EFFICIENT PREDICTIVE MODELLING FOR ARCHAEOLOGICAL RESEARCH
Balla, A.; Pavlogeorgatos, G.; Tsiafakis, D.; Pavlidis, G.
2014-01-01
The study presents a general methodology for designing, developing and implementing predictive modelling for identifying areas of archaeological interest. The methodology is based on documented archaeological data and geographical factors, geospatial analysis and predictive modelling, and has been applied to the identification of possible Macedonian tombs’ locations in Northern Greece. The model was tested extensively and the results were validated using a commonly used predictive gain, which...
AN EFFICIENT PATIENT INFLOW PREDICTION MODEL FOR HOSPITAL RESOURCE MANAGEMENT
Directory of Open Access Journals (Sweden)
Kottalanka Srikanth
2017-07-01
Full Text Available There has been increasing demand in improving service provisioning in hospital resources management. Hospital industries work with strict budget constraint at the same time assures quality care. To achieve quality care with budget constraint an efficient prediction model is required. Recently there has been various time series based prediction model has been proposed to manage hospital resources such ambulance monitoring, emergency care and so on. These models are not efficient as they do not consider the nature of scenario such climate condition etc. To address this artificial intelligence is adopted. The issues with existing prediction are that the training suffers from local optima error. This induces overhead and affects the accuracy in prediction. To overcome the local minima error, this work presents a patient inflow prediction model by adopting resilient backpropagation neural network. Experiment are conducted to evaluate the performance of proposed model inter of RMSE and MAPE. The outcome shows the proposed model reduces RMSE and MAPE over existing back propagation based artificial neural network. The overall outcomes show the proposed prediction model improves the accuracy of prediction which aid in improving the quality of health care management.
FIRE BEHAVIOR PREDICTING MODELS EFFICIENCY IN BRAZILIAN COMMERCIAL EUCALYPT PLANTATIONS
Directory of Open Access Journals (Sweden)
Benjamin Leonardo Alves White
2016-12-01
Full Text Available Knowing how a wildfire will behave is extremely important in order to assist in fire suppression and prevention operations. Since the 1940’s mathematical models to estimate how the fire will behave have been developed worldwide, however, none of them, until now, had their efficiency tested in Brazilian commercial eucalypt plantations nor in other vegetation types in the country. This study aims to verify the accuracy of the Rothermel (1972 fire spread model, the Byram (1959 flame length model, and the fire spread and length equations derived from the McArthur (1962 control burn meters. To meet these objectives, 105 experimental laboratory fires were done and their results compared with the predicted values from the models tested. The Rothermel and Byram models predicted better than McArthur’s, nevertheless, all of them underestimated the fire behavior aspects evaluated and were statistically different from the experimental data.
Computationally efficient model predictive control algorithms a neural network approach
Ławryńczuk, Maciej
2014-01-01
This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: · A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. · Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. · The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). · The MPC algorithms with neural approximation with no on-line linearization. · The MPC algorithms with guaranteed stability and robustness. · Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...
An Efficient Deterministic Approach to Model-based Prediction Uncertainty
National Aeronautics and Space Administration — Prognostics deals with the prediction of the end of life (EOL) of a system. EOL is a random variable, due to the presence of process noise and uncertainty in the...
Efficient predictive model-based and fuzzy control for green urban mobility
Jamshidnejad, A.
2017-01-01
In this thesis, we develop efficient predictive model-based control approaches, including model-predictive control (MPC) andmodel-based fuzzy control, for application in urban traffic networks with the aim of reducing a combination of the total time spent by the vehicles within the network and the
Takács, Gergely
2012-01-01
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of ...
Daigle, Matthew John; Goebel, Kai Frank
2010-01-01
Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
International Nuclear Information System (INIS)
Jošt, D; Škerlavaj, A; Lipej, A
2012-01-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
Jošt, D.; Škerlavaj, A.; Lipej, A.
2012-11-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
International Nuclear Information System (INIS)
Su, Yan; Chan, Lai-Cheong; Shu, Lianjie; Tsui, Kwok-Leung
2012-01-01
Highlights: ► We develop online prediction models for solar photovoltaic system performance. ► The proposed prediction models are simple but with reasonable accuracy. ► The maximum monthly average minutely efficiency varies 10.81–12.63%. ► The average efficiency tends to be slightly higher in winter months. - Abstract: This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R 2 . The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9 am to 4 pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.
Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering
Koehler, Sarah Muraoka
Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is
A Calibrated Lumped Element Model for the Prediction of PSJ Actuator Efficiency Performance
Directory of Open Access Journals (Sweden)
Matteo Chiatto
2018-03-01
Full Text Available Among the various active flow control techniques, Plasma Synthetic Jet (PSJ actuators, or Sparkjets, represent a very promising technology, especially because of their high velocities and short response times. A practical tool, employed for design and manufacturing purposes, consists of the definition of a low-order model, lumped element model (LEM, which is able to predict the dynamic response of the actuator in a relatively quick way and with reasonable fidelity and accuracy. After a brief description of an innovative lumped model, this work faces the experimental investigation of a home-designed and manufactured PSJ actuator, for different frequencies and energy discharges. Particular attention has been taken in the power supply system design. A specific home-made Pitot tube has allowed the detection of velocity profiles along the jet radial direction, for various energy discharges, as well as the tuning of the lumped model with experimental data, where the total device efficiency has been assumed as a fitting parameter. The best fitting value not only contains information on the actual device efficiency, but includes some modeling and experimental uncertainties, related also to the used measurement technique.
Schoolmaster, Donald; Stagg, Camille L.
2018-01-01
A trade-off between competitive ability and stress tolerance has been hypothesized and empirically supported to explain the zonation of species across stress gradients for a number of systems. Since stress often reduces plant productivity, one might expect a pattern of decreasing productivity across the zones of the stress gradient. However, this pattern is often not observed in coastal wetlands that show patterns of zonation along a salinity gradient. To address the potentially complex relationship between stress, zonation, and productivity in coastal wetlands, we developed a model of plant biomass as a function of resource competition and salinity stress. Analysis of the model confirms the conventional wisdom that a trade-off between competitive ability and stress tolerance is a necessary condition for zonation. It also suggests that a negative relationship between salinity and production can be overcome if (1) the supply of the limiting resource increases with greater salinity stress or (2) nutrient use efficiency increases with increasing salinity. We fit the equilibrium solution of the dynamic model to data from Louisiana coastal wetlands to test its ability to explain patterns of production across the landscape gradient and derive predictions that could be tested with independent data. We found support for a number of the model predictions, including patterns of decreasing competitive ability and increasing nutrient use efficiency across a gradient from freshwater to saline wetlands. In addition to providing a quantitative framework to support the mechanistic hypotheses of zonation, these results suggest that this simple model is a useful platform to further build upon, simulate and test mechanistic hypotheses of more complex patterns and phenomena in coastal wetlands.
Incremental validity of positive orientation: predictive efficiency beyond the five-factor model
Directory of Open Access Journals (Sweden)
Łukasz Roland Miciuk
2016-05-01
Full Text Available Background The relation of positive orientation (a basic predisposition to think positively of oneself, one’s life and one’s future and personality traits is still disputable. The purpose of the described research was to verify the hypothesis that positive orientation has predictive efficiency beyond the five-factor model. Participants and procedure One hundred and thirty participants (at the mean age M = 24.84 completed the following questionnaires: the Self-Esteem Scale (SES, the Satisfaction with Life Scale (SWLS, the Life Orientation Test-Revised (LOT-R, the Positivity Scale (P-SCALE, the NEO Five Factor Inventory (NEO-FFI, the Self-Concept Clarity Scale (SCC, the Generalized Self-Efficacy Scale (GSES and the Life Engagement Test (LET. Results The introduction of positive orientation as an additional predictor in the second step of regression analyses led to better prediction of the following variables: purpose in life, self-concept clarity and generalized self-efficacy. This effect was the strongest for predicting purpose in life (i.e. 14% increment of the explained variance. Conclusions The results confirmed our hypothesis that positive orientation can be characterized by incremental validity – its inclusion in the regression model (in addition to the five main factors of personality increases the amount of explained variance. These findings may provide further evidence for the legitimacy of measuring positive orientation and personality traits separately.
International Nuclear Information System (INIS)
Pantic, Lana S.; Pavlović, Tomislav M.; Milosavljević, Dragana D.; Radonjic, Ivana S.; Radovic, Miodrag K.; Sazhko, Galina
2016-01-01
Five different models for calculating solar module temperature, output power and efficiency for sunny days with different solar radiation intensities and ambient temperatures are assessed in this paper. Thereafter, modeled values are compared to the experimentally obtained values for the horizontal solar module in Nis, Serbia. The criterion for determining the best model was based on the statistical analysis and the agreement between the calculated and the experimental values. The calculated values of solar module temperature are in good agreement with the experimentally obtained ones, with some variations over and under the measured values. The best agreement between calculated and experimentally obtained values was for summer months with high solar radiation intensity. The nonlinear model for calculating the output power is much better than the linear model and at the same time predicts better the total electrical energy generated by the solar module during the day. The nonlinear model for calculating the solar module efficiency predicts the efficiency higher than the STC (Standard Test Conditions) value of solar module efficiency for all conditions, while the linear model predicts the solar module efficiency very well. This paper provides a simple and efficient guideline to estimate relevant parameters of a monocrystalline silicon solar module under the moderate-continental climate conditions. - Highlights: • Linear model for solar module temperature gives accurate predictions for August. • The nonlinear model better predicts the solar module power than the linear model. • For calculating solar module power for Nis we propose the nonlinear model. • For calculating solar model efficiency for Nis we propose adoption of linear model. • The adopted models can be used for calculations throughout the year.
An efficient numerical target strength prediction model: Validation against analysis solutions
Fillinger, L.; Nijhof, M.J.J.; Jong, C.A.F. de
2014-01-01
A decade ago, TNO developed RASP (Rapid Acoustic Signature Prediction), a numerical model for the prediction of the target strength of immersed underwater objects. The model is based on Kirchhoff diffraction theory. It is currently being improved to model refraction, angle dependent reflection and
ARCH Models Efficiency Evaluation in Prediction and Poultry Price Process Formation
Directory of Open Access Journals (Sweden)
Behzad Fakari Sardehae
2016-09-01
. This study shows that the heterogeneous variance exists in error term and indicated by LM-test. Results and Discussion: Results showed that stationary test of the poultry price has a unit root and is stationary with one lag difference, and thus the price of poultry was used in the study by one lag difference. Main results showed that ARCH is the best model for fluctuation prediction. Moreover, news has asymmetric effect on poultry price fluctuation and good news has a stronger effect on poultry price fluctuation than bad news and leverage effect doesnot existin poultry price. Moreover current fluctuation does not transmit to future. One of the main assumptions of time series models is constant variance in estimated coefficients. If this assumption has not been, the estimated coefficients for the correlation between the serial data would be biased and results in wrong interpretation. The results showed that ARCH effects existed in error terms of poultry price and so the ARCH family with student t distribution should be used. Normality test of error term and exam of heterogeneous variance needed and lack of attention to its cause false conclusion. Result showed that ARCH models have good predictive power and ARMA models are less efficient than ARCH models. It shows that non-linear predictions are better than linear prediction. According to the results that student distribution should be used as target distribution in estimated patterns. Conclusion: Huge need for poultry, require the creation of infrastructure to response to demands. Results showed that change in poultry price volatility over time, may intensifies at anytime. The asymmetric effect of good and bad news in poultry price leading to consumer's reaction. The good news had significant effects on the poultry market and created positive change in the poultry price, but the bad news did not result insignificant effects. In fact, because the poultry product in the household portfolio is essential, it should not
Tian, Xin; Negenborn, Rudy R.; van Overloop, Peter-Jules; María Maestre, José; Sadowska, Anna; van de Giesen, Nick
2017-11-01
Model Predictive Control (MPC) is one of the most advanced real-time control techniques that has been widely applied to Water Resources Management (WRM). MPC can manage the water system in a holistic manner and has a flexible structure to incorporate specific elements, such as setpoints and constraints. Therefore, MPC has shown its versatile performance in many branches of WRM. Nonetheless, with the in-depth understanding of stochastic hydrology in recent studies, MPC also faces the challenge of how to cope with hydrological uncertainty in its decision-making process. A possible way to embed the uncertainty is to generate an Ensemble Forecast (EF) of hydrological variables, rather than a deterministic one. The combination of MPC and EF results in a more comprehensive approach: Multi-scenario MPC (MS-MPC). In this study, we will first assess the model performance of MS-MPC, considering an ensemble streamflow forecast. Noticeably, the computational inefficiency may be a critical obstacle that hinders applicability of MS-MPC. In fact, with more scenarios taken into account, the computational burden of solving an optimization problem in MS-MPC accordingly increases. To deal with this challenge, we propose the Adaptive Control Resolution (ACR) approach as a computationally efficient scheme to practically reduce the number of control variables in MS-MPC. In brief, the ACR approach uses a mixed-resolution control time step from the near future to the distant future. The ACR-MPC approach is tested on a real-world case study: an integrated flood control and navigation problem in the North Sea Canal of the Netherlands. Such an approach reduces the computation time by 18% and up in our case study. At the same time, the model performance of ACR-MPC remains close to that of conventional MPC.
A Robust Model Predictive Control for efficient thermal management of internal combustion engines
International Nuclear Information System (INIS)
Pizzonia, Francesco; Castiglione, Teresa; Bova, Sergio
2016-01-01
Highlights: • A Robust Model Predictive Control for ICE thermal management was developed. • The proposed control is effective in decreasing the warm-up time. • The control system reduces coolant flow rate under fully warmed conditions. • The control strategy operates the cooling system around onset of nucleate boiling. • Little on-line computational effort is required. - Abstract: Optimal thermal management of modern internal combustion engines (ICE) is one of the key factors for reducing fuel consumption and CO_2 emissions. These are measured by using standardized driving cycles, like the New European Driving Cycle (NEDC), during which the engine does not reach thermal steady state; engine efficiency and emissions are therefore penalized. Several techniques for improving ICE thermal efficiency were proposed, which range from the use of empirical look-up tables to pulsed pump operation. A systematic approach to the problem is however still missing and this paper aims to bridge this gap. The paper proposes a Robust Model Predictive Control of the coolant flow rate, which makes use of a zero-dimensional model of the cooling system of an ICE. The control methodology incorporates explicitly the model uncertainties and achieves the synthesis of a state-feedback control law that minimizes the “worst case” objective function while taking into account the system constraints, as proposed by Kothare et al. (1996). The proposed control strategy is to adjust the coolant flow rate by means of an electric pump, in order to bring the cooling system to operate around the onset of nucleate boiling: across it during warm-up and above it (nucleate or saturated boiling) under fully warmed conditions. The computationally heavy optimization is carried out off-line, while during the operation of the engine the control parameters are simply picked-up on-line from look-up tables. Owing to the little computational effort required, the resulting control strategy is suitable for
Spatial extrapolation of light use efficiency model parameters to predict gross primary production
Directory of Open Access Journals (Sweden)
Karsten Schulz
2011-12-01
Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.
An efficient model for predicting mixing lengths in serial pumping of petroleum products
Energy Technology Data Exchange (ETDEWEB)
Baptista, Renan Martins [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Explotacao]. E-mail: renan@cenpes.petrobras.com.br; Rachid, Felipe Bastos de Freitas [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: rachid@mec.uff.br; Araujo, Jose Henrique Carneiro de [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Ciencia da Computacao]. E-mail: jhca@dcc.ic.uff.br
2000-07-01
This paper presents a new model for estimating mixing volumes which arises in batching transfers in multi product pipelines. The novel features of the model are the incorporation of the flow rate variation with time and the use of a more precise effective dispersion coefficient, which is considered to depend on the concentration. The governing equation of the model forms a non linear initial value problem that is solved by using a predictor corrector finite difference method. A comparison among the theoretical predictions of the proposed model, a field test and other classical procedures show that it exhibits the best estimate over the whole range of admissible concentrations investigated. (author)
A theoretical model for prediction of deposition efficiency in cold spraying
International Nuclear Information System (INIS)
Li Changjiu; Li Wenya; Wang Yuyue; Yang Guanjun; Fukanuma, H.
2005-01-01
The deposition behavior of a spray particle stream with a particle size distribution was theoretically examined for cold spraying in terms of deposition efficiency as a function of particle parameters and spray angle. The theoretical relation was established between the deposition efficiency and spray angle. The experiments were conducted by measuring deposition efficiency at different driving gas conditions and different spray angles using gas-atomized copper powder. It was found that the theoretically estimated results agreed reasonably well with the experimental ones. Based on the theoretical model and experimental results, it was revealed that the distribution of particle velocity resulting from particle size distribution influences significantly the deposition efficiency in cold spraying. It was necessary for the majority of particles to achieve a velocity higher than the critical velocity in order to improve the deposition efficiency. The normal component of particle velocity contributed to the deposition of the particle under the off-nomal spray condition. The deposition efficiency of sprayed particles decreased owing to the decrease of the normal velocity component as spray was performed at off-normal angle
Sreekanth, J.; Moore, Catherine
2018-04-01
The application of global sensitivity and uncertainty analysis techniques to groundwater models of deep sedimentary basins are typically challenged by large computational burdens combined with associated numerical stability issues. The highly parameterized approaches required for exploring the predictive uncertainty associated with the heterogeneous hydraulic characteristics of multiple aquifers and aquitards in these sedimentary basins exacerbate these issues. A novel Patch Modelling Methodology is proposed for improving the computational feasibility of stochastic modelling analysis of large-scale and complex groundwater models. The method incorporates a nested groundwater modelling framework that enables efficient simulation of groundwater flow and transport across multiple spatial and temporal scales. The method also allows different processes to be simulated within different model scales. Existing nested model methodologies are extended by employing 'joining predictions' for extrapolating prediction-salient information from one model scale to the next. This establishes a feedback mechanism supporting the transfer of information from child models to parent models as well as parent models to child models in a computationally efficient manner. This feedback mechanism is simple and flexible and ensures that while the salient small scale features influencing larger scale prediction are transferred back to the larger scale, this does not require the live coupling of models. This method allows the modelling of multiple groundwater flow and transport processes using separate groundwater models that are built for the appropriate spatial and temporal scales, within a stochastic framework, while also removing the computational burden associated with live model coupling. The utility of the method is demonstrated by application to an actual large scale aquifer injection scheme in Australia.
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Edlund, Kristian
2012-01-01
. In this paper we describe a novel economic-optimizing Model Predictive Control (MPC) scheme that reduces operating costs by utilizing the thermal storage capabilities. A nonlinear optimization tool to handle a non-convex cost function is utilized for simulations with validated scenarios. In this way we...... explicitly address advantages from daily variations in outdoor temperature and electricity prices. Secondly, we formulate a new cost function that enables the refrigeration system to contribute with ancillary services to the balancing power market. This involvement can be economically beneficial...... of the system models allows us to describe and handle model as well as prediction uncertainties in this framework. This means we can demonstrate means for robustifying the performance of the controller....
International Nuclear Information System (INIS)
Jeong, Jaewook; Hong, Taehoon; Ji, Changyoon; Kim, Jimin; Lee, Minhyun; Jeong, Kwangbok; Koo, Choongwan
2017-01-01
Highlights: • This study evaluates the building energy efficiency rating (BEER) certification. • Prediction model was developed for cost saving potentials by the BEER certification. • Prediction model was developed using LCC analysis, ROV, and Monte Carlo simulation. • Cost saving potential was predicted to be 2.78–3.77% of the construction cost. • Cost saving potential can be used for estimating the investment value of BEER. - Abstract: Building energy efficiency rating (BEER) certification is an energy performance certificates (EPCs) in South Korea. It is critical to examine the cost saving potentials of the BEER-certification in advance. This study aimed to develop a prediction model for the cost saving potentials in implementing the BEER-certification, in which the cost saving potentials included the energy cost savings of the BEER-certification and the relevant CO_2 emissions reduction as well as the additional construction cost for the BEER-certification. The prediction model was developed by using data mining, life cycle cost analysis, real option valuation, and Monte Carlo simulation. The database were established with 437 multi-family housing complexes (MFHCs), including 116 BEER-certified MFHCs and 321 non-certified MFHCs. The case study was conducted to validate the developed prediction model using 321 non-certified MFHCs, which considered 20-year life cycle. As a result, compared to the additional construction cost, the average cost saving potentials of the 1st-BEER-certified MFHCs in Groups 1, 2, and 3 were predicted to be 3.77%, 2.78%, and 2.87%, respectively. The cost saving potentials can be used as a guideline for the additional construction cost of the BEER-certification in the early design phase.
Curcio, Stefano; Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele
2014-01-01
The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.
Directory of Open Access Journals (Sweden)
Stefano Curcio
2014-01-01
Full Text Available The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.
Efficient Prediction of Progesterone Receptor Interactome Using a Support Vector Machine Model
Directory of Open Access Journals (Sweden)
Ji-Long Liu
2015-03-01
Full Text Available Protein-protein interaction (PPI is essential for almost all cellular processes and identification of PPI is a crucial task for biomedical researchers. So far, most computational studies of PPI are intended for pair-wise prediction. Theoretically, predicting protein partners for a single protein is likely a simpler problem. Given enough data for a particular protein, the results can be more accurate than general PPI predictors. In the present study, we assessed the potential of using the support vector machine (SVM model with selected features centered on a particular protein for PPI prediction. As a proof-of-concept study, we applied this method to identify the interactome of progesterone receptor (PR, a protein which is essential for coordinating female reproduction in mammals by mediating the actions of ovarian progesterone. We achieved an accuracy of 91.9%, sensitivity of 92.8% and specificity of 91.2%. Our method is generally applicable to any other proteins and therefore may be of help in guiding biomedical experiments.
DEFF Research Database (Denmark)
Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit
2014-01-01
Much attention is focused on increasing the energy efficiency to decrease fuel costs and CO2 emissions throughout industrial sectors. The ORC (organic Rankine cycle) is a relatively simple but efficient process that can be used for this purpose by converting low and medium temperature waste heat ...
Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David
2017-10-01
Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.
2016-01-01
Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking
Efficient Implementation of Solvers for Linear Model Predictive Control on Embedded Devices
DEFF Research Database (Denmark)
Frison, Gianluca; Kwame Minde Kufoalor, D.; Imsland, Lars
2014-01-01
This paper proposes a novel approach for the efficient implementation of solvers for linear MPC on embedded devices. The main focus is to explain in detail the approach used to optimize the linear algebra for selected low-power embedded devices, and to show how the high-performance implementation...
A Riccati-Based Interior Point Method for Efficient Model Predictive Control of SISO Systems
DEFF Research Database (Denmark)
Hagdrup, Morten; Johansson, Rolf; Bagterp Jørgensen, John
2017-01-01
model parts separate. The controller is designed based on the deterministic model, while the Kalman filter results from the stochastic part. The controller is implemented as a primal-dual interior point (IP) method using Riccati recursion and the computational savings possible for SISO systems...
Efficient polarimetric BRDF model.
Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D
2015-11-30
The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing.
Comparison Of Human Modelling Tools For Efficiency Of Prediction Of EVA Tasks
Dischinger, H. Charles, Jr.; Loughead, Tomas E.
1998-01-01
Construction of the International Space Station (ISS) will require extensive extravehicular activity (EVA, spacewalks), and estimates of the actual time needed continue to rise. As recently as September, 1996, the amount of time to be spent in EVA was believed to be about 400 hours, excluding spacewalks on the Russian segment. This estimate has recently risen to over 1100 hours, and it could go higher before assembly begins in the summer of 1998. These activities are extremely expensive and hazardous, so any design tools which help assure mission success and improve the efficiency of the astronaut in task completion can pay off in reduced design and EVA costs and increased astronaut safety. The tasks which astronauts can accomplish in EVA are limited by spacesuit mobility. They are therefore relatively simple, from an ergonomic standpoint, requiring gross movements rather than time motor skills. The actual tasks include driving bolts, mating and demating electric and fluid connectors, and actuating levers; the important characteristics to be considered in design improvement include the ability of the astronaut to see and reach the item to be manipulated and the clearance required to accomplish the manipulation. This makes the tasks amenable to simulation in a Computer-Assisted Design (CAD) environment. For EVA, the spacesuited astronaut must have his or her feet attached on a work platform called a foot restraint to obtain a purchase against which work forces may be actuated. An important component of the design is therefore the proper placement of foot restraints.
Bakker, M.; Verberk, J.Q.J.C.; Palmen, L.J.; Sperber, V.; Bakker, G.
2011-01-01
Half of all water supply systems in the Netherlands are controlled by model predictive flow control; the other half are controlled by conventional level based control. The differences between conventional level based control and model predictive control were investigated in experiments at five full
Inverse and Predictive Modeling
Energy Technology Data Exchange (ETDEWEB)
Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-27
The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.
Efficient predictive algorithms for image compression
Rosário Lucas, Luís Filipe; Maciel de Faria, Sérgio Manuel; Morais Rodrigues, Nuno Miguel; Liberal Pagliari, Carla
2017-01-01
This book discusses efficient prediction techniques for the current state-of-the-art High Efficiency Video Coding (HEVC) standard, focusing on the compression of a wide range of video signals, such as 3D video, Light Fields and natural images. The authors begin with a review of the state-of-the-art predictive coding methods and compression technologies for both 2D and 3D multimedia contents, which provides a good starting point for new researchers in the field of image and video compression. New prediction techniques that go beyond the standardized compression technologies are then presented and discussed. In the context of 3D video, the authors describe a new predictive algorithm for the compression of depth maps, which combines intra-directional prediction, with flexible block partitioning and linear residue fitting. New approaches are described for the compression of Light Field and still images, which enforce sparsity constraints on linear models. The Locally Linear Embedding-based prediction method is in...
Oikawa, P. Y.; Jenerette, D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Baldocchi, D. D.
2014-12-01
Under California's Cap-and-Trade program, companies are looking to invest in land-use practices that will reduce greenhouse gas (GHG) emissions. The Sacramento-San Joaquin River Delta is a drained cultivated peatland system and a large source of CO2. To slow soil subsidence and reduce CO2 emissions, there is growing interest in converting drained peatlands to wetlands. However, wetlands are large sources of CH4 that could offset CO2-based GHG reductions. The goal of our research is to provide accurate measurements and model predictions of the changes in GHG budgets that occur when drained peatlands are restored to wetland conditions. We have installed a network of eddy covariance towers across multiple land use types in the Delta and have been measuring CO2 and CH4 ecosystem exchange for multiple years. In order to upscale these measurements through space and time we are using these data to parameterize and validate a process-based biogeochemical model. To predict gross primary productivity (GPP), we are using a simple light use efficiency (LUE) model which requires estimates of light, leaf area index and air temperature and can explain 90% of the observed variation in GPP in a mature wetland. To predict ecosystem respiration we have adapted the Dual Arrhenius Michaelis-Menten (DAMM) model. The LUE-DAMM model allows accurate simulation of half-hourly net ecosystem exchange (NEE) in a mature wetland (r2=0.85). We are working to expand the model to pasture, rice and alfalfa systems in the Delta. To predict methanogenesis, we again apply a modified DAMM model, using simple enzyme kinetics. However CH4 exchange is complex and we have thus expanded the model to predict not only microbial CH4 production, but also CH4 oxidation, CH4 storage and the physical processes regulating the release of CH4 to the atmosphere. The CH4-DAMM model allows accurate simulation of daily CH4 ecosystem exchange in a mature wetland (r2=0.55) and robust estimates of annual CH4 budgets. The LUE
Modeling of venturi scrubber efficiency
Crowder, Jerry W.; Noll, Kenneth E.; Davis, Wayne T.
The parameters affecting venturi scrubber performance have been rationally examined and modifications to the current modeling theory have been developed. The modified model has been validated with available experimental data for a range of throat gas velocities, liquid-to-gas ratios and particle diameters and is used to study the effect of some design parameters on collection efficiency. Most striking among the observations is the prediction of a new design parameter termed the minimum contactor length. Also noted is the prediction of little effect on collection efficiency with increasing liquid-to-gas ratio above about 2ℓ m-3. Indeed, for some cases a decrease in collection efficiency is predicted for liquid rates above this value.
DEFF Research Database (Denmark)
Liu, Fulai; Andersen, Mathias N.; Jensen, Christian Richardt
2009-01-01
was used for model parameterization, where measurements of midday leaf gas exchange of potted potatoes were done during progressive soil drying for 2 weeks at tuber initiation and earlier bulking stages. The measured photosynthetic rate (An) was used as an input for the model. To account for the effects......The capability of the ‘Ball-Berry' model (BB-model) in predicting stomatal conductance (gs) and water use efficiency (WUE) of potato (Solanum tuberosum L.) leaves under different irrigation regimes was tested using data from two independent pot experiments in 2004 and 2007. Data obtained from 2004...... of soil water deficits on gs, a simple equation modifying the slope (m) based on the mean soil water potential (Ψs) in the soil columns was incorporated into the original BB-model. Compared with the original BB-model, the modified BB-model showed better predictability for both gs and WUE of potato leaves...
Szostak, Roman; Aubé, Jeffrey
2015-01-01
N-protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding, as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C–N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology. PMID:25766378
Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.
2015-08-01
Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCity
Phuong, H N; Blavy, P; Martin, O; Schmidely, P; Friggens, N C
2016-01-01
Reproductive success is a key component of lifetime efficiency - which is the ratio of energy in milk (MJ) to energy intake (MJ) over the lifespan, of cows. At the animal level, breeding and feeding management can substantially impact milk yield, body condition and energy balance of cows, which are known as major contributors to reproductive failure in dairy cattle. This study extended an existing lifetime performance model to incorporate the impacts that performance changes due to changing breeding and feeding strategies have on the probability of reproducing and thereby on the productive lifespan, and thus allow the prediction of a cow's lifetime efficiency. The model is dynamic and stochastic, with an individual cow being the unit modelled and one day being the unit of time. To evaluate the model, data from a French study including Holstein and Normande cows fed high-concentrate diets and data from a Scottish study including Holstein cows selected for high and average genetic merit for fat plus protein that were fed high- v. low-concentrate diets were used. Generally, the model consistently simulated productive and reproductive performance of various genotypes of cows across feeding systems. In the French data, the model adequately simulated the reproductive performance of Holsteins but significantly under-predicted that of Normande cows. In the Scottish data, conception to first service was comparably simulated, whereas interval traits were slightly under-predicted. Selection for greater milk production impaired the reproductive performance and lifespan but not lifetime efficiency. The definition of lifetime efficiency used in this model did not include associated costs or herd-level effects. Further works should include such economic indicators to allow more accurate simulation of lifetime profitability in different production scenarios.
An efficiency correction model
Francke, M.K.; de Vos, A.F.
2009-01-01
We analyze a dataset containing costs and outputs of 67 American local exchange carriers in a period of 11 years. This data has been used to judge the efficiency of BT and KPN using static stochastic frontier models. We show that these models are dynamically misspecified. As an alternative we
Genomic Prediction of Manganese Efficiency in Winter Barley
Directory of Open Access Journals (Sweden)
Florian Leplat
2016-07-01
Full Text Available Manganese efficiency is a quantitative abiotic stress trait controlled by several genes each with a small effect. Manganese deficiency leads to yield reduction in winter barley ( L.. Breeding new cultivars for this trait remains difficult because of the lack of visual symptoms and the polygenic features of the trait. Hence, Mn efficiency is a potential suitable trait for a genomic selection (GS approach. A collection of 248 winter barley varieties was screened for Mn efficiency using Chlorophyll (Chl fluorescence in six environments prone to induce Mn deficiency. Two models for genomic prediction were implemented to predict future performance and breeding value of untested varieties. Predictions were obtained using multivariate mixed models: best linear unbiased predictor (BLUP and genomic best linear unbiased predictor (G-BLUP. In the first model, predictions were based on the phenotypic evaluation, whereas both phenotypic and genomic marker data were included in the second model. Accuracy of predicting future phenotype, , and accuracy of predicting true breeding values, , were calculated and compared for both models using six cross-validation (CV schemes; these were designed to mimic plant breeding programs. Overall, the CVs showed that prediction accuracies increased when using the G-BLUP model compared with the prediction accuracies using the BLUP model. Furthermore, the accuracies [] of predicting breeding values were more accurate than accuracy of predicting future phenotypes []. The study confirms that genomic data may enhance the prediction accuracy. Moreover it indicates that GS is a suitable breeding approach for quantitative abiotic stress traits.
International Nuclear Information System (INIS)
Valverde Ramirez, M.; Coury, J.R.; Goncalves, J.A.S.
2009-01-01
In recent years, many computational fluid dynamics (CFD) studies have appeared attempting to predict cyclone pressure drop and collection efficiency. While these studies have been able to predict pressure drop well, they have been only moderately successful in predicting collection efficiency. Part of the reason for this failure has been attributed to the relatively simple wall boundary conditions implemented in the commercially available CFD software, which are not capable of accurately describing the complex particle-wall interaction present in a cyclone. According, researches have proposed a number of different boundary conditions in order to improve the model performance. This work implemented the critical velocity boundary condition through a user defined function (UDF) in the Fluent software and compared its predictions both with experimental data and with the predictions obtained when using Fluent's built-in boundary conditions. Experimental data was obtained from eight laboratory scale cyclones with varying geometric ratios. The CFD simulations were made using the software Fluent 6.3.26. (author)
Predictive modeling of complications.
Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P
2016-09-01
Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.
Cohen, Jérémie F.; Cohen, Robert; Bidet, Philippe; Elbez, Annie; Levy, Corinne; Bossuyt, Patrick M.; Chalumeau, Martin
2017-01-01
There is controversy whether physicians can rely on signs and symptoms to select children with pharyngitis who should undergo a rapid antigen detection test (RADT) for group A streptococcus (GAS). Our objective was to evaluate the efficiency of signs and symptoms in selectively testing children with
Efficiency model of Russian banks
Pavlyuk, Dmitry
2006-01-01
The article deals with problems related to the stochastic frontier model of bank efficiency measurement. The model is used to study the efficiency of the banking sector of The Russian Federation. It is based on the stochastic approach both to the efficiency frontier location and to individual bank efficiency values. The model allows estimating bank efficiency values, finding relations with different macro- and microeconomic factors and testing some economic hypotheses.
Jónsdóttir, Rósa; Geirsdóttir, Margrét; Hamaguchi, Patricia Y; Jamnik, Polona; Kristinsson, Hordur G; Undeland, Ingrid
2016-04-01
The ability of different in vitro antioxidant assays to predict the efficiency of cod protein hydrolysate (CPH) and Fucus vesiculosus ethyl acetate extract (EA) towards lipid oxidation in haemoglobin-fortified washed cod mince and iron-containing cod liver oil emulsion was evaluated. The progression of oxidation was followed by sensory analysis, lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS) in both systems, as well as loss of redness and protein carbonyls in the cod system. The in vitro tests revealed high reducing capacity, high DPPH radical scavenging properties and a high oxygen radical absorbance capacity (ORAC) value of the EA which also inhibited lipid and protein oxidation in the cod model system. The CPH had a high metal chelating capacity and was efficient against oxidation in the cod liver oil emulsion. The results indicate that the F. vesiculosus extract has a potential as an excellent natural antioxidant against lipid oxidation in fish muscle foods while protein hydrolysates are more promising for fish oil emulsions. The usefulness of in vitro assays to predict the antioxidative properties of new natural ingredients in foods thus depends on the knowledge about the food systems, particularly the main pro-oxidants present. © 2015 Society of Chemical Industry.
Archaeological predictive model set.
2015-03-01
This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
Tools for Predicting Cleaning Efficiency in the LHC
Assmann, R W; Brugger, M; Hayes, M; Jeanneret, J B; Kain, V; Kaltchev, D I; Schmidt, F
2003-01-01
The computer codes SIXTRACK and DIMAD have been upgraded to include realistic models of proton scattering in collimator jaws, mechanical aperture restrictions, and time-dependent fields. These new tools complement long-existing simplified linear tracking programs used up to now for tracking with collimators. Scattering routines from STRUCT and K2 have been compared with one another and the results have been cross-checked to the FLUKA Monte Carlo package. A systematic error is assigned to the predictions of cleaning efficiency. Now, predictions of the cleaning efficiency are possible with a full LHC model, including chromatic effects, linear and nonlinear errors, beam-beam kicks and associated diffusion, and time-dependent fields. The beam loss can be predicted around the ring, both for regular and irregular beam losses. Examples are presented.
Numerical prediction of Pelton turbine efficiency
Energy Technology Data Exchange (ETDEWEB)
Jott, D; Mez' nar, P; Lipej, A, E-mail: dragicajost@turboinstitut.s [Turbointtitut, Rovtnikova 7, Ljubljana, 1210 (Slovenia)
2010-08-15
This paper presents a numerical analysis of flow in a 2 jet Pelton turbine with horizontal axis. The analysis was done for the model at several operating points in different operating regimes. The results were compared to the results of a test of the model. Analysis was performed using ANSYS CFX-12.1 computer code. A k-{omega} SST turbulent model was used. Free surface flow was modelled by two-phase homogeneous model. At first, a steady state analysis of flow in the distributor with two injectors was performed for several needle strokes. This provided us with data on flow energy losses in the distributor and the shape and velocity of jets. The second step was an unsteady analysis of the runner with jets. Torque on the shaft was then calculated from pressure distribution data. Averaged torque values are smaller than measured ones. Consequently, calculated turbine efficiency is also smaller than the measured values, the difference is about 4 %. The shape of the efficiency diagram conforms well to the measurements.
Numerical prediction of Pelton turbine efficiency
Jošt, D.; Mežnar, P.; Lipej, A.
2010-08-01
This paper presents a numerical analysis of flow in a 2 jet Pelton turbine with horizontal axis. The analysis was done for the model at several operating points in different operating regimes. The results were compared to the results of a test of the model. Analysis was performed using ANSYS CFX-12.1 computer code. A k-ω SST turbulent model was used. Free surface flow was modelled by two-phase homogeneous model. At first, a steady state analysis of flow in the distributor with two injectors was performed for several needle strokes. This provided us with data on flow energy losses in the distributor and the shape and velocity of jets. The second step was an unsteady analysis of the runner with jets. Torque on the shaft was then calculated from pressure distribution data. Averaged torque values are smaller than measured ones. Consequently, calculated turbine efficiency is also smaller than the measured values, the difference is about 4 %. The shape of the efficiency diagram conforms well to the measurements.
Numerical prediction of Pelton turbine efficiency
International Nuclear Information System (INIS)
Jott, D; Mez'nar, P; Lipej, A
2010-01-01
This paper presents a numerical analysis of flow in a 2 jet Pelton turbine with horizontal axis. The analysis was done for the model at several operating points in different operating regimes. The results were compared to the results of a test of the model. Analysis was performed using ANSYS CFX-12.1 computer code. A k-ω SST turbulent model was used. Free surface flow was modelled by two-phase homogeneous model. At first, a steady state analysis of flow in the distributor with two injectors was performed for several needle strokes. This provided us with data on flow energy losses in the distributor and the shape and velocity of jets. The second step was an unsteady analysis of the runner with jets. Torque on the shaft was then calculated from pressure distribution data. Averaged torque values are smaller than measured ones. Consequently, calculated turbine efficiency is also smaller than the measured values, the difference is about 4 %. The shape of the efficiency diagram conforms well to the measurements.
Energy Technology Data Exchange (ETDEWEB)
Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan 70101, Taiwan (China)
2010-11-15
This study is aimed at development of a numerical model for a beta-type Stirling engine with rhombic-drive mechanism. By taking into account the non-isothermal effects, the effectiveness of the regenerative channel, and the thermal resistance of the heating head, the energy equations for the control volumes in the expansion chamber, the compression chamber, and the regenerative channel can be derived and solved. Meanwhile, a fully developed flow velocity profile in the regenerative channel, in terms of the reciprocating velocity of the displacer and the instantaneous pressure difference between the expansion and the compression chambers, is derived for calculation of the mass flow rate through the regenerative channel. In this manner, the internal irreversibility caused by pressure difference in the two chambers and the viscous shear effects due to the motion of the reciprocating displacer on the fluid flow in the regenerative channel gap are included. Periodic variation of pressures, volumes, temperatures, masses, and heat transfers in the expansion and the compression chambers are predicted. A parametric study of the dependence of the power output and thermal efficiency on the geometrical and physical parameters, involving regenerative gap, distance between two gears, offset distance from the crank to the center of gear, and the heat source temperature, has been performed. (author)
Czech Academy of Sciences Publication Activity Database
Zhou, Y.; Wu, X.; Weiming, J.; Chen, J.; Wang, S.; Wang, H.; Wenping, Y.; Black, T. A.; Jassal, R.; Ibrom, A.; Han, S.; Yan, J.; Margolis, H.; Roupsard, O.; Li, Y.; Zhao, F.; Kiely, G.; Starr, G.; Pavelka, Marian; Montagnani, L.; Wohlfahrt, G.; D'Odorico, P.; Cook, D.; Altaf Arain, M.; Bonal, D.; Beringer, J.; Blanken, P. D.; Loubet, B.; Leclerc, M. Y.; Matteucci, G.; Nagy, Z.; Olejnik, Janusz; U., K. T. P.; Varlagin, A.
2016-01-01
Roč. 36, č. 7 (2016), s. 2743-2760 ISSN 2169-8953 Institutional support: RVO:67179843 Keywords : global parametrization * predicting model * FlUXNET Subject RIV: EH - Ecology, Behaviour Impact factor: 3.395, year: 2016
Cultural Resource Predictive Modeling
2017-10-01
CR cultural resource CRM cultural resource management CRPM Cultural Resource Predictive Modeling DoD Department of Defense ESTCP Environmental...resource management ( CRM ) legal obligations under NEPA and the NHPA, military installations need to demonstrate that CRM decisions are based on objective...maxim “one size does not fit all,” and demonstrate that DoD installations have many different CRM needs that can and should be met through a variety
DEFF Research Database (Denmark)
Zhou, Yanlian; Wu, Xiaocui; Ju, Weimin
2015-01-01
Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed...... to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using...... data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (epsilon(msh)) was 2.63 to 4.59 times that of sunlit leaves...
Candidate Prediction Models and Methods
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik
2005-01-01
This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yanlian [Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing China; Joint Center for Global Change Studies, Beijing China; Wu, Xiaocui [International Institute for Earth System Sciences, Nanjing University, Nanjing China; Joint Center for Global Change Studies, Beijing China; Ju, Weimin [International Institute for Earth System Sciences, Nanjing University, Nanjing China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing China; Chen, Jing M. [International Institute for Earth System Sciences, Nanjing University, Nanjing China; Joint Center for Global Change Studies, Beijing China; Wang, Shaoqiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing China; Wang, Huimin [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing China; Yuan, Wenping [State Key Laboratory of Earth Surface Processes and Resource Ecology, Future Earth Research Institute, Beijing Normal University, Beijing China; Andrew Black, T. [Faculty of Land and Food Systems, University of British Columbia, Vancouver British Columbia Canada; Jassal, Rachhpal [Faculty of Land and Food Systems, University of British Columbia, Vancouver British Columbia Canada; Ibrom, Andreas [Department of Environmental Engineering, Technical University of Denmark (DTU), Kgs. Lyngby Denmark; Han, Shijie [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang China; Yan, Junhua [South China Botanical Garden, Chinese Academy of Sciences, Guangzhou China; Margolis, Hank [Centre for Forest Studies, Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City Quebec Canada; Roupsard, Olivier [CIRAD-Persyst, UMR Ecologie Fonctionnelle and Biogéochimie des Sols et Agroécosystèmes, SupAgro-CIRAD-INRA-IRD, Montpellier France; CATIE (Tropical Agricultural Centre for Research and Higher Education), Turrialba Costa Rica; Li, Yingnian [Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining China; Zhao, Fenghua [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing China; Kiely, Gerard [Environmental Research Institute, Civil and Environmental Engineering Department, University College Cork, Cork Ireland; Starr, Gregory [Department of Biological Sciences, University of Alabama, Tuscaloosa Alabama USA; Pavelka, Marian [Laboratory of Plants Ecological Physiology, Institute of Systems Biology and Ecology AS CR, Prague Czech Republic; Montagnani, Leonardo [Forest Services, Autonomous Province of Bolzano, Bolzano Italy; Faculty of Sciences and Technology, Free University of Bolzano, Bolzano Italy; Wohlfahrt, Georg [Institute for Ecology, University of Innsbruck, Innsbruck Austria; European Academy of Bolzano, Bolzano Italy; D' Odorico, Petra [Grassland Sciences Group, Institute of Agricultural Sciences, ETH Zurich Switzerland; Cook, David [Atmospheric and Climate Research Program, Environmental Science Division, Argonne National Laboratory, Argonne Illinois USA; Arain, M. Altaf [McMaster Centre for Climate Change and School of Geography and Earth Sciences, McMaster University, Hamilton Ontario Canada; Bonal, Damien [INRA Nancy, UMR EEF, Champenoux France; Beringer, Jason [School of Earth and Environment, The University of Western Australia, Crawley Australia; Blanken, Peter D. [Department of Geography, University of Colorado Boulder, Boulder Colorado USA; Loubet, Benjamin [UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon France; Leclerc, Monique Y. [Department of Crop and Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Athens Georgia USA; Matteucci, Giorgio [Viea San Camillo Ed LellisViterbo, University of Tuscia, Viterbo Italy; Nagy, Zoltan [MTA-SZIE Plant Ecology Research Group, Szent Istvan University, Godollo Hungary; Olejnik, Janusz [Meteorology Department, Poznan University of Life Sciences, Poznan Poland; Department of Matter and Energy Fluxes, Global Change Research Center, Brno Czech Republic; Paw U, Kyaw Tha [Department of Land, Air and Water Resources, University of California, Davis California USA; Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge USA; Varlagin, Andrej [A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow Russia
2016-04-06
Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at 6 FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8-day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems and it is more robust with regard to usual biases in input data than existing approaches which neglect the bi-modal within-canopy distribution of PAR.
Relationship between efficiency and predictability in stock price change
Eom, Cheoljun; Oh, Gabjin; Jung, Woo-Sung
2008-09-01
In this study, we evaluate the relationship between efficiency and predictability in the stock market. The efficiency, which is the issue addressed by the weak-form efficient market hypothesis, is calculated using the Hurst exponent and the approximate entropy (ApEn). The predictability corresponds to the hit-rate; this is the rate of consistency between the direction of the actual price change and that of the predicted price change, as calculated via the nearest neighbor prediction method. We determine that the Hurst exponent and the ApEn value are negatively correlated. However, predictability is positively correlated with the Hurst exponent.
Directory of Open Access Journals (Sweden)
Jae Woong Kim
2013-09-01
Full Text Available The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power CO2 laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.
Patil, Mahesh D; Patel, Gopal; Surywanshi, Balaji; Shaikh, Naeem; Garg, Prabha; Chisti, Yusuf; Banerjee, Uttam Chand
2016-12-01
Disruption of Pseudomonas putida KT2440 by high-pressure homogenization in a French press is discussed for the release of arginine deiminase (ADI). The enzyme release response of the disruption process was modelled for the experimental factors of biomass concentration in the broth being disrupted, the homogenization pressure and the number of passes of the cell slurry through the homogenizer. For the same data, the response surface method (RSM), the artificial neural network (ANN) and the support vector machine (SVM) models were compared for their ability to predict the performance parameters of the cell disruption. The ANN model proved to be best for predicting the ADI release. The fractional disruption of the cells was best modelled by the RSM. The fraction of the cells disrupted depended mainly on the operating pressure of the homogenizer. The concentration of the biomass in the slurry was the most influential factor in determining the total protein release. Nearly 27 U/mL of ADI was released within a single pass from slurry with a biomass concentration of 260 g/L at an operating pressure of 510 bar. Using a biomass concentration of 100 g/L, the ADI release by French press was 2.7-fold greater than in a conventional high-speed bead mill. In the French press, the total protein release was 5.8-fold more than in the bead mill. The statistical analysis of the completely unseen data exhibited ANN and SVM modelling as proficient alternatives to RSM for the prediction and generalization of the cell disruption process in French press.
Towards Predicting Efficient and Anonymous Tor Circuits
Barton, Armon; Imani, Mohsen; Ming, Jiang; Wright, Matthew
2018-01-01
The Tor anonymity system provides online privacy for millions of users, but it is slower than typical web browsing. To improve Tor performance, we propose PredicTor, a path selection technique that uses a Random Forest classifier trained on recent measurements of Tor to predict the performance of a proposed path. If the path is predicted to be fast, then the client builds a circuit using those relays. We implemented PredicTor in the Tor source code and show through live Tor experiments and Sh...
Efficiency of economic development models
Directory of Open Access Journals (Sweden)
Oana Camelia Iacob
2013-03-01
Full Text Available The world economy is becoming increasingly integrated. Integrating emerging economies of Asia, such as China and India increase competition on the world stage, putting pressure on the "actors" already existing. These developments have raised questions about the effectiveness of European development model, which focuses on a high level of equity, insurance and social protection. According to analysts, the world today faces three models of economic development with significant weight in the world: the European, American and Asian. This study will focus on analyzing European development model, and a brief comparison with the United States. In addition, this study aims to highlight the relationship between efficiency and social equity that occurs in each submodel in part of the European model, given that social and economic performance in the EU are not homogeneous. To achieve this, it is necessary to analyze different indicators related to social equity and efficiency respectively, to observe the performance of each submodel individually. The article analyzes data to determine submodel performance according to social equity and economic efficiency.
Confidence scores for prediction models
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; van de Wiel, MA
2011-01-01
In medical statistics, many alternative strategies are available for building a prediction model based on training data. Prediction models are routinely compared by means of their prediction performance in independent validation data. If only one data set is available for training and validation,...
Computationally Efficient Prediction of Ionic Liquid Properties
DEFF Research Database (Denmark)
Chaban, V. V.; Prezhdo, O. V.
2014-01-01
Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit...... to ambient temperatures. We numerically prove the validity of the proposed concept for density and ionic diffusion of four different RTILs. This simple method enhances the computational efficiency of the existing simulation approaches as applied to RTILs by more than an order of magnitude....
PREDICTED PERCENTAGE DISSATISFIED (PPD) MODEL ...
African Journals Online (AJOL)
HOD
their low power requirements, are relatively cheap and are environment friendly. ... PREDICTED PERCENTAGE DISSATISFIED MODEL EVALUATION OF EVAPORATIVE COOLING ... The performance of direct evaporative coolers is a.
ANNIT - An Efficient Inversion Algorithm based on Prediction Principles
Růžek, B.; Kolář, P.
2009-04-01
Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good
Bootstrap prediction and Bayesian prediction under misspecified models
Fushiki, Tadayoshi
2005-01-01
We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...
Models for efficient integration of solar energy
DEFF Research Database (Denmark)
Bacher, Peder
the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast......Efficient operation of energy systems with substantial amount of renewable energy production is becoming increasingly important. Renewables are dependent on the weather conditions and are therefore by nature volatile and uncontrollable, opposed to traditional energy production based on combustion....... The "smart grid" is a broad term for the technology for addressing the challenge of operating the grid with a large share of renewables. The "smart" part is formed by technologies, which models the properties of the systems and efficiently adapt the load to the volatile energy production, by using...
MODEL PREDICTIVE CONTROL FUNDAMENTALS
African Journals Online (AJOL)
2012-07-02
Jul 2, 2012 ... signal based on a process model, coping with constraints on inputs and ... paper, we will present an introduction to the theory and application of MPC with Matlab codes ... section 5 presents the simulation results and section 6.
Novel Intermode Prediction Algorithm for High Efficiency Video Coding Encoder
Directory of Open Access Journals (Sweden)
Chan-seob Park
2014-01-01
Full Text Available The joint collaborative team on video coding (JCT-VC is developing the next-generation video coding standard which is called high efficiency video coding (HEVC. In the HEVC, there are three units in block structure: coding unit (CU, prediction unit (PU, and transform unit (TU. The CU is the basic unit of region splitting like macroblock (MB. Each CU performs recursive splitting into four blocks with equal size, starting from the tree block. In this paper, we propose a fast CU depth decision algorithm for HEVC technology to reduce its computational complexity. In 2N×2N PU, the proposed method compares the rate-distortion (RD cost and determines the depth using the compared information. Moreover, in order to speed up the encoding time, the efficient merge SKIP detection method is developed additionally based on the contextual mode information of neighboring CUs. Experimental result shows that the proposed algorithm achieves the average time-saving factor of 44.84% in the random access (RA at Main profile configuration with the HEVC test model (HM 10.0 reference software. Compared to HM 10.0 encoder, a small BD-bitrate loss of 0.17% is also observed without significant loss of image quality.
Melanoma Risk Prediction Models
Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Modelling bankruptcy prediction models in Slovak companies
Directory of Open Access Journals (Sweden)
Kovacova Maria
2017-01-01
Full Text Available An intensive research from academics and practitioners has been provided regarding models for bankruptcy prediction and credit risk management. In spite of numerous researches focusing on forecasting bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression and early artificial intelligence models (e.g. artificial neural networks, there is a trend for transition to machine learning models (support vector machines, bagging, boosting, and random forest to predict bankruptcy one year prior to the event. Comparing the performance of this with unconventional approach with results obtained by discriminant analysis, logistic regression, and neural networks application, it has been found that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. On the other side the prediction accuracy of old and well known bankruptcy prediction models is quiet high. Therefore, we aim to analyse these in some way old models on the dataset of Slovak companies to validate their prediction ability in specific conditions. Furthermore, these models will be modelled according to new trends by calculating the influence of elimination of selected variables on the overall prediction ability of these models.
Predictive models of moth development
Degree-day models link ambient temperature to insect life-stages, making such models valuable tools in integrated pest management. These models increase management efficacy by predicting pest phenology. In Wisconsin, the top insect pest of cranberry production is the cranberry fruitworm, Acrobasis v...
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Modelling water uptake efficiency of root systems
Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea
2016-04-01
Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow
Predictive Modeling in Race Walking
Directory of Open Access Journals (Sweden)
Krzysztof Wiktorowicz
2015-01-01
Full Text Available This paper presents the use of linear and nonlinear multivariable models as tools to support training process of race walkers. These models are calculated using data collected from race walkers’ training events and they are used to predict the result over a 3 km race based on training loads. The material consists of 122 training plans for 21 athletes. In order to choose the best model leave-one-out cross-validation method is used. The main contribution of the paper is to propose the nonlinear modifications for linear models in order to achieve smaller prediction error. It is shown that the best model is a modified LASSO regression with quadratic terms in the nonlinear part. This model has the smallest prediction error and simplified structure by eliminating some of the predictors.
DASPfind: new efficient method to predict drug–target interactions
Ba Alawi, Wail
2016-03-16
Background Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions. Results Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually. Conclusions DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind
Urban eco-efficiency and system dynamics modelling
Energy Technology Data Exchange (ETDEWEB)
Hradil, P., Email: petr.hradil@vtt.fi
2012-06-15
Assessment of urban development is generally based on static models of economic, social or environmental impacts. More advanced dynamic models have been used mostly for prediction of population and employment changes as well as for other macro-economic issues. This feasibility study was arranged to test the potential of system dynamic modelling in assessing eco-efficiency changes during urban development. (orig.)
International Nuclear Information System (INIS)
Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.
2011-01-01
This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.
Directory of Open Access Journals (Sweden)
Dongmyung Kim
2018-05-01
Full Text Available Wind turbine generators are eco-friendly generators that produce electric energy using wind energy. In this study, wind turbine generator efficiency is examined using a powertrain combination and annual power generation prediction, by employing an analysis model. Performance testing was conducted in order to analyze the efficiency of a hydraulic pump and a motor, which are key components, and so as to verify the analysis model. The annual wind speed occurrence frequency for the expected installation areas was used to predict the annual power generation of the wind turbine generators. It was found that the parallel combination of the induction motors exhibited a higher efficiency when the wind speed was low and the serial combination showed higher efficiency when wind speed was high. The results of predicting the annual power generation considering the regional characteristics showed that the power generation was the highest when the hydraulic motors were designed in parallel and the induction motors were designed in series.
Specialization does not predict individual efficiency in an ant.
Directory of Open Access Journals (Sweden)
Anna Dornhaus
2008-11-01
Full Text Available The ecological success of social insects is often attributed to an increase in efficiency achieved through division of labor between workers in a colony. Much research has therefore focused on the mechanism by which a division of labor is implemented, i.e., on how tasks are allocated to workers. However, the important assumption that specialists are indeed more efficient at their work than generalist individuals--the "Jack-of-all-trades is master of none" hypothesis--has rarely been tested. Here, I quantify worker efficiency, measured as work completed per time, in four different tasks in the ant Temnothorax albipennis: honey and protein foraging, collection of nest-building material, and brood transports in a colony emigration. I show that individual efficiency is not predicted by how specialized workers were on the respective task. Worker efficiency is also not consistently predicted by that worker's overall activity or delay to begin the task. Even when only the worker's rank relative to nestmates in the same colony was used, specialization did not predict efficiency in three out of the four tasks, and more specialized workers actually performed worse than others in the fourth task (collection of sand grains. I also show that the above relationships, as well as median individual efficiency, do not change with colony size. My results demonstrate that in an ant species without morphologically differentiated worker castes, workers may nevertheless differ in their ability to perform different tasks. Surprisingly, this variation is not utilized by the colony--worker allocation to tasks is unrelated to their ability to perform them. What, then, are the adaptive benefits of behavioral specialization, and why do workers choose tasks without regard for whether they can perform them well? We are still far from an understanding of the adaptive benefits of division of labor in social insects.
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
Prediction Models for Dynamic Demand Response
Energy Technology Data Exchange (ETDEWEB)
Aman, Saima; Frincu, Marc; Chelmis, Charalampos; Noor, Muhammad; Simmhan, Yogesh; Prasanna, Viktor K.
2015-11-02
As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D^{2}R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D^{2}R, which we address in this paper. Our first contribution is the formal definition of D^{2}R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D^{2}R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D^{2}R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D^{2}R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D^{2}R. Also, prediction models require just few days’ worth of data indicating that small amounts of
DASPfind: new efficient method to predict drug–target interactions
Ba Alawi, Wail; Soufan, Othman; Essack, Magbubah; Kalnis, Panos; Bajic, Vladimir B.
2016-01-01
DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind can be accessed online at: http://www.cbrc.kaust.edu.sa/daspfind.
An Intelligent Model for Stock Market Prediction
Directory of Open Access Journals (Sweden)
IbrahimM. Hamed
2012-08-01
Full Text Available This paper presents an intelligent model for stock market signal prediction using Multi-Layer Perceptron (MLP Artificial Neural Networks (ANN. Blind source separation technique, from signal processing, is integrated with the learning phase of the constructed baseline MLP ANN to overcome the problems of prediction accuracy and lack of generalization. Kullback Leibler Divergence (KLD is used, as a learning algorithm, because it converges fast and provides generalization in the learning mechanism. Both accuracy and efficiency of the proposed model were confirmed through the Microsoft stock, from wall-street market, and various data sets, from different sectors of the Egyptian stock market. In addition, sensitivity analysis was conducted on the various parameters of the model to ensure the coverage of the generalization issue. Finally, statistical significance was examined using ANOVA test.
Taheri, Mahboobeh; Mohebbi, Ali
2008-08-30
In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.
Sparse RNA folding revisited: space-efficient minimum free energy structure prediction.
Will, Sebastian; Jabbari, Hosna
2016-01-01
RNA secondary structure prediction by energy minimization is the central computational tool for the analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many such folding problems, space efficiency is of even greater concern, particularly for long RNA sequences. So far, space-efficient sparsified RNA folding with fold reconstruction was solved only for simple base-pair-based pseudo-energy models. Here, we revisit the problem of space-efficient free energy minimization. Whereas the space-efficient minimization of the free energy has been sketched before, the reconstruction of the optimum structure has not even been discussed. We show that this reconstruction is not possible in trivial extension of the method for simple energy models. Then, we present the time- and space-efficient sparsified free energy minimization algorithm SparseMFEFold that guarantees MFE structure prediction. In particular, this novel algorithm provides efficient fold reconstruction based on dynamically garbage-collected trace arrows. The complexity of our algorithm depends on two parameters, the number of candidates Z and the number of trace arrows T; both are bounded by [Formula: see text], but are typically much smaller. The time complexity of RNA folding is reduced from [Formula: see text] to [Formula: see text]; the space complexity, from [Formula: see text] to [Formula: see text]. Our empirical results show more than 80 % space savings over RNAfold [Vienna RNA package] on the long RNAs from the RNA STRAND database (≥2500 bases). The presented technique is intentionally generalizable to complex prediction algorithms; due to their high space demands, algorithms like pseudoknot prediction and RNA-RNA-interaction prediction are expected to profit even stronger than "standard" MFE folding. SparseMFEFold is free
Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches
Directory of Open Access Journals (Sweden)
Reza Rawassizadeh
2015-09-01
Full Text Available As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras.
Energy-Efficient Integration of Continuous Context Sensing and Prediction into Smartwatches.
Rawassizadeh, Reza; Tomitsch, Martin; Nourizadeh, Manouchehr; Momeni, Elaheh; Peery, Aaron; Ulanova, Liudmila; Pazzani, Michael
2015-09-08
As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras.
Electrostatic ion thrusters - towards predictive modeling
Energy Technology Data Exchange (ETDEWEB)
Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)
2014-02-15
The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Multidimensional Balanced Efficiency Decision Model
Directory of Open Access Journals (Sweden)
Antonella Petrillo
2015-10-01
Full Text Available In this paper a multicriteria methodological approach, based on Balanced Scorecard (BSC and Analytic Network Process (ANP, is proposed to evaluate competitiveness performance in luxury sector. A set of specific key performance indicators (KPIs have been proposed. The contribution of our paper is to present the integration of two methodologies, BSC – a multiple perspective framework for performance assessment – and ANP – a decision-making tool to prioritize multiple performance perspectives and indicators and to generate a unified metric that incorporates diversified issues for conducting supply chain improvements. The BSC/ANP model is used to prioritize all performances within a luxury industry. A real case study is presented.
BOREAS TE-17 Production Efficiency Model Images
National Aeronautics and Space Administration — A BOREAS version of the Global Production Efficiency Model(www.inform.umd.edu/glopem) was developed by TE-17 to generate maps of gross and net primary production,...
An efficient link prediction index for complex military organization
Fan, Changjun; Liu, Zhong; Lu, Xin; Xiu, Baoxin; Chen, Qing
2017-03-01
Quality of information is crucial for decision-makers to judge the battlefield situations and design the best operation plans, however, real intelligence data are often incomplete and noisy, where missing links prediction methods and spurious links identification algorithms can be applied, if modeling the complex military organization as the complex network where nodes represent functional units and edges denote communication links. Traditional link prediction methods usually work well on homogeneous networks, but few for the heterogeneous ones. And the military network is a typical heterogeneous network, where there are different types of nodes and edges. In this paper, we proposed a combined link prediction index considering both the nodes' types effects and nodes' structural similarities, and demonstrated that it is remarkably superior to all the 25 existing similarity-based methods both in predicting missing links and identifying spurious links in a real military network data; we also investigated the algorithms' robustness under noisy environment, and found the mistaken information is more misleading than incomplete information in military areas, which is different from that in recommendation systems, and our method maintained the best performance under the condition of small noise. Since the real military network intelligence must be carefully checked at first due to its significance, and link prediction methods are just adopted to purify the network with the left latent noise, the method proposed here is applicable in real situations. In the end, as the FINC-E model, here used to describe the complex military organizations, is also suitable to many other social organizations, such as criminal networks, business organizations, etc., thus our method has its prospects in these areas for many tasks, like detecting the underground relationships between terrorists, predicting the potential business markets for decision-makers, and so on.
Modelling household responses to energy efficiency interventions ...
African Journals Online (AJOL)
2010-11-01
Nov 1, 2010 ... to interventions aimed at reducing energy consumption (specifically the use of .... 4 A system dynamics model of electricity consumption ...... to base comparisons on overly detailed quantitative predictions of behaviour.
Model predictive control using fuzzy decision functions
Kaymak, U.; Costa Sousa, da J.M.
2001-01-01
Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the
A Traffic Prediction Algorithm for Street Lighting Control Efficiency
Directory of Open Access Journals (Sweden)
POPA Valentin
2013-01-01
Full Text Available This paper presents the development of a traffic prediction algorithm that can be integrated in a street lighting monitoring and control system. The prediction algorithm must enable the reduction of energy costs and improve energy efficiency by decreasing the light intensity depending on the traffic level. The algorithm analyses and processes the information received at the command center based on the traffic level at different moments. The data is collected by means of the Doppler vehicle detection sensors integrated within the system. Thus, two methods are used for the implementation of the algorithm: a neural network and a k-NN (k-Nearest Neighbor prediction algorithm. For 500 training cycles, the mean square error of the neural network is 9.766 and for 500.000 training cycles the error amounts to 0.877. In case of the k-NN algorithm the error increases from 8.24 for k=5 to 12.27 for a number of 50 neighbors. In terms of a root means square error parameter, the use of a neural network ensures the highest performance level and can be integrated in a street lighting control system.
Prediction of Protein Thermostability by an Efficient Neural Network Approach
Directory of Open Access Journals (Sweden)
Jalal Rezaeenour
2016-10-01
significantly improves the accuracy of ELM in prediction of thermostable enzymes. ELM tends to require more neurons in the hidden-layer than conventional tuning-based learning algorithms. To overcome these, the proposed approach uses a GA which optimizes the structure and the parameters of the ELM. In summary, optimization of ELM with GA results in an efficient prediction method; numerical experiments proved that our approach yields excellent results.
An efficient descriptor model for designing materials for solar cells
Alharbi, Fahhad H.; Rashkeev, Sergey N.; El-Mellouhi, Fedwa; Lüthi, Hans P.; Tabet, Nouar; Kais, Sabre
2015-11-01
An efficient descriptor model for fast screening of potential materials for solar cell applications is presented. It works for both excitonic and non-excitonic solar cells materials, and in addition to the energy gap it includes the absorption spectrum (α(E)) of the material. The charge transport properties of the explored materials are modelled using the characteristic diffusion length (Ld) determined for the respective family of compounds. The presented model surpasses the widely used Scharber model developed for bulk heterojunction solar cells. Using published experimental data, we show that the presented model is more accurate in predicting the achievable efficiencies. To model both excitonic and non-excitonic systems, two different sets of parameters are used to account for the different modes of operation. The analysis of the presented descriptor model clearly shows the benefit of including α(E) and Ld in view of improved screening results.
Statistical modelling for ship propulsion efficiency
DEFF Research Database (Denmark)
Petersen, Jóan Petur; Jacobsen, Daniel J.; Winther, Ole
2012-01-01
This paper presents a state-of-the-art systems approach to statistical modelling of fuel efficiency in ship propulsion, and also a novel and publicly available data set of high quality sensory data. Two statistical model approaches are investigated and compared: artificial neural networks...
Efficient Modelling and Generation of Markov Automata
Koutny, M.; Timmer, Mark; Ulidowski, I.; Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette
This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the
Geometrical efficiency in computerized tomography: generalized model
International Nuclear Information System (INIS)
Costa, P.R.; Robilotta, C.C.
1992-01-01
A simplified model for producing sensitivity and exposure profiles in computerized tomographic system was recently developed allowing the forecast of profiles behaviour in the rotation center of the system. The generalization of this model for some point of the image plane was described, and the geometrical efficiency could be evaluated. (C.G.C.)
Flight Test Maneuvers for Efficient Aerodynamic Modeling
Morelli, Eugene A.
2011-01-01
Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.
Efficient modeling of vector hysteresis using fuzzy inference systems
International Nuclear Information System (INIS)
Adly, A.A.; Abd-El-Hafiz, S.K.
2008-01-01
Vector hysteresis models have always been regarded as important tools to determine which multi-dimensional magnetic field-media interactions may be predicted. In the past, considerable efforts have been focused on mathematical modeling methodologies of vector hysteresis. This paper presents an efficient approach based upon fuzzy inference systems for modeling vector hysteresis. Computational efficiency of the proposed approach stems from the fact that the basic non-local memory Preisach-type hysteresis model is approximated by a local memory model. The proposed computational low-cost methodology can be easily integrated in field calculation packages involving massive multi-dimensional discretizations. Details of the modeling methodology and its experimental testing are presented
Efficiently adapting graphical models for selectivity estimation
DEFF Research Database (Denmark)
Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.
2013-01-01
cardinality estimation without making the independence assumption. By carefully using concepts from the field of graphical models, we are able to factor the joint probability distribution over all the attributes in the database into small, usually two-dimensional distributions, without a significant loss...... in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate...
Predicting Efficient Antenna Ligands for Tb(III) Emission
Energy Technology Data Exchange (ETDEWEB)
Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth
2008-10-06
A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.
Modeling the Efficiency of a Germanium Detector
Hayton, Keith; Prewitt, Michelle; Quarles, C. A.
2006-10-01
We are using the Monte Carlo Program PENELOPE and the cylindrical geometry program PENCYL to develop a model of the detector efficiency of a planar Ge detector. The detector is used for x-ray measurements in an ongoing experiment to measure electron bremsstrahlung. While we are mainly interested in the efficiency up to 60 keV, the model ranges from 10.1 keV (below the Ge absorption edge at 11.1 keV) to 800 keV. Measurements of the detector efficiency have been made in a well-defined geometry with calibrated radioactive sources: Co-57, Se-75, Ba-133, Am-241 and Bi-207. The model is compared with the experimental measurements and is expected to provide a better interpolation formula for the detector efficiency than simply using x-ray absorption coefficients for the major constituents of the detector. Using PENELOPE, we will discuss several factors, such as Ge dead layer, surface ice layer and angular divergence of the source, that influence the efficiency of the detector.
Modeling international trends in energy efficiency
International Nuclear Information System (INIS)
Stern, David I.
2012-01-01
I use a stochastic production frontier to model energy efficiency trends in 85 countries over a 37-year period. Differences in energy efficiency across countries are modeled as a stochastic function of explanatory variables and I estimate the model using the cross-section of time-averaged data, so that no structure is imposed on technological change over time. Energy efficiency is measured using a new energy distance function approach. The country using the least energy per unit output, given its mix of outputs and inputs, defines the global production frontier. A country's relative energy efficiency is given by its distance from the frontier—the ratio of its actual energy use to the minimum required energy use, ceteris paribus. Energy efficiency is higher in countries with, inter alia, higher total factor productivity, undervalued currencies, and smaller fossil fuel reserves and it converges over time across countries. Globally, technological change was the most important factor counteracting the energy-use and carbon-emissions increasing effects of economic growth.
Model Prediction Control For Water Management Using Adaptive Prediction Accuracy
Tian, X.; Negenborn, R.R.; Van Overloop, P.J.A.T.M.; Mostert, E.
2014-01-01
In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for
Inferential ecosystem models, from network data to prediction
James S. Clark; Pankaj Agarwal; David M. Bell; Paul G. Flikkema; Alan Gelfand; Xuanlong Nguyen; Eric Ward; Jun Yang
2011-01-01
Recent developments suggest that predictive modeling could begin to play a larger role not only for data analysis, but also for data collection. We address the example of efficient wireless sensor networks, where inferential ecosystem models can be used to weigh the value of an observation against the cost of data collection. Transmission costs make observations ââ...
Modeling of alpha mass-efficiency curve
International Nuclear Information System (INIS)
Semkow, T.M.; Jeter, H.W.; Parsa, B.; Parekh, P.P.; Haines, D.K.; Bari, A.
2005-01-01
We present a model for efficiency of a detector counting gross α radioactivity from both thin and thick samples, corresponding to low and high sample masses in the counting planchette. The model includes self-absorption of α particles in the sample, energy loss in the absorber, range straggling, as well as detector edge effects. The surface roughness of the sample is treated in terms of fractal geometry. The model reveals a linear dependence of the detector efficiency on the sample mass, for low masses, as well as a power-law dependence for high masses. It is, therefore, named the linear-power-law (LPL) model. In addition, we consider an empirical power-law (EPL) curve, and an exponential (EXP) curve. A comparison is made of the LPL, EPL, and EXP fits to the experimental α mass-efficiency data from gas-proportional detectors for selected radionuclides: 238 U, 230 Th, 239 Pu, 241 Am, and 244 Cm. Based on this comparison, we recommend working equations for fitting mass-efficiency data. Measurement of α radioactivity from a thick sample can determine the fractal dimension of its surface
Iowa calibration of MEPDG performance prediction models.
2013-06-01
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement : performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 : representative p...
Efficient Iris Localization via Optimization Model
Directory of Open Access Journals (Sweden)
Qi Wang
2017-01-01
Full Text Available Iris localization is one of the most important processes in iris recognition. Because of different kinds of noises in iris image, the localization result may be wrong. Besides this, localization process is time-consuming. To solve these problems, this paper develops an efficient iris localization algorithm via optimization model. Firstly, the localization problem is modeled by an optimization model. Then SIFT feature is selected to represent the characteristic information of iris outer boundary and eyelid for localization. And SDM (Supervised Descent Method algorithm is employed to solve the final points of outer boundary and eyelids. Finally, IRLS (Iterative Reweighted Least-Square is used to obtain the parameters of outer boundary and upper and lower eyelids. Experimental result indicates that the proposed algorithm is efficient and effective.
Model complexity control for hydrologic prediction
Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.
2008-01-01
A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore
ACO model should encourage efficient care delivery.
Toussaint, John; Krueger, David; Shortell, Stephen M; Milstein, Arnold; Cutler, David M
2015-09-01
The independent Office of the Actuary for CMS certified that the Pioneer ACO model has met the stringent criteria for expansion to a larger population. Significant savings have accrued and quality targets have been met, so the program as a whole appears to be working. Ironically, 13 of the initial 32 enrollees have left. We attribute this to the design of the ACO models which inadequately support efficient care delivery. Using Bellin-ThedaCare Healthcare Partners as an example, we will focus on correctible flaws in four core elements of the ACO payment model: finance spending and targets, attribution, and quality performance. Copyright © 2015 Elsevier Inc. All rights reserved.
Nonlinear chaotic model for predicting storm surges
Directory of Open Access Journals (Sweden)
M. Siek
2010-09-01
Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.
Predicting the efficiency of deposit removal during filter backwash
African Journals Online (AJOL)
Abstract. The long-term performance of granular media filters used in drinking water treatment is ultimately limited by the efficiency ... efficiency) within each set of experiments appeared to affect the efficiency of backwash in addition to the parameters varied ... anisms involved in filter cleaning (Amirtharajah, 1978; Amirth-.
Staying Power of Churn Prediction Models
Risselada, Hans; Verhoef, Peter C.; Bijmolt, Tammo H. A.
In this paper, we study the staying power of various churn prediction models. Staying power is defined as the predictive performance of a model in a number of periods after the estimation period. We examine two methods, logit models and classification trees, both with and without applying a bagging
Predictive user modeling with actionable attributes
Zliobaite, I.; Pechenizkiy, M.
2013-01-01
Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target
Wang, S.; Huang, G. H.; Baetz, B. W.; Huang, W.
2015-11-01
This paper presents a polynomial chaos ensemble hydrologic prediction system (PCEHPS) for an efficient and robust uncertainty assessment of model parameters and predictions, in which possibilistic reasoning is infused into probabilistic parameter inference with simultaneous consideration of randomness and fuzziness. The PCEHPS is developed through a two-stage factorial polynomial chaos expansion (PCE) framework, which consists of an ensemble of PCEs to approximate the behavior of the hydrologic model, significantly speeding up the exhaustive sampling of the parameter space. Multiple hypothesis testing is then conducted to construct an ensemble of reduced-dimensionality PCEs with only the most influential terms, which is meaningful for achieving uncertainty reduction and further acceleration of parameter inference. The PCEHPS is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability. A detailed comparison between the HYMOD hydrologic model, the ensemble of PCEs, and the ensemble of reduced PCEs is performed in terms of accuracy and efficiency. Results reveal temporal and spatial variations in parameter sensitivities due to the dynamic behavior of hydrologic systems, and the effects (magnitude and direction) of parametric interactions depending on different hydrological metrics. The case study demonstrates that the PCEHPS is capable not only of capturing both expert knowledge and probabilistic information in the calibration process, but also of implementing an acceleration of more than 10 times faster than the hydrologic model without compromising the predictive accuracy.
Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models.
Directory of Open Access Journals (Sweden)
Nikola Simidjievski
Full Text Available Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting, significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient.
Efficient Bayesian network modeling of systems
International Nuclear Information System (INIS)
Bensi, Michelle; Kiureghian, Armen Der; Straub, Daniel
2013-01-01
The Bayesian network (BN) is a convenient tool for probabilistic modeling of system performance, particularly when it is of interest to update the reliability of the system or its components in light of observed information. In this paper, BN structures for modeling the performance of systems that are defined in terms of their minimum link or cut sets are investigated. Standard BN structures that define the system node as a child of its constituent components or its minimum link/cut sets lead to converging structures, which are computationally disadvantageous and could severely hamper application of the BN to real systems. A systematic approach to defining an alternative formulation is developed that creates chain-like BN structures that are orders of magnitude more efficient, particularly in terms of computational memory demand. The formulation uses an integer optimization algorithm to identify the most efficient BN structure. Example applications demonstrate the proposed methodology and quantify the gained computational advantage
Directory of Open Access Journals (Sweden)
Fei WANG
2018-02-01
Full Text Available Based on the acoustic mapping, a prediction model for the ground noise radiated from an in-flight helicopter is established. For the enhancement of calculation efficiency, a high-efficiency second-level acoustic radiation model capable of taking the influence of atmosphere absorption on noise into account is first developed by the combination of the point-source idea and the rotor noise radiation characteristics. The comparison between the present model and the direct computation method of noise is done and the high efficiency of the model is validated. Rotor free-wake analysis method and Ffowcs Williams-Hawkings (FW-H equation are applied to the aerodynamics and noise prediction in the present model. Secondly, a database of noise spheres with the characteristic parameters of advance ratio and tip-path-plane angle is established by the helicopter trim model together with a parametric modeling approach. Furthermore, based on acoustic mapping, a method of rapid simulation for the ground noise radiated from an in-flight helicopter is developed. The noise footprint for AH-1 rotor is then calculated and the influence of some parameters including advance ratio and flight path angle on ground noise is deeply analyzed using the developed model. The results suggest that with the increase of advance ratio and flight path angle, the peak noise levels on the ground first increase and then decrease, in the meantime, the maximum Sound Exposure Level (SEL noise on the ground shifts toward the advancing side of rotor. Besides, through the analysis of the effects of longitudinal forces on miss-distance and rotor Blade-Vortex Interaction (BVI noise in descent flight, some meaningful results for reducing the BVI noise on the ground are obtained. Keywords: Acoustic mapping, Helicopter, Noise footprint, Rotor noise, Second-level acoustic radiation model
Model Predictive Control of a Wave Energy Converter
DEFF Research Database (Denmark)
Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard
2015-01-01
In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...
Robust predictions of the interacting boson model
International Nuclear Information System (INIS)
Casten, R.F.; Koeln Univ.
1994-01-01
While most recognized for its symmetries and algebraic structure, the IBA model has other less-well-known but equally intrinsic properties which give unavoidable, parameter-free predictions. These predictions concern central aspects of low-energy nuclear collective structure. This paper outlines these ''robust'' predictions and compares them with the data
Comparison of Prediction-Error-Modelling Criteria
DEFF Research Database (Denmark)
Jørgensen, John Bagterp; Jørgensen, Sten Bay
2007-01-01
Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which is a r...
Poisson Mixture Regression Models for Heart Disease Prediction
Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611
Efficient buyer groups for prediction-of-use electricity tariffs
Robu, V; Vinyals, M; Rogers, A; Jennings, NR
2014-01-01
Copyright ? 2014, Association for the Advancement of Artificial Intelligence.Current electricity tariffs do not reflect the real cost that customers incur to suppliers, as units are charged at the same rate, regardless of how predictable each customers consumption is. A recent proposal to address this problem are prediction-of-use tariffs. In such tariffs, a customer is asked in advance to predict her future consumption, and is charged based both on her actual consumption and the deviation fr...
Extracting falsifiable predictions from sloppy models.
Gutenkunst, Ryan N; Casey, Fergal P; Waterfall, Joshua J; Myers, Christopher R; Sethna, James P
2007-12-01
Successful predictions are among the most compelling validations of any model. Extracting falsifiable predictions from nonlinear multiparameter models is complicated by the fact that such models are commonly sloppy, possessing sensitivities to different parameter combinations that range over many decades. Here we discuss how sloppiness affects the sorts of data that best constrain model predictions, makes linear uncertainty approximations dangerous, and introduces computational difficulties in Monte-Carlo uncertainty analysis. We also present a useful test problem and suggest refinements to the standards by which models are communicated.
The prediction of epidemics through mathematical modeling.
Schaus, Catherine
2014-01-01
Mathematical models may be resorted to in an endeavor to predict the development of epidemics. The SIR model is one of the applications. Still too approximate, the use of statistics awaits more data in order to come closer to reality.
Calibration of PMIS pavement performance prediction models.
2012-02-01
Improve the accuracy of TxDOTs existing pavement performance prediction models through calibrating these models using actual field data obtained from the Pavement Management Information System (PMIS). : Ensure logical performance superiority patte...
A burnout prediction model based around char morphology
Energy Technology Data Exchange (ETDEWEB)
T. Wu; E. Lester; M. Cloke [University of Nottingham, Nottingham (United Kingdom). Nottingham Energy and Fuel Centre
2005-07-01
Poor burnout in a coal-fired power plant has marked penalties in the form of reduced energy efficiency and elevated waste material that can not be utilized. The prediction of coal combustion behaviour in a furnace is of great significance in providing valuable information not only for process optimization but also for coal buyers in the international market. Coal combustion models have been developed that can make predictions about burnout behaviour and burnout potential. Most of these kinetic models require standard parameters such as volatile content, particle size and assumed char porosity in order to make a burnout prediction. This paper presents a new model called the Char Burnout Model (ChB) that also uses detailed information about char morphology in its prediction. The model can use data input from one of two sources. Both sources are derived from image analysis techniques. The first from individual analysis and characterization of real char types using an automated program. The second from predicted char types based on data collected during the automated image analysis of coal particles. Modelling results were compared with a different carbon burnout kinetic model and burnout data from re-firing the chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen across several residence times. An improved agreement between ChB model and DTF experimental data proved that the inclusion of char morphology in combustion models can improve model predictions. 27 refs., 4 figs., 4 tabs.
Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling
Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.
2017-12-01
Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model
Case studies in archaeological predictive modelling
Verhagen, Jacobus Wilhelmus Hermanus Philippus
2007-01-01
In this thesis, a collection of papers is put together dealing with various quantitative aspects of predictive modelling and archaeological prospection. Among the issues covered are the effects of survey bias on the archaeological data used for predictive modelling, and the complexities of testing
Real-Time Optimization for Economic Model Predictive Control
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Edlund, Kristian; Frison, Gianluca
2012-01-01
In this paper, we develop an efficient homogeneous and self-dual interior-point method for the linear programs arising in economic model predictive control. To exploit structure in the optimization problems, the algorithm employs a highly specialized Riccati iteration procedure. Simulations show...
Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M
2015-07-01
Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.
Impact of modellers' decisions on hydrological a priori predictions
Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.
2014-06-01
added information. In this qualitative analysis of a statistically small number of predictions we learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing), and (iii) that added process understanding can be as efficient as adding data for improving parameters needed to satisfy model requirements.
Incorporating uncertainty in predictive species distribution modelling.
Beale, Colin M; Lennon, Jack J
2012-01-19
Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.
Model Predictive Control for Smart Energy Systems
DEFF Research Database (Denmark)
Halvgaard, Rasmus
pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants). 2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system. 3.Develop optimization algorithms....... Chapter 3 introduces Model Predictive Control (MPC) including state estimation, filtering and prediction for linear models. Chapter 4 simulates the models from Chapter 2 with the certainty equivalent MPC from Chapter 3. An economic MPC minimizes the costs of consumption based on real electricity prices...... that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected...
An efficient attack identification and risk prediction algorithm for ...
African Journals Online (AJOL)
The social media is highly utilized cloud for storing huge amount of data. ... However, the adversarial scenario did not design properly to maintain the privacy of the ... Information Retrieval, Security Evaluation, Efficient Attack Identification and ...
Evaluating the Predictive Value of Growth Prediction Models
Murphy, Daniel L.; Gaertner, Matthew N.
2014-01-01
This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…
Model predictive control classical, robust and stochastic
Kouvaritakis, Basil
2016-01-01
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...
Modeling, robust and distributed model predictive control for freeway networks
Liu, S.
2016-01-01
In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of
Deep Predictive Models in Interactive Music
Martin, Charles P.; Ellefsen, Kai Olav; Torresen, Jim
2018-01-01
Automatic music generation is a compelling task where much recent progress has been made with deep learning models. In this paper, we ask how these models can be integrated into interactive music systems; how can they encourage or enhance the music making of human users? Musical performance requires prediction to operate instruments, and perform in groups. We argue that predictive models could help interactive systems to understand their temporal context, and ensemble behaviour. Deep learning...
Two-phased DEA-MLA approach for predicting efficiency of NBA players
Directory of Open Access Journals (Sweden)
Radovanović Sandro
2014-01-01
Full Text Available In sports, a calculation of efficiency is considered to be one of the most challenging tasks. In this paper, DEA is used to evaluate an efficiency of the NBA players, based on multiple inputs and multiple outputs. The efficiency is evaluated for 26 NBA players at the guard position based on existing data. However, if we want to generate the efficiency for a new player, we would have to re-conduct the DEA analysis. Therefore, to predict the efficiency of a new player, machine learning algorithms are applied. The DEA results are incorporated as an input for the learning algorithms, defining thereby an efficiency frontier function form with high reliability. In this paper, linear regression, neural network, and support vector machines are used to predict an efficiency frontier. The results have shown that neural networks can predict the efficiency with an error less than 1%, and the linear regression with an error less than 2%.
MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY
Chayalakshmi C.L
2018-01-01
MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...
Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris
2011-01-01
A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.
Prediction of strontium bromide laser efficiency using cluster and decision tree analysis
Directory of Open Access Journals (Sweden)
Iliev Iliycho
2018-01-01
Full Text Available Subject of investigation is a new high-powered strontium bromide (SrBr2 vapor laser emitting in multiline region of wavelengths. The laser is an alternative to the atom strontium lasers and electron free lasers, especially at the line 6.45 μm which line is used in surgery for medical processing of biological tissues and bones with minimal damage. In this paper the experimental data from measurements of operational and output characteristics of the laser are statistically processed by means of cluster analysis and tree-based regression techniques. The aim is to extract the more important relationships and dependences from the available data which influence the increase of the overall laser efficiency. There are constructed and analyzed a set of cluster models. It is shown by using different cluster methods that the seven investigated operational characteristics (laser tube diameter, length, supplied electrical power, and others and laser efficiency are combined in 2 clusters. By the built regression tree models using Classification and Regression Trees (CART technique there are obtained dependences to predict the values of efficiency, and especially the maximum efficiency with over 95% accuracy.
Unreachable Setpoints in Model Predictive Control
DEFF Research Database (Denmark)
Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp
2008-01-01
In this work, a new model predictive controller is developed that handles unreachable setpoints better than traditional model predictive control methods. The new controller induces an interesting fast/slow asymmetry in the tracking response of the system. Nominal asymptotic stability of the optimal...... steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...
Bayesian Predictive Models for Rayleigh Wind Speed
DEFF Research Database (Denmark)
Shahirinia, Amir; Hajizadeh, Amin; Yu, David C
2017-01-01
predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....
Efficient estimation of feedback effects with application to climate models
International Nuclear Information System (INIS)
Cacugi, D.G.; Hall, M.C.G.
1984-01-01
This work presents an efficient method for calculating the sensitivity of a mathematical model's result to feedback. Feedback is defined in terms of an operator acting on the model's dependent variables. The sensitivity to feedback is defined as a functional derivative, and a method is presented to evaluate this derivative using adjoint functions. Typically, this method allows the individual effect of many different feedbacks to be estimated with a total additional computing time comparable to only one recalculation. The effects on a CO 2 -doubling experiment of actually incorporating surface albedo and water vapor feedbacks in radiative-convective model are compared with sensivities calculated using adjoint functions. These sensitivities predict the actual effects of feedback with at least the correct sign and order of magnitude. It is anticipated that this method of estimation the effect of feedback will be useful for more complex models where extensive recalculations for each of a variety of different feedbacks is impractical
Predictive Modelling and Time: An Experiment in Temporal Archaeological Predictive Models
David Ebert
2006-01-01
One of the most common criticisms of archaeological predictive modelling is that it fails to account for temporal or functional differences in sites. However, a practical solution to temporal or functional predictive modelling has proven to be elusive. This article discusses temporal predictive modelling, focusing on the difficulties of employing temporal variables, then introduces and tests a simple methodology for the implementation of temporal modelling. The temporal models thus created ar...
Fingerprint verification prediction model in hand dermatitis.
Lee, Chew K; Chang, Choong C; Johor, Asmah; Othman, Puwira; Baba, Roshidah
2015-07-01
Hand dermatitis associated fingerprint changes is a significant problem and affects fingerprint verification processes. This study was done to develop a clinically useful prediction model for fingerprint verification in patients with hand dermatitis. A case-control study involving 100 patients with hand dermatitis. All patients verified their thumbprints against their identity card. Registered fingerprints were randomized into a model derivation and model validation group. Predictive model was derived using multiple logistic regression. Validation was done using the goodness-of-fit test. The fingerprint verification prediction model consists of a major criterion (fingerprint dystrophy area of ≥ 25%) and two minor criteria (long horizontal lines and long vertical lines). The presence of the major criterion predicts it will almost always fail verification, while presence of both minor criteria and presence of one minor criterion predict high and low risk of fingerprint verification failure, respectively. When none of the criteria are met, the fingerprint almost always passes the verification. The area under the receiver operating characteristic curve was 0.937, and the goodness-of-fit test showed agreement between the observed and expected number (P = 0.26). The derived fingerprint verification failure prediction model is validated and highly discriminatory in predicting risk of fingerprint verification in patients with hand dermatitis. © 2014 The International Society of Dermatology.
Massive Predictive Modeling using Oracle R Enterprise
CERN. Geneva
2014-01-01
R is fast becoming the lingua franca for analyzing data via statistics, visualization, and predictive analytics. For enterprise-scale data, R users have three main concerns: scalability, performance, and production deployment. Oracle's R-based technologies - Oracle R Distribution, Oracle R Enterprise, Oracle R Connector for Hadoop, and the R package ROracle - address these concerns. In this talk, we introduce Oracle's R technologies, highlighting how each enables R users to achieve scalability and performance while making production deployment of R results a natural outcome of the data analyst/scientist efforts. The focus then turns to Oracle R Enterprise with code examples using the transparency layer and embedded R execution, targeting massive predictive modeling. One goal behind massive predictive modeling is to build models per entity, such as customers, zip codes, simulations, in an effort to understand behavior and tailor predictions at the entity level. Predictions...
Multi-model analysis in hydrological prediction
Lanthier, M.; Arsenault, R.; Brissette, F.
2017-12-01
Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been
Prostate Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Colorectal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Esophageal Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Bladder Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Lung Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Breast Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Pancreatic Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Ovarian Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Liver Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Testicular Cancer Risk Prediction Models
Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Cervical Cancer Risk Prediction Models
Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.
Modeling and Prediction Using Stochastic Differential Equations
DEFF Research Database (Denmark)
Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp
2016-01-01
Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...
Including model uncertainty in the model predictive control with output feedback
Directory of Open Access Journals (Sweden)
Rodrigues M.A.
2002-01-01
Full Text Available This paper addresses the development of an efficient numerical output feedback robust model predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an infinite horizon predictive controller and a stable state observer. The performance and the computational burden of this approach are compared to a robust predictive controller from the literature. The case used for this study is based on an industrial gasoline debutanizer column.
Predictive Model of Systemic Toxicity (SOT)
In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...
Spent fuel: prediction model development
International Nuclear Information System (INIS)
Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.
1979-07-01
The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained
Navy Recruit Attrition Prediction Modeling
2014-09-01
have high correlation with attrition, such as age, job characteristics, command climate, marital status, behavior issues prior to recruitment, and the...the additive model. glm(formula = Outcome ~ Age + Gender + Marital + AFQTCat + Pay + Ed + Dep, family = binomial, data = ltraining) Deviance ...0.1 ‘ ‘ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance : 105441 on 85221 degrees of freedom Residual deviance
Efficient first-principles prediction of solid stability: Towards chemical accuracy
Zhang, Yubo; Kitchaev, Daniil A.; Yang, Julia; Chen, Tina; Dacek, Stephen T.; Sarmiento-Pérez, Rafael A.; Marques, Maguel A. L.; Peng, Haowei; Ceder, Gerbrand; Perdew, John P.; Sun, Jianwei
2018-03-01
The question of material stability is of fundamental importance to any analysis of system properties in condensed matter physics and materials science. The ability to evaluate chemical stability, i.e., whether a stoichiometry will persist in some chemical environment, and structure selection, i.e. what crystal structure a stoichiometry will adopt, is critical to the prediction of materials synthesis, reactivity and properties. Here, we demonstrate that density functional theory, with the recently developed strongly constrained and appropriately normed (SCAN) functional, has advanced to a point where both facets of the stability problem can be reliably and efficiently predicted for main group compounds, while transition metal compounds are improved but remain a challenge. SCAN therefore offers a robust model for a significant portion of the periodic table, presenting an opportunity for the development of novel materials and the study of fine phase transformations even in largely unexplored systems with little to no experimental data.
Predicting and Modeling RNA Architecture
Westhof, Eric; Masquida, Benoît; Jossinet, Fabrice
2011-01-01
SUMMARY A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values. PMID:20504963
Efficient 3D scene modeling and mosaicing
Nicosevici, Tudor
2013-01-01
This book proposes a complete pipeline for monocular (single camera) based 3D mapping of terrestrial and underwater environments. The aim is to provide a solution to large-scale scene modeling that is both accurate and efficient. To this end, we have developed a novel Structure from Motion algorithm that increases mapping accuracy by registering camera views directly with the maps. The camera registration uses a dual approach that adapts to the type of environment being mapped. In order to further increase the accuracy of the resulting maps, a new method is presented, allowing detection of images corresponding to the same scene region (crossovers). Crossovers then used in conjunction with global alignment methods in order to highly reduce estimation errors, especially when mapping large areas. Our method is based on Visual Bag of Words paradigm (BoW), offering a more efficient and simpler solution by eliminating the training stage, generally required by state of the art BoW algorithms. Also, towards dev...
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Finding furfural hydrogenation catalysts via predictive modelling
Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.
2010-01-01
We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...
African Journals Online (AJOL)
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.
Evaluation of CASP8 model quality predictions
Cozzetto, Domenico; Kryshtafovych, Andriy; Tramontano, Anna
2009-01-01
established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic
Model Predictive Control with Constraints of a Wind Turbine
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
2007-01-01
Model predictive control of wind turbines offer a more systematic approach of constructing controllers that handle constraints while focusing on the main control objective. In this article several controllers are designed for different wind conditions and appropriate switching conditions ensure a...... an efficient control of the wind turbine over the entire range of wind speeds. Both onshore and floating offshore wind turbines are tested with the controllers.......Model predictive control of wind turbines offer a more systematic approach of constructing controllers that handle constraints while focusing on the main control objective. In this article several controllers are designed for different wind conditions and appropriate switching conditions ensure...
Predicting acid dew point with a semi-empirical model
International Nuclear Information System (INIS)
Xiang, Baixiang; Tang, Bin; Wu, Yuxin; Yang, Hairui; Zhang, Man; Lu, Junfu
2016-01-01
Highlights: • The previous semi-empirical models are systematically studied. • An improved thermodynamic correlation is derived. • A semi-empirical prediction model is proposed. • The proposed semi-empirical model is validated. - Abstract: Decreasing the temperature of exhaust flue gas in boilers is one of the most effective ways to further improve the thermal efficiency, electrostatic precipitator efficiency and to decrease the water consumption of desulfurization tower, while, when this temperature is below the acid dew point, the fouling and corrosion will occur on the heating surfaces in the second pass of boilers. So, the knowledge on accurately predicting the acid dew point is essential. By investigating the previous models on acid dew point prediction, an improved thermodynamic correlation formula between the acid dew point and its influencing factors is derived first. And then, a semi-empirical prediction model is proposed, which is validated with the data both in field test and experiment, and comparing with the previous models.
Efficient and Invariant Convolutional Neural Networks for Dense Prediction
Gao, Hongyang; Ji, Shuiwang
2017-01-01
Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods...
Mental models accurately predict emotion transitions.
Thornton, Mark A; Tamir, Diana I
2017-06-06
Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.
Mental models accurately predict emotion transitions
Thornton, Mark A.; Tamir, Diana I.
2017-01-01
Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373
Directory of Open Access Journals (Sweden)
Jae Woong Kim
2014-06-01
Full Text Available I-core sandwich panel that has been used more widely is assembled using high power CO2 laser welding. Kim et al. (2013 proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.
Directory of Open Access Journals (Sweden)
Kim Jae Woong
2014-06-01
Full Text Available I-core sandwich panel that has been used more widely is assembled using high power CO₂laser welding. Kim et al. (2013 proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.
Return Predictability, Model Uncertainty, and Robust Investment
DEFF Research Database (Denmark)
Lukas, Manuel
Stock return predictability is subject to great uncertainty. In this paper we use the model confidence set approach to quantify uncertainty about expected utility from investment, accounting for potential return predictability. For monthly US data and six representative return prediction models, we...... find that confidence sets are very wide, change significantly with the predictor variables, and frequently include expected utilities for which the investor prefers not to invest. The latter motivates a robust investment strategy maximizing the minimal element of the confidence set. The robust investor...... allocates a much lower share of wealth to stocks compared to a standard investor....
Model predictive Controller for Mobile Robot
Alireza Rezaee
2017-01-01
This paper proposes a Model Predictive Controller (MPC) for control of a P2AT mobile robot. MPC refers to a group of controllers that employ a distinctly identical model of process to predict its future behavior over an extended prediction horizon. The design of a MPC is formulated as an optimal control problem. Then this problem is considered as linear quadratic equation (LQR) and is solved by making use of Ricatti equation. To show the effectiveness of the proposed method this controller is...
Spatial Economics Model Predicting Transport Volume
Directory of Open Access Journals (Sweden)
Lu Bo
2016-10-01
Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.
Accuracy assessment of landslide prediction models
International Nuclear Information System (INIS)
Othman, A N; Mohd, W M N W; Noraini, S
2014-01-01
The increasing population and expansion of settlements over hilly areas has greatly increased the impact of natural disasters such as landslide. Therefore, it is important to developed models which could accurately predict landslide hazard zones. Over the years, various techniques and models have been developed to predict landslide hazard zones. The aim of this paper is to access the accuracy of landslide prediction models developed by the authors. The methodology involved the selection of study area, data acquisition, data processing and model development and also data analysis. The development of these models are based on nine different landslide inducing parameters i.e. slope, land use, lithology, soil properties, geomorphology, flow accumulation, aspect, proximity to river and proximity to road. Rank sum, rating, pairwise comparison and AHP techniques are used to determine the weights for each of the parameters used. Four (4) different models which consider different parameter combinations are developed by the authors. Results obtained are compared to landslide history and accuracies for Model 1, Model 2, Model 3 and Model 4 are 66.7, 66.7%, 60% and 22.9% respectively. From the results, rank sum, rating and pairwise comparison can be useful techniques to predict landslide hazard zones
Nonconvex model predictive control for commercial refrigeration
Gybel Hovgaard, Tobias; Boyd, Stephen; Larsen, Lars F. S.; Bagterp Jørgensen, John
2013-08-01
We consider the control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms. In each time period we choose cooling capacity to each unit and a common evaporation temperature. The goal is to minimise the total energy cost, using real-time electricity prices, while obeying temperature constraints on the zones. We propose a variation on model predictive control to achieve this goal. When the right variables are used, the dynamics of the system are linear, and the constraints are convex. The cost function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimisation method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out the iterations, which is more than fast enough to run in real time. We demonstrate our method on a realistic model, with a full year simulation and 15-minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost savings, on the order of 30%, compared to a standard thermostat-based control system. Perhaps more important, we see that the method exhibits sophisticated response to real-time variations in electricity prices. This demand response is critical to help balance real-time uncertainties in generation capacity associated with large penetration of intermittent renewable energy sources in a future smart grid.
Predictive validation of an influenza spread model.
Directory of Open Access Journals (Sweden)
Ayaz Hyder
Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve
Predictive Validation of an Influenza Spread Model
Hyder, Ayaz; Buckeridge, David L.; Leung, Brian
2013-01-01
Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive
Mobility Modelling through Trajectory Decomposition and Prediction
Faghihi, Farbod
2017-01-01
The ubiquity of mobile devices with positioning sensors make it possible to derive user's location at any time. However, constantly sensing the position in order to track the user's movement is not feasible, either due to the unavailability of sensors, or computational and storage burdens. In this thesis, we present and evaluate a novel approach for efficiently tracking user's movement trajectories using decomposition and prediction of trajectories. We facilitate tracking by taking advantage ...
Finding Furfural Hydrogenation Catalysts via Predictive Modelling.
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-09-10
We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.
Model calibration for building energy efficiency simulation
International Nuclear Information System (INIS)
Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus
2014-01-01
Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases
Corporate prediction models, ratios or regression analysis?
Bijnen, E.J.; Wijn, M.F.C.M.
1994-01-01
The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in
Predicting Protein Secondary Structure with Markov Models
DEFF Research Database (Denmark)
Fischer, Paul; Larsen, Simon; Thomsen, Claus
2004-01-01
we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....
Energy based prediction models for building acoustics
DEFF Research Database (Denmark)
Brunskog, Jonas
2012-01-01
In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....
Comparative Study of Bancruptcy Prediction Models
Directory of Open Access Journals (Sweden)
Isye Arieshanti
2013-09-01
Full Text Available Early indication of bancruptcy is important for a company. If companies aware of potency of their bancruptcy, they can take a preventive action to anticipate the bancruptcy. In order to detect the potency of a bancruptcy, a company can utilize a a model of bancruptcy prediction. The prediction model can be built using a machine learning methods. However, the choice of machine learning methods should be performed carefully. Because the suitability of a model depends on the problem specifically. Therefore, in this paper we perform a comparative study of several machine leaning methods for bancruptcy prediction. According to the comparative study, the performance of several models that based on machine learning methods (k-NN, fuzzy k-NN, SVM, Bagging Nearest Neighbour SVM, Multilayer Perceptron(MLP, Hybrid of MLP + Multiple Linear Regression, it can be showed that fuzzy k-NN method achieve the best performance with accuracy 77.5%
4K Video Traffic Prediction using Seasonal Autoregressive Modeling
Directory of Open Access Journals (Sweden)
D. R. Marković
2017-06-01
Full Text Available From the perspective of average viewer, high definition video streams such as HD (High Definition and UHD (Ultra HD are increasing their internet presence year over year. This is not surprising, having in mind expansion of HD streaming services, such as YouTube, Netflix etc. Therefore, high definition video streams are starting to challenge network resource allocation with their bandwidth requirements and statistical characteristics. Need for analysis and modeling of this demanding video traffic has essential importance for better quality of service and experience support. In this paper we use an easy-to-apply statistical model for prediction of 4K video traffic. Namely, seasonal autoregressive modeling is applied in prediction of 4K video traffic, encoded with HEVC (High Efficiency Video Coding. Analysis and modeling were performed within R programming environment using over 17.000 high definition video frames. It is shown that the proposed methodology provides good accuracy in high definition video traffic modeling.
SHMF: Interest Prediction Model with Social Hub Matrix Factorization
Directory of Open Access Journals (Sweden)
Chaoyuan Cui
2017-01-01
Full Text Available With the development of social networks, microblog has become the major social communication tool. There is a lot of valuable information such as personal preference, public opinion, and marketing in microblog. Consequently, research on user interest prediction in microblog has a positive practical significance. In fact, how to extract information associated with user interest orientation from the constantly updated blog posts is not so easy. Existing prediction approaches based on probabilistic factor analysis use blog posts published by user to predict user interest. However, these methods are not very effective for the users who post less but browse more. In this paper, we propose a new prediction model, which is called SHMF, using social hub matrix factorization. SHMF constructs the interest prediction model by combining the information of blogs posts published by both user and direct neighbors in user’s social hub. Our proposed model predicts user interest by integrating user’s historical behavior and temporal factor as well as user’s friendships, thus achieving accurate forecasts of user’s future interests. The experimental results on Sina Weibo show the efficiency and effectiveness of our proposed model.
Predictive modeling of coupled multi-physics systems: I. Theory
International Nuclear Information System (INIS)
Cacuci, Dan Gabriel
2014-01-01
Highlights: • We developed “predictive modeling of coupled multi-physics systems (PMCMPS)”. • PMCMPS reduces predicted uncertainties in predicted model responses and parameters. • PMCMPS treats efficiently very large coupled systems. - Abstract: This work presents an innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS).” This methodology takes into account fully the coupling terms between the systems but requires only the computational resources that would be needed to perform predictive modeling on each system separately. The PMCMPS methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution based on a priori known mean values and uncertainties characterizing the parameters and responses for both multi-physics models. This “maximum entropy”-approximate a priori distribution is combined, using Bayes’ theorem, with the “likelihood” provided by the multi-physics simulation models. Subsequently, the posterior distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the optimally predicted values for the multi-physics models parameters and responses along with corresponding reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could perhaps exceed available computational resources if treated simultaneously, can be treated with the PMCMPS methodology presented in this work sequentially and without any loss of generality or information, requiring just the resources that would be needed if the systems were treated sequentially
Economic model predictive control theory, formulations and chemical process applications
Ellis, Matthew; Christofides, Panagiotis D
2017-01-01
This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...
Evaluation of CASP8 model quality predictions
Cozzetto, Domenico
2009-01-01
The model quality assessment problem consists in the a priori estimation of the overall and per-residue accuracy of protein structure predictions. Over the past years, a number of methods have been developed to address this issue and CASP established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic servers. Estimates could apply to both whole models and individual amino acids. Groups involved in the tertiary structure prediction categories were also asked to assign local error estimates to each predicted residue in their own models and their results are also discussed here. The correlation between the predicted and observed correctness measures was the basis of the assessment of the results. We observe that consensus-based methods still perform significantly better than those accepting single models, similarly to what was concluded in the previous edition of the experiment. © 2009 WILEY-LISS, INC.
Finding Furfural Hydrogenation Catalysts via Predictive Modelling
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-01-01
Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388
Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding.
Zhang, Xianguo; Huang, Tiejun; Tian, Yonghong; Gao, Wen
2014-02-01
The exponential growth of surveillance videos presents an unprecedented challenge for high-efficiency surveillance video coding technology. Compared with the existing coding standards that were basically developed for generic videos, surveillance video coding should be designed to make the best use of the special characteristics of surveillance videos (e.g., relative static background). To do so, this paper first conducts two analyses on how to improve the background and foreground prediction efficiencies in surveillance video coding. Following the analysis results, we propose a background-modeling-based adaptive prediction (BMAP) method. In this method, all blocks to be encoded are firstly classified into three categories. Then, according to the category of each block, two novel inter predictions are selectively utilized, namely, the background reference prediction (BRP) that uses the background modeled from the original input frames as the long-term reference and the background difference prediction (BDP) that predicts the current data in the background difference domain. For background blocks, the BRP can effectively improve the prediction efficiency using the higher quality background as the reference; whereas for foreground-background-hybrid blocks, the BDP can provide a better reference after subtracting its background pixels. Experimental results show that the BMAP can achieve at least twice the compression ratio on surveillance videos as AVC (MPEG-4 Advanced Video Coding) high profile, yet with a slightly additional encoding complexity. Moreover, for the foreground coding performance, which is crucial to the subjective quality of moving objects in surveillance videos, BMAP also obtains remarkable gains over several state-of-the-art methods.
Energy Efficiency Model for Induction Furnace
Dey, Asit Kr
2018-01-01
In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.
Wind farm production prediction - The Zephyr model
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Giebel, G. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Madsen, H. [IMM (DTU), Kgs. Lyngby (Denmark); Nielsen, T.S. [IMM (DTU), Kgs. Lyngby (Denmark); Joergensen, J.U. [Danish Meteorologisk Inst., Copenhagen (Denmark); Lauersen, L. [Danish Meteorologisk Inst., Copenhagen (Denmark); Toefting, J. [Elsam, Fredericia (DK); Christensen, H.S. [Eltra, Fredericia (Denmark); Bjerge, C. [SEAS, Haslev (Denmark)
2002-06-01
This report describes a project - funded by the Danish Ministry of Energy and the Environment - which developed a next generation prediction system called Zephyr. The Zephyr system is a merging between two state-of-the-art prediction systems: Prediktor of Risoe National Laboratory and WPPT of IMM at the Danish Technical University. The numerical weather predictions were generated by DMI's HIRLAM model. Due to technical difficulties programming the system, only the computational core and a very simple version of the originally very complex system were developed. The project partners were: Risoe, DMU, DMI, Elsam, Eltra, Elkraft System, SEAS and E2. (au)
A model for efficient management of electrical assets
International Nuclear Information System (INIS)
Alonso Guerreiro, A.
2008-01-01
At the same time that energy demand grows faster than the investments in electrical installations, the older capacity is reaching the end of its useful life. The need of running all those capacity without interruptions and an efficient maintenance of its assets, are the two current key points for power generation, transmission and distribution systems. This paper tries to show the reader a model of management which makes possible an effective management of assets with a strict control cost, and which includes those key points, centred at predictive techniques, involving all the departments of the organization and which goes further on considering the maintenance like a simple reparation or substitution of broken down units. Therefore, it becomes precise a model with three basic lines: supply guarantee, quality service and competitively, in order to allow the companies to reach the current demands which characterize the power supply. (Author) 5 refs
Model Predictive Control of Mineral Column Flotation Process
Directory of Open Access Journals (Sweden)
Yahui Tian
2018-06-01
Full Text Available Column flotation is an efficient method commonly used in the mineral industry to separate useful minerals from ores of low grade and complex mineral composition. Its main purpose is to achieve maximum recovery while ensuring desired product grade. This work addresses a model predictive control design for a mineral column flotation process modeled by a set of nonlinear coupled heterodirectional hyperbolic partial differential equations (PDEs and ordinary differential equations (ODEs, which accounts for the interconnection of well-stirred regions represented by continuous stirred tank reactors (CSTRs and transport systems given by heterodirectional hyperbolic PDEs, with these two regions combined through the PDEs’ boundaries. The model predictive control considers both optimality of the process operations and naturally present input and state/output constraints. For the discrete controller design, spatially varying steady-state profiles are obtained by linearizing the coupled ODE–PDE model, and then the discrete system is obtained by using the Cayley–Tustin time discretization transformation without any spatial discretization and/or without model reduction. The model predictive controller is designed by solving an optimization problem with input and state/output constraints as well as input disturbance to minimize the objective function, which leads to an online-solvable finite constrained quadratic regulator problem. Finally, the controller performance to keep the output at the steady state within the constraint range is demonstrated by simulation studies, and it is concluded that the optimal control scheme presented in this work makes this flotation process more efficient.
Model predictive controller design of hydrocracker reactors
GÖKÇE, Dila
2011-01-01
This study summarizes the design of a Model Predictive Controller (MPC) in Tüpraş, İzmit Refinery Hydrocracker Unit Reactors. Hydrocracking process, in which heavy vacuum gasoil is converted into lighter and valuable products at high temperature and pressure is described briefly. Controller design description, identification and modeling studies are examined and the model variables are presented. WABT (Weighted Average Bed Temperature) equalization and conversion increase are simulate...
McCormick, Keith; Wei, Bowen
2017-01-01
IBM SPSS Modeler allows quick, efficient predictive analytics and insight building from your data, and is a popularly used data mining tool. This book will guide you through the data mining process, and presents relevant statistical methods which are used to build predictive models and conduct other analytic tasks using IBM SPSS Modeler. From ...
Nanotoxicity modelling and removal efficiencies of ZnONP.
Fikirdeşici Ergen, Şeyda; Üçüncü Tunca, Esra
2018-01-02
In this paper the aim is to investigate the toxic effect of zinc oxide nanoparticles (ZnONPs) and is to analyze the removal of ZnONP in aqueous medium by the consortium consisted of Daphnia magna and Lemna minor. Three separate test groups are formed: L. minor ([Formula: see text]), D. magna ([Formula: see text]), and L. minor + D. magna ([Formula: see text]) and all these test groups are exposed to three different nanoparticle concentrations ([Formula: see text]). Time-dependent, concentration-dependent, and group-dependent removal efficiencies are statistically compared by non-parametric Mann-Whitney U test and statistically significant differences are observed. The optimum removal values are observed at the highest concentration [Formula: see text] for [Formula: see text], [Formula: see text] for [Formula: see text]and [Formula: see text] for [Formula: see text] and realized at [Formula: see text] for all test groups [Formula: see text]. There is no statistically significant differences in removal at low concentrations [Formula: see text] in terms of groups but [Formula: see text] test groups are more efficient than [Formula: see text] test groups in removal of ZnONP, at [Formula: see text] concentration. Regression analysis is also performed for all prediction models. Different models are tested and it is seen that cubic models show the highest predicted values (R 2 ). In toxicity models, R 2 values are obtained at (0.892, 0.997) interval. A simple solution-phase method is used to synthesize ZnO nanoparticles. Dynamic Light Scattering and X-Ray Diffraction (XRD) are used to detect the particle size of synthesized ZnO nanoparticles.
Hierarchical Neural Regression Models for Customer Churn Prediction
Directory of Open Access Journals (Sweden)
Golshan Mohammadi
2013-01-01
Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.
Multi-Model Ensemble Wake Vortex Prediction
Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.
2015-01-01
Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.
Risk terrain modeling predicts child maltreatment.
Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye
2016-12-01
As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children. Copyright Â© 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets
Eom, Cheoljun; Choi, Sunghoon; Oh, Gabjin; Jung, Woo-Sung
2008-07-01
We empirically investigated the relationships between the degree of efficiency and the predictability in financial time-series data. The Hurst exponent was used as the measurement of the degree of efficiency, and the hit rate calculated from the nearest-neighbor prediction method was used for the prediction of the directions of future price changes. We used 60 market indexes of various countries. We empirically discovered that the relationship between the degree of efficiency (the Hurst exponent) and the predictability (the hit rate) is strongly positive. That is, a market index with a higher Hurst exponent tends to have a higher hit rate. These results suggested that the Hurst exponent is useful for predicting future price changes. Furthermore, we also discovered that the Hurst exponent and the hit rate are useful as standards that can distinguish emerging capital markets from mature capital markets.
PREDICTIVE CAPACITY OF ARCH FAMILY MODELS
Directory of Open Access Journals (Sweden)
Raphael Silveira Amaro
2016-03-01
Full Text Available In the last decades, a remarkable number of models, variants from the Autoregressive Conditional Heteroscedastic family, have been developed and empirically tested, making extremely complex the process of choosing a particular model. This research aim to compare the predictive capacity, using the Model Confidence Set procedure, than five conditional heteroskedasticity models, considering eight different statistical probability distributions. The financial series which were used refers to the log-return series of the Bovespa index and the Dow Jones Industrial Index in the period between 27 October 2008 and 30 December 2014. The empirical evidences showed that, in general, competing models have a great homogeneity to make predictions, either for a stock market of a developed country or for a stock market of a developing country. An equivalent result can be inferred for the statistical probability distributions that were used.
Alcator C-Mod predictive modeling
International Nuclear Information System (INIS)
Pankin, Alexei; Bateman, Glenn; Kritz, Arnold; Greenwald, Martin; Snipes, Joseph; Fredian, Thomas
2001-01-01
Predictive simulations for the Alcator C-mod tokamak [I. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] are carried out using the BALDUR integrated modeling code [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)]. The results are obtained for temperature and density profiles using the Multi-Mode transport model [G. Bateman et al., Phys. Plasmas 5, 1793 (1998)] as well as the mixed-Bohm/gyro-Bohm transport model [M. Erba et al., Plasma Phys. Controlled Fusion 39, 261 (1997)]. The simulated discharges are characterized by very high plasma density in both low and high modes of confinement. The predicted profiles for each of the transport models match the experimental data about equally well in spite of the fact that the two models have different dimensionless scalings. Average relative rms deviations are less than 8% for the electron density profiles and 16% for the electron and ion temperature profiles
Bayesian calibration of power plant models for accurate performance prediction
International Nuclear Information System (INIS)
Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der
2014-01-01
Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions
Driving Green: Toward the Prediction and Influence of Efficient Driving Behavior
Newsome, William D.
Sub-optimal efficiency in activities involving the consumption of fossil fuels, such as driving, contribute to a miscellany of negative environmental, political, economic and social externalities. Demonstrations of the effectiveness of feedback interventions can be found in countless organizational settings, as can demonstrations of individual differences in sensitivity to feedback interventions. Mechanisms providing feedback to drivers about fuel economy are becoming standard equipment in most new vehicles, but vary considerably in their constitution. A keystone of Radical Behaviorism is the acknowledgement that verbal behavior appears to play a role in mediating apparent susceptibility to influence by contingencies of varying delay. In the current study, samples of verbal behavior (rules) were collected in the context of a feedback intervention to improve driving efficiency. In an analysis of differences in individual responsiveness to the feedback intervention, the rate of novel rules per week generated by drivers is revealed to account for a substantial proportion of the variability in relative efficiency gains across participants. The predictive utility of conceptual tools, such as the basic distinction among contingency-shaped and rule governed behavior, the elaboration of direct-acting and indirect-acting contingencies, and the psychological flexibility model, is bolstered by these findings.
Wimmer, Valentin; Lehermeier, Christina; Albrecht, Theresa; Auinger, Hans-Jürgen; Wang, Yu; Schön, Chris-Carolin
2013-10-01
In genome-based prediction there is considerable uncertainty about the statistical model and method required to maximize prediction accuracy. For traits influenced by a small number of quantitative trait loci (QTL), predictions are expected to benefit from methods performing variable selection [e.g., BayesB or the least absolute shrinkage and selection operator (LASSO)] compared to methods distributing effects across the genome [ridge regression best linear unbiased prediction (RR-BLUP)]. We investigate the assumptions underlying successful variable selection by combining computer simulations with large-scale experimental data sets from rice (Oryza sativa L.), wheat (Triticum aestivum L.), and Arabidopsis thaliana (L.). We demonstrate that variable selection can be successful when the number of phenotyped individuals is much larger than the number of causal mutations contributing to the trait. We show that the sample size required for efficient variable selection increases dramatically with decreasing trait heritabilities and increasing extent of linkage disequilibrium (LD). We contrast and discuss contradictory results from simulation and experimental studies with respect to superiority of variable selection methods over RR-BLUP. Our results demonstrate that due to long-range LD, medium heritabilities, and small sample sizes, superiority of variable selection methods cannot be expected in plant breeding populations even for traits like FRIGIDA gene expression in Arabidopsis and flowering time in rice, assumed to be influenced by a few major QTL. We extend our conclusions to the analysis of whole-genome sequence data and infer upper bounds for the number of causal mutations which can be identified by LASSO. Our results have major impact on the choice of statistical method needed to make credible inferences about genetic architecture and prediction accuracy of complex traits.
Modelling the predictive performance of credit scoring
Directory of Open Access Journals (Sweden)
Shi-Wei Shen
2013-07-01
Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan. Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities. Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems. Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk. Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product. Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.
Comparison of two ordinal prediction models
DEFF Research Database (Denmark)
Kattan, Michael W; Gerds, Thomas A
2015-01-01
system (i.e. old or new), such as the level of evidence for one or more factors included in the system or the general opinions of expert clinicians. However, given the major objective of estimating prognosis on an ordinal scale, we argue that the rival staging system candidates should be compared...... on their ability to predict outcome. We sought to outline an algorithm that would compare two rival ordinal systems on their predictive ability. RESULTS: We devised an algorithm based largely on the concordance index, which is appropriate for comparing two models in their ability to rank observations. We...... demonstrate our algorithm with a prostate cancer staging system example. CONCLUSION: We have provided an algorithm for selecting the preferred staging system based on prognostic accuracy. It appears to be useful for the purpose of selecting between two ordinal prediction models....
Modeling adaptation of carbon use efficiency in microbial communities
Directory of Open Access Journals (Sweden)
Steven D Allison
2014-10-01
Full Text Available In new microbial-biogeochemical models, microbial carbon use efficiency (CUE is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e. become less sensitive to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.
Predictive analytics can support the ACO model.
Bradley, Paul
2012-04-01
Predictive analytics can be used to rapidly spot hard-to-identify opportunities to better manage care--a key tool in accountable care. When considering analytics models, healthcare providers should: Make value-based care a priority and act on information from analytics models. Create a road map that includes achievable steps, rather than major endeavors. Set long-term expectations and recognize that the effectiveness of an analytics program takes time, unlike revenue cycle initiatives that may show a quick return.
Predictive performance models and multiple task performance
Wickens, Christopher D.; Larish, Inge; Contorer, Aaron
1989-01-01
Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.
Model Predictive Control of Sewer Networks
DEFF Research Database (Denmark)
Pedersen, Einar B.; Herbertsson, Hannes R.; Niemann, Henrik
2016-01-01
The developments in solutions for management of urban drainage are of vital importance, as the amount of sewer water from urban areas continues to increase due to the increase of the world’s population and the change in the climate conditions. How a sewer network is structured, monitored and cont...... benchmark model. Due to the inherent constraints the applied approach is based on Model Predictive Control....
Distributed Model Predictive Control via Dual Decomposition
DEFF Research Database (Denmark)
Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle
2014-01-01
This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...
A stepwise model to predict monthly streamflow
Mahmood Al-Juboori, Anas; Guven, Aytac
2016-12-01
In this study, a stepwise model empowered with genetic programming is developed to predict the monthly flows of Hurman River in Turkey and Diyalah and Lesser Zab Rivers in Iraq. The model divides the monthly flow data to twelve intervals representing the number of months in a year. The flow of a month, t is considered as a function of the antecedent month's flow (t - 1) and it is predicted by multiplying the antecedent monthly flow by a constant value called K. The optimum value of K is obtained by a stepwise procedure which employs Gene Expression Programming (GEP) and Nonlinear Generalized Reduced Gradient Optimization (NGRGO) as alternative to traditional nonlinear regression technique. The degree of determination and root mean squared error are used to evaluate the performance of the proposed models. The results of the proposed model are compared with the conventional Markovian and Auto Regressive Integrated Moving Average (ARIMA) models based on observed monthly flow data. The comparison results based on five different statistic measures show that the proposed stepwise model performed better than Markovian model and ARIMA model. The R2 values of the proposed model range between 0.81 and 0.92 for the three rivers in this study.
Genomic value prediction for quantitative traits under the epistatic model
Directory of Open Access Journals (Sweden)
Xu Shizhong
2011-01-01
Full Text Available Abstract Background Most quantitative traits are controlled by multiple quantitative trait loci (QTL. The contribution of each locus may be negligible but the collective contribution of all loci is usually significant. Genome selection that uses markers of the entire genome to predict the genomic values of individual plants or animals can be more efficient than selection on phenotypic values and pedigree information alone for genetic improvement. When a quantitative trait is contributed by epistatic effects, using all markers (main effects and marker pairs (epistatic effects to predict the genomic values of plants can achieve the maximum efficiency for genetic improvement. Results In this study, we created 126 recombinant inbred lines of soybean and genotyped 80 makers across the genome. We applied the genome selection technique to predict the genomic value of somatic embryo number (a quantitative trait for each line. Cross validation analysis showed that the squared correlation coefficient between the observed and predicted embryo numbers was 0.33 when only main (additive effects were used for prediction. When the interaction (epistatic effects were also included in the model, the squared correlation coefficient reached 0.78. Conclusions This study provided an excellent example for the application of genome selection to plant breeding.
Predictable quantum efficient detector based on n-type silicon photodiodes
Dönsberg, Timo; Manoocheri, Farshid; Sildoja, Meelis; Juntunen, Mikko; Savin, Hele; Tuovinen, Esa; Ronkainen, Hannu; Prunnila, Mika; Merimaa, Mikko; Tang, Chi Kwong; Gran, Jarle; Müller, Ingmar; Werner, Lutz; Rougié, Bernard; Pons, Alicia; Smîd, Marek; Gál, Péter; Lolli, Lapo; Brida, Giorgio; Rastello, Maria Luisa; Ikonen, Erkki
2017-12-01
The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of
Predictive Models, How good are they?
DEFF Research Database (Denmark)
Kasch, Helge
The WAD grading system has been used for more than 20 years by now. It has shown long-term viability, but with strengths and limitations. New bio-psychosocial assessment of the acute whiplash injured subject may provide better prediction of long-term disability and pain. Furthermore, the emerging......-up. It is important to obtain prospective identification of the relevant risk underreported disability could, if we were able to expose these hidden “risk-factors” during our consultations, provide us with better predictive models. New data from large clinical studies will present exciting new genetic risk markers...
Optimal model-free prediction from multivariate time series
Runge, Jakob; Donner, Reik V.; Kurths, Jürgen
2015-05-01
Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.
NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES
Directory of Open Access Journals (Sweden)
SILVA R. G.
1999-01-01
Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.
A statistical model for predicting muscle performance
Byerly, Diane Leslie De Caix
The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing
Prediction models : the right tool for the right problem
Kappen, Teus H.; Peelen, Linda M.
2016-01-01
PURPOSE OF REVIEW: Perioperative prediction models can help to improve personalized patient care by providing individual risk predictions to both patients and providers. However, the scientific literature on prediction model development and validation can be quite technical and challenging to
Estimation and prediction under local volatility jump-diffusion model
Kim, Namhyoung; Lee, Younhee
2018-02-01
Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.
Neuro-fuzzy modeling in bankruptcy prediction
Directory of Open Access Journals (Sweden)
Vlachos D.
2003-01-01
Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.
Predicting Power Outages Using Multi-Model Ensemble Forecasts
Cerrai, D.; Anagnostou, E. N.; Yang, J.; Astitha, M.
2017-12-01
Power outages affect every year millions of people in the United States, affecting the economy and conditioning the everyday life. An Outage Prediction Model (OPM) has been developed at the University of Connecticut for helping utilities to quickly restore outages and to limit their adverse consequences on the population. The OPM, operational since 2015, combines several non-parametric machine learning (ML) models that use historical weather storm simulations and high-resolution weather forecasts, satellite remote sensing data, and infrastructure and land cover data to predict the number and spatial distribution of power outages. A new methodology, developed for improving the outage model performances by combining weather- and soil-related variables using three different weather models (WRF 3.7, WRF 3.8 and RAMS/ICLAMS), will be presented in this study. First, we will present a performance evaluation of each model variable, by comparing historical weather analyses with station data or reanalysis over the entire storm data set. Hence, each variable of the new outage model version is extracted from the best performing weather model for that variable, and sensitivity tests are performed for investigating the most efficient variable combination for outage prediction purposes. Despite that the final variables combination is extracted from different weather models, this ensemble based on multi-weather forcing and multi-statistical model power outage prediction outperforms the currently operational OPM version that is based on a single weather forcing variable (WRF 3.7), because each model component is the closest to the actual atmospheric state.
Risk assessment and remedial policy evaluation using predictive modeling
International Nuclear Information System (INIS)
Linkov, L.; Schell, W.R.
1996-01-01
As a result of nuclear industry operation and accidents, large areas of natural ecosystems have been contaminated by radionuclides and toxic metals. Extensive societal pressure has been exerted to decrease the radiation dose to the population and to the environment. Thus, in making abatement and remediation policy decisions, not only economic costs but also human and environmental risk assessments are desired. This paper introduces a general framework for risk assessment and remedial policy evaluation using predictive modeling. Ecological risk assessment requires evaluation of the radionuclide distribution in ecosystems. The FORESTPATH model is used for predicting the radionuclide fate in forest compartments after deposition as well as for evaluating the efficiency of remedial policies. Time of intervention and radionuclide deposition profile was predicted as being crucial for the remediation efficiency. Risk assessment conducted for a critical group of forest users in Belarus shows that consumption of forest products (berries and mushrooms) leads to about 0.004% risk of a fatal cancer annually. Cost-benefit analysis for forest cleanup suggests that complete removal of organic layer is too expensive for application in Belarus and a better methodology is required. In conclusion, FORESTPATH modeling framework could have wide applications in environmental remediation of radionuclides and toxic metals as well as in dose reconstruction and, risk-assessment
Effective and efficient model clone detection
DEFF Research Database (Denmark)
Störrle, Harald
2015-01-01
Code clones are a major source of software defects. Thus, it is likely that model clones (i.e., duplicate fragments of models) have a significant negative impact on model quality, and thus, on any software created based on those models, irrespective of whether the software is generated fully...... automatically (“MDD-style”) or hand-crafted following the blueprint defined by the model (“MBSD-style”). Unfortunately, however, model clones are much less well studied than code clones. In this paper, we present a clone detection algorithm for UML domain models. Our approach covers a much greater variety...... of model types than existing approaches while providing high clone detection rates at high speed....
De Loof, Esther; Van Opstal, Filip; Verguts, Tom
2016-04-01
Theories on visual awareness claim that predicted stimuli reach awareness faster than unpredicted ones. In the current study, we disentangle whether prior information about the upcoming stimulus affects visual awareness of stimulus location (i.e., individuation) by modulating processing efficiency or threshold setting. Analogous research on stimulus identification revealed that prior information modulates threshold setting. However, as identification and individuation are two functionally and neurally distinct processes, the mechanisms underlying identification cannot simply be extrapolated directly to individuation. The goal of this study was therefore to investigate how individuation is influenced by prior information about the upcoming stimulus. To do so, a drift diffusion model was fitted to estimate the processing efficiency and threshold setting for predicted versus unpredicted stimuli in a cued individuation paradigm. Participants were asked to locate a picture, following a cue that was congruent, incongruent or neutral with respect to the picture's identity. Pictures were individuated faster in the congruent and neutral condition compared to the incongruent condition. In the diffusion model analysis, the processing efficiency was not significantly different across conditions. However, the threshold setting was significantly higher following an incongruent cue compared to both congruent and neutral cues. Our results indicate that predictive information about the upcoming stimulus influences visual awareness by shifting the threshold for individuation rather than by enhancing processing efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Predictive Models for Carcinogenicity and Mutagenicity ...
Mutagenicity and carcinogenicity are endpoints of major environmental and regulatory concern. These endpoints are also important targets for development of alternative methods for screening and prediction due to the large number of chemicals of potential concern and the tremendous cost (in time, money, animals) of rodent carcinogenicity bioassays. Both mutagenicity and carcinogenicity involve complex, cellular processes that are only partially understood. Advances in technologies and generation of new data will permit a much deeper understanding. In silico methods for predicting mutagenicity and rodent carcinogenicity based on chemical structural features, along with current mutagenicity and carcinogenicity data sets, have performed well for local prediction (i.e., within specific chemical classes), but are less successful for global prediction (i.e., for a broad range of chemicals). The predictivity of in silico methods can be improved by improving the quality of the data base and endpoints used for modelling. In particular, in vitro assays for clastogenicity need to be improved to reduce false positives (relative to rodent carcinogenicity) and to detect compounds that do not interact directly with DNA or have epigenetic activities. New assays emerging to complement or replace some of the standard assays include VitotoxTM, GreenScreenGC, and RadarScreen. The needs of industry and regulators to assess thousands of compounds necessitate the development of high-t
Validated predictive modelling of the environmental resistome.
Amos, Gregory C A; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H
2015-06-01
Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
Baryogenesis model predicting antimatter in the Universe
International Nuclear Information System (INIS)
Kirilova, D.
2003-01-01
Cosmic ray and gamma-ray data do not rule out antimatter domains in the Universe, separated at distances bigger than 10 Mpc from us. Hence, it is interesting to analyze the possible generation of vast antimatter structures during the early Universe evolution. We discuss a SUSY-condensate baryogenesis model, predicting large separated regions of matter and antimatter. The model provides generation of the small locally observed baryon asymmetry for a natural initial conditions, it predicts vast antimatter domains, separated from the matter ones by baryonically empty voids. The characteristic scale of antimatter regions and their distance from the matter ones is in accordance with observational constraints from cosmic ray, gamma-ray and cosmic microwave background anisotropy data
International Nuclear Information System (INIS)
Song, Jian; Gu, Chun-wei; Ren, Xiaodong
2016-01-01
Highlights: • The efficiency prediction is based on the velocity triangle and loss models. • The efficiency selection has a big influence on the working fluid selection. • The efficiency selection has a big influence on system parameter determination. - Abstract: The radial-inflow turbine is a common choice for the power output in the Organic Rankine Cycle (ORC) system. Its efficiency is related to the working fluid property and the system operating condition. Generally, the radial-inflow turbine efficiency is assumed to be a constant value in the conventional ORC system analysis. Few studies focus on the influence of the radial-inflow turbine efficiency selection on the system design and analysis. Actually, the ORC system design and the radial-inflow turbine design are coupled with each other. Different thermal parameters of the ORC system would lead to different radial-inflow turbine design and then different turbine efficiency, and vice versa. Therefore, considering the radial-inflow turbine efficiency prediction in the ORC system design can enhance its reliability and accuracy. In this paper, a one-dimensional analysis model for the radial-inflow turbine in the ORC system is presented. The radial-inflow turbine efficiency prediction in this model is based on the velocity triangle and loss models, rather than a constant efficiency assumption. The influence of the working fluid property and the system operating condition on the turbine performance is evaluated. The thermodynamic analysis of the ORC system with a model predicted turbine efficiency and a constant turbine efficiency is conducted and the results are compared with each other. It indicates that the turbine efficiency selection has a significant influence on the working fluid selection and the system parameter determination.
High Precision Clock Bias Prediction Model in Clock Synchronization System
Directory of Open Access Journals (Sweden)
Zan Liu
2016-01-01
Full Text Available Time synchronization is a fundamental requirement for many services provided by a distributed system. Clock calibration through the time signal is the usual way to realize the synchronization among the clocks used in the distributed system. The interference to time signal transmission or equipment failures may bring about failure to synchronize the time. To solve this problem, a clock bias prediction module is paralleled in the clock calibration system. And for improving the precision of clock bias prediction, the first-order grey model with one variable (GM(1,1 model is proposed. In the traditional GM(1,1 model, the combination of parameters determined by least squares criterion is not optimal; therefore, the particle swarm optimization (PSO is used to optimize GM(1,1 model. At the same time, in order to avoid PSO getting stuck at local optimization and improve its efficiency, the mechanisms that double subgroups and nonlinear decreasing inertia weight are proposed. In order to test the precision of the improved model, we design clock calibration experiments, where time signal is transferred via radio and wired channel, respectively. The improved model is built on the basis of clock bias acquired in the experiments. The results show that the improved model is superior to other models both in precision and in stability. The precision of improved model increased by 66.4%~76.7%.
Energy technologies and energy efficiency in economic modelling
DEFF Research Database (Denmark)
Klinge Jacobsen, Henrik
1998-01-01
This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...
Efficient estimation of semiparametric copula models for bivariate survival data
Cheng, Guang
2014-01-01
A semiparametric copula model for bivariate survival data is characterized by a parametric copula model of dependence and nonparametric models of two marginal survival functions. Efficient estimation for the semiparametric copula model has been recently studied for the complete data case. When the survival data are censored, semiparametric efficient estimation has only been considered for some specific copula models such as the Gaussian copulas. In this paper, we obtain the semiparametric efficiency bound and efficient estimation for general semiparametric copula models for possibly censored data. We construct an approximate maximum likelihood estimator by approximating the log baseline hazard functions with spline functions. We show that our estimates of the copula dependence parameter and the survival functions are asymptotically normal and efficient. Simple consistent covariance estimators are also provided. Numerical results are used to illustrate the finite sample performance of the proposed estimators. © 2013 Elsevier Inc.
Finding Furfural Hydrogenation Catalysts via Predictive Modelling
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-01-01
Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre t...
Predictive Modeling in Actinide Chemistry and Catalysis
Energy Technology Data Exchange (ETDEWEB)
Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-16
These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.
International Nuclear Information System (INIS)
Moon, Jin Woo; Yoon, Younju; Jeon, Young-Hoon; Kim, Sooyoung
2017-01-01
Highlights: • Initial ANN model was developed for predicting the time to the setback temperature. • Initial model was optimized for producing accurate output. • Optimized model proved its prediction accuracy. • ANN-based algorithms were developed and tested their performance. • ANN-based algorithms presented superior thermal comfort or energy efficiency. - Abstract: In this study, a temperature control algorithm was developed to apply a setback temperature predictively for the cooling system of a residential building during occupied periods by residents. An artificial neural network (ANN) model was developed to determine the required time for increasing the current indoor temperature to the setback temperature. This study involved three phases: development of the initial ANN-based prediction model, optimization and testing of the initial model, and development and testing of three control algorithms. The development and performance testing of the model and algorithm were conducted using TRNSYS and MATLAB. Through the development and optimization process, the final ANN model employed indoor temperature and the temperature difference between the current and target setback temperature as two input neurons. The optimal number of hidden layers, number of neurons, learning rate, and moment were determined to be 4, 9, 0.6, and 0.9, respectively. The tangent–sigmoid and pure-linear transfer function was used in the hidden and output neurons, respectively. The ANN model used 100 training data sets with sliding-window method for data management. Levenberg-Marquart training method was employed for model training. The optimized model had a prediction accuracy of 0.9097 root mean square errors when compared with the simulated results. Employing the ANN model, ANN-based algorithms maintained indoor temperatures better within target ranges. Compared to the conventional algorithm, the ANN-based algorithms reduced the duration of time, in which the indoor temperature
Tectonic predictions with mantle convection models
Coltice, Nicolas; Shephard, Grace E.
2018-04-01
Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough
Breast cancer risks and risk prediction models.
Engel, Christoph; Fischer, Christine
2015-02-01
BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.
Workman, Megan; Baker, Jack; Lancaster, Jane B; Mermier, Christine; Alcock, Joe
2016-07-01
Aiming to test the evolutionary significance of relationships linking prenatal growth conditions to adult phenotypes, this study examined whether birth size predicts energetic savings during fasting. We specifically tested a Predictive Adaptive Response (PAR) model that predicts greater energetic saving among adults who were born small. Data were collected from a convenience sample of young adults living in Albuquerque, NM (n = 34). Indirect calorimetry quantified changes in resting energy expenditure (REE) and active muscular efficiency that occurred in response to a 29-h fast. Multiple regression analyses linked birth weight to baseline and postfast metabolic values while controlling for appropriate confounders (e.g., sex, body mass). Birth weight did not moderate the relationship between body size and energy expenditure, nor did it predict the magnitude change in REE or muscular efficiency observed from baseline to after fasting. Alternative indicators of birth size were also examined (e.g., low v. normal birth weight, comparison of tertiles), with no effects found. However, baseline muscular efficiency improved by 1.1% per 725 g (S.D.) increase in birth weight (P = 0.037). Birth size did not influence the sensitivity of metabolic demands to fasting-neither at rest nor during activity. Moreover, small birth size predicted a reduction in the efficiency with which muscles convert energy expended into work accomplished. These results do not support the ascription of adaptive function to phenotypes associated with small birth size. © 2015 Wiley Periodicals, Inc. Am. J. Hum. Biol. 28:484-492, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A predictive model for dimensional errors in fused deposition modeling
DEFF Research Database (Denmark)
Stolfi, A.
2015-01-01
This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...... values of L (0.254 mm, 0.330 mm) was produced by comparing predicted values with external face-to-face measurements. After removing outliers, the results show that the developed two-parameter model can serve as tool for modeling the FDM dimensional behavior in a wide range of deposition angles....
Two stage neural network modelling for robust model predictive control.
Patan, Krzysztof
2018-01-01
The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Predicting extinction rates in stochastic epidemic models
International Nuclear Information System (INIS)
Schwartz, Ira B; Billings, Lora; Dykman, Mark; Landsman, Alexandra
2009-01-01
We investigate the stochastic extinction processes in a class of epidemic models. Motivated by the process of natural disease extinction in epidemics, we examine the rate of extinction as a function of disease spread. We show that the effective entropic barrier for extinction in a susceptible–infected–susceptible epidemic model displays scaling with the distance to the bifurcation point, with an unusual critical exponent. We make a direct comparison between predictions and numerical simulations. We also consider the effect of non-Gaussian vaccine schedules, and show numerically how the extinction process may be enhanced when the vaccine schedules are Poisson distributed
Predictive Modeling of the CDRA 4BMS
Coker, Robert F.; Knox, James C.
2016-01-01
As part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.
Information, complexity and efficiency: The automobile model
Energy Technology Data Exchange (ETDEWEB)
Allenby, B. [Lucent Technologies (United States)]|[Lawrence Livermore National Lab., CA (United States)
1996-08-08
The new, rapidly evolving field of industrial ecology - the objective, multidisciplinary study of industrial and economic systems and their linkages with fundamental natural systems - provides strong ground for believing that a more environmentally and economically efficient economy will be more information intensive and complex. Information and intellectual capital will be substituted for the more traditional inputs of materials and energy in producing a desirable, yet sustainable, quality of life. While at this point this remains a strong hypothesis, the evolution of the automobile industry can be used to illustrate how such substitution may, in fact, already be occurring in an environmentally and economically critical sector.
Business process model repositories : efficient process retrieval
Yan, Z.
2012-01-01
As organizations increasingly work in process-oriented manner, the number of business process models that they develop and have to maintain increases. As a consequence, it has become common for organizations to have collections of hundreds or even thousands of business process models. When a
Efficient querying of large process model repositories
Jin, Tao; Wang, Jianmin; La Rosa, M.; Hofstede, ter A.H.M.; Wen, Lijie
2013-01-01
Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business
MODEL TESTING OF LOW PRESSURE HYDRAULIC TURBINE WITH HIGHER EFFICIENCY
Directory of Open Access Journals (Sweden)
V. K. Nedbalsky
2007-01-01
Full Text Available A design of low pressure turbine has been developed and it is covered by an invention patent and a useful model patent. Testing of the hydraulic turbine model has been carried out when it was installed on a vertical shaft. The efficiency was equal to 76–78 % that exceeds efficiency of the known low pressure blade turbines.
Data Driven Economic Model Predictive Control
Directory of Open Access Journals (Sweden)
Masoud Kheradmandi
2018-04-01
Full Text Available This manuscript addresses the problem of data driven model based economic model predictive control (MPC design. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. The economic improvements yielded by the proposed method are illustrated through simulations on a nonlinear chemical process system example.
Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems
Energy Technology Data Exchange (ETDEWEB)
Becker, Steffen [University of Tasmania, Hobart 7001, Tasmania (Australia); Karri, Vishy [Australian College of Kuwait (Kuwait)
2010-09-15
Predictive models were built using neural network based Adaptive Neuro-Fuzzy Inference Systems for hydrogen flow rate, electrolyzer system-efficiency and stack-efficiency respectively. A comprehensive experimental database forms the foundation for the predictive models. It is argued that, due to the high costs associated with the hydrogen measuring equipment; these reliable predictive models can be implemented as virtual sensors. These models can also be used on-line for monitoring and safety of hydrogen equipment. The quantitative accuracy of the predictive models is appraised using statistical techniques. These mathematical models are found to be reliable predictive tools with an excellent accuracy of {+-}3% compared with experimental values. The predictive nature of these models did not show any significant bias to either over prediction or under prediction. These predictive models, built on a sound mathematical and quantitative basis, can be seen as a step towards establishing hydrogen performance prediction models as generic virtual sensors for wider safety and monitoring applications. (author)
DEFF Research Database (Denmark)
Kaminski, Kacper Piotr; Kørup, Kirsten; Kristensen, K.
2015-01-01
Potatoes (Solanum tuberosum L.) are drought-sensitive and more efficient water use, while maintaining high yields is required. Here, water-use efficiency (WUE) of a mapping population comprising 144 clones from a cross between 90-HAF-01 (Solanum tuberosum1) and 90-HAG-15 (S. tuberosum2 × S....... sparsipilum) was measured on well-watered plants under controlled-environment conditions combining three levels of each of the factors: [CO2], temperature, light, and relative humidity in growth chambers. The clones were grouped according to their photosynthetic WUE (pWUE) and whole-plant WUE (wpWUE) during...... (34 %) and dry matter accumulation (55 %, P water use (16 %). The pWUE correlated negatively to the ratio between leaf-internal and leaf-external [CO2] (R2 = -0.86 in 2010 and R2 = -0.83 in 2011, P
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and
Scaling predictive modeling in drug development with cloud computing.
Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola
2015-01-26
Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.
Predictability of Exchange Rates in Sri Lanka: A Test of the Efficient Market Hypothesis
Guneratne B Wickremasinghe
2007-01-01
This study examined the validity of the weak and semi-strong forms of the efficient market hypothesis (EMH) for the foreign exchange market of Sri Lanka. Monthly exchange rates for four currencies during the floating exchange rate regime were used in the empirical tests. Using a battery of tests, empirical results indicate that the current values of the four exchange rates can be predicted from their past values. Further, the tests of semi-strong form efficiency indicate that exchange rate pa...
Plant control using embedded predictive models
International Nuclear Information System (INIS)
Godbole, S.S.; Gabler, W.E.; Eschbach, S.L.
1990-01-01
B and W recently undertook the design of an advanced light water reactor control system. A concept new to nuclear steam system (NSS) control was developed. The concept, which is called the Predictor-Corrector, uses mathematical models of portions of the controlled NSS to calculate, at various levels within the system, demand and control element position signals necessary to satisfy electrical demand. The models give the control system the ability to reduce overcooling and undercooling of the reactor coolant system during transients and upsets. Two types of mathematical models were developed for use in designing and testing the control system. One model was a conventional, comprehensive NSS model that responds to control system outputs and calculates the resultant changes in plant variables that are then used as inputs to the control system. Two other models, embedded in the control system, were less conventional, inverse models. These models accept as inputs plant variables, equipment states, and demand signals and predict plant operating conditions and control element states that will satisfy the demands. This paper reports preliminary results of closed-loop Reactor Coolant (RC) pump trip and normal load reduction testing of the advanced concept. Results of additional transient testing, and of open and closed loop stability analyses will be reported as they are available
Ground Motion Prediction Models for Caucasus Region
Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino
2016-04-01
Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.
Modeling and Prediction of Krueger Device Noise
Guo, Yueping; Burley, Casey L.; Thomas, Russell H.
2016-01-01
This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.
Prediction of Chemical Function: Model Development and ...
The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (HT) screening-level exposures developed under ExpoCast can be combined with HT screening (HTS) bioactivity data for the risk-based prioritization of chemicals for further evaluation. The functional role (e.g. solvent, plasticizer, fragrance) that a chemical performs can drive both the types of products in which it is found and the concentration in which it is present and therefore impacting exposure potential. However, critical chemical use information (including functional role) is lacking for the majority of commercial chemicals for which exposure estimates are needed. A suite of machine-learning based models for classifying chemicals in terms of their likely functional roles in products based on structure were developed. This effort required collection, curation, and harmonization of publically-available data sources of chemical functional use information from government and industry bodies. Physicochemical and structure descriptor data were generated for chemicals with function data. Machine-learning classifier models for function were then built in a cross-validated manner from the descriptor/function data using the method of random forests. The models were applied to: 1) predict chemi
Evaluating Predictive Models of Software Quality
Ciaschini, V.; Canaparo, M.; Ronchieri, E.; Salomoni, D.
2014-06-01
Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.
Predicting FLDs Using a Multiscale Modeling Scheme
Wu, Z.; Loy, C.; Wang, E.; Hegadekatte, V.
2017-09-01
The measurement of a single forming limit diagram (FLD) requires significant resources and is time consuming. We have developed a multiscale modeling scheme to predict FLDs using a combination of limited laboratory testing, crystal plasticity (VPSC) modeling, and dual sequential-stage finite element (ABAQUS/Explicit) modeling with the Marciniak-Kuczynski (M-K) criterion to determine the limit strain. We have established a means to work around existing limitations in ABAQUS/Explicit by using an anisotropic yield locus (e.g., BBC2008) in combination with the M-K criterion. We further apply a VPSC model to reduce the number of laboratory tests required to characterize the anisotropic yield locus. In the present work, we show that the predicted FLD is in excellent agreement with the measured FLD for AA5182 in the O temper. Instead of 13 different tests as for a traditional FLD determination within Novelis, our technique uses just four measurements: tensile properties in three orientations; plane strain tension; biaxial bulge; and the sheet crystallographic texture. The turnaround time is consequently far less than for the traditional laboratory measurement of the FLD.
PREDICTION MODELS OF GRAIN YIELD AND CHARACTERIZATION
Directory of Open Access Journals (Sweden)
Narciso Ysac Avila Serrano
2009-06-01
Full Text Available With the objective to characterize the grain yield of five cowpea cultivars and to find linear regression models to predict it, a study was developed in La Paz, Baja California Sur, Mexico. A complete randomized blocks design was used. Simple and multivariate analyses of variance were carried out using the canonical variables to characterize the cultivars. The variables cluster per plant, pods per plant, pods per cluster, seeds weight per plant, seeds hectoliter weight, 100-seed weight, seeds length, seeds wide, seeds thickness, pods length, pods wide, pods weight, seeds per pods, and seeds weight per pods, showed significant differences (Pâ‰¤ 0.05 among cultivars. PaceÃ±o and IT90K-277-2 cultivars showed the higher seeds weight per plant. The linear regression models showed correlation coefficients â‰¥0.92. In these models, the seeds weight per plant, pods per cluster, pods per plant, cluster per plant and pods length showed significant correlations (Pâ‰¤ 0.05. In conclusion, the results showed that grain yield differ among cultivars and for its estimation, the prediction models showed determination coefficients highly dependable.
Evaluating predictive models of software quality
International Nuclear Information System (INIS)
Ciaschini, V; Canaparo, M; Ronchieri, E; Salomoni, D
2014-01-01
Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.
Gamma-Ray Pulsars Models and Predictions
Harding, A K
2001-01-01
Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Clinical Predictive Modeling Development and Deployment through FHIR Web Services.
Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng
2015-01-01
Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.
Sensitivity analysis of predictive models with an automated adjoint generator
International Nuclear Information System (INIS)
Pin, F.G.; Oblow, E.M.
1987-01-01
The adjoint method is a well established sensitivity analysis methodology that is particularly efficient in large-scale modeling problems. The coefficients of sensitivity of a given response with respect to every parameter involved in the modeling code can be calculated from the solution of a single adjoint run of the code. Sensitivity coefficients provide a quantitative measure of the importance of the model data in calculating the final results. The major drawback of the adjoint method is the requirement for calculations of very large numbers of partial derivatives to set up the adjoint equations of the model. ADGEN is a software system that has been designed to eliminate this drawback and automatically implement the adjoint formulation in computer codes. The ADGEN system will be described and its use for improving performance assessments and predictive simulations will be discussed. 8 refs., 1 fig
International Nuclear Information System (INIS)
Mahlia, T.M.I.
2004-01-01
There are many papers that have been published on energy efficiency standards and labels. However, a very limited number of articles on the subject have discussed the transformation of appliance energy efficiency in the market after the programs are implemented. This paper is an attempt to investigate the market transformation due to implementation of minimum energy efficiency standards and energy labels. Even though the paper only investigates room air conditioners as a case study, the method is also applicable for predicting market transformation for other household electrical appliances
An analytical model for climatic predictions
International Nuclear Information System (INIS)
Njau, E.C.
1990-12-01
A climatic model based upon analytical expressions is presented. This model is capable of making long-range predictions of heat energy variations on regional or global scales. These variations can then be transformed into corresponding variations of some other key climatic parameters since weather and climatic changes are basically driven by differential heating and cooling around the earth. On the basis of the mathematical expressions upon which the model is based, it is shown that the global heat energy structure (and hence the associated climatic system) are characterized by zonally as well as latitudinally propagating fluctuations at frequencies downward of 0.5 day -1 . We have calculated the propagation speeds for those particular frequencies that are well documented in the literature. The calculated speeds are in excellent agreement with the measured speeds. (author). 13 refs
An Anisotropic Hardening Model for Springback Prediction
Zeng, Danielle; Xia, Z. Cedric
2005-08-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.
An Anisotropic Hardening Model for Springback Prediction
International Nuclear Information System (INIS)
Zeng, Danielle; Xia, Z. Cedric
2005-01-01
As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test
Maintaining formal models of living guidelines efficiently
Seyfang, Andreas; Martínez-Salvador, Begoña; Serban, Radu; Wittenberg, Jolanda; Miksch, Silvia; Marcos, Mar; Ten Teije, Annette; Rosenbrand, Kitty C J G M
2007-01-01
Translating clinical guidelines into formal models is beneficial in many ways, but expensive. The progress in medical knowledge requires clinical guidelines to be updated at relatively short intervals, leading to the term living guideline. This causes potentially expensive, frequent updates of the
AN EFFICIENT STRUCTURAL REANALYSIS MODEL FOR ...
African Journals Online (AJOL)
be required if complete and exact analysis would be carried out. This paper ... qualities even under significantly large design modifications. A numerical example has been presented to show potential capabilities of theproposed model. INTRODUCTION ... equilibrium conditions in the structural system and the subsequent ...
Efficient Modelling Methodology for Reconfigurable Underwater Robots
DEFF Research Database (Denmark)
Nielsen, Mikkel Cornelius; Blanke, Mogens; Schjølberg, Ingrid
2016-01-01
This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF). Th...
Nonconvex Model Predictive Control for Commercial Refrigeration
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Larsen, Lars F.S.; Jørgensen, John Bagterp
2013-01-01
function, however, is nonconvex due to the temperature dependence of thermodynamic efficiency. To handle this nonconvexity we propose a sequential convex optimization method, which typically converges in fewer than 5 or so iterations. We employ a fast convex quadratic programming solver to carry out...... the iterations, which is more than fast enough to run in real-time. We demonstrate our method on a realistic model, with a full year simulation and 15 minute time periods, using historical electricity prices and weather data, as well as random variations in thermal load. These simulations show substantial cost...... capacity associated with large penetration of intermittent renewable energy sources in a future smart grid....
Web tools for predictive toxicology model building.
Jeliazkova, Nina
2012-07-01
The development and use of web tools in chemistry has accumulated more than 15 years of history already. Powered by the advances in the Internet technologies, the current generation of web systems are starting to expand into areas, traditional for desktop applications. The web platforms integrate data storage, cheminformatics and data analysis tools. The ease of use and the collaborative potential of the web is compelling, despite the challenges. The topic of this review is a set of recently published web tools that facilitate predictive toxicology model building. The focus is on software platforms, offering web access to chemical structure-based methods, although some of the frameworks could also provide bioinformatics or hybrid data analysis functionalities. A number of historical and current developments are cited. In order to provide comparable assessment, the following characteristics are considered: support for workflows, descriptor calculations, visualization, modeling algorithms, data management and data sharing capabilities, availability of GUI or programmatic access and implementation details. The success of the Web is largely due to its highly decentralized, yet sufficiently interoperable model for information access. The expected future convergence between cheminformatics and bioinformatics databases provides new challenges toward management and analysis of large data sets. The web tools in predictive toxicology will likely continue to evolve toward the right mix of flexibility, performance, scalability, interoperability, sets of unique features offered, friendly user interfaces, programmatic access for advanced users, platform independence, results reproducibility, curation and crowdsourcing utilities, collaborative sharing and secure access.
Model Predictive Control for Connected Hybrid Electric Vehicles
Directory of Open Access Journals (Sweden)
Kaijiang Yu
2015-01-01
Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.
Predictions of models for environmental radiological assessment
International Nuclear Information System (INIS)
Peres, Sueli da Silva; Lauria, Dejanira da Costa; Mahler, Claudio Fernando
2011-01-01
In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for 137 Cs and 60 Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...
An Efficient Virtual Trachea Deformation Model
Directory of Open Access Journals (Sweden)
Cui Tong
2016-01-01
Full Text Available In this paper, we present a virtual tactile model with the physically based skeleton to simulate force and deformation between a rigid tool and the soft organ. When the virtual trachea is handled, a skeleton model suitable for interactive environments is established, which consists of ligament layers, cartilage rings and muscular bars. In this skeleton, the contact force goes through the ligament layer, and produces the load effects of the joints , which are connecting the ligament layer and cartilage rings. Due to the nonlinear shape deformation inside the local neighbourhood of a contact region, the RBF method is applied to modify the result of linear global shape deformation by adding the nonlinear effect inside. Users are able to handle the virtual trachea, and the results from the examples with the mechanical properties of the human trachea are given to demonstrate the effectiveness of the approach.
Efficient Matrix Models for Relational Learning
2009-10-01
base learners and h1:r is the ensemble learner. For example, consider the case where h1, . . . , hr are linear discriminants. The weighted vote of...a multilinear form naturally leads one to consider tensor factorization: e.g., UAV T is a special case of Tucker decomposition [129] on a 2D- tensor , a...matrix. Our five modeling choices can also be used to differentiate tensor factorizations, but the choices may be subtler for tensors than for
Exploiting partial knowledge for efficient model analysis
Macedo, Nuno; Cunha, Alcino; Pessoa, Eduardo José Dias
2017-01-01
The advancement of constraint solvers and model checkers has enabled the effective analysis of high-level formal specification languages. However, these typically handle a specification in an opaque manner, amalgamating all its constraints in a single monolithic verification task, which often proves to be a performance bottleneck. This paper addresses this issue by proposing a solving strategy that exploits user-provided partial knowledge, namely by assigning symbolic bounds to the problem’s ...
A Predictive Maintenance Model for Railway Tracks
DEFF Research Database (Denmark)
Li, Rui; Wen, Min; Salling, Kim Bang
2015-01-01
presents a mathematical model based on Mixed Integer Programming (MIP) which is designed to optimize the predictive railway tamping activities for ballasted track for the time horizon up to four years. The objective function is setup to minimize the actual costs for the tamping machine (measured by time......). Five technical and economic aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality...
Predictive Capability Maturity Model for computational modeling and simulation.
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.
Effective modelling for predictive analytics in data science ...
African Journals Online (AJOL)
Effective modelling for predictive analytics in data science. ... the nearabsence of empirical or factual predictive analytics in the mainstream research going on ... Keywords: Predictive Analytics, Big Data, Business Intelligence, Project Planning.
Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong
2015-04-08
High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of Deep Learning Models for Predicting CO2 Flux
Halem, M.; Nguyen, P.; Frankel, D.
2017-12-01
Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.
Automated Irrigation System using Weather Prediction for Efficient Usage of Water Resources
Susmitha, A.; Alakananda, T.; Apoorva, M. L.; Ramesh, T. K.
2017-08-01
In agriculture the major problem which farmers face is the water scarcity, so to improve the usage of water one of the irrigation system using drip irrigation which is implemented is “Automated irrigation system with partition facility for effective irrigation of small scale farms” (AISPF). But this method has some drawbacks which can be improved and here we are with a method called “Automated irrigation system using weather prediction for efficient usage of water resources’ (AISWP), it solves the shortcomings of AISPF process. AISWP method helps us to use the available water resources more efficiently by sensing the moisture present in the soil and apart from that it is actually predicting the weather by sensing two parameters temperature and humidity thereby processing the measured values through an algorithm and releasing the water accordingly which is an added feature of AISWP so that water can be efficiently used.
Investigating market efficiency through a forecasting model based on differential equations
de Resende, Charlene C.; Pereira, Adriano C. M.; Cardoso, Rodrigo T. N.; de Magalhães, A. R. Bosco
2017-05-01
A new differential equation based model for stock price trend forecast is proposed as a tool to investigate efficiency in an emerging market. Its predictive power showed statistically to be higher than the one of a completely random model, signaling towards the presence of arbitrage opportunities. Conditions for accuracy to be enhanced are investigated, and application of the model as part of a trading strategy is discussed.
Computationally efficient models of neuromuscular recruitment and mechanics.
Song, D; Raphael, G; Lan, N; Loeb, G E
2008-06-01
We have improved the stability and computational efficiency of a physiologically realistic, virtual muscle (VM 3.*) model (Cheng et al 2000 J. Neurosci. Methods 101 117-30) by a simpler structure of lumped fiber types and a novel recruitment algorithm. In the new version (VM 4.0), the mathematical equations are reformulated into state-space representation and structured into a CMEX S-function in SIMULINK. A continuous recruitment scheme approximates the discrete recruitment of slow and fast motor units under physiological conditions. This makes it possible to predict force output during smooth recruitment and derecruitment without having to simulate explicitly a large number of independently recruited units. We removed the intermediate state variable, effective length (Leff), which had been introduced to model the delayed length dependency of the activation-frequency relationship, but which had little effect and could introduce instability under physiological conditions of use. Both of these changes greatly reduce the number of state variables with little loss of accuracy compared to the original VM. The performance of VM 4.0 was validated by comparison with VM 3.1.5 for both single-muscle force production and a multi-joint task. The improved VM 4.0 model is more suitable for the analysis of neural control of movements and for design of prosthetic systems to restore lost or impaired motor functions. VM 4.0 is available via the internet and includes options to use the original VM model, which remains useful for detailed simulations of single motor unit behavior.
Computationally efficient models of neuromuscular recruitment and mechanics
Song, D.; Raphael, G.; Lan, N.; Loeb, G. E.
2008-06-01
We have improved the stability and computational efficiency of a physiologically realistic, virtual muscle (VM 3.*) model (Cheng et al 2000 J. Neurosci. Methods 101 117-30) by a simpler structure of lumped fiber types and a novel recruitment algorithm. In the new version (VM 4.0), the mathematical equations are reformulated into state-space representation and structured into a CMEX S-function in SIMULINK. A continuous recruitment scheme approximates the discrete recruitment of slow and fast motor units under physiological conditions. This makes it possible to predict force output during smooth recruitment and derecruitment without having to simulate explicitly a large number of independently recruited units. We removed the intermediate state variable, effective length (Leff), which had been introduced to model the delayed length dependency of the activation-frequency relationship, but which had little effect and could introduce instability under physiological conditions of use. Both of these changes greatly reduce the number of state variables with little loss of accuracy compared to the original VM. The performance of VM 4.0 was validated by comparison with VM 3.1.5 for both single-muscle force production and a multi-joint task. The improved VM 4.0 model is more suitable for the analysis of neural control of movements and for design of prosthetic systems to restore lost or impaired motor functions. VM 4.0 is available via the internet and includes options to use the original VM model, which remains useful for detailed simulations of single motor unit behavior.
Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model
Wang, Qijie
2015-08-01
The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.
International Nuclear Information System (INIS)
Fang, Xiande; Xu, Yu
2011-01-01
The empirical model of turbine efficiency is necessary for the control- and/or diagnosis-oriented simulation and useful for the simulation and analysis of dynamic performances of the turbine equipment and systems, such as air cycle refrigeration systems, power plants, turbine engines, and turbochargers. Existing empirical models of turbine efficiency are insufficient because there is no suitable form available for air cycle refrigeration turbines. This work performs a critical review of empirical models (called mean value models in some literature) of turbine efficiency and develops an empirical model in the desired form for air cycle refrigeration, the dominant cooling approach in aircraft environmental control systems. The Taylor series and regression analysis are used to build the model, with the Taylor series being used to expand functions with the polytropic exponent and the regression analysis to finalize the model. The measured data of a turbocharger turbine and two air cycle refrigeration turbines are used for the regression analysis. The proposed model is compact and able to present the turbine efficiency map. Its predictions agree with the measured data very well, with the corrected coefficient of determination R c 2 ≥ 0.96 and the mean absolute percentage deviation = 1.19% for the three turbines. -- Highlights: → Performed a critical review of empirical models of turbine efficiency. → Developed an empirical model in the desired form for air cycle refrigeration, using the Taylor expansion and regression analysis. → Verified the method for developing the empirical model. → Verified the model.
Combining GPS measurements and IRI model predictions
International Nuclear Information System (INIS)
Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Bilitza, D.
2002-01-01
The free electrons distributed in the ionosphere (between one hundred and thousands of km in height) produce a frequency-dependent effect on Global Positioning System (GPS) signals: a delay in the pseudo-orange and an advance in the carrier phase. These effects are proportional to the columnar electron density between the satellite and receiver, i.e. the integrated electron density along the ray path. Global ionospheric TEC (total electron content) maps can be obtained with GPS data from a network of ground IGS (international GPS service) reference stations with an accuracy of few TEC units. The comparison with the TOPEX TEC, mainly measured over the oceans far from the IGS stations, shows a mean bias and standard deviation of about 2 and 5 TECUs respectively. The discrepancies between the STEC predictions and the observed values show an RMS typically below 5 TECUs (which also includes the alignment code noise). he existence of a growing database 2-hourly global TEC maps and with resolution of 5x2.5 degrees in longitude and latitude can be used to improve the IRI prediction capability of the TEC. When the IRI predictions and the GPS estimations are compared for a three month period around the Solar Maximum, they are in good agreement for middle latitudes. An over-determination of IRI TEC has been found at the extreme latitudes, the IRI predictions being, typically two times higher than the GPS estimations. Finally, local fits of the IRI model can be done by tuning the SSN from STEC GPS observations
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Mathematical models for indoor radon prediction
International Nuclear Information System (INIS)
Malanca, A.; Pessina, V.; Dallara, G.
1995-01-01
It is known that the indoor radon (Rn) concentration can be predicted by means of mathematical models. The simplest model relies on two variables only: the Rn source strength and the air exchange rate. In the Lawrence Berkeley Laboratory (LBL) model several environmental parameters are combined into a complex equation; besides, a correlation between the ventilation rate and the Rn entry rate from the soil is admitted. The measurements were carried out using activated carbon canisters. Seventy-five measurements of Rn concentrations were made inside two rooms placed on the second floor of a building block. One of the rooms had a single-glazed window whereas the other room had a double pane window. During three different experimental protocols, the mean Rn concentration was always higher into the room with a double-glazed window. That behavior can be accounted for by the simplest model. A further set of 450 Rn measurements was collected inside a ground-floor room with a grounding well in it. This trend maybe accounted for by the LBL model
Towards predictive models for transitionally rough surfaces
Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo
2017-11-01
We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).
Predicting Equity Markets with Digital Online Media Sentiment: Evidence from Markov-switching Models
Nooijen, S.J.; Broda, S.A.
2016-01-01
The authors examine the predictive capabilities of online investor sentiment for the returns and volatility of MSCI U.S. Equity Sector Indices by including exogenous variables in the mean and volatility specifications of a Markov-switching model. As predicted by the semistrong efficient market
A Coupled Probabilistic Wake Vortex and Aircraft Response Prediction Model
Gloudemans, Thijs; Van Lochem, Sander; Ras, Eelco; Malissa, Joel; Ahmad, Nashat N.; Lewis, Timothy A.
2016-01-01
Wake vortex spacing standards along with weather and runway occupancy time, restrict terminal area throughput and impose major constraints on the overall capacity and efficiency of the National Airspace System (NAS). For more than two decades, the National Aeronautics and Space Administration (NASA) has been conducting research on characterizing wake vortex behavior in order to develop fast-time wake transport and decay prediction models. It is expected that the models can be used in the systems level design of advanced air traffic management (ATM) concepts that safely increase the capacity of the NAS. It is also envisioned that at a later stage of maturity, these models could potentially be used operationally, in groundbased spacing and scheduling systems as well as on the flight deck.
Explicit Nonlinear Model Predictive Control Theory and Applications
Grancharova, Alexandra
2012-01-01
Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...
Dinucleotide controlled null models for comparative RNA gene prediction
Directory of Open Access Journals (Sweden)
Gesell Tanja
2008-05-01
Full Text Available Abstract Background Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. Results We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. Conclusion SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require
Dinucleotide controlled null models for comparative RNA gene prediction.
Gesell, Tanja; Washietl, Stefan
2008-05-27
Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple alignments can be considered. SISSIz
Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N; McGinnis, Christopher S; Zhou, Joseph X; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy
2017-02-28
Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.
Resource-estimation models and predicted discovery
International Nuclear Information System (INIS)
Hill, G.W.
1982-01-01
Resources have been estimated by predictive extrapolation from past discovery experience, by analogy with better explored regions, or by inference from evidence of depletion of targets for exploration. Changes in technology and new insights into geological mechanisms have occurred sufficiently often in the long run to form part of the pattern of mature discovery experience. The criterion, that a meaningful resource estimate needs an objective measure of its precision or degree of uncertainty, excludes 'estimates' based solely on expert opinion. This is illustrated by development of error measures for several persuasive models of discovery and production of oil and gas in USA, both annually and in terms of increasing exploration effort. Appropriate generalizations of the models resolve many points of controversy. This is illustrated using two USA data sets describing discovery of oil and of U 3 O 8 ; the latter set highlights an inadequacy of available official data. Review of the oil-discovery data set provides a warrant for adjusting the time-series prediction to a higher resource figure for USA petroleum. (author)
Frontier models for evaluating environmental efficiency: an overview
Oude Lansink, A.G.J.M.; Wall, A.
2014-01-01
Our aim in this paper is to provide a succinct overview of frontier-based models used to evaluate environmental efficiency, with a special emphasis on agricultural activity. We begin by providing a brief, up-to-date review of the main approaches used to measure environmental efficiency, with
Directory of Open Access Journals (Sweden)
Sergio A. Alvarado
2010-12-01
Full Text Available Objetivo: Evaluar la eficiencia predictiva de modelos estadísticos paramétricos y no paramétricos para predecir episodios críticos de contaminación por material particulado PM10 del día siguiente, que superen en Santiago de Chile la norma de calidad diaria. Una predicción adecuada de tales episodios permite a la autoridad decretar medidas restrictivas que aminoren la gravedad del episodio, y consecuentemente proteger la salud de la comunidad. Método: Se trabajó con las concentraciones de material particulado PM10 registradas en una estación asociada a la red de monitorización de la calidad del aire MACAM-2, considerando 152 observaciones diarias de 14 variables, y con información meteorológica registrada durante los años 2001 a 2004. Se ajustaron modelos estadísticos paramétricos Gamma usando el paquete estadístico STATA v11, y no paramétricos usando una demo del software estadístico MARS v 2.0 distribuida por Salford-Systems. Resultados: Ambos métodos de modelación presentan una alta correlación entre los valores observados y los predichos. Los modelos Gamma presentan mejores aciertos que MARS para las concentraciones de PM10 con valores Objective: To evaluate the predictive efficiency of two statistical models (one parametric and the other non-parametric to predict critical episodes of air pollution exceeding daily air quality standards in Santiago, Chile by using the next day PM10 maximum 24h value. Accurate prediction of such episodes would allow restrictive measures to be applied by health authorities to reduce their seriousness and protect the community´s health. Methods: We used the PM10 concentrations registered by a station of the Air Quality Monitoring Network (152 daily observations of 14 variables and meteorological information gathered from 2001 to 2004. To construct predictive models, we fitted a parametric Gamma model using STATA v11 software and a non-parametric MARS model by using a demo version of Salford
Prediction of pipeline corrosion rate based on grey Markov models
International Nuclear Information System (INIS)
Chen Yonghong; Zhang Dafa; Peng Guichu; Wang Yuemin
2009-01-01
Based on the model that combined by grey model and Markov model, the prediction of corrosion rate of nuclear power pipeline was studied. Works were done to improve the grey model, and the optimization unbiased grey model was obtained. This new model was used to predict the tendency of corrosion rate, and the Markov model was used to predict the residual errors. In order to improve the prediction precision, rolling operation method was used in these prediction processes. The results indicate that the improvement to the grey model is effective and the prediction precision of the new model combined by the optimization unbiased grey model and Markov model is better, and the use of rolling operation method may improve the prediction precision further. (authors)
Natarajan, R; Nirdosh, I; Venuvanalingam, P; Ramalingam, M
2002-07-01
The QPPR approach has been used to model cupferrons as mineral collectors. Separation efficiencies (Es) of these chelating agents have been correlated with property parameters namely, log P, log Koc, substituent-constant sigma, Mullikan and ESP derived charges using multiple regression analysis. Es of substituted-cupferrons in the flotation of a uranium ore could be predicted within experimental error either by log P or log Koc and an electronic parameter. However, when a halo, methoxy or phenyl substituent was in para to the chelating group, experimental Es was greater than the predicted values. Inclusion of a Boolean type indicative parameter improved significantly the predictability power. This approach has been extended to 2-aminothiophenols that were used to float a zinc ore and the correlations were found to be reasonably good.
An Operational Model for the Prediction of Jet Blast
2012-01-09
This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...
Ozonolysis of Model Olefins-Efficiency of Antiozonants
Huntink, N.M.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.
2006-01-01
In this study, the efficiency of several potential long lasting antiozonants was studied by ozonolysis of model olefins. 2-Methyl-2-pentene was selected as a model for natural rubber (NR) and 5-phenyl-2-hexene as a model for styrene butadiene rubber (SBR). A comparison was made between the
The effectiveness and efficiency of model driven game design
Dormans, Joris
2012-01-01
In order for techniques from Model Driven Engineering to be accepted at large by the game industry, it is critical that the effectiveness and efficiency of these techniques are proven for game development. There is no lack of game design models, but there is no model that has surfaced as an industry
Data driven propulsion system weight prediction model
Gerth, Richard J.
1994-10-01
The objective of the research was to develop a method to predict the weight of paper engines, i.e., engines that are in the early stages of development. The impetus for the project was the Single Stage To Orbit (SSTO) project, where engineers need to evaluate alternative engine designs. Since the SSTO is a performance driven project the performance models for alternative designs were well understood. The next tradeoff is weight. Since it is known that engine weight varies with thrust levels, a model is required that would allow discrimination between engines that produce the same thrust. Above all, the model had to be rooted in data with assumptions that could be justified based on the data. The general approach was to collect data on as many existing engines as possible and build a statistical model of the engines weight as a function of various component performance parameters. This was considered a reasonable level to begin the project because the data would be readily available, and it would be at the level of most paper engines, prior to detailed component design.
Predictive modeling of emergency cesarean delivery.
Directory of Open Access Journals (Sweden)
Carlos Campillo-Artero
Full Text Available To increase discriminatory accuracy (DA for emergency cesarean sections (ECSs.We prospectively collected data on and studied all 6,157 births occurring in 2014 at four public hospitals located in three different autonomous communities of Spain. To identify risk factors (RFs for ECS, we used likelihood ratios and logistic regression, fitted a classification tree (CTREE, and analyzed a random forest model (RFM. We used the areas under the receiver-operating-characteristic (ROC curves (AUCs to assess their DA.The magnitude of the LR+ for all putative individual RFs and ORs in the logistic regression models was low to moderate. Except for parity, all putative RFs were positively associated with ECS, including hospital fixed-effects and night-shift delivery. The DA of all logistic models ranged from 0.74 to 0.81. The most relevant RFs (pH, induction, and previous C-section in the CTREEs showed the highest ORs in the logistic models. The DA of the RFM and its most relevant interaction terms was even higher (AUC = 0.94; 95% CI: 0.93-0.95.Putative fetal, maternal, and contextual RFs alone fail to achieve reasonable DA for ECS. It is the combination of these RFs and the interactions between them at each hospital that make it possible to improve the DA for the type of delivery and tailor interventions through prediction to improve the appropriateness of ECS indications.
Estimating confidence intervals in predicted responses for oscillatory biological models.
St John, Peter C; Doyle, Francis J
2013-07-29
The dynamics of gene regulation play a crucial role in a cellular control: allowing the cell to express the right proteins to meet changing needs. Some needs, such as correctly anticipating the day-night cycle, require complicated oscillatory features. In the analysis of gene regulatory networks, mathematical models are frequently used to understand how a network's structure enables it to respond appropriately to external inputs. These models typically consist of a set of ordinary differential equations, describing a network of biochemical reactions, and unknown kinetic parameters, chosen such that the model best captures experimental data. However, since a model's parameter values are uncertain, and since dynamic responses to inputs are highly parameter-dependent, it is difficult to assess the confidence associated with these in silico predictions. In particular, models with complex dynamics - such as oscillations - must be fit with computationally expensive global optimization routines, and cannot take advantage of existing measures of identifiability. Despite their difficulty to model mathematically, limit cycle oscillations play a key role in many biological processes, including cell cycling, metabolism, neuron firing, and circadian rhythms. In this study, we employ an efficient parameter estimation technique to enable a bootstrap uncertainty analysis for limit cycle models. Since the primary role of systems biology models is the insight they provide on responses to rate perturbations, we extend our uncertainty analysis to include first order sensitivity coefficients. Using a literature model of circadian rhythms, we show how predictive precision is degraded with decreasing sample points and increasing relative error. Additionally, we show how this method can be used for model discrimination by comparing the output identifiability of two candidate model structures to published literature data. Our method permits modellers of oscillatory systems to confidently
Model Predictive Control based on Finite Impulse Response Models
DEFF Research Database (Denmark)
Prasath, Guru; Jørgensen, John Bagterp
2008-01-01
We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...... and related to the uncertainty of the impulse response coefficients. The simulations can be used to benchmark l2 MPC against FIR based robust MPC as well as to estimate the maximum performance improvements by robust MPC....
Directory of Open Access Journals (Sweden)
Michael J. Pelosi
2014-12-01
Full Text Available Development teams and programmers must retain critical information about their work during work intervals and gaps in order to improve future performance when work resumes. Despite time lapses, project managers want to maximize coding efficiency and effectiveness. By developing a mathematically justified, practically useful, and computationally tractable quantitative and cognitive model of learning and memory retention, this study establishes calculations designed to maximize scheduling payoff and optimize developer efficiency and effectiveness.
Evaluating Energy Efficiency Policies with Energy-Economy Models
Energy Technology Data Exchange (ETDEWEB)
Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.
2010-08-01
The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.
Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model
DEFF Research Database (Denmark)
Khooban, Mohammad-Hassan; Vafamand, Navid; Niknam, Taher
2017-01-01
Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non......-quadratic Lyapunov function for the speed control of EVs including time-delay states and parameter uncertainty. Experimental data, using the Federal Test Procedure (FTP-75), is applied to test the performance and robustness of the suggested controller in the presence of time-varying parameters. Besides, a comparison...... is made between the results of the suggested robust strategy and those obtained from some of the most recent studies on the same topic, to assess the efficiency of the suggested controller. Finally, the experimental results based on a TMS320F28335 DSP are performed on a direct current motor. Simulation...
Directory of Open Access Journals (Sweden)
Golden Makaka
2015-01-01
Full Text Available With the increase in energy consumption by buildings in keeping the indoor environment within the comfort levels and the ever increase of energy price there is need to design buildings that require minimal energy to keep the indoor environment within the comfort levels. There is need to predict the indoor temperature during the design stage. In this paper a statistical indoor temperature prediction model was developed. A passive solar house was constructed; thermal behaviour was simulated using ECOTECT and DOE computer software. The thermal behaviour of the house was monitored for a year. The indoor temperature was observed to be in the comfort level for 85% of the total time monitored. The simulation results were compared with the measured results and those from the prediction model. The statistical prediction model was found to agree (95% with the measured results. Simulation results were observed to agree (96% with the statistical prediction model. Modeled indoor temperature was most sensitive to the outdoor temperatures variations. The daily mean peak ones were found to be more pronounced in summer (5% than in winter (4%. The developed model can be used to predict the instantaneous indoor temperature for a specific house design.
Methodology for Designing Models Predicting Success of Infertility Treatment
Alireza Zarinara; Mohammad Mahdi Akhondi; Hojjat Zeraati; Koorsh Kamali; Kazem Mohammad
2016-01-01
Abstract Background: The prediction models for infertility treatment success have presented since 25 years ago. There are scientific principles for designing and applying the prediction models that is also used to predict the success rate of infertility treatment. The purpose of this study is to provide basic principles for designing the model to predic infertility treatment success. Materials and Methods: In this paper, the principles for developing predictive models are explained and...
Modeling of Methods to Control Heat-Consumption Efficiency
Tsynaeva, E. A.; Tsynaeva, A. A.
2016-11-01
In this work, consideration has been given to thermophysical processes in automated heat consumption control systems (AHCCSs) of buildings, flow diagrams of these systems, and mathematical models describing the thermophysical processes during the systems' operation; an analysis of adequacy of the mathematical models has been presented. A comparison has been made of the operating efficiency of the systems and the methods to control the efficiency. It has been determined that the operating efficiency of an AHCCS depends on its diagram and the temperature chart of central quality control (CQC) and also on the temperature of a low-grade heat source for the system with a heat pump.
Finite Unification: Theory, Models and Predictions
Heinemeyer, S; Zoupanos, G
2011-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig...
Supplementary Material for: DASPfind: new efficient method to predict drug–target interactions
Ba Alawi, Wail
2016-01-01
Abstract Background Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date, many computational methods have been proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions. Results Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly outperforms other existing methods when the single top-ranked predictions are considered, resulting in 46.17 % of these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating novel predictions for the Ion Channel dataset and validating them manually. Conclusions DASPfind is a computational method for finding reliable new interactions between drugs and proteins. We show over six different DTI datasets that DASPfind outperforms other state-of-the-art methods when the single top-ranked predictions are considered, or when a drug with no known targets or with few known targets is considered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus reducing the cost of necessary experimental verifications in the process of drug discovery
Revised predictive equations for salt intrusion modelling in estuaries
Gisen, J.I.A.; Savenije, H.H.G.; Nijzink, R.C.
2015-01-01
For one-dimensional salt intrusion models to be predictive, we need predictive equations to link model parameters to observable hydraulic and geometric variables. The one-dimensional model of Savenije (1993b) made use of predictive equations for the Van der Burgh coefficient $K$ and the dispersion
Neutrino nucleosynthesis in supernovae: Shell model predictions
International Nuclear Information System (INIS)
Haxton, W.C.
1989-01-01
Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab
Hierarchical Model Predictive Control for Resource Distribution
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob
2010-01-01
units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The approach presented is based on quadratic optimization and possess the properties of low algorithmic complexity and of scalability. In particular, the proposed design methodology...
Distributed model predictive control made easy
Negenborn, Rudy
2014-01-01
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those ...
Model predictive control of a wind turbine modelled in Simpack
International Nuclear Information System (INIS)
Jassmann, U; Matzke, D; Reiter, M; Abel, D; Berroth, J; Schelenz, R; Jacobs, G
2014-01-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine
Model predictive control of a wind turbine modelled in Simpack
Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.
2014-06-01
Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to
Building predictive models of soil particle-size distribution
Directory of Open Access Journals (Sweden)
Alessandro Samuel-Rosa
2013-04-01
Full Text Available Is it possible to build predictive models (PMs of soil particle-size distribution (psd in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index. The PMs explained more than half of the data variance. This performance is similar to (or even better than that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd of soils in regions of complex geology.
Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie
2010-10-01
The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.
Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.
Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie
2010-07-01
The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.
Data-driven modeling and real-time distributed control for energy efficient manufacturing systems
International Nuclear Information System (INIS)
Zou, Jing; Chang, Qing; Arinez, Jorge; Xiao, Guoxian
2017-01-01
As manufacturers face the challenges of increasing global competition and energy saving requirements, it is imperative to seek out opportunities to reduce energy waste and overall cost. In this paper, a novel data-driven stochastic manufacturing system modeling method is proposed to identify and predict energy saving opportunities and their impact on production. A real-time distributed feedback production control policy, which integrates the current and predicted system performance, is established to improve the overall profit and energy efficiency. A case study is presented to demonstrate the effectiveness of the proposed control policy. - Highlights: • A data-driven stochastic manufacturing system model is proposed. • Real-time system performance and energy saving opportunity identification method is developed. • Prediction method for future potential system performance and energy saving opportunity is developed. • A real-time distributed feedback control policy is established to improve energy efficiency and overall system profit.
Hussain, S.; Brennan, C.
2017-07-01
This paper presents an efficient ray tracing algorithm for propagation prediction in urban environments. The work presented in this paper builds upon previous work in which the maximum coverage area where rays can propagate after interaction with a wall or vertical edge is described by a lit polygon. The shadow regions formed by buildings within the lit polygon are described by shadow polygons. In this paper, the lit polygons of images are mapped to a coarse grid superimposed over the coverage area. This mapping reduces the active image tree significantly for a given receiver point to accelerate the ray finding process. The algorithm also presents an efficient method of quickly determining the valid ray segments for a mobile receiver moving along a linear trajectory. The validation results show considerable computation time reduction with good agreement between the simulated and measured data for propagation prediction in large urban environments.
Evaluation of the energy efficiency of enzyme fermentation by mechanistic modeling.
Albaek, Mads O; Gernaey, Krist V; Hansen, Morten S; Stocks, Stuart M
2012-04-01
Modeling biotechnological processes is key to obtaining increased productivity and efficiency. Particularly crucial to successful modeling of such systems is the coupling of the physical transport phenomena and the biological activity in one model. We have applied a model for the expression of cellulosic enzymes by the filamentous fungus Trichoderma reesei and found excellent agreement with experimental data. The most influential factor was demonstrated to be viscosity and its influence on mass transfer. Not surprisingly, the biological model is also shown to have high influence on the model prediction. At different rates of agitation and aeration as well as headspace pressure, we can predict the energy efficiency of oxygen transfer, a key process parameter for economical production of industrial enzymes. An inverse relationship between the productivity and energy efficiency of the process was found. This modeling approach can be used by manufacturers to evaluate the enzyme fermentation process for a range of different process conditions with regard to energy efficiency. Copyright © 2011 Wiley Periodicals, Inc.
Predictive integrated modelling for ITER scenarios
International Nuclear Information System (INIS)
Artaud, J.F.; Imbeaux, F.; Aniel, T.; Basiuk, V.; Eriksson, L.G.; Giruzzi, G.; Hoang, G.T.; Huysmans, G.; Joffrin, E.; Peysson, Y.; Schneider, M.; Thomas, P.
2005-01-01
The uncertainty on the prediction of ITER scenarios is evaluated. 2 transport models which have been extensively validated against the multi-machine database are used for the computation of the transport coefficients. The first model is GLF23, the second called Kiauto is a model in which the profile of dilution coefficient is a gyro Bohm-like analytical function, renormalized in order to get profiles consistent with a given global energy confinement scaling. The package of codes CRONOS is used, it gives access to the dynamics of the discharge and allows the study of interplay between heat transport, current diffusion and sources. The main motivation of this work is to study the influence of parameters such plasma current, heat, density, impurities and toroidal moment transport. We can draw the following conclusions: 1) the target Q = 10 can be obtained in ITER hybrid scenario at I p = 13 MA, using either the DS03 two terms scaling or the GLF23 model based on the same pedestal; 2) I p = 11.3 MA, Q = 10 can be reached only assuming a very peaked pressure profile and a low pedestal; 3) at fixed Greenwald fraction, Q increases with density peaking; 4) achieving a stationary q-profile with q > 1 requires a large non-inductive current fraction (80%) that could be provided by 20 to 40 MW of LHCD; and 5) owing to the high temperature the q-profile penetration is delayed and q = 1 is reached about 600 s in ITER hybrid scenario at I p = 13 MA, in the absence of active q-profile control. (A.C.)
Structure model of energy efficiency indicators and applications
International Nuclear Information System (INIS)
Wu, Li-Ming; Chen, Bai-Sheng; Bor, Yun-Chang; Wu, Yin-Chin
2007-01-01
For the purposes of energy conservation and environmental protection, the government of Taiwan has instigated long-term policies to continuously encourage and assist industry in improving the efficiency of energy utilization. While multiple actions have led to practical energy saving to a limited extent, no strong evidence of improvement in energy efficiency was observed from the energy efficiency indicators (EEI) system, according to the annual national energy statistics and survey. A structural analysis of EEI is needed in order to understand the role that energy efficiency plays in the EEI system. This work uses the Taylor series expansion to develop a structure model for EEI at the level of the process sector of industry. The model is developed on the premise that the design parameters of the process are used in comparison with the operational parameters for energy differences. The utilization index of production capability and the variation index of energy utilization are formulated in the model to describe the differences between EEIs. Both qualitative and quantitative methods for the analysis of energy efficiency and energy savings are derived from the model. Through structural analysis, the model showed that, while the performance of EEI is proportional to the process utilization index of production capability, it is possible that energy may develop in a direction opposite to that of EEI. This helps to explain, at least in part, the inconsistency between EEI and energy savings. An energy-intensive steel plant in Taiwan was selected to show the application of the model. The energy utilization efficiency of the plant was evaluated and the amount of energy that had been saved or over-used in the production process was estimated. Some insights gained from the model outcomes are helpful to further enhance energy efficiency in the plant
Energy efficiency resource modeling in generation expansion planning
International Nuclear Information System (INIS)
Ghaderi, A.; Parsa Moghaddam, M.; Sheikh-El-Eslami, M.K.
2014-01-01
Energy efficiency plays an important role in mitigating energy security risks and emission problems. In this paper, energy efficiency resources are modeled as efficiency power plants (EPP) to evaluate their impacts on generation expansion planning (GEP). The supply curve of EPP is proposed using the production function of electricity consumption. A decision making framework is also presented to include EPP in GEP problem from an investor's point of view. The revenue of EPP investor is obtained from energy cost reduction of consumers and does not earn any income from electricity market. In each stage of GEP, a bi-level model for operation problem is suggested: the upper-level represents profit maximization of EPP investor and the lower-level corresponds to maximize the social welfare. To solve the bi-level problem, a fixed-point iteration algorithm is used known as diagonalization method. Energy efficiency feed-in tariff is investigated as a regulatory support scheme to encourage the investor. Results pertaining to a case study are simulated and discussed. - Highlights: • An economic model for energy efficiency programs is presented. • A framework is provided to model energy efficiency resources in GEP problem. • FIT is investigated as a regulatory support scheme to encourage the EPP investor. • The capacity expansion is delayed and reduced with considering EPP in GEP. • FIT-II can more effectively increase the energy saving compared to FIT-I
Directory of Open Access Journals (Sweden)
W. L. Silva
2008-09-01
Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.
Is the Langevin phase equation an efficient model for oscillating neurons?
Ota, Keisuke; Tsunoda, Takamasa; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru
2009-12-01
The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.
Is the Langevin phase equation an efficient model for oscillating neurons?
International Nuclear Information System (INIS)
Ota, Keisuke; Tsunoda, Takamasa; Aonishi, Toru; Omori, Toshiaki; Okada, Masato; Watanabe, Shigeo; Miyakawa, Hiroyoshi
2009-01-01
The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.
Neuro-fuzzy modelling of hydro unit efficiency
International Nuclear Information System (INIS)
Iliev, Atanas; Fushtikj, Vangel
2003-01-01
This paper presents neuro-fuzzy method for modeling of the hydro unit efficiency. The proposed method uses the characteristics of the fuzzy systems as universal function approximates, as well the abilities of the neural networks to adopt the parameters of the membership's functions and rules in the consequent part of the developed fuzzy system. Developed method is practically applied for modeling of the efficiency of unit which will be installed in the hydro power plant Kozjak. Comparison of the performance of the derived neuro-fuzzy method with several classical polynomials models is also performed. (Author)
Evaluation of discrete modeling efficiency of asynchronous electric machines
Byczkowska-Lipińska, Liliana; Stakhiv, Petro; Hoholyuk, Oksana; Vasylchyshyn, Ivanna
2011-01-01
In the paper the problem of effective mathematical macromodels in the form of state variables intended for asynchronous motor transient analysis is considered. Their comparing with traditional mathematical models of asynchronous motors including models built into MATLAB/Simulink software was carried out and analysis of their efficiency was conducted.
Evaluating energy efficiency policies with energy-economy models
Mundaca, L.; Neij, L.; Worrell, E.; McNeil, M.
2010-01-01
The growing complexities of energy systems, environmental problems, and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically
Efficient Modelling and Generation of Markov Automata (extended version)
Timmer, Mark; Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette
2012-01-01
This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the
Rigid-beam model of a high-efficiency magnicon
International Nuclear Information System (INIS)
Rees, D.E.; Tallerico, P.J.; Humphries, S.J. Jr.
1993-01-01
The magnicon is a new type of high-efficiency deflection-modulated amplifier developed at the Institute of Nuclear Physics in Novosibirsk, Russia. The prototype pulsed magnicon achieved an output power of 2.4 MW and an efficiency of 73% at 915 MHz. This paper presents the results of a rigid-beam model for a 700-MHz, 2.5-MW 82%-efficient magnicon. The rigid-beam model allows for characterization of the beam dynamics by tracking only a single electron. The magnicon design presented consists of a drive cavity; passive cavities; a pi-mode, coupled-deflection cavity; and an output cavity. It represents an optimized design. The model is fully self-consistent, and this paper presents the details of the model and calculated performance of a 2.5-MW magnicon
Tsai, Yun-Jeng; Li, Min-Hui; Tsai, Wan-Jung; Tuan, Sheng-Hui; Liao, Tin-Yun; Lin, Ko-Long
2016-07-01
Oxygen uptake efficiency slope (OUES) and peak oxygen consumption (VO2peak) are exercise parameters that can predict cardiac morbidity in patients with numerous heart diseases. But the predictive value in patients with tetralogy of Fallot is still undetermined, especially in children. We evaluated the prognostic value of OUES and VO2peak in children with total repair of tetralogy of Fallot. Retrospective cohort study. Forty tetralogy of Fallot patients younger than 12 years old were recruited. They underwent a cardiopulmonary exercise test during the follow-up period after total repair surgery. The results of the cardiopulmonary exercise test were used to predict the cardiac related hospitalization in the following two years after the test. OUES normalized by body surface area (OUES/BSA) and the percentage of predicted VO2peak appeared to be predictive for two-year cardiac related hospitalization. Receiver operating characteristic curve analysis demonstrated that the best threshold value for OUES/BSA was 1.029 (area under the curve = 0.70, p = 0.03), and for VO2peak was 74% of age prediction (area under the curve = 0.72, p = 0.02). The aforementioned findings were confirmed by Kaplan-Meier plots and log-rank test. OUES/BSA and VO2peak are useful predictors of cardiac-related hospitalization in children with total repair of tetralogy of Fallot. © The European Society of Cardiology 2015.
Atlas : A library for numerical weather prediction and climate modelling
Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.
2017-11-01
The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.
Energy efficiency optimisation for distillation column using artificial neural network models
International Nuclear Information System (INIS)
Osuolale, Funmilayo N.; Zhang, Jie
2016-01-01
This paper presents a neural network based strategy for the modelling and optimisation of energy efficiency in distillation columns incorporating the second law of thermodynamics. Real-time optimisation of distillation columns based on mechanistic models is often infeasible due to the effort in model development and the large computation effort associated with mechanistic model computation. This issue can be addressed by using neural network models which can be quickly developed from process operation data. The computation time in neural network model evaluation is very short making them ideal for real-time optimisation. Bootstrap aggregated neural networks are used in this study for enhanced model accuracy and reliability. Aspen HYSYS is used for the simulation of the distillation systems. Neural network models for exergy efficiency and product compositions are developed from simulated process operation data and are used to maximise exergy efficiency while satisfying products qualities constraints. Applications to binary systems of methanol-water and benzene-toluene separations culminate in a reduction of utility consumption of 8.2% and 28.2% respectively. Application to multi-component separation columns also demonstrate the effectiveness of the proposed method with a 32.4% improvement in the exergy efficiency. - Highlights: • Neural networks can accurately model exergy efficiency in distillation columns. • Bootstrap aggregated neural network offers improved model prediction accuracy. • Improved exergy efficiency is obtained through model based optimisation. • Reductions of utility consumption by 8.2% and 28.2% were achieved for binary systems. • The exergy efficiency for multi-component distillation is increased by 32.4%.
REALIGNED MODEL PREDICTIVE CONTROL OF A PROPYLENE DISTILLATION COLUMN
Directory of Open Access Journals (Sweden)
A. I. Hinojosa
Full Text Available Abstract In the process industry, advanced controllers usually aim at an economic objective, which usually requires closed-loop stability and constraints satisfaction. In this paper, the application of a MPC in the optimization structure of an industrial Propylene/Propane (PP splitter is tested with a controller based on a state space model, which is suitable for heavily disturbed environments. The simulation platform is based on the integration of the commercial dynamic simulator Dynsim® and the rigorous steady-state optimizer ROMeo® with the real-time facilities of Matlab. The predictive controller is the Infinite Horizon Model Predictive Control (IHMPC, based on a state-space model that that does not require the use of a state observer because the non-minimum state is built with the past inputs and outputs. The controller considers the existence of zone control of the outputs and optimizing targets for the inputs. We verify that the controller is efficient to control the propylene distillation system in a disturbed scenario when compared with a conventional controller based on a state observer. The simulation results show a good performance in terms of stability of the controller and rejection of large disturbances in the composition of the feed of the propylene distillation column.
Energy Technology Data Exchange (ETDEWEB)
Lumb, Matthew P. [The George Washington University, 2121 I Street NW, Washington, DC 20037 (United States); Naval Research Laboratory, Washington, DC 20375 (United States); Steiner, Myles A.; Geisz, John F. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Walters, Robert J. [Naval Research Laboratory, Washington, DC 20375 (United States)
2014-11-21
The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.
DEFF Research Database (Denmark)
Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty
the integration of geophysical data in the construction of a groundwater model increases the prediction performance. We suggest that modelers should perform a hydrogeophysical “test-bench” analysis of the likely value of geophysics data for improving groundwater model prediction performance before actually...... and the resulting predictions can be compared with predictions from the ‘true’ model. By performing this analysis we expect to give the modeler insight into how the uncertainty of model-based prediction can be reduced.......A major purpose of groundwater modeling is to help decision-makers in efforts to manage the natural environment. Increasingly, it is recognized that both the predictions of interest and their associated uncertainties should be quantified to support robust decision making. In particular, decision...
Functional Testing Protocols for Commercial Building Efficiency Baseline Modeling Software
Energy Technology Data Exchange (ETDEWEB)
Jump, David; Price, Phillip N.; Granderson, Jessica; Sohn, Michael
2013-09-06
This document describes procedures for testing and validating proprietary baseline energy modeling software accuracy in predicting energy use over the period of interest, such as a month or a year. The procedures are designed according to the methodology used for public domain baselining software in another LBNL report that was (like the present report) prepared for Pacific Gas and Electric Company: ?Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing Protocols? (referred to here as the ?Model Analysis Report?). The test procedure focuses on the quality of the software?s predictions rather than on the specific algorithms used to predict energy use. In this way the software vendor is not required to divulge or share proprietary information about how their software works, while enabling stakeholders to assess its performance.
An Efficiency Model For Hydrogen Production In A Pressurized Electrolyzer
Energy Technology Data Exchange (ETDEWEB)
Smoglie, Cecilia; Lauretta, Ricardo
2010-09-15
The use of Hydrogen as clean fuel at a world wide scale requires the development of simple, safe and efficient production and storage technologies. In this work, a methodology is proposed to produce Hydrogen and Oxygen in a self pressurized electrolyzer connected to separate containers that store each of these gases. A mathematical model for Hydrogen production efficiency is proposed to evaluate how such efficiency is affected by parasitic currents in the electrolytic solution. Experimental set-up and results for an electrolyzer are also presented. Comparison of empirical and analytical results shows good agreement.
Olayan, Rawan S.
2017-11-23
Motivation Finding computationally drug-target interactions (DTIs) is a convenient strategy to identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction methods suffer the high false positive prediction rate. Results We developed DDR, a novel method that improves the DTI prediction accuracy. DDR is based on the use of a heterogeneous graph that contains known DTIs with multiple similarities between drugs and multiple similarities between target proteins. DDR applies non-linear similarity fusion method to combine different similarities. Before fusion, DDR performs a pre-processing step where a subset of similarities is selected in a heuristic process to obtain an optimized combination of similarities. Then, DDR applies a random forest model using different graph-based features extracted from the DTI heterogeneous graph. Using five repeats of 10-fold cross-validation, three testing setups, and the weighted average of area under the precision-recall curve (AUPR) scores, we show that DDR significantly reduces the AUPR score error relative to the next best start-of-the-art method for predicting DTIs by 34% when the drugs are new, by 23% when targets are new, and by 34% when the drugs and the targets are known but not all DTIs between them are not known. Using independent sources of evidence, we verify as correct 22 out of the top 25 DDR novel predictions. This suggests that DDR can be used as an efficient method to identify correct DTIs.
Using synchronization in multi-model ensembles to improve prediction
Hiemstra, P.; Selten, F.
2012-04-01
In recent decades, many climate models have been developed to understand and predict the behavior of the Earth's climate system. Although these models are all based on the same basic physical principles, they still show different behavior. This is for example caused by the choice of how to parametrize sub-grid scale processes. One method to combine these imperfect models, is to run a multi-model ensemble. The models are given identical initial conditions and are integrated forward in time. A multi-model estimate can for example be a weighted mean of the ensemble members. We propose to go a step further, and try to obtain synchronization between the imperfect models by connecting the multi-model ensemble, and exchanging information. The combined multi-model ensemble is also known as a supermodel. The supermodel has learned from observations how to optimally exchange information between the ensemble members. In this study we focused on the density and formulation of the onnections within the supermodel. The main question was whether we could obtain syn-chronization between two climate models when connecting only a subset of their state spaces. Limiting the connected subspace has two advantages: 1) it limits the transfer of data (bytes) between the ensemble, which can be a limiting factor in large scale climate models, and 2) learning the optimal connection strategy from observations is easier. To answer the research question, we connected two identical quasi-geostrohic (QG) atmospheric models to each other, where the model have different initial conditions. The QG model is a qualitatively realistic simulation of the winter flow on the Northern hemisphere, has three layers and uses a spectral imple-mentation. We connected the models in the original spherical harmonical state space, and in linear combinations of these spherical harmonics, i.e. Empirical Orthogonal Functions (EOFs). We show that when connecting through spherical harmonics, we only need to connect 28% of
Directory of Open Access Journals (Sweden)
Jing Lu
2014-11-01
Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.
International Nuclear Information System (INIS)
Mirin, A.A.
1988-01-01
A formula is derived for predicting multiprocessing efficiency on Cray supercomputers equipped with the Cray Time-Sharing System (CTSS). The model is applicable to an intensive time-sharing environment. The actual efficiency estimate depends on three factors: the code size, task length, and job mix. The implementation of multitasking in a three-dimensional plasma magnetohydrodynamics (MHD) code, TEMCO, is discussed. TEMCO solves the primitive one-fluid compressible MHD equations and includes resistive and Hall effects in Ohm's law. Virtually all segments of the main time-integration loop are multitasked. The multiprocessing efficiency model is applied to TEMCO. Excellent agreement is obtained between the actual multiprocessing efficiency and the theoretical prediction
Introducing etch kernels for efficient pattern sampling and etch bias prediction
Weisbuch, François; Lutich, Andrey; Schatz, Jirka
2018-01-01
Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.
Worm gear efficiency model considering misalignment in electric power steering systems
Directory of Open Access Journals (Sweden)
S. H. Kim
2018-05-01
Full Text Available This study proposes a worm gear efficiency model considering misalignment in electric power steering systems. A worm gear is used in Column type Electric Power Steering (C-EPS systems and an Anti-Rattle Spring (ARS is employed in C-EPS systems in order to prevent rattling when the vehicle goes on a bumpy road. This ARS plays a role of preventing rattling by applying preload to one end of the worm shaft but it also generates undesirable friction by causing misalignment of the worm shaft. In order to propose the worm gear efficiency model considering misalignment, geometrical and tribological analyses were performed in this study. For geometrical analysis, normal load on gear teeth was calculated using output torque, pitch diameter of worm wheel, lead angle and normal pressure angle and this normal load was converted to normal pressure at the contact point. Contact points between the tooth flanks of the worm and worm wheel were obtained by mathematically analyzing the geometry, and Hertz's theory was employed in order to calculate contact area at the contact point. Finally, misalignment by an ARS was also considered into the geometry. Friction coefficients between the tooth flanks were also researched in this study. A pin-on-disk type tribometer was set up to measure friction coefficients and friction coefficients at all conditions were measured by the tribometer. In order to validate the worm gear efficiency model, a worm gear was prepared and the efficiency of the worm gear was predicted by the model. As the final procedure of the study, a worm gear efficiency measurement system was set and the efficiency of the worm gear was measured and the results were compared with the predicted results. The efficiency considering misalignment gives more accurate results than the efficiency without misalignment.
Foundation Settlement Prediction Based on a Novel NGM Model
Directory of Open Access Journals (Sweden)
Peng-Yu Chen
2014-01-01
Full Text Available Prediction of foundation or subgrade settlement is very important during engineering construction. According to the fact that there are lots of settlement-time sequences with a nonhomogeneous index trend, a novel grey forecasting model called NGM (1,1,k,c model is proposed in this paper. With an optimized whitenization differential equation, the proposed NGM (1,1,k,c model has the property of white exponential law coincidence and can predict a pure nonhomogeneous index sequence precisely. We used two case studies to verify the predictive effect of NGM (1,1,k,c model for settlement prediction. The results show that this model can achieve excellent prediction accuracy; thus, the model is quite suitable for simulation and prediction of approximate nonhomogeneous index sequence and has excellent application value in settlement prediction.
Energy Technology Data Exchange (ETDEWEB)
O' Connor, Isabel A., E-mail: i.oconnor@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Huijbregts, Mark A.J., E-mail: m.huijbregts@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Ragas, Ad M.J., E-mail: a.ragas@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands); Open University, School of Science, P.O. Box 2960,6401 DL Heerlen (Netherlands); Hendriks, A. Jan, E-mail: a.j.hendriks@science.ru.nl [Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, NL-6500 GL, Nijmegen (Netherlands)
2013-01-01
Environmental risk assessment requires models for estimating the bioaccumulation of untested compounds. So far, bioaccumulation models have focused on lipophilic compounds, and only a few have included hydrophilic compounds. Our aim was to extend an existing bioaccumulation model to estimate the oral uptake efficiency of pollutants in mammals for compounds over a wide K{sub ow} range with an emphasis on hydrophilic compounds, i.e. compounds in the lower K{sub ow} range. Usually, most models use octanol as a single surrogate for the membrane and thus neglect the bilayer structure of the membrane. However, compounds with polar groups can have different affinities for the different membrane regions. Therefore, an existing bioaccumulation model was extended by dividing the diffusion resistance through the membrane into an outer and inner membrane resistance, where the solvents octanol and heptane were used as surrogates for these membrane regions, respectively. The model was calibrated with uptake efficiencies of environmental pollutants measured in different mammals during feeding studies combined with human oral uptake efficiencies of pharmaceuticals. The new model estimated the uptake efficiency of neutral (RMSE = 14.6) and dissociating (RMSE = 19.5) compounds with logK{sub ow} ranging from − 10 to + 8. The inclusion of the K{sub hw} improved uptake estimation for 33% of the hydrophilic compounds (logK{sub ow} < 0) (r{sup 2} = 0.51, RMSE = 22.8) compared with the model based on K{sub ow} only (r{sup 2} = 0.05, RMSE = 34.9), while hydrophobic compounds (logK{sub ow} > 0) were estimated equally by both model versions with RMSE = 15.2 (K{sub ow} and K{sub hw}) and RMSE = 15.7 (K{sub ow} only). The model can be used to estimate the oral uptake efficiency for both hydrophilic and hydrophobic compounds. -- Highlights: ► A mechanistic model was developed to estimate oral uptake efficiency. ► Model covers wide logK{sub ow} range (- 10 to + 8) and several mammalian
Modeling and energy efficiency optimization of belt conveyors
International Nuclear Information System (INIS)
Zhang, Shirong; Xia, Xiaohua
2011-01-01
Highlights: → We take optimization approach to improve operation efficiency of belt conveyors. → An analytical energy model, originating from ISO 5048, is proposed. → Then an off-line and an on-line parameter estimation schemes are investigated. → In a case study, six optimization problems are formulated with solutions in simulation. - Abstract: The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment and operation levels. Specifically, variable speed control, an equipment level intervention, is recommended to improve operation efficiency of belt conveyors. However, the current implementations mostly focus on lower level control loops without operational considerations at the system level. This paper intends to take a model based optimization approach to improve the efficiency of belt conveyors at the operational level. An analytical energy model, originating from ISO 5048, is firstly proposed, which lumps all the parameters into four coefficients. Subsequently, both an off-line and an on-line parameter estimation schemes are applied to identify the new energy model, respectively. Simulation results are presented for the estimates of the four coefficients. Finally, optimization is done to achieve the best operation efficiency of belt conveyors under various constraints. Six optimization problems of a typical belt conveyor system are formulated, respectively, with solutions in simulation for a case study.
Predictive Modelling of Heavy Metals in Urban Lakes
Lindström, Martin
2000-01-01
Heavy metals are well-known environmental pollutants. In this thesis predictive models for heavy metals in urban lakes are discussed and new models presented. The base of predictive modelling is empirical data from field investigations of many ecosystems covering a wide range of ecosystem characteristics. Predictive models focus on the variabilities among lakes and processes controlling the major metal fluxes. Sediment and water data for this study were collected from ten small lakes in the ...
Mohamed, Omar; Wang, Jihong; Khalil, Ashraf; Limhabrash, Marwan
2016-01-01
This paper presents a novel strategy for implementing model predictive control (MPC) to a large gas turbine power plant as a part of our research progress in order to improve plant thermal efficiency and load-frequency control performance. A generalized state space model for a large gas turbine covering the whole steady operational range is designed according to subspace identification method with closed loop data as input to the identification algorithm. Then the model is used in developing a MPC and integrated into the plant existing control strategy. The strategy principle is based on feeding the reference signals of the pilot valve, natural gas valve, and the compressor pressure ratio controller with the optimized decisions given by the MPC instead of direct application of the control signals. If the set points for the compressor controller and turbine valves are sent in a timely manner, there will be more kinetic energy in the plant to release faster responses on the output and the overall system efficiency is improved. Simulation results have illustrated the feasibility of the proposed application that has achieved significant improvement in the frequency variations and load following capability which are also translated to be improvements in the overall combined cycle thermal efficiency of around 1.1 % compared to the existing one.
Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs
International Nuclear Information System (INIS)
Apergis, Nicholas; Aye, Goodness C.; Barros, Carlos Pestana; Gupta, Rangan; Wanke, Peter
2015-01-01
This paper presents an efficiency assessment of selected OECD countries using a Slacks Based Model with undesirable or bad outputs (SBM-Undesirable). In this research, SBM-Undesirable is used first in a two-stage approach to assess the relative efficiency of OECD countries using the most frequent indicators adopted by the literature on energy efficiency. Besides, in the second stage, GLMM–MCMC methods are combined with SBM-Undesirable results as part of an attempt to produce a model for energy performance with effective predictive ability. The results reveal different impacts of contextual variables, such as economic blocks and capital–labor ratio, on energy efficiency levels. - Highlights: • We analyze the energy efficiency of selected OECD countries. • SBM-Undesirable and MCMC–GLMM are combined for this purpose. • Find that efficiency levels are high but declining over time. • Analysis with contextual variables shows varying efficiency levels across groups. • Capital-intensive countries are more energy efficient than labor-intensive countries.
Toward an Efficient Prediction of Solar Flares: Which Parameters, and How?
Directory of Open Access Journals (Sweden)
Manolis K. Georgoulis
2013-11-01
Full Text Available Solar flare prediction has become a forefront topic in contemporary solar physics, with numerous published methods relying on numerous predictive parameters, that can even be divided into parameter classes. Attempting further insight, we focus on two popular classes of flare-predictive parameters, namely multiscale (i.e., fractal and multifractal and proxy (i.e., morphological parameters, and we complement our analysis with a study of the predictive capability of fundamental physical parameters (i.e., magnetic free energy and relative magnetic helicity. Rather than applying the studied parameters to a comprehensive statistical sample of flaring and non-flaring active regions, that was the subject of our previous studies, the novelty of this work is their application to an exceptionally long and high-cadence time series of the intensely eruptive National Oceanic and Atmospheric Administration (NOAA active region (AR 11158, observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Aiming for a detailed study of the temporal evolution of each parameter, we seek distinctive patterns that could be associated with the four largest flares in the AR in the course of its five-day observing interval. We find that proxy parameters only tend to show preflare impulses that are practical enough to warrant subsequent investigation with sufficient statistics. Combining these findings with previous results, we conclude that: (i carefully constructed, physically intuitive proxy parameters may be our best asset toward an efficient future flare-forecasting; and (ii the time series of promising parameters may be as important as their instantaneous values. Value-based prediction is the only approach followed so far. Our results call for novel signal and/or image processing techniques to efficiently utilize combined amplitude and temporal-profile information to optimize the inferred solar-flare probabilities.
Efficient family-based model checking via variability abstractions
DEFF Research Database (Denmark)
Dimovski, Aleksandar; Al-Sibahi, Ahmad Salim; Brabrand, Claus
2016-01-01
with the abstract model checking of the concrete high-level variational model. This allows the use of Spin with all its accumulated optimizations for efficient verification of variational models without any knowledge about variability. We have implemented the transformations in a prototype tool, and we illustrate......Many software systems are variational: they can be configured to meet diverse sets of requirements. They can produce a (potentially huge) number of related systems, known as products or variants, by systematically reusing common parts. For variational models (variational systems or families...... of related systems), specialized family-based model checking algorithms allow efficient verification of multiple variants, simultaneously, in a single run. These algorithms, implemented in a tool Snip, scale much better than ``the brute force'' approach, where all individual systems are verified using...
Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle
Directory of Open Access Journals (Sweden)
Bambang Wahono
2015-07-01
Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.
Gstat: a program for geostatistical modelling, prediction and simulation
Pebesma, Edzer J.; Wesseling, Cees G.
1998-01-01
Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.
Seasonal predictability of Kiremt rainfall in coupled general circulation models
Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen
2017-11-01
The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.
MODELLING OF DYNAMIC SPEED LIMITS USING THE MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Andrey Borisovich Nikolaev
2017-09-01
Full Text Available The article considers the issues of traffic management using intelligent system “Car-Road” (IVHS, which consist of interacting intelligent vehicles (IV and intelligent roadside controllers. Vehicles are organized in convoy with small distances between them. All vehicles are assumed to be fully automated (throttle control, braking, steering. Proposed approaches for determining speed limits for traffic cars on the motorway using a model predictive control (MPC. The article proposes an approach to dynamic speed limit to minimize the downtime of vehicles in traffic.
Demand Management Based on Model Predictive Control Techniques
Directory of Open Access Journals (Sweden)
Yasser A. Davizón
2014-01-01
Full Text Available Demand management (DM is the process that helps companies to sell the right product to the right customer, at the right time, and for the right price. Therefore the challenge for any company is to determine how much to sell, at what price, and to which market segment while maximizing its profits. DM also helps managers efficiently allocate undifferentiated units of capacity to the available demand with the goal of maximizing revenue. This paper introduces control system approach to demand management with dynamic pricing (DP using the model predictive control (MPC technique. In addition, we present a proper dynamical system analogy based on active suspension and a stability analysis is provided via the Lyapunov direct method.
Model Predictive Control for Distributed Microgrid Battery Energy Storage Systems
DEFF Research Database (Denmark)
Morstyn, Thomas; Hredzak, Branislav; Aguilera, Ricardo P.
2018-01-01
, and converter current constraints to be addressed. In addition, nonlinear variations in the charge and discharge efficiencies of lithium ion batteries are analyzed and included in the control strategy. Real-time digital simulations were carried out for an islanded microgrid based on the IEEE 13 bus prototypical......This brief proposes a new convex model predictive control (MPC) strategy for dynamic optimal power flow between battery energy storage (ES) systems distributed in an ac microgrid. The proposed control strategy uses a new problem formulation, based on a linear $d$ – $q$ reference frame voltage...... feeder, with distributed battery ES systems and intermittent photovoltaic generation. It is shown that the proposed control strategy approaches the performance of a strategy based on nonconvex optimization, while reducing the required computation time by a factor of 1000, making it suitable for a real...
Modeling Techniques for a Computational Efficient Dynamic Turbofan Engine Model
Directory of Open Access Journals (Sweden)
Rory A. Roberts
2014-01-01
Full Text Available A transient two-stream engine model has been developed. Individual component models developed exclusively in MATLAB/Simulink including the fan, high pressure compressor, combustor, high pressure turbine, low pressure turbine, plenum volumes, and exit nozzle have been combined to investigate the behavior of a turbofan two-stream engine. Special attention has been paid to the development of transient capabilities throughout the model, increasing physics model, eliminating algebraic constraints, and reducing simulation time through enabling the use of advanced numerical solvers. The lessening of computation time is paramount for conducting future aircraft system-level design trade studies and optimization. The new engine model is simulated for a fuel perturbation and a specified mission while tracking critical parameters. These results, as well as the simulation times, are presented. The new approach significantly reduces the simulation time.
EFFICIENCY AND COST MODELLING OF THERMAL POWER PLANTS
Directory of Open Access Journals (Sweden)
Péter Bihari
2010-01-01
Full Text Available The proper characterization of energy suppliers is one of the most important components in the modelling of the supply/demand relations of the electricity market. Power generation capacity i. e. power plants constitute the supply side of the relation in the electricity market. The supply of power stations develops as the power stations attempt to achieve the greatest profit possible with the given prices and other limitations. The cost of operation and the cost of load increment are thus the most important characteristics of their behaviour on the market. In most electricity market models, however, it is not taken into account that the efficiency of a power station also depends on the level of the load, on the type and age of the power plant, and on environmental considerations. The trade in electricity on the free market cannot rely on models where these essential parameters are omitted. Such an incomplete model could lead to a situation where a particular power station would be run either only at its full capacity or else be entirely deactivated depending on the prices prevailing on the free market. The reality is rather that the marginal cost of power generation might also be described by a function using the efficiency function. The derived marginal cost function gives the supply curve of the power station. The load level dependent efficiency function can be used not only for market modelling, but also for determining the pollutant and CO2 emissions of the power station, as well as shedding light on the conditions for successfully entering the market. Based on the measurement data our paper presents mathematical models that might be used for the determination of the load dependent efficiency functions of coal, oil, or gas fuelled power stations (steam turbine, gas turbine, combined cycle and IC engine based combined heat and power stations. These efficiency functions could also contribute to modelling market conditions and determining the
MJO prediction skill of the subseasonal-to-seasonal (S2S) prediction models
Son, S. W.; Lim, Y.; Kim, D.
2017-12-01
The Madden-Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, provides the primary source of tropical and extratropical predictability on subseasonal to seasonal timescales. To better understand its predictability, this study conducts quantitative evaluation of MJO prediction skill in the state-of-the-art operational models participating in the subseasonal-to-seasonal (S2S) prediction project. Based on bivariate correlation coefficient of 0.5, the S2S models exhibit MJO prediction skill ranging from 12 to 36 days. These prediction skills are affected by both the MJO amplitude and phase errors, the latter becoming more important with forecast lead times. Consistent with previous studies, the MJO events with stronger initial amplitude are typically better predicted. However, essentially no sensitivity to the initial MJO phase is observed. Overall MJO prediction skill and its inter-model spread are further related with the model mean biases in moisture fields and longwave cloud-radiation feedbacks. In most models, a dry bias quickly builds up in the deep tropics, especially across the Maritime Continent, weakening horizontal moisture gradient. This likely dampens the organization and propagation of MJO. Most S2S models also underestimate the longwave cloud-radiation feedbacks in the tropics, which may affect the maintenance of the MJO convective envelop. In general, the models with a smaller bias in horizontal moisture gradient and longwave cloud-radiation feedbacks show a higher MJO prediction skill, suggesting that improving those processes would enhance MJO prediction skill.
Prediction and Validation of Heat Release Direct Injection Diesel Engine Using Multi-Zone Model
Anang Nugroho, Bagus; Sugiarto, Bambang; Prawoto; Shalahuddin, Lukman
2014-04-01
The objective of this study is to develop simulation model which capable to predict heat release of diesel combustion accurately in efficient computation time. A multi-zone packet model has been applied to solve the combustion phenomena inside diesel cylinder. The model formulations are presented first and then the numerical results are validated on a single cylinder direct injection diesel engine at various engine speed and timing injections. The model were found to be promising to fulfill the objective above.
Simplified Predictive Models for CO2 Sequestration Performance Assessment
Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis
2014-05-01
We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of
Efficient Business Service Consumption by Customization with Variability Modelling
Directory of Open Access Journals (Sweden)
Michael Stollberg
2010-07-01
Full Text Available The establishment of service orientation in industry determines the need for efficient engineering technologies that properly support the whole life cycle of service provision and consumption. A central challenge is adequate support for the efficient employment of komplex services in their individual application context. This becomes particularly important for large-scale enterprise technologies where generic services are designed for reuse in several business scenarios. In this article we complement our work regarding Service Variability Modelling presented in a previous publication. There we presented an approach for the customization of services for individual application contexts by creating simplified variants, based on model-driven variability management. That work presents our revised service variability metamodel, new features of the variability tools and an applicability study, which reveals that substantial improvements on the efficiency of standard business service consumption under both usability and economic aspects can be achieved.
Energetics and efficiency of a molecular motor model
International Nuclear Information System (INIS)
Fogedby, Hans C; Svane, Axel
2013-01-01
The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al are analyzed from an analytical point of view. The model, which is based on protein friction with a track, is described by coupled Langevin equations for the motion in combination with coupled master equations for the ATP hydrolysis. Here the energetics and efficiency of the motor are addressed using a many body scheme with focus on the efficiency at maximum power (EMP). It is found that the EMP is reduced from about 10% in a heuristic description of the motor to about 1 per mille when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action. (paper)
de Oliveira, Saulo H P; Law, Eleanor C; Shi, Jiye; Deane, Charlotte M
2018-04-01
Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. We have investigated whether a pseudo-greedy search approach, which begins sequentially from one of the termini, can improve the performance and accuracy of de novo protein structure prediction. We observed that our sequential approach converges when fewer than 20 000 decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also compared the run time and quality of models produced in a sequential fashion against a standard, non-sequential approach. Sequential prediction produces an individual decoy 1.5-2.5 times faster than non-sequential prediction. When considering the quality of the best model, sequential prediction led to a better model being produced for 31 out of 41 soluble protein validation cases and for 18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29 of these cases by the sequential mode and for only 22 by the non-sequential mode. Our comparison reveals that a sequential search strategy can be used to drastically reduce computational time of de novo protein structure prediction and improve accuracy. Data are available for download from: http://opig.stats.ox.ac.uk/resources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2. saulo.deoliveira@dtc.ox.ac.uk. Supplementary data are available at Bioinformatics online.
Edwards, Elizabeth J; Edwards, Mark S; Lyvers, Michael
2016-08-01
Attentional control theory (ACT) describes the mechanisms associated with the relationship between anxiety and cognitive performance. We investigated the relationship between cognitive trait anxiety, situational stress and mental effort on phonological performance using a simple (forward-) and complex (backward-) word span task. Ninety undergraduate students participated in the study. Predictor variables were cognitive trait anxiety, indexed using questionnaire scores; situational stress, manipulated using ego threat instructions; and perceived level of mental effort, measured using a visual analogue scale. Criterion variables (a) performance effectiveness (accuracy) and (b) processing efficiency (accuracy divided by response time) were analyzed in separate multiple moderated-regression analyses. The results revealed (a) no relationship between the predictors and performance effectiveness, and (b) a significant 3-way interaction on processing efficiency for both the simple and complex tasks, such that at higher effort, trait anxiety and situational stress did not predict processing efficiency, whereas at lower effort, higher trait anxiety was associated with lower efficiency at high situational stress, but not at low situational stress. Our results were in full support of the assumptions of ACT and implications for future research are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Efficient Adoption and Assessment of Multiple Process Improvement Reference Models
Directory of Open Access Journals (Sweden)
Simona Jeners
2013-06-01
Full Text Available A variety of reference models such as CMMI, COBIT or ITIL support IT organizations to improve their processes. These process improvement reference models (IRMs cover different domains such as IT development, IT Services or IT Governance but also share some similarities. As there are organizations that address multiple domains and need to coordinate their processes in their improvement we present MoSaIC, an approach to support organizations to efficiently adopt and conform to multiple IRMs. Our solution realizes a semantic integration of IRMs based on common meta-models. The resulting IRM integration model enables organizations to efficiently implement and asses multiple IRMs and to benefit from synergy effects.
An Application on Merton Model in the Non-efficient Market
Feng, Yanan; Xiao, Qingxian
Merton Model is one of the famous credit risk models. This model presumes that the only source of uncertainty in equity prices is the firm’s net asset value .But the above market condition holds only when the market is efficient which is often been ignored in modern research. Another, the original Merton Model is based on assumptions that in the event of default absolute priority holds, renegotiation is not permitted , liquidation of the firm is costless and in the Merton Model and most of its modified version the default boundary is assumed to be constant which don’t correspond with the reality. So these can influence the level of predictive power of the model. In this paper, we have made some extensions on some of these assumptions underlying the original model. The model is virtually a modification of Merton’s model. In a non-efficient market, we use the stock data to analysis this model. The result shows that the modified model can evaluate the credit risk well in the non-efficient market.
Butterfly, Recurrence, and Predictability in Lorenz Models
Shen, B. W.
2017-12-01
Over the span of 50 years, the original three-dimensional Lorenz model (3DLM; Lorenz,1963) and its high-dimensional versions (e.g., Shen 2014a and references therein) have been used for improving our understanding of the predictability of weather and climate with a focus on chaotic responses. Although the Lorenz studies focus on nonlinear processes and chaotic dynamics, people often apply a "linear" conceptual model to understand the nonlinear processes in the 3DLM. In this talk, we present examples to illustrate the common misunderstandings regarding butterfly effect and discuss the importance of solutions' recurrence and boundedness in the 3DLM and high-dimensional LMs. The first example is discussed with the following folklore that has been widely used as an analogy of the butterfly effect: "For want of a nail, the shoe was lost.For want of a shoe, the horse was lost.For want of a horse, the rider was lost.For want of a rider, the battle was lost.For want of a battle, the kingdom was lost.And all for the want of a horseshoe nail."However, in 2008, Prof. Lorenz stated that he did not feel that this verse described true chaos but that it better illustrated the simpler phenomenon of instability; and that the verse implicitly suggests that subsequent small events will not reverse the outcome (Lorenz, 2008). Lorenz's comments suggest that the verse neither describes negative (nonlinear) feedback nor indicates recurrence, the latter of which is required for the appearance of a butterfly pattern. The second example is to illustrate that the divergence of two nearby trajectories should be bounded and recurrent, as shown in Figure 1. Furthermore, we will discuss how high-dimensional LMs were derived to illustrate (1) negative nonlinear feedback that stabilizes the system within the five- and seven-dimensional LMs (5D and 7D LMs; Shen 2014a; 2015a; 2016); (2) positive nonlinear feedback that destabilizes the system within the 6D and 8D LMs (Shen 2015b; 2017); and (3
Efficient Use of Preisach Hysteresis Model in Computer Aided Design
Directory of Open Access Journals (Sweden)
IONITA, V.
2013-05-01
Full Text Available The paper presents a practical detailed analysis regarding the use of the classical Preisach hysteresis model, covering all the steps, from measuring the necessary data for the model identification to the implementation in a software code for Computer Aided Design (CAD in Electrical Engineering. An efficient numerical method is proposed and the hysteresis modeling accuracy is tested on magnetic recording materials. The procedure includes the correction of the experimental data, which are used for the hysteresis model identification, taking into account the demagnetizing effect for the sample that is measured in an open-circuit device (a vibrating sample magnetometer.
Auditing predictive models : a case study in crop growth
Metselaar, K.
1999-01-01
Methods were developed to assess and quantify the predictive quality of simulation models, with the intent to contribute to evaluation of model studies by non-scientists. In a case study, two models of different complexity, LINTUL and SUCROS87, were used to predict yield of forage maize
Models for predicting compressive strength and water absorption of ...
African Journals Online (AJOL)
This work presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using augmented Scheffe's simplex lattice design. The statistical models developed can predict the mix proportion that will yield the desired property. The models were tested for lack of ...
Operator-based linearization for efficient modeling of geothermal processes
Khait, M.; Voskov, D.V.
2018-01-01
Numerical simulation is one of the most important tools required for financial and operational management of geothermal reservoirs. The modern geothermal industry is challenged to run large ensembles of numerical models for uncertainty analysis, causing simulation performance to become a critical issue. Geothermal reservoir modeling requires the solution of governing equations describing the conservation of mass and energy. The robust, accurate and computationally efficient implementation of ...
Energetics and efficiency of a molecular motor model
DEFF Research Database (Denmark)
C. Fogedby, Hans; Svane, Axel
2013-01-01
The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al. (Phys. Lett. 237, 297 (1998)) is analyzed from an analytical point of view. The model which is based on protein friction with a track is described by coupled Langevin equations for the motion in combination...... when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action....
Accurate Holdup Calculations with Predictive Modeling & Data Integration
Energy Technology Data Exchange (ETDEWEB)
Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Cacuci, Dan [Univ. of South Carolina, Columbia, SC (United States). Dept. of Mechanical Engineering
2017-04-03
In facilities that process special nuclear material (SNM) it is important to account accurately for the fissile material that enters and leaves the plant. Although there are many stages and processes through which materials must be traced and measured, the focus of this project is material that is “held-up” in equipment, pipes, and ducts during normal operation and that can accumulate over time into significant quantities. Accurately estimating the holdup is essential for proper SNM accounting (vis-à-vis nuclear non-proliferation), criticality and radiation safety, waste management, and efficient plant operation. Usually it is not possible to directly measure the holdup quantity and location, so these must be inferred from measured radiation fields, primarily gamma and less frequently neutrons. Current methods to quantify holdup, i.e. Generalized Geometry Holdup (GGH), primarily rely on simple source configurations and crude radiation transport models aided by ad hoc correction factors. This project seeks an alternate method of performing measurement-based holdup calculations using a predictive model that employs state-of-the-art radiation transport codes capable of accurately simulating such situations. Inverse and data assimilation methods use the forward transport model to search for a source configuration that best matches the measured data and simultaneously provide an estimate of the level of confidence in the correctness of such configuration. In this work the holdup problem is re-interpreted as an inverse problem that is under-determined, hence may permit multiple solutions. A probabilistic approach is applied to solving the resulting inverse problem. This approach rates possible solutions according to their plausibility given the measurements and initial information. This is accomplished through the use of Bayes’ Theorem that resolves the issue of multiple solutions by giving an estimate of the probability of observing each possible solution. To use
Temperature modelling and prediction for activated sludge systems.
Lippi, S; Rosso, D; Lubello, C; Canziani, R; Stenstrom, M K
2009-01-01
Temperature is an important factor affecting biomass activity, which is critical to maintain efficient biological wastewater treatment, and also physiochemical properties of mixed liquor as dissolved oxygen saturation and settling velocity. Controlling temperature is not normally possible for treatment systems but incorporating factors impacting temperature in the design process, such as aeration system, surface to volume ratio, and tank geometry can reduce the range of temperature extremes and improve the overall process performance. Determining how much these design or up-grade options affect the tank temperature requires a temperature model that can be used with existing design methodologies. This paper presents a new steady state temperature model developed by incorporating the best aspects of previously published models, introducing new functions for selected heat exchange paths and improving the method for predicting the effects of covering aeration tanks. Numerical improvements with embedded reference data provide simpler formulation, faster execution, easier sensitivity analyses, using an ordinary spreadsheet. The paper presents several cases to validate the model.
Statistical and Machine Learning Models to Predict Programming Performance
Bergin, Susan
2006-01-01
This thesis details a longitudinal study on factors that influence introductory programming success and on the development of machine learning models to predict incoming student performance. Although numerous studies have developed models to predict programming success, the models struggled to achieve high accuracy in predicting the likely performance of incoming students. Our approach overcomes this by providing a machine learning technique, using a set of three significant...
Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.
2010-09-01
The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the
Probabilistic Modeling and Visualization for Bankruptcy Prediction
DEFF Research Database (Denmark)
Antunes, Francisco; Ribeiro, Bernardete; Pereira, Francisco Camara
2017-01-01
In accounting and finance domains, bankruptcy prediction is of great utility for all of the economic stakeholders. The challenge of accurate assessment of business failure prediction, specially under scenarios of financial crisis, is known to be complicated. Although there have been many successful...... studies on bankruptcy detection, seldom probabilistic approaches were carried out. In this paper we assume a probabilistic point-of-view by applying Gaussian Processes (GP) in the context of bankruptcy prediction, comparing it against the Support Vector Machines (SVM) and the Logistic Regression (LR......). Using real-world bankruptcy data, an in-depth analysis is conducted showing that, in addition to a probabilistic interpretation, the GP can effectively improve the bankruptcy prediction performance with high accuracy when compared to the other approaches. We additionally generate a complete graphical...
Accurate and dynamic predictive model for better prediction in medicine and healthcare.
Alanazi, H O; Abdullah, A H; Qureshi, K N; Ismail, A S
2018-05-01
Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance. In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life. The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.
A new ensemble model for short term wind power prediction
DEFF Research Database (Denmark)
Madsen, Henrik; Albu, Razvan-Daniel; Felea, Ioan
2012-01-01
As the objective of this study, a non-linear ensemble system is used to develop a new model for predicting wind speed in short-term time scale. Short-term wind power prediction becomes an extremely important field of research for the energy sector. Regardless of the recent advancements in the re-search...... of prediction models, it was observed that different models have different capabilities and also no single model is suitable under all situations. The idea behind EPS (ensemble prediction systems) is to take advantage of the unique features of each subsystem to detain diverse patterns that exist in the dataset...
Testing the predictive power of nuclear mass models
International Nuclear Information System (INIS)
Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.
2008-01-01
A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool
Validated biomechanical model for efficiency and speed of rowing.
Pelz, Peter F; Vergé, Angela
2014-10-17
The speed of a competitive rowing crew depends on the number of crew members, their body mass, sex and the type of rowing-sweep rowing or sculling. The time-averaged speed is proportional to the rower's body mass to the 1/36th power, to the number of crew members to the 1/9th power and to the physiological efficiency (accounted for by the rower's sex) to the 1/3rd power. The quality of the rowing shell and propulsion system is captured by one dimensionless parameter that takes the mechanical efficiency, the shape and drag coefficient of the shell and the Froude propulsion efficiency into account. We derive the biomechanical equation for the speed of rowing by two independent methods and further validate it by successfully predicting race times. We derive the theoretical upper limit of the Froude propulsion efficiency for low viscous flows. This upper limit is shown to be a function solely of the velocity ratio of blade to boat speed (i.e., it is completely independent of the blade shape), a result that may also be of interest for other repetitive propulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
From Predictive Models to Instructional Policies
Rollinson, Joseph; Brunskill, Emma
2015-01-01
At their core, Intelligent Tutoring Systems consist of a student model and a policy. The student model captures the state of the student and the policy uses the student model to individualize instruction. Policies require different properties from the student model. For example, a mastery threshold policy requires the student model to have a way…
DEFF Research Database (Denmark)
Christensen, M. G.; Jensen, Søren Holdt
2006-01-01
A method for amplitude modulated sinusoidal audio coding is presented that has low complexity and low delay. This is based on a subband processing system, where, in each subband, the signal is modeled as an amplitude modulated sum of sinusoids. The envelopes are estimated using frequency......-domain linear prediction and the prediction coefficients are quantized. As a proof of concept, we evaluate different configurations in a subjective listening test, and this shows that the proposed method offers significant improvements in sinusoidal coding. Furthermore, the properties of the frequency...
A Combined Cooperative Braking Model with a Predictive Control Strategy in an Electric Vehicle
Directory of Open Access Journals (Sweden)
Hongqiang Guo
2013-12-01
Full Text Available Cooperative braking with regenerative braking and mechanical braking plays an important role in electric vehicles for energy-saving control. Based on the parallel and the series cooperative braking models, a combined model with a predictive control strategy to get a better cooperative braking performance is presented. The balance problem between the maximum regenerative energy recovery efficiency and the optimum braking stability is solved through an off-line process optimization stream with the collaborative optimization algorithm (CO. To carry out the process optimization stream, the optimal Latin hypercube design (Opt LHD is presented to discrete the continuous design space. To solve the poor real-time problem of the optimization, a high-precision predictive model based on the off-line optimization data of the combined model is built, and a predictive control strategy is proposed and verified through simulation. The simulation results demonstrate that the predictive control strategy and the combined model are reasonable and effective.
Quantifying the predictive consequences of model error with linear subspace analysis
White, Jeremy T.; Doherty, John E.; Hughes, Joseph D.
2014-01-01
All computer models are simplified and imperfect simulators of complex natural systems. The discrepancy arising from simplification induces bias in model predictions, which may be amplified by the process of model calibration. This paper presents a new method to identify and quantify the predictive consequences of calibrating a simplified computer model. The method is based on linear theory, and it scales efficiently to the large numbers of parameters and observations characteristic of groundwater and petroleum reservoir models. The method is applied to a range of predictions made with a synthetic integrated surface-water/groundwater model with thousands of parameters. Several different observation processing strategies and parameterization/regularization approaches are examined in detail, including use of the Karhunen-Loève parameter transformation. Predictive bias arising from model error is shown to be prediction specific and often invisible to the modeler. The amount of calibration-induced bias is influenced by several factors, including how expert knowledge is applied in the design of parameterization schemes, the number of parameters adjusted during calibration, how observations and model-generated counterparts are processed, and the level of fit with observations achieved through calibration. Failure to properly implement any of these factors in a prediction-specific manner may increase the potential for predictive bias in ways that are not visible to the calibration and uncertainty analysis process.
Bayesian based Prognostic Model for Predictive Maintenance of Offshore Wind Farms
DEFF Research Database (Denmark)
Asgarpour, Masoud; Sørensen, John Dalsgaard
2018-01-01
The operation and maintenance costs of offshore wind farms can be significantly reduced if existing corrective actions are performed as efficient as possible and if future corrective actions are avoided by performing sufficient preventive actions. In this paper a prognostic model for degradation...... monitoring, fault prediction and predictive maintenance of offshore wind components is defined. The diagnostic model defined in this paper is based on degradation, remaining useful lifetime and hybrid inspection threshold models. The defined degradation model is based on an exponential distribution...
Bayesian based Prognostic Model for Predictive Maintenance of Offshore Wind Farms
DEFF Research Database (Denmark)
Asgarpour, Masoud; Sørensen, John Dalsgaard
2018-01-01
monitoring, fault prediction and predictive maintenance of offshore wind components is defined. The diagnostic model defined in this paper is based on degradation, remaining useful lifetime and hybrid inspection threshold models. The defined degradation model is based on an exponential distribution......The operation and maintenance costs of offshore wind farms can be significantly reduced if existing corrective actions are performed as efficient as possible and if future corrective actions are avoided by performing sufficient preventive actions. In this paper a prognostic model for degradation...
Directory of Open Access Journals (Sweden)
Lee-Ing Tong
2012-02-01
Full Text Available Solar energy has become an important energy source in recent years as it generates less pollution than other energies. A photovoltaic (PV system, which typically has many components, converts solar energy into electrical energy. With the development of advanced engineering technologies, the transfer efficiency of a PV system has been increased from low to high. The combination of components in a PV system influences its transfer efficiency. Therefore, when predicting the transfer efficiency of a PV system, one must consider the relationship among system components. This work accurately predicts whether transfer efficiency of a PV system is high or low using a novel hybrid model that combines rough set theory (RST, data envelopment analysis (DEA, and genetic programming (GP. Finally, real data-set are utilized to demonstrate the accuracy of the proposed method.
The Complexity of Developmental Predictions from Dual Process Models
Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.
2011-01-01
Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…
Efficient Parallel Statistical Model Checking of Biochemical Networks
Directory of Open Access Journals (Sweden)
Paolo Ballarini
2009-12-01
Full Text Available We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture.
Crop modelling and water use efficiency of protected cucumber
International Nuclear Information System (INIS)
El Moujabber, M.; Atallah, Th.; Darwish, T.
2002-01-01
Crop modelling is considered an essential tool of planning. The automation of irrigation scheduling using crop models would contribute to an optimisation of water and fertiliser use of protected crops. To achieve this purpose, two experiments were carried. The first one aimed at determining water requirements and irrigation scheduling using climatic data. The second experiment was to establish the influence of irrigation interval and fertigation regime on water use efficiency. The results gave a simple model for the determination of the water requirements of protected cucumber by the use of climatic data: ETc=K* Ep. K and Ep are calculated using climatic data outside the greenhouse. As for water use efficiency, the second experiment highlighted the fact that a high frequency and continuous feeding are highly recommended for maximising yield. (author)
Directory of Open Access Journals (Sweden)
Ashley eYaugher
2015-10-01
Full Text Available Research on psychopathology and experimental studies of sleep restriction support a relationship between sleep disruption and both internalizing and externalizing disorders. The objective of the current study was to extend this research by examining sleep, impulsivity, antisocial personality traits, and internalizing traits in a university sample. Three hundred and eighty six individuals (161 males between the ages of 18 and 27 years (M = 18.59, SD = 0.98 wore actigraphs for 7 days and completed established measures of disorder-linked personality traits and sleep quality (i.e., Personality Assessment Inventory, Triarchic Psychopathy Measure, Barratt Impulsiveness Scale-11, and the Pittsburgh Sleep Quality Index. As expected, sleep measures and questionnaire scores fell within the normal range of values and sex differences in sleep and personality were consistent with previous research results. Similar to findings in predominantly male forensic psychiatric settings, higher levels of impulsivity predicted poorer subjective sleep quality in both women and men. Consistent with well-established associations between depression and sleep, higher levels of depression in both sexes predicted poorer subjective sleep quality. Bidirectional analyses showed that better sleep efficiency decreases depression. Finally, moderation analyses showed that gender does have a primary role in sleep efficiency and marginal effects were found. The observed relations between sleep and personality traits in a typical university sample add to converging evidence of the relationship between sleep and psychopathology and may inform our understanding of the development of psychopathology in young adulthood.
Sweat loss prediction using a multi-model approach.
Xu, Xiaojiang; Santee, William R
2011-07-01
A new multi-model approach (MMA) for sweat loss prediction is proposed to improve prediction accuracy. MMA was computed as the average of sweat loss predicted by two existing thermoregulation models: i.e., the rational model SCENARIO and the empirical model Heat Strain Decision Aid (HSDA). Three independent physiological datasets, a total of 44 trials, were used to compare predictions by MMA, SCENARIO, and HSDA. The observed sweat losses were collected under different combinations of uniform ensembles, environmental conditions (15-40°C, RH 25-75%), and exercise intensities (250-600 W). Root mean square deviation (RMSD), residual plots, and paired t tests were used to compare predictions with observations. Overall, MMA reduced RMSD by 30-39% in comparison with either SCENARIO or HSDA, and increased the prediction accuracy to 66% from 34% or 55%. Of the MMA predictions, 70% fell within the range of mean observed value ± SD, while only 43% of SCENARIO and 50% of HSDA predictions fell within the same range. Paired t tests showed that differences between observations and MMA predictions were not significant, but differences between observations and SCENARIO or HSDA predictions were significantly different for two datasets. Thus, MMA predicted sweat loss more accurately than either of the two single models for the three datasets used. Future work will be to evaluate MMA using additional physiological data to expand the scope of populations and conditions.
Comparisons of Faulting-Based Pavement Performance Prediction Models
Directory of Open Access Journals (Sweden)
Weina Wang
2017-01-01
Full Text Available Faulting prediction is the core of concrete pavement maintenance and design. Highway agencies are always faced with the problem of lower accuracy for the prediction which causes costly maintenance. Although many researchers have developed some performance prediction models, the accuracy of prediction has remained a challenge. This paper reviews performance prediction models and JPCP faulting models that have been used in past research. Then three models including multivariate nonlinear regression (MNLR model, artificial neural network (ANN model, and Markov Chain (MC model are tested and compared using a set of actual pavement survey data taken on interstate highway with varying design features, traffic, and climate data. It is found that MNLR model needs further recalibration, while the ANN model needs more data for training the network. MC model seems a good tool for pavement performance prediction when the data is limited, but it is based on visual inspections and not explicitly related to quantitative physical parameters. This paper then suggests that the further direction for developing the performance prediction model is incorporating the advantages and disadvantages of different models to obtain better accuracy.
An efficient energy response model for liquid scintillator detectors
Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin
2018-05-01
Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.
Building Information Model: advantages, tools and adoption efficiency
Abakumov, R. G.; Naumov, A. E.
2018-03-01
The paper expands definition and essence of Building Information Modeling. It describes content and effects from application of Information Modeling at different stages of a real property item. Analysis of long-term and short-term advantages is given. The authors included an analytical review of Revit software package in comparison with Autodesk with respect to: features, advantages and disadvantages, cost and pay cutoff. A prognostic calculation is given for efficiency of adoption of the Building Information Modeling technology, with examples of its successful adoption in Russia and worldwide.
Directory of Open Access Journals (Sweden)
Hossein Jafari Mansoorian
2017-01-01
Full Text Available Background & Aims of the Study: A feed forward artificial neural network (FFANN was developed to predict the efficiency of total petroleum hydrocarbon (TPH removal from a contaminated soil, using soil washing process with Tween 80. The main objective of this study was to assess the performance of developed FFANN model for the estimation of TPH removal. Materials and Methods: Several independent repressors including pH, shaking speed, surfactant concentration and contact time were used to describe the removal of TPH as a dependent variable in a FFANN model. 85% of data set observations were used for training the model and remaining 15% were used for model testing, approximately. The performance of the model was compared with linear regression and assessed, using Root of Mean Square Error (RMSE as goodness-of-fit measure Results: For the prediction of TPH removal efficiency, a FANN model with a three-hidden-layer structure of 4-3-1 and a learning rate of 0.01 showed the best predictive results. The RMSE and R2 for the training and testing steps of the model were obtained to be 2.596, 0.966, 10.70 and 0.78, respectively. Conclusion: For about 80% of the TPH removal efficiency can be described by the assessed regressors the developed model. Thus, focusing on the optimization of soil washing process regarding to shaking speed, contact time, surfactant concentration and pH can improve the TPH removal performance from polluted soils. The results of this study could be the basis for the application of FANN for the assessment of soil washing process and the control of petroleum hydrocarbon emission into the environments.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
Comparison of tree types of models for the prediction of final academic achievement
Directory of Open Access Journals (Sweden)
Silvana Gasar
2002-12-01
Full Text Available For efficient prevention of inappropriate secondary school choices and by that academic failure, school counselors need a tool for the prediction of individual pupil's final academic achievements. Using data mining techniques on pupils' data base and expert modeling, we developed several models for the prediction of final academic achievement in an individual high school educational program. For data mining, we used statistical analyses, clustering and two machine learning methods: developing classification decision trees and hierarchical decision models. Using an expert system shell DEX, an expert system, based on a hierarchical multi-attribute decision model, was developed manually. All the models were validated and evaluated from the viewpoint of their applicability. The predictive accuracy of DEX models and decision trees was equal and very satisfying, as it reached the predictive accuracy of an experienced counselor. With respect on the efficiency and difficulties in developing models, and relatively rapid changing of our education system, we propose that decision trees are used in further development of predictive models.
Modeling of Complex Life Cycle Prediction Based on Cell Division
Directory of Open Access Journals (Sweden)
Fucheng Zhang
2017-01-01
Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.
Risk prediction model: Statistical and artificial neural network approach
Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim
2017-04-01
Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.
Predictive modeling and reducing cyclic variability in autoignition engines
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
Dynamic Simulation of Human Gait Model With Predictive Capability.
Sun, Jinming; Wu, Shaoli; Voglewede, Philip A
2018-03-01
In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.
Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning
Fu, QiMing
2016-01-01
To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704
An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.
Kundu, Kousik; Backofen, Rolf
2017-01-01
Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.
Comparative Evaluation of Some Crop Yield Prediction Models ...
African Journals Online (AJOL)
A computer program was adopted from the work of Hill et al. (1982) to calibrate and test three of the existing yield prediction models using tropical cowpea yieldÐweather data. The models tested were Hanks Model (first and second versions). Stewart Model (first and second versions) and HallÐButcher Model. Three sets of ...
An Efficient Dynamic Trust Evaluation Model for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Zhengwang Ye
2017-01-01
Full Text Available Trust evaluation is an effective method to detect malicious nodes and ensure security in wireless sensor networks (WSNs. In this paper, an efficient dynamic trust evaluation model (DTEM for WSNs is proposed, which implements accurate, efficient, and dynamic trust evaluation by dynamically adjusting the weights of direct trust and indirect trust and the parameters of the update mechanism. To achieve accurate trust evaluation, the direct trust is calculated considering multitrust including communication trust, data trust, and energy trust with the punishment factor and regulating function. The indirect trust is evaluated conditionally by the trusted recommendations from a third party. Moreover, the integrated trust is measured by assigning dynamic weights for direct trust and indirect trust and combining them. Finally, we propose an update mechanism by a sliding window based on induced ordered weighted averaging operator to enhance flexibility. We can dynamically adapt the parameters and the interactive history windows number according to the actual needs of the network to realize dynamic update of direct trust value. Simulation results indicate that the proposed dynamic trust model is an efficient dynamic and attack-resistant trust evaluation model. Compared with existing approaches, the proposed dynamic trust model performs better in defending multiple malicious attacks.
A model to predict the power output from wind farms
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Riso National Lab., Roskilde (Denmark)
1997-12-31
This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.
Modelling microbial interactions and food structure in predictive microbiology
Malakar, P.K.
2002-01-01
Keywords: modelling, dynamic models, microbial interactions, diffusion, microgradients, colony growth, predictive microbiology.
Growth response of microorganisms in foods is a complex process. Innovations in food production and preservation techniques have resulted in adoption of
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Hutton, C.; Wagener, T.; Freer, J. E.; Duffy, C.; Han, D.
2015-12-01
Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models may contain a large number of model parameters which are computationally expensive to calibrate. Even when calibration is possible, insufficient data can result in model parameter and structural equifinality. In order to help reduce the space of feasible models and supplement traditional outlet discharge calibration data, semi-quantitative information (e.g. knowledge of relative groundwater levels), may also be used to identify behavioural models when applied to constrain spatially distributed predictions of states and fluxes. The challenge is to combine these different sources of information together to identify a behavioural region of state-space, and efficiently search a large, complex parameter space to identify behavioural parameter sets that produce predictions that fall within this behavioural region. Here we present a methodology to incorporate different sources of data to efficiently calibrate distributed catchment models. Metrics of model performance may be derived from multiple sources of data (e.g. perceptual understanding and measured or regionalised hydrologic signatures). For each metric, an interval or inequality is used to define the behaviour of the catchment system, accounting for data uncertainties. These intervals are then combined to produce a hyper-volume in state space. The state space is then recast as a multi-objective optimisation problem, and the Borg MOEA is applied to first find, and then populate the hyper-volume, thereby identifying acceptable model parameter sets. We apply the methodology to calibrate the PIHM model at Plynlimon, UK by incorporating perceptual and hydrologic data into the calibration problem. Furthermore, we explore how to improve calibration efficiency through search initialisation from shorter model runs.
Increased Statistical Efficiency in a Lognormal Mean Model
Directory of Open Access Journals (Sweden)
Grant H. Skrepnek
2014-01-01
Full Text Available Within the context of clinical and other scientific research, a substantial need exists for an accurate determination of the point estimate in a lognormal mean model, given that highly skewed data are often present. As such, logarithmic transformations are often advocated to achieve the assumptions of parametric statistical inference. Despite this, existing approaches that utilize only a sample’s mean and variance may not necessarily yield the most efficient estimator. The current investigation developed and tested an improved efficient point estimator for a lognormal mean by capturing more complete information via the sample’s coefficient of variation. Results of an empirical simulation study across varying sample sizes and population standard deviations indicated relative improvements in efficiency of up to 129.47 percent compared to the usual maximum likelihood estimator and up to 21.33 absolute percentage points above the efficient estimator presented by Shen and colleagues (2006. The relative efficiency of the proposed estimator increased particularly as a function of decreasing sample size and increasing population standard deviation.
A mathematical model for predicting earthquake occurrence ...
African Journals Online (AJOL)
We consider the continental crust under damage. We use the observed results of microseism in many seismic stations of the world which was established to study the time series of the activities of the continental crust with a view to predicting possible time of occurrence of earthquake. We consider microseism time series ...
Model for predicting the injury severity score.
Hagiwara, Shuichi; Oshima, Kiyohiro; Murata, Masato; Kaneko, Minoru; Aoki, Makoto; Kanbe, Masahiko; Nakamura, Takuro; Ohyama, Yoshio; Tamura, Jun'ichi
2015-07-01
To determine the formula that predicts the injury severity score from parameters that are obtained in the emergency department at arrival. We reviewed the medical records of trauma patients who were transferred to the emergency department of Gunma University Hospital between January 2010 and December 2010. The injury severity score, age, mean blood pressure, heart rate, Glasgow coma scale, hemoglobin, hematocrit, red blood cell count, platelet count, fibrinogen, international normalized ratio of prothrombin time, activated partial thromboplastin time, and fibrin degradation products, were examined in those patients on arrival. To determine the formula that predicts the injury severity score, multiple linear regression analysis was carried out. The injury severity score was set as the dependent variable, and the other parameters were set as candidate objective variables. IBM spss Statistics 20 was used for the statistical analysis. Statistical significance was set at P Watson ratio was 2.200. A formula for predicting the injury severity score in trauma patients was developed with ordinary parameters such as fibrin degradation products and mean blood pressure. This formula is useful because we can predict the injury severity score easily in the emergency department.
Predicting Career Advancement with Structural Equation Modelling
Heimler, Ronald; Rosenberg, Stuart; Morote, Elsa-Sofia
2012-01-01
Purpose: The purpose of this paper is to use the authors' prior findings concerning basic employability skills in order to determine which skills best predict career advancement potential. Design/methodology/approach: Utilizing survey responses of human resource managers, the employability skills showing the largest relationships to career…
Statistical model based gender prediction for targeted NGS clinical panels
Directory of Open Access Journals (Sweden)
Palani Kannan Kandavel
2017-12-01
The reference test dataset are being used to test the model. The sensitivity on predicting the gender has been increased from the current “genotype composition in ChrX” based approach. In addition, the prediction score given by the model can be used to evaluate the quality of clinical dataset. The higher prediction score towards its respective gender indicates the higher quality of sequenced data.
Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel
2014-07-01
We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a
Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
Directory of Open Access Journals (Sweden)
Scott E. Field
2014-07-01
Full Text Available We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform’s value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mc_{fit} online operations, where c_{fit} denotes the fitting function operation count and, typically, m≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 10^{5}M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in
A predictive pilot model for STOL aircraft landing
Kleinman, D. L.; Killingsworth, W. R.
1974-01-01
An optimal control approach has been used to model pilot performance during STOL flare and landing. The model is used to predict pilot landing performance for three STOL configurations, each having a different level of automatic control augmentation. Model predictions are compared with flight simulator data. It is concluded that the model can be effective design tool for studying analytically the effects of display modifications, different stability augmentation systems, and proposed changes in the landing area geometry.
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Model-based uncertainty in species range prediction
DEFF Research Database (Denmark)
Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel
2006-01-01
Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...
Wind turbine control and model predictive control for uncertain systems
DEFF Research Database (Denmark)
Thomsen, Sven Creutz
as disturbance models for controller design. The theoretical study deals with Model Predictive Control (MPC). MPC is an optimal control method which is characterized by the use of a receding prediction horizon. MPC has risen in popularity due to its inherent ability to systematically account for time...
Testing and analysis of internal hardwood log defect prediction models
R. Edward Thomas
2011-01-01
The severity and location of internal defects determine the quality and value of lumber sawn from hardwood logs. Models have been developed to predict the size and position of internal defects based on external defect indicator measurements. These models were shown to predict approximately 80% of all internal knots based on external knot indicators. However, the size...
Comparison of Simple Versus Performance-Based Fall Prediction Models
Directory of Open Access Journals (Sweden)
Shekhar K. Gadkaree BS
2015-05-01
Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “ any fall ” and “ recurrent falls .” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.
Models for predicting fuel consumption in sagebrush-dominated ecosystems
Clinton S. Wright
2013-01-01
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentate Nutt.) ecosystems....
Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
Kayastha, N.
2014-01-01
Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of
A new, accurate predictive model for incident hypertension
DEFF Research Database (Denmark)
Völzke, Henry; Fung, Glenn; Ittermann, Till
2013-01-01
Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures.......Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures....
Prediction models for successful external cephalic version: a systematic review
Velzel, Joost; de Hundt, Marcella; Mulder, Frederique M.; Molkenboer, Jan F. M.; van der Post, Joris A. M.; Mol, Ben W.; Kok, Marjolein
2015-01-01
To provide an overview of existing prediction models for successful ECV, and to assess their quality, development and performance. We searched MEDLINE, EMBASE and the Cochrane Library to identify all articles reporting on prediction models for successful ECV published from inception to January 2015.
Hidden Markov Model for quantitative prediction of snowfall
Indian Academy of Sciences (India)
A Hidden Markov Model (HMM) has been developed for prediction of quantitative snowfall in Pir-Panjal and Great Himalayan mountain ranges of Indian Himalaya. The model predicts snowfall for two days in advance using daily recorded nine meteorological variables of past 20 winters from 1992–2012. There are six ...
Mathematical model for dissolved oxygen prediction in Cirata ...
African Journals Online (AJOL)
This paper presents the implementation and performance of mathematical model to predict theconcentration of dissolved oxygen in Cirata Reservoir, West Java by using Artificial Neural Network (ANN). The simulation program was created using Visual Studio 2012 C# software with ANN model implemented in it. Prediction ...
Econometric models for predicting confusion crop ratios
Umberger, D. E.; Proctor, M. H.; Clark, J. E.; Eisgruber, L. M.; Braschler, C. B. (Principal Investigator)
1979-01-01
Results for both the United States and Canada show that econometric models can provide estimates of confusion crop ratios that are more accurate than historical ratios. Whether these models can support the LACIE 90/90 accuracy criterion is uncertain. In the United States, experimenting with additional model formulations could provide improved methods models in some CRD's, particularly in winter wheat. Improved models may also be possible for the Canadian CD's. The more aggressive province/state models outperformed individual CD/CRD models. This result was expected partly because acreage statistics are based on sampling procedures, and the sampling precision declines from the province/state to the CD/CRD level. Declining sampling precision and the need to substitute province/state data for the CD/CRD data introduced measurement error into the CD/CRD models.
A unified tool for performance modelling and prediction
International Nuclear Information System (INIS)
Gilmore, Stephen; Kloul, Leila
2005-01-01
We describe a novel performability modelling approach, which facilitates the efficient solution of performance models extracted from high-level descriptions of systems. The notation which we use for our high-level designs is the Unified Modelling Language (UML) graphical modelling language. The technology which provides the efficient representation capability for the underlying performance model is the multi-terminal binary decision diagram (MTBDD)-based PRISM probabilistic model checker. The UML models are compiled through an intermediate language, the stochastic process algebra PEPA, before translation into MTBDDs for solution. We illustrate our approach on a real-world analysis problem from the domain of mobile telephony
Efficient Neural Network Modeling for Flight and Space Dynamics Simulation
Directory of Open Access Journals (Sweden)
Ayman Hamdy Kassem
2011-01-01
Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.
Comparison of strategies for model predictive control for home heating in future energy systems
DEFF Research Database (Denmark)
Vogler-Finck, Pierre Jacques Camille; Popovski, Petar; Wisniewski, Rafal
2017-01-01
Model predictive control is seen as one of the key future enabler in increasing energy efficiency in buildings. This paper presents a comparison of the performance of the control for different formulations of the objective function. This comparison is made in a simulation study on a single buildi...
Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.
2017-11-01
Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.
Energy Technology Data Exchange (ETDEWEB)
Ma, Denglong [Fuli School of Food Equipment Engineering and Science, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); Zhang, Zaoxiao, E-mail: zhangzx@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); School of Chemical Engineering and Technology, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China)
2016-07-05
Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.
International Nuclear Information System (INIS)
Ma, Denglong; Zhang, Zaoxiao
2016-01-01
Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.
Standardizing the performance evaluation of short-term wind prediction models
DEFF Research Database (Denmark)
Madsen, Henrik; Pinson, Pierre; Kariniotakis, G.
2005-01-01
Short-term wind power prediction is a primary requirement for efficient large-scale integration of wind generation in power systems and electricity markets. The choice of an appropriate prediction model among the numerous available models is not trivial, and has to be based on an objective...... evaluation of model performance. This paper proposes a standardized protocol for the evaluation of short-term wind-poser preciction systems. A number of reference prediction models are also described, and their use for performance comparison is analysed. The use of the protocol is demonstrated using results...... from both on-shore and off-shore wind forms. The work was developed in the frame of the Anemos project (EU R&D project) where the protocol has been used to evaluate more than 10 prediction systems....
PEEX Modelling Platform for Seamless Environmental Prediction
Baklanov, Alexander; Mahura, Alexander; Arnold, Stephen; Makkonen, Risto; Petäjä, Tuukka; Kerminen, Veli-Matti; Lappalainen, Hanna K.; Ezau, Igor; Nuterman, Roman; Zhang, Wen; Penenko, Alexey; Gordov, Evgeny; Zilitinkevich, Sergej; Kulmala, Markku
2017-04-01
The Pan-Eurasian EXperiment (PEEX) is a multidisciplinary, multi-scale research programme stared in 2012 and aimed at resolving the major uncertainties in Earth System Science and global sustainability issues concerning the Arctic and boreal Northern Eurasian regions and in China. Such challenges include climate change, air quality, biodiversity loss, chemicalization, food supply, and the use of natural resources by mining, industry, energy production and transport. The research infrastructure introduces the current state of the art modeling platform and observation systems in the Pan-Eurasian region and presents the future baselines for the coherent and coordinated research infrastructures in the PEEX domain. The PEEX modeling Platform is characterized by a complex seamless integrated Earth System Modeling (ESM) approach, in combination with specific models of different processes and elements of the system, acting on different temporal and spatial scales. The ensemble approach is taken to the integration of modeling results from different models, participants and countries. PEEX utilizes the full potential of a hierarchy of models: scenario analysis, inverse modeling, and modeling based on measurement needs and processes. The models are validated and constrained by available in-situ and remote sensing data of various spatial and temporal scales using data assimilation and top-down modeling. The analyses of the anticipated large volumes of data produced by available models and sensors will be supported by a dedicated virtual research environment developed for these purposes.
Radially dependent photopeak efficiency model for Si(Li) detectors
Energy Technology Data Exchange (ETDEWEB)
Cohen, D D [Australian Inst. of Nuclear Science and Engineering, Lucas Heights
1980-12-15
A simple five parameter model for the efficiency of a Si(Li) detector has been developed. It was found necessary to include a radially dependent efficiency even for small detectors. The model is an extension of the pioneering work of Hansen et al. but correction factors include more up to date data and explicit equations for the mass attenuation coefficients over a wide range of photons energies. Four of the five parameters needed are generally supplied by most commercial manufacturers of Si(Li) detectors. /sup 54/Mn and /sup 241/Am sources have been used to calibrate a Si(Li) to approx. +-3% over the energy range 3-60 keV.
[Experimental evaluation of the spraying disinfection efficiency on dental models].
Zhang, Yi; Fu, Yuan-fei; Xu, Kan
2013-08-01
To evaluate the disinfect effect after spraying a new kind of disinfectant on the dental plaster models. The germ-free plaster samples, which were smeared with bacteria compound including Staphylococcus aureus, Escherichia coli, Saccharomyces albicans, Streptococcus mutans and Actinomyces viscosus were sprayed with disinfectants (CaviCide) and glutaraldehyde individually. In one group(5 minutes later) and another group(15 minutes later), the colonies were counted for statistical analysis after sampling, inoculating, and culturing which were used for evaluation of disinfecting efficiency. ANOVA was performed using SPSS12.0 software package. All sample bacteria were eradicated after spraying disinfectants(CaviCide) within 5 minutes and effective bacteria control was retained after 15 minutes. There was significant difference between the disinfecting efficiency of CaviCide and glutaraldehyde. The effect of disinfection with spraying disinfectants (CaviCide) on dental models is quick and effective.
A new approach for the prediction of thermal efficiency in solar receivers
International Nuclear Information System (INIS)
Barbero, Rubén; Rovira, Antonio; Montes, María José; Martínez Val, José María
2016-01-01
Highlights: • A new model for thermal efficiency calculation of solar collectors is developed. • It is derived from the complete differential equation for any technology. • Accurately capture the results of numerical models avoiding iteration process. • Two new critical parameters are defined to be considered for design. • Some relevant aspects for design arise from its application to PTC. - Abstract: Optimization of solar concentration receiver designs requires of models that characterize thermal balance at receiver wall. This problem depends on external heat transfer coefficients that are a function of the third power of the temperature at the absorber wall. This nonlinearity introduces a difficulty in obtaining analytical solutions for the balance differential equations. So, nowadays, several approximations consider these heat transfer coefficients as a constant or suggest a linear dependence. These hypotheses suppose an important limitation for their application. This paper describes a new approach that allows the use of an analytical expression obtained from the heat balance differential equation. Two simplifications based on this model can be made in order to obtain other much simpler equations that adequately characterize collector performance for the majority of solar technologies. These new equations allow the explicit calculation of the efficiency as a function of some characteristic parameters of the receiver. This explicit calculation introduces some advantages in the receiver optimization process because iteration processes are avoided during the calculations. Validation of the proposed models was made by the use of the experimental measurements reported by Sandia National Laboratories (SNL) for the trough collector design LS-2.
Adding propensity scores to pure prediction models fails to improve predictive performance
Directory of Open Access Journals (Sweden)
Amy S. Nowacki
2013-08-01
Full Text Available Background. Propensity score usage seems to be growing in popularity leading researchers to question the possible role of propensity scores in prediction modeling, despite the lack of a theoretical rationale. It is suspected that such requests are due to the lack of differentiation regarding the goals of predictive modeling versus causal inference modeling. Therefore, the purpose of this study is to formally examine the effect of propensity scores on predictive performance. Our hypothesis is that a multivariable regression model that adjusts for all covariates will perform as well as or better than those models utilizing propensity scores with respect to model discrimination and calibration.Methods. The most commonly encountered statistical scenarios for medical prediction (logistic and proportional hazards regression were used to investigate this research question. Random cross-validation was performed 500 times to correct for optimism. The multivariable regression models adjusting for all covariates were compared with models that included adjustment for or weighting with the propensity scores. The methods were compared based on three predictive performance measures: (1 concordance indices; (2 Brier scores; and (3 calibration curves.Results. Multivariable models adjusting for all covariates had the highest average concordance index, the lowest average Brier score, and the best calibration. Propensity score adjustment and inverse probability weighting models without adjustment for all covariates performed worse than full models and failed to improve predictive performance with full covariate adjustment.Conclusion. Propensity score techniques did not improve prediction performance measures beyond multivariable adjustment. Propensity scores are not recommended if the analytical goal is pure prediction modeling.
NUMERICAL PREDICTION MODELS FOR AIR POLLUTION BY MOTOR VEHICLE EMISSIONS
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2016-12-01
Full Text Available Purpose. Scientific work involves: 1 development of 3D numerical models that allow calculating the process of air pollution by motor vehicles emissions; 2 creation of models which would allow predicting the air pollution level in urban areas. Methodology. To solve the problem upon assessing the level of air pollution by motor vehicles emissions fundamental equations of aerodynamics and mass transfer are used. For the solution of differential equations of aerodynamics and mass transfer finite-difference methods are used. For the numerical integration of the equation for the velocity potential the method of conditional approximations is applied. The equation for the velocity potential written in differential form, splits into two equations, where at each step of splitting an unknown value of the velocity potential is determined by an explicit scheme of running computation, while the difference scheme is implicit one. For the numerical integration of the emissions dispersion equation in the atmosphere applies the implicit alternating-triangular difference scheme of splitting. Emissions from the road are modeled by a series of point sources of given intensity. Developed numerical models form is the basis of the created software package. Findings. 3D numerical models were developed; they belong to the class of «diagnostic models». These models take into account main physical factors that influence the process of dispersion of harmful substances in the atmosphere when emissions from vehicles in the city occur. Based on the constructed numerical models the computational experiment was conducted to assess the level of air pollution in the street. Originality. Authors have developed numerical models that allow to calculate the 3D aerodynamics of the wind flow in urban areas and the process of mass transfer emissions from the highway. Calculations to determine the area of contamination, which is formed near the buildings, located along the highway were
NOx PREDICTION FOR FBC BOILERS USING EMPIRICAL MODELS
Directory of Open Access Journals (Sweden)
Jiří Štefanica
2014-02-01
Full Text Available Reliable prediction of NOx emissions can provide useful information for boiler design and fuel selection. Recently used kinetic prediction models for FBC boilers are overly complex and require large computing capacity. Even so, there are many uncertainties in the case of FBC boilers. An empirical modeling approach for NOx prediction has been used exclusively for PCC boilers. No reference is available for modifying this method for FBC conditions. This paper presents possible advantages of empirical modeling based prediction of NOx emissions for FBC boilers, together with a discussion of its limitations. Empirical models are reviewed, and are applied to operation data from FBC boilers used for combusting Czech lignite coal or coal-biomass mixtures. Modifications to the model are proposed in accordance with theoretical knowledge and prediction accuracy.
Complex versus simple models: ion-channel cardiac toxicity prediction.
Mistry, Hitesh B
2018-01-01
There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.
Complex versus simple models: ion-channel cardiac toxicity prediction
Directory of Open Access Journals (Sweden)
Hitesh B. Mistry
2018-02-01
Full Text Available There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model Bnet was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the Bnet model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.
Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki
2012-01-01
The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.
Efficient image duplicated region detection model using sequential block clustering
Czech Academy of Sciences Publication Activity Database
Sekeh, M. A.; Maarof, M. A.; Rohani, M. F.; Mahdian, Babak
2013-01-01
Roč. 10, č. 1 (2013), s. 73-84 ISSN 1742-2876 Institutional support: RVO:67985556 Keywords : Image forensic * Copy–paste forgery * Local block matching Subject RIV: IN - Informatics, Computer Science Impact factor: 0.986, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/mahdian-efficient image duplicated region detection model using sequential block clustering.pdf
Federated learning of predictive models from federated Electronic Health Records.
Brisimi, Theodora S; Chen, Ruidi; Mela, Theofanie; Olshevsky, Alex; Paschalidis, Ioannis Ch; Shi, Wei
2018-04-01
In an era of "big data," computationally efficient and privacy-aware solutions for large-scale machine learning problems become crucial, especially in the healthcare domain, where large amounts of data are stored in different locations and owned by different entities. Past research has been focused on centralized algorithms, which assume the existence of a central data repository (database) which stores and can process the data from all participants. Such an architecture, however, can be impractical when data are not centrally located, it does not scale well to very large datasets, and introduces single-point of failure risks which could compromise the integrity and privacy of the data. Given scores of data widely spread across hospitals/individuals, a decentralized computationally scalable methodology is very much in need. We aim at solving a binary supervised classification problem to predict hospitalizations for cardiac events using a distributed algorithm. We seek to develop a general decentralized optimization framework enabling multiple data holders to collaborate and converge to a common predictive model, without explicitly exchanging raw data. We focus on the soft-margin l 1 -regularized sparse Support Vector Machine (sSVM) classifier. We develop an iterative cluster Primal Dual Splitting (cPDS) algorithm for solving the large-scale sSVM problem in a decentralized fashion. Such a distributed learning scheme is relevant for multi-institutional collaborations or peer-to-peer applications, allowing the data holders to collaborate, while keeping every participant's data private. We test cPDS on the problem of predicting hospitalizations due to heart diseases within a calendar year based on information in the patients Electronic Health Records prior to that year. cPDS converges faster than centralized methods at the cost of some communication between agents. It also converges faster and with less communication overhead compared to an alternative distributed
[Application of ARIMA model on prediction of malaria incidence].
Jing, Xia; Hua-Xun, Zhang; Wen, Lin; Su-Jian, Pei; Ling-Cong, Sun; Xiao-Rong, Dong; Mu-Min, Cao; Dong-Ni, Wu; Shunxiang, Cai
2016-01-29
To predict the incidence of local malaria of Hubei Province applying the Autoregressive Integrated Moving Average model (ARIMA). SPSS 13.0 software was applied to construct the ARIMA model based on the monthly local malaria incidence in Hubei Province from 2004 to 2009. The local malaria incidence data of 2010 were used for model validation and evaluation. The model of ARIMA (1, 1, 1) (1, 1, 0) 12 was tested as relatively the best optimal with the AIC of 76.085 and SBC of 84.395. All the actual incidence data were in the range of 95% CI of predicted value of the model. The prediction effect of the model was acceptable. The ARIMA model could effectively fit and predict the incidence of local malaria of Hubei Province.
Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing
Directory of Open Access Journals (Sweden)
Zhaosheng Yang
2014-01-01
Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA
Energy Technology Data Exchange (ETDEWEB)
Thimmisetty, Charanraj A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Zhao, Wenju [Florida State Univ., Tallahassee, FL (United States). Dept. of Scientific Computing; Chen, Xiao [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Tong, Charles H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Atmospheric, Earth and Energy Division
2017-10-18
Performing stochastic inversion on a computationally expensive forward simulation model with a high-dimensional uncertain parameter space (e.g. a spatial random field) is computationally prohibitive even when gradient information can be computed efficiently. Moreover, the ‘nonlinear’ mapping from parameters to observables generally gives rise to non-Gaussian posteriors even with Gaussian priors, thus hampering the use of efficient inversion algorithms designed for models with Gaussian assumptions. In this paper, we propose a novel Bayesian stochastic inversion methodology, which is characterized by a tight coupling between the gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method and a kernel principal component analysis (KPCA). This approach addresses the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature space within the high-dimensional and nonlinearly correlated parameter space. In addition, non-Gaussian posterior distributions are estimated via an efficient LMCMC method on the projected low-dimensional feature space. We will demonstrate this computational framework by integrating and adapting our recent data-driven statistics-on-manifolds constructions and reduction-through-projection techniques to a linear elasticity model.
Policy modeling for energy efficiency improvement in US industry
International Nuclear Information System (INIS)
Worrell, Ernst; Price, Lynn; Ruth, Michael
2001-01-01
We are at the beginning of a process of evaluating and modeling the contribution of policies to improve energy efficiency. Three recent policy studies trying to assess the impact of energy efficiency policies in the United States are reviewed. The studies represent an important step in the analysis of climate change mitigation strategies. All studies model the estimated policy impact, rather than the policy itself. Often the policy impacts are based on assumptions, as the effects of a policy are not certain. Most models only incorporate economic (or price) tools, which recent studies have proven to be insufficient to estimate the impacts, costs and benefits of mitigation strategies. The reviewed studies are a first effort to capture the effects of non-price policies. The studies contribute to a better understanding of the role of policies in improving energy efficiency and mitigating climate change. All policy scenarios results in substantial energy savings compared to the baseline scenario used, as well as substantial net benefits to the U.S. economy
Personalization of models with many model parameters: an efficient sensitivity analysis approach.
Donders, W P; Huberts, W; van de Vosse, F N; Delhaas, T
2015-10-01
Uncertainty quantification and global sensitivity analysis are indispensable for patient-specific applications of models that enhance diagnosis or aid decision-making. Variance-based sensitivity analysis methods, which apportion each fraction of the output uncertainty (variance) to the effects of individual input parameters or their interactions, are considered the gold standard. The variance portions are called the Sobol sensitivity indices and can be estimated by a Monte Carlo (MC) approach (e.g., Saltelli's method [1]) or by employing a metamodel (e.g., the (generalized) polynomial chaos expansion (gPCE) [2, 3]). All these methods require a large number of model evaluations when estimating the Sobol sensitivity indices for models with many parameters [4]. To reduce the computational cost, we introduce a two-step approach. In the first step, a subset of important parameters is identified for each output of interest using the screening method of Morris [5]. In the second step, a quantitative variance-based sensitivity analysis is performed using gPCE. Efficient sampling strategies are introduced to minimize the number of model runs required to obtain the sensitivity indices for models considering multiple outputs. The approach is tested using a model that was developed for predicting post-operative flows after creation of a vascular access for renal failure patients. We compare the sensitivity indices obtained with the novel two-step approach with those obtained from a reference analysis that applies Saltelli's MC method. The two-step approach was found to yield accurate estimates of the sensitivity indices at two orders of magnitude lower computational cost. Copyright © 2015 John Wiley & Sons, Ltd.
A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.
Directory of Open Access Journals (Sweden)
M Irfan Ashraf
Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence
The importance of radiation for semiempirical water-use efficiency models
Boese, Sven; Jung, Martin; Carvalhais, Nuno; Reichstein, Markus
2017-06-01
Water-use efficiency (WUE) is a fundamental property for the coupling of carbon and water cycles in plants and ecosystems. Existing model formulations predicting this variable differ in the type of response of WUE to the atmospheric vapor pressure deficit of water (VPD). We tested a representative WUE model on the ecosystem scale at 110 eddy covariance sites of the FLUXNET initiative by predicting evapotranspiration (ET) based on gross primary productivity (GPP) and VPD. We found that introducing an intercept term in the formulation increases model performance considerably, indicating that an additional factor needs to be considered. We demonstrate that this intercept term varies seasonally and we subsequently associate it with radiation. Replacing the constant intercept term with a linear function of global radiation was found to further improve model predictions of ET. Our new semiempirical ecosystem WUE formulation indicates that, averaged over all sites, this radiation term accounts for up to half (39-47 %) of transpiration. These empirical findings challenge the current understanding of water-use efficiency on the ecosystem scale.
International Nuclear Information System (INIS)
Klein, K.M.; Park, C.; Yang, S.; Morris, S.; Do, V.; Tasch, F.
1992-01-01
We have developed a new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon. This paper reports that this new model is based on the dual Pearson semi-empirical implant depth profile model and the UT-MARLOWE Monte Carlo boron ion implantation model. This new model can predict with very high computational efficiency two-dimensional as-implanted boron profiles as a function of energy, dose, tilt angle, rotation angle, masking edge orientation, and masking edge thickness