for a degrowth paradigm shift remain bleak: unlike political projects that became hegemonic in the past, degrowth has neither support from a comprehensive coalition of social forces nor any consent to its agenda among the broader population....

  8. Validation of the measure automobile emissions model : a statistical analysis

    Science.gov (United States)

    2000-09-01

    The Mobile Emissions Assessment System for Urban and Regional Evaluation (MEASURE) model provides an external validation capability for hot stabilized option; the model is one of several new modal emissions models designed to predict hot stabilized e...

  9. Dental models made with an intraoral scanner: A validation study.

    NARCIS (Netherlands)

    Cuperus, A.M.; Harms, M.C.; Rangel, F.A.; Bronkhorst, E.M.; Schols, J.G.J.H.; Breuning, K.H.

    2012-01-01

    INTRODUCTION: Our objectives were to determine the validity and reproducibility of measurements on stereolithographic models and 3-dimensional digital dental models made with an intraoral scanner. METHODS: Ten dry human skulls were scanned; from the scans, stereolithographic models and digital

  10. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Whitmore, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kaffine, Leah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  11. Data Set for Emperical Validation of Double Skin Facade Model

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2008-01-01

    the model is empirically validated and its' limitations for the DSF modeling are identified. Correspondingly, the existence and availability of the experimental data is very essential. Three sets of accurate empirical data for validation of DSF modeling with building simulation software were produced within...

  12. Prerequisites of ideal safety-critical organizations

    International Nuclear Information System (INIS)

    Takeuchi, Michiru; Hikono, Masaru; Matsui, Yuko; Goto, Manabu; Sakuda, Hiroshi

    2013-01-01

    This study explores the prerequisites of ideal safety-critical organizations, marshalling arguments of 4 areas of organizational research on safety, each of which has overlap: a safety culture, high reliability organizations (HROs), organizational resilience, and leadership especially in safety-critical organizations. The approach taken in this study was to retrieve questionnaire items or items on checklists of the 4 research areas and use them as materials of abduction (as referred to in the KJ method). The results showed that the prerequisites of ideal safety-oriented organizations consist of 9 factors as follows: (1) The organization provides resources and infrastructure to ensure safety. (2) The organization has a sharable vision. (3) Management attaches importance to safety. (4) Employees openly communicate issues and share wide-ranging information with each other. (5) Adjustments and improvements are made as the organization's situation changes. (6) Learning activities from mistakes and failures are performed. (7) Management creates a positive work environment and promotes good relations in the workplace. (8) Workers have good relations in the workplace. (9) Employees have all the necessary requirements to undertake their own functions, and act conservatively. (author)

  13. Parameterization of rain induced surface roughness and its validation study using a third generation wave model

    Science.gov (United States)

    Rajesh Kumar, R.; Prasad Kumar, B.; Bala Subrahamanyam, D.

    2009-09-01

    The effect of raindrops striking water surface and their role in modifying the prevailing sea-surface roughness is investigated. The work presents a new theoretical formulation developed to study rain-induced stress on sea-surface based on dimensional analysis. Rain parameters include drop size, rain intensity and rain duration. The influences of these rain parameters on young and mature waves were studied separately under varying wind speeds, rain intensity and rain duration. Contrary to popular belief that rain only attenuates surface waves, this study also points out rain duration under certain condition can contribute to wave growth at high wind speeds. Strong winds in conjunction with high rain intensity enhance the horizontal stress component on the sea-surface, leading to wave growth. Previous studies based on laboratory experiments and dimensional analysis do not account for rain duration when attempting to parameterize sea-surface roughness. This study signifies the importance of rain duration as an important parameter modifying sea-surface roughness. Qualitative as well quantitative support for the developed formulation is established through critical validation with reports of several researchers and satellite measurements for an extreme cyclonic event in the Indian Ocean. Based on skill assessment, it is suggested that the present formulation is superior to prior studies. Numerical experiments and validation performed by incorporating in state-of-art WAM wave model show the importance of treating rain-induced surface roughness as an essential pre-requisite for ocean wave modeling studies.

  14. New validation metrics for models with multiple correlated responses

    International Nuclear Information System (INIS)

    Li, Wei; Chen, Wei; Jiang, Zhen; Lu, Zhenzhou; Liu, Yu

    2014-01-01

    Validating models with correlated multivariate outputs involves the comparison of multiple stochastic quantities. Considering both uncertainty and correlations among multiple responses from model and physical observations imposes challenges. Existing marginal comparison methods and the hypothesis testing-based methods either ignore correlations among responses or only reach Boolean conclusions (yes or no) without accounting for the amount of discrepancy between a model and the underlying reality. A new validation metric is needed to quantitatively characterize the overall agreement of multiple responses considering correlations among responses and uncertainty in both model predictions and physical observations. In this paper, by extending the concept of “area metric” and the “u-pooling method” developed for validating a single response, we propose new model validation metrics for validating correlated multiple responses using the multivariate probability integral transformation (PIT). One new metric is the PIT area metric for validating multi-responses at a single validation site. The other is the t-pooling metric that allows for pooling observations of multiple responses observed at multiple validation sites to assess the global predictive capability. The proposed metrics have many favorable properties that are well suited for validation assessment of models with correlated responses. The two metrics are examined and compared with the direct area metric and the marginal u-pooling method respectively through numerical case studies and an engineering example to illustrate their validity and potential benefits

  15. Some considerations for validation of repository performance assessment models

    International Nuclear Information System (INIS)

    Eisenberg, N.

    1991-01-01

    Validation is an important aspect of the regulatory uses of performance assessment. A substantial body of literature exists indicating the manner in which validation of models is usually pursued. Because performance models for a nuclear waste repository cannot be tested over the long time periods for which the model must make predictions, the usual avenue for model validation is precluded. Further impediments to model validation include a lack of fundamental scientific theory to describe important aspects of repository performance and an inability to easily deduce the complex, intricate structures characteristic of a natural system. A successful strategy for validation must attempt to resolve these difficulties in a direct fashion. Although some procedural aspects will be important, the main reliance of validation should be on scientific substance and logical rigor. The level of validation needed will be mandated, in part, by the uses to which these models are put, rather than by the ideal of validation of a scientific theory. Because of the importance of the validation of performance assessment models, the NRC staff has engaged in a program of research and international cooperation to seek progress in this important area. 2 figs., 16 refs

  16. Validation of 2D flood models with insurance claims

    Science.gov (United States)

    Zischg, Andreas Paul; Mosimann, Markus; Bernet, Daniel Benjamin; Röthlisberger, Veronika

    2018-02-01

    Flood impact modelling requires reliable models for the simulation of flood processes. In recent years, flood inundation models have been remarkably improved and widely used for flood hazard simulation, flood exposure and loss analyses. In this study, we validate a 2D inundation model for the purpose of flood exposure analysis at the river reach scale. We validate the BASEMENT simulation model with insurance claims using conventional validation metrics. The flood model is established on the basis of available topographic data in a high spatial resolution for four test cases. The validation metrics were calculated with two different datasets; a dataset of event documentations reporting flooded areas and a dataset of insurance claims. The model fit relating to insurance claims is in three out of four test cases slightly lower than the model fit computed on the basis of the observed inundation areas. This comparison between two independent validation data sets suggests that validation metrics using insurance claims can be compared to conventional validation data, such as the flooded area. However, a validation on the basis of insurance claims might be more conservative in cases where model errors are more pronounced in areas with a high density of values at risk.

  17. Statistical Validation of Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)

    2012-09-01

    Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.

  18. Understanding spermatogenesis is a prerequisite for treatment

    Directory of Open Access Journals (Sweden)

    Schulze Wolfgang

    2003-11-01

    Full Text Available Abstract Throughout spermatogenesis multiplication, maturation and differentiation of germ cells results in the formation of the male gamete. The understanding of spermatogenesis needs detailed informations about the organization of the germinal epithelium, the structure and function of different types of germ cells, endocrine and paracrine cells and mechanisms, intratesticular and extratesticular regulation of spermatogenesis. Normal germ cells must be discriminated from malformed, apoptotic and degenerating germ cells and tumor cells. Identification of the border line between normal and disturbed spermatogenesis substantiate the diagnosis of impaired male fertility. The profound knowledge of the complicate process of spermatogenesis and all cells or cell systems involved with is the prerequisite to develop concepts for therapy of male infertility or to handle germ cells in the management of assisted reproduction.

  19. Model Validation and Verification of Data Mining from the ...

    African Journals Online (AJOL)

    In this paper, we seek to present a hybrid method for Model Validation and Verification of Data Mining from the Knowledge Workers Productivity Approach. It is hoped that this paper will help managers to implement different corresponding measures. A case study is presented where this model measure and validates at the ...

  20. Validation of mentorship model for newly qualified professional ...

    African Journals Online (AJOL)

    Newly qualified professional nurses (NQPNs) allocated to community health care services require the use of validated model to practice independently. Validation was done to adapt and assess if the model is understood and could be implemented by NQPNs and mentors employed in community health care services.

  1. Validation and Adaptation of Router and Switch Models

    NARCIS (Netherlands)

    Boltjes, B.; Fernandez Diaz, I.; Kock, B.A.; Langeveld, R.J.G.M.; Schoenmaker, G.

    2003-01-01

    This paper describes validating OPNET models of key devices for the next generation IP-based tactical network of the Royal Netherlands Army (RNLA). The task of TNO-FEL is to provide insight in scalability and performance of future deployed networks. Because validated models ol key Cisco equipment

  2. The concept of validation of numerical models for consequence analysis

    International Nuclear Information System (INIS)

    Borg, Audun; Paulsen Husted, Bjarne; Njå, Ove

    2014-01-01

    Numerical models such as computational fluid dynamics (CFD) models are increasingly used in life safety studies and other types of analyses to calculate the effects of fire and explosions. The validity of these models is usually established by benchmark testing. This is done to quantitatively measure the agreement between the predictions provided by the model and the real world represented by observations in experiments. This approach assumes that all variables in the real world relevant for the specific study are adequately measured in the experiments and in the predictions made by the model. In this paper the various definitions of validation for CFD models used for hazard prediction are investigated to assess their implication for consequence analysis in a design phase. In other words, how is uncertainty in the prediction of future events reflected in the validation process? The sources of uncertainty are viewed from the perspective of the safety engineer. An example of the use of a CFD model is included to illustrate the assumptions the analyst must make and how these affect the prediction made by the model. The assessments presented in this paper are based on a review of standards and best practice guides for CFD modeling and the documentation from two existing CFD programs. Our main thrust has been to assess how validation work is performed and communicated in practice. We conclude that the concept of validation adopted for numerical models is adequate in terms of model performance. However, it does not address the main sources of uncertainty from the perspective of the safety engineer. Uncertainty in the input quantities describing future events, which are determined by the model user, outweighs the inaccuracies in the model as reported in validation studies. - Highlights: • Examine the basic concept of validation applied to models for consequence analysis. • Review standards and guides for validation of numerical models. • Comparison of the validation

  3. Model Validation for Simulations of Vehicle Systems

    Science.gov (United States)

    2012-08-01

    jackknife”, Annals of Statistics, 7:1-26, 1979. [45] B. Efron and G. Gong, “A leisurely look at the bootstrap, the jackknife, and cross-validation”, The...battery model developed in the Automotive Research Center, a US Army Center of Excellence for modeling and simulation of ground vehicle systems...Sandia National Laboratories and a battery model developed in the Automotive Research Center, a US Army Center of Excellence for modeling and simulation

  4. Models for Validation of Prior Learning (VPL)

    DEFF Research Database (Denmark)

    Ehlers, Søren

    The national policies for the education/training of adults are in the 21st century highly influenced by proposals which are formulated and promoted by The European Union (EU) as well as other transnational players and this shift in policy making has consequences. One is that ideas which in the past...... would have been categorized as utopian can become realpolitik. Validation of Prior Learning (VPL) was in Europe mainly regarded as utopian while universities in the United States of America (USA) were developing ways to obtain credits to those students which was coming with experiences from working life....

  5. Using virtual reality to validate system models

    Energy Technology Data Exchange (ETDEWEB)

    Winter, V.L.; Caudell, T.P.

    1999-12-09

    To date most validation techniques are highly biased towards calculations involving symbolic representations of problems. These calculations are either formal (in the case of consistency and completeness checks), or informal in the case of code inspections. The authors believe that an essential type of evidence of the correctness of the formalization process must be provided by (i.e., must originate from) human-based calculation. They further believe that human calculation can by significantly amplified by shifting from symbolic representations to graphical representations. This paper describes their preliminary efforts in realizing such a representational shift.

  6. Validating Computational Cognitive Process Models across Multiple Timescales

    Science.gov (United States)

    Myers, Christopher; Gluck, Kevin; Gunzelmann, Glenn; Krusmark, Michael

    2010-12-01

    Model comparison is vital to evaluating progress in the fields of artificial general intelligence (AGI) and cognitive architecture. As they mature, AGI and cognitive architectures will become increasingly capable of providing a single model that completes a multitude of tasks, some of which the model was not specifically engineered to perform. These models will be expected to operate for extended periods of time and serve functional roles in real-world contexts. Questions arise regarding how to evaluate such models appropriately, including issues pertaining to model comparison and validation. In this paper, we specifically address model validation across multiple levels of abstraction, using an existing computational process model of unmanned aerial vehicle basic maneuvering to illustrate the relationship between validity and timescales of analysis.

  7. Validation of elk resource selection models with spatially independent data

    Science.gov (United States)

    Priscilla K. Coe; Bruce K. Johnson; Michael J. Wisdom; John G. Cook; Marty Vavra; Ryan M. Nielson

    2011-01-01

    Knowledge of how landscape features affect wildlife resource use is essential for informed management. Resource selection functions often are used to make and validate predictions about landscape use; however, resource selection functions are rarely validated with data from landscapes independent of those from which the models were built. This problem has severely...

  8. A Practical Approach to Validating a PD Model

    NARCIS (Netherlands)

    Medema, L.; Koning, de R.; Lensink, B.W.

    2009-01-01

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  9. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference excit...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading.......The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...

  10. An Approach to Comprehensive and Sustainable Solar Wind Model Validation

    Science.gov (United States)

    Rastaetter, L.; MacNeice, P. J.; Mays, M. L.; Boblitt, J. M.; Wiegand, C.

    2017-12-01

    The number of models of the corona and inner heliosphere and of their updates and upgrades grows steadily, as does the number and character of the model inputs. Maintaining up to date validation of these models, in the face of this constant model evolution, is a necessary but very labor intensive activity. In the last year alone, both NASA's LWS program and the CCMC's ongoing support of model forecasting activities at NOAA SWPC have sought model validation reports on the quality of all aspects of the community's coronal and heliospheric models, including both ambient and CME related wind solutions at L1. In this presentation I will give a brief review of the community's previous model validation results of L1 wind representation. I will discuss the semi-automated web based system we are constructing at the CCMC to present comparative visualizations of all interesting aspects of the solutions from competing models.This system is designed to be easily queried to provide the essential comprehensive inputs to repeat andupdate previous validation studies and support extensions to them. I will illustrate this by demonstrating how the system is being used to support the CCMC/LWS Model Assessment Forum teams focused on the ambient and time dependent corona and solar wind, including CME arrival time and IMF Bz.I will also discuss plans to extend the system to include results from the Forum teams addressing SEP model validation.

  11. Ion channel model development and validation

    Science.gov (United States)

    Nelson, Peter Hugo

    2010-03-01

    The structure of the KcsA ion channel selectivity filter is used to develop three simple models of ion channel permeation. The quantitative predictions of the knock-on model are tested by comparison with experimental data from single-channel recordings of the KcsA channel. By comparison with experiment, students discover that the knock-on model can't explain saturation of ion channel current as the concentrations of the bathing solutions are increased. By inverting the energy diagram, students derive the association-dissociation model of ion channel permeation. This model predicts non-linear Michaelis-Menten saturating behavior that requires students to perform non-linear least-squares fits to the experimental data. This is done using Excel's solver feature. Students discover that this simple model does an excellent job of explaining the qualitative features of ion channel permeation but cannot account for changes in voltage sensitivity. The model is then extended to include an electrical dissociation distance. This rapid translocation model is then compared with experimental data from a wide variety of ion channels and students discover that this model also has its limitations. Support from NSF DUE 0836833 is gratefully acknowledged.

  12. A validated physical model of greenhouse climate.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the

  13. Extending Model Checking To Object Process Validation

    NARCIS (Netherlands)

    van Rein, H.

    2002-01-01

    Object-oriented techniques allow the gathering and modelling of system requirements in terms of an application area. The expression of data and process models at that level is a great asset in communication with non-technical people in that area, but it does not necessarily lead to consistent

  14. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect inc...

  15. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    Hills, Richard G.; Trucano, Timothy G.

    1999-01-01

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  16. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    incomplete knowledge of the characteristics inherent to each model. During water immersion, the hydrostatic pressure lowers the peripheral vascular capacity and causes increased thoracic blood volume and high vascular perfusion. In turn, these changes lead to high urinary flow, low vasomotor tone, and a high...... a negative pressure around the body. The differences in renal function between space and experimental models appear to be explained by the physical forces affecting tissues and hemodynamics as well as by the changes secondary to these forces. These differences may help in selecting experimental models...

  17. Validation of ecological state space models using the Laplace approximation

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Albertsen, Christoffer Moesgaard; Berg, Casper Willestofte

    2017-01-01

    for estimation in general mixed effects models. Implementing one-step predictions in the R package Template Model Builder, we demonstrate that it is possible to perform model validation with little effort, even if the ecological model is multivariate, has non-linear dynamics, and whether observations...... are continuous or discrete. With both simulated data, and a real data set related to geolocation of seals, we demonstrate both the potential and the limitations of the techniques. Our results fill a need for convenient methods for validating a state space model, or alternatively, rejecting it while indicating...

  18. Transfer Entropy as a Tool for Hydrodynamic Model Validation

    Directory of Open Access Journals (Sweden)

    Alicia Sendrowski

    2018-01-01

    Full Text Available The validation of numerical models is an important component of modeling to ensure reliability of model outputs under prescribed conditions. In river deltas, robust validation of models is paramount given that models are used to forecast land change and to track water, solid, and solute transport through the deltaic network. We propose using transfer entropy (TE to validate model results. TE quantifies the information transferred between variables in terms of strength, timescale, and direction. Using water level data collected in the distributary channels and inter-channel islands of Wax Lake Delta, Louisiana, USA, along with modeled water level data generated for the same locations using Delft3D, we assess how well couplings between external drivers (river discharge, tides, wind and modeled water levels reproduce the observed data couplings. We perform this operation through time using ten-day windows. Modeled and observed couplings compare well; their differences reflect the spatial parameterization of wind and roughness in the model, which prevents the model from capturing high frequency fluctuations of water level. The model captures couplings better in channels than on islands, suggesting that mechanisms of channel-island connectivity are not fully represented in the model. Overall, TE serves as an additional validation tool to quantify the couplings of the system of interest at multiple spatial and temporal scales.

  19. VERIFICATION AND VALIDATION OF THE SPARC MODEL

    Science.gov (United States)

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values--that is, the physical and chemical constants that govern reactivity. Although empirical structure-activity relationships that allow estimation of some ...

  20. Base Flow Model Validation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of high-fidelity...

  1. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  2. Validating predictions from climate envelope models.

    Directory of Open Access Journals (Sweden)

    James I Watling

    Full Text Available Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 and evaluated using occurrence data from 1998-2002 (t2. Model sensitivity (the ability to correctly classify species presences was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on

  3. Validation of Modeling Flow Approaching Navigation Locks

    Science.gov (United States)

    2013-08-01

    USACE, Pittsburgh District ( LRP ) requested that the US Army Engineer Research and Development Center, Coastal and ERDC/CHL TR-13-9 2 Hydraulics...approaching the lock and dam. The second set of experiments considered a design, referred to as Plan B lock approach, which contained the weir field in...conditions and model parameters A discharge of 1.35 cfs was set as the inflow boundary condition at the upstream end of the model. The outflow boundary was

  4. Development of a Conservative Model Validation Approach for Reliable Analysis

    Science.gov (United States)

    2015-01-01

    conservativeness level , the conservative probability of failure obtained from Section 4 must be maintained. The mathematical formulation of conservative model... CIE 2015 August 2-5, 2015, Boston, Massachusetts, USA [DRAFT] DETC2015-46982 DEVELOPMENT OF A CONSERVATIVE MODEL VALIDATION APPROACH FOR RELIABLE...PDF and a probability of failure are selected from these predicted output PDFs at a user-specified conservativeness level for validation. For

  5. Traffic modelling validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Tongeren, R. van; Gietelink, O.J.; Schutter, B. de; Verhaegen, M.

    2007-01-01

    This paper presents a microscopic traffic model for the validation of advanced driver assistance systems. This model describes single-lane traffic and is calibrated with data from a field operational test. To illustrate the use of the model, a Monte Carlo simulation of single-lane traffic scenarios

  6. Context discovery using attenuated Bloom codes: model description and validation

    NARCIS (Netherlands)

    Liu, F.; Heijenk, Geert

    A novel approach to performing context discovery in ad-hoc networks based on the use of attenuated Bloom filters is proposed in this report. In order to investigate the performance of this approach, a model has been developed. This document describes the model and its validation. The model has been

  7. Validation of Model Forecasts of the Ambient Solar Wind

    Science.gov (United States)

    Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.

    2009-01-01

    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.

  8. Technical/institutional prerequisite for nuclear forensics response framework

    International Nuclear Information System (INIS)

    Tamai, Hiroshi; Okubo, Ayako; Kimura, Yoshiki; Kokaji, Lisa; Shinohara, Nobuo; Tomikawa, Hirofumi

    2016-01-01

    Nuclear Forensics capability has been developed under the international collaborations. For its effective function, technical development in analysis of seized nuclear materials as well as the institutional development in comprehensive response framework are required under individual national responsibility. In order to keep the “chain of custody” in the proper operation of sample collection at the event scene, radiological analysis at the laboratory, storage of the samples, and further inspection and trial, close cooperation and information sharing between relevant organisations are essential. IAEA issues the Implementing Guide to provide the model action plan and assists individual national development. Some countries at the advancing stage of national response framework, promote the international cooperation for the technical improvement and awareness cultivation. Examples in such national developments will be introduced and prospective technical/institutional prerequisite for nuclear forensics response framework will be studied. (author)

  9. Quantitative system validation in model driven design

    DEFF Research Database (Denmark)

    Hermanns, Hilger; Larsen, Kim Guldstrand; Raskin, Jean-Francois

    2010-01-01

    The European STREP project Quasimodo1 develops theory, techniques and tool components for handling quantitative constraints in model-driven development of real-time embedded systems, covering in particular real-time, hybrid and stochastic aspects. This tutorial highlights the advances made...

  10. Dental models made with an intraoral scanner: a validation study.

    Science.gov (United States)

    Cuperus, Anne Margreet R; Harms, Marit C; Rangel, Frits A; Bronkhorst, Ewald M; Schols, Jan G J H; Breuning, K Hero

    2012-09-01

    Our objectives were to determine the validity and reproducibility of measurements on stereolithographic models and 3-dimensional digital dental models made with an intraoral scanner. Ten dry human skulls were scanned; from the scans, stereolithographic models and digital models were made. Two observers measured transversal distances, mesiodistal tooth widths, and arch segments on the skulls and the stereolithographic and digital models. All measurements were repeated 4 times. Arch length discrepancy and tooth size discrepancy were calculated. Statistical analysis was performed by using paired t tests. For the measurements on the stereolithographic and digital models, statistically significant differences were found. However, these differences were considered to be clinically insignificant. Digital models had fewer statistically significant differences and generally the smallest duplicate measurement errors compared with the stereolithographic models. Stereolithographic and digital models made with an intraoral scanner are a valid and reproducible method for measuring distances in a dentition. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Ensuring the Validity of the Micro Foundation in DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    & Primiceri (American Economic Review, forth- coming) and Fernández-Villaverde & Rubio-Ramírez (Review of Economic Studies, 2007) do not satisfy these sufficient conditions, or any other known set of conditions ensuring finite values for the objective functions. Thus, the validity of the micro foundation......The presence of i) stochastic trends, ii) deterministic trends, and/or iii) stochastic volatil- ity in DSGE models may imply that the agents' objective functions attain infinite values. We say that such models do not have a valid micro foundation. The paper derives sufficient condi- tions which...... ensure that the objective functions of the households and the firms are finite even when various trends and stochastic volatility are included in a standard DSGE model. Based on these conditions we test the validity of the micro foundation in six DSGE models from the literature. The models of Justiniano...

  12. 76 FR 14678 - Communications Unit Leader Prerequisite and Evaluation

    Science.gov (United States)

    2011-03-17

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2010-0004] Communications Unit Leader Prerequisite... Information Collection Request, Communications Unit Leader (COML) Prerequisite and Evaluation. DHS previously... Hazards Type III Communications Unit Leader (COML) training course for state, regional, local, and tribal...

  13. Academic Performance in MBA Programs: Do Prerequisites Really Matter?

    Science.gov (United States)

    Christensen, Donald Gene; Nance, William R.; White, Darin W.

    2012-01-01

    Many researchers have examined criteria used in Master of Business Administration (MBA) admissions decisions. However, prior research has not examined predictive ability of undergraduate prerequisite courses in core business disciplines. The authors investigated whether undergraduate prerequisite courses predicted MBA success by analyzing the…

  14. Experiments for foam model development and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F. (Honeywell Federal Manufacturing and Technologies, Kansas City Plant, Kansas City, MO); Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.

    2008-09-01

    A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

  15. Finite element model validation of bridge based on structural health monitoring—Part II: Uncertainty propagation and model validation

    Directory of Open Access Journals (Sweden)

    Xiaosong Lin

    2015-08-01

    Full Text Available Because of uncertainties involved in modeling, construction, and measurement systems, the assessment of the FE model validation must be conducted based on stochastic measurements to provide designers with confidence for further applications. In this study, based on the updated model using response surface methodology, a practical model validation methodology via uncertainty propagation is presented. Several criteria of testing/analysis correlation are introduced, and the sources of model and testing uncertainties are also discussed. After that, Monte Carlo stochastic finite element (FE method is employed to perform the uncertainty quantification and propagation. The proposed methodology is illustrated with the examination of the validity of a large-span prestressed concrete continuous rigid frame bridge monitored under operational conditions. It can be concluded that the calculated frequencies and vibration modes of the updated FE model of Xiabaishi Bridge are consistent with the measured ones. The relative errors of each frequency are all less than 3.7%. Meanwhile, the overlap ratio indexes of each frequency are all more than 75%; The MAC values of each calculated vibration frequency are all more than 90%. The model of Xiabaishi Bridge is valid in the whole operation space including experimental design space, and its confidence level is upper than 95%. The validated FE model of Xiabaishi Bridge can reflect the current condition of Xiabaishi Bridge, and also can be used as basis of bridge health monitoring, damage identification and safety assessment.

  16. [Validation of abdominal wound dehiscence's risk model].

    Science.gov (United States)

    Gómez Díaz, Carlos Javier; Rebasa Cladera, Pere; Navarro Soto, Salvador; Hidalgo Rosas, José Manuel; Luna Aufroy, Alexis; Montmany Vioque, Sandra; Corredera Cantarín, Constanza

    2014-02-01

    The aim of this study is to determine the usefulness of the risk model developed by van Ramshorst et al., and a modification of the same, to predict the abdominal wound dehiscence's risk in patients who underwent midline laparotomy incisions. Observational longitudinal retrospective study. Patients who underwent midline laparotomy incisions in the General and Digestive Surgery Department of the Sabadell's Hospital-Parc Taulí's Health and University Corporation-Barcelona, between January 1, 2010 and June 30, 2010. Dependent variable: Abdominal wound dehiscence. Global risk score, preoperative risk score (postoperative variables were excluded), global and preoperative probabilities of developing abdominal wound dehiscence. 176 patients. Patients with abdominal wound dehiscence: 15 (8.5%). The global risk score of abdominal wound dehiscence group (mean: 4.97; IC 95%: 4.15-5.79) was better than the global risk score of No abdominal wound dehiscence group (mean: 3.41; IC 95%: 3.20-3.62). This difference is statistically significant (P<.001). The preoperative risk score of abdominal wound dehiscence group (mean: 3.27; IC 95%: 2.69-3.84) was better than the preoperative risk score of No abdominal wound dehiscence group (mean: 2.77; IC 95%: 2.64-2.89), also a statistically significant difference (P<.05). The global risk score (area under the ROC curve: 0.79) has better accuracy than the preoperative risk score (area under the ROC curve: 0.64). The risk model developed by van Ramshorst et al. to predict the abdominal wound dehiscence's risk in the preoperative phase has a limited usefulness. Additional refinements in the preoperative risk score are needed to improve its accuracy. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  17. Resampling procedures to validate dendro-auxometric regression models

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Regression analysis has a large use in several sectors of forest research. The validation of a dendro-auxometric model is a basic step in the building of the model itself. The more a model resists to attempts of demonstrating its groundlessness, the more its reliability increases. In the last decades many new theories, that quite utilizes the calculation speed of the calculators, have been formulated. Here we show the results obtained by the application of a bootsprap resampling procedure as a validation tool.

  18. Predicting the ungauged basin: Model validation and realism assessment

    Directory of Open Access Journals (Sweden)

    Tim evan Emmerik

    2015-10-01

    Full Text Available The hydrological decade on Predictions in Ungauged Basins (PUB led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this paper we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. This paper does not present a generic approach that can be transferred to other ungauged catchments, but it aims to show how clever model design and alternative data acquisition can result in a valuable hydrological model for an ungauged catchment.

  19. Predicting the ungauged basin: model validation and realism assessment

    NARCIS (Netherlands)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2015-01-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of

  20. Predicting the ungauged basin : Model validation and realism assessment

    NARCIS (Netherlands)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2015-01-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of

  1. Validation of a multi-objective, predictive urban traffic model

    NARCIS (Netherlands)

    Wilmink, I.R.; Haak, P. van den; Woldeab, Z.; Vreeswijk, J.

    2013-01-01

    This paper describes the results of the verification and validation of the ecoStrategic Model, which was developed, implemented and tested in the eCoMove project. The model uses real-time and historical traffic information to determine the current, predicted and desired state of traffic in a

  2. Landslide Tsunami Generation Models: Validation and Case Studies

    Science.gov (United States)

    Watts, P.; Grilli, S. T.; Kirby, J. T.; Fryer, G. J.; Tappin, D. R.

    2002-12-01

    There has been a proliferation of landslide tsunami generation and propagation models in recent time, spurred largely by the 1998 Papua New Guinea event. However, few of these models or techniques have been carefully validated. Moreover, few of these models have proven capable of integrating the best available geological data and interpretations into convincing case studies. The Tsunami Open and Progressive Initial Conditions System (TOPICS) rapidly provides approximate landslide tsunami sources for tsunami propagation models. We present 3D laboratory experiments and 3D Boundary Element Method simulations that validate the tsunami sources given by TOPICS. Geowave is a combination of TOPICS with the fully nonlinear and dispersive Boussinesq model FUNWAVE, which has been the subject of extensive testing and validation over the course of the last decade. Geowave is currently a tsunami community model made available to all tsunami researchers on the web site www.tsunamicommunity.org. We validate Geowave with case studies of the 1946 Unimak, Alaska, the 1994 Skagway, Alaska, and the 1998 Papua New Guinea events. The benefits of Boussinesq wave propagation over traditional shallow water wave models is very apparent for these relatively steep and nonlinear waves. For the first time, a tsunami community model appear sufficiently powerful to reproduce all observations and records with the first numerical simulation. This can only be accomplished by first assembling geological data and interpretations into a reasonable tsunami source.

  3. Child human model development: a hybrid validation approach

    NARCIS (Netherlands)

    Forbes, P.A.; Rooij, L. van; Rodarius, C.; Crandall, J.

    2008-01-01

    The current study presents a development and validation approach of a child human body model that will help understand child impact injuries and improve the biofidelity of child anthropometric test devices. Due to the lack of fundamental child biomechanical data needed to fully develop such models a

  4. Validation & verification of a Bayesian network model for aircraft vulnerability

    CSIR Research Space (South Africa)

    Schietekat, Sunelle

    2016-09-01

    Full Text Available This paper provides a methodology for Validation and Verification (V&V) of a Bayesian Network (BN) model for aircraft vulnerability against Infrared (IR) missile threats. The model considers that the aircraft vulnerability depends both on a missile...

  5. On the development and validation of QSAR models.

    Science.gov (United States)

    Gramatica, Paola

    2013-01-01

    The fundamental and more critical steps that are necessary for the development and validation of QSAR models are presented in this chapter as best practices in the field. These procedures are discussed in the context of predictive QSAR modelling that is focused on achieving models of the highest statistical quality and with external predictive power. The most important and most used statistical parameters needed to verify the real performances of QSAR models (of both linear regression and classification) are presented. Special emphasis is placed on the validation of models, both internally and externally, as well as on the need to define model applicability domains, which should be done when models are employed for the prediction of new external compounds.

  6. Validation of heat transfer models for gap cooling

    International Nuclear Information System (INIS)

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  7. The turbulent viscosity models and their experimental validation; Les modeles de viscosite turbulente et leur validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)

  8. Validity of empirical models of exposure in asphalt paving

    Science.gov (United States)

    Burstyn, I; Boffetta, P; Burr, G; Cenni, A; Knecht, U; Sciarra, G; Kromhout, H

    2002-01-01

    Aims: To investigate the validity of empirical models of exposure to bitumen fume and benzo(a)pyrene, developed for a historical cohort study of asphalt paving in Western Europe. Methods: Validity was evaluated using data from the USA, Italy, and Germany not used to develop the original models. Correlation between observed and predicted exposures was examined. Bias and precision were estimated. Results: Models were imprecise. Furthermore, predicted bitumen fume exposures tended to be lower (-70%) than concentrations found during paving in the USA. This apparent bias might be attributed to differences between Western European and USA paving practices. Evaluation of the validity of the benzo(a)pyrene exposure model revealed a similar to expected effect of re-paving and a larger than expected effect of tar use. Overall, benzo(a)pyrene models underestimated exposures by 51%. Conclusions: Possible bias as a result of underestimation of the impact of coal tar on benzo(a)pyrene exposure levels must be explored in sensitivity analysis of the exposure–response relation. Validation of the models, albeit limited, increased our confidence in their applicability to exposure assessment in the historical cohort study of cancer risk among asphalt workers. PMID:12205236

  9. Analytical models approximating individual processes: a validation method.

    Science.gov (United States)

    Favier, C; Degallier, N; Menkès, C E

    2010-12-01

    Upscaling population models from fine to coarse resolutions, in space, time and/or level of description, allows the derivation of fast and tractable models based on a thorough knowledge of individual processes. The validity of such approximations is generally tested only on a limited range of parameter sets. A more general validation test, over a range of parameters, is proposed; this would estimate the error induced by the approximation, using the original model's stochastic variability as a reference. This method is illustrated by three examples taken from the field of epidemics transmitted by vectors that bite in a temporally cyclical pattern, that illustrate the use of the method: to estimate if an approximation over- or under-fits the original model; to invalidate an approximation; to rank possible approximations for their qualities. As a result, the application of the validation method to this field emphasizes the need to account for the vectors' biology in epidemic prediction models and to validate these against finer scale models. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Empirical validation data sets for double skin facade models

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2008-01-01

    During recent years application of double skin facades (DSF) has greatly increased. However, successful application depends heavily on reliable and validated models for simulation of the DSF performance and this in turn requires access to high quality experimental data. Three sets of accurate...... empirical data for validation of DSF modeling with building simulation software were produced within the International Energy Agency (IEA) SHCTask 34 / ECBCS Annex 43. This paper describes the full-scale outdoor experimental test facility, the experimental set-up and the measurements procedure...

  11. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  12. MODEL-BASED VALIDATION AND VERIFICATION OF ANOMALIES IN LEGISLATION

    Directory of Open Access Journals (Sweden)

    Vjeran Strahonja

    2006-12-01

    Full Text Available An anomaly in legislation is absence of completeness, consistency and other desirable properties, caused by different semantic, syntactic or pragmatic reasons. In general, the detection of anomalies in legislation comprises validation and verification. The basic idea of research, as presented in this paper, is modelling legislation by capturing domain knowledge of legislation and specifying it in a generic way by using commonly agreed and understandable modelling concepts of the Unified Modelling Language (UML. Models of legislation enable to understand the system better, support the detection of anomalies and help to improve the quality of legislation by validation and verification. By implementing model-based approach, the object of validation and verification moves from legislation to its model. The business domain of legislation has two distinct aspects: a structural or static aspect (functionality, business data etc., and a behavioural or dynamic part (states, transitions, activities, sequences etc.. Because anomalism can occur on two different levels, on the level of a model, or on the level of legislation itself, a framework for validation and verification of legal regulation and its model is discussed. The presented framework includes some significant types of semantic and syntactic anomalies. Some ideas for assessment of pragmatic anomalies of models were found in the field of software quality metrics. Thus pragmatic features and attributes can be determined that could be relevant for evaluation purposes of models. Based on analogue standards for the evaluation of software, a qualitative and quantitative scale can be applied to determine the value of some feature for a specific model.

  13. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  14. Validation of the newborn larynx modeling with aerodynamical experimental data.

    Science.gov (United States)

    Nicollas, R; Giordano, J; Garrel, R; Medale, M; Caminat, P; Giovanni, A; Ouaknine, M; Triglia, J M

    2009-06-01

    Many authors have studied adult's larynx modelization, but the mechanisms of newborn's voice production have very rarely been investigated. After validating a numerical model with acoustic data, studies were performed on larynges of human fetuses in order to validate this model with aerodynamical experiments. Anatomical measurements were performed and a simplified numerical model was built using Fluent((R)) with the vocal folds in phonatory position. The results obtained are in good agreement with those obtained by laser Doppler velocimetry (LDV) and high-frame rate particle image velocimetry (HFR-PIV), on an experimental bench with excised human fetus larynges. It appears that computing with first cry physiological parameters leads to a model which is close to those obtained in experiments with real organs.

  15. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  16. Verification and Validation of FAARR Model and Data Envelopment Analysis Models for United States Army Recruiting

    National Research Council Canada - National Science Library

    Piskator, Gene

    1998-01-01

    ...) model and to develop a Data Envelopment Analysis (DEA) modeling strategy. First, the FAARR model was verified using a simulation of a known production function and validated using sensitivity analysis and ex-post forecasts...

  17. Experimental Validation of Flow Force Models for Fast Switching Valves

    DEFF Research Database (Denmark)

    Bender, Niels Christian; Pedersen, Henrik Clemmensen; Nørgård, Christian

    2017-01-01

    This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties of the surroun......This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties...... velocity is non-zero. This is the case in FSVs, where it results in an additional dampening effect, which is of relevance when analyzing contact-impact. Experimental data from different tests cases of a FSV has been gathered, with the plunger moving through a medium of either oil or air. This data is used...... to compare and validate different models, where an effort is directed towards capturing the fluid squeeze effect just before material on material contact. The test data is compared with simulation data relying solely on analytic formulations. The general dynamics of the plunger is validated...

  18. Modeling and validation of microwave ablations with internal vaporization.

    Science.gov (United States)

    Chiang, Jason; Birla, Sohan; Bedoya, Mariajose; Jones, David; Subbiah, Jeyam; Brace, Christopher L

    2015-02-01

    Numerical simulation is increasingly being utilized for computer-aided design of treatment devices, analysis of ablation growth, and clinical treatment planning. Simulation models to date have incorporated electromagnetic wave propagation and heat conduction, but not other relevant physics such as water vaporization and mass transfer. Such physical changes are particularly noteworthy during the intense heat generation associated with microwave heating. In this paper, a numerical model was created that integrates microwave heating with water vapor generation and transport by using porous media assumptions in the tissue domain. The heating physics of the water vapor model was validated through temperature measurements taken at locations 5, 10, and 20 mm away from the heating zone of the microwave antenna in homogenized ex vivo bovine liver setup. Cross-sectional area of water vapor transport was validated through intraprocedural computed tomography (CT) during microwave ablations in homogenized ex vivo bovine liver. Iso-density contours from CT images were compared to vapor concentration contours from the numerical model at intermittent time points using the Jaccard index. In general, there was an improving correlation in ablation size dimensions as the ablation procedure proceeded, with a Jaccard index of 0.27, 0.49, 0.61, 0.67, and 0.69 at 1, 2, 3, 4, and 5 min, respectively. This study demonstrates the feasibility and validity of incorporating water vapor concentration into thermal ablation simulations and validating such models experimentally.

  19. Predicting third molar surgery operative time: a validated model.

    Science.gov (United States)

    Susarla, Srinivas M; Dodson, Thomas B

    2013-01-01

    The purpose of the present study was to develop and validate a statistical model to predict third molar (M3) operative time. This was a prospective cohort study consisting of a sample of subjects presenting for M3 removal. The demographic, anatomic, and operative variables were recorded for each subject. Using an index sample of randomly selected subjects, a multiple linear regression model was generated to predict the operating time. A nonoverlapping group of randomly selected subjects (validation sample) was used to assess model accuracy. P≤.05 was considered significant. The sample was composed of 150 subjects (n) who had 450 (k) M3s removed. The index sample (n=100 subjects, k=313 M3s extracted) had a mean age of 25.4±10.0 years. The mean extraction time was 6.4±7.0 minutes. The multiple linear regression model included M3 location, Winter's classification, tooth morphology, number of teeth extracted, procedure type, and surgical experience (R2=0.58). No statistically significant differences were seen between the index sample and the validation sample (n=50, k=137) for any of the study variables. Compared with the index model, the β-coefficients of the validation model were similar in direction and magnitude for most variables. Compared with the observed extraction time for all teeth in the sample, the predicted extraction time was not significantly different (P=.16). Fair agreement was seen between the β-coefficients for our multiple models in the index and validation populations, with no significant difference in the predicted and observed operating times. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  1. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    CERN Document Server

    Apostolakis, J; Bagulya, A; Brown, J M C; Burkhardt, H; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Grichine, V; Guatelli, S; Incerti, S; Ivanchenko, V N; Jacquemier, J; Kadri, O; Maire, M; Pandola, L; Sawkey, D; Toshito, T; Urban, L; Yamashita, T

    2015-01-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed.

  2. A practical guide for operational validation of discrete simulation models

    Directory of Open Access Journals (Sweden)

    Fabiano Leal

    2011-04-01

    Full Text Available As the number of simulation experiments increases, the necessity for validation and verification of these models demands special attention on the part of the simulation practitioners. By analyzing the current scientific literature, it is observed that the operational validation description presented in many papers does not agree on the importance designated to this process and about its applied techniques, subjective or objective. With the expectation of orienting professionals, researchers and students in simulation, this article aims to elaborate a practical guide through the compilation of statistical techniques in the operational validation of discrete simulation models. Finally, the guide's applicability was evaluated by using two study objects, which represent two manufacturing cells, one from the automobile industry and the other from a Brazilian tech company. For each application, the guide identified distinct steps, due to the different aspects that characterize the analyzed distributions

  3. Multiphysics modelling and experimental validation of high concentration photovoltaic modules

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Sumner, Mike; O'Donovan, Tadhg S.

    2017-01-01

    Highlights: • A multiphysics modelling approach for concentrating photovoltaics was developed. • An experimental campaign was conducted to validate the models. • The experimental results were in good agreement with the models. • The multiphysics modelling allows the concentrator’s optimisation. - Abstract: High concentration photovoltaics, equipped with high efficiency multijunction solar cells, have great potential in achieving cost-effective and clean electricity generation at utility scale. Such systems are more complex compared to conventional photovoltaics because of the multiphysics effect that is present. Modelling the power output of such systems is therefore crucial for their further market penetration. Following this line, a multiphysics modelling procedure for high concentration photovoltaics is presented in this work. It combines an open source spectral model, a single diode electrical model and a three-dimensional finite element thermal model. In order to validate the models and the multiphysics modelling procedure against actual data, an outdoor experimental campaign was conducted in Albuquerque, New Mexico using a high concentration photovoltaic monomodule that is thoroughly described in terms of its geometry and materials. The experimental results were in good agreement (within 2.7%) with the predicted maximum power point. This multiphysics approach is relatively more complex when compared to empirical models, but besides the overall performance prediction it can also provide better understanding of the physics involved in the conversion of solar irradiance into electricity. It can therefore be used for the design and optimisation of high concentration photovoltaic modules.

  4. Validation of a tuber blight (Phytophthora infestans) prediction model

    Science.gov (United States)

    Potato tuber blight caused by Phytophthora infestans accounts for significant losses in storage. There is limited published quantitative data on predicting tuber blight. We validated a tuber blight prediction model developed in New York with cultivars Allegany, NY 101, and Katahdin using independent...

  5. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  6. A Comparison and Validation of Two Surface Ship Readiness Models

    Science.gov (United States)

    1994-09-01

    they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user. vii Vifi TABLE OF...contains the S’AS code that was used to perform the full model run for the SIM. // SIMIC JOB USER=S6402,CLASS--C 1/ EXEC SAS //WORK DD UNIT=SYSDASPACE

  7. Validating Work Discrimination and Coping Strategy Models for Sexual Minorities

    Science.gov (United States)

    Chung, Y. Barry; Williams, Wendi; Dispenza, Franco

    2009-01-01

    The purpose of this study was to validate and expand on Y. B. Chung's (2001) models of work discrimination and coping strategies among lesbian, gay, and bisexual persons. In semistructured individual interviews, 17 lesbians and gay men reported 35 discrimination incidents and their related coping strategies. Responses were coded based on Chung's…

  8. Validity of the Bersohn–Zewail model beyond justification

    DEFF Research Database (Denmark)

    Petersen, Jakob; Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2012-01-01

    excellent agreement between the classical trajectory and the average position of the excited state wave packet. By investigating the approximations connecting the nuclear dynamics described by quantum mechanics and the BZ model, we conclude that this agreement goes far beyond the validity of the individual...

  9. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of

  10. Validating soil phosphorus routines in the SWAT model

    Science.gov (United States)

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  11. Data Set for Emperical Validation of Double Skin Facade Model

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2008-01-01

    During the recent years the attention to the double skin facade (DSF) concept has greatly increased. Nevertheless, the application of the concept depends on whether a reliable model for simulation of the DSF performance will be developed or pointed out. This is, however, not possible to do, until...... the model is empirically validated and its' limitations for the DSF modeling are identified. Correspondingly, the existence and availability of the experimental data is very essential. Three sets of accurate empirical data for validation of DSF modeling with building simulation software were produced within...... of a double skin facade: 1. External air curtain mode, it is the naturally ventilated DSF cavity with the top and bottom openings open to the outdoor; 2. Thermal insulation mode, when all of the DSF openings closed; 3. Preheating mode, with the bottom DSF openings open to the outdoor and top openings open...

  12. Validation of Fatigue Modeling Predictions in Aviation Operations

    Science.gov (United States)

    Gregory, Kevin; Martinez, Siera; Flynn-Evans, Erin

    2017-01-01

    Bio-mathematical fatigue models that predict levels of alertness and performance are one potential tool for use within integrated fatigue risk management approaches. A number of models have been developed that provide predictions based on acute and chronic sleep loss, circadian desynchronization, and sleep inertia. Some are publicly available and gaining traction in settings such as commercial aviation as a means of evaluating flight crew schedules for potential fatigue-related risks. Yet, most models have not been rigorously evaluated and independently validated for the operations to which they are being applied and many users are not fully aware of the limitations in which model results should be interpreted and applied.

  13. HELOKA-HP thermal-hydraulic model validation and calibration

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xue Zhou; Ghidersa, Bradut-Eugen; Badea, Aurelian Florin

    2016-11-01

    Highlights: • The electrical heater in HELOKA-HP has been modeled with RELAP5-3D using experimental data as input. • The model has been validated using novel techniques for assimilating experimental data and the representative model parameters with BEST-EST. • The methodology is successfully used for reducing the model uncertainties and provides a quantitative measure of the consistency between the experimental data and the model. - Abstract: The Helium Loop Karlsruhe High Pressure (HELOKA-HP) is an experimental facility for the testing of various helium-cooled components at high temperature (500 °C) and high pressure (8 MPa) for nuclear fusion applications. For modeling the loop thermal dynamics, a thermal-hydraulic model has been created using the system code RELAP5-3D. Recently, new experimental data covering the behavior of the loop components under relevant operational conditions have been made available giving the possibility of validating and calibrating the existing models in order to reduce the uncertainties of the simulated responses. This paper presents an example where such process has been applied for the HELOKA electrical heater model. Using novel techniques for assimilating experimental data, implemented in the computational module BEST-EST, the representative parameters of the model have been calibrated.

  14. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  15. FDA 2011 process validation guidance: lifecycle compliance model.

    Science.gov (United States)

    Campbell, Cliff

    2014-01-01

    This article has been written as a contribution to the industry's efforts in migrating from a document-driven to a data-driven compliance mindset. A combination of target product profile, control engineering, and general sum principle techniques is presented as the basis of a simple but scalable lifecycle compliance model in support of modernized process validation. Unit operations and significant variables occupy pole position within the model, documentation requirements being treated as a derivative or consequence of the modeling process. The quality system is repositioned as a subordinate of system quality, this being defined as the integral of related "system qualities". The article represents a structured interpretation of the U.S. Food and Drug Administration's 2011 Guidance for Industry on Process Validation and is based on the author's educational background and his manufacturing/consulting experience in the validation field. The U.S. Food and Drug Administration's Guidance for Industry on Process Validation (2011) provides a wide-ranging and rigorous outline of compliant drug manufacturing requirements relative to its 20(th) century predecessor (1987). Its declared focus is patient safety, and it identifies three inter-related (and obvious) stages of the compliance lifecycle. Firstly, processes must be designed, both from a technical and quality perspective. Secondly, processes must be qualified, providing evidence that the manufacturing facility is fully "roadworthy" and fit for its intended purpose. Thirdly, processes must be verified, meaning that commercial batches must be monitored to ensure that processes remain in a state of control throughout their lifetime.

  16. A process improvement model for software verification and validation

    Science.gov (United States)

    Callahan, John; Sabolish, George

    1994-01-01

    We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and space station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.

  17. Validation of a parametric finite element human femur model.

    Science.gov (United States)

    Klein, Katelyn F; Hu, Jingwen; Reed, Matthew P; Schneider, Lawrence W; Rupp, Jonathan D

    2017-05-19

    Finite element (FE) models with geometry and material properties that are parametric with subject descriptors, such as age and body shape/size, are being developed to incorporate population variability into crash simulations. However, the validation methods currently being used with these parametric models do not assess whether model predictions are reasonable in the space over which the model is intended to be used. This study presents a parametric model of the femur and applies a unique validation paradigm to this parametric femur model that characterizes whether model predictions reproduce experimentally observed trends. FE models of male and female femurs with geometries that are parametric with age, femur length, and body mass index (BMI) were developed based on existing statistical models that predict femur geometry. These parametric FE femur models were validated by comparing responses from combined loading tests of femoral shafts to simulation results from FE models of the corresponding femoral shafts whose geometry was predicted using the associated age, femur length, and BMI. The effects of subject variables on model responses were also compared with trends in the experimental data set by fitting similarly parameterized statistical models to both the results of the experimental data and the corresponding FE model results and then comparing fitted model coefficients for the experimental and predicted data sets. The average error in impact force at experimental failure for the parametric models was 5%. The coefficients of a statistical model fit to simulation data were within one standard error of the coefficients of a similarly parameterized model of the experimental data except for the age parameter, likely because material properties used in simulations were not varied with specimen age. In simulations to explore the effects of femur length, BMI, and age on impact response, only BMI significantly affected response for both men and women, with increasing

  18. Predicting the ungauged basin: model validation and realism assessment

    Science.gov (United States)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2016-04-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) [1] led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this study [2] we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. We do not present a generic approach that can be transferred to other ungauged catchments, but we aim to show how clever model design and alternative data acquisition can result in a valuable hydrological model for ungauged catchments. [1] Sivapalan, M., Takeuchi, K., Franks, S., Gupta, V., Karambiri, H., Lakshmi, V., et al. (2003). IAHS decade on predictions in ungauged basins (PUB), 2003-2012: shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 48, 857-880. doi: 10.1623/hysj.48.6.857.51421 [2] van Emmerik, T., Mulder, G., Eilander, D., Piet, M. and Savenije, H. (2015). Predicting the ungauged basin: model validation and realism assessment

  19. Improvement and Validation of Weld Residual Stress Modelling Procedure

    International Nuclear Information System (INIS)

    Zang, Weilin; Gunnars, Jens; Dong, Pingsha; Hong, Jeong K.

    2009-06-01

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  20. Validated TRNSYS Model for Solar Assisted Space Heating System

    International Nuclear Information System (INIS)

    Abdalla, Nedal

    2014-01-01

    The present study involves a validated TRNSYS model for solar assisted space heating system as applied to a residential building in Jordan using new detailed radiation models of the TRNSYS 17.1 and geometric building model Trnsys3d for the Google SketchUp 3D drawing program. The annual heating load for a building (Solar House) which is located at the Royal ScientiFIc Society (RS5) in Jordan is estimated under climatological conditions of Amman. The aim of this Paper is to compare measured thermal performance of the Solar House with that modeled using TRNSYS. The results showed that the annual measured space heating load for the building was 6,188 kWh while the heati.ng load for the modeled building was 6,391 kWh. Moreover, the measured solar fraction for the solar system was 50% while the modeled solar fraction was 55%. A comparison of modeled and measured data resulted in percentage mean absolute errors for solar energy for space heating, auxiliary heating and solar fraction of 13%, 7% and 10%, respectively. The validated model will be useful for long-term performance simulation under different weather and operating conditions.(author)

  1. Intercultural communication. Prerequisites for translation effectiveness

    Directory of Open Access Journals (Sweden)

    Titela Vîlceanu

    2008-01-01

    Full Text Available The paper is intended to raise awareness of some recurrent problems related to cultural and linguistic security in translation alongside strategies of achieving it. Globalisation means global thinking, individual accountability and the development of new sensitivities and capabilities. Different models of Intercultural Communicative Competence are scrutinised in an attempt to identify a common core of generalisable traits, which could be further applied to a wide range of translation situations. The (intercultural load is of paramount importance in translation being, more often than not, the cause of serious misunderstanding if the translator does not adequately equate the two cultures or bridge the cultural gap.

  2. AEROTAXI ground static test and finite element model validation

    Directory of Open Access Journals (Sweden)

    Radu BISCA

    2011-06-01

    Full Text Available In this presentation, we will concentrate on typical Ground Static Test (GST and Finite Element (FE software comparisons. It is necessary to note, that standard GST are obligatory for any new aircraft configuration. We can mention here the investigations of the AeroTAXITM, a small aircraft configuration, using PRODERA® equipment. A Finite Element Model (FEM of the AeroTAXITM has been developed in PATRAN/NASTRAN®, partly from a previous ANSYS® model. FEM can be used to investigate potential structural modifications or changes with realistic component corrections. Model validation should be part of every modern engineering analysis and quality assurance procedure.

  3. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  4. Circumplex Model VII: validation studies and FACES III.

    Science.gov (United States)

    Olson, D H

    1986-09-01

    This paper reviews some of the recent empirical studies validating the Circumplex Model and describes the newly developed self-report measure, FACES III. Studies testing hypotheses derived from the Circumplex Model regarding the three dimensions of cohesion, change, and communication are reviewed. Case illustrations using FACES III and the Clinical Rating Scale are presented. These two assessment tools can be used for making a diagnosis of family functioning and for assessing changes over the course of treatment. This paper reflects the continuing attempt to develop further the Circumplex Model and to bridge more adequately research, theory, and practice.

  5. Development and validation of a building design waste reduction model.

    Science.gov (United States)

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models.

    Directory of Open Access Journals (Sweden)

    Anna Gomes

    Full Text Available Gentamicin shows large variations in half-life and volume of distribution (Vd within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1 creating an optimal model for endocarditis patients; and 2 assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE and Median Absolute Prediction Error (MDAPE were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358 renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076 L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68% as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37% and standard (MDPE -0.90%, MDAPE 4.82% models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to

  7. Cross validation for the classical model of structured expert judgment

    International Nuclear Information System (INIS)

    Colson, Abigail R.; Cooke, Roger M.

    2017-01-01

    We update the 2008 TU Delft structured expert judgment database with data from 33 professionally contracted Classical Model studies conducted between 2006 and March 2015 to evaluate its performance relative to other expert aggregation models. We briefly review alternative mathematical aggregation schemes, including harmonic weighting, before focusing on linear pooling of expert judgments with equal weights and performance-based weights. Performance weighting outperforms equal weighting in all but 1 of the 33 studies in-sample. True out-of-sample validation is rarely possible for Classical Model studies, and cross validation techniques that split calibration questions into a training and test set are used instead. Performance weighting incurs an “out-of-sample penalty” and its statistical accuracy out-of-sample is lower than that of equal weighting. However, as a function of training set size, the statistical accuracy of performance-based combinations reaches 75% of the equal weight value when the training set includes 80% of calibration variables. At this point the training set is sufficiently powerful to resolve differences in individual expert performance. The information of performance-based combinations is double that of equal weighting when the training set is at least 50% of the set of calibration variables. Previous out-of-sample validation work used a Total Out-of-Sample Validity Index based on all splits of the calibration questions into training and test subsets, which is expensive to compute and includes small training sets of dubious value. As an alternative, we propose an Out-of-Sample Validity Index based on averaging the product of statistical accuracy and information over all training sets sized at 80% of the calibration set. Performance weighting outperforms equal weighting on this Out-of-Sample Validity Index in 26 of the 33 post-2006 studies; the probability of 26 or more successes on 33 trials if there were no difference between performance

  8. Seine estuary modelling and AirSWOT measurements validation

    Science.gov (United States)

    Chevalier, Laetitia; Lyard, Florent; Laignel, Benoit

    2013-04-01

    In the context of global climate change, knowing water fluxes and storage, from the global scale to the local scale, is a crucial issue. The future satellite SWOT (Surface Water and Ocean Topography) mission, dedicated to the surface water observation, is proposed to meet this challenge. SWOT main payload will be a Ka-band Radar Interferometer (KaRIn). To validate this new kind of measurements, preparatory airborne campaigns (called AirSWOT) are currently being designed. AirSWOT will carry an interferometer similar to Karin: Kaspar-Ka-band SWOT Phenomenology Airborne Radar. Some campaigns are planned in France in 2014. During these campaigns, the plane will fly over the Seine River basin, especially to observe its estuary, the upstream river main channel (to quantify river-aquifer exchange) and some wetlands. The present work objective is to validate the ability of AirSWOT and SWOT, using a Seine estuary hydrodynamic modelling. In this context, field measurements will be collected by different teams such as GIP (Public Interest Group) Seine Aval, the GPMR (Rouen Seaport), SHOM (Hydrographic and Oceanographic Service of the Navy), the IFREMER (French Research Institute for Sea Exploitation), Mercator-Ocean, LEGOS (Laboratory of Space Study in Geophysics and Oceanography), ADES (Data Access Groundwater) ... . These datasets will be used first to validate locally AirSWOT measurements, and then to improve a hydrodynamic simulations (using tidal boundary conditions, river and groundwater inflows ...) for AirSWOT data 2D validation. This modelling will also be used to estimate the benefit of the future SWOT mission for mid-latitude river hydrology. To do this modelling,the TUGOm barotropic model (Toulouse Unstructured Grid Ocean model 2D) is used. Preliminary simulations have been performed by first modelling and then combining to different regions: first the Seine River and its estuarine area and secondly the English Channel. These two simulations h are currently being

  9. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2001-01-01

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  10. In-Drift Microbial Communities Model Validation Calculations

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-09-24

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  11. In-Drift Microbial Communities Model Validation Calculation

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-10-31

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  12. In-Drift Microbial Communities Model Validation Calculations

    International Nuclear Information System (INIS)

    Jolley, D.M.

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS MandO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS MandO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS MandO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS MandO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data

  13. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    2001-12-18

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.

  14. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    International Nuclear Information System (INIS)

    D.M. Jolley

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M andO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M andO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M andO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M andO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data

  15. Validating unit commitment models: A case for benchmark test systems

    OpenAIRE

    Melhorn, Alexander C.; Li, Mingsong; Carroll, Paula; Flynn, Damian

    2016-01-01

    Due to increasing penetration of non-traditional power system resources; e.g. renewable generation, electric vehicles, demand response, etc. and computational power there has been an increased interest in research on unit commitment. It therefore may be important to take another look at how unit commitment models and algorithms are validated especially as improvements in solutions and algorithmic performance are desired to combat the added complexity of additional constraints. This paper expl...

  16. Requirements Validation: Execution of UML Models with CPN Tools

    DEFF Research Database (Denmark)

    Machado, Ricardo J.; Lassen, Kristian Bisgaard; Oliveira, Sérgio

    2007-01-01

    Requirements validation is a critical task in any engineering project. The confrontation of stakeholders with static requirements models is not enough, since stakeholders with non-computer science education are not able to discover all the inter-dependencies between the elicited requirements. Even...... requirements, where the system to be built must explicitly support the interaction between people within a pervasive cooperative workflow execution. A case study from a real project is used to illustrate the proposed approach....

  17. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    Orellano, Pablo; Brasnarof, Daniel; Florido Pablo

    2003-01-01

    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  18. Monte Carlo Modelling of Mammograms : Development and Validation

    International Nuclear Information System (INIS)

    Spyrou, G.; Panayiotakis, G.; Bakas, A.; Tzanakos, G.

    1998-01-01

    A software package using Monte Carlo methods has been developed for the simulation of x-ray mammography. A simplified geometry of the mammographic apparatus has been considered along with the software phantom of compressed breast. This phantom may contain inhomogeneities of various compositions and sizes at any point. Using this model one can produce simulated mammograms. Results that demonstrate the validity of this simulation are presented. (authors)

  19. Parameterization and validation of an ungulate-pasture model.

    Science.gov (United States)

    Pekkarinen, Antti-Juhani; Kumpula, Jouko; Tahvonen, Olli

    2017-10-01

    Ungulate grazing and trampling strongly affect pastures and ecosystems throughout the world. Ecological population models are used for studying these systems and determining the guidelines for sustainable and economically viable management. However, the effect of trampling and other resource wastage is either not taken into account or quantified with data in earlier models. Also, the ability of models to describe the herbivore impact on pastures is usually not validated. We used a detailed model and data to study the level of winter- and summertime lichen wastage by reindeer and the effects of wastage on population sizes and management. We also validated the model with respect to its ability of predicting changes in lichen biomass and compared the actual management in herding districts with model results. The modeling efficiency value (0.75) and visual comparison between the model predictions and data showed that the model was able to describe the changes in lichen pastures caused by reindeer grazing and trampling. At the current lichen biomass levels in the northernmost Finland, the lichen wastage varied from 0 to 1 times the lichen intake during winter and from 6 to 10 times the intake during summer. With a higher value for wastage, reindeer numbers and net revenues were lower in the economically optimal solutions. Higher wastage also favored the use of supplementary feeding in the optimal steady state. Actual reindeer numbers in the districts were higher than in the optimal steady-state solutions for the model in 18 herding districts out of 20. Synthesis and applications . We show that a complex model can be used for analyzing ungulate-pasture dynamics and sustainable management if the model is parameterized and validated for the system. Wastage levels caused by trampling and other causes should be quantified with data as they strongly affect the results and management recommendations. Summertime lichen wastage caused by reindeer is higher than expected, which

  20. Filament winding cylinders. II - Validation of the process model

    Science.gov (United States)

    Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.

    1990-01-01

    Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.

  1. Evaluation model and experimental validation of tritium in agricultural plant

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hee Suk; Keum, Dong Kwon; Lee, Han Soo; Jun, In; Choi, Yong Ho; Lee, Chang Woo [KAERI, Daejon (Korea, Republic of)

    2005-12-15

    This paper describes a compartment dynamic model for evaluating the contamination level of tritium in agricultural plants exposed by accidentally released tritium. The present model uses a time dependent growth equation of plant so that it can predict the effect of growth stage of plant during the exposure time. The model including atmosphere, soil and plant compartments is described by a set of nonlinear ordinary differential equations, and is able to predict time-dependent concentrations of tritium in the compartments. To validate the model, a series of exposure experiments of HTO vapor on Chinese cabbage and radish was carried out at the different growth stage of each plant. At the end of exposure, the tissue free water(TFWT) and the organically bound tritium (OBT) were measured. The measured concentrations were agreed well with model predictions.

  2. Methods for Geometric Data Validation of 3d City Models

    Science.gov (United States)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  3. Validation of the WATEQ4 geochemical model for uranium

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite [UO 2 (OH) 2 . H 2 O], UO 2 (OH) 2 , and rutherfordine ((UO 2 CO 3 ) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions

  4. Validation of a Business Model for Cultural Heritage Institutions

    Directory of Open Access Journals (Sweden)

    Cristian CIUREA

    2015-01-01

    Full Text Available The paper proposes a business model for the efficiency optimization of the interaction between all actors involved in cultural heritage sector, such as galleries, libraries, archives and museums (GLAM. The validation of the business model is subject of analyses and implementations in a real environment made by different cultural institutions. The implementation of virtual exhibitions on mobile devices is described and analyzed as a key factor for increasing the cultural heritage visibility. New perspectives on the development of virtual exhibitions for mobile devices are considered. A study on the number of visitors of cultural institutions is carried out and ways to increase the number of visitors are described.

  5. Validating and Determining the Weight of Items Used for Evaluating Clinical Governance Implementation Based on Analytic Hierarchy Process Model

    Directory of Open Access Journals (Sweden)

    Elaheh Hooshmand

    2015-10-01

    Full Text Available Background The purpose of implementing a system such as Clinical Governance (CG is to integrate, establish and globalize distinct policies in order to improve quality through increasing professional knowledge and the accountability of healthcare professional toward providing clinical excellence. Since CG is related to change, and change requires money and time, CG implementation has to be focused on priority areas that are in more dire need of change. The purpose of the present study was to validate and determine the significance of items used for evaluating CG implementation. Methods The present study was descriptive-quantitative in method and design. Items used for evaluating CG implementation were first validated by the Delphi method and then compared with one another and ranked based on the Analytical Hierarchy Process (AHP model. Results The items that were validated for evaluating CG implementation in Iran include performance evaluation, training and development, personnel motivation, clinical audit, clinical effectiveness, risk management, resource allocation, policies and strategies, external audit, information system management, research and development, CG structure, implementation prerequisites, the management of patients’ non-medical needs, complaints and patients’ participation in the treatment process. The most important items based on their degree of significance were training and development, performance evaluation, and risk management. The least important items included the management of patients’ non-medical needs, patients’ participation in the treatment process and research and development. Conclusion The fundamental requirements of CG implementation included having an effective policy at national level, avoiding perfectionism, using the expertise and potentials of the entire country and the coordination of this model with other models of quality improvement such as accreditation and patient safety.

  6. Validation of TZD Scaffold as Potential ARIs: Pharmacophore Modeling, Atom-based 3D QSAR and Docking Studies.

    Science.gov (United States)

    Dahiya, Lalita; Mahapatra, Manoj Kumar; Kaur, Ramandeep; Kumar, Vipin; Kumar, Manoj

    2017-01-01

    Metabolic disorders associated with diabetic patients are a serious concern. Aldose reductase (ALR2) has been identified as first rate-limiting enzyme in the polyol pathway which catalyzes the reduction of glucose to sorbitol. It represents one of the validated targets to develop potential new chemical entities for the prevention and subsequent progression of microvascular diabetic complications. In order to further understand the intricate structural prerequisites of molecules to act as ALR2 inhibitors, ligand-based pharmacophore model, atombased 3D-QSAR and structure based drug design studies have been performed on a series of 2,4- thiazolidinedione derivatives with ALR2 inhibitory activity. In the present study, a validated six point pharmacophore model (AAADNR) with three hydrogen bond acceptor (A), one hydrogen bond donor (D), one negative ionic group (N) and one aromatic ring (R) was developed using PHASE module of Schrodinger suite with acceptable PLS statistics (survival score = 3.871, cross-validated correlation coefficient Q2 = 0.6902, correlation coefficient of multiple determination r2 = 0.9019, Pearson-R coefficient = 0.8354 and F distribution = 196.2). In silico predictive studies (pharmacophore modeling, atom-based 3D QSAR and docking combined with drug receptor binding free energetics and pharmacokinetic drug profile) highlighted some of the important structural features of thiazolidinedione analogs required for potential ALR2 inhibitory activity. The result of these studies may account to design a legitimate template for rational drug design of novel, potent and promising ALR2 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Validating and determining the weight of items used for evaluating clinical governance implementation based on analytic hierarchy process model.

    Science.gov (United States)

    Hooshmand, Elaheh; Tourani, Sogand; Ravaghi, Hamid; Vafaee Najar, Ali; Meraji, Marziye; Ebrahimipour, Hossein

    2015-04-08

    The purpose of implementing a system such as Clinical Governance (CG) is to integrate, establish and globalize distinct policies in order to improve quality through increasing professional knowledge and the accountability of healthcare professional toward providing clinical excellence. Since CG is related to change, and change requires money and time, CG implementation has to be focused on priority areas that are in more dire need of change. The purpose of the present study was to validate and determine the significance of items used for evaluating CG implementation. The present study was descriptive-quantitative in method and design. Items used for evaluating CG implementation were first validated by the Delphi method and then compared with one another and ranked based on the Analytical Hierarchy Process (AHP) model. The items that were validated for evaluating CG implementation in Iran include performance evaluation, training and development, personnel motivation, clinical audit, clinical effectiveness, risk management, resource allocation, policies and strategies, external audit, information system management, research and development, CG structure, implementation prerequisites, the management of patients' non-medical needs, complaints and patients' participation in the treatment process. The most important items based on their degree of significance were training and development, performance evaluation, and risk management. The least important items included the management of patients' non-medical needs, patients' participation in the treatment process and research and development. The fundamental requirements of CG implementation included having an effective policy at national level, avoiding perfectionism, using the expertise and potentials of the entire country and the coordination of this model with other models of quality improvement such as accreditation and patient safety. © 2015 by Kerman University of Medical Sciences.

  8. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  9. Validating and Verifying Biomathematical Models of Human Fatigue

    Science.gov (United States)

    Martinez, Siera Brooke; Quintero, Luis Ortiz; Flynn-Evans, Erin

    2015-01-01

    Airline pilots experience acute and chronic sleep deprivation, sleep inertia, and circadian desynchrony due to the need to schedule flight operations around the clock. This sleep loss and circadian desynchrony gives rise to cognitive impairments, reduced vigilance and inconsistent performance. Several biomathematical models, based principally on patterns observed in circadian rhythms and homeostatic drive, have been developed to predict a pilots levels of fatigue or alertness. These models allow for the Federal Aviation Administration (FAA) and commercial airlines to make decisions about pilot capabilities and flight schedules. Although these models have been validated in a laboratory setting, they have not been thoroughly tested in operational environments where uncontrolled factors, such as environmental sleep disrupters, caffeine use and napping, may impact actual pilot alertness and performance. We will compare the predictions of three prominent biomathematical fatigue models (McCauley Model, Harvard Model, and the privately-sold SAFTE-FAST Model) to actual measures of alertness and performance. We collected sleep logs, movement and light recordings, psychomotor vigilance task (PVT), and urinary melatonin (a marker of circadian phase) from 44 pilots in a short-haul commercial airline over one month. We will statistically compare with the model predictions to lapses on the PVT and circadian phase. We will calculate the sensitivity and specificity of each model prediction under different scheduling conditions. Our findings will aid operational decision-makers in determining the reliability of each model under real-world scheduling situations.

  10. Image decomposition as a tool for validating stress analysis models

    Directory of Open Access Journals (Sweden)

    Mottershead J.

    2010-06-01

    Full Text Available It is good practice to validate analytical and numerical models used in stress analysis for engineering design by comparison with measurements obtained from real components either in-service or in the laboratory. In reality, this critical step is often neglected or reduced to placing a single strain gage at the predicted hot-spot of stress. Modern techniques of optical analysis allow full-field maps of displacement, strain and, or stress to be obtained from real components with relative ease and at modest cost. However, validations continued to be performed only at predicted and, or observed hot-spots and most of the wealth of data is ignored. It is proposed that image decomposition methods, commonly employed in techniques such as fingerprinting and iris recognition, can be employed to validate stress analysis models by comparing all of the key features in the data from the experiment and the model. Image decomposition techniques such as Zernike moments and Fourier transforms have been used to decompose full-field distributions for strain generated from optical techniques such as digital image correlation and thermoelastic stress analysis as well as from analytical and numerical models by treating the strain distributions as images. The result of the decomposition is 101 to 102 image descriptors instead of the 105 or 106 pixels in the original data. As a consequence, it is relatively easy to make a statistical comparison of the image descriptors from the experiment and from the analytical/numerical model and to provide a quantitative assessment of the stress analysis.

  11. Condensation of steam in horizontal pipes: model development and validation

    International Nuclear Information System (INIS)

    Szijarto, R.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich presents the development and validation of a model for the condensation of steam in horizontal pipes. Condensation models were introduced and developed particularly for the application in the emergency cooling system of a Gen-III+ boiling water reactor. Such an emergency cooling system consists of slightly inclined horizontal pipes, which are immersed in a cold water tank. The pipes are connected to the reactor pressure vessel. They are responsible for a fast depressurization of the reactor core in the case of accident. Condensation in horizontal pipes was investigated with both one-dimensional system codes (RELAP5) and three-dimensional computational fluid dynamics software (ANSYS FLUENT). The performance of the RELAP5 code was not sufficient for transient condensation processes. Therefore, a mechanistic model was developed and implemented. Four models were tested on the LAOKOON facility, which analysed direct contact condensation in a horizontal duct

  12. Validating firn compaction model with remote sensing data

    DEFF Research Database (Denmark)

    Simonsen, S. B.; Stenseng, Lars; Sørensen, Louise Sandberg

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction...... of firn compaction to correct ICESat measurements and assessing the present mass loss of the Greenland ice sheet. Validation of the model against the radar data gives good results and confidence in using the model to answer important questions. Questions such as; how large is the firn compaction...... correction relative to the changes in the elevation of the surface observed with remote sensing altimetry? What model time resolution is necessary to resolved the observed layering? What model refinements are necessary to give better estimates of the surface mass balance of the Greenland ice sheet from...

  13. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  14. Validation of thermal models for a prototypical MEMS thermal actuator.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the

  15. Proceedings of the first SRL model validation workshop

    International Nuclear Information System (INIS)

    Buckner, M.R.

    1981-10-01

    The Clean Air Act and its amendments have added importance to knowing the accuracy of mathematical models used to assess transport and diffusion of environmental pollutants. These models are the link between air quality standards and emissions. To test the accuracy of a number of these models, a Model Validation Workshop was held. The meteorological, source-term, and Kr-85 concentration data bases for emissions from the separations areas of the Savannah River Plant during 1975 through 1977 were used to compare calculations from various atmospheric dispersion models. The results of statistical evaluation of the models show a degradation in the ability to predict pollutant concentrations as the time span over which the calculations are made is reduced. Forecasts for annual time periods were reasonably accurate. Weighted-average squared correlation coefficients (R 2 ) were 0.74 for annual, 0.28 for monthly, 0.21 for weekly, and 0.18 for twice-daily predictions. Model performance varied within each of these four categories; however, the results indicate that the more complex, three-dimensional models provide only marginal increases in accuracy. The increased costs of running these codes is not warranted for long-term releases or for conditions of relatively simple terrain and meteorology. The overriding factor in the calculational accuracy is the accurate description of the wind field. Further improvements of the numerical accuracy of the complex models is not nearly as important as accurate calculations of the meteorological transport conditions

  16. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  17. Contaminant transport model validation: The Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lee, R.R.; Ketelle, R.H.

    1988-09-01

    In the complex geologic setting on the Oak Ridge Reservation, hydraulic conductivity is anisotropic and flow is strongly influenced by an extensive and largely discontinuous fracture network. Difficulties in describing and modeling the aquifer system prompted a study to obtain aquifer property data to be used in a groundwater flow model validation experiment. Characterization studies included the performance of an extensive suite of aquifer test within a 600-square-meter area to obtain aquifer property values to describe the flow field in detail. Following aquifer test, a groundwater tracer test was performed under ambient conditions to verify the aquifer analysis. Tracer migration data in the near-field were used in model calibration to predict tracer arrival time and concentration in the far-field. Despite the extensive aquifer testing, initial modeling inaccurately predicted tracer migration direction. Initial tracer migration rates were consistent with those predicted by the model; however, changing environmental conditions resulted in an unanticipated decay in tracer movement. Evaluation of the predictive accuracy of groundwater flow and contaminant transport models on the Oak Ridge Reservation depends on defining the resolution required, followed by field testing and model grid definition at compatible scales. The use of tracer tests, both as a characterization method and to verify model results, provides the highest level of resolution of groundwater flow characteristics. 3 refs., 4 figs

  18. Prerequisite Change and Its Effect on Intermediate Accounting Performance

    Science.gov (United States)

    Huang, Jiunn; O'Shaughnessy, John; Wagner, Robin

    2005-01-01

    As of Fall 1996, San Francisco State University changed its introductory financial accounting course to focus on a "user's" perspective, de-emphasizing the accounting cycle. Anticipating that these changes could impair subsequent performance, the Department of Accounting instituted a new prerequisite for intermediate accounting: Students would…

  19. Gender-Equal Organizations as a Prerequisite for Workplace Learning

    Science.gov (United States)

    Johansson, Kristina; Abrahamsson, Lena

    2018-01-01

    Purpose: This paper aims to explore how gendering of the learning environment acts to shape the design and outcome of workplace learning. The primary intention is to reflect on the idea of gender-equal organizations as a prerequisite for workplace learning. Design/methodology/approach: A review of literature relating to gender and workplace…

  20. Should College Algebra be a Prerequisite for Taking Psychology Statistics?

    Science.gov (United States)

    Sibulkin, Amy E.; Butler, J. S.

    2008-01-01

    In order to consider whether a course in college algebra should be a prerequisite for taking psychology statistics, we recorded students' grades in elementary psychology statistics and in college algebra at a 4-year university. Students who earned credit in algebra prior to enrolling in statistics for the first time had a significantly higher mean…

  1. Prerequisites for National Health Insurance in South Africa: Results ...

    African Journals Online (AJOL)

    Background. National Health Insurance (NHI) is currently high on the health policy agenda. The intention of this financing system is to promote efficiency and the equitable distribution of financial and human resources, improving health outcomes for the majority. However, there are some key prerequisites that need to be in ...

  2. Students' Perceptions on Intrapreneurship Education--Prerequisites for Learning Organisations

    Science.gov (United States)

    Kansikas, Juha; Murphy, Linda

    2010-01-01

    The aim of this qualitative study is to understand the prerequisites for learning organisations (LO) as perceived by university students. Intrapreneurship education offers possibilities to increase student's adaptation of learning organisation's climate and behaviour. By analysing students' perceptions, more information about learning organisation…

  3. Experimental Validation of a Dynamic Model for Lightweight Robots

    Directory of Open Access Journals (Sweden)

    Alessandro Gasparetto

    2013-03-01

    Full Text Available Nowadays, one of the main topics in robotics research is dynamic performance improvement by means of a lightening of the overall system structure. The effective motion and control of these lightweight robotic systems occurs with the use of suitable motion planning and control process. In order to do so, model-based approaches can be adopted by exploiting accurate dynamic models that take into account the inertial and elastic terms that are usually neglected in a heavy rigid link configuration. In this paper, an effective method for modelling spatial lightweight industrial robots based on an Equivalent Rigid Link System approach is considered from an experimental validation perspective. A dynamic simulator implementing the formulation is used and an experimental test-bench is set-up. Experimental tests are carried out with a benchmark L-shape mechanism.

  4. Experimental validation of the multiphase extended Leblond's model

    Science.gov (United States)

    Weisz-Patrault, Daniel

    2017-10-01

    Transformation induced plasticity is a crucial contribution of the simulation of several forming processes involving phase transitions under mechanical loads, resulting in large irreversible strain even though the applied stress is under the yield stress. One of the most elegant and widely used models is based on analytic homogenization procedures and has been proposed by Leblond et al. [1-4]. Very recently, a simple extension of the Leblond's model has been developed by Weisz-Patrault [8]. Several product phases are taken into account and several assumptions are relaxed in order to extend the applicability of the model. The present contribution compares experimental tests with numerical computations, in order to discuss the validity of the developed theory. Thus, experimental results extracted from the existing literature are analyzed. Results show a good agreement between measurements and theoretical computations.

  5. A validation study of a stochastic model of human interaction

    Science.gov (United States)

    Burchfield, Mitchel Talmadge

    The purpose of this dissertation is to validate a stochastic model of human interactions which is part of a developmentalism paradigm. Incorporating elements of ancient and contemporary philosophy and science, developmentalism defines human development as a progression of increasing competence and utilizes compatible theories of developmental psychology, cognitive psychology, educational psychology, social psychology, curriculum development, neurology, psychophysics, and physics. To validate a stochastic model of human interactions, the study addressed four research questions: (a) Does attitude vary over time? (b) What are the distributional assumptions underlying attitudes? (c) Does the stochastic model, {-}N{intlimitssbsp{-infty}{infty}}varphi(chi,tau)\\ Psi(tau)dtau, have utility for the study of attitudinal distributions and dynamics? (d) Are the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein theories applicable to human groups? Approximately 25,000 attitude observations were made using the Semantic Differential Scale. Positions of individuals varied over time and the logistic model predicted observed distributions with correlations between 0.98 and 1.0, with estimated standard errors significantly less than the magnitudes of the parameters. The results bring into question the applicability of Fisherian research designs (Fisher, 1922, 1928, 1938) for behavioral research based on the apparent failure of two fundamental assumptions-the noninteractive nature of the objects being studied and normal distribution of attributes. The findings indicate that individual belief structures are representable in terms of a psychological space which has the same or similar properties as physical space. The psychological space not only has dimension, but individuals interact by force equations similar to those described in theoretical physics models. Nonlinear regression techniques were used to estimate Fermi-Dirac parameters from the data. The model explained a high degree

  6. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Science.gov (United States)

    Krishnamoorthi, Shankarjee; Perotti, Luigi E; Borgstrom, Nils P; Ajijola, Olujimi A; Frid, Anna; Ponnaluri, Aditya V; Weiss, James N; Qu, Zhilin; Klug, William S; Ennis, Daniel B; Garfinkel, Alan

    2014-01-01

    We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  7. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Directory of Open Access Journals (Sweden)

    Shankarjee Krishnamoorthi

    Full Text Available We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  8. Lessons learned from recent geomagnetic disturbance model validation activities

    Science.gov (United States)

    Pulkkinen, A. A.; Welling, D. T.

    2017-12-01

    Due to concerns pertaining to geomagnetically induced current impact on ground-based infrastructure, there has been significantly elevated interest in applying models for local geomagnetic disturbance or "delta-B" predictions. Correspondingly there has been elevated need for testing the quality of the delta-B predictions generated by the modern empirical and physics-based models. To address this need, community-wide activities were launched under the GEM Challenge framework and one culmination of the activities was the validation and selection of models that were transitioned into operations at NOAA SWPC. The community-wide delta-B action is continued under the CCMC-facilitated International Forum for Space Weather Capabilities Assessment and its "Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs" working group. The new delta-B working group builds on the past experiences and expands the collaborations to cover the entire international space weather community. In this paper, we discuss the key lessons learned from the past delta-B validation exercises and lay out the path forward for building on those experience under the new delta-B working group.

  9. High Turbidity Solis Clear Sky Model: Development and Validation

    Directory of Open Access Journals (Sweden)

    Pierre Ineichen

    2018-03-01

    Full Text Available The Solis clear sky model is a spectral scheme based on radiative transfer calculations and the Lambert–Beer relation. Its broadband version is a simplified fast analytical version; it is limited to broadband aerosol optical depths lower than 0.45, which is a weakness when applied in countries with very high turbidity such as China or India. In order to extend the use of the original simplified version of the model for high turbidity values, we developed a new version of the broadband Solis model based on radiative transfer calculations, valid for turbidity values up to 7, for the three components, global, beam, and diffuse, and for the four aerosol types defined by Shettle and Fenn. A validation of low turbidity data acquired in Geneva shows slightly better results than the previous version. On data acquired at sites presenting higher turbidity data, the bias stays within ±4% for the beam and the global irradiances, and the standard deviation around 5% for clean and stable condition data and around 12% for questionable data and variable sky conditions.

  10. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... noise emission, trying at the same time to preserve some of its aerodynamic and geometric characteristics. The new designs are characterized by less cambered airfoils and flatter suction sides. The resulting noise reductions seem to be mainly achieved by a reduction in the turbulent kinetic energy...

  11. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  12. Discrete fracture modelling for the Stripa tracer validation experiment predictions

    International Nuclear Information System (INIS)

    Dershowitz, W.; Wallmann, P.

    1992-02-01

    Groundwater flow and transport through three-dimensional networks of discrete fractures was modeled to predict the recovery of tracer from tracer injection experiments conducted during phase 3 of the Stripa site characterization and validation protect. Predictions were made on the basis of an updated version of the site scale discrete fracture conceptual model used for flow predictions and preliminary transport modelling. In this model, individual fractures were treated as stochastic features described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures in fracture zones near the drift, non-fracture zone fractures within 31 m of the drift, and fractures in fracture zones over 31 meters from the drift axis. Fractures outside fracture zones are not modelled beyond 31 meters from the drift axis. Transport predictions were produced using the FracMan discrete fracture modelling package for each of five tracer experiments. Output was produced in the seven formats specified by the Stripa task force on fracture flow modelling. (au)

  13. A Report on the Validation of Beryllium Strength Models

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Derek Elswick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack of high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable fit to

  14. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression

    Science.gov (United States)

    2011-01-01

    Animal models of psychiatric disorders are usually discussed with regard to three criteria first elaborated by Willner; face, predictive and construct validity. Here, we draw the history of these concepts and then try to redraw and refine these criteria, using the framework of the diathesis model of depression that has been proposed by several authors. We thus propose a set of five major criteria (with sub-categories for some of them); homological validity (including species validity and strain validity), pathogenic validity (including ontopathogenic validity and triggering validity), mechanistic validity, face validity (including ethological and biomarker validity) and predictive validity (including induction and remission validity). Homological validity requires that an adequate species and strain be chosen: considering species validity, primates will be considered to have a higher score than drosophila, and considering strains, a high stress reactivity in a strain scores higher than a low stress reactivity in another strain. Pathological validity corresponds to the fact that, in order to shape pathological characteristics, the organism has been manipulated both during the developmental period (for example, maternal separation: ontopathogenic validity) and during adulthood (for example, stress: triggering validity). Mechanistic validity corresponds to the fact that the cognitive (for example, cognitive bias) or biological mechanisms (such as dysfunction of the hormonal stress axis regulation) underlying the disorder are identical in both humans and animals. Face validity corresponds to the observable behavioral (ethological validity) or biological (biomarker validity) outcomes: for example anhedonic behavior (ethological validity) or elevated corticosterone (biomarker validity). Finally, predictive validity corresponds to the identity of the relationship between the triggering factor and the outcome (induction validity) and between the effects of the treatments

  15. Validation of symptom validity tests using a "child-model" of adult cognitive impairments

    NARCIS (Netherlands)

    Rienstra, A.; Spaan, P.E.J.; Schmand, B.

    2010-01-01

    Validation studies of symptom validity tests (SVTs) in children are uncommon. However, since children’s cognitive abilities are not yet fully developed, their performance may provide additional support for the validity of these measures in adult populations. Four SVTs, the Test of Memory Malingering

  16. Validation of Symptom Validity Tests Using a "Child-model" of Adult Cognitive Impairments

    NARCIS (Netherlands)

    Rienstra, A.; Spaan, P. E. J.; Schmand, B.

    2010-01-01

    Validation studies of symptom validity tests (SVTs) in children are uncommon. However, since children's cognitive abilities are not yet fully developed, their performance may provide additional support for the validity of these measures in adult populations. Four SVTs, the Test of Memory Malingering

  17. Ovarian volume throughout life: a validated normative model.

    Science.gov (United States)

    Kelsey, Thomas W; Dodwell, Sarah K; Wilkinson, A Graham; Greve, Tine; Andersen, Claus Y; Anderson, Richard A; Wallace, W Hamish B

    2013-01-01

    The measurement of ovarian volume has been shown to be a useful indirect indicator of the ovarian reserve in women of reproductive age, in the diagnosis and management of a number of disorders of puberty and adult reproductive function, and is under investigation as a screening tool for ovarian cancer. To date there is no normative model of ovarian volume throughout life. By searching the published literature for ovarian volume in healthy females, and using our own data from multiple sources (combined n=59,994) we have generated and robustly validated the first model of ovarian volume from conception to 82 years of age. This model shows that 69% of the variation in ovarian volume is due to age alone. We have shown that in the average case ovarian volume rises from 0.7 mL (95% CI 0.4-1.1 mL) at 2 years of age to a peak of 7.7 mL (95% CI 6.5-9.2 mL) at 20 years of age with a subsequent decline to about 2.8 mL (95% CI 2.7-2.9 mL) at the menopause and smaller volumes thereafter. Our model allows us to generate normal values and ranges for ovarian volume throughout life. This is the first validated normative model of ovarian volume from conception to old age; it will be of use in the diagnosis and management of a number of diverse gynaecological and reproductive conditions in females from birth to menopause and beyond.

  18. Challenges in validating model results for first year ice

    Science.gov (United States)

    Melsom, Arne; Eastwood, Steinar; Xie, Jiping; Aaboe, Signe; Bertino, Laurent

    2017-04-01

    In order to assess the quality of model results for the distribution of first year ice, a comparison with a product based on observations from satellite-borne instruments has been performed. Such a comparison is not straightforward due to the contrasting algorithms that are used in the model product and the remote sensing product. The implementation of the validation is discussed in light of the differences between this set of products, and validation results are presented. The model product is the daily updated 10-day forecast from the Arctic Monitoring and Forecasting Centre in CMEMS. The forecasts are produced with the assimilative ocean prediction system TOPAZ. Presently, observations of sea ice concentration and sea ice drift are introduced in the assimilation step, but data for sea ice thickness and ice age (or roughness) are not included. The model computes the age of the ice by recording and updating the time passed after ice formation as sea ice grows and deteriorates as it is advected inside the model domain. Ice that is younger than 365 days is classified as first year ice. The fraction of first-year ice is recorded as a tracer in each grid cell. The Ocean and Sea Ice Thematic Assembly Centre in CMEMS redistributes a daily product from the EUMETSAT OSI SAF of gridded sea ice conditions which include "ice type", a representation of the separation of regions between those infested by first year ice, and those infested by multi-year ice. The ice type is parameterized based on data for the gradient ratio GR(19,37) from SSMIS observations, and from the ASCAT backscatter parameter. This product also includes information on ambiguity in the processing of the remote sensing data, and the product's confidence level, which have a strong seasonal dependency.

  19. Modeling Clinically Validated Physical Activity Assessments Using Commodity Hardware.

    Science.gov (United States)

    Winfree, Kyle N; Dominick, Gregory

    2018-03-01

    Consumer-grade wearable activity devices such as Fitbits are increasingly being used in research settings to promote physical activity (PA) due to their low-cost and widespread popularity. However, Fitbit-derived measures of activity intensity are consistently reported to be less accurate than intensity estimates obtained from research-grade accelerometers (i.e., ActiGraph). As such, the potential for using a Fitbit to measure PA intensity within research contexts remains limited. This study aims to model ActiGraph-based intensity estimates from the validated Freedson vector magnitude (VM3) algorithm using measures of steps, metabolic equivalents, and intensity levels obtained from Fitbit. Minute-level data collected from 19 subjects, who concurrently wore the ActiGraph GT3X and Fitbit Flex devices for an average of 1.8 weeks, were used to generate the model. After testing several modeling methods, a naïve Bayes classifier was chosen based on the lowest achieved error rate. Overall, the model reduced Fitbit to ActiGraph errors from 19.97% to 16.32%. Moreover, the model reduced misclassification of Fitbit-based estimates of moderate-to-vigorous physical activity (MVPA) by 40%, eliminating a statistically significant difference between MVPA estimates derived from ActiGraph and Fitbit. Study findings support the general utility of the model for measuring MVPA with the Fitbit Flex in place of the more costly ActiGraph GT3X accelerometer for young healthy adults.

  20. Validation of a non-linear model of health.

    Science.gov (United States)

    Topolski, Stefan; Sturmberg, Joachim

    2014-12-01

    The purpose of this study was to evaluate the veracity of a theoretically derived model of health that describes a non-linear trajectory of health from birth to death with available population data sets. The distribution of mortality by age is directly related to health at that age, thus health approximates 1/mortality. The inverse of available all-cause mortality data from various time periods and populations was used as proxy data to compare with the theoretically derived non-linear health model predictions, using both qualitative approaches and quantitative one-sample Kolmogorov-Smirnov analysis with Monte Carlo simulation. The mortality data's inverse resembles a log-normal distribution as predicted by the proposed health model. The curves have identical slopes from birth and follow a logarithmic decline from peak health in young adulthood. A majority of the sampled populations had a good to excellent quantitative fit to a log-normal distribution, supporting the underlying model assumptions. Post hoc manipulation showed the model predictions to be stable. This is a first theory of health to be validated by proxy data, namely the inverse of all-cause mortality. This non-linear model, derived from the notion of the interaction of physical, environmental, mental, emotional, social and sense-making domains of health, gives physicians a more rigorous basis to direct health care services and resources away from disease-focused elder care towards broad-based biopsychosocial interventions earlier in life. © 2014 John Wiley & Sons, Ltd.

  1. Nonlinear ultrasound modelling and validation of fatigue damage

    Science.gov (United States)

    Fierro, G. P. Malfense; Ciampa, F.; Ginzburg, D.; Onder, E.; Meo, M.

    2015-05-01

    Nonlinear ultrasound techniques have shown greater sensitivity to microcracks and they can be used to detect structural damages at their early stages. However, there is still a lack of numerical models available in commercial finite element analysis (FEA) tools that are able to simulate the interaction of elastic waves with the materials nonlinear behaviour. In this study, a nonlinear constitutive material model was developed to predict the structural response under continuous harmonic excitation of a fatigued isotropic sample that showed anharmonic effects. Particularly, by means of Landau's theory and Kelvin tensorial representation, this model provided an understanding of the elastic nonlinear phenomena such as the second harmonic generation in three-dimensional solid media. The numerical scheme was implemented and evaluated using a commercially available FEA software LS-DYNA, and it showed a good numerical characterisation of the second harmonic amplitude generated by the damaged region known as the nonlinear response area (NRA). Since this process requires only the experimental second-order nonlinear parameter and rough damage size estimation as an input, it does not need any baseline testing with the undamaged structure or any dynamic modelling of the fatigue crack growth. To validate this numerical model, the second-order nonlinear parameter was experimentally evaluated at various points over the fatigue life of an aluminium (AA6082-T6) coupon and the crack propagation was measured using an optical microscope. A good correlation was achieved between the experimental set-up and the nonlinear constitutive model.

  2. MT3DMS: Model use, calibration, and validation

    Science.gov (United States)

    Zheng, C.; Hill, Mary C.; Cao, G.; Ma, R.

    2012-01-01

    MT3DMS is a three-dimensional multi-species solute transport model for solving advection, dispersion, and chemical reactions of contaminants in saturated groundwater flow systems. MT3DMS interfaces directly with the U.S. Geological Survey finite-difference groundwater flow model MODFLOW for the flow solution and supports the hydrologic and discretization features of MODFLOW. MT3DMS contains multiple transport solution techniques in one code, which can often be important, including in model calibration. Since its first release in 1990 as MT3D for single-species mass transport modeling, MT3DMS has been widely used in research projects and practical field applications. This article provides a brief introduction to MT3DMS and presents recommendations about calibration and validation procedures for field applications of MT3DMS. The examples presented suggest the need to consider alternative processes as models are calibrated and suggest opportunities and difficulties associated with using groundwater age in transport model calibration.

  3. Validation of kinetic modeling of progesterone release from polymeric membranes

    Directory of Open Access Journals (Sweden)

    Analia Irma Romero

    2018-01-01

    Full Text Available Mathematical modeling in drug release systems is fundamental in development and optimization of these systems, since it allows to predict drug release rates and to elucidate the physical transport mechanisms involved. In this paper we validate a novel mathematical model that describes progesterone (Prg controlled release from poly-3-hydroxybutyric acid (PHB membranes. A statistical analysis was conducted to compare the fitting of our model with six different models and the Akaike information criterion (AIC was used to find the equation with best-fit. A simple relation between mass and drug released rate was found, which allows predicting the effect of Prg loads on the release behavior. Our proposed model was the one with minimum AIC value, and therefore it was the one that statistically fitted better the experimental data obtained for all the Prg loads tested. Furthermore, the initial release rate was calculated and therefore, the interface mass transfer coefficient estimated and the equilibrium distribution constant of Prg between the PHB and the release medium was also determined. The results lead us to conclude that our proposed model is the one which best fits the experimental data and can be successfully used to describe Prg drug release in PHB membranes.

  4. Non-Linear Slosh Damping Model Development and Validation

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  5. Model Validation of Radiocaesium Transfer from Soil to Leafy Vegetables

    Directory of Open Access Journals (Sweden)

    P. Sukmabuana

    2012-04-01

    Full Text Available The accumulation of radionuclide in plant tissues can be estimated using a mathematical model, however the applicability of the model into field experiment still needs to be evaluated. A model validation has been conducted for radiocaesium transfer from soil to two leafy vegetables generally consumed by Indonesian people, i.e. spinach and morning glory in order to validate the transfer model toward field experimental data. The vegetable plants were grown on the soil contaminated with 134CsNO3 of 19 MBq for about 70 days. As the control, vegetables plant were also grown on soil without 134CsNO3 contamination. Every 5 days, both of contaminated and un contaminated plants were sampled for 3 persons respectively. The soil media was also tested. The samples were dried by infra red lamp and then the radioactivity was counted using gamma spectrometer. Data of 134Cs radioactivity on soil and plants were substituted into mathematical equation to obtain the coeficient of transfer rate (k12. The values of k12 were then used for calculating the 134Cs radioactivity in the vegetable plants. The 134Cs radioactivity in plants obtained from mathematical model analysis was compared with the radioactivity data obtained from the experiment. Correlation of 134Cs radioactivity in vegetables plant obtained from the experiment with those obtained from model analysis was expressed as correlation coefficient, and it was obtained to be 0.90 and 0.71 for spinach and morning glory plants respectively. The values of 134Cs in plants obtained from the model analysis can be corrected using standard deviation values, namely 48.65 and 20 for spinach at 0model analysis and experiment data, the model of 134Cs transfer from soil to plant can be used for analysing 134Cs radioactivity

  6. Validating agent oriented methodology (AOM) for netlogo modelling and simulation

    Science.gov (United States)

    WaiShiang, Cheah; Nissom, Shane; YeeWai, Sim; Sharbini, Hamizan

    2017-10-01

    AOM (Agent Oriented Modeling) is a comprehensive and unified agent methodology for agent oriented software development. AOM methodology was proposed to aid developers with the introduction of technique, terminology, notation and guideline during agent systems development. Although AOM methodology is claimed to be capable of developing a complex real world system, its potential is yet to be realized and recognized by the mainstream software community and the adoption of AOM is still at its infancy. Among the reason is that there are not much case studies or success story of AOM. This paper presents two case studies on the adoption of AOM for individual based modelling and simulation. It demonstrate how the AOM is useful for epidemiology study and ecological study. Hence, it further validate the AOM in a qualitative manner.

  7. Experimental validation of models for Plasma Focus devices

    International Nuclear Information System (INIS)

    Rodriguez Palomino, Luis; Gonzalez, Jose; Clausse, Alejandro

    2003-01-01

    Plasma Focus(PF) Devices are thermonuclear pulsators that produce short pulsed radiation (X-ray, charged particles and neutrons). Since Filippov and Mather, investigations have been used to study plasma properties. Nowadays the interest about PF is focused in technology applications, related to the use of these devices as pulsed neutron sources. In the numerical calculus the Inter institutional PLADEMA (PLAsmas DEnsos MAgnetizados) network is developing three models. Each one is useful in different engineering stages of the Plasma Focus design. One of the main objectives in this work is a comparative study on the influence of the different parameters involved in each models. To validate these results, several experimental measurements under different geometry and initial conditions were performed. (author)

  8. Development and validation of a liquid composite molding model

    Science.gov (United States)

    Bayldon, John Michael

    2007-12-01

    In composite manufacturing, Vacuum Assisted Resin Transfer Molding (VARTM) is becoming increasingly important as a cost effective manufacturing method of structural composites. In this process the dry preform (reinforcement) is placed on a rigid tool and covered by a flexible film to form an airtight vacuum bag. Liquid resin is drawn under vacuum through the preform inside the vacuum bag. Modeling of this process relies on a good understanding of closely coupled phenomena. The resin flow depends on the preform permeability, which in turn depends on the local fluid pressure and the preform compaction behavior. VARTM models for predicting the flow rate in this process do exist, however, they are not able to properly predict the flow for all classes of reinforcement material. In this thesis, the continuity equation used in VARTM models is reexamined and a modified form proposed. In addition, the compaction behavior of the preform in both saturated and dry states is studied in detail and new models are proposed for the compaction behavior. To assess the validity of the proposed models, the shadow moire method was adapted and used to perform full field measurement of the preform thickness during infusion, in addition to the usual measurements of flow front position. A new method was developed and evaluated for the analysis of the moire data related to the VARTM process, however, the method has wider applicability to other full field thickness measurements. The use of this measurement method demonstrated that although the new compaction models work well in the characterization tests, they do not properly describe all the preform features required for modeling the process. In particular the effect of varying saturation on the preform's behavior requires additional study. The flow models developed did, however, improve the prediction of the flow rate for the more compliant preform material tested, and the experimental techniques have shown where additional test methods

  9. Systematic approach to verification and validation: High explosive burn models

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory; Scovel, Christina A. [Los Alamos National Laboratory

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the same experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code

  10. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  11. Design-validation of a hand exoskeleton using musculoskeletal modeling.

    Science.gov (United States)

    Hansen, Clint; Gosselin, Florian; Ben Mansour, Khalil; Devos, Pierre; Marin, Frederic

    2018-04-01

    Exoskeletons are progressively reaching homes and workplaces, allowing interaction with virtual environments, remote control of robots, or assisting human operators in carrying heavy loads. Their design is however still a challenge as these robots, being mechanically linked to the operators who wear them, have to meet ergonomic constraints besides usual robotic requirements in terms of workspace, speed, or efforts. They have in particular to fit the anthropometry and mobility of their users. This traditionally results in numerous prototypes which are progressively fitted to each individual person. In this paper, we propose instead to validate the design of a hand exoskeleton in a fully digital environment, without the need for a physical prototype. The purpose of this study is thus to examine whether finger kinematics are altered when using a given hand exoskeleton. Therefore, user specific musculoskeletal models were created and driven by a motion capture system to evaluate the fingers' joint kinematics when performing two industrial related tasks. The kinematic chain of the exoskeleton was added to the musculoskeletal models and its compliance with the hand movements was evaluated. Our results show that the proposed exoskeleton design does not influence fingers' joints angles, the coefficient of determination between the model with and without exoskeleton being consistently high (R 2 ¯=0.93) and the nRMSE consistently low (nRMSE¯ = 5.42°). These results are promising and this approach combining musculoskeletal and robotic modeling driven by motion capture data could be a key factor in the ergonomics validation of the design of orthotic devices and exoskeletons prior to manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hydraulic Hybrid Excavator—Mathematical Model Validation and Energy Analysis

    Directory of Open Access Journals (Sweden)

    Paolo Casoli

    2016-11-01

    Full Text Available Recent demands to reduce pollutant emissions and improve energy efficiency have driven the implementation of hybrid solutions in mobile machinery. This paper presents the results of a numerical and experimental analysis conducted on a hydraulic hybrid excavator (HHE. The machinery under study is a middle size excavator, whose standard version was modified with the introduction of an energy recovery system (ERS. The proposed ERS layout was designed to recover the potential energy of the boom, using a hydraulic accumulator as a storage device. The recovered energy is utilized through the pilot pump of the machinery which operates as a motor, thus reducing the torque required from the internal combustion engine (ICE. The analysis reported in this paper validates the HHE model by comparing numerical and experimental data in terms of hydraulic and mechanical variables and fuel consumption. The mathematical model shows its capability to reproduce the realistic operating conditions of the realized prototype, tested on the field. A detailed energy analysis comparison between the standard and the hybrid excavator models was carried out to evaluate the energy flows along the system, showing advantages, weaknesses and possibilities to further improve the machinery efficiency. Finally, the fuel consumption estimated by the model and that measured during the experiments are presented to highlight the fuel saving percentages. The HHE model is an important starting point for the development of other energy saving solutions.

  13. Development and validation of a habitat suitability model for ...

    Science.gov (United States)

    We developed a spatially-explicit, flexible 3-parameter habitat suitability model that can be used to identify and predict areas at higher risk for non-native dwarf eelgrass (Zostera japonica) invasion. The model uses simple environmental parameters (depth, nearshore slope, and salinity) to quantitatively describe habitat suitable for Z. japonica invasion based on ecology and physiology from the primary literature. Habitat suitability is defined with values ranging from zero to one, where one denotes areas most conducive to Z. japonica and zero denotes areas not likely to support Z. japonica growth. The model was applied to Yaquina Bay, Oregon, USA, an area that has well documented Z. japonica expansion over the last two decades. The highest suitability values for Z. japonica occurred in the mid to upper portions of the intertidal zone, with larger expanses occurring in the lower estuary. While the upper estuary did contain suitable habitat, most areas were not as large as in the lower estuary, due to inappropriate depth, a steeply sloping intertidal zone, and lower salinity. The lowest suitability values occurred below the lower intertidal zone, within the Yaquina River channel. The model was validated by comparison to a multi-year time series of Z. japonica maps, revealing a strong predictive capacity. Sensitivity analysis performed to evaluate the contribution of each parameter to the model prediction revealed that depth was the most important factor. Sh

  14. Validation of Storm Water Management Model Storm Control Measures Modules

    Science.gov (United States)

    Simon, M. A.; Platz, M. C.

    2017-12-01

    EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.

  15. Developing and investigating validity of a knowledge management game simulation model

    NARCIS (Netherlands)

    Tsjernikova, Irina

    2009-01-01

    The goals of this research project were to develop a game simulation model which supports learning knowledge management in a game environment and to investigate the validity of that model. The validity of the model is approached from two perspectives: educational validity and representational

  16. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  17. First approximations in avalanche model validations using seismic information

    Science.gov (United States)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position

  18. ExEP yield modeling tool and validation test results

    Science.gov (United States)

    Morgan, Rhonda; Turmon, Michael; Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Liu, Xiang Cate; Nunez, Paul

    2017-09-01

    EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR.

  19. System-Level Validation High-Level Modeling and Directed Test Generation Techniques

    CERN Document Server

    Chen, Mingsong; Koo, Heon-Mo; Mishra, Prabhat

    2013-01-01

    This book covers state-of-the art techniques for high-level modeling and validation of complex hardware/software systems, including those with multicore architectures.  Readers will learn to avoid time-consuming and error-prone validation from the comprehensive coverage of system-level validation, including high-level modeling of designs and faults, automated generation of directed tests, and efficient validation methodology using directed tests and assertions.  The methodologies described in this book will help designers to improve the quality of their validation, performing as much validation as possible in the early stages of the design, while reducing the overall validation effort and cost.

  20. Validity of the Neuromuscular Recovery Scale: a measurement model approach.

    Science.gov (United States)

    Velozo, Craig; Moorhouse, Michael; Ardolino, Elizabeth; Lorenz, Doug; Suter, Sarah; Basso, D Michele; Behrman, Andrea L

    2015-08-01

    To determine how well the Neuromuscular Recovery Scale (NRS) items fit the Rasch, 1-parameter, partial-credit measurement model. Confirmatory factor analysis (CFA) and principal components analysis (PCA) of residuals were used to determine dimensionality. The Rasch, 1-parameter, partial-credit rating scale model was used to determine rating scale structure, person/item fit, point-measure item correlations, item discrimination, and measurement precision. Seven NeuroRecovery Network clinical sites. Outpatients (N=188) with spinal cord injury. Not applicable. NRS. While the NRS met 1 of 3 CFA criteria, the PCA revealed that the Rasch measurement dimension explained 76.9% of the variance. Ten of 11 items and 91% of the patients fit the Rasch model, with 9 of 11 items showing high discrimination. Sixty-nine percent of the ratings met criteria. The items showed a logical item-difficulty order, with Stand retraining as the easiest item and Walking as the most challenging item. The NRS showed no ceiling or floor effects and separated the sample into almost 5 statistically distinct strata; individuals with an American Spinal Injury Association Impairment Scale (AIS) D classification showed the most ability, and those with an AIS A classification showed the least ability. Items not meeting the rating scale criteria appear to be related to the low frequency counts. The NRS met many of the Rasch model criteria for construct validity. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Validation of a Simplified Model to Generate Multispectral Synthetic Images

    Directory of Open Access Journals (Sweden)

    Ion Sola

    2015-03-01

    Full Text Available A new procedure to assess the quality of topographic correction (TOC algorithms applied to remote sensing imagery was previously proposed by the authors. This procedure was based on a model that simulated synthetic scenes, representing the radiance an optical sensor would receive from an area under some specific conditions. TOC algorithms were then applied to synthetic scenes and the resulting corrected scenes were compared with a horizontal synthetic scene free of topographic effect. This comparison enabled an objective and quantitative evaluation of TOC algorithms. This approach showed promising results but had some shortcomings that are addressed herein. First, the model, originally built to simulate only broadband panchromatic scenes, is extended to multispectral scenes in the visible, near infrared (NIR, and short wave infrared (SWIR bands. Next, the model is validated by comparing synthetic scenes with four Satellite pour l'Observation de la Terre 5 (SPOT5 real scenes acquired on different dates and different test areas along the Pyrenees mountain range (Spain. The results obtained show a successful simulation of all the spectral bands. Therefore, the model is deemed accurate enough for its purpose of evaluating TOC algorithms.

  2. Validation of Vehicle Model Response with an Instrumented Experimental Vehicle

    Directory of Open Access Journals (Sweden)

    Harun Mohamad Hafiz

    2017-01-01

    Full Text Available A steering aid system called active steering is evaluated by simulating different kinds of driving events. The main purpose of the steering system is to allow the driver control the vehicle independently. A full car vehicle model is simulated in Matlab/Simulink with 14 degree of freedom of equations which include the ride vehicle model and also the handling model. The steering angle is the input of the vehicle model that should be focused on. The angle of the steering system between the tires when turning the vehicle is taken in consideration. Simulations are made on different road conditions effect and also side wind disturbances. Different values are applied to the simulation to reduce the effect of the driving events. Therefore, these simulations results to provide a better improvement to the steering system. The aim for this work is to validate the vehicle response with an instrumented experiemental vehicle. Specific driving events in these simulations are the road adhesions and lateral side wind disturbances.

  3. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  4. Using of Structural Equation Modeling Techniques in Cognitive Levels Validation

    Directory of Open Access Journals (Sweden)

    Natalija Curkovic

    2012-10-01

    Full Text Available When constructing knowledge tests, cognitive level is usually one of the dimensions comprising the test specifications with each item assigned to measure a particular level. Recently used taxonomies of the cognitive levels most often represent some modification of the original Bloom’s taxonomy. There are many concerns in current literature about existence of predefined cognitive levels. The aim of this article is to investigate can structural equation modeling techniques confirm existence of different cognitive levels. For the purpose of the research, a Croatian final high-school Mathematics exam was used (N = 9626. Confirmatory factor analysis and structural regression modeling were used to test three different models. Structural equation modeling techniques did not support existence of different cognitive levels in this case. There is more than one possible explanation for that finding. Some other techniques that take into account nonlinear behaviour of the items as well as qualitative techniques might be more useful for the purpose of the cognitive levels validation. Furthermore, it seems that cognitive levels were not efficient descriptors of the items and so improvements are needed in describing the cognitive skills measured by items.

  5. Modelling and Validating a Deoiling Hydrocyclone for Fault Diagnosis using Multilevel Flow Modeling

    DEFF Research Database (Denmark)

    Nielsen, Emil Krabbe; Bram, Mads Valentin; Frutiger, Jerome

    Decision support systems are a key focus in research on developing control rooms to aidoperators in making reliable decisions, and reducing incidents caused by human errors. For thispurpose, models of complex systems can be developed to diagnose causes or consequences forspecific alarms. Models a...... experiments are used for validation of two simpleMultilevel Flow Modeling models of a deoiling hydrocyclone, used for water and oil separation....

  6. Integrated Process Modeling-A Process Validation Life Cycle Companion.

    Science.gov (United States)

    Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-17

    During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.

  7. PIV validation of blood-heart valve leaflet interaction modelling.

    Science.gov (United States)

    Kaminsky, R; Dumont, K; Weber, H; Schroll, M; Verdonck, P

    2007-07-01

    The aim of this study was to validate the 2D computational fluid dynamics (CFD) results of a moving heart valve based on a fluid-structure interaction (FSI) algorithm with experimental measurements. Firstly, a pulsatile laminar flow through a monoleaflet valve model with a stiff leaflet was visualized by means of Particle Image Velocimetry (PIV). The inflow data sets were applied to a CFD simulation including blood-leaflet interaction. The measurement section with a fixed leaflet was enclosed into a standard mock loop in series with a Harvard Apparatus Pulsatile Blood Pump, a compliance chamber and a reservoir. Standard 2D PIV measurements were made at a frequency of 60 bpm. Average velocity magnitude results of 36 phase-locked measurements were evaluated at every 10 degrees of the pump cycle. For the CFD flow simulation, a commercially available package from Fluent Inc. was used in combination with inhouse developed FSI code based on the Arbitrary Lagrangian-Eulerian (ALE) method. Then the CFD code was applied to the leaflet to quantify the shear stress on it. Generally, the CFD results are in agreement with the PIV evaluated data in major flow regions, thereby validating the FSI simulation of a monoleaflet valve with a flexible leaflet. The applicability of the new CFD code for quantifying the shear stress on a flexible leaflet is thus demonstrated.

  8. Numerical modelling of the bonding process for wind turbine blades: model validation

    DEFF Research Database (Denmark)

    Uzal, Anil; Spangenberg, Jon; W. Nielsen, Michael

    numerical modelis developed in order to analyse adhesive propagation in squeeze flow problems with 3-D flow effects.The model is validated by comparison with an experiment where a rectangular prism shaped adhesivesample is squeezed between two parallel plates. In the numerical model the rheological...

  9. Utilizing Chamber Data for Developing and Validating Climate Change Models

    Science.gov (United States)

    Monje, Oscar

    2012-01-01

    Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.

  10. Validation of the dermal exposure model in ECETOC TRA.

    Science.gov (United States)

    Marquart, Hans; Franken, Remy; Goede, Henk; Fransman, Wouter; Schinkel, Jody

    2017-08-01

    The ECETOC TRA model (presently version 3.1) is often used to estimate worker inhalation and dermal exposure in regulatory risk assessment. The dermal model in ECETOC TRA has not yet been validated by comparison with independent measured exposure levels. This was the goal of the present study. Measured exposure levels and relevant contextual information were gathered via literature search, websites of relevant occupational health institutes and direct requests for data to industry. Exposure data were clustered in so-called exposure cases, which are sets of data from one data source that are expected to have the same values for input parameters in the ECETOC TRA dermal exposure model. For each exposure case, the 75th percentile of measured values was calculated, because the model intends to estimate these values. The input values for the parameters in ECETOC TRA were assigned by an expert elicitation and consensus building process, based on descriptions of relevant contextual information.From more than 35 data sources, 106 useful exposure cases were derived, that were used for direct comparison with the model estimates. The exposure cases covered a large part of the ECETOC TRA dermal exposure model. The model explained 37% of the variance in the 75th percentiles of measured values. In around 80% of the exposure cases, the model estimate was higher than the 75th percentile of measured values. In the remaining exposure cases, the model estimate may not be sufficiently conservative.The model was shown to have a clear bias towards (severe) overestimation of dermal exposure at low measured exposure values, while all cases of apparent underestimation by the ECETOC TRA dermal exposure model occurred at high measured exposure values. This can be partly explained by a built-in bias in the effect of concentration of substance in product used, duration of exposure and the use of protective gloves in the model. The effect of protective gloves was calculated to be on average a

  11. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    Science.gov (United States)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  12. Neuroinflammatory targets and treatments for epilepsy validated in experimental models.

    Science.gov (United States)

    Aronica, Eleonora; Bauer, Sebastian; Bozzi, Yuri; Caleo, Matteo; Dingledine, Raymond; Gorter, Jan A; Henshall, David C; Kaufer, Daniela; Koh, Sookyong; Löscher, Wolfgang; Louboutin, Jean-Pierre; Mishto, Michele; Norwood, Braxton A; Palma, Eleonora; Poulter, Michael O; Terrone, Gaetano; Vezzani, Annamaria; Kaminski, Rafal M

    2017-07-01

    A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  13. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  14. Nonparametric model validations for hidden Markov models with applications in financial econometrics.

    Science.gov (United States)

    Zhao, Zhibiao

    2011-06-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.

  15. Development and validation of models for bubble coalescence and breakup

    International Nuclear Information System (INIS)

    Liao, Yiaxiang

    2013-01-01

    A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model. For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the

  16. Parental modelling of eating behaviours: observational validation of the Parental Modelling of Eating Behaviours scale (PARM).

    Science.gov (United States)

    Palfreyman, Zoe; Haycraft, Emma; Meyer, Caroline

    2015-03-01

    Parents are important role models for their children's eating behaviours. This study aimed to further validate the recently developed Parental Modelling of Eating Behaviours Scale (PARM) by examining the relationships between maternal self-reports on the PARM with the modelling practices exhibited by these mothers during three family mealtime observations. Relationships between observed maternal modelling and maternal reports of children's eating behaviours were also explored. Seventeen mothers with children aged between 2 and 6 years were video recorded at home on three separate occasions whilst eating a meal with their child. Mothers also completed the PARM, the Children's Eating Behaviour Questionnaire and provided demographic information about themselves and their child. Findings provided validation for all three PARM subscales, which were positively associated with their observed counterparts on the observational coding scheme (PARM-O). The results also indicate that habituation to observations did not change the feeding behaviours displayed by mothers. In addition, observed maternal modelling was significantly related to children's food responsiveness (i.e., their interest in and desire for foods), enjoyment of food, and food fussiness. This study makes three important contributions to the literature. It provides construct validation for the PARM measure and provides further observational support for maternal modelling being related to lower levels of food fussiness and higher levels of food enjoyment in their children. These findings also suggest that maternal feeding behaviours remain consistent across repeated observations of family mealtimes, providing validation for previous research which has used single observations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Prerequisites of preparedness against earthquake in hospital system: a survey from Iran.

    Science.gov (United States)

    Hosseini Shokouh, Sayyed Morteza; Anjomshoa, Mina; Mousavi, Seyyed Meysam; Sadeghifar, Jamil; Armoun, Bahram; Rezapour, Aziz; Arab, Mohammad

    2014-02-21

    Considering the history of frequent, and severe, earthquakes in Iran and the importance of health care service delivery by hospitals in these cases, having a plan to deal with disasters should be considered a priority. The aim of this study was the observance of preparedness prerequisites against earthquake in hospitals affiliated with Shahid Beheshti University of Medical Sciences (SBUMS) and its relationship with demographic and organizational characteristics. This was a cross- sectional study that was conducted in 15 hospitals affiliated with SBUMS, Iran in 2012. Data were collected using observation of documents and questionnaire consists of 138 questions in 8 dimensions. The content validity and reliability were confirmed. Data analysis was performed with descriptive statistic, t-test and ANOVA. Results showed that 86.7% of hospitals were in good preparedness level, with the average 85.9 ± 15.5. The maximum and minimum level of preparedness was related to mitigation of construction hazards (56.6 ± 35.6) and support of vital services (97.2 ± 6.0) dimensions, respectively. According to the results, there was a significant statistical difference between mean preparedness and safety of equipment and hazardous materials, hospital evacuation and field treatment, hospital environmental health proceedings, hospital curriculum programs and support of services dimensions with management experience (Ppreparedness prerequisites against earthquake are in good level but attention to the weaknesses mitigation of construction hazards dimension and strengthening these prerequisites, which have obvious impacts on the structural vulnerability of hospitals and adjacent buildings in earthquakes, have been proposed.

  18. Validation of the galactic cosmic ray and geomagnetic transmission models

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Truong, A.G.; O'Neill, P.M.; Choutko, Vitaly

    2001-01-01

    A very high-momentum resolution particle spectrometer called the Alpha Magnetic Spectrometer (AMS) was flown in the payload bay of the Space Shuttle in a 51.65 deg. x 380-km orbit during the last solar minimum. This spectrometer has provided the first high statistics data set for galactic cosmic radiation protons, and helium, as well as limited spectral data on carbon and oxygen nuclei in the International Space Station orbit. First measurements of the albedo protons at this inclination were also made. Because of the high-momentum resolution and high statistics, the data can be separated as a function of magnetic latitude. A related investigation, the balloon borne experiment with a superconducting solenoid spectrometer (BESS), has been flown from Lynn Lake, Canada and has also provided excellent high-resolution data on protons and helium. These two data sets have been used here to study the validity of two galactic cosmic ray models and the geomagnetic transmission function developed from the 1990 geomagnetic reference field model. The predictions of both the CREME96 and NASA/JSC models are in good agreement with the AMS data. The shape of the AMS measured albedo proton spectrum, up to 2 GeV, is in excellent agreement with the previous balloon and satellite observations. A new LIS spectrum was developed that is consistent with both previous and new BESS 3 He observations. Because the astronaut radiation exposures onboard ISS will be highest around the time of the solar minimum, these AMS measurements and these models provide important benchmarks for future radiation studies. AMS-02 slated for launch in September 2003, will provide even better momentum resolution and higher statistics data

  19. Prognostic models for locally advanced cervical cancer: external validation of the published models.

    Science.gov (United States)

    Lora, David; Gómez de la Cámara, Agustín; Fernández, Sara Pedraza; Enríquez de Salamanca, Rafael; Gómez, José Fermín Pérez Regadera

    2017-09-01

    To externally validate the prognostic models for predicting the time-dependent outcome in patients with locally advanced cervical cancer (LACC) who were treated with concurrent chemoradiotherapy in an independent cohort. A historical cohort of 297 women with LACC who were treated with radical concurrent chemoradiotherapy from 1999 to 2014 at the 12 de Octubre University Hospital (H12O), Madrid, Spain. The external validity of prognostic models was quantified regarding discrimination, calibration, measures of overall performance, and decision curve analyses. The review identified 8 studies containing 13 prognostic models. Different (International Federation of Gynecology and Obstetrics [FIGO] stages, parametrium involvement, hydronephrosis, location of positive nodes, and race) but related cohorts with validation cohort (5-year overall survival [OS]=70%; 5-year disease-free survival [DFS]=64%; average age of 50; and over 79% squamous cell) were evaluated. The following models exhibited good external validity in terms of discrimination and calibration but limited clinical utility: the OS model at 3 year from Kidd et al.'s study (area under the receiver operating characteristic curve [AUROC]=0.69; threshold of clinical utility [TCU] between 36% and 50%), the models of DFS at 1 year from Kidd et al.'s study (AUROC=0.64; TCU between 24% and 32%) and 2 years from Rose et al.'s study (AUROC=0.70; TCU between 19% and 58%) and the distant recurrence model at 5 years from Kang et al.'s study (AUROC=0.67; TCU between 12% and 36%). The external validation revealed the statistical and clinical usefulness of 4 prognostic models published in the literature. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

  20. Validated Analytical Model of a Pressure Compensation Drip Irrigation Emitter

    Science.gov (United States)

    Shamshery, Pulkit; Wang, Ruo-Qian; Taylor, Katherine; Tran, Davis; Winter, Amos

    2015-11-01

    This work is focused on analytically characterizing the behavior of pressure-compensating drip emitters in order to design low-cost, low-power irrigation solutions appropriate for off-grid communities in developing countries. There are 2.5 billion small acreage farmers worldwide who rely solely on their land for sustenance. Drip, compared to flood, irrigation leads to up to 70% reduction in water consumption while increasing yields by 90% - important in countries like India which are quickly running out of water. To design a low-power drip system, there is a need to decrease the pumping pressure requirement at the emitters, as pumping power is the product of pressure and flow rate. To efficiently design such an emitter, the relationship between the fluid-structure interactions that occur in an emitter need to be understood. In this study, a 2D analytical model that captures the behavior of a common drip emitter was developed and validated through experiments. The effects of independently changing the channel depth, channel width, channel length and land height on the performance were studied. The model and the key parametric insights presented have the potential to be optimized in order to guide the design of low-pressure, clog-resistant, pressure-compensating emitters.

  1. Characterization Report on Fuels for NEAMS Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gofryk, Krzysztof [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Nearly 20% of the world’s electricity today is generated by nuclear energy from uranium dioxide (UO2) fuel. The thermal conductivity of UO2 governs the conversion of heat produced from fission events into electricity and it is an important parameter in reactor design and safety. While nuclear fuel operates at high to very high temperatures, thermal conductivity and other materials properties lack sensitivity to temperature variations and to material variations at reactor temperatures. As a result, both the uncertainties in laboratory measurements at high temperatures and the small differences in properties of different materials inevitably lead to large uncertainties in models and little predictive power. Conversely, properties measured at low to moderate temperatures have more sensitivity, less uncertainty, and have larger differences in properties for different materials. These variations need to be characterized as they will afford the highest predictive capability in modeling and offer best assurances for validation and verification at all temperatures. This is well emphasized in the temperature variation of the thermal conductivity of UO2.

  2. Validation of Swarm accelerometer data by modelled nongravitational forces

    Science.gov (United States)

    Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav

    2017-05-01

    Swarm is a three-satellite mission of the European Space Agency, in orbit since November 2013, whose main objective is the study of the Earth's magnetic field from space. As part of other scientific payload, each Swarm satellite is equipped with an accelerometer that measures the nongravitational forces (e.g. atmospheric drag and radiation pressure). Since the mission beginning, the Swarm onboard accelerometer observations have been facing a problem of much higher temperature influence than it had been anticipated in the pre-launch tests. In our paper, we use the a posteriori computed models of physical nongravitational forces acting on each satellite for external validation of the accelerometer measurements. To reduce the high temperature dependence, we apply a simple and straightforward method of linear temperature correction. The most successful application of this approach is for the along-track component of the accelerometer data, where the signal magnitude is strongest. The best performing accelerometer is that of the Swarm C satellite, the accelerometer of Swarm A displays more temperature dependence and noise, the noisiest accelerometer data set is provided by Swarm B. We analyzed the occurrence of anomalous periods in the along-track accelerometer component of Swarm A and Swarm C, when the number of accelerometer hardware anomalies is peaking. Over the time interval from June 2014 to December 2015, we found a correlation between these anomalous periods and the minima in the time-varying part of the modelled nongravitational signal.

  3. Published diagnostic models safely excluded colorectal cancer in an independent primary care validation study

    NARCIS (Netherlands)

    Elias, Sjoerd G; Kok, Liselotte; Witteman, Ben J M; Goedhard, Jelle G; Romberg-Camps, Mariëlle J L; Muris, Jean W M; de Wit, Niek J; Moons, Karel G M

    OBJECTIVE: To validate published diagnostic models for their ability to safely reduce unnecessary endoscopy referrals in primary care patients suspected of significant colorectal disease. STUDY DESIGN AND SETTING: Following a systematic literature search, we independently validated the identified

  4. Benchmark validation of statistical models: Application to mediation analysis of imagery and memory.

    Science.gov (United States)

    MacKinnon, David P; Valente, Matthew J; Wurpts, Ingrid C

    2018-03-29

    This article describes benchmark validation, an approach to validating a statistical model. According to benchmark validation, a valid model generates estimates and research conclusions consistent with a known substantive effect. Three types of benchmark validation-(a) benchmark value, (b) benchmark estimate, and (c) benchmark effect-are described and illustrated with examples. Benchmark validation methods are especially useful for statistical models with assumptions that are untestable or very difficult to test. Benchmark effect validation methods were applied to evaluate statistical mediation analysis in eight studies using the established effect that increasing mental imagery improves recall of words. Statistical mediation analysis led to conclusions about mediation that were consistent with established theory that increased imagery leads to increased word recall. Benchmark validation based on established substantive theory is discussed as a general way to investigate characteristics of statistical models and a complement to mathematical proof and statistical simulation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. An independent verification and validation of the Future Theater Level Model conceptual model

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III; Kruse, K.L.; Martellaro, A.J.; Packard, S.L.; Thomas, B. Jr.; Turley, V.K.

    1994-08-01

    This report describes the methodology and results of independent verification and validation performed on a combat model in its design stage. The combat model is the Future Theater Level Model (FTLM), under development by The Joint Staff/J-8. J-8 has undertaken its development to provide an analysis tool that addresses the uncertainties of combat more directly than previous models and yields more rapid study results. The methodology adopted for this verification and validation consisted of document analyses. Included were detailed examination of the FTLM design documents (at all stages of development), the FTLM Mission Needs Statement, and selected documentation for other theater level combat models. These documents were compared to assess the FTLM as to its design stage, its purpose as an analytical combat model, and its capabilities as specified in the Mission Needs Statement. The conceptual design passed those tests. The recommendations included specific modifications as well as a recommendation for continued development. The methodology is significant because independent verification and validation have not been previously reported as being performed on a combat model in its design stage. The results are significant because The Joint Staff/J-8 will be using the recommendations from this study in determining whether to proceed with develop of the model.

  6. Alaska North Slope Tundra Travel Model and Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    lack of variability in snow depth cover throughout the period of field experimentation. The amount of change in disturbance indicators was greater in the tundra communities of the Foothills than in those of the Coastal Plain. However the overall level of change in both community types was less than expected. In Coastal Plain communities, ground hardness and snow slab thickness were found to play an important role in change in active layer depth and soil moisture as a result of treatment. In the Foothills communities, snow cover had the most influence on active layer depth and soil moisture as a result of treatment. Once certain minimum thresholds for ground hardness, snow slab thickness, and snow depth were attained, it appeared that little or no additive effect was realized regarding increased resistance to disturbance in the tundra communities studied. DNR used the results of this modeling project to set a standard for maximum permissible disturbance of cross-country tundra travel, with the threshold set below the widely accepted standard of Low Disturbance levels (as determined by the U.S. Fish and Wildlife Service). DNR followed the modeling project with a validation study, which seemed to support the field trial conclusions and indicated that the standard set for maximum permissible disturbance exhibits a conservative bias in favor of environmental protection. Finally DNR established a quick and efficient tool for visual estimations of disturbance to determine when investment in field measurements is warranted. This Visual Assessment System (VAS) seemed to support the plot disturbance measurements taking during the modeling and validation phases of this project.

  7. PREREQUISITE PROGRAMMES IN OWN CHECKS IN STATUTORY AND VOLUNTARY LEGISLATION

    Directory of Open Access Journals (Sweden)

    E. Guidi

    2012-08-01

    Full Text Available Prerequisite Programmes approach is a requirement for implementing a correct own check plan. This new approach, born according to the European Legislation, is completely recognized by third Nation Authorities and private Inspection and Accreditation Bodies. This method is the basis to verify if an own check system is under control and to verify if corrective actions are built up to warrant hygienic production standards. The present work demonstrate that a correct own check plan is built up only by a Pre Requisites Program approach. The new UNI EN ISO 22000:2005 standard describe this concept specifying the difference between PRP and CCP.

  8. Checklist for the qualitative evaluation of clinical studies with particular focus on external validity and model validity

    Directory of Open Access Journals (Sweden)

    Vollmar Horst C

    2006-12-01

    Full Text Available Abstract Background It is often stated that external validity is not sufficiently considered in the assessment of clinical studies. Although tools for its evaluation have been established, there is a lack of awareness of their significance and application. In this article, a comprehensive checklist is presented addressing these relevant criteria. Methods The checklist was developed by listing the most commonly used assessment criteria for clinical studies. Additionally, specific lists for individual applications were included. The categories of biases of internal validity (selection, performance, attrition and detection bias correspond to structural, treatment-related and observational differences between the test and control groups. Analogously, we have extended these categories to address external validity and model validity, regarding similarity between the study population/conditions and the general population/conditions related to structure, treatment and observation. Results A checklist is presented, in which the evaluation criteria concerning external validity and model validity are systemised and transformed into a questionnaire format. Conclusion The checklist presented in this article can be applied to both planning and evaluating of clinical studies. We encourage the prospective user to modify the checklists according to the respective application and research question. The higher expenditure needed for the evaluation of clinical studies in systematic reviews is justified, particularly in the light of the influential nature of their conclusions on therapeutic decisions and the creation of clinical guidelines.

  9. On the verification and validation of detonation models

    Science.gov (United States)

    Quirk, James

    2013-06-01

    This talk will consider the verification and validation of detonation models, such as Wescott-Stewart-Davis (Journal of Applied Physics. 2005), from the perspective of the American Institute of Aeronautics and Astronautics policy on numerical accuracy (AIAA J. Vol. 36, No. 1, 1998). A key aspect of the policy is that accepted documentation procedures must be used for journal articles with the aim of allowing the reported work to be reproduced by the interested reader. With the rise of electronic documents, since the policy was formulated, it is now possible to satisfy this mandate in its strictest sense: that is, it is now possible to run a comptuational verification study directly in a PDF, thereby allowing a technical author to report numerical subtleties that traditionally have been ignored. The motivation for this document-centric approach is discussed elsewhere (Quirk2003, Adaptive Mesh Refinement Theory and Practice, Springer), leaving the talk to concentrate on specific detonation examples that should be of broad interest to the shock-compression community.

  10. CFD Modeling and Experimental Validation of a Solar Still

    Directory of Open Access Journals (Sweden)

    Mahmood Tahir

    2017-01-01

    Full Text Available Earth is the densest planet of the solar system with total area of 510.072 million square Km. Over 71.68% of this area is covered with water leaving a scant area of 28.32% for human to inhabit. The fresh water accounts for only 2.5% of the total volume and the rest is the brackish water. Presently, the world is facing chief problem of lack of potable water. This issue can be addressed by converting brackish water into potable through a solar distillation process and solar still is specially assigned for this purpose. Efficiency of a solar still explicitly depends on its design parameters, such as wall material, chamber depth, width and slope of the zcondensing surface. This study was aimed at investigating the solar still parameters using CFD modeling and experimental validation. The simulation data of ANSYS-FLUENT was compared with actual experimental data. A close agreement among the simulated and experimental results was seen in the presented work. It reveals that ANSYS-FLUENT is a potent tool to analyse the efficiency of the new designs of the solar distillation systems.

  11. Validation of an employee satisfaction model: A structural equation model approach

    OpenAIRE

    Ophillia Ledimo; Nico Martins

    2015-01-01

    The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM). A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759) permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS) to measure employee satisfaction dimensions. Following the steps of ...

  12. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  13. Prerequisites to promote energy efficiency investments in Bulgaria

    International Nuclear Information System (INIS)

    Boernsen, O.

    1994-01-01

    The PHARE Energy Programme's team observation and advice to the Committee of Energy in Bulgaria are outlined. In comparison to the Western European countries energy intensity in Bulgaria is 2-3 times higher. It is explained by the energy intensive industrial structure and the old and depreciated capital equipment. Cost-covering energy prices would make energy efficiency investment financially feasible and would attract financiers. But the lesson from Western European experience is that availability of finance capital and cost reflecting energy prices is not at all a necessary prerequisite for energy efficiency improvement. This improvement can be achieved with no cost or low cost measures. The potential for energy efficiency in industry (consuming more than 50% of the energy) is 11%-20%; in buildings - 6%; in transport - 4%. There are other obstacles, as lack of information, other business interests and no internal expertise, especially for small and medium size industries. The basic prerequisite to improve energy efficiency is raising of awareness and change of management culture, as well as radical change in organisational and management structures. (orig.)

  14. Experimental validation of Swy-2 clay standard's PHREEQC model

    Science.gov (United States)

    Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György

    2017-04-01

    One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast

  15. Minimal Impact of Organic Chemistry Prerequisite on Student Performance in Introductory Biochemistry

    Science.gov (United States)

    Wright, Robin; Cotner, Sehoya; Winkel, Amy

    2009-01-01

    Curriculum design assumes that successful completion of prerequisite courses will have a positive impact on student performance in courses that require the prerequisite. We recently had the opportunity to test this assumption concerning the relationship between completion of the organic chemistry prerequisite and performance in introductory…

  16. Improved Conceptual Models Methodology (ICoMM) for Validation of Non-Observable Systems

    Science.gov (United States)

    2015-12-01

    engineering (SE) and systems architecture (SA) methods during the model development process ( MDP ). A MDP is used to ensure that the models are...validated and represent the real world as accurately as possible. There are several varieties of MDPs presented in literature, but all share the...early in the MDP for face validation. A well-constructed CoM supports model exploration of NOS when operational validation is not feasible. This

  17. ADVISHE: A new tool to report validation of health-economic decision models

    NARCIS (Netherlands)

    Vemer, P.; Corro Ramos, I.; Van Voorn, G.; Al, M.J.; Feenstra, T.L.

    2014-01-01

    Background: Modelers and reimbursement decision makers could both profit from a more systematic reporting of the efforts to validate health-economic (HE) models. Objectives: Development of a tool to systematically report validation efforts of HE decision models and their outcomes. Methods: A gross

  18. Prediction Models for Prolonged Intensive Care Unit Stay after Cardiac Surgery: Systematic Review and Validation Study

    NARCIS (Netherlands)

    Linda Peelen; Karel Moons; Cor Kalkman; Prof. Dr. Marieke J. Schuurmans; Roelof G.A. Ettema; Arno Nierich

    2010-01-01

    Several models have been developed to predict prolonged stay in the intensive care unit (ICU) after cardiac surgery. However, no extensive quantitative validation of these models has yet been conducted. This study sought to identify and validate existing prediction models for prolonged ICU length of

  19. Calibration and validation of earthquake catastrophe models. Case study: Impact Forecasting Earthquake Model for Algeria

    Science.gov (United States)

    Trendafiloski, G.; Gaspa Rebull, O.; Ewing, C.; Podlaha, A.; Magee, B.

    2012-04-01

    Calibration and validation are crucial steps in the production of the catastrophe models for the insurance industry in order to assure the model's reliability and to quantify its uncertainty. Calibration is needed in all components of model development including hazard and vulnerability. Validation is required to ensure that the losses calculated by the model match those observed in past events and which could happen in future. Impact Forecasting, the catastrophe modelling development centre of excellence within Aon Benfield, has recently launched its earthquake model for Algeria as a part of the earthquake model for the Maghreb region. The earthquake model went through a detailed calibration process including: (1) the seismic intensity attenuation model by use of macroseismic observations and maps from past earthquakes in Algeria; (2) calculation of the country-specific vulnerability modifiers by use of past damage observations in the country. The use of Benouar, 1994 ground motion prediction relationship was proven as the most appropriate for our model. Calculation of the regional vulnerability modifiers for the country led to 10% to 40% larger vulnerability indexes for different building types compared to average European indexes. The country specific damage models also included aggregate damage models for residential, commercial and industrial properties considering the description of the buildings stock given by World Housing Encyclopaedia and the local rebuilding cost factors equal to 10% for damage grade 1, 20% for damage grade 2, 35% for damage grade 3, 75% for damage grade 4 and 100% for damage grade 5. The damage grades comply with the European Macroseismic Scale (EMS-1998). The model was validated by use of "as-if" historical scenario simulations of three past earthquake events in Algeria M6.8 2003 Boumerdes, M7.3 1980 El-Asnam and M7.3 1856 Djidjelli earthquake. The calculated return periods of the losses for client market portfolio align with the

  20. 3D Core Model for simulation of nuclear power plants: Simulation requirements, model features, and validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1999-01-01

    In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)

  1. Validation of the United States Marine Corps Qualified Candidate Population Model

    National Research Council Canada - National Science Library

    Hallahan, William

    2003-01-01

    .... This research conducted a survey of colleges and officer recruiters. It determined that the model cannot be validated, for the post secondary education system cannot provide precise measurements...

  2. Designing and Validating a Model for Measuring Innovation Capacity Construct

    Directory of Open Access Journals (Sweden)

    Mahmood Doroodian

    2014-01-01

    Full Text Available In today’s rapid changing and highly competitive business environment, innovation is broadly recognized as a powerful competitive weapon. Innovation is a dynamic process that needs continuous, evolving, and mastered management. Thus, companies need to monitor and measure their innovation capacity to manage the innovation process. Yet, there is lack of a psychometrically valid scale for innovation capacity construct in the current innovation literature. The purpose of this paper is to develop a reliable and valid scale of measurement for innovation capacity. To test its unidimensionality, reliability, and several components of validity, we used data collected from 175 small- and medium-sized enterprises (SMEs in Iran and performed a series of analyses. The reliability measures, exploratory and confirmatory factor analyses, and several components of validity tests strongly support a four-dimensional scale for measuring innovation capacity. The dimensions are knowledge and technology management, idea management, project development, and commercialization capabilities.

  3. Modeling, implementation, and validation of arterial travel time reliability.

    Science.gov (United States)

    2013-11-01

    Previous research funded by Florida Department of Transportation (FDOT) developed a method for estimating : travel time reliability for arterials. This method was not initially implemented or validated using field data. This : project evaluated and r...

  4. Validation Hydrodynamic Models of Three Topological Models of Secondary Facultative Ponds

    Directory of Open Access Journals (Sweden)

    Aponte-Reyes Alxander

    2014-10-01

    Full Text Available A methodology was developed to analyze boundary conditions, the size of the mesh and the turbulence of a mathematical model of CFD, which could explain hydrodynamic behavior on facultative stabilization ponds, FSP, built to pilot scale: conventional pond, CP, baffled pond, BP, and baffled-mesh pond, BMP. Models dispersion studies were performed in field for validation, taking samples into and out of the FSP, the information was used to carry out CFD model simulations of the three topologies. Evaluated mesh sizes ranged from 500,000 to 2,000,000 elements. The boundary condition in Pared surface-free slip showed good qualitative behavior and the turbulence model κ–ε Low Reynolds yielded good results. The biomass contained in LFS generates interference on dispersion studies and should be taken into account in assessing the CFD modeling, the tracer injection times, its concentration at the entrance, the effect of wind on CFD, and the flow models adopted as a basis for modeling are parameters to be taken into account for the CFD model validation and calibration.

  5. Construct Validity of a Simple Laparoscopic Ovarian Cystectomy Model Using a Validated Objective Structured Assessment of Technical Skills.

    Science.gov (United States)

    Chahine, Elizabeth Britton; Han, Chan Hee; Auguste, Tamika

    To determine the construct validity and interrater reliability of a laparoscopic ovarian cystectomy simulator using a global rating scale. Prospective blinded observational study (Canadian Task Force classification II.3). Academic teaching hospital. A total of 26 postgraduate year (PGY) 1 to 4 gynecology and obstetrics residents were recruited (15 junior residents, postgraduate year PGY 1-2 and 11 senior residents, PGY 3-4). We developed a simple, low-cost laparoscopic ovarian cystectomy simulator and incorporated it into our simulation curriculum. The simulation was directed at junior residents with instruction and immediate feedback in a scheduled simulation session once during the academic year. At the end of the year resident skills assessment, all levels were recorded with video using this model to assess the construct validity between junior and senior residents. Resident performance was later evaluated and scored by 2 blinded, experienced laparoscopists using a validated Objective Structured Assessment of Technical Skills (OSATS). Each resident received a unique identification number and the simulated laparoscopic ovarian cystectomy procedure was filmed during the end of the year assessment. Two blinded raters evaluated the video of each resident with the modified Global Rating Scale (OSATS), using 5 of the 7 domains (respect for tissue, time and motion, instrument handling, flow of operation and knowledge of specific procedure). An average of the 2 ratings was computed for each domain, and comparisons were made using the Mann-Whitney U test. Interrater reliability was calculated using the Kendall tau β correlation coefficient. Construct validity was determined by comparing the rank scores of the junior to senior residents in each domain. Construct validity and interrater reliability was demonstrated in all of the measured domains except for respect for tissue. This simple, low-cost model can be used to teach important laparoscopic ovarian cystectomy skills

  6. Empirical Validation of Building Simulation Software : Modeling of Double Facades

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group.......The work described in this report is the result of a collaborative effort of members of the International Energy Agency (IEA), Task 34/43: Testing and validation of building energy simulation tools experts group....

  7. Mission Driven Scene Understanding: Candidate Model Training and Validation

    Science.gov (United States)

    2016-09-01

    CNN was able to determine the correct class labels for images taken from the 2,560 image training data set, the validation process did not appear to...set containing approximately 1.2 million images (Fig. 1). In Section 3, we show that the CNN achieved 79.7% validation accuracy for the top-5 class...to their capability to incorporate different types of CNN architectures, their hardware usage (central processing unit [CPU] and graphical

  8. Development and Validation of a Predictive Model for Functional Outcome After Stroke Rehabilitation: The Maugeri Model.

    Science.gov (United States)

    Scrutinio, Domenico; Lanzillo, Bernardo; Guida, Pietro; Mastropasqua, Filippo; Monitillo, Vincenzo; Pusineri, Monica; Formica, Roberto; Russo, Giovanna; Guarnaschelli, Caterina; Ferretti, Chiara; Calabrese, Gianluigi

    2017-12-01

    Prediction of outcome after stroke rehabilitation may help clinicians in decision-making and planning rehabilitation care. We developed and validated a predictive tool to estimate the probability of achieving improvement in physical functioning (model 1) and a level of independence requiring no more than supervision (model 2) after stroke rehabilitation. The models were derived from 717 patients admitted for stroke rehabilitation. We used multivariable logistic regression analysis to build each model. Then, each model was prospectively validated in 875 patients. Model 1 included age, time from stroke occurrence to rehabilitation admission, admission motor and cognitive Functional Independence Measure scores, and neglect. Model 2 included age, male gender, time since stroke onset, and admission motor and cognitive Functional Independence Measure score. Both models demonstrated excellent discrimination. In the derivation cohort, the area under the curve was 0.883 (95% confidence intervals, 0.858-0.910) for model 1 and 0.913 (95% confidence intervals, 0.884-0.942) for model 2. The Hosmer-Lemeshow χ 2 was 4.12 ( P =0.249) and 1.20 ( P =0.754), respectively. In the validation cohort, the area under the curve was 0.866 (95% confidence intervals, 0.840-0.892) for model 1 and 0.850 (95% confidence intervals, 0.815-0.885) for model 2. The Hosmer-Lemeshow χ 2 was 8.86 ( P =0.115) and 34.50 ( P =0.001), respectively. Both improvement in physical functioning (hazard ratios, 0.43; 0.25-0.71; P =0.001) and a level of independence requiring no more than supervision (hazard ratios, 0.32; 0.14-0.68; P =0.004) were independently associated with improved 4-year survival. A calculator is freely available for download at https://goo.gl/fEAp81. This study provides researchers and clinicians with an easy-to-use, accurate, and validated predictive tool for potential application in rehabilitation research and stroke management. © 2017 American Heart Association, Inc.

  9. Implementation and Validation of IEC Generic Type 1A Wind Turbine Generator Model

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Margaris, Ioannis

    2015-01-01

    This paper presents the implementation of the International Electrotechnical Commission (IEC) generic Type 1A wind turbine generator (WTG) model in Power Factory (PF) and the validation of the implemented model against field measurements. The IEC generic Type 1A WTG model structure is briefly...... measurement validation of the implemented model was carried out by using the “play-back” approach and the measurement data from Siemens Wind Power. The results of the model to field measurement validation show that there is a good match between the simulation results and the measurements. The errors between...... described. The details are explained regarding how the two mass mechanical model is implemented when the generator mass is included in the PF built-in generator model. In order to verify the IEC generic Type 1A WTG model, the model to field measurement validation method was employed. The model to field...

  10. An approach to model validation and model-based prediction -- polyurethane foam case study.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical

  11. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  12. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  13. The prerequisites for effective competition in restructured wholesale electricity markets

    International Nuclear Information System (INIS)

    Haas, R.; Auer, H.

    2006-01-01

    This paper argues that effective competition in reformed wholesale electricity markets can only be achieved if the following six prerequisites are met: (1) separation of the grid from generation and supply; (2) wholesale price deregulation; (3) sufficient transmission capacity for a competitive market and non-discriminating grid access; (4) excess generation capacity developed by a large number of competing generators; (5) an equilibrium relationship between short-term spot markets and the long-term financial instruments that marketers use to manage spot-market price volatility; (6) an essentially hands-off government policy that encompasses reduced oversight and privatization. The absence of any one of the first five conditions may result in an oligopoly or monopoly market whose economic performance does not meet the efficiency standards of a competently managed regulated electrical utility. (author)

  14. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gowardhan, Akshay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Donetti, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Belles, Rich [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Eme, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Homann, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC)

    2017-05-24

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a more detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).

  15. Is intravenous urography a prerequisite for renal shockwave lithotripsy?

    Science.gov (United States)

    Greenstein, Alexander; Beri, Avi; Sofer, Mario; Matzkin, Haim

    2003-12-01

    To determine whether intravenous urography (IVU) is a prerequisite for shockwave lithotripsy (SWL) of renal stones by addressing whether using non-contrast-enhanced CT (NCCT) instead of IVU for delineating urinary tract anatomy is associated with post-SWL complications. Thirty-eight patients treated by SWL (Econolith 2000) for radiopaque renal stones underwent either IVU or NCCT. Twenty patients with normal urinary tracts or with mild hydronephrosis proximal to the stone on urography comprised the IVU group. Eighteen patients who underwent NCCT and plain abdominal (KUB) films and had urinary tract systems similar in appearance to the IVU group comprised the NCCT group. The two groups were of similar mean age (45.75 years, range 24-73 years; and 49.0 years, range 26-72 years, respectively) and had a similar mean stone size (10.1-10.2 mm). Patients with internal ureteral or nephrostomy catheters were excluded. Information on episodes of intractable renal colic, urinary tract infections, and hospitalization was recorded at follow-up 2 to 6 weeks post-SWL. The IVU and NCCT patients had similar mean stone fragmentation rates (80% and 74%, respectively) at 2 to 6 weeks post-SWL. Four IVU patients (20%) had intractable renal colic. One NCCT patient (5.5%) had a urinary infection. Complication and hospitalization rates in the two groups were not significantly different (P = 0.34; Fisher' exact test). Using only NCCT before SWL was not associated with higher complication rates. Thus, IVU is not a prerequisite for SWL of radiopaque renal stones in patients with a normal urinary tract anatomy as seen on NCCT.

  16. Clinical Governance in Primary Care; Principles, Prerequisites and Barriers: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jaafar Sadeq Tabrizi

    2013-07-01

    Full Text Available Introduction: Primary care organizations are the entities through which clinical governance is developed at local level. To implement clinical governance in primary care, awareness about principles, prerequisites and barriers of this quality improvement paradigm is necessary. The aim of this study is to pool evidence about implementing clinical governance in primary care organizations. Data sources: The literature search was conducted in July 2012. PubMed, Web of Science, Emerald, Springerlink, and MD Consult were searched using the following MESH keywords; “clinical governance” and “primary care” Study selection: The search was limited to English language journals with no time limitation. Articles that were either quantitative or qualitative on concepts of implementing clinical governance in primary care were eligible for this study. Data extraction: From selected articles, data on principles, prerequisites and barriers of clinical governance in primary health care were extracted and classified in the extraction tables. Results: We classified our findings about principles of clinical governance in primary care in four groups; general principles, principles related to staff, patient and communication. Prerequisites were categorized in eight clusters; same as the seven dimensions of National Health System (NHS models of clinical governance. Barriers were sorted out in five categories as structure and organizing, cultural, resource, theoretical and logistical. Conclusion: Primary care organizations must provide budget holding, incentivized programs, data feedback, peer review, education, human relations, health information technology (HIT support, and resources. Key elements include; enrolled populations, an interdisciplinary team approach, HIT interoperability and access between all providers as well as patients, devolution of hospital based services into the community, inter-sectorial integration, blended payments, and a balance of

  17. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.

    2014-05-08

    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard

  18. Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition

    Science.gov (United States)

    Ewing, Anthony; Adams, Charles

    2004-01-01

    Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.

  19. Mathematical modelling of filtration in submerged anaerobic MBRs (SAnMBRs): long-term validation

    OpenAIRE

    Robles Martínez, Ángel; Ruano García, María Victoria; Ribes Bertomeu, José; SECO TORRECILLAS, AURORA; FERRER, J.

    2013-01-01

    The aim of this study was the long-term validation of a model capable of reproducing the filtration process occurring in a submerged anaerobic membrane bioreactor (SAnMBR) system. The proposed model was validated using data obtained horn a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes. The validation was carried out using both lightly and heavily fouled membranes operating at different bulk concentrations, gas sparging intensities and transmembrane fluxes. Acr...

  20. Validation of Inhibition Effect in the Cellulose Hydrolysis: a Dynamic Modelling Approach

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Tsai, Chien-Tai; Meyer, Anne S.

    2011-01-01

    Enzymatic hydrolysis is one of the main steps in the processing of bioethanol from lignocellulosic raw materials. However, complete understanding of the underlying phenomena is still under development. Hence, this study has focused on validation of the inhibition effects in the cellulosic biomass...... for parameter estimation (calibration) and validation purposes. The model predictions using calibrated parameters have shown good agreement with the validation data sets, which provides credibility to the model structure and the parameter values....

  1. Basic Modelling principles and Validation of Software for Prediction of Collision Damage

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    2000-01-01

    This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software.......This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software....

  2. Validation of a model to estimate personalised screening frequency to monitor diabetic retinopathy

    NARCIS (Netherlands)

    Heijden, A.A. van der; Walraven, I.; Riet, E. van 't; Aspelund, T.; Lund, S.H.; Elders, P.; Polak, B.C.P.; Moll, A.C.; Keunen, J.E.E.; Dekker, J.M.; Nijpels, G.

    2014-01-01

    AIMS/HYPOTHESIS: Our study aimed to validate a model to determine a personalised screening frequency for diabetic retinopathy. METHODS: A model calculating a personalised screening interval for monitoring retinopathy based on patients' risk profile was validated using the data of 3,319 type 2

  3. Validation of a model to estimate personalised screening frequency to monitor diabetic retinopathy

    NARCIS (Netherlands)

    van der Heijden, A.A.W.A.; Walraven, I.; van 't Riet, E.; Aspelund, T.; Lund, S.H.; Elders, P.J.M.; Polak, B.C.P.; Moll, A.C.; Keunen, J.E.E.; Dekker, J.M.; Nijpels, G.

    2014-01-01

    Aims/hypothesis: Our study aimed to validate a model to determine a personalised screening frequency for diabetic retinopathy. Methods: A model calculating a personalised screening interval for monitoring retinopathy based on patients' risk profile was validated using the data of 3,319 type 2

  4. Measurement of Dispositional Affect: Construct Validity and Convergence with a Circumplex Model of Affect.

    Science.gov (United States)

    Huelsman, Timothy J.; Furr, R. Michael; Nemanick, Richard C., Jr.

    2003-01-01

    Examined the issue of construct validity of several existing measures of affect and their fit with the circumplex model. Analyses demonstrate that data collected using the four scales studied are characterized by generally good concurrent and discriminant validity. Data are in partial agreement with the proposed circumflex model of affect. (SLD)

  5. Validating the Multidimensional Spline Based Global Aerodynamic Model for the Cessna Citation II

    NARCIS (Netherlands)

    De Visser, C.C.; Mulder, J.A.

    2011-01-01

    The validation of aerodynamic models created using flight test data is a time consuming and often costly process. In this paper a new method for the validation of global nonlinear aerodynamic models based on multivariate simplex splines is presented. This new method uses the unique properties of the

  6. Contributions to the validation of the CJS model for granular materials

    Science.gov (United States)

    Elamrani, Khadija

    1992-07-01

    Behavior model validation in the field of geotechnics is addressed, with the objective of showing the advantages and limits of the CJS (Cambou Jafari Sidoroff) behavior model for granular materials. Several levels are addressed: theoretical analysis of the CJS model to reveal consistence and first capacities; shaping (followed by validation by confrontation with other programs) of a computation code by finite elements (FINITEL) to integrate this model and prepare it for complex applications; validation of the code/model structure thus constituted by comparing its results to those of experiments in the case of nonhomogeneous (superficial foundations) problems.

  7. Construction and validation of detailed kinetic models for the combustion of gasoline surrogates; Construction et validation de modeles cinetiques detailles pour la combustion de melanges modeles des essences

    Energy Technology Data Exchange (ETDEWEB)

    Touchard, S.

    2005-10-15

    The irreversible reduction of oil resources, the CO{sub 2} emission control and the application of increasingly strict standards of pollutants emission lead the worldwide researchers to work to reduce the pollutants formation and to improve the engine yields, especially by using homogenous charge combustion of lean mixtures. The numerical simulation of fuel blends oxidation is an essential tool to study the influence of fuel formulation and motor conditions on auto-ignition and on pollutants emissions. The automatic generation helps to obtain detailed kinetic models, especially at low temperature, where the number of reactions quickly exceeds thousand. The main purpose of this study is the generation and the validation of detailed kinetic models for the oxidation of gasoline blends using the EXGAS software. This work has implied an improvement of computation rules for thermodynamic and kinetic data, those were validated by numerical simulation using CHEMKIN II softwares. A large part of this work has concerned the understanding of the low temperature oxidation chemistry of the C5 and larger alkenes. Low and high temperature mechanisms were proposed and validated for 1 pentene, 1-hexene, the binary mixtures containing 1 hexene/iso octane, 1 hexene/toluene, iso octane/toluene and the ternary mixture of 1 hexene/toluene/iso octane. Simulations were also done for propene, 1-butene and iso-octane with former models including the modifications proposed in this PhD work. If the generated models allowed us to simulate with a good agreement the auto-ignition delays of the studied molecules and blends, some uncertainties still remains for some reaction paths leading to the formation of cyclic products in the case of alkenes oxidation at low temperature. It would be also interesting to carry on this work for combustion models of gasoline blends at low temperature. (author)

  8. Infrared ship signature prediction, model validation and sky radiance

    NARCIS (Netherlands)

    Neele, F.P.

    2005-01-01

    The increased interest during the last decade in the infrared signature of (new) ships results in a clear need of validated infrared signature prediction codes. This paper presents the results of comparing an in-house developed signature prediction code with measurements made in the 3-5 μm band in

  9. Model Validation and Verification of Data Mining from the ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Improving validation and verification (vv) has been one of the most important tasks of the century. However, we have few measures or management interventions to make such improvement possible, and it is difficult to identify patterns that should be followed by developers because systems and processes in an.

  10. Development and validation of stem volume models for Pinus kesiya ...

    African Journals Online (AJOL)

    Stem volume equations (overbark) were developed, using established volume equation forms, and validated using a subset of the data collected for Pinus kesiya in Benguet province, Philippines. A total of 481 trees from Pinus kesiya stands in Benguet were measured through non-destructive sampling. The data set was ...

  11. Testing the validity of the International Atomic Energy Agency (IAEA) safety culture model.

    Science.gov (United States)

    López de Castro, Borja; Gracia, Francisco J; Peiró, José M; Pietrantoni, Luca; Hernández, Ana

    2013-11-01

    This paper takes the first steps to empirically validate the widely used model of safety culture of the International Atomic Energy Agency (IAEA), composed of five dimensions, further specified by 37 attributes. To do so, three independent and complementary studies are presented. First, 290 students serve to collect evidence about the face validity of the model. Second, 48 experts in organizational behavior judge its content validity. And third, 468 workers in a Spanish nuclear power plant help to reveal how closely the theoretical five-dimensional model can be replicated. Our findings suggest that several attributes of the model may not be related to their corresponding dimensions. According to our results, a one-dimensional structure fits the data better than the five dimensions proposed by the IAEA. Moreover, the IAEA model, as it stands, seems to have rather moderate content validity and low face validity. Practical implications for researchers and practitioners are included. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. NRPB models for calculating the transfer of radionuclides through the environment. Verification and validation

    International Nuclear Information System (INIS)

    Attwood, C.; Barraclough, I.; Brown, J.

    1998-06-01

    There is a wide range of models available at NRPB to predict the transfer of radionuclides through the environment. Such models form an essential part of assessments of the radiological impact of releases of radionuclides into the environment. These models cover: the atmosphere; the aquatic environment; the geosphere; the terrestrial environment including foodchains. It is important that the models used for radiological impact assessments are robust, reliable and suitable for the assessment being undertaken. During model development it is, therefore, important that the model is both verified and validated. Verification of a model involves ensuring that it has been implemented correctly, while validation consists of demonstrating that the model is an adequate representation of the real environment. The extent to which a model can be verified depends on its complexity and whether similar models exist. For relatively simple models verification is straightforward, but for more complex models verification has to form part of the development, coding and testing of the model within quality assurance procedures. Validation of models should ideally consist of comparisons between the results of the models and experimental or environmental measurement data that were not used to develop the model. This is more straightforward for some models than for others depending on the quantity and type of data available. Validation becomes increasingly difficult for models which are intended to predict environmental transfer at long times or at great distances. It is, therefore, necessary to adopt qualitative validation techniques to ensure that the model is an adequate representation of the real environment. This report summarises the models used at NRPB to predict the transfer of radionuclides through the environment as part of a radiological impact assessment. It outlines the work carried out to verify and validate the models. The majority of these models are not currently available

  13. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    Science.gov (United States)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  14. Validations of Computational Weld Models: Comparison of Residual Stresses

    Science.gov (United States)

    2010-08-01

    valider la capacité du modèle informatique de calculer les contraintes résiduelles dans des structures réparées par ce type de soudage de rechargement...modèle informatique . Les mesures de la dureté de la plaque laissent supposer que cette propriété varie grandement dans l’espace, c.-à-d. qu’elle est

  15. GCR Environmental Models III: GCR Model Validation and Propagated Uncertainties in Effective Dose

    Science.gov (United States)

    Slaba, Tony C.; Xu, Xiaojing; Blattnig, Steve R.; Norman, Ryan B.

    2014-01-01

    This is the last of three papers focused on quantifying the uncertainty associated with galactic cosmic rays (GCR) models used for space radiation shielding applications. In the first paper, it was found that GCR ions with Z>2 and boundary energy below 500 MeV/nucleon induce less than 5% of the total effective dose behind shielding. This is an important finding since GCR model development and validation have been heavily biased toward Advanced Composition Explorer/Cosmic Ray Isotope Spectrometer measurements below 500 MeV/nucleon. Weights were also developed that quantify the relative contribution of defined GCR energy and charge groups to effective dose behind shielding. In the second paper, it was shown that these weights could be used to efficiently propagate GCR model uncertainties into effective dose behind shielding. In this work, uncertainties are quantified for a few commonly used GCR models. A validation metric is developed that accounts for measurements uncertainty, and the metric is coupled to the fast uncertainty propagation method. For this work, the Badhwar-O'Neill (BON) 2010 and 2011 and the Matthia GCR models are compared to an extensive measurement database. It is shown that BON2011 systematically overestimates heavy ion fluxes in the range 0.5-4 GeV/nucleon. The BON2010 and BON2011 also show moderate and large errors in reproducing past solar activity near the 2000 solar maximum and 2010 solar minimum. It is found that all three models induce relative errors in effective dose in the interval [-20%, 20%] at a 68% confidence level. The BON2010 and Matthia models are found to have similar overall uncertainty estimates and are preferred for space radiation shielding applications.

  16. Epistemological considerations on neuroimaging--a crucial prerequisite for neuroethics.

    Science.gov (United States)

    Huber, Christian G; Huber, Johannes

    2009-07-01

    Whereas ethical considerations on imaging techniques and interpretations of neuroimaging results flourish, there is not much work on their preconditions. In this paper, therefore, we discuss epistemological considerations on neuroimaging and their implications for neuroethics. Neuroimaging uses indirect methods to generate data about surrogate parameters for mental processes, and there are many determinants influencing the results, including current hypotheses and the state of knowledge. This leads to an interdependence between hypotheses and data. Additionally, different levels of description are involved, especially when experiments are designed to answer questions pertaining to broad concepts like the self, empathy or moral intentions. Interdisciplinary theoretical frameworks are needed to integrate findings from the life sciences and the humanities and to translate between them. While these epistemological issues are not specific for neuroimaging, there are some reasons why they are of special importance in this context: Due to their inferential proximity, 'neuro-images' seem to be self-evident, suggesting directness of observation and objectivity. This has to be critically discussed to prevent overinterpretation. Additionally, there is a high level of attention to neuroimaging, leading to a high frequency of presentation of neuroimaging data and making the critical examination of their epistemological properties even more pressing. Epistemological considerations are an important prerequisite for neuroethics. The presentation and communication of the results of neuroimaging studies, the potential generation of new phenomena and new 'dysfunctions' through neuroimaging, and the influence on central concepts at the foundations of ethics will be important future topics for this discipline.

  17. Global Innovation Space: Prerequisites, Specifics and Tools of Formation

    Directory of Open Access Journals (Sweden)

    Dovgal Olеna A.

    2017-03-01

    Full Text Available The aim of the article is to study the prerequisites, specifics and tools of formation of the global innovation space under current conditions of development. On the basis of the generalization of the world’s scientific developments, the article considers processes of formation of the global innovative space, activation of innovation policies of different countries, optimization of state innovation activity as a factor of competitiveness of the national economy. It is substantiated that in the modern world an increasing role is played by global technological cooperation and partnership arising when several different companies decide to implement a joint project, which main goal is development of knowledge and creation of innovative products or exchange of scientific and technical information. This process is one of the ways to form the global innovation space, determines strategies for development of both innovation processes and globalization of the economy as a whole. It is concluded that in the final reckoning the processes in the field of innovative development have their own logic, which corresponds to the current trends in the development of the world economy. Innovation, on the one hand, brings together economies of different countries and, on the other, leads to aggravation of international competition in the world.

  18. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    Science.gov (United States)

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825

  19. Interests: A prerequisite for the development of the art audience

    Directory of Open Access Journals (Sweden)

    Dragin Dušica

    2016-01-01

    Full Text Available The concept of art audience is understood as that, very small, part of population which possesses developed cultural needs and developed and regular cultural practice. Using Guy Debord's words we set a question: What are the chances for the arts compared with the glittering appearances of a spectacle in the modern world in which the tendency towards general banalization dominates? This question is considered as essential for cultural protagonists. Following Nemanjić's theory about cultural needs, we emphasize that the cultural need is formed as a cultural interest, which means that interests have a crucial role in the development of cultural needs, and consequently in cultural consumption. Accordingly, we think that the understanding of the importance of interests as a prerequisite for the development of the art audience is one of the most significant issues in the theory and practice of management in culture. The aim of the paper is to present the concept and its numerous factors in the process of forming and developing interests, as well as to point to the necessity and possibilities of the development of artistic interests, the latter being especially relevant to the management/managers of cultural institutions.

  20. Gap Conductance model Validation in the TASS/SMR-S code using MARS code

    International Nuclear Information System (INIS)

    Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae

    2010-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing the TASS/SMR-S (Transient and Setpoint Simulation/Small and Medium Reactor) code, which is a thermal hydraulic code for the safety analysis of the advanced integral reactor. An appropriate work to validate the applicability of the thermal hydraulic models within the code should be demanded. Among the models, the gap conductance model which is describes the thermal gap conductivity between fuel and cladding was validated through the comparison with MARS code. The validation of the gap conductance model was performed by evaluating the variation of the gap temperature and gap width as the changed with the power fraction. In this paper, a brief description of the gap conductance model in the TASS/SMR-S code is presented. In addition, calculated results to validate the gap conductance model are demonstrated by comparing with the results of the MARS code with the test case

  1. Empirical validation of an agent-based model of wood markets in Switzerland

    Science.gov (United States)

    Hilty, Lorenz M.; Lemm, Renato; Thees, Oliver

    2018-01-01

    We present an agent-based model of wood markets and show our efforts to validate this model using empirical data from different sources, including interviews, workshops, experiments, and official statistics. Own surveys closed gaps where data was not available. Our approach to model validation used a variety of techniques, including the replication of historical production amounts, prices, and survey results, as well as a historical case study of a large sawmill entering the market and becoming insolvent only a few years later. Validating the model using this case provided additional insights, showing how the model can be used to simulate scenarios of resource availability and resource allocation. We conclude that the outcome of the rigorous validation qualifies the model to simulate scenarios concerning resource availability and allocation in our study region. PMID:29351300

  2. How to derive and validate clinical prediction models for use in intensive care medicine.

    Science.gov (United States)

    Labarère, José; Renaud, Bertrand; Bertrand, Renaud; Fine, Michael J

    2014-04-01

    Clinical prediction models are formal combinations of historical, physical examination and laboratory or radiographic test data elements designed to accurately estimate the probability that a specific illness is present (diagnostic model), will respond to a form of treatment (therapeutic model) or will have a well-defined outcome (prognostic model) in an individual patient. They are derived and validated using empirical data and used to assist physicians in their clinical decision-making that requires a quantitative assessment of diagnostic, therapeutic or prognostic probabilities at the bedside. To provide intensivists with a comprehensive overview of the empirical development and testing phases that a clinical prediction model must satisfy before its implementation into clinical practice. The development of a clinical prediction model encompasses three consecutive phases, namely derivation, (external) validation and impact analysis. The derivation phase consists of building a multivariable model, estimating its apparent predictive performance in terms of both calibration and discrimination, and assessing the potential for statistical over-fitting using internal validation techniques (i.e. split-sampling, cross-validation or bootstrapping). External validation consists of testing the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. Impact analysis involves comparative research [i.e. (cluster) randomized trials] to determine whether clinical use of a prediction model affects physician practices, patient outcomes or the cost of healthcare delivery. This narrative review introduces a checklist of 19 items designed to help intensivists develop and transparently report valid clinical prediction models.

  3. SHERMAN, a shape-based thermophysical model. I. Model description and validation

    Science.gov (United States)

    Magri, Christopher; Howell, Ellen S.; Vervack, Ronald J.; Nolan, Michael C.; Fernández, Yanga R.; Marshall, Sean E.; Crowell, Jenna L.

    2018-03-01

    SHERMAN, a new thermophysical modeling package designed for analyzing near-infrared spectra of asteroids and other solid bodies, is presented. The model's features, the methods it uses to solve for surface and subsurface temperatures, and the synthetic data it outputs are described. A set of validation tests demonstrates that SHERMAN produces accurate output in a variety of special cases for which correct results can be derived from theory. These cases include a family of solutions to the heat equation for which thermal inertia can have any value and thermophysical properties can vary with depth and with temperature. An appendix describes a new approximation method for estimating surface temperatures within spherical-section craters, more suitable for modeling infrared beaming at short wavelengths than the standard method.

  4. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  5. Statistical analysis and model validation of automobile emissions

    Science.gov (United States)

    2000-09-01

    The article discusses the development of a comprehensive modal emissions model that is currently being integrated with a variety of transportation models as part of National Cooperative Highway Research Program project 25-11. Described is the second-...

  6. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  7. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  8. Validating a DEB model for a blue mussel.

    NARCIS (Netherlands)

    Saraiva, S.; van der Meer, J.; Kooijman, S.A.L.M.; Witbaard, R.; Philippart, C.J.M; Hippler, D.; Parker, R.

    2012-01-01

    A model for bivalve growth was developed and the results were tested against field observations. The model is based on the Dynamic Energy Budget (DEB) theory and includes an extension of the standard DEB model to cope with changing food quantity and quality. At 4 different locations in the North Sea

  9. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  10. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  11. Validation of buoyancy driven spectral tensor model using HATS data

    DEFF Research Database (Denmark)

    Chougule, A.; Mann, Jakob; Kelly, Mark C.

    2016-01-01

    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper....... The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model...

  12. Validation of the measurement model concept for error structure identification

    International Nuclear Information System (INIS)

    Shukla, Pavan K.; Orazem, Mark E.; Crisalle, Oscar D.

    2004-01-01

    The development of different forms of measurement models for impedance has allowed examination of key assumptions on which the use of such models to assess error structure are based. The stochastic error structures obtained using the transfer-function and Voigt measurement models were identical, even when non-stationary phenomena caused some of the data to be inconsistent with the Kramers-Kronig relations. The suitability of the measurement model for assessment of consistency with the Kramers-Kronig relations, however, was found to be more sensitive to the confidence interval for the parameter estimates than to the number of parameters in the model. A tighter confidence interval was obtained for Voigt measurement model, which made the Voigt measurement model a more sensitive tool for identification of inconsistencies with the Kramers-Kronig relations

  13. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  14. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  15. Large-scale external validation and comparison of prognostic models: an application to chronic obstructive pulmonary disease.

    Science.gov (United States)

    Guerra, Beniamino; Haile, Sarah R; Lamprecht, Bernd; Ramírez, Ana S; Martinez-Camblor, Pablo; Kaiser, Bernhard; Alfageme, Inmaculada; Almagro, Pere; Casanova, Ciro; Esteban-González, Cristóbal; Soler-Cataluña, Juan J; de-Torres, Juan P; Miravitlles, Marc; Celli, Bartolome R; Marin, Jose M; Ter Riet, Gerben; Sobradillo, Patricia; Lange, Peter; Garcia-Aymerich, Judith; Antó, Josep M; Turner, Alice M; Han, Meilan K; Langhammer, Arnulf; Leivseth, Linda; Bakke, Per; Johannessen, Ane; Oga, Toru; Cosio, Borja; Ancochea-Bermúdez, Julio; Echazarreta, Andres; Roche, Nicolas; Burgel, Pierre-Régis; Sin, Don D; Soriano, Joan B; Puhan, Milo A

    2018-03-02

    External validations and comparisons of prognostic models or scores are a prerequisite for their use in routine clinical care but are lacking in most medical fields including chronic obstructive pulmonary disease (COPD). Our aim was to externally validate and concurrently compare prognostic scores for 3-year all-cause mortality in mostly multimorbid patients with COPD. We relied on 24 cohort studies of the COPD Cohorts Collaborative International Assessment consortium, corresponding to primary, secondary, and tertiary care in Europe, the Americas, and Japan. These studies include globally 15,762 patients with COPD (1871 deaths and 42,203 person years of follow-up). We used network meta-analysis adapted to multiple score comparison (MSC), following a frequentist two-stage approach; thus, we were able to compare all scores in a single analytical framework accounting for correlations among scores within cohorts. We assessed transitivity, heterogeneity, and inconsistency and provided a performance ranking of the prognostic scores. Depending on data availability, between two and nine prognostic scores could be calculated for each cohort. The BODE score (body mass index, airflow obstruction, dyspnea, and exercise capacity) had a median area under the curve (AUC) of 0.679 [1st quartile-3rd quartile = 0.655-0.733] across cohorts. The ADO score (age, dyspnea, and airflow obstruction) showed the best performance for predicting mortality (difference AUC ADO - AUC BODE = 0.015 [95% confidence interval (CI) = -0.002 to 0.032]; p = 0.08) followed by the updated BODE (AUC BODE updated - AUC BODE = 0.008 [95% CI = -0.005 to +0.022]; p = 0.23). The assumption of transitivity was not violated. Heterogeneity across direct comparisons was small, and we did not identify any local or global inconsistency. Our analyses showed best discriminatory performance for the ADO and updated BODE scores in patients with COPD. A limitation to be addressed in future studies is the extension of MSC

  16. Summarized presentation of the numerical model used for the pressurizer of a light water nuclear reactor. Description and validation

    International Nuclear Information System (INIS)

    Siarry, P.

    1981-12-01

    The pressurizer model is first described together with its coupling to the nuclear unit. The different stages involved in the validation are then presented: validation of overall qualitative behavior; validation of the open loop pressurizer model; validation of the various units for controlling pressures and levels; simulation of two large transients (Bugey plant) [fr

  17. Evaluation factors for verification and validation of low-level waste disposal site models

    International Nuclear Information System (INIS)

    Moran, M.S.; Mezga, L.J.

    1982-01-01

    The purpose of this paper is to identify general evaluation factors to be used to verify and validate LLW disposal site performance models in order to assess their site-specific applicability and to determine their accuracy and sensitivity. It is intended that the information contained in this paper be employed by model users involved with LLW site performance model verification and validation. It should not be construed as providing protocols, but rather as providing a framework for the preparation of specific protocols or procedures. A brief description of each evaluation factor is provided. The factors have been categorized according to recommended use during either the model verification or the model validation process. The general responsibilities of the developer and user are provided. In many cases it is difficult to separate the responsibilities of the developer and user, but the user is ultimately accountable for both verification and validation processes. 4 refs

  18. A proposed strategy for the validation of ground-water flow and solute transport models

    International Nuclear Information System (INIS)

    Davis, P.A.; Goodrich, M.T.

    1991-01-01

    Ground-water flow and transport models can be thought of as a combination of conceptual and mathematical models and the data that characterize a given system. The judgment of the validity or invalidity of a model depends both on the adequacy of the data and the model structure (i.e., the conceptual and mathematical model). This report proposes a validation strategy for testing both components independently. The strategy is based on the philosophy that a model cannot be proven valid, only invalid or not invalid. In addition, the authors believe that a model should not be judged in absence of its intended purpose. Hence, a flow and transport model may be invalid for one purpose but not invalid for another. 9 refs

  19. Model Identification and Validation for a Heating System using MATLAB System Identification Toolbox

    International Nuclear Information System (INIS)

    Rabbani, Muhammad Junaid; Hussain, Kashan; Khan, Asim-ur-Rehman; Ali, Abdullah

    2013-01-01

    This paper proposed a systematic approach to select a mathematical model for an industrial heating system by adopting system identification techniques with the aim of fulfilling the design requirement for the controller. The model identification process will begin by collecting real measurement data samples with the aid of MATLAB system identification toolbox. The criteria for selecting the model that could validate model output with actual data will based upon: parametric identification technique, picking the best model structure with low order among ARX, ARMAX and BJ, and then applying model estimation and validation tests. Simulated results have shown that the BJ model has been best in providing good estimation and validation based upon performance criteria such as: final prediction error, loss function, best percentage of model fit, and co-relation analysis of residual for output

  20. An improved snow scheme for the ECMWF land surface model: Description and offline validation

    Science.gov (United States)

    Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder

    2010-01-01

    A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...

  1. Construct validation and the Rasch model: functional ability of healthy elderly people

    DEFF Research Database (Denmark)

    Avlund, K; Kreiner, S; Schultz-Larsen, K

    1993-01-01

    in the county of Copenhagen. Functional ability was measured with the traditional activities of daily living and with a classification system developed specially for healthy elderly people. Construct validity was tested by the Rasch model for item analysis, addressing specifically the internal validity...

  2. Experimental validation of a Bayesian model of visual acuity.

    LENUS (Irish Health Repository)

    Dalimier, Eugénie

    2009-01-01

    Based on standard procedures used in optometry clinics, we compare measurements of visual acuity for 10 subjects (11 eyes tested) in the presence of natural ocular aberrations and different degrees of induced defocus, with the predictions given by a Bayesian model customized with aberrometric data of the eye. The absolute predictions of the model, without any adjustment, show good agreement with the experimental data, in terms of correlation and absolute error. The efficiency of the model is discussed in comparison with image quality metrics and other customized visual process models. An analysis of the importance and customization of each stage of the model is also given; it stresses the potential high predictive power from precise modeling of ocular and neural transfer functions.

  3. Validation of a Parametric Approach for 3d Fortification Modelling: Application to Scale Models

    Science.gov (United States)

    Jacquot, K.; Chevrier, C.; Halin, G.

    2013-02-01

    Parametric modelling approach applied to cultural heritage virtual representation is a field of research explored for years since it can address many limitations of digitising tools. For example, essential historical sources for fortification virtual reconstructions like plans-reliefs have several shortcomings when they are scanned. To overcome those problems, knowledge based-modelling can be used: knowledge models based on the analysis of theoretical literature of a specific domain such as bastioned fortification treatises can be the cornerstone of the creation of a parametric library of fortification components. Implemented in Grasshopper, these components are manually adjusted on the data available (i.e. 3D surveys of plans-reliefs or scanned maps). Most of the fortification area is now modelled and the question of accuracy assessment is raised. A specific method is used to evaluate the accuracy of the parametric components. The results of the assessment process will allow us to validate the parametric approach. The automation of the adjustment process can finally be planned. The virtual model of fortification is part of a larger project aimed at valorising and diffusing a very unique cultural heritage item: the collection of plans-reliefs. As such, knowledge models are precious assets when automation and semantic enhancements will be considered.

  4. Ion thruster modeling: Particle simulations and experimental validations

    International Nuclear Information System (INIS)

    Wang, Joseph; Polk, James; Brinza, David

    2003-01-01

    This paper presents results from ion thruster modeling studies performed in support of NASA's Deep Space 1 mission and NSTAR project. Fully 3-dimensional computer particle simulation models are presented for ion optics plasma flow and ion thruster plume. Ion optics simulation results are compared with measurements obtained from ground tests of the NSTAR ion thruster. Plume simulation results are compared with in-flight measurements from the Deep Space 1 spacecraft. Both models show excellent agreement with experimental data

  5. The international coordination of climate model validation and intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Gates, W.L. [Lawrence Livermore National Lab. Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison

    1995-12-31

    Climate modeling, whereby basic physical laws are used to integrate the physics and dynamics of climate into a consistent system, plays a key role in climate research and is the medium through. Depending upon the portion(s) of the climate system being considered, climate models range from those concerned only with the equilibrium globally-averaged surface temperature to those depicting the 3-dimensional time-dependent evolution of the coupled atmosphere, ocean, sea ice and land surface. Here only the latter class of models are considered, which are commonly known as general circulation models (or GCMs). (author)

  6. Development and Validation of a Minichannel Evaporator Model under Dehumidification

    OpenAIRE

    Hassan, Abdelrahman Hussein Abdelhalim

    2016-01-01

    [EN] In the first part of the current thesis, two fundamental numerical models (Fin2D-W and Fin1D-MB) for analyzing the air-side performance of minichannel evaporators were developed and verified. The Fin2D-W model applies a comprehensive two-dimensional scheme to discretize the evaporator. On the other hand, the Fin1D-MB model is based on the one-dimensional fin theory in conjunction with the moving boundaries technique along the fin height. The first objective of the two presented models is...

  7. A new stationary droplet evaporation model and its validation

    Directory of Open Access Journals (Sweden)

    Fang WANG

    2017-08-01

    Full Text Available The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets’ evaporation character was measured in a quiescent high-temperature environment by micro high-speed camera system. The gasoline and kerosene experimental results are consistent with the reference data. Methanol, common kerosene and aviation kerosene droplet evaporation characteristics, as well as their evaporation rate changing with temperature, were obtained. The evaporation rate experimental data were compared with the prediction result of Ranz-Marshall boiling temperature model (RMB, Ranz-Marshall low-temperature model (RML, drift flux model (DFM, mass analogy model (MAM, and stagnant film model (SFM. The disparity between the experimental data and the model prediction results was mainly caused by the neglect of the natural convection effect, which was never introduced into the droplet evaporation concept. A new droplet evaporation model with consideration of natural convection buoyancy force effect was proposed in this paper. Under the experimental conditions in this paper, the calculation results of the new droplet evaporation model were agreed with the experimental data for kerosene, methanol and other fuels, with less than 20% relative deviations. The relative deviations between the new evaporation model predictions for kerosene and the experimental data from the references were within 10%.

  8. Verification and validation of an actuator disc model

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Laan, van der, Paul Maarten; Troldborg, Niels

    2014-01-01

    reduce the computational cost of large wind farm wake simulations. The special case of the actuator disc is successfully validated with an analytical solution for heavily loaded turbines and with a full-rotor computation in computational fluid dynamics. Copyright © 2013 John Wiley & Sons, Ltd.......Wind turbine wake can be studied in computational fluid dynamics with the use of permeable body forces (e.g. actuator disc, line and surface). This paper presents a general flexible method to redistribute wind turbine blade forces as permeable body forces in a computational domain. The method can...... take any kind of shape discretization, determine the intersectional elements with the computational grid and use the size of these elements to redistribute proportionally the forces. This method can potentially reduce the need for mesh refinement in the region surrounding the rotor and, therefore, also...

  9. Design and validation of a relative trust model

    NARCIS (Netherlands)

    Hoogendoorn, M.; Jaffry, S.W.; Maanen, P.P. van; Treur, J.

    2014-01-01

    When considering intelligent agents that interact with humans, having an idea of the trust levels of the human, for example in other agents or services, can be of great importance. Most models of human trust that exist assume trust in one trustee is independent of trust in another trustee. The model

  10. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    Science.gov (United States)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  11. A validated, transitional and translational porcine model of hepatocellular carcinoma

    NARCIS (Netherlands)

    Schachtschneider, Kyle M.; Schwind, Regina M.; Darfour-Oduro, Kwame A.; De, Arun K.; Rund, Lauretta A.; Singh, Kuldeep; Principe, Daniel R.; Guzman, Grace; Ray, Charles E.; Ozer, Howard; Gaba, Ron C.; Schook, Lawrence B.

    2017-01-01

    Difficult questions are confronting clinicians attempting to improve hepatocellular carcinoma (HCC) outcomes. A large animal model with genetic, anatomical, and physiological similarities to humans is required to transition from mouse models to human clinical trials to address unmet clinical

  12. Root zone water quality model (RZWQM2): Model use, calibration and validation

    Science.gov (United States)

    Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.

    2012-01-01

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.

  13. Modeling Enterprise Authorization: A Unified Metamodel and Initial Validation

    Directory of Open Access Journals (Sweden)

    Matus Korman

    2016-07-01

    Full Text Available Authorization and its enforcement, access control, have stood at the beginning of the art and science of information security, and remain being crucial pillar of security in the information technology (IT and enterprises operations. Dozens of different models of access control have been proposed. Although Enterprise Architecture as the discipline strives to support the management of IT, support for modeling access policies in enterprises is often lacking, both in terms of supporting the variety of individual models of access control nowadays used, and in terms of providing a unified ontology capable of flexibly expressing access policies for all or the most of the models. This study summarizes a number of existing models of access control, proposes a unified metamodel mapped to ArchiMate, and illustrates its use on a selection of example scenarios and two business cases.

  14. Medication reconciliation is a prerequisite for obtaining a valid medication review

    DEFF Research Database (Denmark)

    Bjeldbak-Olesen, Mette; Danielsen, Anja Gadsbølle; Tomsen, Dorthe Vilstrup

    2013-01-01

    The objective of this study was to compare medication reconciliation and medication review based on number, type and severity of discrepancies and drug-related problems (DRPs), denoted errors.......The objective of this study was to compare medication reconciliation and medication review based on number, type and severity of discrepancies and drug-related problems (DRPs), denoted errors....

  15. Validation of dispersion model of RTARC-DSS based on ''KIT'' field experiments

    International Nuclear Information System (INIS)

    Duran, J.

    2000-01-01

    The aim of this study is to present the performance of the Gaussian dispersion model RTARC-DSS (Real Time Accident Release Consequences - Decision Support System) at the 'Kit' field experiments. The Model Validation Kit is a collection of three experimental data sets from Kincaid, Copenhagen, Lillestrom and supplementary Indianopolis experimental campaigns accompanied by software for model evaluation. The validation of the model has been performed on the basis of the maximum arc-wise concentrations using the Bootstrap resampling procedure the variation of the model residuals. Validation was performed for the short-range distances (about 1 - 10 km, maximum for Kincaid data set - 50 km from source). Model evaluation procedure and amount of relative over- or under-prediction are discussed and compared with the model. (author)

  16. A virtual source model for Kilo-voltage cone beam CT: Source characteristics and model validation

    International Nuclear Information System (INIS)

    Spezi, E.; Volken, W.; Frei, D.; Fix, M. K.

    2011-01-01

    Purpose: The purpose of this investigation was to study the source characteristics of a clinical kilo-voltage cone beam CT unit and to develop and validate a virtual source model that could be used for treatment planning purposes. Methods: We used a previously commissioned full Monte Carlo model and new bespoke software to study the source characteristics of a clinical kilo-voltage cone beam CT (CBCT) unit. We identified the main particle sources, their spatial, energy and angular distribution for all the image acquisition presets currently used in our clinical practice. This includes a combination of two energies (100 and 120 kVp), two filters (neutral and bowtie), and eight different x-ray beam apertures. We subsequently built a virtual source model which we validated against full Monte Carlo calculations. Results: We found that the radiation output of the clinical kilo-voltage cone beam CT unit investigated in this study could be reproduced with a virtual model comprising of two sources (target and filtration cone) or three sources (target, filtration cone and bowtie filter) when additional filtration was used. With this model, we accounted for more than 97% of the photons exiting the unit. Each source in our model was characterised by a origin distribution in both X and Y directions, a fluence map, a single energy spectrum for unfiltered beams and a two dimensional energy spectrum for bowtie filtered beams. The percentage dose difference between full Monte Carlo and virtual source model based dose distributions was well within the statistical uncertainty associated with the calculations ( ± 2%, one standard deviation) in all cases studied. Conclusions: The virtual source that we developed is accurate in calculating the dose delivered from a commercial kilo-voltage cone beam CT unit operating with routine clinical image acquisition settings. Our data have also shown that target, filtration cone, and bowtie filter sources needed to be all included in the model

  17. Validating a perceptual distraction model in a personal two-zone sound system

    DEFF Research Database (Denmark)

    Rämö, Jussi; Christensen, Lasse; Bech, Søren

    2017-01-01

    This paper focuses on validating a perceptual distraction model, which aims to predict user’s perceived distraction caused by audio-on-audio interference, e.g., two competing audio sources within the same listening space. Originally, the distraction model was trained with music-on-music stimuli...... using a simple loudspeaker setup, consisting of only two loudspeakers, one for the target sound source and the other for the interfering sound source. Recently, the model was successfully validated in a complex personal sound-zone system with speech-on-music stimuli. Second round of validations were...... conducted by physically altering the sound-zone system and running a set of new listening experiments utilizing two sound zones within the sound-zone system. Thus, validating the model using a different sound-zone system with both speech-on-music and music-on-speech stimuli sets. Preliminary results show...

  18. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  19. Proof of Concept for the Trajectory-Level Validation Framework for Traffic Simulation Models

    Science.gov (United States)

    2017-10-30

    Based on current practices, traffic simulation models are calibrated and validated using macroscopic measures such as 15-minute averages of traffic counts or average point-to-point travel times. For an emerging number of applications, including conne...

  20. Results of the Independent Verification and Validation Study for the D2-Puff Model

    National Research Council Canada - National Science Library

    Bowers, J

    1999-01-01

    .... The independent verification and validation (IV&V) study of D2-Puff Version 2.0.6 focused on these accreditation requirements and the implicit requirement that the model provide safe-sided hazard estimates...

  1. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  2. Validation of the United States Marine Corps Qualified Candidate Population Model

    National Research Council Canada - National Science Library

    Hallahan, William

    2003-01-01

    This thesis attempts to verify, validate, and then expand a model of the population of college students that may be qualified and interested in seeking a commission in the United States Marine Corps...

  3. MODELING OF MTJ AND ITS VALIDATION USING NANOSCALE MRAM BITCELL

    Directory of Open Access Journals (Sweden)

    CHANDRAMAULESHWAR ROY

    2017-06-01

    Full Text Available Magnetic Tunnel Junction (MTJ is a promising candidate for nonvolatile and low power memory design. MTJ is basic building block of STT-MRAM bitcell. We develop a Verilog-A based behavioral model of MTJ which effectively exhibits electrical characteristics of MTJ with a very low switching current (27.2 µA for parallel to antiparallel and 19.2 µA for antiparallel to parallel switching. To verify the versatility of the proposed model, we have employed it to design MTJ- based MRAM bitcell. Simulation results (of read margin, write margin and variability analysis of MTJ-MRAM bitcell demonstrate importance of our proposed model.

  4. ANIMAL MODELS OF POST-TRAUMATIC STRESS DISORDER: FACE VALIDITY

    Directory of Open Access Journals (Sweden)

    SONAL eGOSWAMI

    2013-05-01

    Full Text Available Post-traumatic stress disorder (PTSD is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma.

  5. Animal models of post-traumatic stress disorder: face validity

    Science.gov (United States)

    Goswami, Sonal; Rodríguez-Sierra, Olga; Cascardi, Michele; Paré, Denis

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma. PMID:23754973

  6. Validating a model that predicts daily growth and feed quality of New Zealand dairy pastures.

    Science.gov (United States)

    Woodward, S J

    2001-09-01

    The Pasture Quality (PQ) model is a simple, mechanistic, dynamical system model that was designed to capture the essential biological processes in grazed grass-clover pasture, and to be optimised to derive improved grazing strategies for New Zealand dairy farms. While the individual processes represented in the model (photosynthesis, tissue growth, flowering, leaf death, decomposition, worms) were based on experimental data, this did not guarantee that the assembled model would accurately predict the behaviour of the system as a whole (i.e., pasture growth and quality). Validation of the whole model was thus a priority, since any strategy derived from the model could impact a farm business in the order of thousands of dollars per annum if adopted. This paper describes the process of defining performance criteria for the model, obtaining suitable data to test the model, and carrying out the validation analysis. The validation process highlighted a number of weaknesses in the model, which will lead to the model being improved. As a result, the model's utility will be enhanced. Furthermore, validation was found to have an unexpected additional benefit, in that despite the model's poor initial performance, support was generated for the model among field scientists involved in the wider project.

  7. Modelling, simulation and validation of the industrial robot

    Directory of Open Access Journals (Sweden)

    Aleksandrov Slobodan Č.

    2014-01-01

    Full Text Available In this paper, a DH model of industrial robot, with anthropomorphic configuration and five degrees of freedom - Mitsubishi RV2AJ, is developed. The model is verified on the example robot Mitsubishi RV2AJ. In paper detailed represented the complete mathematical model of the robot and the parameters of the programming. On the basis of this model, simulation of robot motion from point to point is performed, as well as the continuous movement of the pre-defined path. Also, programming of industrial robots identical to simulation programs is made, and comparative analysis of real and simulated experiment is shown. In the final section, a detailed analysis of robot motion is described.

  8. Validation of the PESTLA model: Definitions, objectives and procedure

    NARCIS (Netherlands)

    Boekhold AE; van den Bosch H; Boesten JJTI; Leistra M; Swartjes FA; van der Linden AMA

    1993-01-01

    The simulation model PESTLA was developed to produce estimates of accumulation and leaching of pesticides in soil to facilitate classification of pesticides in the Dutch registration procedure. Before PESTLA can be used for quantitative assessment of expected pesticide concentrations in

  9. Validation of the USAWC Student War Gaming Model.

    Science.gov (United States)

    1983-05-18

    battles of the 1973 Arab -Israeli War were used in the study. The battle period was 15-18 October during which time the Israelis moved to cross the Suez...the model results with the actual historical events. Selected battles of the 1973 Arab -Israeli War were used in the study. The battle period was 15...General .. .. ...................... 5 Background--The 1973 Arab -Israeli War. .. ........ 5 The Battle Period Played in the USAWC Computer Model . 9

  10. Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia

    Science.gov (United States)

    Gubern, Carme; Hurtado, Olivia; Rodríguez, Rocío; Morales, Jesús R; Romera, Víctor G; Moro, María A; Lizasoain, Ignacio; Serena, Joaquín; Mallolas, Judith

    2009-01-01

    Background Studies of gene expression in experimental cerebral ischaemia models can contribute to understanding the pathophysiology of brain ischaemia and to identifying prognostic markers and potential therapeutic targets. The normalization of relative qRT-PCR data using a suitable reference gene is a crucial prerequisite for obtaining reliable conclusions. No validated housekeeping genes have been reported for the relative quantification of the mRNA expression profile activated in in-vitro ischaemic conditions, whereas for the in-vivo model different reference genes have been used. The present study aims to determine the expression stability of ten housekeeping genes (Gapdh, β2m, Hprt, Ppia, Rpl13a, Oaz1, 18S rRNA, Gusb, Ywhaz and Sdha) to establish their suitability as control genes for in-vitro and in-vivo cerebral ischaemia models. Results The expression stability of the candidate reference genes was evaluated using the 2-ΔC'T method and ANOVA followed by Dunnett's test. For the in-vitro model using primary cultures of rat astrocytes, all genes analysed except for Rpl13a and Sdha were found to have significantly different levels of mRNA expression. These different levels were also found in the case of the in-vivo model of pMCAO in rats except for Hprt, Sdha and Ywhaz mRNA, where the expression did not vary. Sdha and Ywhaz were identified by geNorm and NormFinder as the two most stable genes. Conclusion We have validated endogenous control genes for qRT-PCR analysis of gene expression in in-vitro and in-vivo cerebral ischaemia models. For normalization purposes, Rpl13a and Sdha are found to be the most suitable genes for the in-vitro model and Sdha and Ywhaz for the in-vivo model. Genes previously used as housekeeping genes for the in-vivo model in the literature were not validated as good control genes in the present study, showing the need for careful evaluation for each new experimental setup. PMID:19531214

  11. Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia

    Directory of Open Access Journals (Sweden)

    Serena Joaquín

    2009-06-01

    Full Text Available Abstract Background Studies of gene expression in experimental cerebral ischaemia models can contribute to understanding the pathophysiology of brain ischaemia and to identifying prognostic markers and potential therapeutic targets. The normalization of relative qRT-PCR data using a suitable reference gene is a crucial prerequisite for obtaining reliable conclusions. No validated housekeeping genes have been reported for the relative quantification of the mRNA expression profile activated in in-vitro ischaemic conditions, whereas for the in-vivo model different reference genes have been used. The present study aims to determine the expression stability of ten housekeeping genes (Gapdh, β2m, Hprt, Ppia, Rpl13a, Oaz1, 18S rRNA, Gusb, Ywhaz and Sdha to establish their suitability as control genes for in-vitro and in-vivo cerebral ischaemia models. Results The expression stability of the candidate reference genes was evaluated using the 2-ΔC'T method and ANOVA followed by Dunnett's test. For the in-vitro model using primary cultures of rat astrocytes, all genes analysed except for Rpl13a and Sdha were found to have significantly different levels of mRNA expression. These different levels were also found in the case of the in-vivo model of pMCAO in rats except for Hprt, Sdha and Ywhaz mRNA, where the expression did not vary. Sdha and Ywhaz were identified by geNorm and NormFinder as the two most stable genes. Conclusion We have validated endogenous control genes for qRT-PCR analysis of gene expression in in-vitro and in-vivo cerebral ischaemia models. For normalization purposes, Rpl13a and Sdha are found to be the most suitable genes for the in-vitro model and Sdha and Ywhaz for the in-vivo model. Genes previously used as housekeeping genes for the in-vivo model in the literature were not validated as good control genes in the present study, showing the need for careful evaluation for each new experimental setup.

  12. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  13. Determination of clouds in MSG data for the validation of clouds in a regional climate model

    OpenAIRE

    Huckle, Roger

    2009-01-01

    Regional climate models (e.g. CLM) can help to asses the influence of the antropogenic climate change on the different regions of the earth. Validation of these models is very important. Satellite data are of great benefit, as data on a global scale and high temporal resolution is available. In this thesis a cloud detection and object based cloud classification for Meteosat Second Generation (MSG) was developed and used to validate CLM clouds. Results show sometimes too many clouds in the CLM.

  14. Validating a Finite Element Model of a Structure Subjected to Mine Blast with Experimental Modal Analysis

    Science.gov (United States)

    2017-11-01

    FE finite element MAC modal assurance criteria SAE Society of Automotive Engineers SDIC stereo-digital image correlation SLAD Survivability...ARL-TR-8224 ● NOV 2017 US Army Research Laboratory Validating a Finite Element Model of a Structure Subjected to Mine Blast with...NOV 2017 US Army Research Laboratory Validating a Finite Element Model of a Structure Subjected to Mine Blast with Experimental Modal

  15. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  16. Models, validation, and applied geochemistry: Issues in science, communication, and philosophy

    Science.gov (United States)

    Nordstrom, D. Kirk

    2012-01-01

    Models have become so fashionable that many scientists and engineers cannot imagine working without them. The predominant use of computer codes to execute model calculations has blurred the distinction between code and model. The recent controversy regarding model validation has brought into question what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of validation may be common in engineering practice and seems useful in legal practice but it is contrary to scientific practice and brings into question our understanding of science and how it can best be applied to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in general. This review summarizes arguments against using the phrase model validation and examines efforts to validate models for high-level radioactive waste management and for permitting and monitoring open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to distinguish logical from temporal prediction. Another problem stems from the difference in the engineering approach contrasted with the scientific approach. The reductionist influence on the way we approach environmental investigations also limits our ability to model the interconnected nature of reality. Guidelines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘validation’ is strongly discouraged when discussing model reliability.

  17. Validating a perceptual distraction model in a personal two-zone sound system

    DEFF Research Database (Denmark)

    Rämö, Jussi; Christensen, Lasse; Bech, Søren

    2017-01-01

    using a simple loudspeaker setup, consisting of only two loudspeakers, one for the target sound source and the other for the interfering sound source. Recently, the model was successfully validated in a complex personal sound-zone system with speech-on-music stimuli. Second round of validations were...... conducted by physically altering the sound-zone system and running a set of new listening experiments utilizing two sound zones within the sound-zone system. Thus, validating the model using a different sound-zone system with both speech-on-music and music-on-speech stimuli sets. Preliminary results show...... the performance of personal sound-zone systems....

  18. Spatial statistical modeling of shallow landslides—Validating predictions for different landslide inventories and rainfall events

    Science.gov (United States)

    von Ruette, Jonas; Papritz, Andreas; Lehmann, Peter; Rickli, Christian; Or, Dani

    2011-10-01

    Statistical models that exploit the correlation between landslide occurrence and geomorphic properties are often used to map the spatial occurrence of shallow landslides triggered by heavy rainfalls. In many landslide susceptibility studies, the true predictive power of the statistical model remains unknown because the predictions are not validated with independent data from other events or areas. This study validates statistical susceptibility predictions with independent test data. The spatial incidence of landslides, triggered by an extreme rainfall in a study area, was modeled by logistic regression. The fitted model was then used to generate susceptibility maps for another three study areas, for which event-based landslide inventories were also available. All the study areas lie in the northern foothills of the Swiss Alps. The landslides had been triggered by heavy rainfall either in 2002 or 2005. The validation was designed such that the first validation study area shared the geomorphology and the second the triggering rainfall event with the calibration study area. For the third validation study area, both geomorphology and rainfall were different. All explanatory variables were extracted for the logistic regression analysis from high-resolution digital elevation and surface models (2.5 m grid). The model fitted to the calibration data comprised four explanatory variables: (i) slope angle (effect of gravitational driving forces), (ii) vegetation type (grassland and forest; root reinforcement), (iii) planform curvature (convergent water flow paths), and (iv) contributing area (potential supply of water). The area under the Receiver Operating Characteristic (ROC) curve ( AUC) was used to quantify the predictive performance of the logistic regression model. The AUC values were computed for the susceptibility maps of the three validation study areas (validation AUC), the fitted susceptibility map of the calibration study area (apparent AUC: 0.80) and another

  19. Validation and verification of agent models for trust: Independent compared to relative trust

    NARCIS (Netherlands)

    Hoogendoorn, M.; Jaffry, S.W.; Maanen, P.P. van

    2011-01-01

    In this paper, the results of a validation experiment for two existing computational trust models describing human trust are reported. One model uses experiences of performance in order to estimate the trust in different trustees. The second model in addition carries the notion of relative trust.

  20. Updating and prospective validation of a prognostic model for high sickness absence

    NARCIS (Netherlands)

    Roelen, C.A.M.; Heymans, M.W.; Twisk, J.W.R.; van Rhenen, W.; Pallesen, S.; Bjorvatn, B.; Moen, B.E.; Mageroy, N.

    2015-01-01

    Objectives To further develop and validate a Dutch prognostic model for high sickness absence (SA). Methods Three-wave longitudinal cohort study of 2,059 Norwegian nurses. The Dutch prognostic model was used to predict high SA among Norwegian nurses at wave 2. Subsequently, the model was updated by

  1. Transient Model Validation of Fixed-Speed Induction Generator Using Wind Farm Measurements

    DEFF Research Database (Denmark)

    Rogdakis, Georgios; Garcia-Valle, Rodrigo; Arana Aristi, Iván

    2012-01-01

    In this paper, an electromagnetic transient model for fixed-speed wind turbines equipped with induction generators is developed and implemented in PSCAD/EMTDC. The model is comprised by: an induction generator, aerodynamic rotor, and a two-mass representation of the shaft system. Model validation...

  2. Validation and extension of the reward-mountain model.

    Science.gov (United States)

    Breton, Yannick-André; Mullett, Ada; Conover, Kent; Shizgal, Peter

    2013-01-01

    The reward-mountain model relates the vigor of reward seeking to the strength and cost of reward. Application of this model provides information about the stage of processing at which manipulations such as drug administration, lesions, deprivation states, and optogenetic interventions act to alter reward seeking. The model has been updated by incorporation of new information about frequency following in the directly stimulated neurons responsible for brain stimulation reward and about the function that maps objective opportunity costs into subjective ones. The behavioral methods for applying the model have been updated and improved as well. To assess the impact of these changes, two related predictions of the model that were supported by earlier work have been retested: (1) altering the duration of rewarding brain stimulation should change the pulse frequency required to produce a reward of half-maximal intensity, and (2) this manipulation should not change the opportunity cost at which half-maximal performance is directed at earning a maximally intense reward. Prediction 1 was supported in all six subjects, but prediction 2 was supported in only three. The latter finding is interpreted to reflect recruitment, at some stimulation sites, of a heterogeneous reward substrate comprising dual, parallel circuits that integrate the stimulation-induced neural signals.

  3. External Validation of Prediction Models for Pneumonia in Primary Care Patients with Lower Respiratory Tract Infection

    DEFF Research Database (Denmark)

    Schierenberg, Alwin; Minnaard, Margaretha C; Hopstaken, Rogier M

    2016-01-01

    BACKGROUND: Pneumonia remains difficult to diagnose in primary care. Prediction models based on signs and symptoms (S&S) serve to minimize the diagnostic uncertainty. External validation of these models is essential before implementation into routine practice. In this study all published S&S models...... for prediction of pneumonia in primary care were externally validated in the individual patient data (IPD) of previously performed diagnostic studies. METHODS AND FINDINGS: S&S models for diagnosing pneumonia in adults presenting to primary care with lower respiratory tract infection and IPD for validation were...... identified through a systematical search. Six prediction models and IPD of eight diagnostic studies (N total = 5308, prevalence pneumonia 12%) were included. Models were assessed on discrimination and calibration. Discrimination was measured using the pooled Area Under the Curve (AUC) and delta AUC...

  4. The Validation of Computer-based Models in Engineering: Some Lessons from Computing Science

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2001-01-01

    Full Text Available Questions of the quality of computer-based models and the formal processes of model testing, involving internal verification and external validation, are usually given only passing attention in engineering reports and in technical publications. However, such models frequently provide a basis for analysis methods, design calculations or real-time decision-making in complex engineering systems. This paper reviews techniques used for external validation of computer-based models and contrasts the somewhat casual approach which is usually adopted in this field with the more formal approaches to software testing and documentation recommended for large software projects. Both activities require intimate knowledge of the intended application, a systematic approach and considerable expertise and ingenuity in the design of tests. It is concluded that engineering degree courses dealing with modelling techniques and computer simulation should put more emphasis on model limitations, testing and validation.

  5. The Importance of Mathematics as a Prerequisite to Introductory Financial Accounting

    Science.gov (United States)

    McCarron, Karen B.; Burstein, Alan N.

    2017-01-01

    Mathematics has long served as a prerequisite to introductory financial accounting in the 4-year college business curriculum. However, 2-year colleges have been slower to adopt math as a prerequisite. Its usefulness in relation to achieving successful completion of accounting has not been demonstrated at either a 2-year or 4-year college. Using…

  6. A Study of the Comparative Effectiveness of Zoology Prerequisites at Slippery Rock State College.

    Science.gov (United States)

    Morrison, William Sechler

    This study compared the effectiveness of three sequences of prerequisite courses required before taking zoology. Sequence 1 prerequisite courses consisted of general biology and human biology; Sequence 2 consisted of general biology; and Sequence 3 required cell biology. Zoology students in the spring of 1972 were pretest and a posttest. The mean…

  7. Validation of an employee satisfaction model: A structural equation model approach

    Directory of Open Access Journals (Sweden)

    Ophillia Ledimo

    2015-01-01

    Full Text Available The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM. A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759 permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS to measure employee satisfaction dimensions. Following the steps of SEM analysis, the three domains and latent variables of employee satisfaction were specified as organisational strategy, policies and procedures, and outcomes. Confirmatory factor analysis of the latent variables was conducted, and the path coefficients of the latent variables of the employee satisfaction model indicated a satisfactory fit for all these variables. The goodness-of-fit measure of the model indicated both absolute and incremental goodness-of-fit; confirming the relationships between the latent and manifest variables. It also indicated that the latent variables, organisational strategy, policies and procedures, and outcomes, are the main indicators of employee satisfaction. This study adds to the knowledge base on employee satisfaction and makes recommendations for future research.

  8. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis...

  9. Validation of theoretical models through measured pavement response

    DEFF Research Database (Denmark)

    Ullidtz, Per

    1999-01-01

    mechanics was quite different from the measured stress, the peak theoretical value being only half of the measured value.On an instrumented pavement structure in the Danish Road Testing Machine, deflections were measured at the surface of the pavement under FWD loading. Different analytical models were...... then used to derive the elastic parameters of the pavement layeres, that would produce deflections matching the measured deflections. Stresses and strains were then calculated at the position of the gauges and compared to the measured values. It was found that all analytical models would predict the tensile...

  10. MODELING OF MTJ AND ITS VALIDATION USING NANOSCALE MRAM BITCELL

    OpenAIRE

    CHANDRAMAULESHWAR ROY; ARUNDHATI BHATTACHARYA; A. ISLAM

    2017-01-01

    Magnetic Tunnel Junction (MTJ) is a promising candidate for nonvolatile and low power memory design. MTJ is basic building block of STT-MRAM bitcell. We develop a Verilog-A based behavioral model of MTJ which effectively exhibits electrical characteristics of MTJ with a very low switching current (27.2 µA for parallel to antiparallel and 19.2 µA for antiparallel to parallel switching). To verify the versatility of the proposed model, we have employed it to design MTJ- based MRAM bitcell. Simu...

  11. Validation of Superelement Modelling of Complex Offshore Support Structures

    DEFF Research Database (Denmark)

    Wang, Shaofeng; Larsen, Torben J.; Hansen, Anders Melchior

    2016-01-01

    calculations consisting of up to thousands design load cases needs to be evaluated. However, even the simplest aero-elastic model of such structures has many more DOFs than monopile, resulting in excessive computation burden. In order to deal with this problem, the superelement method has been introduced...... for modelling such structures. One superelement method has been proven very promising in the previous project of Wave Loads [1] and a fundamental question in such DOFs reduction methods is which modes that are essential and which modes can be neglected. For the jacket structure, the introduction of a gravity...

  12. Uncertainty in Earth System Models: Benchmarks for Ocean Model Performance and Validation

    Science.gov (United States)

    Ogunro, O. O.; Elliott, S.; Collier, N.; Wingenter, O. W.; Deal, C.; Fu, W.; Hoffman, F. M.

    2017-12-01

    The mean ocean CO2 sink is a major component of the global carbon budget, with marine reservoirs holding about fifty times more carbon than the atmosphere. Phytoplankton play a significant role in the net carbon sink through photosynthesis and drawdown, such that about a quarter of anthropogenic CO2 emissions end up in the ocean. Biology greatly increases the efficiency of marine environments in CO2 uptake and ultimately reduces the impact of the persistent rise in atmospheric concentrations. However, a number of challenges remain in appropriate representation of marine biogeochemical processes in Earth System Models (ESM). These threaten to undermine the community effort to quantify seasonal to multidecadal variability in ocean uptake of atmospheric CO2. In a bid to improve analyses of marine contributions to climate-carbon cycle feedbacks, we have developed new analysis methods and biogeochemistry metrics as part of the International Ocean Model Benchmarking (IOMB) effort. Our intent is to meet the growing diagnostic and benchmarking needs of ocean biogeochemistry models. The resulting software package has been employed to validate DOE ocean biogeochemistry results by comparison with observational datasets. Several other international ocean models contributing results to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) were analyzed simultaneously. Our comparisons suggest that the biogeochemical processes determining CO2 entry into the global ocean are not well represented in most ESMs. Polar regions continue to show notable biases in many critical biogeochemical and physical oceanographic variables. Some of these disparities could have first order impacts on the conversion of atmospheric CO2 to organic carbon. In addition, single forcing simulations show that the current ocean state can be partly explained by the uptake of anthropogenic emissions. Combined effects of two or more of these forcings on ocean biogeochemical cycles and ecosystems

  13. Aggregating validity indicators: The salience of domain specificity and the indeterminate range in multivariate models of performance validity assessment.

    Science.gov (United States)

    Erdodi, Laszlo A

    2017-11-07

    This study was designed to examine the "domain specificity" hypothesis in performance validity tests (PVTs) and the epistemological status of an "indeterminate range" when evaluating the credibility of a neuropsychological profile using a multivariate model of performance validity assessment. While previous research suggests that aggregating PVTs produces superior classification accuracy compared to individual instruments, the effect of the congruence between the criterion and predictor variable on signal detection and the issue of classifying borderline cases remain understudied. Data from a mixed clinical sample of 234 adults referred for cognitive evaluation (M Age  = 46.6; M Education  = 13.5) were collected. Two validity composites were created: one based on five verbal PVTs (EI-5 VER ) and one based on five nonverbal PVTs (EI-5 NV ) and compared against several other PVTs. Overall, language-based tests of cognitive ability were more sensitive to elevations on the EI-5 VER compared to visual-perceptual tests; whereas, the opposite was observed with the EI-5 NV . However, the match between predictor and criterion variable had a more complex relationship with classification accuracy, suggesting the confluence of multiple factors (sensory modality, cognitive domain, testing paradigm). An "indeterminate range" of performance validity emerged that was distinctly different from both the Pass and the Fail group. Trichotomized criterion PVTs (Pass-Borderline-Fail) had a negative linear relationship with performance on tests of cognitive ability, providing further support for an "in-between" category separating the unequivocal Pass and unequivocal Fail classification range. The choice of criterion variable can influence classification accuracy in PVT research. Establishing a Borderline range between Pass and Fail more accurately reflected the distribution of scores on multiple PVTs. The traditional binary classification system imposes an artificial dichotomy on

  14. Validating DICOM content in a remote storage model.

    Science.gov (United States)

    Mongkolwat, Pattanasak; Bhalodia, Pankit; Gehl, James A; Channin, David S

    2005-03-01

    Verifying the integrity of DICOM files transmitted between separate archives (eg, storage service providers, network attached storage, or storage area networks) is of critical importance. The software application described in this article retrieves a specified number of DICOM studies from two different DICOM storage applications; the primary picture archiving and communication system (PACS) and an off-site long-term archive. The system includes a query/retrieve (Q/R) module, storage service class provider (SCP), a DICOM comparison module, and a graphical user interface. The system checks the two studies for DICOM 3.0 compliance and then verifies that the DICOM data elements and pixel data are identical. Discrepancies in the two data sets are recorded with the data elements (tag number, value representation, value length, and value field) and pixel data (pixel value and pixel location) in question. The system can be operated automatically, in batch mode, and manually to meet a wide variety of use cases. We ran this program on a 15% statistical sample of 50,000 studies (7500 studies examined). We found 2 pixel data mismatches (resolved on retransmission) and 831 header element mismatches. We subsequently ran the program against a smaller batch of 1000 studies, identifying no pixel data mismatches and 958 header element mismatches. Although we did not find significant issues in our limited study, given other incidents that we have experienced when moving images between systems, we conclude that it is vital to maintain an ongoing, automatic, systematic validation of DICOM transfers so as to be proactive in preventing possibly catastrophic data loss.

  15. Soil process modelling in CZO research: gains in data harmonisation and model validation

    Science.gov (United States)

    van Gaans, Pauline; Andrianaki, Maria; Kobierska, Florian; Kram, Pavel; Lamacova, Anna; Lair, Georg; Nikolaidis, Nikos; Duffy, Chris; Regelink, Inge; van Leeuwen, Jeroen P.; de Ruiter, Peter

    2014-05-01

    Various soil process models were applied to four European Critical Zone observatories (CZOs), the core research sites of the FP7 project SoilTrEC: the Damma glacier forefield (CH), a set of three forested catchments on geochemically contrasing bedrocks in the Slavkov Forest (CZ), a chronosequence of soils in the former floodplain of the Danube of Fuchsenbigl/Marchfeld (AT), and the Koiliaris catchments in the north-western part of Crete, (GR). The aim of the modelling exercises was to apply and test soil process models with data from the CZOs for calibration/validation, identify potential limits to the application scope of the models, interpret soil state and soil functions at key stages of the soil life cycle, represented by the four SoilTrEC CZOs, contribute towards harmonisation of data and data acquisition. The models identified as specifically relevant were: The Penn State Integrated Hydrologic Model (PIHM), a fully coupled, multiprocess, multi-scale hydrologic model, to get a better understanding of water flow and pathways, The Soil and Water Assessment Tool (SWAT), a deterministic, continuous time (daily time step) basin scale model, to evaluate the impact of soil management practices, The Rothamsted Carbon model (Roth-C) to simulate organic carbon turnover and the Carbon, Aggregation, and Structure Turnover (CAST) model to include the role of soil aggregates in carbon dynamics, The Ligand Charge Distribution (LCD) model, to understand the interaction between organic matter and oxide surfaces in soil aggregate formation, and The Terrestrial Ecology Model (TEM) to obtain insight into the link between foodweb structure and carbon and nutrient turnover. With some exceptions all models were applied to all four CZOs. The need for specific model input contributed largely to data harmonisation. The comparisons between the CZOs turned out to be of great value for understanding the strength and limitations of the models, as well as the differences in soil conditions

  16. Validation of an internal hardwood log defect prediction model

    Science.gov (United States)

    R. Edward. Thomas

    2011-01-01

    The type, size, and location of internal defects dictate the grade and value of lumber sawn from hardwood logs. However, acquiring internal defect knowledge with x-ray/computed-tomography or magnetic-resonance imaging technology can be expensive both in time and cost. An alternative approach uses prediction models based on correlations among external defect indicators...

  17. Validation of an extracted tooth model of endodontic irrigation.

    Science.gov (United States)

    Hope, C K; Burnside, G; Chan, S N; Giles, L H; Jarad, F D

    2011-01-01

    An extracted tooth model of endodontic irrigation, incorporating reproducible inoculation and irrigation procedures, was tested against Enterococcus faecalis using a variety of different irrigants in a Latin square methodology. ANOVA revealed no significant variations between the twelve teeth or experiments undertaken on different occasions; however, variation between irrigants was significant. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Experimental Analysis and Model Validation of an Opaque Ventilated Facade

    DEFF Research Database (Denmark)

    López, F. Peci; Jensen, Rasmus Lund; Heiselberg, Per

    2012-01-01

    Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated façade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was ...

  19. Developing a model for validation and prediction of bank customer ...

    African Journals Online (AJOL)

    In this paper, in order to establish a communication between the final status and the parameters of facilities granted, data mining technique with the help of machine learning and neural networks have been used. A database of facilities granted by Dey Bank was created and a model with data mining approach was prepared ...

  20. Continuum model for masonry: Parameter estimation and validation

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.; Blaauwendraad, J.

    1998-01-01

    A novel yield criterion that includes different strengths along each material axis is presented. The criterion includes two different fracture energies in tension and two different fracture energies in compression. The ability of the model to represent the inelastic behavior of orthotropic materials

  1. Numerical modeling, calibration, and validation of an ultrasonic separator

    NARCIS (Netherlands)

    Cappon, H.J.; Keesman, K.J.

    2013-01-01

    Our overall goal is to apply acoustic separation technology for the recovery of valuable particulate matter from wastewater in industry. Such large-scale separator systems require detailed design and evaluation to optimize the system performance at the earliest stage possible. Numerical models can

  2. Validation of a probabilistic post-fire erosion model

    Science.gov (United States)

    Pete Robichaud; William J. Elliot; Sarah A. Lewis; Mary Ellen Miller

    2016-01-01

    Post-fire increases of runoff and erosion often occur and land managers need tools to be able to project the increased risk. The Erosion Risk Management Tool (ERMiT) uses the Water Erosion Prediction Project (WEPP) model as the underlying processor. ERMiT predicts the probability of a given amount of hillslope sediment delivery from a single rainfall or...

  3. Shear beams in finite element modelling : Software implementation and validation

    NARCIS (Netherlands)

    Schreppers, G.J.; Hendriks, M.A.N.; Boer, A.; Ferreira, D.; Kikstra, W.P.

    2015-01-01

    Fiber models for beam and shell elements allow for relatively rapid finite element analysis of concrete structures and structural elements. This project aims at the development of the formulation of such elements and a pilot implementation. The reduction of calculation time and degrees of freedom

  4. Simulating pattern-process relationships to validate landscape genetic models

    Science.gov (United States)

    A. J. Shirk; S. A. Cushman; E. L. Landguth

    2012-01-01

    Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...

  5. FACES IV and the Circumplex Model: Validation Study

    Science.gov (United States)

    Olson, David

    2011-01-01

    Family Adaptability and Cohesion Evaluation Scale (FACES) IV was developed to tap the full continuum of the cohesion and flexibility dimensions from the Circumplex Model of Marital and Family Systems. Six scales were developed, with two balanced scales and four unbalanced scales designed to tap low and high cohesion (disengaged and enmeshed) and…

  6. Validating Timed Models of Deployment Components with Parametric Concurrency

    Science.gov (United States)

    Broch Johnsen, Einar; Owe, Olaf; Schlatte, Rudolf; Tapia Tarifa, Silvia Lizeth

    Many software systems today are designed without assuming a fixed underlying architecture, and may be adapted for sequential, multicore, or distributed deployment. Examples of such systems are found in, e.g., software product lines, service-oriented computing, information systems, embedded systems, operating systems, and telephony. Models of such systems need to capture and range over relevant deployment scenarios, so it is interesting to lift aspects of low-level deployment concerns to the abstraction level of the modeling language. This paper proposes an abstract model of deployment components for concurrent objects, extending the Creol modeling language. The deployment components are parametric in the amount of concurrency they provide; i.e., they vary in processing resources. We give a formal semantics of deployment components and characterize equivalence between deployment components which differ in concurrent resources in terms of test suites. Our semantics is executable on Maude, which allows simulations and test suites to be applied to a deployment component with different concurrent resources.

  7. Empirical validity for a comprehensive model on educational effectiveness

    NARCIS (Netherlands)

    Reezigt, G.J.; Guldemond, H.; Creemers, B.P.M.

    Educational effectiveness research is often criticised because of the absence of a theoretical background. In our study we started out from an educational effectiveness model which was developed on the basis of educational theories and empirical evidence. We have tested the main assumptions of the

  8. Validation of Occupants’ Behaviour Models for Indoor Quality Parameter and Energy Consumption Prediction

    DEFF Research Database (Denmark)

    Fabi, Valentina; Sugliano, Martina; Andersen, Rune Korsholm

    2015-01-01

    . For this reason, the validation of occupant's behavioral models is an issue that is gaining importance.In this paper validation was carried out through dynamic Building Energy Performance simulation (BEPS); behavioral models of windows opening and thermostats set-point published in literature were implemented...... in a dynamic BEPS software and the obtained results in terms of temperature, relative humidity and CO2 concentration were compared to real measurements. Through this comparison it will be possible to verify the accuracy of the implemented behavioral models.The models were able to reproduce the general...

  9. The Validation of a Beta-Binomial Model for Overdispersed Binomial Data.

    Science.gov (United States)

    Kim, Jongphil; Lee, Ji-Hyun

    2017-01-01

    The beta-binomial model has been widely used as an analytically tractable alternative that captures the overdispersion of an intra-correlated, binomial random variable, X . However, the model validation for X has been rarely investigated. As a beta-binomial mass function takes on a few different shapes, the model validation is examined for each of the classified shapes in this paper. Further, the mean square error (MSE) is illustrated for each shape by the maximum likelihood estimator (MLE) based on a beta-binomial model approach and the method of moments estimator (MME) in order to gauge when and how much the MLE is biased.

  10. Implementation and automated validation of the minimal Z' model in FeynRules

    International Nuclear Information System (INIS)

    Basso, L.; Christensen, N.D.; Duhr, C.; Fuks, B.; Speckner, C.

    2012-01-01

    We describe the implementation of a well-known class of U(1) gauge models, the 'minimal' Z' models, in FeynRules. We also describe a new automated validation tool for FeynRules models which is controlled by a web interface and allows the user to run a complete set of 2 → 2 processes on different matrix element generators, different gauges, and compare between them all. If existing, the comparison with independent implementations is also possible. This tool has been used to validate our implementation of the 'minimal' Z' models. (authors)

  11. ALTWAVE: Toolbox for use of satellite L2P altimeter data for wave model validation

    Science.gov (United States)

    Appendini, Christian M.; Camacho-Magaña, Víctor; Breña-Naranjo, José Agustín

    2016-03-01

    To characterize some of the world's ocean physical processes such as its wave height, wind speed and sea surface elevation is a major need for coastal and marine infrastructure planning and design, tourism activities, wave power and storm surge risk assessment, among others. Over the last decades, satellite remote sensing tools have provided quasi-global measurements of ocean altimetry by merging data from different satellite missions. While there is a widely use of altimeter data for model validation, practical tools for model validation remain scarce. Our purpose is to fill this gap by introducing ALTWAVE, a MATLAB user-oriented toolbox for oceanographers and coastal engineers developed to validate wave model results based on visual features and statistical estimates against satellite derived altimetry. Our toolbox uses altimetry information from the GlobWave initiative, and provides a sample application to validate a one year wave hindcast for the Gulf of Mexico. ALTWAVE also offers an effective toolbox to validate wave model results using altimeter data, as well as a guidance for non-experienced satellite data users. This article is intended for wave modelers with no experience using altimeter data to validate their results.

  12. Modeling and experimental validation of the desiccant wheel in a hybrid desiccant air conditioning system

    International Nuclear Information System (INIS)

    Wrobel, Jan; Morgenstern, Paula; Schmitz, Gerhard

    2013-01-01

    Modeling can be strong asset to the operation of air conditioning plants taking into account e.g. the strong dependency of local climate conditions for the operation of HVAC systems. This paper presents a validated physical model and a simplified model based on the results of the physical model for a desiccant wheel, which is the central part of a hybrid air conditioning system. The two models offer different advantages: While the physical model is complex and can be adapted flexibly to different wheel dimensions, desiccant materials or climatic conditions; the simplified model requires no knowledge of underlying equations and modeling language utilized and can be used for a first assessment of the potential of a desiccant cooling system in a certain location or for the use within online control systems. The coexistence of both models ensures that information tailored to the users' needs are made available. The validity of the physical model, and therewith the simplified model, is ensured through comparison with measurement obtained from a hybrid air conditioning system situated in northern Europe. The demonstration plant combines the advantages of a dedicated outdoor air system (DOAS) with the advantages of the common hybrid desiccant system to allow for energy efficient air conditioning in one installation. The availability of primary measurement data is extremely valuable to the process of model validation because knowledge about uncertainties and bias in measurement data unlikely to be known for secondary data can be used to understand and validate model results. A comparison of simulation results from the physical model to measurement data from the demonstration plant shows good compliance for a typical day of wheel operation after adjusting relevant model parameters. -- Highlights: ► The desiccant wheel as core component of a highly efficient HVAC pilot installation based on renewable energies. ► Modeling and experimental validation of a desiccant wheel

  13. Animal models of social anxiety disorder and their validity criteria.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Quevedo, João

    2014-09-26

    Anxiety disorders pose one of the largest threats to global mental health, and they predominantly emerge early in life. Social anxiety disorder, also known as social phobia, is the most common of all anxiety disorders. Moreover, it has severe consequences and is a disabling disorder that can cause an individual to be unable to perform the tasks of daily life. Social anxiety disorder is associated with the subsequent development of major depression and other mental diseases, as well as increased substance abuse. Although some neurobiological alterations have been found to be associated with social anxiety disorder, little is known about this disorder. Animal models are useful tools for the investigation of this disorder, as well as for finding new pharmacological targets for treatment. Thus, this review will highlight the main animal models of anxiety associated with social phobia. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Empirical flow parameters : a tool for hydraulic model validity

    Science.gov (United States)

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  15. Hierarchical Multi-Scale Approach To Validation and Uncertainty Quantification of Hyper-Spectral Image Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David; Thompson, Sandra E.

    2016-09-17

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  16. Validation of a functional model for integration of safety into process system design

    DEFF Research Database (Denmark)

    Wu, J.; Lind, M.; Zhang, X.

    2015-01-01

    Qualitative modeling paradigm offers process systems engineering a potential for developing effective tools for handling issues related to Process Safety. A qualitative functional modeling environment can accommodate different levels of abstraction for capturing knowledge associated...... with the process system functionalities as required for the intended safety applications. To provide the scientific rigor and facilitate the acceptance of qualitative modelling, this contribution focuses on developing a scientifically based validation method for functional models. The Multilevel Flow Modeling (MFM......) methodology is adopted in the paper as a formalized qualitative functional modeling methodology for dynamic process systems. A functional model validation procedure is proposed to assess whether the intended modeling purpose indeed represents a relevant proposal and whether the model represents the system...

  17. Blast Load Simulator Experiments for Computational Model Validation Report 3

    Science.gov (United States)

    2017-07-01

    establish confidence in the simulation results specific to their intended use. One method for providing experimental data for computational model...walls, to higher blast pressures required to evaluate the performance of protective construction methods . Figure 1. ERDC Blast Load Simulator (BLS... Instrumentation included 3 pressure gauges mounted on the steel calibration plate, 2 pressure gauges mounted in the wall of the BLS, and 25 pressure gauges

  18. Model Verification and Validation Using Graphical Information Systems Tools

    Science.gov (United States)

    2013-07-31

    coastal ocean sufficiently to have a complete picture of the flow. The analysis will thus consist of comparing these incomplete pictures of the current...50 cm. This would suggest that tidal flats would exist at synoptic scales but not daily because there are expanses of the lagoon that are < 50 cm...historical daily data from the correct time of year but not from the correct day. This indicates that the model flow is generally correct at synoptic

  19. Simulation of welding and heat treatment:modelling and validation

    OpenAIRE

    Alberg, Henrik

    2005-01-01

    Many aerospace components with complex geometry are fabricated from smaller parts using joining techniques such as welding. Welding and the heat treatment which usually follows, can result in unwanted deformation and stresses. Expensive materials, tight geometrical tolerances and the need to decrease product and manufacturing development time, cost and associated risks have motivated the development of models and methods for the simulation of manufacturing processes. The work presented concer...

  20. Validity and Variability of Animal Models Used in Dentistry

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Saghiri

    2015-01-01

    Full Text Available Background: Animal models have contributed to dental literature for several decades. The major aim of this review was to outline tooth development stages in mice, and attempt to addressing potential strain differences. A literature review was performed using electronic and hand-searching methods for the animal models in dentistry with special emphasis on mice and dentistry. Root canal development in both C57BL/6 and BALB/c strains were investigated. There are a number of published reports regarding the morphogenesis and molecular reaction and maturation stages of mice molars. We observed some similarity between the mice and human odontegeneis as primary factor for tooth development. Although mice may present some technical challenges, including the small size of the mouse molars, they have similar stages as humans for molar development, and can be used to monitor the effects of various biomaterials, regeneration, and remodeling. Thus, mice provide an ideal alternative model to study developmental and regenerative processes in dentistry.

  1. Using Microwave Limb Sounder Data to Validate Model Ice Fields

    Science.gov (United States)

    Waliser, Duane E.; Li, Jui-Lin; Jiang, Jonathan H.; Tompkins, Adrian; Chern, J.-D.; Tao, W.-K.; Khairoutdinov, M.

    2006-01-01

    MLS IWC overall tends to be higher relative to ECMWF after considering MLS track sampling and sensitivity (cutoff application). Disagreement tends to be accentuated over Indian and Western Pacific Oceans and over tropical landmasses. Large disagreement occur at upper level at 147 hPa but small at lower levels at 215 and 316 hPa suggesting the need to investigate the strength of model large-scale circulation and physics associated with the IWC formation. Future work includes: Present MMF/ECMWF Comparisons at AGU/Baltimore Session on MMF/Cloud Resolving Modeling, GMAO/GSFC & at the WPac/Bejing/AGU in Tao's Cloud-Radiation Session. Write-up Results on ECMWF/MLS Comparisons for GRL. Continue with MLS vs ECMWF Water Vapor & Temperature comparisons - will seek more interaction with other MLS colleagues. Investigate the Development of Biases in ECMWF Forecasts - i.e. in the actual model. Work with GMAO-5 development team regarding their cloud microphysics performance. Integrate CloudSat into IWC Analyses.

  2. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction.

    Science.gov (United States)

    Gramatica, Paola; Giani, Elisa; Papa, Ester

    2007-03-01

    The soil sorption partition coefficient (log K(oc)) of a heterogeneous set of 643 organic non-ionic compounds, with a range of more than 6 log units, is predicted by a statistically validated QSAR modeling approach. The applied multiple linear regression (ordinary least squares, OLS) is based on a variety of theoretical molecular descriptors selected by the genetic algorithms-variable subset selection (GA-VSS) procedure. The models were validated for predictivity by different internal and external validation approaches. For external validation we applied self organizing maps (SOM) to split the original data set: the best four-dimensional model, developed on a reduced training set of 93 chemicals, has a predictivity of 78% when applied on 550 validation chemicals (prediction set). The selected molecular descriptors, which could be interpreted through their mechanistic meaning, were compared with the more common physico-chemical descriptors log K(ow) and log S(w). The chemical applicability domain of each model was verified by the leverage approach in order to propose only reliable data. The best predicted data were obtained by consensus modeling from 10 different models in the genetic algorithm model population.

  3. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems

    Directory of Open Access Journals (Sweden)

    Lenardo C. Silva

    2015-10-01

    Full Text Available Medical Cyber-Physical Systems (MCPS are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage.

  4. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems.

    Science.gov (United States)

    Silva, Lenardo C; Almeida, Hyggo O; Perkusich, Angelo; Perkusich, Mirko

    2015-10-30

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage.

  5. Organisational and Infrastructure Prerequisites of Creation of an International Logistic Centre

    Directory of Open Access Journals (Sweden)

    Tarnavska Nataliya P.

    2013-11-01

    Full Text Available The goal of the article lies in the study of organisational and infrastructure prerequisites of creation and functioning of integration structures capable, on the basis of logistics, of assisting subjects of economy in structuring and optimisation of material flows and also accompanying financial and information flows. In the result of the study the article identifies irregularities of the transition of national economies to new models of development and prospects of development of logistic provision of the innovation economy connected with them, transformation possibilities and prospects of international integration of the logistic market of Ukraine; it analyses prerequisites and substantiates expediency and shows benefits of formation of an international logistic centre in the city of Ternopil. The mission of the planned international logistic centre is ensuring a qualitatively new level of logistic provision of market participants, which would correspond with the existing world standards. The logistic centre performs realisation of its tasks and conduct of functions in the process of interaction with partners – participants of the logistic chain. The logistic centre should become an operator of flows of transit and export-import cargoes and it would perform important logistic functions connected not only with organisation of shipping operations but also with sorting, storing, packing and some other functions at the level of the best world representatives of the logistic servicing. In order to ensure successful activity of such a centre, it is required to adapt tariff policy of the state to international standards, to expand a list of relevant services, to reduce terms of cargo handling and to introduce modern technologies of information processing intensively.

  6. Validating a continental-scale groundwater diffuse pollution model using regional datasets.

    Science.gov (United States)

    Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik

    2017-12-11

    In this study, we assess the validity of an African-scale groundwater pollution model for nitrates. In a previous study, we identified a statistical continental-scale groundwater pollution model for nitrate. The model was identified using a pan-African meta-analysis of available nitrate groundwater pollution studies. The model was implemented in both Random Forest (RF) and multiple regression formats. For both approaches, we collected as predictors a comprehensive GIS database of 13 spatial attributes, related to land use, soil type, hydrogeology, topography, climatology, region typology, nitrogen fertiliser application rate, and population density. In this paper, we validate the continental-scale model of groundwater contamination by using a nitrate measurement dataset from three African countries. We discuss the issue of data availability, and quality and scale issues, as challenges in validation. Notwithstanding that the modelling procedure exhibited very good success using a continental-scale dataset (e.g. R 2  = 0.97 in the RF format using a cross-validation approach), the continental-scale model could not be used without recalibration to predict nitrate pollution at the country scale using regional data. In addition, when recalibrating the model using country-scale datasets, the order of model exploratory factors changes. This suggests that the structure and the parameters of a statistical spatially distributed groundwater degradation model for the African continent are strongly scale dependent.

  7. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    Science.gov (United States)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  8. Validation of the rat model of cryptogenic infantile spasms

    Science.gov (United States)

    Chachua, Tamar; Yum, Mi-Sun; Velíšková, Jana; Velíšek, Libor

    2011-01-01

    Purpose To determine whether a new model of cryptogenic infantile spasms consisting of prenatal priming with betamethasone and postnatal trigger of spasms by N-methyl-D-aspartic acid responds to chronic ACTH treatment, and has similar EEG signature, efficacy of treatments, and behavioral impairments as human infantile spasms. Methods Rats prenatally primed with betamethasone on gestational day 15 were used. Spasms were triggered with N-methyl-D-aspartic acid between postnatal days (P) 10-15 in a single session or in multiple sessions in one subject. The expression of spasms was compared to prenatally saline-injected controls. Effects of relevant treatments (ACTH, vigabatrin, methylprednisolone, rapamycin) were determined in betamethasone-primed rats. In the rats after spasms, behavioral evaluation was performed in the open field and and elevated plus maze on P20-22. Key Findings NMDA at P10-15 (the rat “infant” period) triggers the spasms significantly earlier and in greater numbers in the prenatal betamethasone-exposed brain compared to controls. Similar to human condition, the spasms occur in clusters. Repeated trigger of spasms is associated with ictal EEG electrodecrements and interictal large-amplitude waves, a possible rat variant of hypsarrhythmia. Chronic ACTH treatment in a randomized experiment, and chronic pretreatment with methylprednisolone significantly suppress number of spasms similar to human condition. Pretreatment with vigabatrin, but not rapamycin, suppressed the spasms. Significant behavioral changes occurred following multiple bouts of spasms. Significance The model of infantile spasms has remarkable similarities with the human condition in semiology, EEG, pharmacological response, and long-term outcome. Thus, the model can be used for search of novel and more effective treatments for infantile spasms. PMID:21854372

  9. Metal Big Area Additive Manufacturing: Process Modeling and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes

    2017-01-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology for printing large-scale 3D objects. mBAAM is based on the gas metal arc welding process and uses a continuous feed of welding wire to manufacture an object. An electric arc forms between the wire and the substrate, which melts the wire and deposits a bead of molten metal along the predetermined path. In general, the welding process parameters and local conditions determine the shape of the deposited bead. The sequence of the bead deposition and the corresponding thermal history of the manufactured object determine the long range effects, such as thermal-induced distortions and residual stresses. Therefore, the resulting performance or final properties of the manufactured object are dependent on its geometry and the deposition path, in addition to depending on the basic welding process parameters. Physical testing is critical for gaining the necessary knowledge for quality prints, but traversing the process parameter space in order to develop an optimized build strategy for each new design is impractical by pure experimental means. Computational modeling and optimization may accelerate development of a build process strategy and saves time and resources. Because computational modeling provides these opportunities, we have developed a physics-based Finite Element Method (FEM) simulation framework and numerical models to support the mBAAM process s development and design. In this paper, we performed a sequentially coupled heat transfer and stress analysis for predicting the final deformation of a small rectangular structure printed using the mild steel welding wire. Using the new simulation technologies, material was progressively added into the FEM simulation as the arc weld traversed the build path. In the sequentially coupled heat transfer and stress analysis, the heat transfer was performed to calculate the temperature evolution, which was used in a stress analysis to

  10. Data Set for Emperical Validation of Double Skin Facade Model

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2008-01-01

    During the recent years the attention to the double skin facade (DSF) concept has greatly increased. Nevertheless, the application of the concept depends on whether a reliable model for simulation of the DSF performance will be developed or pointed out. This is, however, not possible to do, until...... the International Energy Agency (IEA) Task 34 Annex 43. This paper describes the full-scale outdoor experimental test facility ‘the Cube', where the experiments were conducted, the experimental set-up and the measurements procedure for the data sets. The empirical data is composed for the key-functioning modes...

  11. Parameter Estimation and Model Validation of Nonlinear Dynamical Networks

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, Henry [Univ. of California, San Diego, CA (United States); Gill, Philip [Univ. of California, San Diego, CA (United States)

    2015-03-31

    In the performance period of this work under a DOE contract, the co-PIs, Philip Gill and Henry Abarbanel, developed new methods for statistical data assimilation for problems of DOE interest, including geophysical and biological problems. This included numerical optimization algorithms for variational principles, new parallel processing Monte Carlo routines for performing the path integrals of statistical data assimilation. These results have been summarized in the monograph: “Predicting the Future: Completing Models of Observed Complex Systems” by Henry Abarbanel, published by Spring-Verlag in June 2013. Additional results and details have appeared in the peer reviewed literature.

  12. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.

    Science.gov (United States)

    Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R

    2017-01-01

    A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be

  13. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting

    Science.gov (United States)

    2014-01-01

    Background Before considering whether to use a multivariable (diagnostic or prognostic) prediction model, it is essential that its performance be evaluated in data that were not used to develop the model (referred to as external validation). We critically appraised the methodological conduct and reporting of external validation studies of multivariable prediction models. Methods We conducted a systematic review of articles describing some form of external validation of one or more multivariable prediction models indexed in PubMed core clinical journals published in 2010. Study data were extracted in duplicate on design, sample size, handling of missing data, reference to the original study developing the prediction models and predictive performance measures. Results 11,826 articles were identified and 78 were included for full review, which described the evaluation of 120 prediction models. in participant data that were not used to develop the model. Thirty-three articles described both the development of a prediction model and an evaluation of its performance on a separate dataset, and 45 articles described only the evaluation of an existing published prediction model on another dataset. Fifty-seven percent of the prediction models were presented and evaluated as simplified scoring systems. Sixteen percent of articles failed to report the number of outcome events in the validation datasets. Fifty-four percent of studies made no explicit mention of missing data. Sixty-seven percent did not report evaluating model calibration whilst most studies evaluated model discrimination. It was often unclear whether the reported performance measures were for the full regression model or for the simplified models. Conclusions The vast majority of studies describing some form of external validation of a multivariable prediction model were poorly reported with key details frequently not presented. The validation studies were characterised by poor design, inappropriate handling

  14. Validation of protein models by a neural network approach

    Directory of Open Access Journals (Sweden)

    Fantucci Piercarlo

    2008-01-01

    Full Text Available Abstract Background The development and improvement of reliable computational methods designed to evaluate the quality of protein models is relevant in the context of protein structure refinement, which has been recently identified as one of the bottlenecks limiting the quality and usefulness of protein structure prediction. Results In this contribution, we present a computational method (Artificial Intelligence Decoys Evaluator: AIDE which is able to consistently discriminate between correct and incorrect protein models. In particular, the method is based on neural networks that use as input 15 structural parameters, which include energy, solvent accessible surface, hydrophobic contacts and secondary structure content. The results obtained with AIDE on a set of decoy structures were evaluated using statistical indicators such as Pearson correlation coefficients, Znat, fraction enrichment, as well as ROC plots. It turned out that AIDE performances are comparable and often complementary to available state-of-the-art learning-based methods. Conclusion In light of the results obtained with AIDE, as well as its comparison with available learning-based methods, it can be concluded that AIDE can be successfully used to evaluate the quality of protein structures. The use of AIDE in combination with other evaluation tools is expected to further enhance protein refinement efforts.

  15. Optimization of the artificial urinary sphincter: modelling and experimental validation

    International Nuclear Information System (INIS)

    Marti, Florian; Leippold, Thomas; John, Hubert; Blunschi, Nadine; Mueller, Bert

    2006-01-01

    The artificial urinary sphincter should be long enough to prevent strangulation effects of the urethral tissue and short enough to avoid the improper dissection of the surrounding tissue. To optimize the sphincter length, the empirical three-parameter urethra compression model is proposed based on the mechanical properties of the urethra: wall pressure, tissue response rim force and sphincter periphery length. In vitro studies using explanted animal or human urethras and different artificial sphincters demonstrate its applicability. The pressure of the sphincter to close the urethra is shown to be a linear function of the bladder pressure. The force to close the urethra depends on the sphincter length linearly. Human urethras display the same dependences as the urethras of pig, dog, sheep and calf. Quantitatively, however, sow urethras resemble best the human ones. For the human urethras, the mean wall pressure corresponds to (-12.6 ± 0.9) cmH 2 O and (-8.7 ± 1.1) cmH 2 O, the rim length to (3.0 ± 0.3) mm and (5.1 ± 0.3) mm and the rim force to (60 ± 20) mN and (100 ± 20) mN for urethra opening and closing, respectively. Assuming an intravesical pressure of 40 cmH 2 O, and an external pressure on the urethra of 60 cmH 2 O, the model leads to the optimized sphincter length of (17.3 ± 3.8) mm

  16. DMFC anode polarization: Experimental analysis and model validation

    Science.gov (United States)

    Casalegno, A.; Marchesi, R.

    Anode two-phase flow has an important influence on DMFC performance and methanol crossover. In order to elucidate two-phase flow influence on anode performance, in this work, anode polarization is investigated combining experimental and modelling approach. A systematic experimental analysis of operating conditions influence on anode polarization is presented. Hysteresis due to operating condition is observed; experimental results suggest that it arises from methanol accumulation and has to be considered in evaluating DMFC performances and measurements reproducibility. A model of DMFC anode polarization is presented and utilised as tool to investigate anode two-phase flow. The proposed analysis permits one to produce a confident interpretation of the main involved phenomena. In particular, it confirms that methanol electro-oxidation kinetics is weakly dependent on methanol concentration and that methanol transport in gas phase produces an important contribution in anode feeding. Moreover, it emphasises the possibility to optimise anode flow rate in order to improve DMFC performance and reduce methanol crossover.

  17. Validation of the Osteopenia Sheep Model for Orthopaedic Biomaterial Research

    DEFF Research Database (Denmark)

    Ding, Ming

    2009-01-01

    fraction was reduced by 36%, trabecular thickness by 30%, and changed from typical plate structure to a combination of plate and rod structure. A similar trend was also observed in the distal femur and proximal tibia of both GC treated sheep. The strength of vertebral cancellous bone was significantly...... months. This suggests that a prolonged administration of GC is needed for a long-term observation to keep osteopenic bone.                 In conclusion, after 7 months of GC treatments with restricted diet, the microarchitectural characteristics, mechanical competence, mineralization of the bone tissues......, and suppression of bone formation markers were similar to osteoporosis-related changes in humans. A prolonged GC treatment is needed for a long-term observation to keep osteopenic bone. This model resembles long-term GC treated OP model, and might be useful in pre-clinical studies.   References: 1. Augat P et al...

  18. Process Modeling and Validation for Metal Big Area Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W. [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes

    2017-05-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to accelerate the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.

  19. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.P.; Chang, S.K.; Huang, H.C. [Nuclear Training Branch, Northeast Utilities, Waterford, CT (United States)

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  20. Load Model Verification, Validation and Calibration Framework by Statistical Analysis on Field Data

    Science.gov (United States)

    Jiao, Xiangqing; Liao, Yuan; Nguyen, Thai

    2017-11-01

    Accurate load models are critical for power system analysis and operation. A large amount of research work has been done on load modeling. Most of the existing research focuses on developing load models, while little has been done on developing formal load model verification and validation (V&V) methodologies or procedures. Most of the existing load model validation is based on qualitative rather than quantitative analysis. In addition, not all aspects of model V&V problem have been addressed by the existing approaches. To complement the existing methods, this paper proposes a novel load model verification and validation framework that can systematically and more comprehensively examine load model's effectiveness and accuracy. Statistical analysis, instead of visual check, quantifies the load model's accuracy, and provides a confidence level of the developed load model for model users. The analysis results can also be used to calibrate load models. The proposed framework can be used as a guidance to systematically examine load models for utility engineers and researchers. The proposed method is demonstrated through analysis of field measurements collected from a utility system.

  1. DIE Deflection Modeling: Empirical Validation and Tech Transfer

    Energy Technology Data Exchange (ETDEWEB)

    R. Allen Miller

    2003-05-28

    This report summarizes computer modeling work that was designed to help understand how the die casting die and machine contribute to parting plane separation during operation. Techniques developed in earlier research (8) were applied to complete a large computational experiment that systematically explored the relationship between the stiffness of the machine platens and key dimensional and structural variables (platen area covered, die thickness, platen thickness, thickness of insert and the location of the die with respect to the platen) describing the die/machine system. The results consistently show that there are many significant interactions among the variables and it is the interactions, more than the individual variables themselves, which determine the performance of the machine/die system. That said, the results consistently show that it is the stiffness of the machine platens that has the largest single impact on die separation.

  2. Mechanical tests for validation of seismic isolation elastomer constitutive models

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1992-01-01

    High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs

  3. Modeling users' activity on Twitter networks: validation of Dunbar's number

    Science.gov (United States)

    Goncalves, Bruno; Perra, Nicola; Vespignani, Alessandro

    2012-02-01

    Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the ``economy of attention'' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

  4. Characterization of silicon photomultipliers and validation of the electrical model

    Science.gov (United States)

    Peng, Peng; Qiang, Yi; Ross, Steve; Burr, Kent

    2018-04-01

    This paper introduces a systematic way to measure most features of the silicon photomultipliers (SiPM). We implement an efficient two-laser procedure to measure the recovery time. Avalanche probability was found to play an important role in explaining the right behavior of the SiPM recovery process. Also, we demonstrate how equivalent circuit parameters measured by optical tests can be used in SPICE modeling to predict details of the time constants relevant to the pulse shape. The SiPM properties measured include breakdown voltage, gain, diode capacitor, quench resistor, quench capacitor, dark count rate, photodetection efficiency, cross-talk and after-pulsing probability, and recovery time. We apply these techniques on the SiPMs from two companies: Hamamatsu and SensL.

  5. Mechanical tests for validation of seismic isolation elastomer constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Hughes, T.H.

    1992-05-01

    High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs.

  6. Mechanical tests for validation of seismic isolation elastomer constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Hughes, T.H.

    1992-01-01

    High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs.

  7. Modeling users' activity on twitter networks: validation of Dunbar's number.

    Directory of Open Access Journals (Sweden)

    Bruno Gonçalves

    Full Text Available Microblogging and mobile devices appear to augment human social capabilities, which raises the question whether they remove cognitive or biological constraints on human communication. In this paper we analyze a dataset of Twitter conversations collected across six months involving 1.7 million individuals and test the theoretical cognitive limit on the number of stable social relationships known as Dunbar's number. We find that the data are in agreement with Dunbar's result; users can entertain a maximum of 100-200 stable relationships. Thus, the 'economy of attention' is limited in the online world by cognitive and biological constraints as predicted by Dunbar's theory. We propose a simple model for users' behavior that includes finite priority queuing and time resources that reproduces the observed social behavior.

  8. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  9. Design and Validation of a Three-Dimensional Printed Flexible Canine Otoscopy Teaching Model

    OpenAIRE

    Nibblett, Belle Marie D.; Pereira, Mary Mauldin; Sithole, Fortune; Orchard, Paul A.D.; Bauman, Eric B.

    2017-01-01

    Introduction A teaching model was sought to improve canine otoscopy skill and reduce use of teaching dogs. Methods An otoscopy teaching model was printed in a flexible medium on a desktop three-dimensional printer from a magnetic resonance image of a canine external ear canal. The model was mounted in a polyvinyl dog mannequin. Validation of the teaching model was sought from student, faculty, and dog perspective. Student perception of prelaboratory training was assessed using a survey regard...

  10. Prediction and Validation of Heat Release Direct Injection Diesel Engine Using Multi-Zone Model

    Science.gov (United States)

    Anang Nugroho, Bagus; Sugiarto, Bambang; Prawoto; Shalahuddin, Lukman

    2014-04-01

    The objective of this study is to develop simulation model which capable to predict heat release of diesel combustion accurately in efficient computation time. A multi-zone packet model has been applied to solve the combustion phenomena inside diesel cylinder. The model formulations are presented first and then the numerical results are validated on a single cylinder direct injection diesel engine at various engine speed and timing injections. The model were found to be promising to fulfill the objective above.

  11. Identifying and validating the components of nursing practice models for long-term care facilities.

    Science.gov (United States)

    Mueller, Christine; Savik, Kay

    2010-10-01

    Nursing practice models (NPMs) provide the framework for the design and delivery of nursing care to residents in long-term care (LTC) facilities and characterize the manner in which nursing staff assemble to accomplish clinical goals. The purpose of this study was to identify and validate the distinctive components of NPMs in LTC facilities and develop an instrument to describe and evaluate NPMs in such settings. The study included validation of the NPM components through a literature review and focus groups with nursing staff from LTC facilities; development and modification of the Nursing Practice Model Questionnaire (NPMQ); and examination of the validity and reliability of the NPMQ through pilot testing in 15 LTC facilities with 508 nursing staff. Five factors--decision making, informal continuity of information, formal continuity of information, continuity of care, and accountability--comprise the five subscales of the NPMQ, a 37-item questionnaire with established respectable validity and reliability. Copyright 2010, SLACK Incorporated.

  12. Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code

    Science.gov (United States)

    Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William

    2006-01-01

    The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.

  13. Calibration and validation of a model describing complete autotrophic nitrogen removal in a granular SBR system

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mutlu, Ayten Gizem; Gernaey, Krist

    2013-01-01

    BACKGROUND: A validated model describing the nitritation-anammox process in a granular sequencing batch reactor (SBR) system is an important tool for: a) design of future experiments and b) prediction of process performance during optimization, while applying process control, or during system scale......-up. RESULTS: A model was calibrated using a step-wise procedure customized for the specific needs of the system. The important steps in the procedure were initialization, steady-state and dynamic calibration, and validation. A fast and effective initialization approach was developed to approximate pseudo...... screening of the parameter space proposed by Sin et al. (2008) - to find the best fit of the model to dynamic data. Finally, the calibrated model was validated with an independent data set. CONCLUSION: The presented calibration procedure is the first customized procedure for this type of system...

  14. Statistical Analysis Methods for Physics Models Verification and Validation

    CERN Document Server

    De Luca, Silvia

    2017-01-01

    The validation and verification process is a fundamental step for any software like Geant4 and GeantV, which aim to perform data simulation using physics models and Monte Carlo techniques. As experimental physicists, we have to face the problem to compare the results obtained using simulations with what the experiments actually observed. One way to solve the problem is to perform a consistency test. Within the Geant group, we developed a C++ compact library which will be added to the automated validation process on the Geant Validation Portal

  15. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  16. Validation of a Wave-Body Interaction Model by Experimental Tests

    DEFF Research Database (Denmark)

    Ferri, Francesco; Kramer, Morten; Pecher, Arthur

    2013-01-01

    Within the wave energy field, numerical simulation has recently acquired a worldwide consent as being a useful tool, besides physical model testing. The main goal of this work is the validation of a numerical model by experimental results. The numerical model is based on a linear wave-body intera......-body interaction theory, applied for a point absorber wave energy converter. The results show that the ratio floater size/wave amplitude is a key parameter for the validity of the applied theory....

  17. Review and evaluation of performance measures for survival prediction models in external validation settings.

    Science.gov (United States)

    Rahman, M Shafiqur; Ambler, Gareth; Choodari-Oskooei, Babak; Omar, Rumana Z

    2017-04-18

    When developing a prediction model for survival data it is essential to validate its performance in external validation settings using appropriate performance measures. Although a number of such measures have been proposed, there is only limited guidance regarding their use in the context of model validation. This paper reviewed and evaluated a wide range of performance measures to provide some guidelines for their use in practice. An extensive simulation study based on two clinical datasets was conducted to investigate the performance of the measures in external validation settings. Measures were selected from categories that assess the overall performance, discrimination and calibration of a survival prediction model. Some of these have been modified to allow their use with validation data, and a case study is provided to describe how these measures can be estimated in practice. The measures were evaluated with respect to their robustness to censoring and ease of interpretation. All measures are implemented, or are straightforward to implement, in statistical software. Most of the performance measures were reasonably robust to moderate levels of censoring. One exception was Harrell's concordance measure which tended to increase as censoring increased. We recommend that Uno's concordance measure is used to quantify concordance when there are moderate levels of censoring. Alternatively, Gönen and Heller's measure could be considered, especially if censoring is very high, but we suggest that the prediction model is re-calibrated first. We also recommend that Royston's D is routinely reported to assess discrimination since it has an appealing interpretation. The calibration slope is useful for both internal and external validation settings and recommended to report routinely. Our recommendation would be to use any of the predictive accuracy measures and provide the corresponding predictive accuracy curves. In addition, we recommend to investigate the characteristics

  18. VS2DI: Model use, calibration, and validation

    Science.gov (United States)

    Healy, Richard W.; Essaid, Hedeff I.

    2012-01-01

    VS2DI is a software package for simulating water, solute, and heat transport through soils or other porous media under conditions of variable saturation. The package contains a graphical preprocessor for constructing simulations, a postprocessor for displaying simulation results, and numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). Flow is described by the Richards equation, and solute and heat transport are described by advection-dispersion equations; the finite-difference method is used to solve these equations. Problems can be simulated in one, two, or three (assuming radial symmetry) dimensions. This article provides an overview of calibration techniques that have been used with VS2DI; included is a detailed description of calibration procedures used in simulating the interaction between groundwater and a stream fed by drainage from agricultural fields in central Indiana. Brief descriptions of VS2DI and the various types of problems that have been addressed with the software package are also presented.

  19. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region

  20. Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models

    DEFF Research Database (Denmark)

    Vehtari, Aki; Mononen, Tommi; Tolvanen, Ville

    2016-01-01

    The future predictive performance of a Bayesian model can be estimated using Bayesian cross-validation. In this article, we consider Gaussian latent variable models where the integration over the latent values is approximated using the Laplace method or expectation propagation (EP). We study the ...

  1. Modeling and Validation across Scales: Parametrizing the effect of the forested landscape

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Badger, Merete; Angelou, Nikolas

    be transferred into a parametrization of forests in wind models. The presentation covers three scales: the single tree, the forest edges and clearings, and the large-scale forested landscape in which the forest effects are parameterized with a roughness length. Flow modeling results and validation against...

  2. Internal validation of risk models in clustered data: a comparison of bootstrap schemes

    NARCIS (Netherlands)

    Bouwmeester, W.; Moons, K.G.M.; Kappen, T.H.; van Klei, W.A.; Twisk, J.W.R.; Eijkemans, M.J.C.; Vergouwe, Y.

    2013-01-01

    Internal validity of a risk model can be studied efficiently with bootstrapping to assess possible optimism in model performance. Assumptions of the regular bootstrap are violated when the development data are clustered. We compared alternative resampling schemes in clustered data for the estimation

  3. Repeated holdout Cross-Validation of Model to Estimate Risk of Lyme Disease by Landscape Attributes

    Science.gov (United States)

    We previously modeled Lyme disease (LD) risk at the landscape scale; here we evaluate the model's overall goodness-of-fit using holdout validation. Landscapes were characterized within road-bounded analysis units (AU). Observed LD cases (obsLD) were ascertained per AU. Data were ...

  4. Model-based wear measurements in total knee arthroplasty : development and validation of novel radiographic techniques

    NARCIS (Netherlands)

    IJsseldijk, van E.A.

    2016-01-01

    The primary aim of this work was to develop novel model-based mJSW measurement methods using a 3D reconstruction and compare the accuracy and precision of these methods to conventional mJSW measurement. This thesis contributed to the development, validation and clinical application of model-based

  5. Development and Validation of a Path Analytic Model of Students' Performance in Chemistry.

    Science.gov (United States)

    Anamuah-Mensah, Jophus; And Others

    1987-01-01

    Reported the development and validation of an integrated model of performance on chemical concept-volumetric analysis. Model was tested on 265 chemistry students in eight schools.Results indicated that for subjects using algorithms without understanding, performance on volumetric analysis problems was not influenced by proportional reasoning…

  6. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    By comparison with the solution of the time-dependent Schrodinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  7. Error Modelling and Experimental Validation for a Planar 3-PPR Parallel Manipulator

    DEFF Research Database (Denmark)

    Wu, Guanglei; Bai, Shaoping; Kepler, Jørgen Asbøl

    2011-01-01

    In this paper, the positioning error of a 3-PPR planar parallel manipulator is studied with an error model and experimental validation. First, the displacement and workspace are analyzed. An error model considering both configuration errors and joint clearance errors is established. Using this mo...

  8. Validation of a probabilistic model of dietary exposure to selected pesticides in Dutch infants.

    NARCIS (Netherlands)

    Boon, P.E.; Voet, van der H.; Klaveren, van J.D.

    2003-01-01

    A probabilistic model for dietary exposure to pesticides was validated. For this, we evaluated the agreement of dietary exposure to six pesticides as estimated with the model with exposures measured in duplicate diet samples (='real intake') and those calculated with the point estimate. To calculate

  9. Validation of existing prognostic models in patients with early-stage cervical cancer

    NARCIS (Netherlands)

    Biewenga, Petra; van der Velden, Jacobus; Mol, Ben Willem J.; Stalpers, Lukas J. A.; Schilthuis, Marten S.; van der Steeg, Jan Willem; Burger, Matthé P. M.; Buist, Marrije R.

    2009-01-01

    Objective. Models that predict survival and recurrence in patients with early-stage cervical cancer are important tools in patient management, We validated 12 existing prognostic models in an independent population of patients with early-stage cervical cancer. Materials and Methods. We searched the

  10. Cross-Cultural Validation of the Preventive Health Model for Colorectal Cancer Screening: An Australian Study

    Science.gov (United States)

    Flight, Ingrid H.; Wilson, Carlene J.; McGillivray, Jane; Myers, Ronald E.

    2010-01-01

    We investigated whether the five-factor structure of the Preventive Health Model for colorectal cancer screening, developed in the United States, has validity in Australia. We also tested extending the model with the addition of the factor Self-Efficacy to Screen using Fecal Occult Blood Test (SESFOBT). Randomly selected men and women aged between…

  11. Cross-validation of an employee safety climate model in Malaysia.

    Science.gov (United States)

    Bahari, Siti Fatimah; Clarke, Sharon

    2013-06-01

    Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  12. Malaysian University Student Learning Involvement Scale (MUSLIS): Validation of a Student Engagement Model

    Science.gov (United States)

    Jaafar, Fauziah Md.; Hashim, Rosna Awang; Ariffin, Tengku Faekah Tengku

    2012-01-01

    Purpose: In western countries, a model to explain student engagement in college or university has long been established. However, there is a lack of research to develop and validate a model which may help to better understand student engagement in the local university context. There is currently no established instrument to measure student…

  13. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina

    Science.gov (United States)

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha

    2008-01-01

    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  14. Validation of models that predict Cesarean section after induction of labor

    NARCIS (Netherlands)

    Verhoeven, C. J. M.; Oudenaarden, A.; Hermus, M. A. A.; Porath, M. M.; Oei, S. G.; Mol, B. W. J.

    2009-01-01

    Objective Models for the prediction of Cesarean delivery after induction of labor can be used to improve clinical decision-making. The objective of this study was to validate two existing models, published by Peregrine et al. and Rane et al., for the prediction of Cesarean section after induction of

  15. Development and Validation of a Rule-Based Strength Scaling Method for Musculoskeletal Modelling

    DEFF Research Database (Denmark)

    Oomen, Pieter; Annegarn, Janneke; Rasmussen, John

    2015-01-01

    Rule based strength scaling is an easy, cheap and relatively accurate technique to personalize musculoskeletal (MS) models. This paper presents a new strength scaling approach for MS models and validates it by maximal voluntary contractions (MVC). A heterogeneous group of 63 healthy subjects...

  16. Modelling of solar radiation interception in row crops. 2. Crop geometry and validation of the model

    International Nuclear Information System (INIS)

    Sinoquet, H.; Bonhomme, R.

    1989-01-01

    A radiative transfer model applied to a row crop has previously been described and tested on homogeneous canopies. To validate this model for row crops, measurements of reflected and transmitted radiation were made on two maize canopies : one orientated East-West, and the other North-South. The geometrical structure, measured with the plant profile method, differs according to row orientation. The plant azimuth distribution is not uniform. That of leaf inclination is globally uniform, but it presents spatial variations. The leaf area density shows large variations in the horizontal plane, depending on the distance from the center of the row, even in the case of a well developed crop. Linear regressions show a good agreement between calculated and measured values, and are quite similar for both row orientations. The mean quadratic errors are from 10 - 20%, depending on the nature of the radiation. Optimized values of leaf dispersion index (Nilson, 1971) indicate a clumped behaviour which decreases with the development of the canopy (mainly for the North-South orientation), with however a more clumped arrangement in the North-South rows [fr

  17. Validation of mathematical models to describe fluid dynamics of a cold riser by gamma ray attenuation

    International Nuclear Information System (INIS)

    Melo, Ana Cristina Bezerra Azedo de

    2004-12-01

    The fluid dynamic behavior of a riser in a cold type FCC model was investigated by means of catalyst concentration distribution measured with gamma attenuation and simulated with a mathematical model. In the riser of the cold model, MEF, 0,032 m in diameter, 2,30 m in length the fluidized bed, whose components are air and FCC catalyst, circulates. The MEF is operated by automatic control and instruments for measuring fluid dynamic variables. An axial catalyst concentration distribution was measured using an Am-241 gamma source and a NaI detector coupled to a multichannel provided with a software for data acquisition and evaluation. The MEF was adapted for a fluid dynamic model validation which describes the flow in the riser, for example, by introducing an injector for controlling the solid flow in circulation. Mathematical models were selected from literature, analyzed and tested to simulate the fluid dynamic of the riser. A methodology for validating fluid dynamic models was studied and implemented. The stages of the work were developed according to the validation methodology, such as data planning experiments, study of the equations which describe the fluidodynamic, computational solvers application and comparison with experimental data. Operational sequences were carried out keeping the MEF conditions for measuring catalyst concentration and simultaneously measuring the fluid dynamic variables, velocity of the components and pressure drop in the riser. Following this, simulated and experimental values were compared and statistical data treatment done, aiming at the required precision to validate the fluid dynamic model. The comparison tests between experimental and simulated data were carried out under validation criteria. The fluid dynamic behavior of the riser was analyzed and the results and the agreement with literature were discussed. The adopt model was validated under the MEF operational conditions, for a 3 to 6 m/s gas velocity in the riser and a slip

  18. Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions

    International Nuclear Information System (INIS)

    Carlon, Elisa; Verma, Vijay Kumar; Schwarz, Markus; Golicza, Laszlo; Prada, Alessandro; Baratieri, Marco; Haslinger, Walter; Schmidl, Christoph

    2015-01-01

    Highlights: • Laboratory tests on two commercially available pellet boilers. • Steady state and a dynamic load cycle tests. • Pellet boiler model calibration based on data registered in stationary operation. • Boiler model validation with reference to both stationary and dynamic operation. • Validated model suitable for coupled simulation of building and heating system. - Abstract: Nowadays dynamic building simulation is an essential tool for the design of heating systems for residential buildings. The simulation of buildings heated by biomass systems, first of all needs detailed boiler models, capable of simulating the boiler both as a stand-alone appliance and as a system component. This paper presents the calibration and validation of a boiler model by means of laboratory tests. The chosen model, i.e. TRNSYS “Type 869”, has been validated for two commercially available pellet boilers of 6 and 12 kW nominal capacities. Two test methods have been applied: the first is a steady state test at nominal load and the second is a load cycle test including stationary operation at different loads as well as transient operation. The load cycle test is representative of the boiler operation in the field and characterises the boiler’s stationary and dynamic behaviour. The model had been calibrated based on laboratory data registered during stationary operation at different loads and afterwards it was validated by simulating both the stationary and the dynamic tests. Selected parameters for the validation were the heat transfer rates to water and the water temperature profiles inside the boiler and at the boiler outlet. Modelling results showed better agreement with experimental data during stationary operation rather than during dynamic operation. Heat transfer rates to water were predicted with a maximum deviation of 10% during the stationary operation, and a maximum deviation of 30% during the dynamic load cycle. However, for both operational regimes the

  19. A Familiar(ity Problem: Assessing the Impact of Prerequisites and Content Familiarity on Student Learning.

    Directory of Open Access Journals (Sweden)

    Justin F Shaffer

    Full Text Available Prerequisites are embedded in most STEM curricula. However, the assumption that the content presented in these courses will improve learning in later courses has not been verified. Because a direct comparison of performance between students with and without required prerequisites is logistically difficult to arrange in a randomized fashion, we developed a novel familiarity scale, and used this to determine whether concepts introduced in a prerequisite course improved student learning in a later course (in two biology disciplines. Exam questions in the latter courses were classified into three categories, based on the degree to which the tested concept had been taught in the prerequisite course. If content familiarity mattered, it would be expected that exam scores on topics covered in the prerequisite would be higher than scores on novel topics. We found this to be partially true for "Very Familiar" questions (concepts covered in depth in the prerequisite. However, scores for concepts only briefly discussed in the prerequisite ("Familiar" were indistinguishable from performance on topics that were "Not Familiar" (concepts only taught in the later course. These results imply that merely "covering" topics in a prerequisite course does not result in improved future performance, and that some topics may be able to removed from a course thereby freeing up class time. Our results may therefore support the implementation of student-centered teaching methods such as active learning, as the time-intensive nature of active learning has been cited as a barrier to its adoption. In addition, we propose that our familiarity system could be broadly utilized to aid in the assessment of the effectiveness of prerequisites.

  20. Validation of modelled forest biomass in Germany using BETHY/DLR

    Directory of Open Access Journals (Sweden)

    M. Tum

    2011-11-01

    Full Text Available We present a new approach to the validation of modelled forest Net Primary Productivity (NPP, using empirical data on the mean annual increment, or MAI, in above-ground forest stock. The soil-vegetation-atmosphere-transfer model BETHY/DLR is used, with a particular focus on a detailed parameterization of photosynthesis, to estimate the NPP of forest areas in Germany, driven by remote sensing data from VEGETATION, meteorological data from the European Centre for Medium-Range Weather Forecasts (ECMWF, and additional tree coverage information from the MODIS Vegetation Continuous Field (VCF. The output of BETHY/DLR, Gross Primary Productivity (GPP, is converted to NPP by subtracting the cumulative plant maintenance and growth respiration, and then validated against MAI data that was calculated from German forestry inventories. Validation is conducted for 2000 and 2001 by converting modelled NPP to stem volume at a regional level. Our analysis shows that the presented method fills an important gap in methods for validating modelled NPP against empirically derived data. In addition, we examine theoretical energy potentials calculated from the modelled and validated NPP, assuming sustainable forest management and using species-specific tree heating values. Such estimated forest biomass energy potentials play an important role in the sustainable energy debate.