WorldWideScience

Sample records for model polymer system

  1. Stochastic Models of Polymer Systems

    Science.gov (United States)

    2016-01-01

    published in non-peer-reviewed journals (N/A for none) The dynamics of stochastic gradient algorithms (submitted); Noisy Hegselmann- Krause Systems...algorithms for big data applications. (2) We studied stochastic dynamics of polymer systems in the mean field limit. (3) We studied noisy Hegselmann- Krause

  2. Polymer mixtures in confined geometries: Model systems to explore ...

    Indian Academy of Sciences (India)

    Keywords. Polymers; phase separation; wetting; Monte Carlo simulation; finite size scaling. PACS Nos 61.41.+e; 64.75.+g; 68.45.Gd; 83.80.Es. 1. Introduction. Symmetric binary (A,B) polymer blends are model systems for the theoretical and experimental study of phase separation, since the chain length NA = NB = N can.

  3. Polymer mixtures in confined geometries: Model systems to explore ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Polymer mixtures in confined geometries: Model systems to explore phase transitions. K Binder M Müller A Cavallo E V Albano. Invited Talks:- Topic 7. Soft condensed matter (colloids, polymers, liquid crystals, microemulsions, foams, membranes, etc.) ...

  4. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  5. Molecular modeling in confined polymer and biomembrane systems

    Directory of Open Access Journals (Sweden)

    Jayeeta Ghosh

    2009-07-01

    Full Text Available The computational study of soft materials under confinement for bio- and nanotechnology still poses significantchallenges but has come a long way in the last decade. It is possible to realistically model and understand the fundamentalmechanisms which are at play if soft materials are confined to nanometer dimensions. Here, we present several recentexamples of such studies. Thin polymer films are abundantly used as friction modifiers or steric stabilizers. We show howsystematic modeling can shed light on the interplay between entropic and energetic interactions. Thin glassy films arecritical for the success of nanolithography. For that we have to understand the effect of confinement on the glass transitionbehavior in order to guarantee the stability and integrity of the lithographic masks. Simulations aim to understand the fundamental differences in the densities of states of glass formers in bulk and under confinement. With the advent of bionanotechnology the structure and phase behavior of lipid membranes as models for cellular membranes at the nano scale length is of importance due to implications in understanding the role of the lipids in biochemical membrane processes.

  6. A nonlinear scalable model for designing ionic polymer-metal composite actuator systems

    Science.gov (United States)

    McDaid, A. J.; Aw, K. C.; Hämmerle, E.; Xie, S. Q.

    2009-07-01

    This paper proposes a conclusive scalable model for Ionic Polymer Metal Composites (IPMC) actuators and their interactions with mechanical systems and external loads. This dynamic, nonlinear model accurately predicts the displacement and force actuation in air for a large range of input voltages. The model addresses all the requirements of a useful design tool for IPMC actuators and is intended for robotic and bio-mimetic (artificial muscle) applications which operate at low frequencies. The response of the IPMC is modeled in three stages, (i) a nonlinear equivalent electrical circuit to predict the current drawn, (ii) an electro-mechanical coupling term, representing the conversion of ion flux to a stress generated in the polymer membrane and (iii) a mechanical beam model which includes an electrically induced torque for the polymer. Mechanical outputs are in the rotational coordinate system, 'tip angle' and 'torque output', to give more practical results for the design and simulation of mechanisms. Model parameters are obtained using the dynamic time response and results are presented demonstrating excellent correspondence between the model and experimental results. This newly developed model is a large step forward, aiding in the progression of IPMCs towards wide acceptance as replacements to traditional actuators.

  7. Modeling and Simulation of Ballistic Penetration of Ceramic-Polymer-Metal Layered Systems

    Directory of Open Access Journals (Sweden)

    J. D. Clayton

    2015-01-01

    Full Text Available Numerical simulations and analysis of ballistic impact and penetration by tungsten alloy rods into composite targets consisting of layers of aluminum nitride ceramic tile(s, polymer laminae, and aluminum backing are conducted over a range of impact velocities on the order of 1.0 to 1.2 km/s. Computational results for ballistic efficiency are compared with experimental data from the literature. Simulations and experiments both demonstrate a trend of decreasing ballistic efficiency with increasing impact velocity. Predicted absolute residual penetration depths often exceed corresponding experimental values. The closest agreement between model and experiment is obtained when polymer interfaces are not explicitly represented in the numerical calculations, suggesting that the current model representation of such interfaces may be overly compliant. The present results emphasize the importance of proper resolution of geometry and constitutive properties of thin layers and interfaces between structural constituents for accurate numerical evaluation of performance of modern composite protection systems.

  8. Tunable Optical Polymer Systems

    National Research Council Canada - National Science Library

    Jenekhe, S. A; Bard, Allen J; Chen, S. H; Hammond, P. T; Rothberg, L. J

    2004-01-01

    This multidisciplinary university research initiative (MURI) program investigated tunable optical polymer systems suitable for large-area color-switchable coatings and devices, displays, sensors, and other electronic applications...

  9. Prediction of vapor–liquid and liquid–liquid equilibria for polymer systems: Comparison of activity coefficient models

    OpenAIRE

    Costa, Glória Meyberg Nunes; Dias, T.; Cardoso, Manuela Pedra; Guerrieri, Y.; Pessoa, F. L. P.; Melo, Silvio Alexandre Beisl Vieira de; Embiruçu, Marcelo

    2008-01-01

    Acesso restrito: Texto completo. p. 140-149 A large number of equations of state and activity coefficient models capable of describing phase equilibria in polymer solutions are available today, but only a few of these models have been applied to different systems. It is therefore useful to investigate the performance of existing thermodynamic models for complex polymer solutions which have not yet been widely studied. The present work studies the application of several activity coeffici...

  10. Computational modelling of polymers

    Science.gov (United States)

    Celarier, Edward A.

    1991-01-01

    Polymeric materials and polymer/graphite composites show a very diverse range of material properties, many of which make them attractive candidates for a variety of high performance engineering applications. Their properties are ultimately determined largely by their chemical structure, and the conditions under which they are processed. It is the aim of computational chemistry to be able to simulate candidate polymers on a computer, and determine what their likely material properties will be. A number of commercially available software packages purport to predict the material properties of samples, given the chemical structures of their constituent molecules. One such system, Cerius, has been in use at LaRC. It is comprised of a number of modules, each of which performs a different kind of calculation on a molecule in the programs workspace. Particularly, interest is in evaluating the suitability of this program to aid in the study of microcrystalline polymeric materials. One of the first model systems examined was benzophenone. The results of this investigation are discussed.

  11. Theoretical modeling for an electroactive polymer-ceramic-based micro hybrid actuation system

    Science.gov (United States)

    Xu, Tian-Bing; Su, Ji

    2006-05-01

    A new configuration of an electroactive polymer, ceramic-based micro hybrid actuation system (μHYBAS) is proposed in this paper. The μHYBAS is a device concept to utilize different electroactive materials in a cooperative and efficient method for optimized electromechanical performance. A theoretical model has been developed, based on the elastic and electromechanical properties of the materials and on the configuration of the device. The μHYBASs investigated use piezoelectric polyvinylidene fluoride (PVDF) as the electroactive polymer (EAP) element combined with the electroactive ceramic (EAC) elements, which are piezoelectric hard lead zirconate titanate (PZT), soft PZT, or Pb(Zn 1/3Nb 2/3)O 3-4.5%PbTiO 3 single crystal (PZN-PT single crystal). The μHYBAS demonstrates significantly enhanced electromechanical performance by utilizing advantages of synergistic contributions of the electromechanical responses of an electroactive polymer and an electroactive ceramic. The modeled results provide guidelines for future developments of high performance μHYBASs to meet various applications.

  12. Modeling semiflexible polymer networks

    NARCIS (Netherlands)

    Broedersz, C.P.; MacKintosh, F.C.

    2014-01-01

    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have

  13. Modeling the vapor-liquid equilibria of polymer-solvent mixtures: Systems with complex hydrogen bonding behavior

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    The vapor–liquid equilibria of binary polymer–solvent systems was modeled using the Non-Random Hydrogen Bonding (NRHB) model. Mixtures of poly(ethylene glycol), poly(propylene glycol), poly(vinyl alcohol) and poly(vinyl acetate) with various solvents were investigated, while emphasis was put...... on hydrogen bonding systems, in which functional groups of the polymer chain can self-associate or cross-associate with the solvent molecules. Effort has been made to explicitly account for all hydrogen bonding interactions. The results reveal that the NRHB model offers a flexible approach to account...

  14. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 1. Statical polymer method

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-02-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  15. Polymer networks: Modeling and applications

    Science.gov (United States)

    Masoud, Hassan

    Polymer networks are an important class of materials that are ubiquitously found in natural, biological, and man-made systems. The complex mesoscale structure of these soft materials has made it difficult for researchers to fully explore their properties. In this dissertation, we introduce a coarse-grained computational model for permanently cross-linked polymer networks than can properly capture common properties of these materials. We use this model to study several practical problems involving dry and solvated networks. Specifically, we analyze the permeability and diffusivity of polymer networks under mechanical deformations, we examine the release of encapsulated solutes from microgel capsules during volume transitions, and we explore the complex tribological behavior of elastomers. Our simulations reveal that the network transport properties are defined by the network porosity and by the degree of network anisotropy due to mechanical deformations. In particular, the permeability of mechanically deformed networks can be predicted based on the alignment of network filaments that is characterized by a second order orientation tensor. Moreover, our numerical calculations demonstrate that responsive microcapsules can be effectively utilized for steady and pulsatile release of encapsulated solutes. We show that swollen gel capsules allow steady, diffusive release of nanoparticles and polymer chains, whereas gel deswelling causes burst-like discharge of solutes driven by an outward flow of the solvent initially enclosed within a shrinking capsule. We further demonstrate that this hydrodynamic release can be regulated by introducing rigid microscopic rods in the capsule interior. We also probe the effects of velocity, temperature, and normal load on the sliding of elastomers on smooth and corrugated substrates. Our friction simulations predict a bell-shaped curve for the dependence of the friction coefficient on the sliding velocity. Our simulations also illustrate

  16. Informed Materials Discovery: Designing New Engineering Polymer Systems Using High Throughput Modeling Techniques

    Science.gov (United States)

    2016-10-27

    classes of polymers such as but not restricted to: other thermosetting polymers, thermoplastics or semi-crystalline sys- tems. The report is organised as...and molecu- lar physical structure into the prediction of the macroscopic constitutive properties and behaviour of the polymers. GIM uses a mean field...The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates, Journal of Materials Science 8 (7

  17. Three-dimensional dynamic modelling of Polymer-Electrolyte-Membrane-Fuel-Cell-Systems; Dreidimensionale dynamische Modellierung und Berechnung von Polymer-Elektrolyt-Membran-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas

    2008-12-15

    This thesis deals with dynamic and multi-dimensional modelling of Polymer- Electrolyte-Membrane-Fuel-Cells (PEMFC). The developed models include all the different layers of the fuel cell e.g. flow field, gas diffusion layer, catalyst layer and membrane with their particular physical, chemical and electrical characteristics. The simulation results have been verified by detailed measurements performed at the research centre for hydrogen and solar energy in Ulm (ZSW Ulm). The developed three dimensional model describes the time- and spatial-dependent charge and mass transport in a fuel cell. Additionally, this model allows the analysis of critical operating conditions. For example, the current density distribution for different membranes is shown during insufficient humidification which results in local overstraining and degradation. The model also allows to analyse extreme critical operating conditions, e.g. short time breakdown of the humidification. Furthermore, the model shows the available potential of improvement opportunities in power density and efficiency of PEMFC due to optimisation of the gas diffusion layer, the catalyst and membrane. In the second part of the work the application of PEMFC systems for combined heat and power units is described by one-dimensional models for an electrical power range between 1 kW and 5 kW. This model contains the necessary components, e.g. gas processing, humidification, gas supply, fuel cell stack, heat storage, pumps, auxiliary burner, power inverter und additional aggregates. As a main result, it is possible to distinctly reduce the energy demand and the carbon dioxide exhaust for different load profiles. Today the costs for fuel cell systems are considerably higher than that of the conventional electrical energy supply. (orig.)

  18. Systematic comparison of model polymer nanocomposite mechanics.

    Science.gov (United States)

    Xiao, Senbo; Peter, Christine; Kremer, Kurt

    2016-09-13

    Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior and reinforcement, especially for higher nanoparticle content as relevant for bio-inorganic composites, are still not fully understood. Although polymer nanocomposites exhibit diverse morphologies, qualitatively their mechanical properties are believed to be governed by a few parameters, namely their internal polymer network topology, nanoparticle volume fraction, particle surface properties and so on. Relating material mechanics to such elementary parameters is the purpose of this work. By taking a coarse-grained molecular modeling approach, we study an range of different polymer nanocomposites. We vary polymer nanoparticle connectivity, surface geometry and volume fraction to systematically study rheological/mechanical properties. Our models cover different materials, and reproduce key characteristics of real nanocomposites, such as phase separation, mechanical reinforcement. The results shed light on establishing elementary structure, property and function relationship of polymer nanocomposites.

  19. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems.

    Science.gov (United States)

    Chen, Yuhang; Zhou, Shiwei; Li, Qing

    2011-03-01

    The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a fundamental stochastic process and an additional autocatalytic effect induced by the local carboxylic acid concentration in terms of the continuous diffusion equation. Illustrative examples of microparticles and tissue scaffolds demonstrate the applicability of the model. It is found that diffusive transport plays a critical role in determining the degradation pathway, whilst autocatalysis makes the degradation size dependent. The modeling results show good agreement with experimental data in the literature, in which the hydrolysis rate, polymer architecture and matrix size actually work together to determine the characteristics of the degradation and erosion processes of bulk-erosive polymer devices. The proposed degradation model exhibits great potential for the design optimization of drug carriers and tissue scaffolds. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Modeling chemoresponsive polymer gels.

    Science.gov (United States)

    Kuksenok, Olga; Deb, Debabrata; Dayal, Pratyush; Balazs, Anna C

    2014-01-01

    Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources.

  1. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  2. Toward a Mesoscale Model for the Dynamics of Polymer Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G H; Trebotich, D

    2006-10-02

    To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.

  3. Improving reservoir conformance using gelled polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1993-04-09

    The general objectives are to (1) to identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) to determine the performance of these systems in bulk and in porous media, and (3) to develop methods to predict the capability of these systems to recover oil from petroleum reservoirs. This work focuses on three types of gel systems - an aqueous polysaccharide (KUSPI) system that gels as a function of pH, the chromium-based system where polyacrylamide and xanthan are crosslinked by CR(III) and an organic crosslinked system. Development of the KUSPI system and evaluation and identification of a suitable organic crosslinked system will be done. The laboratory research is directed at the fundamental understanding of the physics and chemistry of the gelation process in bulk form and in porous media. This knowledge will be used to develop conceptual and mathematical models of the gelation process. Mathematical models will then be extended to predict the performance of gelled polymer treatments in oil reservoirs. Accomplishments for this period are presented for the following tasks: development and selection of gelled polymer systems, physical and chemical characterization of gel systems; and mathematical modeling of gel systems.

  4. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    Science.gov (United States)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  5. A simple constitutive model for a polymer flow near a polymer-grafted wall

    NARCIS (Netherlands)

    Stepanyan, R.; Slot, J.J.M.; Molenaar, J.; Tchesnokov, M.A.

    2005-01-01

    A simple constitutive model is proposed to describe a polymer flow near a polymer-grafted wall. The model is based on a generalization of the Rolie-Poly equation [A. E. Likhtman and R. S. Graham, J. Non-Newton. Fluid Mech. 114, 1¿12 (2003)] to a "bulk+wall" system combined with a microscopic picture

  6. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were determined by least-square curve fitting to the experimental data. Diffusion parameters of epoxy and vinyl ester resin were used as input during development of finite element (FE) model of polymer composite.

  7. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  8. Confining multiple polymers between sticky walls: a directed walk model of two polymers

    International Nuclear Information System (INIS)

    Wong, Thomas; Rechnitzer, Andrew; Owczarek, Aleksander L

    2014-01-01

    We study a model of two polymers confined to a slit with sticky walls. More precisely, we find and analyse the exact solution of two directed friendly walks in such a geometry on the square lattice. We compare the infinite slit limit, in which the length of the polymer (thermodynamic limit) is taken to infinity before the width of the slit is considered to become large, to the opposite situation where the order of the limits are swapped, known as the half-plane limit when one polymer is modelled. In contrast with the single polymer system we find that the half-plane and infinite slit limits coincide. We understand this result in part due to the tethering of polymers on both walls of the slit. We also analyse the entropic force exerted by the polymers on the walls of the slit. Again the results differ significantly from single polymer models. In a single polymer system both attractive and repulsive regimes were seen, whereas in our two walk model only repulsive forces are observed. We do, however, see that the range of the repulsive force is dependent on the parameter values. This variation can be explained by the adsorption of the walks on opposite walls of the slit. (paper)

  9. Impact of Polymer-bound Iodine on Fibronectin Adsorption and Osteoblast Cell Morphology Radiopaque Medical Polymers: Tyrosine-derived Polycarbonate Blends as a Model System

    Science.gov (United States)

    Aamer, Khaled A.; Genson, Kirsten L.; Kohn, Joachim; Becker, Matthew L.

    2012-01-01

    Imaging of polymer implants during surgical implantations is challenging in that most materials lack sufficient X-ray contrast. Synthetic derivatization with iodine serves to increase the scattering contrast but results in distinct physico-chemical properties in the material which influence subsequent protein adsorption and cell morphology behavior. Herein we report the impact of increasing iodine inclusion on the cell morphology (cell area and shape) of MC3T3-E1 osteoblasts on a series of homopolymers and discrete blend thin films of poly(desaminotyrosyl tyrosine ethyl ester carbonate), poly(DTE carbonate) and an iodinated analogue poly(I2-DTE carbonate). Cell morphology is correlated to film chemical composition via measuring Fibronectin (FN) adhesion protein adsorption profile on these films. FN exhibits up to 2 fold greater adsorption affinity for poly(I2-DTE carbonate) than (poly(DTE carbonate)). A correlation was established between cell area, roundness and the measured FN adsorption profile on the blend films up to 75 % by mass poly(I2-DTE carbonate). Data suggest that incorporation of iodine within the polymer backbone has a distinct impact on the way FN proteins adsorb to the surface and within the studied blend systems; the effect is composition dependent. PMID:19645443

  10. Development of a continuous flow model system for studies of biofilm formation on polymers and its application on PVC-C and PVC-P

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Migration of bioavailable compounds from polymeric pipe materials in drinking water distribution systems may cause bacterial aftergrowth. Present methods for microbial testing of polymeric materials are based on batch or semi-batch tests, but a continuous flow model system may provide a better test...... system. In this study, a continuous flow model system was developed, for investigating biofilm formation on polymers, simulating conditions in the distribution system. Commercially available pipes were used for exchangeable test pieces, which allowed for testing over prolonged time periods. Test pieces...

  11. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  12. Group contribution methods for estimating the properties of polymer systems

    Directory of Open Access Journals (Sweden)

    Bogdanić Grozdana

    2006-01-01

    Full Text Available Polymer materials are nowadays used in a wide range of technological applications. Reliable knowledge of the thermo physical properties of pure polymers and their mixtures in the whole composition and a wide temperature and pressure range determines whether a given polymer is suitable for a specific application. On the other hand, accurate knowledge of the thermodynamic properties of the systems is a vital prerequisite for computer-aided syntheses, design, and the optimization of industrial polymer processes. However, the experimental data on polymer solubility are often scarce, and at this point, thermodynamics provide a powerful tool for modeling and extrapolating the experimental data. These models, together with factual data banks, are powerful software tools for the reliable development of chemical processes and other applications of industrial interest. The status of the different approaches and important applications of industrial interest using thermodynamic information derived from data banks or by using predictive thermodynamic models are presented in this review.

  13. The UNIFAC-NRF activity coefficient model based on group contribution for partitioning of proteins in aqueous two phase (polymer + salt) systems

    Energy Technology Data Exchange (ETDEWEB)

    Haghtalab, Ali [Department of Chemical Engineering, Tarbiat Modarres University, P.O. Box: 14115-175, Tehran (Iran, Islamic Republic of)]. E-mail: haghtala@modares.ac.ir; Mokhtarani, Babak [Department of Chemical Engineering, Tarbiat Modarres University, P.O. Box: 14115-175, Tehran (Iran, Islamic Republic of)

    2005-03-01

    The group contribution model, UNIFAC-NRF, was applied for correlation of partition coefficient of proteins. This model was already developed for aqueous two phase of (polymer + salt) systems. The protein molecules were divided into some patches assumed to have interaction with the other species in aqueous (polymer + salt) systems. The binary interaction parameters were used for prediction of protein partitioning in aqueous two phase systems. These parameters were obtained by correlating the binary electrolyte solution and ternary aqueous two phase systems. The results of UNIFAC-NRF model are in a very good agreement with the experimental data for partitioning of lysozyme in both (PEG + K{sub 2}HPO{sub 4} + water) and (PEG + Na{sub 2}SO{sub 4} + water) systems at different pHs. The comparison of the results, which were obtained by both UNIFAC-NRF and the VERS models, shows that the present group contribution model can correlate the partitioning of protein in ATPS better than the VERS model.

  14. Restrictions in Model Reduction for Polymer Chain Models in Dissipative Particle Dynamics

    KAUST Repository

    Moreno Chaparro, Nicolas

    2014-06-06

    We model high molecular weight homopolymers in semidilute concentration via Dissipative Particle Dynamics (DPD). We show that in model reduction methodologies for polymers it is not enough to preserve system properties (i.e., density ρ, pressure p, temperature T, radial distribution function g(r)) but preserving also the characteristic shape and length scale of the polymer chain model is necessary. In this work we apply a DPD-model-reduction methodology for linear polymers recently proposed; and demonstrate why the applicability of this methodology is limited upto certain maximum polymer length, and not suitable for solvent coarse graining.

  15. Lattice models of directed and semiflexible polymers in anisotropic environment

    International Nuclear Information System (INIS)

    Haydukivska, K; Blavatska, V

    2015-01-01

    We study the conformational properties of polymers in presence of extended columnar defects of parallel orientation. Two classes of macromolecules are considered: the so-called partially directed polymers with preferred orientation along direction of the external stretching field and semiflexible polymers. We are working within the frames of lattice models: partially directed self-avoiding walks (PDSAWs) and biased self-avoiding walks (BSAWs). Our numerical analysis of PDSAWs reveals, that competition between the stretching field and anisotropy caused by presence of extended defects leads to existing of three characteristic length scales in the system. At each fixed concentration of disorder we found a transition point, where the influence of extended defects is exactly counterbalanced by the stretching field. Numerical simulations of BSAWs in anisotropic environment reveal an increase of polymer stiffness. In particular, the persistence length of semiflexible polymers increases in presence of disorder. (paper)

  16. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  17. Applications of modeling in polymer-property prediction

    Science.gov (United States)

    Case, F. H.

    1996-08-01

    A number of molecular modeling techniques have been applied for the prediction of polymer properties and behavior. Five examples illustrate the range of methodologies used. A simple atomistic simulation of small polymer fragments is used to estimate drug compatibility with a polymer matrix. The analysis of molecular dynamics results from a more complex model of a swollen hydrogel system is used to study gas diffusion in contact lenses. Statistical mechanics are used to predict conformation dependent properties — an example is the prediction of liquid-crystal formation. The effect of the molecular weight distribution on phase separation in polyalkanes is predicted using thermodynamic models. In some cases, the properties of interest cannot be directly predicted using simulation methods or polymer theory. Correlation methods may be used to bridge the gap between molecular structure and macroscopic properties. The final example shows how connectivity-indices-based quantitative structure-property relationships were used to predict properties for candidate polyimids in an electronics application.

  18. Polymer systems testing: Final report

    International Nuclear Information System (INIS)

    1993-01-01

    Los Alamos National Laboratory (LANL) is in the process of decontaminating lead shielding material. The procedure involves abrasive surface etching of the shielding to remove the outer layer of lead that contains the majority of the radioactive contaminants. This procedure generates a small volume of mixed waste in the form of a wet residue containing lead, abrasive grit (Al 2 O 3 ), uranium and water. IC Technologies, Inc. (ICT) has developed several processes for the treatment of mixed wastes involving stabilizing/encapsulating the waste in a polymer monolith. The objective of the test program was to verify the applicability of ICT's technology to this specific waste stream and provide LANL baseline data on the performance of polymer encapsulation techniques. Polymer microencapsulation of lead shielding/blasting grit (surrogate) mixed waste was evaluated. Two polymers, melamine formaldehyde and polyester xylene, were used to examine the effect of waste loading on Toxicity Characteristic Leaching Procedure (TCLP) extract Pb concentration. Six levels of waste loading were evaluated by eleven tests. Significant reduction in Pb solubility during TCLP was achieved. Additional optimization to the single-stage microencapsulation technique utilized will be necessary to mitigate the toxic (RCRA) characteristic of the waste

  19. Miscibility of polymer blends with engineering models

    DEFF Research Database (Denmark)

    Vassilis, Harismiadis; van Bergen, A. R. D.; Goncalves, Ana Saraiva

    1996-01-01

    The miscibility behavior of polymer blends that do not exhibit strong specific interactions is examined. Phase equilibrium calculations are presented with the van der Waals equation of state and three group-contribution models (UNIFAC, Entropic-FV, and GC-Flory). Performance of these models is also...... compared. The van der Waals equation of state was recently shown to accurately correlate and predict vapor-liquid and liquid-liquid equilibria for binary polymer/solvent solutions. In this work, it is demonstrated that it correlates the upper critical solution behavior of polymer blends with excellent......, the upper critical solution temperature can be predicted with an average error of less than 45 degrees C. The van der Waals equation of state can correlate the lower critical solution behavior of polymer blends, using an interaction parameter that is a linear function of temperature. The UNIFAC and Entropic...

  20. Silks as ancient models for modern polymers

    OpenAIRE

    Vollrath, Fritz; Porter, David

    2009-01-01

    Silks have a great potential as sustainable, ecologically benign commercial polymers. Here we discuss this fascinating bio-material by merging the biologist's with the polymer scientist's views i.e. combine insights into the characterisation and understanding of evolved structure, property and function in natural silk proteins with the broad scope of applied disciplines ranging from molecular modelling to rheology and mechanical testing. We conclude that silk cannot be defined simply by only ...

  1. Self-Healing in Nanoparticle-Reinforced Polymers and other Polymer Systems

    NARCIS (Netherlands)

    Picken, S.J.; Mookhoek, S.D.; Fischer, H.R.; Zwaag, S. van der

    2010-01-01

    This chapter aims at combining new insights in the field of (liquid encapsulated) self healing polymer systems as well as nanoparticle reinforced polymers to set the direction for the development of nanoparticle reinforced self healing polymers. In the case of self healing polymers the strategy is

  2. Polymers for Pharmaceutical Packaging and Delivery Systems

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel

    -ATRP) from commercially available polymers. Initially, poly(ether ether ketone) (PEEK) films were applied as a model system to demonstrate that hydrophilization of a substrate could be obtained by SI-ATRP. PEEK has ketone groups which can be reduced to hydroxyl groups and used for anchoring of 2......-bromoisobutyrate initiating sites. Each modification step of PEEK as well as grafting of poly(ethylene glycol) methacrylate (PEGMA) was followed and confirmed by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, water contact angle (WCA) measurements, and Thermal Gravimetric Analysis....... X-ray Photoelectron Spectroscopy also confirmed the presence of the poly(PEGMA) grafts on the PEEK surface by comparing the C/O ratio and the chemical composition after each modification step. The surface topography was evaluated by Atomic Force Microscopy. Polypropylene (PP) is one of the polymeric...

  3. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  4. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  5. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  6. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  7. Adhesion in hydrogels and model glassy polymers

    Science.gov (United States)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  8. Numerical Modeling of Micro Fluidics of Polymer Melts

    DEFF Research Database (Denmark)

    Marin, José Manuel Román; Rasmussen, Henrik K.

    2008-01-01

    A new Galerkin finite element scheme for the numerical simulation of three-dimensional time-dependent flow of K-BKZ fluids has been developed. The scheme was used to model the polymer melt flow in nano imprint lithography (NIL). In NIL a sub micrometer pattern is hot pressed onto a thin polymer...... film on a hard substrate. The numerical method is based on a Lagrangian kinematics description of the fluid, where the (Cartesian) coordinate system attached to the particles is discretized by ten-node quadratic tetrahedral elements. The time integral in the K-BKZ model is discretized by a quadratic...

  9. Multi-scale First-Principles Modeling of Three-Phase System of Polymer Electrolyte Membrane Fuel Cel

    Energy Technology Data Exchange (ETDEWEB)

    Brunello, Giuseppe; Choi, Ji; Harvey, David; Jang, Seung

    2012-07-01

    The three-phase system consisting of Nafion, graphite and platinum in the presence of water is studied using molecule dynamics simulation. The force fields describing the molecular interaction between the components in the system are developed to reproduce the energies calculated from density functional theory modeling. The configuration of such complicated three-phase system is predicted through MD simulations. The nanophase-segregation and transport properties are investigated from the equilibrium state. The coverage of the electrolyte on the platinum surface and the dissolution of oxygen are analyzed.

  10. Non standard analysis, polymer models, quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1984-01-01

    We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)

  11. Polymer association in a microemulsion system

    International Nuclear Information System (INIS)

    Fountain, L.E.; Shahidan Radiman; Toprakcioglu, C.

    1997-01-01

    Using small angle neutron scattering technique with appropriate contrast we have been able to elucidate some associations structures of polystyrene (PS) and triblock co-polymers of polyethylene oxide-polystyrene- polyethylene oxide (PEO-PS-PEO) in a water-in-oil microemulsion system

  12. In vivo experimental aneurysm embolization in a swine model with a liquid-to-solid gelling polymer system: initial biocompatibility and delivery strategy analysis.

    Science.gov (United States)

    Brennecka, Celeste R; Preul, Mark C; Bichard, William D; Vernon, Brent L

    2012-11-01

    Current treatments for cerebral aneurysms are far from ideal. Platinum coils are prone to compaction, and currently used liquid embolics are delivered with angiotoxic agents. This work presents initial in vivo studies of a novel liquid-to-solid gelling polymer system (PPODA-QT), focusing on biocompatibility and effective delivery strategies. PPODA-QT was used to embolize surgically created lateral wall carotid artery aneurysms in swine using three delivery strategies. Group 1 aneurysms were completely filled with PPODA-QT (n = 5), group 2 aneurysms were subcompletely (80%-90%) filled (n = 3), and group 3 aneurysms underwent three-dimensional coil placement followed by polymer embolization (n = 3). The study was designed such that three animals per treatment group survived to 1 month. The group 1 delivery strategy (100% filling) resulted in survival of 3/5 animals. This strategy led to aneurysm stretching, which resulted model failure in 2/5 animals. Group 2 aneurysms, although initially viable alternative to current embolic materials. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Pil Seung; So, Dae Sup; Biegler, Lorenz T.; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu [Carnegie Mellon University, Department of Chemical Engineering (United States)

    2012-08-15

    Developments in nanotechnology have led to innovative progress and converging technologies in engineering and science. These demand novel methodologies that enable efficient communications from the nanoscale all the way to decision-making criteria for actual production systems. In this paper, we discuss the convergence of nanotechnology and novel multi-scale modeling paradigms by using the fuel cell system as a benchmark example. This approach includes complex multi-phenomena at different time and length scales along with the introduction of an optimization framework for application-driven nanotechnology research trends. The modeling paradigm introduced here covers the novel holistic integration from atomistic/molecular phenomena to meso/continuum scales. System optimization is also discussed with respect to the reduced order parameters for a coarse-graining procedure in multi-scale model integration as well as system design. The development of a hierarchical multi-scale paradigm consolidates the theoretical analysis and enables large-scale decision-making of process level design, based on first-principles, and therefore promotes the convergence of nanotechnology to sustainable energy technologies.

  14. Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example

    Science.gov (United States)

    Chung, Pil Seung; So, Dae Sup; Biegler, Lorenz T.; Jhon, Myung S.

    2012-08-01

    Developments in nanotechnology have led to innovative progress and converging technologies in engineering and science. These demand novel methodologies that enable efficient communications from the nanoscale all the way to decision-making criteria for actual production systems. In this paper, we discuss the convergence of nanotechnology and novel multi-scale modeling paradigms by using the fuel cell system as a benchmark example. This approach includes complex multi-phenomena at different time and length scales along with the introduction of an optimization framework for application-driven nanotechnology research trends. The modeling paradigm introduced here covers the novel holistic integration from atomistic/molecular phenomena to meso/continuum scales. System optimization is also discussed with respect to the reduced order parameters for a coarse-graining procedure in multi-scale model integration as well as system design. The development of a hierarchical multi-scale paradigm consolidates the theoretical analysis and enables large-scale decision-making of process level design, based on first-principles, and therefore promotes the convergence of nanotechnology to sustainable energy technologies.

  15. Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example

    International Nuclear Information System (INIS)

    Chung, Pil Seung; So, Dae Sup; Biegler, Lorenz T.; Jhon, Myung S.

    2012-01-01

    Developments in nanotechnology have led to innovative progress and converging technologies in engineering and science. These demand novel methodologies that enable efficient communications from the nanoscale all the way to decision-making criteria for actual production systems. In this paper, we discuss the convergence of nanotechnology and novel multi-scale modeling paradigms by using the fuel cell system as a benchmark example. This approach includes complex multi-phenomena at different time and length scales along with the introduction of an optimization framework for application-driven nanotechnology research trends. The modeling paradigm introduced here covers the novel holistic integration from atomistic/molecular phenomena to meso/continuum scales. System optimization is also discussed with respect to the reduced order parameters for a coarse-graining procedure in multi-scale model integration as well as system design. The development of a hierarchical multi-scale paradigm consolidates the theoretical analysis and enables large-scale decision-making of process level design, based on first-principles, and therefore promotes the convergence of nanotechnology to sustainable energy technologies.

  16. Can polymer thermal oxidative ageing be modelled?

    International Nuclear Information System (INIS)

    Audouin, L.; Colin, X.; Fayolle, B.; Richaud, E.; Verdu, J.

    2010-01-01

    It has been supposed, for a long time, that kinetic modelling of polymer ageing for nonempirical lifetime prediction was out of reach for two main reasons: hyper-complexity of mechanisms and heterogeneity of reactions. The arguments relative to both aspects are examined here. It is concluded that, thanks to recent advances, especially the introduction of numerical methods, kinetic modelling is possible in various important practical cases. (authors)

  17. Phases of polymer systems in solution studied via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Joshua Allen [Iowa State Univ., Ames, IA (United States)

    2009-05-01

    Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

  18. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  19. DNA as a Model for Probing Polymer Entanglements: Circular Polymers and Non-Classical Dynamics

    Directory of Open Access Journals (Sweden)

    Kathryn Regan

    2016-09-01

    Full Text Available Double-stranded DNA offers a robust platform for investigating fundamental questions regarding the dynamics of entangled polymer solutions. The exceptional monodispersity and multiple naturally occurring topologies of DNA, as well as a wide range of tunable lengths and concentrations that encompass the entanglement regime, enable direct testing of molecular-level entanglement theories and corresponding scaling laws. DNA is also amenable to a wide range of techniques from passive to nonlinear measurements and from single-molecule to bulk macroscopic experiments. Over the past two decades, researchers have developed methods to directly visualize and manipulate single entangled DNA molecules in steady-state and stressed conditions using fluorescence microscopy, particle tracking and optical tweezers. Developments in microfluidics, microrheology and bulk rheology have also enabled characterization of the viscoelastic response of entangled DNA from molecular levels to macroscopic scales and over timescales that span from linear to nonlinear regimes. Experiments using DNA have uniquely elucidated the debated entanglement properties of circular polymers and blends of linear and circular polymers. Experiments have also revealed important lengthscale and timescale dependent entanglement dynamics not predicted by classical tube models, both validating and refuting new proposed extensions and alternatives to tube theory and motivating further theoretical work to describe the rich dynamics exhibited in entangled polymer systems.

  20. Mathematical modeling of polymer electrolyte fuel cells

    Science.gov (United States)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  1. Polymers for hydrogen infrastructure and vehicle fuel systems :

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  2. Polymer gel dosimetry system for radiation therapy

    International Nuclear Information System (INIS)

    Maryanski, M.J.; Schulz, R.J.; Gignac, C.; Eastman, P.; Gore, J.C.

    1995-01-01

    Purpose/Objective: Recently developed treatment modalities such as stereotactic and conformal radiation therapy produce complex dose distributions which are difficult or impractical to measure with conventional dosimetry instrumentation. Three-dimensional treatment planning systems which purport to calculate these complex dose distributions should be compared to experimental results before being routinely applied to clinical problems. There is a need for a new class of tissue-equivalent dosimeters capable of providing accurate, high resolution, time-integrated and three dimensional dose distributions. The recently developed BANG polymer gel dosimetry system (MGS Research, Inc., Guilford, CT) is ideally suited for the task described above. Physico-chemical principles of the polymer gel dosimetry are presented, together with examples of its application to radiation therapy. Data analysis and display program, written for Macintosh computer, is demonstrated. Materials and Methods: Radiation-induced polymerization of acrylic monomers, which are dispersed in tissue-equivalent gelatin, has been shown to be dependent on the dose, but independent of the dose rate or photon energy. Therefore, the spatial distribution of polymer in the gel is precisely representative of the dose distribution. As the polymeric microparticles reduce the water proton NMR relaxation times in the gel, the dose distribution can be measured with high resolution and accuracy using magnetic resonance imaging. Also, as these microparticles cannot diffuse through the gelatin matrix, their distribution is permanent. An improved formulation of the BANG dosimeter consists of 3% w/v acrylic acid, 3% N,N'-methylene-bis-acrylamide, 1% sodium hydroxide, 5% gelatin, and 88% water. MR images are transferred via a local network to a Macintosh computer, and R2 maps constructed on the basis of multiple TE images, using a non-linear least squares fit based on the Levenberg-Marquardt algorithm. A dose-to-R2

  3. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    International Nuclear Information System (INIS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2015-01-01

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology

  4. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Science.gov (United States)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2015-06-01

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  5. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  6. Biomimetic polymers of plant cutin: An approach from molecular modeling

    OpenAIRE

    San-Miguel, M. A.; Oviedo, Jaime; Heredia-Guerrero, José A.; Heredia, Antonio; Benítez, José J.

    2014-01-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of ...

  7. Self-organization in the flow of complex fluids (colloid and polymer systems). Part 2: Theoretical models.

    Science.gov (United States)

    Subbotin, A V; Malkin, A Ya; Kulichikhin, V G

    2011-02-17

    Flow induced transitions in complex fluids are usually accompanied by changes in the internal media structure and the flow symmetry. In this review paper, we discuss the theoretical models and approaches that have been used for the analysis of different types of flow instabilities and flow patterns. The main attention is focused on the basic fluid models which reveal vortex and banding flow structures at high shear rates. The Oldroyd-B fluid is one of such models. The Reynolds and the Weissenberg (or Deborah) numbers are the parameters governing its flow behavior. For this model, the secondary flow patterns arising in viscometric flows of different geometries at the bifurcation point are described. Complex fluids which are able to exist in multiple states can form coexisting bands of different structures with different rheological properties and flowing with different shear rates at the same shear stress. Shear banding is typical for fluids demonstrating non-monotonous flow curves described by such models as the diffusive Johnson-Segalman fluid model, for example. Recent progress in exploring this phenomenon is discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Polymers and surfactants in solution and at interfaces : a model study on detergency

    NARCIS (Netherlands)

    Torn, B.

    2000-01-01

    This thesis deals with detergency-related adsorption phenomena of (mixtures of) polymers and surfactants. Both types of molecules play an important role in the removal and subsequent stabilization of soil from a substrate. Starting with a model detergency system consisting of polymers,

  9. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Abstract. This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation ...

  10. Development of an immiscible polymer/polymer/nanoparticle system in order to study the location of nanoparticles at polymer/polymer interface by quantitative optical microscopy

    Science.gov (United States)

    Johansen, Luis Henrique B.; Canto, Leonardo B.; Canevarolo, Sebastião V.

    2015-12-01

    In the past ten years, stabilization of the phase morphology of immiscible polymer blends during melt compounding went through a new perspective by the use of inorganic nanoparticles as compatibilizers. Following the ideas of Ramsden and Pickering, the stabilization of the minor phase in immiscible polymer blends could be achieved with solid nanoparticles located at the interface of the phases, lowering the interfacial tension and acting as a physical barrier to droplet coalescence. In this work, the location of the silica nanoparticle in an immiscible polymer blend is studied using quantitative optical microscopy, measuring the total light scattering, i.e. turbidity, created by the use of hydrophilic and hydrophobic silica nanoparticles (hi-silica and hb-silica, respectively) in an immiscible polymer blend. The light scattering at the polymer/polymer interface is minimized choosing a PS/PC immiscible blend which has minimal difference in their refractive indices. On the other hand, the considerable difference in the refractive index of the chosen polymers and nanosilica would highlight the scattering effect of the silica nanoparticles if located at the polymer/polymer interface. The transmitted light intensity from neat PS/PC blends and some PS/PC/hl-silica systems were similar, showing only a small change in the range of the glass transition temperatures of the two polymers, which is an indication that the silica nanoparticles are dispersed inside the two polymer phases. However, the transmitted light intensity is greatly changed in the system PS/PC/hb-silica, containing the hydrophobic silica, which according to the wetting parameter should have the silica nanoparticles located mainly at the polymer/polymer interface.

  11. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  12. [New polymer-drug systems based on natural and synthetic polymers].

    Science.gov (United States)

    Racoviţă, Stefania; Vasiliu, Silvia; Foia, Liliana

    2010-01-01

    The great versatility of polymers makes them very useful in the biomedical and pharmaceutical fields. The combination of natural and synthetic polymers leads to new materials with tailored functional properties. The aim of this work consists in the preparation of new drug delivery system based on chitosan (natural polymer) and polybetaines (synthetic polymers), by a simple process, well known in the literature as complex coacervation methods. Also, the adsorption and release studies of two antibiotics as well as the preservation of their bactericidal capacities were performed.

  13. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof...... of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...

  14. Procurement model for copper and polymer electrical products

    Directory of Open Access Journals (Sweden)

    S. Sremac

    2013-10-01

    Full Text Available Procurement model for copper and polymer electrical products. Electrical cable structure (wire, insulation, filling and mantle is in accordance with the technical specifications of individual cable components in terms of the incorporated materials. Materials used in cable manufacture are copper, aluminum, rubber and polyvinyl chloride. One of the key issues in managing the flow of goods pertains to the timing of procurement. The combination of the two concepts can take advantage of individual strengths of fuzzy logic and neural networks in hybrid systems of homogeneous structure. The model has high practical significance, as, with minor modifications, it can be applied in any enterprise responsible for managing the goods flows.

  15. Solvent activities of the fluorinated solid polymer electrolyte/water system in fuel cells

    Science.gov (United States)

    Kim, Tae Hwan; Bae, Young Chan

    We modified the lattice fluid equation-of-state by the introducing Debye-Hückel equation. A thermodynamic model taking into account the specific interaction and ionic strength between the polymer and the solvent is proposed. The proposed model successfully predicts the vapor/liquid equilibria (VLE) of solvents and the solid polymer electrolyte (SPE). A generalized lattice fluid model is modified to describe the change of water activity in solid polymer electrolyte (SPE)/water systems. The calculated activity curves using the proposed model agree remarkably well with the experimental data.

  16. A molecular model for epsilon-caprolactam-based intercalated polymer clay nanocomposite: Integrating modeling and experiments.

    Science.gov (United States)

    Sikdar, Debashis; Katti, Dinesh R; Katti, Kalpana S

    2006-08-29

    In studying the morphology, molecular interactions, and physical properties of organically modified montmorillonite (OMMT) and polymer clay nanocomposites (PCNs) through molecular dynamics (MD), the construction of the molecular model of OMMT and PCN is important. Better understanding of interaction between various constituents of PCN will improve the design of polymer clay nanocomposite systems. MD is an excellent tool to study interactions, which require accurate modeling of PCN under consideration. Previously, the PCN models were constructed by different researchers on the basis of specific criteria such as minimum energy configuration, density of the polymer clay nanocomposite, and so forth. However, in this article we describe the development of models combining experimental and conventional molecular modeling to develop models, which are more representative of true intercalated PCN systems. The models were used for studying the morphological interactions and physical properties. These studies gave useful information regarding orientation of organic modifiers, area of coverage of organic modifiers over the interlayer clay surface, interaction of organic modifiers with clay in OMMT, interaction among different constituents of PCN, conformational and density change, and actual proportion of mixing of polymer with clay in PCN. We have X-ray diffraction and photoacoustic Fourier transform infrared spectroscopy to verify the model.

  17. Non-homogeneous polymer model for wave propagation and its ...

    African Journals Online (AJOL)

    This article concerns certain aspects of four parameter polymer models to study harmonic waves in the non-homogeneous polymer rods of varying density. There are two sections of this paper, in first section, the rheological behaviour of the model is discussed numerically and then it is solved analytically with the help of ...

  18. Lead ion adsorption on montmorillonite-Al hydroxide polymer systems

    NARCIS (Netherlands)

    Janssen, R.P.T.; Bruggenwert, M.G.M.; Dijk, van G.; Riemsdijk, van W.H.

    2007-01-01

    Clay¿Al hydroxide polymer systems (CAlHO) can bind heavy metals effectively. Their adsorption behaviour depends on the type of metal. We studied the dependence of Al-loading and pH on the adsorption of Pb to Na-saturated montmorillonite¿Al hydroxide polymer systems. The available binding sites on

  19. Classical and recent free-volume models for polymer solutions: A comparative evaluation

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Kontogeorgis, Georgios; Ghotbi, C.

    2007-01-01

    In this work, two "classical" (UNIFAC-FV, Entropic-FV) and two "recent" free-volume (FV) models (Kannan-FV, Freed-FV) are comparatively evaluated for polymer-solvent vapor-liquid equilibria including both aqueous and non-aqueous solutions. Moreover, some further developments are presented here...... by the modified Freed-FV model for athermal and non-athermal polymer systems are compared to other "recent" and "classical" FV models, indicating an improvement for the modified Freed-FV model for aqueous polymer solutions. Second, for the original Freed-FV model, new UNIFAC group energy parameters are regressed...... to using the classical UNIFAC parameters, for VLE of aqueous and alcohol polymer systems....

  20. Coding coarse grained polymer model for LAMMPS and its application to polymer crystallization

    Science.gov (United States)

    Luo, Chuanfu; Sommer, Jens-Uwe

    2009-08-01

    , including test data, etc.: 940 798 No. of bytes in distributed program, including test data, etc.: 12 536 245 Distribution format: tar.gz Programming language: C++/MPI Computer: Tested on Intel-x86 and AMD64 architectures. Should run on any architecture providing a C++ compiler Operating system: Tested under Linux. Any other OS with C++ compiler and MPI library should suffice Has the code been vectorized or parallelized?: Yes RAM: Depends on system size and how many CPUs are used Classification: 7.7 External routines: LAMMPS ( http://lammps.sandia.gov/), FFTW ( http://www.fftw.org/) Nature of problem: Implementing special tabular angle potentials and Lennard-Jones-9-6 style interactions of a coarse grained polymer model for LAMMPS code. Solution method: Cubic spline interpolation of input tabulated angle potential data. Restrictions: The code is based on a former version of LAMMPS. Unusual features.: Any special angular potential can be used if it can be tabulated. Running time: Seconds to weeks, depending on system size, speed of CPU and how many CPUs are used. The test run provided with the package takes about 5 minutes on 4 AMD's opteron (2.6 GHz) CPUs. References:D. Reith, H. Meyer, F. Müller-Plathe, Macromolecules 34 (2001) 2335-2345. H. Meyer, F. Müller-Plathe, J. Chem. Phys. 115 (2001) 7807. H. Meyer, F. Müller-Plathe, Macromolecules 35 (2002) 1241-1252.

  1. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  2. AMEM-ADL Polymer Migration Estimation Model User's Guide

    Science.gov (United States)

    The user's guide of the Arthur D. Little Polymer Migration Estimation Model (AMEM) provides the information on how the model estimates the fraction of a chemical additive that diffuses through polymeric matrices.

  3. Photopolymerized Thiol-Ene Systems as Shape Memory Polymers

    Science.gov (United States)

    Nair, Devatha P.; Cramer, Neil B.; Scott, Timothy F.; Bowman, Christopher N.; Shandas, Robin

    2010-01-01

    In this study we introduce the use of thiol-ene photopolymers as shape memory polymer systems. The thiol-ene polymer networks are compared to a commonly utilized acrylic shape memory polymer and shown to have significantly improved properties for two different thiol-ene based polymer formulations. Using thermomechanical and mechanical analysis, we demonstrate that thiol-ene based shape memory polymer systems have comparable thermomechanical properties while also exhibiting a number of advantageous properties due to the thiol-ene polymerization mechanism which results in the formation of a homogenous polymer network with low shrinkage stress and negligible oxygen inhibition. The resulting thiol-ene shape memory polymer systems are tough and flexible as compared to the acrylic counterparts. The polymers evaluated in this study were engineered to have a glass transition temperature between 30 and 40 °C, exhibited free strain recovery of greater than 96% and constrained stress recovery of 100%. The thiol-ene polymers exhibited excellent shape fixity and a rapid and distinct shape memory actuation response. PMID:21072253

  4. The mesoscopic modelling of multilayered polymer diodes

    International Nuclear Information System (INIS)

    Ribeiro, Ricardo M.

    2008-01-01

    The performance of transparent devices based on semiconducting polymers depends on the component polymer molecules, on the device design, and on the polymer texture. The role of this texture and multilayers of different textures is the focus of this work. In this work, we build on the approaches described elsewhere to build up a more systematic description of the way texture affects recombination and other processes in simple devices. Our methods do not need major computing power, and could be applied in the optimisation of devices. The results show a clear dependence of the electron-hole recombination rate on the texture of the polymer, which can be used to increase the performance of devices. Also the effect of including a dielectric nanoparticle inside different textures was studied. It was observed that the recombination rate and the charge distribution are influenced by the texture of the polymer, and so can be used to control where the majority of recombinations occur

  5. Systems for production of polymer encapsuated solids

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, William L.; Aines, Roger D.; Baker, Sarah E.; Duoss, Eric B.; Maiti, Amitesh; Roberts, Jeffery J.; Spadaccini, Christopher M.; Stolaroff, Joshuah K.; Vericella, John J.; Lewis, Jennifer A.; Hardin, IV, James O.; Floyd, III, William C.

    2017-11-21

    Encapsulated solids are made by first encapsulating precursor materials in a polymer shell. The precursors are some combination of solids, liquids, gases, and/or gels. The precursors are then transformed into solids by emplacement of the capsule in an environment where gas or fluid transport into or out of the polymer shell causes transformation into solids.

  6. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Molecular dynamics simulation on the mechanical properties of natural-rubber-graft-rigid-polymer/rigid-polymer systems.

    Science.gov (United States)

    Wei, Meng; Xu, Pengxiang; Yuan, Yizhong; Tian, Xiaohui; Sun, Jinyu; Lin, Jiaping

    2018-03-28

    A coarse-grained model-based molecular dynamics simulation was employed to investigate the mechanical properties of NR-graft-rigid-polymer/rigid-polymer systems (N 30 -g-(R 3 ) 6 /R 10 ). An external factor (the strain rate) as well as internal factors such as the nonbonding interaction strength, the proportion of rigid polymers, and architecture parameters (the length and number of graft chains in a molecule) were examined for their effect on the tensional behavior of N 30 -g-(R 3 ) 6 /R 10 systems. Simulation results show that a higher strain rate can promote the enhancement of mechanical performance, such as a higher modulus or yield stress. Moreover, the stress and modulus increase with an increase of the nonbonding interaction strength within rigid polymers or of the rigid polymer proportion in the systems. However, the increasing stress was found to reach a limit with a continuously increasing rigid polymer proportion. On increasing the number of graft chains in a molecule, the stress increases at small strains. However, at large strains, the evident increase in stress was found in systems in which a graft molecule has longer graft chains. In addition, our research shows that N 30 -g-(R 3 ) 6 /R 10 blends exhibit improved mechanical properties and better compatibilities relative to N 30 /R 10 , which is consistent with the experimental results. Lastly, comparisons with experimental observations were also made to ensure the rationality of the simulation results. Overall, bond stretching, bond orientation, and nonbonding interactions were found to be crucial in governing the mechanical properties of the N 30 -g-(R 3 ) 6 /R 10 systems. These findings may provide important information for further experimental and simulation studies of NR hybrid materials.

  8. Zinc ion adsorption on montmorillonite-Al hydroxide polymer systems

    NARCIS (Netherlands)

    Janssen, R.P.T.; Bruggenwert, M.G.M.; Riemsdijk, van W.H.

    2003-01-01

    Clay¿Al hydroxide polymers (CAlHO) can bind heavy metals effectively and may play an important role in the adsorption behaviour and metal binding capacity of soils. We studied the dependence of Al loading and pH on the adsorption of Zn on Na-saturated montmorillonite¿Al hydroxide polymer systems.

  9. Molecular modeling of amorphous, non-woven polymer networks.

    Science.gov (United States)

    Krausse, Constantin A; Milek, Theodor; Zahn, Dirk

    2015-10-01

    We outline a simple and efficient approach to generating molecular models of amorphous polymer networks. Similar to established techniques of preparing woven polymer networks from quenching high-temperature molecular simulation runs, we use a molecular dynamics simulations of a generic melt as starting points. This generic melt is however only used to describe parts of the polymers, namely the cross-linker units which positions are adopted from particle positions of the quenched melt. Specific degrees of network connectivity are tuned by geometric criteria for linker-linker connections and by suitable multi-body interaction potentials applied to the generic melt simulations. Using this technique we demonstrate adjusting fourfold linker coordination in amorphous polymer networks comprising 10-20% under-coordinated linkers. Graphical Abstract Molecular modeling of amorphous, non-woven polymer networks.

  10. Viscoelastic Flow Modelling for Polymer Flooding

    Science.gov (United States)

    de, Shauvik; Padding, Johan; Peters, Frank; Kuipers, Hans; Multi-scale Modelling of Multi-phase Flows Team

    2015-11-01

    Polymer liquids are used in the oil industry to improve the volumetric sweep and displacement efficiency of oil from a reservoir. Surprisingly, it is not only the viscosity but also the elasticity of the displacing fluid that determine the displacement efficiency. The main aim of our work is to obtain a fundamental understanding of the effect of fluid elasticity, by developing an advanced computer simulation methodology for the flow of non-Newtonian fluids through porous media. We simulate a 3D unsteady viscoelastic flow through a converging diverging geometry of realistic pore dimension using computational fluid dynamics (CFD).The primitive variables velocity, pressure and extra stresses are used in the formulation of models. The viscoelastic stress part is formulated using a FENE-P type of constitutive equation, which can predict both shear and elongational stress properties during this flow. A Direct Numerical Simulation (DNS) approach using Finite volume method (FVM) with staggered grid has been applied. A novel second order Immersed boundary method (IBM) has been incorporated to mimic porous media. The effect of rheological parameters on flow characteristics has also been studied. The simulations provide an insight into 3D flow asymmetry at higher Deborah numbers. Micro-Particle Image Velocimetry experiments are carried out to obtain further insights. These simulations present, for the first time, a detailed computational study of the effects of fluid elasticity on the imbibition of an oil phase.

  11. Designing Polymer Blends Through Modeling and Simulation

    National Research Council Canada - National Science Library

    Balazs, Anna

    2001-01-01

    ...) of clay sheets in polymer melts. In addition, we determined how the coupling between phase separation and wetting interactions in polymeric composites effects the structural evolution and phase behavior of the material...

  12. First principle study of PEO-AgI polymer systems

    Science.gov (United States)

    Rao, B. Keshav; Verma, Mohan L.

    2017-07-01

    First principle calculations based on density functional theory is performed to analyze cation (Ag+) conductivity in polyethylene oxide (PEO) based systems. The relaxed polymer structures are simulated, bond lengths and the charge density distributions around interacting atoms provides the strong bonding nature between higher electro-negative oxygen and silver atoms. Projected density of states and density of states explain s-p hybridization between orbitals, to increase in cation concentration in polymer systems, to reduce in the forbidden energy gap and to increase the ionic conductivity due to gradual increase the number of dispersing AgI molecules in polymer systems.

  13. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  14. Infrared laser-induced chaos and conformational disorder in a model polymer crystal: Melting vs ablation

    International Nuclear Information System (INIS)

    Sumpter, B.G.; Noid, D.W.; Voth, G.A.; Wunderlich, B.

    1990-01-01

    Molecular dynamics-based computer simulations are presented for the interaction of one and two infrared (IR) laser beams with a model polymer surface. When a single laser beam system is studied over a wide range of intensities, only melting of the polymer, or melting followed by bond dissociation, is observed for up to 100 picoseconds. In contrast, the two-laser simulation results exhibit a marked difference in the energy absorption behavior of the irradiated polymer which, in turn, results in multiple bond dissociations. The results for the one- and two-laser cases studied can be divided into four different classes of physical behavior: (a) the polymer remains in the solid state; (b) the polymer crystal melts; (c) the polymer ablates, but with significant melting (charring); or (d) the polymer ablates with minimal melting. Damage to the model polymer crystal from absorption of energy from either one or two lasers occurs through a mechanism that involves the competition between the absorption of energy and internal energy redistribution. The rate of energy loss from the absorption site(s) relative to the rate of absorption of energy from the radiation field determines rather the polymer melts or ablates (low absorption rates lead to melting or no change and high rates lead to ablation). A sufficiently large rate of energy absorption is only obtainable through the use of two lasers. Two lasers also significantly decrease the total laser intensity required to cause polymer crystal melting. The differences between the one- and two-laser cases are studied by adapting novel signal/subspace techniques to analyze the dynamical changes in the mode spectrum of the polymer as it melts

  15. Analysis of Model Parameters for a Polymer Filtration Simulator

    Directory of Open Access Journals (Sweden)

    N. Brackett-Rozinsky

    2011-01-01

    Full Text Available We examine a simulation model for polymer extrusion filters and determine its sensitivity to filter parameters. The simulator is a three-dimensional, time-dependent discretization of a coupled system of nonlinear partial differential equations used to model fluid flow and debris transport, along with statistical relationships that define debris distributions and retention probabilities. The flow of polymer fluid, and suspended debris particles, is tracked to determine how well a filter performs and how long it operates before clogging. A filter may have multiple layers, characterized by thickness, porosity, and average pore diameter. In this work, the thickness of each layer is fixed, while the porosities and pore diameters vary for a two-layer and three-layer study. The effects of porosity and average pore diameter on the measures of filter quality are calculated. For the three layer model, these effects are tested for statistical significance using analysis of variance. Furthermore, the effects of each pair of interacting parameters are considered. This allows the detection of complexity, where in changing two aspects of a filter together may generate results substantially different from what occurs when those same aspects change separately. The principal findings indicate that the first layer of a filter is the most important.

  16. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  17. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  18. Applications of polymers in intraocular drug delivery systems

    Directory of Open Access Journals (Sweden)

    Ali Mohammed Alhalafi

    2017-01-01

    Full Text Available We are entering a new era of ophthalmic pharmacology where new drugs are rapidly being developed for the treatment of anterior and posterior segment of the eye disease. The pharmacokinetics of drug delivery to the eye remains a very active area of ophthalmic research. Intraocular drug delivery systems allow the release of the drug, bypassing the blood–ocular barrier. The main advantage of these preparations is that they can release the drug over a long time with one single administration. These pharmaceutical systems are of great important in the treatment of the posterior segment diseases, and they can be prepared from biodegradable or nonbiodegradable polymers. Biodegradable polymers have the advantage of disappearing from the site of action after releasing the drug. The majority of intraocular devices are prepared from nonbiodegradable polymers, and they can release controlled amounts of drugs for months. Nonbiodegradable polymers include silicone, polyvinyl alcohol, and ethylene-vinyl acetate. The polymers usually employed to prepare nanoparticles for the topical ophthalmic route are poly (acrylic acid derivatives (polyalquilcyanocrylates, albumin, poly-μ-caprolactone, and chitosan. Dendrimers are a recent class of polymeric materials with unique nanostructure which has been studied to discover their role in the delivery of therapeutics and imaging agents. Hydrogels are polymers that can swell in aqueous solvent system, and they hold the solvents in a swollen cross-linked gel for delivery. This review exhibits the current literature regarding applications of polymers in ophthalmic drug delivery systems including pharmacokinetics, advantages, disadvantages, and indications aimed to obtain successful eye therapy. Method of Literature Search: A systematic literature review was performed using PubMed databases into two steps. The first step was oriented to classification of intraocular polymers implants focusing on their advantages and

  19. Dynamic response of a polymer and polymer composite systems : Experimental studies

    NARCIS (Netherlands)

    Fan, J.

    2015-01-01

    Recently, research on the impact resistance of transparent hybrid glass-polymer systems (layered and particle-matrix systems) has been conducted at the Netherlands Organisation for Applied Scientific Research (TNO), showing the potential of these materials for the application in protection concepts.

  20. Polymer Nanocomposites for Wind Energy Applications: Perspectives and Computational Modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Zhou, H.W.; Peng, R.D.

    2013-01-01

    Strength and reliability of wind blades produced from polymer composites are the important preconditions for the successful development of wind energy. One of the ways to increase the reliability and lifetime of polymer matrix composites is the nanoengineering of matrix or fiber/matrix interfaces...... in these composites. The potential and results of nanoclay reinforcements for the improvement of the mechanical properties of polymer composites are investigated using continuum mechanics and micromechanics methods and effective phase model. It is demonstrated that nanoreinforcement allows to increase the stiffness...

  1. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...

  2. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability.

    Science.gov (United States)

    Solanki, Nayan G; Tahsin, Md; Shah, Ankita V; Serajuddin, Abu T M

    2018-01-01

    The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon ® VA64, Kollicoat ® IR, Affinsiol ™ 15 cP, and HPMCAS either individually or as binary blends (Kollidon ® VA64 + Affinisol ™ 15 cP, 1:1; Kollidon ® VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.8, and formulations demonstrating rapid dissolution rates were then analyzed for drug-polymer, polymer-polymer and drug-polymer-polymer miscibility by film casting. Polymer-polymer (1:1) and drug-polymer-polymer (1:5:5 and 2:5:5) mixtures were found to be miscible. Tablets with 100% and 60% infill were printed using MakerBot printer at 210°C, and dissolution tests of tablets were conducted at pH 2 and 6.8. Extruded filaments of Kollidon ® VA64-Affinisol ™ 15 cP mixtures were flexible and had optimum mechanical strength for 3D printing. Tablets containing 10% drug with 60% and 100% infill showed complete drug release at pH 2 in 45 and 120 min, respectively. Relatively high dissolution rates were also observed at pH 6.8. The 1:1-mixture of Kollidon ® VA64 and Affinisol ™ 15 cP was thus identified as a suitable polymer system for 3D printing and rapid drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Semi-2-interpenetrating polymer networks of high temperature systems

    Science.gov (United States)

    Hanky, A. O.; St. Clair, T. L.

    1985-01-01

    A semi-interpenetrating (semi-IPN) polymer system of the semi-2-IPN type is described in which a polymer of acetylene-terminated imidesulfone (ATPISO2) is cross linked in the presence of polyimidesulfone (PISO2). Six different formulations obtained by mixing of either ATPISO2-1n or ATPISO2-3n with PISO2 in three different proportions were characterized in terms of glass transition temperature, thermooxidative stability, inherent viscosity, and dynamic mechanical properties. Adhesive (lap shear) strength was tested at elevated temperatures on aged samples of adhesive scrim cloth prepared from each resin. Woven graphite (Celion 1000)/polyimide composites were tested for flexural strength, flexural modulus, and shear strength. The network polymers have properties intermediate between those of the component polymers alone, have greatly improved processability over either polyimide, and are able to form good adhesive bonds and composites, making the semi-2-IPN systems superior materials for aerospace structures.

  4. A model for simultaneous crystallisation and biodegradation of biodegradable polymers.

    Science.gov (United States)

    Han, Xiaoxiao; Pan, Jingzhe

    2009-01-01

    This paper completes the model of biodegradation for biodegradable polymers that was previously developed by Wang et al. (Wang Y, Pan J, Han X, Sinka, Ding L. A phenomenological model for the degradation of biodegradable polymers. Biomaterials 2008;29:3393-401). Crystallisation during biodegradation was not considered in the previous work which is the topic of the current paper. For many commonly used biodegradable polymers, there is a strong interplay between crystallisation and hydrolysis reaction during biodegradation - the chain cleavage caused by the hydrolysis reaction provides an extra mobility for the polymer chains to crystallise and the resulting crystalline phase becomes more resistant to further hydrolysis reaction. This paper presents a complete theory to describe this interplay. The fundamental equations in the Avrami's theory for crystallisation are modified and coupled to the diffusion-reaction equations that were developed in our previous work. The mathematical equations are then applied to three biodegradable polymers for which long term degradation data are available in the literature. It is shown that the model can capture the behavior of the major biodegradable polymers very well.

  5. A model for the dynamics of extensible semiflexible polymers

    NARCIS (Netherlands)

    Barkema, G.T.; van Leeuwen, J.M.J.

    2012-01-01

    We present a model for semiflexible polymers in Hamiltonian formulation which interpolates between a Rouse chain and worm-like chain. Both models are realized as limits for the parameters. The model parameters can also be chosen to match the experimental force-extension curve for double-stranded

  6. Critical-ionization model for the dissolution of phenolic polymers in aqueous base

    Science.gov (United States)

    Flanagin, Lewis Wayne

    The microelectronics industry owes much of its success to the miniaturization of the integrated circuit. Advances in the design of photoresists used in microlithography have enabled this progress to continue. The majority of photoresist formulations contain phenolic polymers, and their imaging capabilities arise from the radiation- induced differences in dissolution rate between exposed and unexposed regions of the photoresist in basic aqueous solutions. The Critical-Ionization Model provides an understanding at the molecular level of the important factors in the aqueous dissolution of phenolic polymers below the entanglement molecular weight. The model postulates that a critical fraction of the acidic sites on a phenolic polymer must ionize for the polymer to dissolve in aqueous base. A functional relationship between the dissolution rate and the degree of ionization is developed based on this hypothesis. Quantitative predictions for the effects of polymer structure on the dissolution rate follow from equations relating the degree of ionization to the degree of polymerization, the polymer pKa, and the developer concentration. Experimental verification is' provided through tests of model predictions for the minimum base concentration required for development and the effects of polymer structure on the dissolution rate. Molecular simulations of resist dissolution based on the Critical-Ionization Model are used to probe the mechanism of surface inhibition and the evolution of edge roughness and surface roughness in photoresist profiles. These simulations demonstrate the dependence of the dissolution rate and surface roughness on the molecular-weight distribution of the polymer, degree of deprotection, void fraction, and developer concentration. Model parameters are evaluated using experimental data from turbidimetry, potentiometry, and copolymer studies. Means to extend the scope of the Critical-Ionization Model to describe and ultimately simulate other steps in the

  7. Microscopic kinetic model for polymer crystal growth

    Science.gov (United States)

    Hu, Wenbing

    2011-03-01

    Linear crystal growth rates characterize the net result of competition between growth and melting at the liquid-solid interfaces. The rate equation for polymer crystal growth can be derived with a barrier term for crystal growth and with a driving force term of excess lamellar thickness, provided that growth and melting share the same rate-determining steps at the growth front. Such an ansatz can be verified by the kinetic symmetry between growth and melting around the melting point of lamellar crystals, as made in our recent dynamic Monte Carlo simulations. The profile of the growth/melting front appears as wedge-shaped, with the free energy barrier for intramolecular secondary crystal nucleation at its top, and with the driving force gained via instant thickening at its bottom. Such a scenario explains unique phenomena on polymer crystal growth, such as chain folding, regime transitions, molecular segregation of polydisperse polymers, self-poisoning with integer-number chain-folding of short chains, and colligative growth rates of binary mixtures of two chain lengths. Financial support from NNSFC No. 20825415 and NBRPC No. 2011CB606100 is acknowledged.

  8. Modeling of Dilute Polymer Solutions in Confined Space

    DEFF Research Database (Denmark)

    Wang, Yanwei

    2009-01-01

    This thesis deals with modeling of a polymer chain subject to spatial confinement. The properties of confined macromolecules are both of fundamental interest in polymer physics and of practical importance in a variety of applications including chromatographic separation of polymers, and the use...... method, hereafter referred to as the method of confinement analysis from bulk structures (CABS), has the computational advantage of supplying properties as a function of the confinement size solely based on sampling the configuration space of a polymer chain in bulk alone. CABS is highly adaptable...... to studies of the effects of excluded volume, finite persistent length and nonlinear chain architectures in slit, channel and box confining geometries. Superior in computational efficiency to previous simulation studies, CABS has also the unique theoretical advantage of providing new physical insights only...

  9. Application of sPC-SAFT and group contribution sPC-SAFT to polymer systems-Capabilities and limitations

    DEFF Research Database (Denmark)

    Tihic, Amra; von Solms, Nicolas; Michelsen, Michael Locht

    2009-01-01

    PC-SAFT model, with and without GC. The reported results contribute to a better understanding of the applicability of the sPC-SAFT model to binary polymer mixtures, and identify both models as good predictive tools for several industrial applications. Limitations are also identified and discussed....... predictive capability of the model demonstrates satisfactory description of the fluid behaviour of several polymer systems, including both vapour-liquid equilibria and liquid-liquid equilibria. This work continues the systematic study on phase behaviour of polymer systems with the two versions of the s...

  10. Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-06-30

    We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e., ≥200≥200 beads per chain) with a significant reduction in the number of particles required (i.e., ≥20≥20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.

  11. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  12. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  13. Processing, Characterization, and Modeling of Polymer/Clay Nanocomposite Foams

    Science.gov (United States)

    Jo, Choonghee; Naguib, Hani E.

    2007-04-01

    The effects of the material parameters and processing conditions on the foam morphologies, and mechanical properties of polymer/clay nanocomposite foams were studied. Microcellular closed-cell nanocomposite foams were manufactured with poly(methylmethacrylate) (PMMA) and high density polyethylene (HDPE), where the nanoclay loadings of 0.5, 1.0, and 2.0 wt% were used. The effect of clay contents and foaming conditions on the volume expansion ratio, cell size, elastic modulus, tensile strength, and elongation at break were investigated and compared between amorphous and semicrystalline polymers. An elastic modulus model for tensile behavior of foams was proposed by using the micromechanics theory. The model was expressed in terms of microstructural properties of polymer and physical properties of the foams. The tensile experimental data of the foams were compared with those predicted by the theoretical model.

  14. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof...... of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...... the hydrolysis of PLLA. The obtained release profiles demonstrate that the degradation of PLLA in nanoporous confinement is significantly slower than the degradation of unconfined PLLA. The release of R6G encapsulated in PLLA becomes correspondingly slower, while the initial burst release virtually disappears...

  15. A model for hydrolytic degradation and erosion of biodegradable polymers.

    Science.gov (United States)

    Sevim, Kevser; Pan, Jingzhe

    2018-01-15

    For aliphatic polyesters such as PLAs and PGAs, there is a strong interplay between the hydrolytic degradation and erosion - degradation leads to a critically low molecular weight at which erosion starts. This paper considers the underlying physical and chemical processes of hydrolytic degradation and erosion. Several kinetic mechanisms are incorporated into a mathematical model in an attempt to explain different behaviours of mass loss observed in experiments. In the combined model, autocatalytic hydrolysis, oligomer production and their diffusion are considered together with surface and interior erosion using a set of differential equations and Monte Carlo technique. Oligomer and drug diffusion are modelled using Fick's law with the diffusion coefficients dependent on porosity. The porosity is due to the formation of cavities which are a result of polymer erosion. The model can follow mass loss and drug release up to 100%, which cannot be explained using a simple reaction-diffusion. The model is applied to two case studies from the literature to demonstrate its validity. The case studies show that a critical molecular weight for the onset of polymer erosion and an incubation period for the polymer dissolution are two critical factors that need to be considered when predicting mass loss and drug release. In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant. Crown Copyright © 2017. Published by

  16. Describing the sorption characteristics of a ternary system of benzene (1) and alcohol (2) in a nonporous polymer membrane (3) by the Flory-Huggins model

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Š.; Randová, A.; Sysel, P.; Brožová, Libuše; Žitka, Jan; Drašar, P.; Bartovská, L.; Storch, Jan; Červenková Šťastná, Lucie; Izák, Pavel

    2015-01-01

    Roč. 55, č. 5 (2015), s. 1187-1195 ISSN 0032-3888 R&D Projects: GA ČR(CZ) GAP106/12/0569 Institutional support: RVO:61389013 ; RVO:67985858 Keywords : membrane * separation * polymer Subject RIV: CD - Macromolecular Chemistry; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.719, year: 2015

  17. Modelling the permeability of polymers: a neural network approach

    NARCIS (Netherlands)

    Wessling, Matthias; Mulder, M.H.V.; Bos, A.; Bos, A.; van der Linden, M.K.T.; Bos, M.; van der Linden, W.E.

    1994-01-01

    In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a

  18. Improving reservoir conformance using gelled polymer systems. Third quarterly report, March 25, 1993--June 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1993-07-01

    The general objectives are to (1) to identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) to determine the performance of these systems in bulk and in porous media, and (3) to develop methods to predict the capability of these systems to recover oil from petroleum reservoirs. This work focuses on three types of gel systems - an aqueous polysaccharide (KUSP1) system that gels as a function of pH, the chromium-based system where polyacrylamide and xanthan are crosslinked by CR(III) and an organic crosslinked system. Development of the KUSP1 system and evaluation and identification of a suitable organic crosslinked system will be done. The laboratory research is directed at the fundamental understanding of the physics and chemistry of the gelation process in bulk form and in porous media. This knowledge will be used to develop conceptual and mathematical models of the gelation process. Mathematical models will then be extended to predict the performance of gelled polymer treatments in oil reservoirs. Accomplishments for this quarter are presented for the following tasks: development and selection of gelled polymer systems; physical and chemical characterization of gel systems; mechanism of in situ gelation; and mathematical modelling of gel systems.

  19. Extension of the segment-based Wilson and NRTL models for correlation of excess molar enthalpies of polymer solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat

    2005-01-01

    The polymer Wilson model and the polymer NRTL model have been extended for the representation of the excess enthalpy of multicomponent polymer solutions. Applicability of obtained equations in the correlation of the excess enthalpies of polymer solutions has been examined. It is found that the both models are suitable models in representing the published excess enthalpy data for the tested polymer solutions

  20. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1994--September 24, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1996-05-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems -- KUSP1 systems which contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethylphthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system. The KUSP1 polymer-ester system and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to super-critical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  1. Use of non-linear properties of stimuli-sensitive polymers in image display systems

    Czech Academy of Sciences Publication Activity Database

    Suleimenov, I.; Semenyakin, N.; Mun, G.; Shaltykova, D.; Panchenko, S.; Sedláková, Zdeňka

    2012-01-01

    Roč. 3, 2012 (2012), s. 528-533 ISSN 2212-6716. [2012 Conference on Modelling, Identification and Control - MIC 2012. Hong Kong , 19.12.2012-20.12.2012] Institutional support: RVO:61389013 Keywords : display systems * stimuli-sensitive polymers * phase transition Subject RIV: CD - Macromolecular Chemistry

  2. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    Science.gov (United States)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  3. Mathematical modeling of polymer flooding using the unstructured Voronoi grid

    Science.gov (United States)

    Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.

    2017-12-01

    Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.

  4. Segment-based Eyring-Wilson viscosity model for polymer solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat

    2005-01-01

    A theory-based model is presented for correlating viscosity of polymer solutions and is based on the segment-based Eyring mixture viscosity model as well as the segment-based Wilson model for describing deviations from ideality. The model has been applied to several polymer solutions and the results show that it is reliable both for correlation and prediction of the viscosity of polymer solutions at different molar masses and temperature of the polymer

  5. Polymer filtration systems for dilute metal ion recovery

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Jarvinen, G.D.

    1998-12-01

    Scientists at Los Alamos National Laboratory have developed a metal recovery system that meets the global treatment demands for all kinds of industrial and metal-processing streams. The Polymer Filtration (PF) System--a process that is easily operated and robust--offers metal-finishing businesses a convenient and inexpensive way to recover and recycle metal ions in-house, thus reducing materials costs, waste removal costs, and industrial liability. As a valuable economic and environmental asset, the PF System has been named a winner of a 1995 R and D 100 Award. These awards are presented annually by R and D Magazine to the one hundred most significant technical innovations of the year. The PF System is based on the use of water-soluble metal-binding polymers and on advanced ultrafiltration membranes. Customers for this technology will receive new soluble polymers, especially formulated for their waste stream, and the complete PF processing unit: a reaction reservoir, pumps, plumbing, controls, and the advanced ultrafiltration membranes, all in a skid mounted frame. Metal-bearing waste water is treated in the reaction reservoir, where the polymer binds with the metal ions under balanced acid/base conditions. The reservoir fluid is then pumped through the ultrafiltration system--a cartridge packed with ultrafiltration membranes shaped in hollow fibers. As the fluid travels inside the fiber, water and other small molecules--simple salts such as calcium and sodium, for example--pass through the porous membrane walls of the fibers and are discharged through the outlet as permeate. The polymer-bound metal, which is too large to pass through the pores, is both purified and concentrated inside the hollow fibers and is returned to the fluid reservoir for further waste water treatment.

  6. Thermomechanical constitutive modeling of polyurethane-series shape memory polymer

    Energy Technology Data Exchange (ETDEWEB)

    Tobushi, H.; Ito, N.; Takata, K. [Aichi Inst. of Technol., Nagoya (Japan). Dept. of Mech. Eng.; Hayashi, S. [Nagoya Research and Development Center, Mitsubishi Heavy Industries, Ltd., Nagoya (Japan)

    2000-07-01

    In order to describe the thermomechanical properties in shape memory polymer of polyurethane series, a thermomechanical constitutive model was developed. In order to describe the variation in mechanical properties due to the glass transition, coefficients in the model were expressed by a single exponential function of temperature. The proposed theory expressed well the thermomechanical properties of the material, such as shape fixity and shape recovery. (orig.)

  7. Polymer behaviour and fracture models in dynamic

    Directory of Open Access Journals (Sweden)

    Bourel B.

    2012-08-01

    Full Text Available A phenomenological small strain model is developed to capture the elastoviscoplastic behaviour of a 20% filled polypropylene. The constitutive model is based on a multiplicative viscoplastic law. The hydrostatic pressure dependency is considered by using the Drucker Prager yield surface. A phenomenological damage model characterised directly by experimental investigation is used to capture the yield degradation during the deformation in tension. The volume variation due to the cavitation phenomenon is captured by using non-associated viscoplasticity. Some experimental tests at different speed loadings are carried out for the parameters identification of the constitutive model. Furthermore, a fracture model which depends on the stress triaxiality and the strain rate is developed in order to model the complete behaviour of the material studied until fracture.

  8. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    Science.gov (United States)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  9. Analysis Models for Polymer Composites Across Different Length Scales

    Science.gov (United States)

    Camanho, Pedro P.; Arteiro, Albertino

    This chapter presents the analysis models, developed at different length scales, for the prediction of inelastic deformation and fracture of polymer composite materials reinforced by unidirectional fibers. Three different length scales are covered. Micro-mechanical models are used to understand in detail the effects of the constituents on the response of the composite material, and to support the development of analysis models based on homogenized representations of composite materials. Meso-mechanical models are used to predict the strength of composite structural components under general loading conditions. Finally, macro-mechanical models based on Finite Fracture Mechanics, which enable fast strength predictions of simple structural details, are discussed.

  10. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement.

  11. Polymer-Based Novel Lung Targeted Delivery Systems.

    Science.gov (United States)

    Elmowafy, Enas; Osman, Rihab; Ishak, Rania A H

    2017-01-01

    Due to its unique features, the respiratory tract had received great attention as a promising non-invasive route for drug administration to achieve both local and systemic effects. Efforts spent to tailor systems able to overcome the lung defence mechanisms and biological barriers are followed in this review. Aerodynamic diameter, morphology, lung deposition and drug release profiles are the main criteria describing the selected new smart lung targeted delivery systems. Novel systems such as nanoparticles, nano-embedded-in microparticles (NEM), small microparticles (MP), large porous particles (LPP), PulmospheresTM and polymeric micelles are used to passively target different areas in the respiratory tract. The most common preparation methods are outlined in the article. Special emphasis was given to the characteristics of the polymers used to fabricate the developed systems. Efforts made to prepare systems using chitosan (CS), alginate (alg), hyaluronic acid (HA), gelatin and albumin as examples of natural polymers and poly lactic-co-glycolic acid (PLGA) and poly(Ɛ-caprolactone) (PCL) as synthetic polymers were compiled. The continuous development and work in the area of lung targeting resulted in the development of engineered smart platforms with the capability to carry small drug molecules, proteins and genes to treat a variety of local and systemic diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-07-14

    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems.

  13. Modeling of microencapsulated polymer shell solidification

    International Nuclear Information System (INIS)

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  14. Molecular dynamics modeling and characterization of graphene/polymer nanocomposites

    Science.gov (United States)

    Rahman, Rezwanur

    analyzed in terms of the radial distribution function (RDF), molecular energy, pairwise bond stretch and angle bending. The interfacial properties between graphene and cellulose were studied by analyzing both cohesive and pullout separation of graphene from cellulose matrix. Finally, the Young's modulii calculated from the MD simulation was compared with the tensile test data. The MD results showed a reasonable agreement with the tensile test results. It was addressed that incorporating graphane in cellulose matrix enhances the mechanical property of the cellulose based bio-polymer systems. In the third part of the work, a hierarchical multiscale modeling framework was established between peridynamics and molecular dynamics simulation using an intermediate coarse grained atomic model. The peridynamics formulation is based on continuum theory implying nonlocal force based interaction. It means, continuum points are separated by a finite distance and exert force upon each other. Peridynamics applies integral equations rather than partial differential equations as used in the classical continuum mechanics. Hence, the peridynamics (PD) and the molecular dynamics (MD) have similarities since both use a nonlocal force based interaction. In this work PD based continuum model of graphene-epoxy (G-Ep) nanocomposite is defined by the Lagrangian PD particles. Atomistic model is coupled with PD model through a hierarchical multiscale framework. The PD particles at a coarse scale interact with the fine scale PD particles by transferring pressure, displacements and velocities among each other. Based on the same hierarchical coupling method, a fine scale PD model is seamlessly interfaced with the atomistic model through an intermediate mesoscale region i.e. coarse-grain model. At the end of this hierarchical downscaling, the information such as the deformation, energy and other important parameters were captured in the atomistic region under the applied force at micro and macro regions

  15. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  16. The coiled coil motif in polymer drug delivery systems.

    Science.gov (United States)

    Pechar, Michal; Pola, Robert

    2013-01-01

    The coiled coil is a superhelical structural protein motif that has been thoroughly investigated in recent years. Because of the relatively well-understood principles that determine the properties of coiled coil peptides and proteins, macromolecular systems containing the coiled coil motif have been suggested for various applications. This short review focuses on hybrid polymer coiled coil systems designed for drug delivery purposes. After a short introduction, the most important features of the coiled coils (stability, association number, oligomerization selectivity and orientation of helices) are described, and the factors influencing these characteristics are discussed. Several examples of the most interesting biomedical applications of the polymer-coiled coil systems (according to the authors' opinion) are presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Polyurethane Binder Systems for Polymer Bonded Explosives

    National Research Council Canada - National Science Library

    Daniel, Merran A

    2006-01-01

    .... This report details the history of PBX binders, components of polyurethane binder systems, their properties and the procedures for obtaining the ingredients, as well as the basics of formulation...

  18. Biomimetic polymers of plant cutin: an approach from molecular modeling.

    Science.gov (United States)

    San-Miguel, Miguel A; Oviedo, Jaime; Heredia-Guerrero, Jose Alejandro; Heredia, Antonio; Benitez, Jose Jesus

    2014-07-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of cutin in plants is not well understood yet, but a direct chemical route involving the self-assembly of either molecules or molecular aggregates has been proposed. In this work, we present a combined study using experimental and simulation techniques on self-assembled layers of monomers selectively functionalized with hydroxyl groups. Our results demonstrate that the number and position of the hydroxyl groups are critical for the interaction between single molecules and the further rearrangement. Also, the presence of lateral hydroxyl groups reinforces lateral interactions and favors the bi-dimensional growth (2D), while terminal hydroxyl groups facilitate the formation of a second layer caused by head-tail interactions. The balance of 2D/3D growth is fundamental for the plant to create a protecting layer both large enough in 2D and thick enough in 3D.

  19. Conductive polymers for controlled release and treatment of central nervous system injury

    Science.gov (United States)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly

  20. Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael

    2012-02-01

    We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations

  1. 75 FR 53277 - Notice of Workshop on Polymers for Photovoltaic Systems

    Science.gov (United States)

    2010-08-31

    ... National Institute of Standards and Technology Notice of Workshop on Polymers for Photovoltaic Systems.... SUMMARY: The National Institute of Standards and Technology announces a ] Workshop on Polymers for... polymeric materials used in photovoltaic systems; testing, performance, and reliability of polymers in...

  2. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Larsen, Niels Bent

    2013-01-01

    The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes ...... systems, including polystyrene (PS), cyclic olefin copolymer (COC), liquid crystalline polymer (LCP), and polyimide (PI)....

  3. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  4. Modeling, Simulation, and Characterization of Electro-Optic Polymer Waveguide Devices.

    Science.gov (United States)

    Ma, Jiong

    The primary objective of this thesis is to investigate the properties of optical polymer waveguides and switches, develop a phenomenological CAD tool, and to use this phenomenological tool to design optical polymer devices for high-speed interconnects in VLSI systems. In the investigations of optical polymer waveguides, a new phenomenological bleaching model that is able to predict optical index profiles for photobleached polymer films was developed. The theoretical model shows good agreement with measured results for the effective index and optical field distributions of waveguides, and the absorption of films. Based on this bleaching model, we can predict the index profile for polymer channel waveguides and formulate design rules for active optical switches and modulators. The model has been successfully applied to photobleached PMMA/DR1 and Ultem/DEDR1 waveguides. An experimental technique to determine the poling -induced optical birefringence and optical nonlinearity is also discussed. In this technique, absorption measurements are performed immediately after poling. The poling-induced index changes as a function of wavelength are obtained from the absorption changes using a Kramers-Kronig transformation. An alternative method for predicting the poling-induced index changes, requiring a combination of waveguide measurement techniques and order parameter calculations, exhibits good agreement. By combining the poling effects with the photobleaching index profile, a CAD tool has been developed to calculate the optical field distribution and loss which allows the design of active electro-optical modulators. Using the CAD tool together with an equivalent circuit model of electro-optic polymer switches, circuit level comparisons of a CMOS strip line interconnect with an external polymer modulator interconnect were performed in terms of power dissipation, bandwidth, and connection density. HSPICE was used as a circuit simulation tool. Based on this analysis, it is

  5. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    Science.gov (United States)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  6. Improving reservoir conformance using gelled polymer systems. Final report, September 25, 1992--July 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1997-06-01

    The objectives of the research program were to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems--KUSP1 systems that contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethyl phthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to supercritical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  7. Models for formation of macroheterogeneous structure in radiation-grafted polymers

    International Nuclear Information System (INIS)

    Babkin, I.Yu.; Burukhin, S.B.; Maksimov, A.F.

    1994-01-01

    Mathematical models, which describe the formation of grafted polymer layer with respect to variations in sorption and kinetic characteristics due to the changes in composition of the modified polymer and grafted polymer under variable boundary conditions were obtained. The influence of heat effect of polymerization reaction on concentration profiles was estimated. Taking into account the nonlinear diffusion kinetics, the conditions providing diffuse and step profiles of concentration of grafted polymer in polymer matrix were revealed. Step concentration profiles were shown to be associated with a nonlinear dependence of diffusion and kinetic parameters of polymerization on the composition of modified polymer. 22 refs.; 11 figs.; 2 tabs

  8. Processing of Polymer Nanofibers Through Electrospinning as Drug Delivery Systems

    Science.gov (United States)

    Kenawy, E.; Abdel-Hay, F. I.; El-Newehy, M. H.; Wnek, G. E.

    The use of electrospun fibers as drug carriers could be promising in the future for biomedical applications, especially postoperative local chemotherapy. In this research, electrospun fibers were developed as a new system for the delivery of ketoprofen as non-steroidal anti-inflammatory drug (NSAID). The fibers were made either from polycaprolactone (PCL) as a biodegradable polymer or polyurethane (PU) as a non-biodegradable polymer, or from the blends of the two. The release of the ketoprofen was followed by UV—VIS spectroscopy in phosphate buffer of pH 7.4 at 37°C and 20°C. The results showed that the release rates from the polycaprolactone, polyurethane and their blend were similar. However, the blend of the polycaprolactone with polyurethane improved its visual mechanical properties. Release profiles from the electrospun mats were compared to cast films of the various formulations.

  9. Investigations of model polymers: Dynamics of melts and statics of a long chain in a dilute melt of shorter chains

    International Nuclear Information System (INIS)

    Bishop, M.; Ceperley, D.; Frisch, H.L.; Kalos, M.H.

    1982-01-01

    We report additional results on a simple model of polymers, namely the diffusion in concentrated polymer systems and the static properties of one long chain in a dilute melt of shorter chains. It is found, for the polymer sizes and time scales amenable to our computer calculations, that there is as yet no evidence for a ''reptation'' regime in a melt. There is some indication of reptation in the case of a single chain moving through fixed obstacles. No statistically significant effect of the change, from excluded volume behavior of the long chain to ideal behavior as the shorter chains grow, is observed

  10. Shape memory polymers: three-dimensional isotropic modeling

    Science.gov (United States)

    Balogun, Olaniyi; Mo, Changki

    2014-04-01

    This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.

  11. Demonstration of a multiscale modeling technique: prediction of the stress–strain response of light activated shape memory polymers

    International Nuclear Information System (INIS)

    Beblo, Richard V; Weiland, Lisa Mauck

    2010-01-01

    Presented is a multiscale modeling method applied to light activated shape memory polymers (LASMPs). LASMPs are a new class of shape memory polymer (SMPs) being developed for adaptive structures applications where a thermal stimulus is undesirable. LASMP developmental emphasis is placed on optical manipulation of Young's modulus. A multiscale modeling approach is employed to anticipate the soft and hard state moduli solely on the basis of a proposed molecular formulation. Employing such a model shows promise for expediting down-selection of favorable formulations for synthesis and testing, and subsequently accelerating LASMP development. An empirical adaptation of the model is also presented which has applications in system design once a formulation has been identified. The approach employs rotational isomeric state theory to build a molecular scale model of the polymer chain yielding a list of distances between the predicted crosslink locations, or r-values. The r-values are then fitted with Johnson probability density functions and used with Boltzmann statistical mechanics to predict stress as a function of the strain of the phantom polymer network. Empirical adaptation for design adds junction constraint theory to the modeling process. Junction constraint theory includes the effects of neighboring chain interactions. Empirical fitting results in numerically accurate Young's modulus predictions. The system is modular in nature and thus lends itself well to being adapted to other polymer systems and development applications

  12. Drying of semicrystalline polymers: Mathematical modeling and experimental characterization of poly(vinyl alcohol) films

    OpenAIRE

    Wong, Sim-Siong; Altınkaya, Sacide; Mallapragada, Surya K.

    2004-01-01

    A mathematical model was developed to predict the drying mechanism of semicrystalline polymers involving multiple solvents. Since drying of semicrystalline polymers can be accompanied by changes in polymer degree of crystallinity, the model integrates crystallization kinetics and the Vrentas-Duda diffusion model to provide a better understanding of the mechanism. The model considers the effect of external conditions such as temperature, film shrinkage and diffusion and evaporation of multiple...

  13. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    Science.gov (United States)

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications.

    Science.gov (United States)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-04-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(L-Lactic Acid) (PLLA) were confined within the 14 nm pores of a NP with gyroid morphology derived from a diblock copolymer precursor. Glass transition, crystallization and melting of free and confined PLLA were monitored by differential scanning calorimetry. Release profiles for R6G were measured in methanol-water solvents at pH 13, which works as an accelerated release test by speeding up the hydrolysis of PLLA. The obtained release profiles demonstrate that the degradation of PLLA in nanoporous confinement is significantly slower than the degradation of unconfined PLLA. The release of R6G encapsulated in PLLA becomes correspondingly slower, while the initial burst release virtually disappears. These findings suggest that the presented proof of principle constitutes a promising basis for the development of novel implantable drug delivery systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Molecular model for solubility of gases in flexible polymers

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole; Szabo, Peter

    1999-01-01

    the length of the rods with the molecular weight corresponding to a Kuhn step. The model provides a tool for crude estimation of the gas solubility on the basis of only the monomer unit of the polymer and properties of the gas. A comparison with the solubility data for several gases in poly......(dimethylsiloxane) reveals agreement between the data and the model predictions within a factor of 7 and that better model results are achieved for temperatures below the critical temperature of the gas. The model predicts a decreasing solubility with increasing temperature (because of the increasing vapor pressure......) and that smaller gas molecules exhibit a lower solubility than larger ones (e.g., CH4 has a smaller solubility than CO2), which agrees with the experimental data....

  16. Computer-aided polymer design using group contribution plus property models

    DEFF Research Database (Denmark)

    Satyanarayana, Kavitha Chelakara; Abildskov, Jens; Gani, Rafiqul

    2009-01-01

    The preliminary step for polymer product design is to identify the basic repeat unit structure of the polymer that matches the target properties. Computer-aided molecular design (CAMD) approaches can be applied for generating the polymer repeat unit structures that match the required constraints....... Polymer repeat unit property prediction models are required to calculate the properties of the generated repeat units. A systematic framework incorporating recently developed group contribution plus (GC(+)) models and an extended CAMD technique to include design of polymer repeat units is highlighted...... in this paper. The advantage of a GC(+) model in CAMD applications is that a very large number of polymer structures can be considered even though some of the group parameters may not be available. A number of case studies involving different polymer design problems have been solved through the developed...

  17. Improving reservoir conformance using gelled polymer systems. Eleventh quarterly report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1995-07-24

    The general objectives are to (1) to identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) to determine the performance of these systems in bulk and in porous media, and (3) to develop methods to predict the capability of these systems to recover oil from petroleum reservoirs. This work focuses on three types of gel systems -- an aqueous polysaccharide (KUSP1) system that gels as a function of pH, the chromium(III)-polyacrylamide system and the aluminum citrate-polyacrylamide system. Laboratory research is directed at the fundamental understanding of the physics and chemistry of the gelation process in bulk form and in porous media. This knowledge will be used to develop conceptual and mathematical models of the gelation process. Mathematical models will then be extended to predict the performance of gelled polymer treatments in oil reservoirs. Technical progress is described for the following tasks: physical and chemical characterization of gel systems; mechanisms of in situ gelation; and mathematical modelling of the gel systems.

  18. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar...... waveguides and fiber-to-waveguide coupler structures, are defined in the same processing step. This results in self-alignment of all components and enables a fabrication and packaging time of only one day. The fabrication scheme has recently been presented elsewhere for fluorescence excitation of beads...

  19. Polymer adhesion test system: A mechatronic instrument to study the cohesion and adhesion properties of polymers in high-speed squeezing flow

    Science.gov (United States)

    Stolfi, Fred R.

    This thesis involves the design, fabrication and use of an instrument to characterize polymeric materials at high speed. The work comprises a study in the field of mechatronics. Mechatronics is the synergistic combination of precision mechanical engineering, electronics, control systems and computers. Each of these components was required for a different aspect of the instrument; it was only through their synergy that the goal of high-speed operation was achieved. Indicative of a mechatronics approach, the mechanical design included a direct drive actuator, a hardy, simple means of obtaining precision motion. Inertia had to be minimized. The structural integrity of the design had to be analyzed and verified. Wideband, low noise, electronics were used in the feedback control loop and for the sensors that measured various mechanical variables. A linear feedback control system gave the instrument, the reference signal tracking, disturbance rejection and robustness to unmodeled dynamics required for its operation. This control system, therefore, provided the system functionality for the mechanical components. Finally, a computer system was used for data acquisition, parameter model determination and reference signal generation. The whole instrument was clearly more than the sum of its component parts. The primary scientific advance from this work comes from the fact that this instrument enables a high-speed characterization of polymers with a precision not previously available. The instrument subjects the polymer to squeezing flow, a type of flow pattern more complex than shearing flow and characteristic of many engineering processes. The instrument measures the viscoelastic rheological properties of the polymer under this flow regime at high system speeds (high rates of strain). Further, the instrument characterizes the cohesive properties of the polymer under high-speed transient extension. Finally, the instrument measures the adhesive properties of the polymer in

  20. Thermodynamic Description of Liquid-Liquid Equilibria in Systems 1-Ethyl-3-methylimidazolium Ethylsulfate + C7-Hydrocarbons by Polymer-Solution Models

    Czech Academy of Sciences Publication Activity Database

    Bendová, Magdalena; Wagner, Zdeněk

    2009-01-01

    Roč. 284, č. 2 (2009), s. 80-85 ISSN 0378-3812 R&D Projects: GA ČR GA104/07/0444; GA ČR GP104/06/P066; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : liquid-liquid equilibrium * ionic liquids * thermodynamic model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.857, year: 2009

  1. Discovery of Antibiotics-derived Polymers for Gene Delivery using Combinatorial Synthesis and Cheminformatics Modeling

    Science.gov (United States)

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal

    2014-01-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709

  2. Discovery of antibiotics-derived polymers for gene delivery using combinatorial synthesis and cheminformatics modeling.

    Science.gov (United States)

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Ramos, James; Breneman, Curt M; Rege, Kaushal

    2014-02-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and 'building block' polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Potential drug delivery system: study of the association of a model nitroimidazole drug with aggregates of amphiphilic polymers on aqueous solution

    Directory of Open Access Journals (Sweden)

    Constain Hugo Salamanca Mejia

    2011-12-01

    Full Text Available This study evaluated the association of N-hexyl-2-methyl-4-nitroimidazol, a model drug, to aggregates formed by anionic polyelectrolytes on aqueous solution. The alternating copolymers of maleic anhydride and N-vinyl-2-pyrrolidone were synthesized and then modified by reaction of the anhydride groups with aliphatic amines and alcohols of varying length of the alkyl chain. The partition of the model drug between water and the hydrophobic microdomains provided by the copolymers was studied using the pseudo-phase model to determinate the distribution coefficient K S, and the standard free energy of transfer ∆µ°t. The results indicate that all copolymers assessed are potential pharmaceutical reservoirs of the model drug. Nevertheless, the solubility of N-hexyl-2-methyl-4-nitroimidazol on the polymeric solutions is independent from the length of the alkyl chain of the copolymer.Realizou-se estudo sobre a associação da N-hexil-2-metil-4-nitroimidazol, fármaco modelo, aos agregados formados por polieletrólitos aniônicos em solução aquosa. Os copolímeros alternados de anidrido maléico e N-vinil-2-pirrolidona foram sintetizados e, em seguida, modificados pela reação dos grupos de anidrido com aminas e álcoois alifáticos de duração variável da cadeia alquílica. A partição do fármaco modelo entre a água e os microdomínios hidrofóbicos fornecido pelos copolímeros foi estudada usando o modelo de pseudo-fase, a fim de determinar a distribuição do coeficiente K S e a energia livre padrão de transferência ∆µ°t. Os resultados indicam que todos os copolímeros avaliados são potenciais reservatórios farmacêuticos do fármaco. No entanto, a solubilidade do N-hexil-2-metil-4-nitroimidazol sobre as soluções poliméricas é independente do comprimento da cadeia alquílica do copolímero.

  4. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures.

    Science.gov (United States)

    Cummings, John; Lowengrub, John S; Sumpter, Bobby G; Wise, Steven M; Kumar, Rajeev

    2018-03-07

    Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this work, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for the derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.

  5. Modeling and experimental diagnostics in polymer electrolyte fuel cells

    Science.gov (United States)

    Springer, T. E.; Wilson, M. S.; Gottesfeld, S.

    1993-12-01

    This paper presents a fit between model and experiments for well-humidified polymer electrolyte fuel cells operated to maximum current density with a range of cathode gas compositions. The model considers, in detail, losses caused by: (1) interfacial kinetics at the Pt/ionomer interface; (2) gas-transport and ionic-conductivity limitations in the catalyst layer; and (3) gas-transport limitations in the cathode backing. Our experimental data were collected with cells that utilized thin-film catalyst layers bonded directly to the membrane, and a separate catalyst-free hydrophobic backing layer. This structure allows a clearer resolution of the processes taking place in each of these distinguishable parts of the cathode. In our final comparison of model predictions with the experimental data, we stress the simultaneous fit of a family of complete polarization curves obtained for gas compositions ranging from 5 atoms O2 to a mixture of 5% O2 in N2, employing in each case the same model parameters for interracial kinetics, catalyst-layer transport, and backing-layer transport. This approach allowed us to evaluate losses in the cathode backing and in the cathode catalyst layer, and thus identify the improvements required to enhance the performance of air cathodes in polymer electrolyte fuel cells. Finally, we show that effects of graded depletion in oxygen along the gas flow channel can be accurately modeled using a uniform effective oxygen concentration in the flow channel, equal to the average of inlet and exit concentrations. This approach has enabled simplified and accurate consideration of oxygen utilization effects.

  6. Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems.

    Science.gov (United States)

    Wyttenbach, Nicole; Janas, Christine; Siam, Monira; Lauer, Matthias Eckhard; Jacob, Laurence; Scheubel, Emmanuel; Page, Susanne

    2013-08-01

    Development of a novel, rapid, miniaturized approach to identify amorphous solid dispersions with maximum supersaturation and solid state stability. Three different miniaturized assays are combined in a 2-step decision process to assess the supersaturation potential and drug-polymer miscibility and stability of amorphous compositions. Step 1: SPADS dissolution assay. Drug dissolution is determined in 96-well plates to detect systems that generate and maintain supersaturation. Promising combinations graduate to step 2. Step 2: SPADS interaction and SPADS imaging assays. FTIR microspectroscopy is used to study intermolecular interactions. Atomic force microscopy is applied to analyze molecular homogeneity and stability. Based on the screening results, selected drug-polymer combinations were also prepared by spray-drying and characterized by classical dissolution tests and a 6-month physical stability study. From the 7 different polymers and 4 drug loads tested, EUDRAGIT E PO at a drug load of 20% performed best for the model drug CETP(2). The classical dissolution and stability tests confirmed the results from the miniaturized assays. The results demonstrate that the SPADS approach is a useful de-risking tool allowing the rapid, rational, time- and cost-effective identification of polymers and drug loads with appropriate dual function in supersaturation performance and amorphous drug stabilization. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring

    Directory of Open Access Journals (Sweden)

    Matias Soto

    2015-09-01

    Full Text Available A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  8. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation.

    Science.gov (United States)

    Wang, Ying; Han, Xiaoxiao; Pan, Jingzhe; Sinka, Csaba

    2010-01-01

    This paper presents a model for the change in Young's modulus of biodegradable polymers due to hydrolysis cleavage of the polymer chains. The model is based on the entropy spring theory for amorphous polymers. It is assumed that isolated polymer chain cleavage and very short polymer chains do not affect the entropy change in a linear biodegradable polymer during its deformation. It is then possible to relate the Young's modulus to the average molecular weight in a computer simulated hydrolysis process of polymer chain sessions. The experimental data obtained by Tsuji [Tsuji, H., 2002. Autocatalytic hydrolysis of amorphous-made polylactides: Effects of L-lactide content, tacticity, and enantiomeric polymer blending. Polymers 43, 1789-1796] for poly(L-lactic acid) and poly(D-lactic acid) are examined using the model. It is shown that the model can provide a common thread through Tsuji's experimental data. A further numerical case study demonstrates that the Young's modulus obtained using very thin samples, such as those obtained by Tsuji, cannot be directly used to calculate the load carried by a device made of the same polymer but of various thicknesses. This is because the Young's modulus varies significantly in a biodegradable device due to the heterogeneous nature of the hydrolysis reaction. The governing equations for biodegradation and the relation between the Young's modulus and average molecular weight can be combined to calculate the load transfer from a degrading device to a healing bone.

  9. Modeling pressure-driven assembly of polymer coated nanoparticles

    Science.gov (United States)

    Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Fan, Hongyou

    2017-06-01

    High-pressure experiments have successfully produced a variety of gold nanostructures by compressing polymer coated spherical nanoparticles. We apply atomistic simulation to understand the role of the soft polymer response in determining the pressure-driven assembly of gold nanostructures. Quasi-isentropic experiments have shown that 1D, 2D and 3D nanostructures can be formed and recovered from dynamic compression of fcc superlattices of alkanethiol-coated gold nanocrystals on Sandia's Veloce pulsed power accelerator. Molecular modeling has shown that the dimensionality of the final structures depends on the orientation of the superlattice and the uniaxial loading. We describe the role of coating ligand length and grafting density, on ligand migration and deformation processes during pressure-driven coalescence of the cores into permanent nanowires, nanosheets and 3D structures. The role of uniaxial vs isotropic pressure and the effects of compression along various superlattice orientations will be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Theory of optical transitions in conjugated polymers. I. Ideal systems.

    Science.gov (United States)

    Barford, William; Marcus, Max

    2014-10-28

    We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑(n)|Ψ(n)|(4))(-1), where Ψ(n) is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F(0v)(N) = S(N)(v)exp ( - S(N))/v! for the vth vibronic manifold. We show that the 0 - 0 and 0 - 1 optical intensities are proportional to F00(N) and F01(N), respectively, and thus the ratio of the 0 - 1 to 0 - 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the lowest exciton state. When this happens there is

  11. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1992--September 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1994-08-01

    The general objectives of the research program are to (1) identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focuses on three types of gel systems-an aqueous polysaccharide (KUSPI) that gels as a function of pH, polyacrylamide or xanthan crosslinked by CR(III) and a polyacrylamide-aluminum citrate system. Work to date has focused primarily on development of a database, selection of systems, and work to characterize the gel/polymer physical properties and kinetics. The use of ester hydrolysis to control the rate of pH change of a gel system has been investigated and this approach to gel-time control shows promise. Extensive kinetic data were taken on the uptake of CR(III) oligomers by polyacrylamide. A model was developed which describes very well the monomer uptake rates. The model described the dimer uptake data less well and the trimer uptake data poorly. Studies of the flow and gelation in rock materials have been initiated. A mathematical model of rock-fluid interaction during flow of high pH solutions has been developed.

  12. DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Rajeev Jain; Tuan Nguyen

    2003-11-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the first year of a three-year research program that is aimed at the understanding of the chemistry of gelation and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work has focused on a widely-applied system in field applications, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. The initial reaction between chromium acetate and one polymer is referred to as the uptake reaction. The uptake reaction was studied as functions of chromium and polymer concentrations and pH values. Experimental data were regressed to determine a rate equation that describes the uptake reaction of chromium by polyacrylamide. Pre-gel aggregates form and grow as the reactions between chromium acetate and polyacrylamide proceed. A statistical model that describes the growth of pre-gel aggregates was developed using the theory of branching processes. The model gives molecular weight averages that are expressed as functions of the conversion of the reactive sites on chromium acetate or on the polymer molecule. Results of the application of the model correlate well with experimental data of viscosity and weight-average molecular weight and gives insights into the gelation process. A third study addresses the flow of water and oil in rock material after a gel treatment. Previous works have shown that gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted to determine the effect of polymer and chromium concentrations on

  13. Conducting polymer actuators: From basic concepts to proprioceptive systems

    Science.gov (United States)

    Martinez Gil, Jose Gabriel

    Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the

  14. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented...... here were fabricated exclusive using commercially relevant fabrication methods such as injection moulding and ultrasonic welding. Further, to reduce the complexity of the final system, I have worked towards an all-in-one device which includes sample loading, priming (removal of air), droplet formation......, droplet packing, imaging and amplification (heating). The project has been broken into sub-projects, in which several devices of simpler application have been developed. Most of these employ gravity for concentrating and packing droplets, which has been made possible by the use of large area chambers...

  15. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

    Science.gov (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  16. Controlling interfacial film formation in mixed polymer-surfactant systems by changing the vapor phase.

    Science.gov (United States)

    Mokhtari, Tahereh; Pham, Quoc Dat; Hirst, Christopher; O'Driscoll, Benjamin M D; Nylander, Tommy; Edler, Karen J; Sparr, Emma

    2014-08-26

    Here we show that transport-generated phase separation at the air-liquid interface in systems containing self-assembling amphiphilic molecules and polymers can be controlled by the relative humidity (RH) of the air. We also show that our observations can be described quantitatively with a theoretical model describing interfacial phase separation in a water gradient that we published previously. These phenomena arises from the fact that the water chemical potential corresponding to the ambient RH will, in general, not match the water chemical potential in the open aqueous solution. This implies nonequilibrium conditions at the air-water interface, which in turn can have consequences on the molecular organization in this layer. The experimental setup is such that we can control the boundary conditions in RH and thereby verify the predictions from the theoretical model. The polymer-surfactant systems studied here are composed of polyethylenimine (PEI) and hexadecyltrimethylammonium bromide (CTAB) or didecyldimethylammonium bromide (DDAB). Grazing-incidence small-angle X-ray scattering results show that interfacial phases with hexagonal or lamellar structure form at the interface of dilute polymer-surfactant micellar solutions. From spectroscopic ellipsometry data we conclude that variations in RH can be used to control the growth of micrometer-thick interfacial films and that reducing RH leads to thicker films. For the CTAB-PEI system, we compare the phase behavior of the interfacial phase to the equilibrium bulk phase behavior. The interfacial film resembles the bulk phases formed at high surfactant to polymer ratio and reduced water contents, and this can be used to predict the composition of interfacial phase. We also show that convection in the vapor phase strongly reduces film formation, likely due to reduction of the unstirred layer, where diffusive transport is dominating.

  17. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...... and analyses light reflected from the polymer-based single- mode fibre-optic sensor system....

  18. Boundary-condition analysis for physics-based modeling of ionic-polymer metal composite electroactive polymers

    Science.gov (United States)

    Bass, Patrick S.; Zhang, Lin; Cheng, Zhongyang

    2017-04-01

    Ionic-polymer metal composites (IPMCs) are a subset of ionic electroactive polymers (EAPs). They produce an actuation response based on the electrically induced flux of mobile ions through a parent-polymer matrix. This response is a result of the accumulation of cations and anions on opposing sides of the matrix and is directly related to the size disparity between the two types of ions. These factors impose a differential expansion across the matrix, which generates the macroscopic bending that is observed. It is well known that the motion of these EAPs is highly nonlinear and time dependent, making for a process that is difficult to model. A simplistic approach to modeling the physics behind this phenomenon and correlating that to experimental results is outlined, herein. This new methodology enables a comprehensive analysis of the boundary conditions (BCs) needed to be considered in order to accurately characterize the IPMC actuation response. The subsequent series of equations developed, which depict the ionic motion under these BCs, is presented. Empirical data for model analysis was acquired from IPMCs created using poly(ethylene oxide) (PEO), a well-known, biodegradable, solid-polymer electrolyte infused with lithium perchlorate, as the ionic salt. Experimental results fitted with this new model returned a favorable average adjusted-R2, goodness-of-fit, of 0.987, 0.994, and 0.992 when PEO films were tested under varying conditions, including: ionic concentration, applied voltage, and testing temperature, respectively.

  19. Predictive Modeling of Polymer Mechanical Behavior Coupled to Chemical Change/ Technique Development for Measuring Polymer Physical Aging.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arechederra, Gabe Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCoy, John D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Develop an understanding of the evolution of glassy polymer mechanical response during aging and the mechanisms associated with that evolution. That understanding will be used to develop constitutive models to assess the impact of stress evolution in encapsulants on NW designs.

  20. 3D Viscoelastic Finite Element Modelling of Polymer Flow in the Fiber Drawing Process for Microstructured Polymer Optical Fiber Fabrication

    DEFF Research Database (Denmark)

    Fasano, Andrea; Rasmussen, Henrik K.; Marín, J. M. R.

    2015-01-01

    The process of drawing an optical fiber from a polymer preform is still not completely understood,although it represents one of the most critical steps in the process chain for the fabrication of microstructuredpolymer optical fibers (mPOFs). Here we present a new approach for the numerical...... modelling of the fiber drawingprocess using a fully three-dimensional and time-dependent finite element method, giving significant insightinto this widely spread mPOF production technique. Our computational predictions are physically based on theviscoelastic fluid dynamics of polymers. Until now...

  1. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  2. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    Science.gov (United States)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  3. Manufacturing routes for disposable polymer blood diagnostic microfluidic systems

    DEFF Research Database (Denmark)

    Tosello, Guido; Griffiths, Christian; Azcarate, Sabino

    2008-01-01

    The future vision of multi - analysis point of care testing (POCT) shows a hand-held device that patients can use with an ease similar to current blood sugar test systems. Additionally the mobile instrument would require transfer of the measured test results wirelessly to the doctor’s office, thus...... enabling patient-friendly and comfortable control, e.g. for drug efficiency monitoring of chronic diseases. For such a bright vision there is a strong need for the realisation of new technologies. This article presents the results of the Polymer Technology Division of the European Network of Excellence 4M......-cost and disposable µTBC devices, the micro injection moulding process was selected and therefore a micro tool was required. To overcome the limitations of current existing micro tooling capabilities, a new generation of micro hybrid tooling technologies for micro replication was developed. A metrological approach...

  4. Preparation of a Thermally Light-Transmittance-Controllable Film from a Coexistent System of Polymer-Dispersed and Polymer-Stabilized Liquid Crystals.

    Science.gov (United States)

    Guo, Shu-Meng; Liang, Xiao; Zhang, Cui-Hong; Chen, Mei; Shen, Chen; Zhang, Lan-Ying; Yuan, Xiao; He, Bao-Feng; Yang, Huai

    2017-01-25

    Polymer-dispersed liquid crystal (PDLC) and polymer-stabilized liquid crystal (PSLC) systems are the two primary distinct systems in the field of liquid crystal (LC) technology, and they are differentiated by their unique microstructures. Here, we present a novel coexistent system of polymer-dispersed and polymer-stabilized liquid crystals (PD&SLCs), which forms a homeotropically aligned polymer network (HAPN) within the LC droplets after a microphase separation between the LC and polymer matrix and combines the advantages of both the PDLC and PSLC systems. Then, we prepare a novel thermally light-transmittance-controllable (TLTC) film from the PD&SLC system, where the transmittance can be reversibly changed through thermal control from a transparent to a light-scattering state. The film also combines the advantageous features of flexibility and a potential for large-scale manufacturing, and it shows significant promise in future applications from smart windows to temperature sensors.

  5. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  6. Modeling lignin polymerization. Part 1: simulation model of dehydrogenation polymers.

    NARCIS (Netherlands)

    F.R.D. van Parijs (Frederik); K. Morreel; J. Ralph; W. Boerjan; R.M.H. Merks (Roeland)

    2010-01-01

    htmlabstractLignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions

  7. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    Science.gov (United States)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  8. Modelling of the inhomogeneous interior of polymer gels

    International Nuclear Information System (INIS)

    Shew, C-Y; Iwaki, Takafumi

    2006-01-01

    A simple model has been investigated to elucidate the mean squared displacement (MSD) of probe molecules in cross-linked polymer gels. In the model, we assume that numerous cavities distribute in the inhomogeneous interior of a gel, and probe molecules are confined within these cavities. The individual probe molecules trapped in a gel are treated as Brownian particles confined to a spherical harmonic potential. The harmonic potential is chosen to model the effective potential experienced by the probe particle in the cavity of a gel. Each field strength is corresponding to the characteristic of one type of effective cavity. Since the statistical distribution of different effective cavity sizes is unknown, several distribution functions are examined. Meanwhile, the calculated averaged MSDs are compared to the experimental data by Nisato et al (2000 Phys. Rev. E 61 2879). We find that the theoretical results of the MSD are sensitive to the shape of the distribution function. For low cross-linked gels, the best fit is obtained when the interior cavities of a gel follow a bimodal distribution. Such a result may be attributed to the presence of at least two distinct classes of cavity in gels. For high cross-linked gels, the cavities in the gel can be depicted by a single-modal uniform distribution function, suggesting that the range of cavity sizes becomes smaller. These results manifest the voids inside a gel, and the shape of distribution functions may provide the insight into the inhomogeneous interior of a gel

  9. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  10. Modeling the effect of probe force on length measurements on polymer parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Dalla Costa, Giuseppe

    2016-01-01

    Measurement uncertainty at micrometer level is in the future going to be very common in dimensional measurements on polymer parts. Accurate dimensional measurement of polymer parts is becoming a key and common practice in the industry, especially when micrometer tolerances are required. When...... numerically. Both analytical and numerical approaches were compared with the experimental results. The results showed that the numerical model was able to predict the deformation of the polymer part due to different probe forces. Furthermore it was shown, that the probe force should be taking into account...... when measurement with a few micrometer accuracy should be performed on thin walled polymer parts....

  11. Polymer multilevel lab-on-chip systems for electrochemical sensing

    DEFF Research Database (Denmark)

    Matteucci, Marco; Larsen, Simon Tylsgaard; Garau, Alessandro

    2013-01-01

    with depths as small as tens of nanometers and as big as hundreds of microns on the same polymer chip. The authors also describe in detail the fabrication procedure of polymer substrates with embedded Au and pedot:tosylate electrodes for electrochemical applications. The electrode fabrication process...

  12. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants.

    Science.gov (United States)

    Kempin, Wiebke; Franz, Christian; Koster, Lynn-Christine; Schneider, Felix; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne

    2017-06-01

    The 3D printing technique of fused deposition modeling® (FDM) has lately come into focus as a potential fabrication technique for pharmaceutical dosage forms and medical devices that allows the preparation of delivery systems with nearly any shape. This is particular promising for implants administered at application sites with a high anatomical variability where an individual shape adaption appears reasonable. In this work different polymers (Eudragit®RS, polycaprolactone (PCL), poly(l-lactide) (PLLA) and ethyl cellulose (EC)) were evaluated with respect to their suitability for FDM of drug loaded implants and their drug release behaviour was evaluated. The fluorescent dye quinine was used as a model drug to visualize drug distribution in filaments and implants. Quinine loaded filaments were produced by solvent casting and subsequent hot melt extrusion (HME) and model implants were printed as hollow cylinders using a standard FDM printer. Parameters were found at which model implants (hollow cylinders, outer diameter 4-5mm, height 3mm) could be produced from all tested polymers. The drug release which was examined by incubation of the printed implants in phosphate buffered saline solution (PBS) pH 7.4 was highly dependent on the used polymer. The fastest relative drug release of approximately 76% in 51days was observed for PCL and the lowest for Eudragit®RS and EC with less than 5% of quinine release in 78 and 100days, respectively. For PCL further filaments were prepared with different quinine loads ranging from 2.5% to 25% and thermal analysis proved the presence of a solid dispersion of quinine in the polymer for all tested concentrations. Increasing the drug load also increased the overall percentage of drug released to the medium since nearly the same absolute amount of quinine remained trapped in PCL at the end of drug release studies. This knowledge is valuable for future developments of printed implants with a desired drug release profile that might be

  13. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  14. A continuum-based model capturing size effects in polymer bonds

    International Nuclear Information System (INIS)

    Diebels, S; Johlitz, M; Steeb, H; Chatzouridou, A; Batal, J; Possart, W

    2007-01-01

    It is known from applications that the mechanical behaviour of polymer bonds does not only depend on the properties of the polymer itself but also on the substrate. Therefore, the mechanical behaviour, i.e. the stiffness, of a polymer joint becomes thickness dependent. In the present work we describe experiments performed on polymer joints and we develop a continuum-based model which is able to describe the experimentally observed size effects without suggesting the microstructure in detail. The continuum mechanical model is enhanced by a scalar-valued structure parameter which describes all the effects taking place in the boundary layer which arises near the substrate. It is shown that the model parameters can be determined on the basis of simple shear experiments performed on polymer layers of different thickness

  15. Release, Partitioning, and Conjugation Stability of Doxorubicin in Polymer Micelles Determined by Mechanistic Modeling

    Science.gov (United States)

    Ponta, Andrei; Fugit, Kyle D.; Anderson, Bradley D.; Bae, Younsoo

    2014-01-01

    Purpose To better understand the mechanistic parameters that govern drug release from polymer micelles with acid-labile linkers. Methods A mathematical model was developed to describe drug release from block copolymer micelles composed of a poly(ethylene glycol) shell and a poly(aspartate) core, modified with drug binding linkers for pH-controlled release [hydrazide (HYD), aminobenzoate-hydrazide (ABZ), or glycine-hydrazide (GLY)]. Doxorubicin (Dox) was conjugated to the block copolymers through acid-labile hydrazone bonds. The polymer drug conjugates were used to prepare three polymer micelles (HYD-M, ABZ-M, and GLY-M). Drug release studies were performed to identify the factors governing pH-sensitive release of Dox. The effect of prolonged storage of copolymer material on release kinetics was also observed. Results Biphasic drug release kinetics were observed for all three micelle formulations. The developed model was able to quantify observed release kinetics upon the inclusion of terms for unconjugated Dox and two populations of conjugated Dox. Micelle/water partitioning of Dox was also incorporated into the model and found significant in all micelles under neutral conditions but reduced under acidic conditions. The drug binding linker played a major role in drug release as the extent of Dox release at specific time intervals was greater at pH 5.0 than at pH 7.4 (HYD-M > ABZ-M > GLY-M). Mathematical modeling was also able correlate changes in release kinetics with the instability of the hydrazone conjugation of DOX during prolonged storage. Conclusion These results illustrate the potential utility of mechanistic modeling to better assess release characteristics intrinsic to a particular drug/nanoparticle system. PMID:25407546

  16. Solubility of gases and solvents in silicon polymers: molecular simulation and equation of state modeling

    DEFF Research Database (Denmark)

    Economou, Ioannis; Makrodimitri, Zoi A.; Kontogeorgis, Georgios

    2007-01-01

    The solubility of n-alkanes, perfluoroalkanes, noble gases and light gases in four elastomer polymers containing silicon is examined based on molecular simulation and macroscopic equation of state modelling. Polymer melt samples generated from molecular dynamics ( MD) are used for the calculation...

  17. A new experimental procedure for incorporation of model contaminants in polymer hosts

    NARCIS (Netherlands)

    Papaspyrides, C.D.; Voultzatis, Y.; Pavlidou, S.; Tsenoglou, C.; Dole, P.; Feigenbaum, A.; Paseiro, P.; Pastorelli, S.; Cruz Garcia, C. de la; Hankemeier, T.; Aucejo, S.

    2005-01-01

    A new experimental procedure for incorporation of model contaminants in polymers was developed as part of a general scheme for testing the efficiency of functional barriers in food packaging. The aim was to progressively pollute polymers in a controlled fashion up to a high level in the range of

  18. Novel pH-sensitive biodegradable polymeric drug delivery systems based on ketal polymers.

    Science.gov (United States)

    Chen, Daquan; Wang, Hongbo

    2014-01-01

    This article reviews the recent developments on novel pH-sensitive ketal-based biodegradable polymeric drug delivery systems. Due to the degradation of ketal derivatives, neutral alcohols and ketones, ketal derivatives can be used to fabricate pH-degradable polymer with pH-degradable ketal linkages in new drug delivery systems by avoiding inflammatory problems. Due to the novelty of ketal polymers, there were few reports about ketal polymers. The review starts with a brief introduction to the pH-sensitive drug delivery system, followed by the structure, preparation and characterization techniques of ketal polymers. Thereafter, the promising applications in various diseases in relation to micro/nano drug carriers based on ketal polymers are summarized and discussed.

  19. Modelling of electrokinetic phenomena involving confined polymers: Applications to DNA separation and electroosmotic flow control

    Science.gov (United States)

    Tessier, Frederic

    Microfluidic and nanofluidic technology is revolutionizing experimental practices in analytical chemistry, molecular biology and medicine. Indeed, the development of systems of small dimensions for the processing of fluids heralds the miniaturization of traditional, cumbersome laboratory equipment onto robust, portable and efficient microchip devices (similar to the electronic microchips found in computers). Moreover, the conjunction of scale between the smallest man-made device and the largest macromolecules evolved by Nature is fertile ground for the blooming of our knowledge about the key processes of life. In fact, the conjunction is threefold, because modern computational resources also allow us to contemplate a rather explicit modelling of physical systems between the nanoscale and the microscale. In the five articles comprising this thesis, we present the results of computer simulations that address specific questions concerning the operation of two different model systems relevant to the development of small-scale fluidic devices for the manipulation and analysis of biomolecules. First, we use a Bond-Fluctuation Monte Carlo approach to study the electrophoretic drift of macromolecules across an entropic trap array built for the length separation of long, double-stranded DNA molecules. We show that the motion of the molecules is consistent with a simple balance between electric and entropic forces, in terms of a single characteristic parameter. We also extract detailed information on polymer deformation during migration, predict the separation of topoisomers, and investigate innovative ratchet driving regimes. Secondly, we present theoretical derivations, numerical calculations and Molecular Dynamics simulation results for an electrolyte confined in a capillary of nanoscopic dimensions. In particular, we study the effectiveness of neutral grafted polymer chains in reducing the magnitude of electroosmotic flow (fluid flow induced by an external electric field

  20. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    Science.gov (United States)

    Fu, Yao; Song, Jeong-Hoon

    2014-08-01

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  1. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  2. Precision manufacturing of polymer micro-nano fluidic systems

    DEFF Research Database (Denmark)

    Garnæs, Jørgen; Calaon, Matteo; Tosello, Guido

    2015-01-01

    in the sample. Design of experiment (DOE) was adopted to characterize the replication fidelity of produced polymer features. Results have shown the possibility of performing quality control of micro- and sub-μm features, taking into account the polymer shrinkage, depending on process conditions at both micro......Lab-on-a-Chip (LoC) technologies require the possibility of fabricating devices which include micro down to sub-micrometre features with high production rate and low cost. In the present study precision injection moulding is performed using a COC Topas 5013 L10 polymer to produce LoC devices...... for DNA barcoding with functional features in the 100 nm to 10 μm range. Replication quality of produced features (from nickel to polymer) was assessed by calibrated atomic force microscope (AFM) measurements performed on multiple nanochannels test structures arrays placed at different positions...

  3. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    Science.gov (United States)

    Balliet, Ryan James

    Polymer-electrolyte fuel cells (PEFCs) are electrochemical devices that create electricity by consuming hydrogen and oxygen, forming water and heat as byproducts. PEFCs have been proposed for use in applications that may require start-up in environments with temperatures below 0 degrees C. Doing so requires that the cell heat up, and when its own waste heat is used to do so, the process is referred to here as "cold start.'' However, at low temperatures the cell's product water freezes, and if the temperature does not rise fast enough, the accumulation of ice in the cathode catalyst layer (cCL) can reduce cell performance significantly, extending the time required to heat up. In addition to reducing performance during cold start, under some conditions the accumulation of ice can lead to irreversible structural degradation of the cCL. The objective of this dissertation is to construct and verify a cold-start model for a single PEFC, use it to improve understanding of cold-start behavior, and to demonstrate how this understanding can lead to better start protocols and material properties. The macrohomogeneous model that has been developed to meet the objective is two-dimensional, transient, and nonisothermal. A key differentiating feature is the inclusion of water in all four of the possible phases: ice, liquid, gas, and membrane. In order to predict water content in the ice, liquid, and gas phases that are present in the porous media, the thermodynamics of phase equilibrium are revisited, and a method for relating phase pressures to water content in each of these phases is developed. Verification of the model is performed by comparing model predictions for cell behavior during parametric studies to measured values taken from various sources. In most cases, good agreement is observed between the model and the experiments. Results from the simulations are used to explain the trends that are observed. The verified cold-start model is deployed to determine a cold

  4. Flammability and Photo-Stability of Selected Polymer Systems

    Science.gov (United States)

    Lo, Jeelin

    1981-01-01

    A systematic approach to the improvement of the flammability of epoxy resins, bisphenol-A polycarbonate poly(butylene terephthalate), and Nylon 6.6 by introducing halogens and loop functionality into the flame retardants is described. The phthalides (the loop functionality containing molecules) include 3,3-bis(4-bromophenyl)-phthalide, 3,3-bis(4-chlorophenyl)phthalide, and phenolphthalein. The phthalide containing epoxy resins are synthesized and characterized in comparison with the bisphenol-A epoxy resins in terms of flammability in the copolymer systems. The resins include diglycidyl ethers of phenolphthalein, bisphenol-A. tetrabromobisphenol-A, and tetraoromophenolphthalein. The vaporization of the phthalide additive in the polymers is observed in Thermal Gravimetric Analysis. The flame retardancy is primarily due to the presence of halogens. In the poly(butylene terephthalate) system, the cleavage of the C(sub aromatic) -B bond of the flame retardant additive enhances the crosslinking react ions between the aromatic rings resulting in an increase of char formation. In the epoxy resin systems, loop functionality contributes to char formation to a larger extent. The interaction between the epoxy resin and poly-(butylene terephthalate) follows the mechanism of insertion of the oxirane ring into the ester bond. This mechanism is studied by FT-IR. The investigation of the thermal properties of the char-forming phenol-formaldehyde resins is conducted to provide information for the systematic design of high temperature flame-resistant phenolics. NMR and FT-IR are used to characterize the oligomeric resins and the cured resins. The curing agents used in the study include formaldehyde, s-trioxane and terephthaloyl chloride. The brominated phenolic resins are found to have higher oxygen indices with lower char yields.

  5. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold

    DEFF Research Database (Denmark)

    Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.

    2006-01-01

    with the excellent mechanical properties of certain commodity polymers. Here we investigate bicomponent blends comprising semicrystalline regioregular poly(3-hexylthiophene) and selected semicrystalline commodity polymers, and show that, owing to a highly favourable, crystallization-induced phase segregation......–crystalline/semiconducting–insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer......Blends and other multicomponent systems are used in various polymer applications to meet multiple requirements that cannot be fulfilled by a single material1, 2, 3. In polymer optoelectronic devices it is often desirable to combine the semiconducting properties of the conjugated species...

  6. Confined relaxations of grafted polymer in solutions of linear polymer

    Science.gov (United States)

    Poling-Skutvik, Ryan; Krishnamoorti, Ramanan; Conrad, Jacinta

    Using neutron spin echo spectroscopy (NSE), we investigate the relaxations of polymer grafted to silica nanoparticles dispersed in semidilute solutions of linear polymer. The grafted polymer has a radius of gyration comparable to radius of the silica nanoparticle with a moderate grafting density so that the grafted polymer is more extended than a Gaussian chain. On length scales ranging from 1 to 20 nm and time scales less than 100 ns, the dynamics of the grafted polymer deviate from the standard Zimm model derived for linear polymers. Instead, the polymer chains are confined and unable to fully relax over the experimental time. The confinement length agrees with the distance between chains decreases as the linear polymer concentration is increased. Additionally, the confinement length is independent of linear polymer molecular weight, suggesting that linear polymer cannot penetrate the grafted layer. Instead, the grafted chains collapse onto themselves, similar to the structural changes observed in systems of star and linear polymers at high concentrations of linear polymer. We verify this physical picture using small-angle x-ray scattering and atomic force microscopy to observe aggregation of grafted particles at high concentrations of linear polymer.

  7. Modeling of an ionic polymer metal composite actuator based on an extended Kalman filter trained neural network

    International Nuclear Information System (INIS)

    Truong, Dinh Quang; Ahn, Kyoung Kwan

    2014-01-01

    An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique. (paper)

  8. Communication: Self-assembly of a model supramolecular polymer studied by replica exchange with solute tempering

    Science.gov (United States)

    Arefi, Hadi H.; Yamamoto, Takeshi

    2017-12-01

    Conventional molecular-dynamics (cMD) simulation has a well-known limitation in accessible time and length scales, and thus various enhanced sampling techniques have been proposed to alleviate the problem. In this paper, we explore the utility of replica exchange with solute tempering (REST) (i.e., a variant of Hamiltonian replica exchange methods) to simulate the self-assembly of a supramolecular polymer in explicit solvent and compare the performance with temperature-based replica exchange MD (T-REMD) as well as cMD. As a test system, we consider a relatively simple all-atom model of supramolecular polymerization (namely, benzene-1,3,5-tricarboxamides in methylcyclohexane solvent). Our results show that both REST and T-REMD are able to predict highly ordered polymer structures with helical H-bonding patterns, in contrast to cMD which completely fails to obtain such a structure for the present model. At the same time, we have also experienced some technical challenge (i.e., aggregation-dispersion transition and the resulting bottleneck for replica traversal), which is illustrated numerically. Since the computational cost of REST scales more moderately than T-REMD, we expect that REST will be useful for studying the self-assembly of larger systems in solution with enhanced rearrangement of monomers.

  9. Numerical modelling of porous cement-based materials by superabsorbent polymers

    DEFF Research Database (Denmark)

    Viejo, Ismael; Esteves, Luis Pedro; Laspalas, Manuel

    2016-01-01

    The development of new cementitious materials raises new challenges with regard to structural design. One of the potential applications of superabsorbent polymers (SAP) is to deliver well-defined porosity to cement systems. This is particularly interesting for the development of porous cement......-based materials with high technical performance. In this paper, a numerical approach to model the basic mechanical properties of the porous cement with SAP is developed. The modelling approach is based on computational micromechanics and uses a representative volume element that emulates the microstructure...... of the cement-based material to determine the overall material response and the local behaviour. Using this approach several sensitivity analyses are undertaken examining various parameters. The modelling approach is compared with experimental results showing reasonable correlation. The proposed approach...

  10. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Carl Esben; Østergaard, Peter Friis

    2014-01-01

    from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test...

  11. Rapid replacement of Tangier Island bridges including lightweight and durable fiber-reinforced polymer deck systems.

    Science.gov (United States)

    2009-01-01

    Fiber-reinforced polymer (FRP) composite cellular deck systems were used as new bridge decks on two replacement bridges on Tangier Island, Virginia. The most important characteristics of this application were reduced self-weight and increased durabil...

  12. A new system for crack closure of cementitious materials using shrinkable polymers

    International Nuclear Information System (INIS)

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-01-01

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  13. Blends of synthetic and natural polymers as drug delivery systems for growth hormone.

    Science.gov (United States)

    Cascone, M G; Sim, B; Downes, S

    1995-05-01

    In order to overcome the biological deficiencies of synthetic polymers and to enhance the mechanical characteristics of natural polymers, two synthetic polymers, poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were blended, in different ratios, with two biological polymers, collagen (C) and hyaluronic acid (HA). These blends were used to prepare films, sponges and hydrogels which were loaded with growth hormone (GH) to investigate their potential use as drug delivery systems. The GH release was monitored in vitro using a specific enzyme-linked immunosorbent assay. The results show that GH can be released from HA/PAA sponges and from HA/PVA and C/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The rate and quantity of GH released was significantly dependent on the HA or C content of the polymers.

  14. A Bridging Cell Multiscale Methodology to Model the Structural Behaviour of Polymer Matrix Composites

    Science.gov (United States)

    Iacobellis, Vincent

    Composite and nanocomposite materials exhibit behaviour which is inherently multiscale, extending from the atomistic to continuum levels. In composites, damage growth tends to occur at the nano and microstructural scale by means of crack growth and fibre-matrix debonding. Concurrent multiscale modeling provides a means of efficiently solving such localized phenomena, however its use in this application has been limited due to a number of existing issues in the multiscale field. These include the seamless transfer of information between continuum and atomistic domains, the small timesteps required for dynamic simulation, and limited research into concurrent multiscale modeling of amorphous polymeric materials. The objective of this thesis is thus twofold: to formulate a generalized approach to solving a coupled atomistic-to-continuum system that addresses these issues and to extend the application space of concurrent multiscale modeling to damage modeling in composite microstructures. To achieve these objectives, a finite element based multiscale technique termed the Bridging Cell Method (BCM), has been formulated with a focus on crystalline material systems. Case studies are then presented that show the effectiveness of the developed technique with respect to full atomistic simulations. The BCM is also demonstrated for applications of stress around a nanovoid, nanoindentation, and crack growth due to monotonic and cyclic loading. Next, the BCM is extended to modeling amorphous polymeric material systems where an adaptive solver and a two-step iterative solution algorithm are introduced. Finally, the amorphous and crystalline BCM is applied to modeling a polymer-graphite interface. This interface model is used to obtain cohesive zone parameters which are used in a cohesive zone model of fibre-matrix interfacial cracking in a composite microstructure. This allows for an investigation of the temperature dependent damage mechanics from the nano to microscale within

  15. Modeling of the branching influence on liquid–liquid equilibrium of binary and ternary polymer solutions by lattice–cluster theory

    International Nuclear Information System (INIS)

    Browarzik, Dieter; Langenbach, Kai; Enders, Sabine; Browarzik, Christina

    2013-01-01

    Highlights: ► Liquid–liquid equilibrium (LLE) is calculated with the lattice–cluster theory (LCT). ► Equations of the LCT are reduced to only three geometrical parameters. ► Branching influence on the LLE is modeled for binary and ternary polymer solutions. ► Branched and linear solvents and polymers are compared in their influence on LLE. ► Solutions of branched polymers in branched solvents show the best miscibility. -- Abstract: The liquid–liquid equilibrium (LLE) of ternary model systems of the type solvent A + polymer B + solvent C is treated in the framework of lattice–cluster theory (LCT). There are a linear and a branched type of A-molecules as well as a linear and two types of strongly branched polymer molecules. The C-molecules are assumed to occupy only one lattice site. For nine binary and six ternary polymer solutions the branching influence on LLE is discussed. Currently, the LCT is the most useful model to take the architecture of the molecules into account. However, particularly for ternary systems the model is not comfortable because of the very numerous terms of the Gibbs energy. Using some relationships between the geometrical parameters of the model a considerable simplification is possible. In this paper the new and simpler equations of the LCT are presented. For comparison with experimental data critical temperatures of solutions of linear and branched polyethylene samples in diphenyl ether are calculated

  16. Improving reservoir conformance using gelled polymer systems. Annual report, September 15, 1993--September 24, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1995-07-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focuses on three types of aqueous gel systems - a polysaccharide (KUSP1) that gels as a function of pH, a polyacrylamide-chromium(III) system and a polyacrylamide-aluminum citrate system. This report describes work conducted during the second year of a three-year program. Progress was made in the utilization of KUSP1 as a gelling agent. It was shown that gels can be formed in situ in porous media using CO{sub 2} or ester hydrolysis to lower pH. An ester was identified that could be used in field-scale operations. It was determined that KUSP1 will form strong gels when ortho boric acid is added to the system. It was also determined, in cooperation with Abbott Laboratories, that KUSP1 can be produced on a commercial scale. Rheological studies showed that shear rate significantly affects gelation time and gel strength. The effect of rock-fluid interactions at alkaline conditions was examined experimentally and through mathematical modeling. A model was developed that treats non-equilibrium conditions and this is an improvement over previously published models.

  17. Thermal degradation of polymer systems having liquid crystalline oligoester segment

    Directory of Open Access Journals (Sweden)

    Renato Matroniani

    Full Text Available Abstract Block copolymers and blends comprised by liquid crystalline oligoester and polystyrene were prepared and their thermal stability were characterized by thermogravimetric analysis (TGA. The samples have shown three main decomposition temperatures due to (1 lost of flexible chain and decomposition of mesogenic segment, (2 decomposition of polystyrene and (3 final decomposition of oligoester rigid segment. Both copolymers and polymer blends presented lower thermal stability compared to polystyrene and oligoester. The residual mass after heating at 600 °C in copolymers and polymer blends were lower than those found in the oligoesters. A degradative process of aromatic segments of oligoester induced by decomposition of polystyrene is suggested.

  18. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  19. Modeling optical properties of polymer-solvent complexes: the chloroform influence on the P3HT and N2200 absorption spectra.

    Science.gov (United States)

    Dias Ledo, Rodrigo Maia; Leal, Luciano Almeida; de Brito Silva, Patrick Pascoal; da Cunha, Wiliam Ferreira; de Souza, Leonardo Evaristo; Almeida Fonseca, Antonio Luciano; Ceschin, Artemis Marti; da Silva Filho, Demétrio Antonio; Ribeiro Junior, Luiz Antonio

    2017-02-01

    The optical properties of polymer/solvent systems composed by the polymers P3HT and PolyeraActivInk N2200 under the present of chloroform as solvent are experimentally and theoretically investigated using UV-Vis spectroscopy, molecular dynamics (MD), and density functional theory (DFT) calculations. The study is focused on obtaining the theoretical methodologies that properly describes the experimentally obtained absorption spectra of polymer-solvent complexes. In order to investigate the solvent influence, two different approaches are taken into account: the solvation shell method (SSM) and the polarizable continuum model (PCM). Our findings shown that SSM simulations, which combine MD and DFT calculations, are in good agreement with the experimental data. Moreover, it is obtained that simulations in the framework of PCM do not provide a fair description of the real system. Importantly, these results may pave the way for better descriptions of some optoelectronic properties of interest in polymer/solvent systems. Graphical Abstract ᅟ.

  20. Markov model-based polymer assembly from force field-parameterized building blocks.

    Science.gov (United States)

    Durmaz, Vedat

    2015-03-01

    A conventional by hand construction and parameterization of a polymer model for the purpose of molecular simulations can quickly become very work-intensive and time-consuming. Using the example of polyglycerol, I present a polymer decomposition strategy yielding a set of five monomeric residues that are convenient for an instantaneous assembly and subsequent force field simulation of a polyglycerol polymer model. Force field parameters have been developed in accordance with the classical Amber force field. Partial charges of each unit were fitted to the electrostatic potential using quantum-chemical methods and slightly modified in order to guarantee a neutral total polymer charge. In contrast to similarly constructed models of amino acid and nucleotide sequences, the glycerol building blocks may yield an arbitrary degree of bifurcations depending on the underlying probabilistic model. The iterative development of the overall structure as well as the relation of linear to branching units is controlled by a simple Markov model which is presented with few algorithmic details. The resulting polymer is highly suitable for classical explicit water molecular dynamics simulations on the atomistic level after a structural relaxation step. Moreover, the decomposition strategy presented here can easily be adopted to many other (co)polymers.

  1. Systems design of case hardened polymers for gears

    Science.gov (United States)

    D'Oyen, Raquel Maria

    A multicomponent thermosetting system employing existing models of case-core systems used in steel gears is proposed for scientific design of new-generation plastic gears. The system consists of a tough, rubber-modified epoxy core and a hard, unmodified epoxy case. Gradients in hardness, toughness, and residual stress are achieved exploiting density differences between rubber particles and the epoxy matrix. Spinning the system during cure moves lighter particles to the center of the part, leaving a hard rubber-depleted case. Residual stresses in the case are formed by quenching the part after curing. Because of its simple chemistry and low processing-temperature and viscosity, a model system of diglycidyl ether of bisphenol A epoxy, carboxyl-terminated acrylonitrile-butadiene rubber, and piperidine curing agent was used. Mechanical testing of epoxies and rubber-toughened systems shows increasing fatigue strength and toughness but decreasing strength and hardness with increased crosslinking. A cure schedule of 16-24 hours at 120sp°C results in a material optimized for Ksb{Ic}, fatigue strength and thermal stability. Rubber composition to maximize critical flaw size at yield with a particle size of 1.5 mum is approximately 10%. Thermodynamic and kinetic models consistent with glass transition and cloud point measurements were developed and validated for the prediction of phase separation, cure behavior, and case depths attainable in this system. These models predict that preformed rubber particles are required for the toughening dispersion to achieve desired case depths. The demonstrated property range gives a core critical flaw size 15 times larger than in the case, and fatigue strength in the case approximately twice that of the core. Further enhancements are expected in the case with controlled residual stress. By using a stronger epoxy system, fatigue strengths greater than those seen in a current Delrin gear material should be achievable. The feasibility of a

  2. Linear finite-difference bond graph model of an ionic polymer actuator

    Science.gov (United States)

    Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.

    2017-09-01

    With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.

  3. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Mehan, S.; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400094 (India); Schwein, R. [Institut Laue-Langevin, DS/LSS, 6 rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France)

    2016-05-23

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters. DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.

  4. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    International Nuclear Information System (INIS)

    Kumar, Sugam; Mehan, S.; Aswal, V. K.; Schwein, R.

    2016-01-01

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters. DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.

  5. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    Science.gov (United States)

    Kumar, Sugam; Mehan, S.; Aswal, V. K.; Schwein, R.

    2016-05-01

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters. DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.

  6. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    Science.gov (United States)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Non-monotonic course of protein solubility in aqueous polymer-salt solutions can be modeled using the sol-mxDLVO model.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-02-01

    Protein purification is often performed using cost-intensive chromatographic steps. To discover economic alternatives (e.g., crystallization), knowledge on protein solubility as a function of temperature, pH, and additives in solution as well as their concentration is required. State-of-the-art models for predicting protein solubility almost exclusively consider aqueous salt systems, whereas "salting-in" and "salting-out" effects induced by the presence of an additional polymer are not considered. Thus, we developed the sol-mxDLVO model. Using this newly developed model, protein solubility in the presence of one salt and one polymer, especially the non-monotonic course of protein solubility, could be predicted. Systems considered included salts (NaCl, Na-p-Ts, (NH(4))(2) SO(4)) and the polymer polyethylene glycol (MW: 2000 g/mol, 12000 g/mol) and proteins lysozyme from chicken egg white (pH 4 to 5.5) and D-xylose ketol-isomerase (pH 7) at 298.15 K. The results show that by using the sol-mxDLVO model, protein solubility in polymer-salt solutions can be modeled in good agreement with the experimental data for both proteins considered. The sol-mxDLVO model can describe the non-monotonic course of protein solubility as a function of polymer concentration and salt concentration, previously not covered by state-of-the-art models. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modeling the structure of a polydisperse polymer brush

    NARCIS (Netherlands)

    Vos, de W.M.; Leermakers, F.A.M.

    2009-01-01

    Numerical self-consistent field theory is used to study the structural characteristics of a polydisperse polymer brush. We consider the relevant case of a Schulz–Zimm distribution and find that even a small degree of polydispersity completely destroys the parabolic density profile. The first moment

  9. Correlation study of structural parameters of bioadhesive polymers in designing a tunable drug delivery system.

    Science.gov (United States)

    Singh, Baljit; Sharma, Vikrant

    2014-07-22

    Keeping in view the importance of network structure in designing tunable drug delivery devices, in the present work, correlation between structural parameters and drug release profile has been determined for polysaccharide gum based polymers. These polymers have been characterized by SEMs, FTIR, (13)C NMR, XRD, TGA/DTA/DTG, DSC, and swelling studies. The mechanical, biocompatible, and mucoadhesive properties of polymers have also been determined. The polymer network parameters such as polymer volume fraction in the swollen state, Flory-Huggins interaction parameter, molecular weight of the polymer chain between two cross-links, cross-link density, and mesh size have been evaluated. Different kinetic models have been applied for the drug release profile of the antifungal drug fluconazole. The swelling and drug release occurred through a non-Fickian diffusion mechanism and a release profile best fitted in the Higuchi square root model. The polymers have been observed as non-thrombogenic, hemo-compatible, and mucoadhesive in nature and may be used in slow drug delivery applications to oral mucosa.

  10. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability

  11. Mechanism of Polymer Drag Reduction Using a Low-Dimensional Model

    Science.gov (United States)

    Roy, Anshuman; Morozov, Alexander; van Saarloos, Wim; Larson, Ronald G.

    2006-12-01

    Using a retarded-motion expansion to describe the polymer stress, we derive a low-dimensional model to understand the effects of polymer elasticity on the self-sustaining process that maintains the coherent wavy streamwise vortical structures underlying wall-bounded turbulence. Our analysis shows that at small Weissenberg numbers, Wi, elasticity enhances the coherent structures. At higher Wi, however, polymer stresses suppress the streamwise vortices (rolls) by calming down the instability of the streaks that regenerates the rolls. We show that this behavior can be attributed to the nonmonotonic dependence of the biaxial extensional viscosity on Wi, and identify it as the key rheological property controlling drag reduction.

  12. Diffusion coefficients of tracers in glassy polymer systems prepared by gamma radiolysis

    International Nuclear Information System (INIS)

    Tonge, M.P.; Gilbert, R.G.

    1996-01-01

    Diffusion-controlled reactions are common in free radical polymerisation reactions, especially in glassy polymer matrices. Such reactions commonly have an important influence on the polymerisation process and final polymer properties. For example, the dominant growth-stopping event (bimolecular termination) is generally diffusion-controlled. In glassy polymer systems, where molecular mobility is very low, the chain growth mechanism (propagation) may become diffusion-controlled. At present, the mechanism for propagation in glassy polymers is poorly understood, but it is expected by the Smoluchowski expression applied to propagation to depend strongly on the diffusion coefficient of monomer. The objective of this study is to measure reliable diffusion coefficients of small tracer molecules in glassy polymers, and compare these with propagation rate coefficients in similar systems, by the prediction above. Samples were initially prepared in a sealed sampled cell containing monomer, inert diluent, and tracer dye. After irradiation for several days, complete conversion of monomer to polymer can be obtained. The diffusion coefficients for two tracer dyes have been measured as a function of weight fraction polymer glassy poly(methyl methacrylate) samples

  13. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.

    Science.gov (United States)

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton

    2015-11-01

    Atomic simulations were undertaken to analyse the effect of polymer chain scission on amorphous poly(lactide) during degradation. Many experimental studies have analysed mechanical properties degradation but relatively few computation studies have been conducted. Such studies are valuable for supporting the design of bioresorbable medical devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young's modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness polymer may exist around chain scissions. In the Effective Cavity Theory, each chain scission is considered to instantiate an effective cavity. Finite Element Analysis simulations were conducted to model the effect of the cavities on Young's modulus. Since polymer crystallinity affects mechanical properties, the effect of increases in crystallinity during degradation on Young's modulus is also considered. To demonstrate the ability of the Effective Cavity Theory, it was fitted to several sets of experimental data for Young's modulus in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Structures and interactions in polymer systems characterized by NMR methods

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří

    2010-01-01

    Roč. 4, - (2010), s. 22-25 ISSN 1874-3439 R&D Projects: GA ČR GA202/09/1281 Institutional research plan: CEZ:AV0Z40500505 Keywords : thermoresponsive polymers * semicrystalline poly( ethylene oxide ) * biodegradable starch/polycaprolactone blends Subject RIV: CD - Macromolecular Chemistry

  15. Vapor-Liquid Equilibrium in Diluted Polymer plus Solvent Systems

    Czech Academy of Sciences Publication Activity Database

    Bogdanić, Grozdana; Wichterle, Ivan

    2011-01-01

    Roč. 56, č. 4 (2011), s. 1080-1083 ISSN 0021-9568 R&D Projects: GA ČR GA104/07/0444 Grant - others:MZOŠ(HR) 061-0000000-3029 Institutional research plan: CEZ:AV0Z40720504 Keywords : polymer * prediction * total pressure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.693, year: 2011

  16. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  17. Morphological analysis of polymer systems with broad particle size distribution

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Ostafinska, Aleksandra; Nevoralová, Martina; Fortelný, Ivan

    2015-01-01

    Roč. 42, April (2015), s. 8-16 ISSN 0142-9418 R&D Projects: GA ČR(CZ) GA14-17921S Institutional support: RVO:61389013 Keywords : polymer blends * morphology * image analysis Subject RIV: JJ - Other Materials Impact factor: 2.350, year: 2015

  18. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  19. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  20. Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2014-01-01

    Full Text Available This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV, permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I wellbore storage section, (II intermediate flow section (transient section, (III mid-radial flow section, (IV crossflow section (from low permeability layer to high permeability layer, and (V systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR.

  1. MODELLING OF CHARGE CARRIER MOBILITY FOR TRANSPORT BETWEEN ELASTIC POLYACETYLENE-LIKE POLYMER NANORODS

    Directory of Open Access Journals (Sweden)

    M. Mensik

    2017-03-01

    Full Text Available A quantum model solving the charge carrier mobility between polyacetylene-like polymer nanorods is presented. The model assumes: a Quantum mechanical calculation of hole on-chain delocalization involving electron-phonon coupling leading to the Peierls instability, b Hybridization coupling between the polymer backbone and side-groups (or environmental states, which act as hole traps, and c Semiclassical description of the inter-chain hole transfer in an applied voltage based on Marcus theory. We have found that mobility resonantly depends on the hybridization coupling between polymer and linked groups. We observed also non-trivial mobility dependences on the difference of energies of the highest occupied molecular orbitals localized on the polymer backbone and side-groups, respectively, and hole concentration. Those findings are important for optimization of hybrid opto-electronic devices.

  2. Enhanced non-volatile and updatable holography using a polymer composite system.

    Science.gov (United States)

    Wu, Pengfei; Sun, Sam Q; Baig, Sarfaraz; Wang, Michael R

    2012-03-12

    Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

  3. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored...... by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...

  4. A systematic stiffness-temperature model for polymers and applications to the prediction of composite behavior

    Science.gov (United States)

    Mahieux, Celine Agnes

    Polymer matrix composites (PMC's) are now being used more and more extensively and over wider ranges of service conditions. Large changes in pressure, chemical environment or temperature influence the mechanical response of such composites. In the present effort, we focus on temperature, a parameter of primary interest in almost all engineering applications. In order to design composite structures without having to perform extensive experiments (virtual design), the necessity of establishing theoretical models that relate the macroscopic response of the structure to the microscopic properties of the constituents arises. In the first part of the present work, a new stiffness versus temperature model is established. The model is validated using data from the literature. The influence of the different polymer's properties (Molecular weight, crystallinity, and filler content) on the model are studied by performing experiments on different grades of four polymers PMMA, PEEK, PPS, and PB. This statistical model is proven to be applicable to very different polymers (elastomers, thermoplastics, crystalline, amorphous, cross-linked, linear, filled, unfilled...) over wide temperature ranges (from the glassy state to the flow region). The most attractive feature of the proposed model is the capability to enable a description of the polymer's mechanical behavior within and across the property transition regions. In order to validate the feasibility of using the model to predict the mechanical response of polymer matrix composites, the stiffness-temperature model is used in various micromechanical models (rule of mixtures, compression models for the life prediction of unidirectional PMC's in end-loaded bending...). The model is also inserted in the MRLife prediction code to predict the remaining strength and life of unidirectional PMC's in fatigue bending. End-loaded fatigue experiments were performed. A good correlation between theoretical and experimental results is observed

  5. A New Insight in Determining the Percolation Threshold of Electrical Conductivity for Extrinsically Conducting Polymer Composites through Different Sigmoidal Models

    Directory of Open Access Journals (Sweden)

    Mostafizur Rahaman

    2017-10-01

    Full Text Available The electrical conductivity of extrinsically conducting polymer composite systems passes through a transition state known as percolation threshold. A discussion has been made on how different Sigmoidal models (S-models, such as Sigmoidal–Boltzmann (SB, Sigmoidal–Dose Response (SD, Sigmoidal–Hill (SH, Sigmoidal–Logistic (SL, and Sigmoidal–Logistic-1 (SL-1, can be applied to predict the percolation threshold of electrical conductivity for ethylene vinyl acetate copolymer (EVA and acrylonitrile butadiene copolymer (NBR conducting composite systems filled with different carbon fillers. An interesting finding that comes from these observations is that the percolation threshold for electrical conductivity determined by SB and SD models are similar, whereas, the other models give different result when estimated for a particular composite system. This similarity and discrepancy in the results of percolation threshold have been discussed by considering the strength, weakness, and limitation of the models. The percolation threshold value for the composites has also been determined using the classical percolation theory and compared with the sigmoidal models. Moreover, to check the universal applicability, these Sigmoidal models have also been tested on results from some published literature. Finally, it is revealed that, except SL-1 model, the remaining models can successfully be used to determine the percolation threshold of electrical conductivity for extrinsically conductive polymer composites.

  6. Towards a portable microchip system with integrated thermal control and polymer waveguides for real-time PCR

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR...... performed with a dilution series of C. jejuni DNA template (2 to 200 pg/mu l) could be quantitatively detected and compared with a conventional post-PCR analysis (DNA gel electrophoresis). The presented approach provided reliable real-time quantitative information of the PCR amplification of the targeted......A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA...

  7. Glassy dynamics of model colloidal polymers: The effect of "monomer" size

    Science.gov (United States)

    Li, Jian; Zhang, Bo-kai; Li, Hui-shu; Chen, Kang; Tian, Wen-de; Tong, Pei-qing

    2016-05-01

    In recent years, attempts have been made to assemble colloidal particles into chains, which are termed "colloidal polymers." An apparent difference between molecular and colloidal polymers is the "monomer" size. Here, we propose a model to represent the variation from molecular polymer to colloidal polymer and study the quantitative differences in their glassy dynamics. For chains, two incompatible local length scales, i.e., monomer size and bond length, are manifested in the radial distribution function and intramolecular correlation function. The mean square displacement of monomers exhibits Rouse-like sub-diffusion at intermediate time/length scale and the corresponding exponent depends on the volume fraction and the monomer size. We find that the threshold volume fraction at which the caging regime emerges can be used as a rescaling unit so that the data of localization length versus volume fraction for different monomer sizes can gather close to an exponential curve. The increase of monomer size effectively increases the hardness of monomers and thus makes the colloidal polymers vitrify at lower volume fraction. Static and dynamic equivalences between colloidal polymers of different monomer sizes have been discussed. In the case of having the same peak time of the non-Gaussian parameter, the motion of monomers of larger size is much less non-Gaussian. The mode-coupling critical exponents for colloidal polymers are in agreement with that of flexible bead-spring chains.

  8. Development of a multilayered association polymer system for sequential drug delivery

    Science.gov (United States)

    Chinnakavanam Sundararaj, Sharath kumar

    As all the physiological processes in our body are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the primary objective of this research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. This particular device was designed aimed at the treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of the world population. This condition is caused by bacterial biofilm on the teeth, resulting in a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The polymers used for the fabrication of this multilayered device consists of cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion property of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. After the initial characterization of the CAPP system, the device was specifically modified to achieve sequential release of drugs aimed at the treatment of periodontitis. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. To obtain different erosion

  9. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems.

    Science.gov (United States)

    Rumondor, Alfred C F; Ivanisevic, Igor; Bates, Simon; Alonzo, David E; Taylor, Lynne S

    2009-11-01

    To evaluate drug-polymer miscibility behavior in four different drug-polymer amorphous solid dispersion systems, namely felodipine-poly(vinyl pyrrolidone) (PVP), nifedipine-PVP, ketoconazole-PVP, and felodipine-poly(acrylic acid) (PAA). Amorphous solid dispersion samples were prepared at different drug-to-polymer ratios and analyzed using differential scanning calorimetry (DSC), mid-infrared (IR) spectroscopy, and powder X-ray diffractometry (PXRD). To help with interpretation of the IR spectra, principal components (PC) analysis was performed. Pair Distribution Functions (PDFs) of the components in the dispersion were determined from the PXRD data, and the pure curves of the components were also extracted from PXRD data using the Pure Curve Resolution Method (PCRM) and compared against experimentally obtained results. Molecular-level mixing over the complete range of concentration was verified for nifedipine-PVP and felodipine-PVP. For felodipine-PAA, drug-polymer immiscibility was verified for samples containing 30 to 70% polymer, while IR results suggest at least some level of mixing for samples containing 10 and 90% polymer. For ketoconazole-PVP system, partial miscibility is suspected, whereby the presence of one-phase amorphous solid dispersion system could only be unambiguously verified at higher concentrations of polymer. The three techniques mentioned complement each other in establishing drug-polymer miscibility in amorphous solid dispersion systems. In particular, IR spectroscopy and PXRD are sensitive to changes in local chemical environments and local structure, which makes them especially useful in elucidating the nature of miscibility in binary mixtures when DSC results are inconclusive or variable.

  10. Development of the computer-aided process planning (CAPP) system for polymer injection molds manufacturing

    OpenAIRE

    J. Tepić; V. Todić; D. Lukić; M. Milošević; S. Borojević

    2011-01-01

    Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-...

  11. Formulation of gastroretentive floating drug delivery system using hydrophilic polymers and its in vitro characterization

    OpenAIRE

    Meka, Venkata Srikanth; Dharmanlingam, Senthil Rajan; Kolapalli, Venkata Ramana Murthy

    2014-01-01

    The aim of the present research is to formulate and evaluate the gastroretentive floating drug delivery system of antihypertensive drug, propranolol HCl. Gastroretentive floating tablets (GRFT) were prepared by using a synthetic hydrophilic polymer polyethylene oxide of different grades such as PEO WSR N-12 K and PEO 18 NF as release retarding polymers and calcium carbonate as gas generating agent. The GRFT were compressed by direct compression strategy and the tablets were evaluated for phys...

  12. Modeling diffusion of adsorbed polymer with explicit solvent.

    Science.gov (United States)

    Desai, Tapan G; Keblinski, Pawel; Kumar, Sanat K; Granick, Steve

    2007-05-25

    Computer simulations of a polymer chain of length N strongly adsorbed at the solid-liquid interface in the presence of explicit solvent are used to delineate the factors affecting the N dependence of the polymer lateral diffusion coefficient, D(||). We find that surface roughness has a large influence, and D(||) scales as D(||) approximately N(-x), with x approximately 3/4 and x approximately 1 for ideal smooth and corrugated surfaces, respectively. The first result is consistent with the hydrodynamics of a "particle" of radius of gyration R(G) approximately N(nu) (nu=0.75) translating parallel to a planar interface, while the second implies that the friction of the adsorbed chains dominates. These results are discussed in the context of recent measurements.

  13. Conductive polymer foams with carbon nanofillers – Modeling percolation behavior

    Directory of Open Access Journals (Sweden)

    O. Maxian

    2017-05-01

    Full Text Available A new numerical model considering nanofiller random distribution in a porous polymeric matrix was developed to predict electrical percolation behavior in systems incorporating 1D-carbon nanotubes (CNTs and/or 2D-graphene nanoplatelets (GNPs. The numerical model applies to porous systems with closed-cell morphology. The percolation threshold was found to decrease with increasing porosity due to filler repositioning as a result of foaming. CNTs were more efficient in forming a percolative network than GNPs. High-aspect ratio (AR and randomly oriented fillers were more prone to form a network. Reduced percolation values were determined for misaligned fillers as they connect better in a network compared to aligned ones. Hybrid CNT-GNP fillers show synergistic effects in forming electrically conductive networks by comparison with single fillers.

  14. Simple kinetic model of ion induced gas emission from polymers

    Czech Academy of Sciences Publication Activity Database

    Hnatowicz, Vladimír

    2004-01-01

    Roč. 215, 1/2 (2004), s. 162-168 ISSN 0168-583X R&D Projects: GA ČR GA106/03/0514; GA AV ČR IAA5011301 Institutional research plan: CEZ:AV0Z1048901 Keywords : polymers * ion irradiation * degradation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.997, year: 2004

  15. New neuro-fuzzy system-based holey polymer fibers drawing process

    Science.gov (United States)

    Mohammed Salim, Omar Nameer

    2017-10-01

    Furnace temperature (T), draw tension (TE), and draw ratio (Dr) are the main parameters that could directly affect holey polymer fiber (HPF) production during the drawing stage. Therefore, a suitable mechanism to control (T), (TE), and (Dr) is required to enhance the HPF production process. The conventional approaches, such as observation and tuning technique, experience many difficulties in realizing the accurate values of (T), (TE), and (Dr) in addition to being expensive and time consuming. Therefore, an artificial intelligence model using the adaptive neuro-fuzzy system (ANFIS) method is proposed as an effective solution to achieve an accurate value of the main parameters that affect HPF drawing. Three ANFIS models are developed and tested to determine which one has the best performance for emulating the operation of HPF drawing tower. The ANFIS model with a gbell MF provides a better performance than Gaussian MF ANFIS model and triangular MF ANFIS model in terms of lower mean absolute error and mean square error. Furthermore, the proposed gbell MF model achieved the highest Q-Q response, which indicates the excellent performance of this model.

  16. Hemocompatibility of ultrafine systems on the basis of chitosan and its derivatives polymer-colloid complexes

    Directory of Open Access Journals (Sweden)

    M.V. Bazunova

    2015-03-01

    Full Text Available This article presents the results of the development process for the preparation of micro and nano-sized polymer-colloid com-plexes (РСС on the basis of water-soluble natural polymer chitosan (СTZ and the sodium salt of chitosan succinylamid (SСTZ with silver halide sols in aqueous media. Results of research of СTZ, sodium salt of SСTZ solutions and PСС of CTZ and SСTZ with colloidal parti-cles of silver iodide influence on structurally-functional properties of erythrocytes’ membranes on model of acidic hemolisis are presented in the article. Their influence on the nature of erythrocytes distribution by degree of their stability and on kinetic parameters (the beginning, intensity and completion of process of their destruction under the influence of the damaging agent (HCl is shown. The comparative analysis of results convinces that СTZ, SСTZ solutions and disperse systems on the basis of PСС of СTZ and SСTZ with colloidal particles of the silver iodide are capable of modulating variously matrix properties of erythrocytes of blood.

  17. Numerical study of viscoelastic polymer flow in simplified pore structures using stabilised finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, M.; Wegner, J.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Polymer flooding, as an EOR method, has become one of the most important driving forces after water flooding. The conventional believe is that polymer flooding can only improve sweep efficiency, but it has no contribution to residual oil saturation reduction. However, experimental studies indicated that polymer solution can also improve displacement efficiency and decrease residual oil saturation. To get a better understanding of the mechanism to increase the microscopic sweep efficiency and the displacement efficiency, theoretical studies are required. In this paper, we studied the viscoelasticity effect of polymer by using a numerical simulator, which is based on Finite Element Analysis. Since it is showed experimentally that the first normal stress difference of viscoelastic polymer solution is higher than the second stress difference, the Oldroyd-B model was selected as the constitutive equation in the simulation. Numerical modelling of Oldroyd-B viscoelastic fluids is notoriously difficult. Standard Galerkin finite element methods are prone to numerical oscillations, and there is no convergence as the elasticity of fluid increases. Therefore, we use a stabilised finite element model. In order to verify our model, we first built up a model with the same geometry and fluid properties as presented in literature and compared the results. Then, with the tested model we simulated the effect of viscoelastic polymer fluid on dead pores in three simplified pore structures, which are contraction structure, expansion structure and expansion-contraction structure. Correspondingly, the streamlines and velocity contours of polymer solution, with different Reynolds numbers (Re) and Weissenberg numbers (We), flowing in these three structures are showed. The simulation results indicate that the viscoelasticity of polymer solution is the main contribution to increase the micro-scale sweep efficiency. With higher elasticity, the velocity of polymer solution is getting bigger at

  18. Preparation of LC monodomain structures in polymer systems

    Science.gov (United States)

    Ujiie, Seiji; Yano, Yumi; Mori, Akira; Iimura, Kazuyoshi

    2002-12-01

    The thermal polymerization of aziridine monomers without a mesophase was performed in rubbing and non-treated sandwich cells. Cross-linked polymers, having homogeneous and homeotropic structures, were prepared. The thermal polymerization process was examined by X-ray diffraction measurements and polarizing microscopy. The cross-linked polymers exhibited a smectic A layered structure. In the rubbing sandwich cell, an aziridine monomer with an ethanol terminal group gave a cross-linked polymer having a homogeneous alignment. The homeotropic structure was obtained by thermal polymerization of an aziridine monomer with a nitro terminal group in a non-treated sandwich cell. The homeotropic structure was also formed on the surface of a glass plate and an aluminum thin film. A uniaxial-optical property of the homeotropic structure was characterized by conoscopic observation. The X-ray diffraction measurements showed the formation of the smectic A domain within an isotropic fluid by thermal polymerization at 100°C as well as optical texture observations. The X-ray diffraction pattern of the homeotropic structure was composed of first, second, and third inner reflections and a wide-angle halo, corresponding to the smectic A fluid phase.

  19. Modelization of three-layered polymer coated steel-strip ironing process using a neural network

    Science.gov (United States)

    Sellés, M. A.; Schmid, S. R.; Sánchez-Caballero, S.; Seguí, V. J.; Reig, M. J.; Pla, R.

    2012-04-01

    An alternative to the traditional can manufacturing process is to use plastic laminated rolled steels as base stocks. This material consist of pre-heated steel coils that are sandwiched between one or two sheets of polymer. The heated sheets are then immediately quenched, which yields a strong bond between the layers. Such polymer-coated steels were investigated by Jaworski [1,2] and Sellés [3], and found to be suitable for ironing with carefully controlled conditions. A novel multi-layer polymer coated steel has been developed for container applications. This material presents an interesting extension to previous research on polymer laminated steel in ironing, and offers several advantages over the previous material (Sellés [3]). This document shows a modelization for the ironing process (the most crucial step in can manufacturing) done by using a neural network

  20. Interplay between polymer chain conformation and nanoparticle assembly in model industrial silica/rubber nanocomposites.

    Science.gov (United States)

    Bouty, Adrien; Petitjean, Laurent; Chatard, Julien; Matmour, Rachid; Degrandcourt, Christophe; Schweins, Ralf; Meneau, Florian; Kwasńiewski, Paweł; Boué, François; Couty, Marc; Jestin, Jacques

    2016-01-01

    The question of the influence of nanoparticles (NPs) on chain dimensions in polymer nanocomposites (PNCs) has been treated mainly through the fundamental way using theoretical or simulation tools and experiments on well-defined model PNCs. Here we present the first experimental study on the influence of NPs on the polymer chain conformation for PNCs designed to be as close as possible to industrial systems employed in the tire industry. PNCs are silica nanoparticles dispersed in a styrene-butadiene-rubber (SBR) matrix whose NP dispersion can be managed by NP loading with interfacial coatings or coupling additives usually employed in the manufacturing mixing process. We associated specific chain (d) labeling, and the so-called zero average contrast (ZAC) method, with SANS, in situ SANS and SAXS/TEM experiments to extract the polymer chain scattering signal at rest for non-cross linked and under stretching for cross-linked PNCs. NP loading, individual clusters or connected networks, as well as the influence of the type, the quantity of interfacial agent and the influence of the elongation rate have been evaluated on the chain conformation and on its related deformation. We clearly distinguish the situations where the silica is perfectly matched from those with unperfected matching by direct comparison of SANS and SAXS structure factors. Whatever the silica matching situation, the additive type and quantity and the filler content, there is no significant change in the polymer dimension for NP loading up to 15% v/v within a range of 5%. One can see an extra scattering contribution at low Q, as often encountered, enhanced for non-perfect silica matching but also visible for perfect filler matching. This contribution can be qualitatively attributed to specific h or d chain adsorption on the NP surface inside the NP cluster that modifies the average scattering neutron contrast of the silica cluster. Under elongation, NPs act as additional cross-linking junctions

  1. Correlated aggregate model of self-healing in dye-doped polymers

    Science.gov (United States)

    Kuzyk, Mark G.; Ramini, Shiva

    2012-10-01

    Self healing of chromophores in a dye-doped polymer after photodegradation is a counterintuitive process based on the nearly universal observation that molecular damage is a thermodynamically irreversible process. We propose a new simple model of this phenomenon that takes into account all observations, including the effects of concentration, temperature, and bystander states. Critical to this model are correlations between chromophores, perhaps mediated by the polymer, which actively favors the undamaged species in analogy to Bose-Einstein condensation. We use this model to predict the behavior of decay and recovery experiments as measured with amplified spontaneous emission and absorption spectroscopy.

  2. Particle-in-a-bos model of one-dimensional excitons in conjugated polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Johansen, P.M.; Pedersen, H.C.

    2000-01-01

    A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as an electron-hole pair interacting via Coulomb forces and confined to the polymer...... of these cases an approximate solution for the general case is obtained. As an application of the model the influence of a static electric field on the electron-hole overlap integral and exciton energy is considered....

  3. Multiscale Modeling at Nanointerfaces: Polymer Thin Film Materials Discovery via Thermomechanically Consistent Coarse Graining

    Science.gov (United States)

    Hsu, David D.

    Due to high nanointerfacial area to volume ratio, the properties of "nanoconfined" polymer thin films, blends, and composites become highly altered compared to their bulk homopolymer analogues. Understanding the structure-property mechanisms underlying this effect is an active area of research. However, despite extensive work, a fundamental framework for predicting the local and system-averaged thermomechanical properties as a function of configuration and polymer species has yet to be established. Towards bridging this gap, here, we present a novel, systematic coarse-graining (CG) method which is able to capture quantitatively, the thermomechanical properties of real polymer systems in bulk and in nanoconfined geometries. This method, which we call thermomechanically consistent coarse-graining (TCCG), is a two-bead-per-monomer CG hybrid approach through which bonded interactions are optimized to match the atomistic structure via the Iterative Boltzmann Inversion method (IBI), and nonbonded interactions are tuned to macroscopic targets through parametric studies. We validate the TCCG method by systematically developing coarse-grain models for a group of five specialized methacrylate-based polymers including poly(methyl methacrylate) (PMMA). Good correlation with bulk all-atom (AA) simulations and experiments is found for the temperature-dependent glass transition temperature (Tg) Flory-Fox scaling relationships, self-diffusion coefficients of liquid monomers, and modulus of elasticity. We apply this TCCG method also to bulk polystyrene (PS) using a comparable coarse-grain CG bead mapping strategy. The model demonstrates chain stiffness commensurate with experiments, and we utilize a density-correction term to improve the transferability of the elastic modulus over a 500 K range. Additionally, PS and PMMA models capture the unexplained, characteristically dissimilar scaling of Tg with the thickness of free-standing films as seen in experiments. Using vibrational

  4. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized and optimized. Different...... routes to functionalize the polymers will be explored to increate proton conductivity. By the development of advanced materials, demonstration of the high temperature PEMFC stack and integration of such a system, FURIM is expected to sufficiently promote the commercialisation of the fuel cell technology...

  5. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  6. A Stress Update Algorithm for Constitutive Models of Glassy Polymers

    Science.gov (United States)

    Danielsson, Mats

    2013-06-01

    A semi-implicit stress update algorithm is developed for the elastic-viscoplastic behavior of glassy polymers. The case of near rate-insensitivity is addressed, and the stress update algorithm is designed to handle this case robustly. A consistent tangent stiffness matrix is derived based on a full linearization of the internal virtual work. The stress update algorithm and (a slightly modified) tangent stiffness matrix are implemented in a commercial finite element program. The stress update algorithm is tested on a large boundary value problem for illustrative purposes.

  7. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    OpenAIRE

    Balliet, Ryan

    2010-01-01

    Polymer-electrolyte fuel cells (PEFCs) are electrochemical devices that create electricity by consuming hydrogen and oxygen, forming water and heat as byproducts. PEFCs have been proposed for use in applications that may require start-up in environments with temperatures below 0 degrees C. Doing so requires that the cell heat up, and when its own waste heat is used to do so, the process is referred to here as ``cold start.'' However, at low temperatures the cell's product water freezes, and i...

  8. Crack growth modeling in a specimen with polymer weld

    Czech Academy of Sciences Publication Activity Database

    Ševčík, Martin; Hutař, Pavel; Náhlík, Luboš; Lach, R.; Knésl, Zdeněk; Grellmann, W.

    488-489, č. 1 (2012), s. 158-161 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics - FDM 2011 /10./. Dubrovník, 19.09.2011-21.09.2011] R&D Projects: GA ČR GC101/09/J027; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Keywords : polymer weld * crack propagation * graded structure * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  9. Modeling the shape memory effect of shape memory polymer

    Science.gov (United States)

    Zhou, Bo; Liu, Yanju; Wang, Zhenqing; Leng, Jin-Song

    2009-07-01

    Dynamic mechanical analysis (DMA) tests are conducted on the styrene-based shape memory polymer (SMP) to investigate its state transition behaviors. Tensile tests at various constant temperatures are carried out to reveal the stressstrain- temperature relationship of the styrene-based SMP. A new mechanical constitutive equation is developed to describe the stress-strain-temperature relationship of the styrene-based SMP. Numerical calculations illustrate the proposed theory well describes the thermo-mechanical cycle of shape memory of styrene-based SMP, such as deformation at high temperature, shape fixity, unloading at low temperature and shape recovery.

  10. Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease.

    Science.gov (United States)

    Lee, David; Lu, Qiaozhi; Sommerfeld, Sven D; Chan, Amanda; Menon, Nikhil G; Schmidt, Tannin A; Elisseeff, Jennifer H; Singh, Anirudha

    2017-06-01

    Hyaluronic acid (HA) solutions effectively lubricate the ocular surface and are used for the relief of dry eye related symptoms. However, HA undergoes rapid clearance due to limited adhesion, which necessitates frequent instillation. Conversely, highly viscous artificial tear formulations with HA blur vision and interfere with blinking. Here, we developed an HA-eye drop formulation that selectively binds and retains HA for extended periods of time on the ocular surface. We synthesized a heterobifunctional polymer-peptide system with one end binding HA while the other end binding either sialic acid-containing glycosylated transmembrane molecules on the ocular surface epithelium, or type I collagen molecule within the tissue matrix. HA solution was mixed with the polymer-peptide system and tested on both ex vivo and in vivo models to determine its ability to prolong HA retention. Furthermore, rabbit ocular surface tissues treated with binding peptides and HA solutions demonstrated superior lubrication with reduced kinetic friction coefficients compared to tissues treated with conventional HA solution. The results suggest that binding peptide-based solution can keep the ocular surface enriched with HA for prolonged times as well as keep it lubricated. Therefore, this system can be further developed into a more effective treatment for dry eye patients than a standard HA eye drop. Eye drop formulations containing HA are widely used to lubricate the ocular surface and relieve dry eye related symptoms, however its low residence time remains a challenge. We designed a polymer-peptide system for the targeted delivery of HA to the ocular surface using sialic acid or type I collagen as anchors for HA immobilization. The addition of the polymer-peptide system to HA eye drop exhibited a reduced friction coefficient, and it can keep the ocular surface enriched with HA for prolonged time. This system can be further developed into a more effective treatment for dry eye than a

  11. Verifying the polymer drawing model of melt blowing using factory production data

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2015-01-01

    Full Text Available Non-woven samples were collected from four non-woven factories. The fiber diameters of the non-woven samples were measured, which agree tally well with the predicted ones by the polymer drawing model. The paper concludes that the model can be effectively applied to the melt blowing technology.

  12. Self-consistent field modeling of adsorption from polymer/surfactant mixtures

    NARCIS (Netherlands)

    Postmus, B.R.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2008-01-01

    We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the

  13. Modeling of System Families

    National Research Council Canada - National Science Library

    Feiler, Peter

    2007-01-01

    .... The Society of Automotive Engineers (SAE) Architecture Analysis & Design Language (AADL) is an industry-standard, architecture-modeling notation specifically designed to support a component- based approach to modeling embedded systems...

  14. Modelling Railway Interlocking Systems

    DEFF Research Database (Denmark)

    Lindegaard, Morten Peter; Viuf, P.; Haxthausen, Anne Elisabeth

    2000-01-01

    In this report we present a model of interlocking systems, and describe how the model may be validated by simulation. Station topologies are modelled by graphs in which the nodes denote track segments, and the edges denote connectivity for train traÆc. Points and signals are modelled by annotatio...

  15. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  16. Evaluation of circuit models for an IPMC (ionic polymer-metal composite) sensor using a parameter estimate method

    International Nuclear Information System (INIS)

    Park, Kiwon; Lee, Hyungki

    2012-01-01

    The present study investigated a sensor system to effectively detect the bending angles applied on an ionic polymer metal composite sensor. Firstly, the amount of net charge produced by the motion of cations was correlated to the bending angle based on the geometric relationship between a flat and a bent IPMC, and the relationship was represented by linear and nonlinear polynomial equations. Secondly, several existing and modified R and C circuit models with a linear charge model were evaluated using the experimental data. Thirdly, the nonlinear charge model was applied to a selected circuit model, and the effectivenesses of the linear and the nonlinear charge models were compared. Finally, the sensor output signal was fed into the inverse model of the identified circuit model to reproduce the bending angles. This paper presents a simple data processing procedure using the inverse transfer function of a selected circuit model that successfully monitored various bending motions of an IPMC sensor.

  17. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    Science.gov (United States)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  18. Statistical mechanics of directed models of polymers in the square lattice

    CERN Document Server

    Rensburg, J V

    2003-01-01

    Directed square lattice models of polymers and vesicles have received considerable attention in the recent mathematical and physical sciences literature. These are idealized geometric directed lattice models introduced to study phase behaviour in polymers, and include Dyck paths, partially directed paths, directed trees and directed vesicles models. Directed models are closely related to models studied in the combinatorics literature (and are often exactly solvable). They are also simplified versions of a number of statistical mechanics models, including the self-avoiding walk, lattice animals and lattice vesicles. The exchange of approaches and ideas between statistical mechanics and combinatorics have considerably advanced the description and understanding of directed lattice models, and this will be explored in this review. The combinatorial nature of directed lattice path models makes a study using generating function approaches most natural. In contrast, the statistical mechanics approach would introduce...

  19. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.

    Science.gov (United States)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2014-01-28

    We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.

  20. Terminology of Polymers and Polymerization Processes in Dispersed Systems (IUPAC Recommendations 2011

    Directory of Open Access Journals (Sweden)

    Rogošić, M.

    2012-07-01

    Full Text Available A large group of industrially important polymerization processes is carried out in dispersed systems. These processes differ with respect to their physical nature, mechanism of particle formation, particle morphology, size, charge, types of interparticle interactions, and many other aspects. Polymer dispersions, and polymers derived from polymerization in dispersed systems,are used in diverse areas such as paints, adhesives, microelectronics, medicine, cosmetics, biotechnology, and others. Frequently, the same names are used for different processes and products or different names are used for the same processes and products. The document contains a list of recommended terms and definitions necessary for the unambiguous description of processes, products, parameters, and characteristic features relevant to polymers in dispersed systems.

  1. Calculation of the band structure of 2d conducting polymers using the network model

    International Nuclear Information System (INIS)

    Sabra, M. K.; Suman, H.

    2007-01-01

    the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)

  2. Study and modeling of heat transfer during the solidification of semi-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, R.; Poutot, G.; Delaunay, D. [Laboratoire de Thermocinetique de l' ecole polytechnique de l' universite de Nantes, UMR CNRS 6607, rue Christian Pauc, BP 50609 44306 Nantes cedex 3 (France); Fulchiron, R.; Koscher, E. [Laboratoire des Materiaux Polymeres et des Biomateriaux, IMP/UMR CNRS 5627, Universite Claude Bernard, Lyon 1, 69622 Villeurbanne Cedex (France)

    2005-12-01

    Semi-crystalline polymers are materials whose behavior during their cooling is difficult to model because of the strong coupling between the crystallization, heat transfer, pressure and shear. Thanks to two original apparatus we study solidification of such a polymer without shear. Firstly the comparison between experimental results and a numerical model will permit to validate crystallization kinetic for cooling rate reachable by DSC. The second experiment makes it possible to analyze solidification for high cooling rate, corresponding to some manufacturing processes. It appears that crystallization has an influence on the thermal contact resistance. (author)

  3. Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy

    Science.gov (United States)

    Pergamenshchik, V. M.; Vozniak, A. B.

    2017-01-01

    Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.

  4. Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation

    International Nuclear Information System (INIS)

    Kim, Won Suk; Park, Young Hun; Lee, Dai Woon; Moon, Myeong Hee; Yu, Euy Kyung

    1998-01-01

    An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ration of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted ΔT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value

  5. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems.

    Science.gov (United States)

    Kawai, Kiyoshi; Hagura, Yoshio

    2012-07-01

    In order to understand the glass transition properties of carbohydrate polymer-plasticizer systems, glass transition temperatures of dextrin-glucose and dextrin-maltose systems were investigated systematically using differential scanning calorimetry. The onset (Tg(on)) and offset (Tg(off)) of the glass transition decreased with increasing plasticizer (glucose or maltose) content, and showed an abrupt depression at certain plasticizer content. The abrupt depression of Tg(off) occurred at higher plasticizer content than that of Tg(on). The glass transition was much broader for intermediate plasticizer content. From the enthalpy relaxation behavior of samples aged at various temperatures, it was found that two different glass transitions occurred contentiously in the broad glass transition. These results suggested that carbohydrate polymer-plasticizer systems can be classified into three regions: the entrapment of the plasticizer by the polymer, the formations of the polymer-plasticizer and plasticizer-rich domains, and the embedment of polymer into the plasticizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Modeling of twisted and coiled polymer (TCP) muscle based on phenomenological approach

    Science.gov (United States)

    Karami, Farzad; Tadesse, Yonas

    2017-12-01

    Twisted and coiled polymers (TCP) muscles are linear actuators that respond to change in temperature. Exploiting high negative coefficient of thermal expansion (CTE) and helical geometry give them a significant ability to change length in a limited temperature range. Several applications and experimental data of these materials have been demonstrated in the last few years. To use these actuators in robotics and control system applications, a mathematical model for predicting their behavior is essential. In this work, a practical and accurate phenomenological model for estimating the displacement of TCP muscles, as a function of the load as well as input electrical current, is proposed. The problem is broken down into two parts, i.e. modeling of the electro-thermal and then the thermo-elastic behavior of the muscles. For the first part, a differential equation, with changing electrical resistance term, is derived. Next, by using a temperature-dependent modulus of elasticity and CTE as well as taking the geometry of the muscles into account, an expression for displacement is derived. Experimental data for different loads and actuation current levels are used for verifying the model and investigating its accuracy. The result shows a good agreement between the simulation and experimental results for all loads.

  7. A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Hernández, Abelardo, E-mail: abelardo@anl.gov; Pablo, Juan J. de, E-mail: depablo@uchicago.edu [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637 (United States); Peters, Brandon L.; Andreev, Marat; Schieber, Jay D., E-mail: schieber@iit.edu [Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-12-28

    A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance is established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. The results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials.

  8. A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology

    Science.gov (United States)

    Ramírez-Hernández, Abelardo; Peters, Brandon L.; Andreev, Marat; Schieber, Jay D.; de Pablo, Juan J.

    2015-12-01

    A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance is established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. The results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials.

  9. Pharmacokinetic study of medicinal polymers: models based on dextrans

    International Nuclear Information System (INIS)

    Kulakov, V.N.; Pimenova, G.N.; Matveev, V.A.; Sedov, V.V.; Vasil'ev, A.E.

    1986-01-01

    The authors study the pharmacokinetics of dextrans with various molecular masses modified by fluorescein isothiocyanate (FITC) using a radioisotope method. The radionuclide 125 I was selectively bound to a FITC residue attached to the polysaccharide by electrochemical iodination under potentiostatic conditions. In the experiments, dextrans modified by FITC were labeled with 125 I (DF- 125 I) by electrochemical iodination. The separation of DF- 125 I and FITC from ionic forms of the radionuclide not bound to the polymer was carried out. The properties of the samples obtained are presented. The radioactivity accumulated in the rate organs and urine studied are shown. The features of DF- 125 I behavior in the blood and liver are examined

  10. Adsorption of Aromatic Compounds on a QCM System Coated with Polymer Films

    International Nuclear Information System (INIS)

    Hwang, Min-Jin; Shim, Wang-Geun; Moon, Hee

    2013-01-01

    A quartz crystal microbalance (QCM) system coated with poly (isobutylene), polystyrene, and poly (methyl methacrylate) has been prepared to measure the adsorption amounts of benzene, toluene, and p-xylene at very low pressures. The resonant frequency shift of the QCM system is proportional to the increase in pressure in all experiments. The Henry's constants for all adsorbates on the polymer films are obtained from experimental data and compared with the minimum adsorption potential energies between adsorbates and the polymer films. In general, there is an explicit correlation between adsorption amount and the minimum adsorption potential energy

  11. Catalytic Systems for the Cross-Linking of Organosilicon Polymers.

    Science.gov (United States)

    Wang, Dengxu; Klein, Johann; Mejía, Esteban

    2017-06-01

    Silicones and silicone rubbers are omnipresent in household and industrial products such as lubricants, coatings, sealants, insulators, medical devices, etc. This plethora of applications arises from their unparalleled properties including hydrophobicity, low surface energy, chemical inertness, extreme temperature stability, elasticity, and biocompatibility. Even though silicones have been known for more than five decades, their chemistry is still far from fully understood. Industrially, the vast majority of processes for their synthesis, transformation, and use are based on rather well established, alas outdated technologies, which are frequently empirical and poorly investigated. This review attempts to summarize the different approaches for the synthesis of silicone rubbers by vulcanization or curing of silicone polymers, the catalysts used, and the corresponding reaction mechanisms. Apart from the well-known methods (radical, hydrosilylation, and metal-based condensation), novel approaches such as organo- and bio-catalysis are also addressed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Caractérisation rhéologique et modélisation structurelle des systèmes argile-polymère. Application aux fluides de forage Rheometry and Structural Modelling of Clay-Polymer Systems. Application to Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Cartalos U.

    2006-12-01

    Full Text Available Le comportement rhéologique des systèmes argile-polymère couramment utilisés dans les formulations des fluides de forage est examiné dans cet article. Un protocole d'essai adapté à leur nature thixotrope qui permet d'effectuer des mesures reproductibles est mis au point. Les propriétés intrinsèques du matériau sont ainsi déterminées sur toute la gamme de sollicitations : du comportement solide aux faibles déformations au comportement fluide aux taux de déformations intenses. Il est montré que ces systèmes sont caractérisés par des temps de restructuration longs, par des rhéogrammes en régime permanent présentant un minimum de contrainte et par des dépassements importants de la contrainte lors des essais transitoires. Ces effets peuvent être complètement masqués par des procédures d'essai préconisés par les normes en vigueur dans le forage. Une loi de comportement structurelle récente qui relie les propriétés thixotropes et viscoélastiques du matériau aux mécanismes de création et de rupture des flocs peut reproduire l'ensemble des phénomènes observés. Sa capacité de décrire le changement de structure au sein du fluide sous écoulement ou au repos et les variations associées de la contrainte permet d'envisager une meilleure modélisation de l'hydraulique du forage. The rheological behaviour of clay-polymer systems that are currently used in the formulation of drilling fluids was studied. A specific experimental procedure was used to account for thixotropic effects and obtain, thus, reproducible results. In this way it was possible to determine intrinsic properties in the whole range, from solid behaviour below the yield stress to liquid behaviour at very high shear. These systems are shown to be characterised by very long time scales of structure recovery, by the existence of a minimum shear stress in the steady state flow curve and by important stress overshoots in transient flows. These effects can be

  13. Optimized protocol for the radioiodination of hydrazone-type polymer drug delivery systems

    International Nuclear Information System (INIS)

    Sedláček, Ondřej; Kučka, Jan; Hrubý, Martin

    2015-01-01

    Hydrazone conjugates of polymers with doxorubicin represent a very promising tool for cancer chemotherapy. However, these conjugates are very difficult to radiolabel with iodine radionuclides, which possess otherwise very advantageous nuclear properties to, e.g., follow biodistribution. In this study, we developed a robust protocol for the high-yield radioiodination of hydrazone-type drug delivery systems with doxorubicin. In particular, it is crucial that the polymer radioiodination step be performed before the deprotection of the hydrazide and doxorubicin binding. - Highlights: • Hydrazone-type drug delivery systems with doxorubicin were radioiodinated. • Radioiodination was performed via polymer-bound phenolic moiety. • Radioiodination step must be performed before deprotection and drug binding

  14. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    Science.gov (United States)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  15. In vivo absorption of steroidal hormones from smart polymer based delivery systems.

    Science.gov (United States)

    Chen, Sibao; Pederson, Daniel; Oak, Mayura; Singh, Jagdish

    2010-08-01

    The purpose of this study was to develop smart polymer based controlled delivery systems to deliver steroidal hormones after single subcutaneous (s.c.) injection at predetermined rates over extended period of time. In vivo absorption and pharmacokinetics of levonorgestrel (LNG) and testosterone (TSN) were investigated from the thermosensitive and phase sensitive polymeric controlled delivery systems. A selective, reliable, and rapid method for determination of serum LNG concentration was developed using high-performance liquid chromatography-tandom mass spectrometry with atmospheric pressure chemical ionization interface (HPLC-MS-MS with APCI), while TSN in serum samples was detected and quantified by a competitive immunoassay. The delivery systems controlled the absorption of LNG in rabbits up to 6 weeks from thermosensitive and approximately 4 weeks from phase sensitive polymeric delivery systems. In vivo study of TSN delivery systems in castrated rabbits controlled the release of TSN for at least 2 months from both thermosensitive and phase sensitive polymers. Thermosensitive and phase sensitive polymer formulations significantly (p < 0.05) increased relative bioavailability of steroidal hormones compared to control. In conclusion, thermosensitive and phase sensitive polymer based delivery systems controlled the release in vivo in rabbits for longer duration after single s.c. injection. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  16. (Liquid plus liquid) equilibria of binary polymer solutions using a free-volume UNIQUAC-NRF model

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.

    2006-01-01

    + liquid) equilibria (LLE) for a number of binary polymer solutions at various temperatures. The values for the binary characteristic energy parameters for the proposed model and the FV-UNIQUAC model along with their average relative deviations from the experimental data were reported. It should be stated...... that the binary polymer solutions studied in this work were considered as monodisperse. The results obtained from the FV-UNIQUAC-NRF model were compared with those obtained from the FV-UNIQUAC model. The results of the proposed model show that the FV-UNIQUAC-NRF model can accurately correlate the experimental...... in predicting the LCST for binary polymer solutions....

  17. RSMASS system model development

    International Nuclear Information System (INIS)

    Marshall, A.C.; Gallup, D.R.

    1998-01-01

    RSMASS system mass models have been used for more than a decade to make rapid estimates of space reactor power system masses. This paper reviews the evolution of the RSMASS models and summarizes present capabilities. RSMASS has evolved from a simple model used to make rough estimates of space reactor and shield masses to a versatile space reactor power system model. RSMASS uses unique reactor and shield models that permit rapid mass optimization calculations for a variety of space reactor power and propulsion systems. The RSMASS-D upgrade of the original model includes algorithms for the balance of the power system, a number of reactor and shield modeling improvements, and an automatic mass optimization scheme. The RSMASS-D suite of codes cover a very broad range of reactor and power conversion system options as well as propulsion and bimodal reactor systems. Reactor choices include in-core and ex-core thermionic reactors, liquid metal cooled reactors, particle bed reactors, and prismatic configuration reactors. Power conversion options include thermoelectric, thermionic, Stirling, Brayton, and Rankine approaches. Program output includes all major component masses and dimensions, efficiencies, and a description of the design parameters for a mass optimized system. In the past, RSMASS has been used as an aid to identify and select promising concepts for space power applications. The RSMASS modeling approach has been demonstrated to be a valuable tool for guiding optimization of the power system design; consequently, the model is useful during system design and development as well as during the selection process. An improved in-core thermionic reactor system model RSMASS-T is now under development. The current development of the RSMASS-T code represents the next evolutionary stage of the RSMASS models. RSMASS-T includes many modeling improvements and is planned to be more user-friendly. RSMASS-T will be released as a fully documented, certified code at the end of

  18. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents.

    Science.gov (United States)

    Hovakeemian, Sara G; Liu, Runhui; Gellman, Samuel H; Heerklotz, Heiko

    2015-09-14

    Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity.

  19. A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites

    OpenAIRE

    Yang, D; Wu, K; Wan, L; Sheng, Y

    2017-01-01

    This paper presents a new numerical approach for modelling the 3D printing process of fibre reinforced polymer composites by fused deposition modelling (FDM). The approach is based on the coupling between two particle methods, namely smoothed particle hydrodynamics (SPH) and discrete element method (DEM). The coupled SPH-DEM model has distinctive advantages in dealing with the free surface flow, large deformation of fibres, and/or fibre-fibre interaction that are involved in the FDM process. ...

  20. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    . On the other hand, addition of low-volatility solvents to polymers is also a common industrial practice that others a means for lowering the Tg of the polymers. Moreover industrial polymers present a wide distribution of chain lengths and/or branched architectures that strongly influence their response....... Understanding the behaviour of polymer melts and solutions in complex non-linearflows is crucial for the design of polymeric materials and polymer processes. Through rheological characterization, in shear and extensional flow, of model polymer systems,i.e. narrow molar mass distribution polymer melts......Many commercial materials derived from synthetic polymers exhibit a complex response under different processing operations such as fiber formation, injection moulding,film blowing, film casting or coatings. They can be processed both in the solid or in the melted state. Often they may contain two...

  1. Polymer property modeling using grid technology for design of structured products

    DEFF Research Database (Denmark)

    Chelakara Satyanarayana, Kavitha; Gani, Rafiqul; Abildskov, Jens

    2007-01-01

    (+) approach is developed here, for polymers. With this approach the missing groups are created and their contributions are predicted using zero- and first-order connectivity indices. To minimize the time spent on computational aspects of model development, grid technology is used in this work. Property...

  2. Multiscale Modeling of Poly(lactic acid) Production: From Reaction Conditions to Rheology of Polymer Melt

    DEFF Research Database (Denmark)

    Zubov, Alexandr; Sin, Gürkan

    2018-01-01

    Abstract Poly(L-lactic acid) (PLLA) is a fully biodegradable bioplastic with promising market potential. The paper deals with systematic development and analysis of the modeling framework allowing direct mapping between PLLA production process conditions and rheological properties of the polymer ...

  3. Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.

    2009-01-01

    An improved model for CO 2 laser ablation impulse in polyoxymethylene and similar polymers is presented that describes the transition effects from the onset of vaporization to the plasma regime in a continuous fashion. Several predictions are made for ablation behavior.

  4. Multiscale computational modeling of size effects in carbon nanotube-polymer composites

    NARCIS (Netherlands)

    Malagu, M.

    2017-01-01

    The development of carbon nanotube(CNT)-polymer composites advocates for a better understanding of their physical and mechanical properties that depend on the diameter of the embedded CNTs. Given that the experimental assessment of size effects is extremely difficult, the use of numerical models can

  5. An Electromechanical Model for a Dielectric ElectroActive Polymer Generator

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig

    2013-01-01

    Smart electroactive materials have attracted much of the scientific interest over the past few years, as they reflect a quite promising alternative to conservative approaches used nowadays in various transducer applications. Especially Dielectric ElectroActive Polymers (DEAPs), which are constantly...... gaining momentum due to their superior low-speed performance, light-weighted nature and higher energy density when compared with competing technologies. In this paper an electromechanical model for a DEAP generator is presented, accounting for both the visco-hyperelastic characteristics of the polymer...

  6. Systemic resilience model

    International Nuclear Information System (INIS)

    Lundberg, Jonas; Johansson, Björn JE

    2015-01-01

    It has been realized that resilience as a concept involves several contradictory definitions, both for instance resilience as agile adjustment and as robust resistance to situations. Our analysis of resilience concepts and models suggest that beyond simplistic definitions, it is possible to draw up a systemic resilience model (SyRes) that maintains these opposing characteristics without contradiction. We outline six functions in a systemic model, drawing primarily on resilience engineering, and disaster response: anticipation, monitoring, response, recovery, learning, and self-monitoring. The model consists of four areas: Event-based constraints, Functional Dependencies, Adaptive Capacity and Strategy. The paper describes dependencies between constraints, functions and strategies. We argue that models such as SyRes should be useful both for envisioning new resilience methods and metrics, as well as for engineering and evaluating resilient systems. - Highlights: • The SyRes model resolves contradictions between previous resilience definitions. • SyRes is a core model for envisioning and evaluating resilience metrics and models. • SyRes describes six functions in a systemic model. • They are anticipation, monitoring, response, recovery, learning, self-monitoring. • The model describes dependencies between constraints, functions and strategies

  7. Particle synthesis, characterization, and properties of filled polymer systems

    Science.gov (United States)

    Kohls, Douglas J.

    This dissertation presents results on the reinforcement of an elastomer system using different types of fillers and comparing the resulting mechanical properties of compounds made with these fillers. The analytic approach uses two classical models with which fillers are thought to reinforce elastomers. The first mechanism being based on filler structure while the second involves the interaction of the filler with an elastomer. Two new types of fillers are investigated: a fumed silica-carbon composite and a layered silicate. These fillers are compounded into elastomers using formulations that are standard in the tire industry for tire tread compounds. This work builds off of previous studies that use techniques such as microscopy and gas adsorption to characterize filler structure by adding the use of small-angle x-ray scattering to characterize fillers based on three structural levels. Classical rubber elasticity principles with recent fractal model analysis are used to describe how the structural levels of the fillers relate to elastomer reinforcement. Analysis of the SAXS data gives information about the size of the primary particle and of the aggregate formed by these primary particles. It is found, through analyzing the SAXS data, that the ratio of these two structural sizes gives the degree of aggregation or the number of particles in an aggregate. The measurement and analysis of the degree of aggregation and how it correlates with measured mechanical properties of compounds is presented in this dissertation. The results from the USAXS and the mechanical testing of elastomers showed that the degree of aggregation, z, helps to identify what is a 'reinforcing' filler. Higher degree of aggregation correlated with better mechanical properties. While other studies have shown the effects of surface modifications, filler concentration, and surface area, the studies in this dissertation conclude that the degree of aggregation is an important parameter that can predict

  8. Three-Dimensional (3D Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling

    Directory of Open Access Journals (Sweden)

    Susanna Fafenrot

    2017-10-01

    Full Text Available Fused deposition modeling (FDM is a three-dimensional (3D printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid (PLA printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.

  9. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.

    Science.gov (United States)

    Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin; Ehrmann, Andrea

    2017-10-19

    Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.

  10. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nguyen, Thao D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, Rui [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  11. Selected System Models

    Science.gov (United States)

    Schmidt-Eisenlohr, F.; Puñal, O.; Klagges, K.; Kirsche, M.

    Apart from the general issue of modeling the channel, the PHY and the MAC of wireless networks, there are specific modeling assumptions that are considered for different systems. In this chapter we consider three specific wireless standards and highlight modeling options for them. These are IEEE 802.11 (as example for wireless local area networks), IEEE 802.16 (as example for wireless metropolitan networks) and IEEE 802.15 (as example for body area networks). Each section on these three systems discusses also at the end a set of model implementations that are available today.

  12. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  13. High temperature polymer fuel cells and their Interplay with fuel processing systems

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, R.

    2003-01-01

    This paper reports recent results from our group on polymer electrolyte membrane fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all....... The high working temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  14. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  15. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    voltage around 0.6 V. The target durability is more than 5,000 hours. A hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...

  16. New Approach for Description of Sorption and Swelling phenomena in Liquid + Polymer Membrane Systems.

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Hovorka, Š.; Bartovský, T.; Izák, Pavel; Kárászová, Magda; Vopička, O.; Lindnerová, V.

    2017-01-01

    Roč. 179, MAY (2017), s. 475-485 ISSN 1383-5866 R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : description of sorption * polymer membranes systems * new method Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  17. Sufficient Conditions for Uniform Bounds in Abstract Polymer Systems and Explorative Partition Schemes

    NARCIS (Netherlands)

    Temmel, C.

    2014-01-01

    We present several new sufficient conditions for uniform boundedness of the reduced correlations and free energy of an abstract polymer system in a complex multidisc around zero fugacity. They resolve a discrepancy between two incomparable and previously known extensions of Dobrushin’s classic

  18. Novel routes to liquid-based self-healing polymer systems

    NARCIS (Netherlands)

    Mookhoek, S.D.

    2010-01-01

    Inspired by the current state-of-the-art and the progressing advancements in the field of self-healing materials, this thesis addresses several novel routes to advance the concept of liquid-based self-healing polymer systems. This thesis presents the concept and characterisation of a one-component

  19. New Approach for Description of Sorption and Swelling phenomena in Liquid + Polymer Membrane Systems.

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Hovorka, Š.; Bartovský, T.; Izák, Pavel; Kárászová, Magda; Vopička, O.; Lindnerová, V.

    2017-01-01

    Roč. 179, MAY (2017), s. 475-485 ISSN 1383-5866 R&D Projects: GA MŠk(CZ) LD14094 Institutional support: RVO:67985858 Keywords : description of sorption * polymer membranes systems * new method Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 3.359, year: 2016

  20. Self-consistent field modeling of adsorption from polymer/surfactant mixtures.

    Science.gov (United States)

    Postmus, Bart R; Leermakers, Frans A M; Cohen Stuart, Martien A

    2008-06-01

    We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.

  1. Revisiting the mesoscopic Termonia and Smith model for deformation of polymers

    International Nuclear Information System (INIS)

    Krishna Reddy, B; Basu, Sumit; Estevez, Rafael

    2008-01-01

    Mesoscopic models for polymers have the potential to link macromolecular properties with the mechanical behaviour without being too expensive computationally. An interesting, popular and rather simple model to this end was proposed by Termonia and Smith (1987 Macromolecules 20 835–8). In this model the macromolecular ensemble is viewed as a collection of two-dimensional self-avoiding random walks on a regular lattice whose lattice points represent entanglements. The load is borne by members representing van der Waals bonds as well as macromolecular strands between two entanglement points. Model polymers simulated via this model exhibited remarkable qualitative similarity with real polymers with respect to their molecular weight, entanglement spacing, strain rate and temperature dependence. In this work, we revisit this model and present a detailed reformulation within the framework of a finite deformation finite element scheme. The physical origins of each of the parameters in the model are investigated and inherent assumptions in the model which contribute to its success are critically probed

  2. Formulation of gastroretentive floating drug delivery system using hydrophilic polymers and its in vitro characterization

    Directory of Open Access Journals (Sweden)

    Venkata Srikanth Meka

    2014-04-01

    Full Text Available The aim of the present research is to formulate and evaluate the gastroretentive floating drug delivery system of antihypertensive drug, propranolol HCl. Gastroretentive floating tablets (GRFT were prepared by using a synthetic hydrophilic polymer polyethylene oxide of different grades such as PEO WSR N-12 K and PEO 18 NF as release retarding polymers and calcium carbonate as gas generating agent. The GRFT were compressed by direct compression strategy and the tablets were evaluated for physico-chemical properties, in vitro buoyancy, swelling studies, in vitro dissolution studies and release mechanism studies. From the dissolution and buoyancy studies, F 9 was selected as an optimized formulation. The optimized formulation followed zero order rate kinetics with non-Fickian diffusion mechanism. The optimized formulation was characterised with FTIR studies and observed no interaction between the drug and the polymers.

  3. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  4. Fatigue behavior and modeling of short fiber reinforced polymer composites

    Science.gov (United States)

    Mortazavian, Seyyedvahid

    This study investigates uniaxial fatigue behavior of two short glass fiber polymer composites including 30 wt% short glass fiber polybutylene terephthalate (PBT) and 35 wt% short glass fiber polyamide-6 (PA6) under a number of load and environmental conditions. The main objectives are to evaluate the behavior of these materials under monotonic and cyclic loadings and present fatigue life prediction methodologies to reduce their development expenses and time. The considered environmental effects include those of low and elevated temperatures as well as moisture (or water absorption) effect. Fatigue behavior is also explored under the action of nonzero mean stress (or R ratio) as well as various cyclic loading frequencies. Material anisotropy and geometrical discontinuity effects (i.e. stress concentration) are also considered in this study. Microscopic failure analysis is also performed, when necessary, to identify failure mechanisms. Tensile tests were performed in various mold flow directions and with two thicknesses at a range of temperatures and strain rates. A shell-core morphology resulting from orientation distribution of fibers influenced the degree of anisotropy. Tensile strength and elastic modulus nonlinearly decreased with specimen angle and Tsai-Hill criterion was found to correlate variation of these properties with the fiber orientation. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Mathematical relationships were developed to represent the stress-strain response, as well as tensile properties in terms of strain rate and temperature. Time-temperature superposition principle was also employed to superimpose the effect of temperature and strain rate on tensile strength

  5. Using surrogate modeling in the prediction of fibrinogen adsorption onto polymer surfaces.

    Science.gov (United States)

    Smith, Jack R; Knight, Doyle; Kohn, Joachim; Rasheed, Khaled; Weber, Norbert; Kholodovych, Vladyslav; Welsh, William J

    2004-01-01

    We present a Surrogate (semiempirical) Model for prediction of protein adsorption onto the surfaces of biodegradable polymers that have been designed for tissue engineering applications. The protein used in these studies, fibrinogen, is known to play a key role in blood clotting. Therefore, fibrinogen adsorption dictates the performance of implants exposed to blood. The Surrogate Model combines molecular modeling, machine learning and an Artificial Neural Network. This novel approach includes an accounting for experimental error using a Monte Carlo analysis. Briefly, measurements of human fibrinogen adsorption were obtained for 45 polymers. A total of 106 molecular descriptors were generated for each polymer. Of these, 102 descriptors were computed using the Molecular Operating Environment (MOE) software based upon the polymer chemical structures, two represented different monomer types, and two were measured experimentally. The Surrogate Model was developed in two stages. In the first stage, the three descriptors with the highest correlation to adsorption were determined by calculating the information gain of each descriptor. Here a Monte Carlo approach enabled a direct assessment of the effect of the experimental uncertainty on the results. The three highest-ranking descriptors, defined as those with the highest information gain for the sample set, were then selected as the input variables for the second stage, an Artificial Neural Network (ANN) to predict fibrinogen adsorption. The ANN was trained using one-half of the experimental data set (the training set) selected at random. The effect of experimental error on predictive capability was again explored using a Monte Carlo analysis. The accuracy of the ANN was assessed by comparison of the predicted values for fibrinogen adsorption with the experimental data for the remaining polymers (the validation set). The mean value of the Pearson correlation coefficient for the validation data sets was 0.54 +/- 0.12. The

  6. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui......An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...... in the microfluidic chip or with optical fibers mounted in the chip....

  7. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    DEFF Research Database (Denmark)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, Leon

    2017-01-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped......A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog......, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated...

  8. Parametric modeling of wideband piezoelectric polymer sensors: Design for optoacoustic applications.

    Science.gov (United States)

    Fernández Vidal, A; Ciocci Brazzano, L; Matteo, C L; Sorichetti, P A; González, M G

    2017-09-01

    In this work, we present a three-dimensional model for the design of wideband piezoelectric polymer sensors which includes the geometry and the properties of the transducer materials. The model uses FFT and numerical integration techniques in an explicit, semi-analytical approach. To validate the model, we made electrical and mechanical measurements on homemade sensors for optoacoustic applications. Each device was implemented using a polyvinylidene fluoride thin film piezoelectric polymer with a thickness of 25 μm. The sensors had detection areas in the range between 0.5 mm 2 and 35 mm 2 and were excited by acoustic pressure pulses of 5 ns (FWHM) from a source with a diameter around 10 μm. The experimental data obtained from the measurements agree well with the model results. We discuss the relative importance of the sensor design parameters for optoacoustic applications and we provide guidelines for the optimization of devices.

  9. Aggregation of polymer-grafted nanoparticles in good solvents: A hierarchical modeling method

    Science.gov (United States)

    Cheng, Lisheng; Cao, Dapeng

    2011-09-01

    Brownian dynamics simulations are carried out to study the aggregation behavior of polymer-grafted nanoparticles (NPs) in good solvents by using the coarse-grained model derived from the all-atom force field, according to the hierarchical modeling strategy, and here PEG-grafted gold nanoparticles (GNPs) were taken as an example. Generally, grafting PEG to the surface of GNPs is to protect them from aggregation in the solution. However, our results reveal that PEG-grafted GNPs may also aggregate when concentration increases. Our simulations indicate that there exists a critical aggregating concentration (CAC), beyond which the PEG-grafted GNPs will aggregate. We further check the effects of grafting density and the length of grafted chains on the aggregation behavior of the grafted GNPs, and find that there exists an optimized length of grafted chain, at which the system has the maximal CAC. Furthermore, the aggregate size of self-assembled mesostructures formed by the grafted GNPs increases with the concentration. Interestingly, it is observed that the aggregation favors to form linear gold nanowires rather than compact gold nanoclusters, and the corresponding mechanism is also addressed. It is expected that this work would provide useful information for the fabrication of metal nanowires and the surface modification of metal nanoparticles.

  10. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  11. Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations

    Science.gov (United States)

    Liu, J. Q.; Xiao, T.; Liao, K.; Wu, P.

    2007-04-01

    Homogeneous dispersion of carbon nanotubes (CNTs) throughout the polymer matrix and their adequate interfacial bonding are critical for load transfer in CNT-polymer composites. However, both cannot be realized simultaneously by either covalent or noncovalent functionalization. A hybrid system integrating both covalent and noncovalent functionalizations is presented for interfacial design of CNT-polymer composites. To investigate the feasibility of this system, examples of the epoxidized single-walled carbon nanotube (SWNT) subsequently wrapped by poly(m-phenylenevinylene- co-2,5-dioctyloxy-p-phenylenevinylene) (PmPV) are studied by means of molecular dynamics simulations. It is shown by our results that PmPV molecules are miscible with epoxy resin and tend to wrap around the epoxidized SWNT, which could be used to weaken the interaction between SWNTs and consequently improve the dispersion of SWNTs into the matrix. The interfacial shear strength of CNT-polymer composites can be improved significantly by properly designed functionalizations, especially the hybrid system.

  12. Model of lifetime prediction - Study of the behaviour of polymers and organic matrix composites

    International Nuclear Information System (INIS)

    Colin, X.

    2009-01-01

    The team 'Aging of Organic Materials' of the Process and Engineering Laboratory in Mechanics and Materials (Arts et Metiers, ParisTech) has developed the model of lifetime prediction for the prediction of the behaviour of polymers and organic composites. This model has already given evidence of a real predictive mean for various industrial applications, as for instance the prediction of a rupture under the coupled effect of a mechanical load and a chemical degradation. (O.M.)

  13. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  14. Atomistic Modeling in Study of Polymer Electrolyte Fuel Cells - A Review

    Science.gov (United States)

    Zhou, Xiangyang; Zhou, Juanjuan; Yin, Yijin

    Polymer electrolyte fuel cell (PEFC) is considered as one of the most promising power sources for futurist's hydrogen economy. As shown in Fig. 1, operation of a Nafion-based PEFC is dictated by transport processes and electrochemical reactions at catalyst/polymer electrolyte interfaces and transport processes in the polymer electrolyte membrane (PEM), in the catalyst layers consisting of precious metal (Pt or Ru) catalysts on porous carbon support and polymer electrolyte clusters, in gas diffusion layers (GDLs), and in flow channels. Specifically, oxidants, fuel, and reaction products flow in channels of millimeter scale and diffuse in GDL with a structure of micrometer scale. Nafion, a sulfonic acid tetrafluorethylene copolymer and the most commonly used polymer electrolyte, consists of nanoscale hydrophobic domains and proton conducting hydrophilic domains with a scale of 2-5 nm. The diffusivities of the reactants (O2, H2, and methanol) and reaction products (water and CO2) in Nafion and proton conductivity of Nafion strongly depend on the nanostructures and their responses to the presence of water. Polymer electrolyte clusters in the catalyst layers also play a critical role in the catalysis of the nano-sized Pt catalysts. Electrochemical reactions occur at the interfaces between catalysts (Pt or Pt/Ru) and Nafion. The catalytic activity of the Pt catalysts is believed to be dictated by transport processes, adsorption/desorption, and charge transfer in the interfacial area. While transport processes may occur in an area of a few nanometers, adsorption/desorption and charge transfer occur within a region of a few angstroms from the surface of a nano-particulate catalyst. Thus, modeling or simulation of PEFC is a multiscale problem.

  15. Modelling of wastewater systems

    DEFF Research Database (Denmark)

    Bechmann, Henrik

    Oxygen Demand) flux and SS flux in the inlet to the WWTP. COD is measured by means of a UV absorption sensor while SS is measured by a turbidity sensor. These models include a description of the deposit of COD and SS amounts, respectively, in the sewer system, and the models can thus be used to quantify......In this thesis, models of pollution fluxes in the inlet to 2 Danish wastewater treatment plants (WWTPs) as well as of suspended solids (SS) concentrations in the aeration tanks of an alternating WWTP and in the effluent from the aeration tanks are developed. The latter model is furthermore used...... to analyze and quantify the effect of the Aeration Tank Settling (ATS) operating mode, which is used during rain events. Furthermore, the model is used to propose a control algorithm for the phase lengths during ATS operation. The models are mainly formulated as state space model in continuous time...

  16. In situ permeability modification using gelled polymer systems. Topical report, June 10, 1996--April 10, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.

    1997-10-01

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program is focused on five areas: gel treatment in fractured systems; gel treatment in carbonate rocks; in-depth placement of gels; gel systems for application in carbon dioxide flooding; and gel treatment in production wells. The research program is primarily an experimental program directed at improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the first 10 months of a 28 month program is described in the following sections.

  17. In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

    1998-09-01

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

  18. A review on mucoadhesive polymer used in nasal drug delivery system

    Directory of Open Access Journals (Sweden)

    Mayank Chaturvedi

    2011-01-01

    Full Text Available This update review is on mucoadhesive polymers used in nasal dosage forms. The nasal mucosa provides a potentially good route for systemic drug delivery. One of the most important features of the nasal route is that it avoids first-pass hepatic metabolism, thereby reducing metabolism. The application of mucoadhesive polymers in nasal drug delivery systems has gained to promote dosage form residence time in the nasal cavity as well as improving intimacy of contact with absorptive membranes of the biological system. The various new technology uses in development of nasal drug delivery dosage forms are discussed. The various dosage forms are vesicular carriers (liposome, noisome, nanostructured particles, prodrugs, in situ gelling system with special attention to in vivo studies.

  19. Multiple Linear Regression Modeling To Predict the Stability of Polymer-Drug Solid Dispersions: Comparison of the Effects of Polymers and Manufacturing Methods on Solid Dispersion Stability.

    Science.gov (United States)

    Fridgeirsdottir, Gudrun A; Harris, Robert J; Dryden, Ian L; Fischer, Peter M; Roberts, Clive J

    2018-03-29

    Solid dispersions can be a successful way to enhance the bioavailability of poorly soluble drugs. Here 60 solid dispersion formulations were produced using ten chemically diverse, neutral, poorly soluble drugs, three commonly used polymers, and two manufacturing techniques, spray-drying and melt extrusion. Each formulation underwent a six-month stability study at accelerated conditions, 40 °C and 75% relative humidity (RH). Significant differences in times to crystallization (onset of crystallization) were observed between both the different polymers and the two processing methods. Stability from zero days to over one year was observed. The extensive experimental data set obtained from this stability study was used to build multiple linear regression models to correlate physicochemical properties of the active pharmaceutical ingredients (API) with the stability data. The purpose of these models is to indicate which combination of processing method and polymer carrier is most likely to give a stable solid dispersion. Six quantitative mathematical multiple linear regression-based models were produced based on selection of the most influential independent physical and chemical parameters from a set of 33 possible factors, one model for each combination of polymer and processing method, with good predictability of stability. Three general rules are proposed from these models for the formulation development of suitably stable solid dispersions. Namely, increased stability is correlated with increased glass transition temperature ( T g ) of solid dispersions, as well as decreased number of H-bond donors and increased molecular flexibility (such as rotatable bonds and ring count) of the drug molecule.

  20. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    Science.gov (United States)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra

  1. Polymer Matrix Composites using Fused Deposition Modeling Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...

  2. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  3. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  4. Modeling Complex Systems

    International Nuclear Information System (INIS)

    Schreckenberg, M

    2004-01-01

    This book by Nino Boccara presents a compilation of model systems commonly termed as 'complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a comprehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this 'wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany-Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success! (book review)

  5. Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics.

    Science.gov (United States)

    Zhao, Yongmei; Houston, Zachary H; Simpson, Joshua D; Chen, Liyu; Fletcher, Nicholas L; Fuchs, Adrian V; Blakey, Idriss; Thurecht, Kristofer J

    2017-10-02

    Theranostics is a strategy that combines multiple functions such as targeting, stimulus-responsive drug release, and diagnostic imaging into a single platform, often with the aim of developing personalized medicine.1,2 Based on this concept, several well-established hyperbranched polymeric theranostic nanoparticles were synthesized and characterized as model nanomedicines to investigate how their properties affect the distribution of loaded drugs at both the cell and whole animal levels. An 8-mer peptide aptamer was covalently bound to the periphery of the nanoparticles to achieve both targeting and potential chemosensitization functionality against heat shock protein 70 (Hsp70). Doxorubicin was also bound to the polymeric carrier as a model chemotherapeutic drug through a degradable hydrazone bond, enabling pH-controlled release under the mildly acid conditions that are found in the intracellular compartments of tumor cells. In order to track the nanoparticles, cyanine-5 (Cy5) was incorporated into the polymer as an optical imaging agent. In vitro cellular uptake was assessed for the hyperbranched polymer containing both doxorubicin (DOX) and Hsp70 targeted peptide aptamer in live MDA-MB-468 cells, and was found to be greater than that of either the untargeted, DOX-loaded polymer or polymer alone due to the specific affinity of the peptide aptamer for the breast cancer cells. This was also validated in vivo with the targeted polymers showing much higher accumulation within the tumor 48 h postinjection than the untargeted analogue. More detailed assessment of the nanomedicine distribution was achieved by directly following the polymeric carrier and the doxorubicin at both the in vitro cellular level via compartmental analysis of confocal images of live cells and in whole tumors ex vivo using confocal imaging to visualize the distribution of the drug in tumor tissue as a function of distance from blood vessels. Our results indicate that this polymeric carrier shows

  6. Parallelized event chain algorithm for dense hard sphere and polymer systems

    International Nuclear Information System (INIS)

    Kampmann, Tobias A.; Boltz, Horst-Holger; Kierfeld, Jan

    2015-01-01

    We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers

  7. Dynamic heat capacity of the east model and of a bead-spring polymer model.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, John Dwane (New Mexico Institute of Mining and Technology, Socorro, NM); Brown, Jonathan R. (New Mexico Institute of Mining and Technology, Socorro, NM); Adolf, Douglas Brian

    2011-10-01

    In this report we have presented a brief review of the glass transition and one means of characterizing glassy materials: linear and nonlinear thermodynamic oscillatory experiments to extract the dynamic heat capacity. We have applied these methods to the east model (a variation of the Ising model for glass forming systems) and a simple polymeric system via molecular dynamics simulation, and our results match what is seen in experiment. For the east model, since the dynamics are so simple, a mathematical model is developed that matches the simulated dynamics. For the polymeric system, since the system is a simulation, we can instantaneously 'quench' the system - removing all vibrational energy - to separate the vibrational dynamics from dynamics associated with particle rearrangements. This shows that the long-time glassy dynamics are due entirely to the particle rearrangements, i.e. basin jumping on the potential energy landscape. Finally, we present an extension of linear dynamic heat capacity to the nonlinear regime.

  8. Sustained analgesic effect of clonidine co-polymer depot in a porcine incisional pain model

    Directory of Open Access Journals (Sweden)

    Wilsey JT

    2018-04-01

    Full Text Available Jared T Wilsey, Julie H Block Medtronic Spine Division, Memphis, TN, USA Background: Previous research suggests that the α2 adrenergic agonist clonidine, a centrally acting analgesic and antihypertensive, may also have direct effects on peripheral pain generators. However, aqueous injections are limited by rapid systemic absorption leading to off target effects and a brief analgesic duration of action. Purpose: The aim of this study was to examine the efficacy of a sustained-release clonidine depot, placed in the wound bed, in a pig incisional pain model. Methods: The depot was a 15 mm ×5 mm ×0.3 mm poly(lactide-co-caprolactone polymer film containing 3% (w/w clonidine HCl (MDT3. Fifty-two young adult mix Landrace pigs (9–11 kg were divided into seven groups. All subjects received a 6 cm, full-thickness, linear incision into the left lateral flank. Group 1 served as a Sham control group (Sham, n=8. Group 2 received three placebo strips (PBO, n=8, placed end-to-end in the subcutaneous wound bed before wound closure. Group 3 received one MDT3 and two PBO (n=8, Group 4 received two MDT3 and one PBO (n=8, and Group 5 received three MDT3 (n=8. Positive control groups received peri-incisional injections of bupivacaine solution (Group 6, 30 mg/day bupivacaine, n=8 or clonidine solution (Group 7, 225 µg/day, n=4. Results: The surgical procedure was associated with significant peri-incisional tactile allodynia. There was a dose-dependent effect of MDT3 in partially reversing the peri-incisional tactile allodynia, with maximum pain relief relative to Sham at 72 hours. Daily injections of bupivacaine (30 mg, but not clonidine (up to 225 µg, completely reversed allodynia within 48 hours. There was a statistically significant correlation between the dose of MDT3 and cumulative withdrawal threshold from 4 hours through the conclusion of the study on day 7. Conclusion: These data suggest that a sustained-release clonidine depot may be a

  9. Development of self-healing polymers via amine-epoxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system

    Science.gov (United States)

    Zhang, He; Yang, Jinglei

    2014-06-01

    Two types of healing agent carriers (microcapsules containing epoxy solution, referred to as EP-capsules, and etched hollow glass bubbles (HGBs) loaded with amine solution, referred to as AM-HGBs) used in self-healing epoxy systems were prepared and characterized in this study. The core percentages were measured at about 80 wt% and 33 wt% for EP-capsules and AM-HGBs, respectively. The loaded amine in AM-HGB, after incorporation into the epoxy matrix, showed high stability at ambient temperature, but diffused out gradually during heat treatment at 80 °C. The amount and the mass ratio of the two released healants at the crack plane were correlated with the size, concentration, and core percentage of the healing agent carriers. A simplified cubic array model for randomly distributed healing agent carriers was adopted to depict the longest diffusion distance of the released healants, which is inversely proportional to the cubic root of the carrier concentration.

  10. Development of self-healing polymers via amine–epoxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system

    International Nuclear Information System (INIS)

    Zhang, He; Yang, Jinglei

    2014-01-01

    Two types of healing agent carriers (microcapsules containing epoxy solution, referred to as EP-capsules, and etched hollow glass bubbles (HGBs) loaded with amine solution, referred to as AM-HGBs) used in self-healing epoxy systems were prepared and characterized in this study. The core percentages were measured at about 80 wt% and 33 wt% for EP-capsules and AM-HGBs, respectively. The loaded amine in AM-HGB, after incorporation into the epoxy matrix, showed high stability at ambient temperature, but diffused out gradually during heat treatment at 80 °C. The amount and the mass ratio of the two released healants at the crack plane were correlated with the size, concentration, and core percentage of the healing agent carriers. A simplified cubic array model for randomly distributed healing agent carriers was adopted to depict the longest diffusion distance of the released healants, which is inversely proportional to the cubic root of the carrier concentration. (papers)

  11. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  12. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres.

    Science.gov (United States)

    Ford Versypt, Ashlee N; Arendt, Paul D; Pack, Daniel W; Braatz, Richard D

    2015-01-01

    A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction.

  13. Microscopic modelling of the flow properties of polymers

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    1990-01-01

    The understanding of the flow behaviour of polymeric liquids is of great interest from a practical as well as a theoretical point of view. An important part of the research in this field consists of the development of suitable models, describing the rheological properties of the materials. Depending

  14. Molecular Design of Doped Polymers for Thermoelectric Systems-Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Chabinyc, Michael L. [University of California, Santa Barbara; Hawker, Craig J. [University of California, Santa Barbara

    2013-10-09

    The self-assembly of organic semiconducting molecules and polymers is critical for their electrical properties. This project addressed the design of organic semiconductors with novel synthetic building blocks for proton-dopable conducting materials and the molecular order and microstructure of high performance semiconducting polymers blended with charge transfer dopants. Novel azulene donor-acceptor materials were designed and synthesized with unique electronic effects upon protonation to generate charged species in solution. The microstructure and optical properties of these derivatives were examined to develop structure-property relationships. Studies of the microstructure of blends of charge transfer doped semiconducting polymers revealed highly ordered conductive phases in blends. The molecular packing of one blend was studied in detail using a combination of solid-state NMR and x-ray scattering revealing that dopant incorporation is unlikely to be random as assumed in transport models. Studies of the electrical properties of these highly ordered blends revealed a universal trend between the thermopower and electrical conductivity of semiconducting polymers that is independent of the doping mechanism.

  15. Accuracy of the blob model for single flexible polymers inside nanoslits that are a few monomer sizes wide

    Science.gov (United States)

    Nikoofard, Narges; Hoseinpoor, S. Mohammad; Zahedifar, Mostafa

    2014-12-01

    The de Gennes' blob model is extensively used in different problems of polymer physics. This model is theoretically applicable when the number of monomers inside each blob is large enough. For confined flexible polymers, this requires the confining geometry to be much larger than the monomer size. In this paper, the opposite limit of polymer in nanoslits with one to several monomers width is studied, using molecular dynamics simulations. Extension of the polymer inside nanoslits, confinement force on the plates, and the effective spring constant of the confined polymer are investigated. Despite the theoretical limitations of the blob model, the simulation results are explained with the blob model very well. The agreement is observed for the static properties and the dynamic spring constant of the polymer. A theoretical description of the conditions under which the dynamic spring constant of the polymer is independent of the small number of monomers inside blobs is given. Our results on the limit of applicability of the blob model can be useful in the design of nanotechnology devices.

  16. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  17. Soft X-ray spectromicroscopy of biological and synthetic polymer systems

    International Nuclear Information System (INIS)

    Hitchcock, A.; Morin, C.; Araki, T.; Zhang, X.; Dynes, J.; Stover, H.; Brash, J.

    2004-01-01

    Full text: Scanning transmission X-ray microscopy (STXM) and X-ray photoemission electron microscopy (X-PEEM) are synchrotron based, soft X-ray spectromicroscopy techniques which provide chemical speciation at 50 nm spatial resolution based on near edge X-ray absorption spectral (NEXAFS) contrast. The instrumentation and techniques of soft X-ray spectro- microscopy will be described and illustrated with applications to wet biofilms, protein interactions with patterned polymer surfaces, and polymer microstructure optimization. STXM can be applied to samples in air, He, vacuum, or a fully hydrated environment. With many collaborators, my group is using STXM to study fundamental and applied aspects of polymer microstructure, to map metal ions and anti-microbial agents in wet biofilms, and to identify sites of selective adsorption of proteins on phase separated polymer thin films in the presence of an overlayer of protein solution. X-PEEM has greater surface sensitivity than STXM but requires a flat, conductive, and vacuum-compatible sample. Comparison of X-PEEM and STXM for the same system - fibrinogen adsorption on a PS:PMMA blend, will be used to illustrate advantages and limitations of each technique. Measurements at 5.3.2 STXM and 7.3.1 PEEM at the Advanced Light Source, funded by DoE under contract DE-AC03- 76SF00098. Research supported by NSERC (Canada), AFMnet (Advanced Food and Biomaterials Network) and the Canada Research Chair program

  18. Plasma coatings of nitrogen polymers on metal prostheses of the circulatory system

    International Nuclear Information System (INIS)

    Gomez J, L. M.

    2016-01-01

    This work has a study about the synthesis of poly aniline, poly allylamine and poly pyrrole doped with iodine onto metallic surfaces similar to stents for the circulatory system. Ar, water and hydrogen peroxide plasmas were used for eroding, conditioning and synthesizing polymers that potentially reduce some rejection reactions when stents are implanted in the human body. Stents are small metallic meshes that applied inside collapsed arteries or veins enlarge the diameter and restore the blood flow, however the metallic surfaces usually cause rejection reactions that obstruct the veins again. To give solutions to this problem, in this work is studied the synthesis of biocompatible polymer coatings on the stents that resist the blood flow forming a biocompatible interface between metal and blood. The metallic substrates were eroded and chemically prepared with Ar, H 2 O and/or H 2 O 2 glow discharges on which the polymers were synthesized by plasma. The coatings were morphologically characterized by optical, scanning electron and atomic force microscopy, the chemical structure was studied by infrared and photoelectron X-ray spectroscopy. The hydrophilicity was studied measuring the advance static contact angle and the adhesion was evaluated indirectly with scanning electron microscopy after two months submerged in buffered phosphate solutions. The results indicate that the polymers grew following the superficial morphology; that the conditioning with Ar ions erode the substrates and that the conditioning with H 2 O or H 2 O 2 erodes and activates the surface generating oxygen bridges which help in the polymer-metal adhesion. The chemical structure of the polymeric coatings contain crosslinked structures that correspond to links between monomers with the participation of all atoms, states that suggest monomer fragmentation and oxidation and states that indicate oxygen bridges in the polymers. The coatings had contact angles close to 90 degrees where is located the

  19. High strain-rate compressive behavior and constitutive modeling of selected polymers

    Directory of Open Access Journals (Sweden)

    Yokoyama T.

    2012-08-01

    Full Text Available The present paper deals with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10−3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves for four different commercially available extruded polymers are determined on the standard split Hopkinson pressure bar. The low and intermediate strain-rates compressive stress-strain relations are measured in an Instron testing machine. The five parameters for the modified Ramberg-Osgood equation are determined by fitting to the experimental compressive stress-strain data using a least-squares fit. The compressive stress-strain curves at three different strain rates derived from the modified Ramberg-Osgood models are compared with the experimental results. It is shown that the compressive stress-strain behavior during loading process can be successfully predicted by the modified Ramberg-Osgood equation.

  20. Integrated Modeling of Polymer Composites Under High Energy Laser Irradiation

    Science.gov (United States)

    2015-10-30

    propagation constant. The top and bottom boundaries in Figure 3 are perfect electric conductors (PEC) which causes perfect reflection and simulates a semi...the FEA models were heated by passing a current through the fiber embedded in the dogbone. This is accomplished by placing a small amount of silver ...paint directly into the silicone mold. The paint is dabbed onto the ends of the fiber before the resin is added. After curing, the spot of silver paint

  1. Lysozyme-responsive polymer systems for detection of infection

    NARCIS (Netherlands)

    Schiffer, Doris; Verient, Vanessa; Luschnig, Daniel; Blokhuis-Arkes, Miriam H.E.; van der Palen, Job J.A.M.; Gamerith, Clemens; Burnet, Michael; Sigl, Eva; Heinzle, Andrea; Guebitz, Georg M.

    2015-01-01

    There is a strong need for new point-of-care systems for the detection of wound infection. Overseen infections in chronic wounds induce severe complications, such as delayed healing and high risks for the patients, while time-consuming common gold and silver standard methods for infection assessment

  2. Modeling of Ultrathin Catalyst Layers in Polymer Electrolyte Fuel Cells: Proton Transport and Water Management

    OpenAIRE

    Chan, Karen Ka Wing

    2013-01-01

    Ultrathin catalyst layers (UTCLs) are emerging as a promising alternative to conventional catalyst layers in polymer electrolyte fuel cells. In comparison, UTCLs have dramatically reduced Pt loading and thicknesses and are ionomer–free. We explore two open questions in the theory of UTCLs (1) the proton transport mechanism within the ionomer–free layer and (2) water management in membrane electrode assemblies (MEAs) with UTCLs. To investigate (1), we present a UTCL model, which assumes the pr...

  3. Modelling of the charge carrier mobility in disordered linear polymer materials

    Czech Academy of Sciences Publication Activity Database

    Toman, Petr; Menšík, Miroslav; Bartkowiak, W.; Pfleger, Jiří

    2017-01-01

    Roč. 19, č. 11 (2017), s. 7760-7771 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-05095S Grant - others:AV ČR(CZ) M200501204 Program:M Institutional support: RVO:61389013 Keywords : charge carrier mobility * conjugated polymer * charge transport modelling Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.123, year: 2016

  4. Temperature Stability and Bioadhesive Properties of Δ9-Tetrahydrocannabinol Incorporated Hydroxypropylcellulose Polymer Matrix Systems

    Science.gov (United States)

    Repka, Michael A.; Munjal, Manish; ElSohly, Mahmoud A.; Ross, Samir A.

    2010-01-01

    The purpose of this study was to determine and compare the bioadhesive profiles of hydroxypropylcellulose (HPC) polymer matrices as a function of Δ9-tetrahydrocannabinol (THC) content. In addition, the effect of processing temperature on the stability of THC and its extent of degradation to cannabinol (CBN) was investigated. A hot-melt cast molding method was used to prepare HPC polymer matrix systems incorporated with THC at 0, 4, 8, and 16 percent. Bioadhesive measurements including peak adhesive force, area under the curve, and elongation at adhesive failure were recorded utilizing the TA.XT2i Texture Analyzer™. Data obtained from these tests at various contact time intervals suggested that the incorporation of THC led to an increase in the bioadhesive strength of the HPC polymer matrices. To determine the stability of THC and the resulting CBN content in the matrices, three different processing temperatures were utilized (120, 160, and 200°C). Post-production High Performance Liquid Chromotography (HPLC) analysis revealed that the processed systems contained at least 94% of THC and the relative percent formation of CBN was 0.5% at 120°C and 0.4% at 160°C compared to 1.6% at 200°C. These findings indicate that the cannabinoid may be a plausible candidate for incorporation into systems utilizing hot-melt extrusion techniques for the development of an effective mucoadhesive transmucosal matrix system for delivery of THC. PMID:16455601

  5. Classification of stimuli-responsive polymers as anticancer drug delivery systems.

    Science.gov (United States)

    Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab

    2015-02-01

    Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.

  6. Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2017-02-01

    Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

  7. Opto-fluidic micromanipulation system based on integrated polymer waveguides

    Czech Academy of Sciences Publication Activity Database

    Jákl, Petr; Šerý, Mojmír; Ježek, Jan; Zemánek, Pavel; Ormos, P.; Valkai, S.; Kelemen, L.

    2007-01-01

    Roč. 9, č. 7 (2007), s. 2148-2151 ISSN 1454-4164 R&D Projects: GA AV ČR KJB2065404 EU Projects: European Commission(XE) 508952 - ATOM3D Institutional research plan: CEZ:AV0Z20650511 Keywords : radiation pressure * colloidal particle * optical trap * light scattering * opto-fluidic systems Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.827, year: 2007

  8. Probing effect of solvent concentration on glass transition and sub-Tg structural relaxation in polymer solvent mixtures: The case of polystyrene-toluene system

    Science.gov (United States)

    Pierleoni, Davide; Scherillo, Giuseppe; Minelli, Matteo; Mensitieri, Giuseppe; Doghieri, Ferruccio

    2016-05-01

    A novel experimental method for the analysis of volume relaxation induced by solvents in glassy polymers is presented. A gravimetric technique is used to evaluate the isothermal solvent mass uptake at controlled increasing/decreasing solvent pressure at constant rate. Fundamental properties of the solvent/polymer system can be obtained directly, and models can be applied, combining both nonequilibrium thermodynamics and mechanics of volume relaxation contribution. The fundamental case of polystyrene and toluene mixtures are thus accounted for, and various experimental conditions have been explored, varying the temperature, and spanning over different pressure increase/decrease rates. The results obtained allowed to evaluate the isothermal second order transition induced by solvent sorption, as well as the determination of the effect of the pressure rate. Therefore, this work proposes a new standard for the characterization and the understanding of the relaxational behavior of glassy polymers.

  9. Validity of predictive models of stress relaxation in selected dental polymers.

    Science.gov (United States)

    Vaidyanathan, Tritala K; Vaidyanathan, Jayalakshmi

    2015-07-01

    The goal of this investigation was to assess validity of predictive models of stress relaxation in dental polymers when applied to extended master curves generated from short time experimental data by WLF time temperature superposition method. The stress relaxation modulus changes with time at three different temperatures near the ambient body temperature were determined for selected mono-methacrylate (PEMA and PMMA) and dimethacrylate (bis-acryl) dental polymers. WLF time-temperature superposition procedure of logarithmic shift of the data from other temperatures to those at 37°C was used to generate extended master curves of relaxation modulus changes with time. The extended data were analyzed for conformity to three different predictive models of stress relaxation including Maxwell, KWW stretched exponential function and Nutting's power law equation. Maxwell model was found to be a poor fit for the extended data in all polymers tested, but the data showed a much better fit for KWW (0.870material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  11. Modeling and Simulation of Fiber Orientation in Injection Molding of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Jang Min Park

    2011-01-01

    Full Text Available We review the fundamental modeling and numerical simulation for a prediction of fiber orientation during injection molding process of polymer composite. In general, the simulation of fiber orientation involves coupled analysis of flow, temperature, moving free surface, and fiber kinematics. For the governing equation of the flow, Hele-Shaw flow model along with the generalized Newtonian constitutive model has been widely used. The kinematics of a group of fibers is described in terms of the second-order fiber orientation tensor. Folgar-Tucker model and recent fiber kinematics models such as a slow orientation model are discussed. Also various closure approximations are reviewed. Therefore, the coupled numerical methods are needed due to the above complex problems. We review several well-established methods such as a finite-element/finite-different hybrid scheme for Hele-Shaw flow model and a finite element method for a general three-dimensional flow model.

  12. The formation of dissipative structures in polymers as a model of synergy

    Directory of Open Access Journals (Sweden)

    Khanchich Oleg A.

    2016-01-01

    Full Text Available Synergetic is an interdisciplinary area and describes the emergence of various kinds of structures, using the representation of the natural sciences. In this paper we studied the conditions for the appearance of thermodynamically stable amorphous-crystalline supramolecular structures on the basis of practical importance for the production of heat-resistant high-strength polymer fibers semi-rigid systems. It is found that in the process of structure formation in the coagulation of the polymer from solutions having supramolecular structures area a definite geometric shape and dimensions. Pattern formation in such systems can simulate the processes studied synergy. This is occurring in the process of self-organization of dissipative structures, transitions from one structure to another. This most discussed matter of self-organization on the “optical” scale level, are observed spherulites have a “correct” form and certain geometric dimensions comparable to the wavelength of visible light. Previously, this polymer does not crystallize at all considered. It is shown that for the study of supramolecular structures are the most convenient and informative experimental approaches are polarization-optical methods, which are directly “tuned” to the optical anisotropy of the structure and morphology. The great advantage of these methods is also possible to study the kinetics of structure formation processes without interfering the system under study.

  13. Modeling and inverse feedforward control for conducting polymer actuators with hysteresis

    International Nuclear Information System (INIS)

    Wang, Xiangjiang; Alici, Gursel; Tan, Xiaobo

    2014-01-01

    Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators. (paper)

  14. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by the independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report was performed by Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures, the work done on recovery experiments on core rocks, and computer simulations. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results

  15. Quaternized magnetic nanoparticles-fluorescent polymer system for detection and identification of bacteria.

    Science.gov (United States)

    Wan, Yi; Sun, Yan; Qi, Peng; Wang, Peng; Zhang, Dun

    2014-05-15

    Nanomaterial-based 'chemical nose' sensor with sufficient sensing specificity is a useful analytical tool for the detection of toxicologically important substances in complicated biological systems. A sensor array containing three quaternized magnetic nanoparticles (q-MNPs)-fluorescent polymer systems has been designed to identify and quantify bacteria. The bacterial cell membranes disrupt the q-MNP-fluorescent polymer, generating unique fluorescence response array. The response intensity of the array is dependent on the level of displacement determined by the relative q-MNP-fluorescent polymer binding strength and bacteria cells-MNP interaction. These characteristic responses show a highly repeatable bacteria cells and can be differentiated by linear discriminant analysis (LDA). Based on the array response matrix from LDA, our approach has been used to measure bacteria with an accuracy of 87.5% for 10(7) cfu mL(-1) within 20 min. Combined with UV-vis measurement, the method can be successfully performed to identify and detect eight different pathogen samples with an accuracy of 96.8%. The measurement system has a potential for further applications and provides a facile and simple method for the rapid analysis of protein, DNA, and pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Mechanics of Sister Chromatids studied with a Polymer Model

    Directory of Open Access Journals (Sweden)

    Yang eZhang

    2013-10-01

    Full Text Available Sister chromatid cohesion denotes the phenomenon that sister chromatids are initially attached to each other in mitosis to guarantee the error-free distribution into the daughter cells. Cohesion is mediated by binding proteins and only resolved after mitotic chromosome condensation is completed. However, the amount of attachement points required to maintain sister chromatid cohesion while still allowing proper chromosome condensation is not known yet. Additionally the impact of cohesion on the mechanical properties of chromosomes also poses an interesting problem. In this work we study the conformational and mechanical properties of sister chromatids by means of computer simulations. We model both protein-mediated cohesion between sister chromatids and chromosome condensation with a dynamic binding mechanisms. We show in a phase diagram that only specific link concentrations lead to connected and fully condensed chromatids that do not intermingle with each other nor separate due to entropic forces. Furthermore we show that dynamic bonding between chromatids decrease the Young's modulus compared to non-bonded chromatids.

  17. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  18. Application of activated barrier hopping theory to viscoplastic modeling of glassy polymers

    Science.gov (United States)

    Sweeney, J.; Spencer, P. E.; Vgenopoulos, D.; Babenko, M.; Boutenel, F.; Caton-Rose, P.; Coates, P. D.

    2017-10-01

    An established statistical mechanical theory of amorphous polymer deformation has been incorporated as a plastic mechanism into a constitutive model and applied to a range of polymer mechanical deformations. The temperature and rate dependence of the tensile yield of PVC, as reported in early studies, has been modeled to high levels of accuracy. Tensile experiments on PET reported here are analyzed similarly and good accuracy is also achieved. The frequently observed increase in the gradient of the plot of yield stress against logarithm of strain rate is an inherent feature of the constitutive model. The form of temperature dependence of the yield that is predicted by the model is found to give an accurate representation. The constitutive model is developed in two-dimensional form and implemented as a user-defined subroutine in the finite element package ABAQUS. This analysis is applied to the tensile experiments on PET, in some of which strain is localized in the form of shear bands and necks. These deformations are modeled with partial success, though adiabatic heating of the instability causes inaccuracies for this isothermal implementation of the model. The plastic mechanism has advantages over the Eyring process, is equally tractable, and presents no particular difficulties in implementation with finite elements.

  19. Information Systems Efficiency Model

    Directory of Open Access Journals (Sweden)

    Milos Koch

    2017-07-01

    Full Text Available This contribution discusses the basic concept of creating a new model for the efficiency and effectiveness assessment of company information systems. The present trends in this field are taken into account, and the attributes are retained of measuring the optimal solutions for a company’s ICT (the implementation, functionality, service, innovations, safety, relationships, costs, etc.. The proposal of a new model of assessment comes from our experience with formerly implemented and employed methods, methods which we have modified in time and adapted to companies’ needs but also to the necessaries of our research that has been done through the ZEFIS portal. The most noteworthy of them is the HOS method that we have discussed in a number of forums. Its main feature is the fact that it respects the complexity of an information system in correlation with the balanced state of its individual parts.

  20. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites

    International Nuclear Information System (INIS)

    Arrieta, J S; Diani, J; Gilormini, P

    2014-01-01

    Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP. (paper)

  1. Sustainable design and manufacturing of multifunctional polymer nanocomposite coatings: A multiscale systems approach

    Science.gov (United States)

    Xiao, Jie

    Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and

  2. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    Science.gov (United States)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  3. A Mathematical Model of Repeated Impregnation of Porous Bodies with Solutions of Polymers

    Directory of Open Access Journals (Sweden)

    I. V. Glebov

    2015-01-01

    Full Text Available The paper describes basic methods of impregnating porous bodies with solutions of polymers and their use to manufacture prepregs. It also describes the existing methods of manufacturing multilayer prepregs to produce aerospace coating of the spacecraft "Soyuz". It is shown that these prepregs have to meet high requirements for the content of the polymer, as compared with other composite materials, about 35 - 40% of the mass. Methods used for their manufacturing are long-term and non-controllable. The assumption is made that using the vacuum impregnation technology of a woven material will allow to accelerate the manufacturing process of these prepregs and improve their quality.In reviewing the technical literature have been found works on modeling the processes of impregnation, but they are aimed only at studying the speed of the woven material impregnation by various fluids and determining the time of impregnation. There were no models found to define prepreg parameters during the process of multiple impregnations. The aim of this work is to develop the simple mathematical model, which enables us to predict the polymer content of volatile products in the prepreg after each cycle of multiple impregnation of woven material with a solution of the polymer.To consider the vacuum impregnation method are used the prepregs based on silica and silica-nylon stitch-bonding fabric and bakelite varnish LBS-4 containing 50 - 60% of phenol resin and the solvent with minor impurities of pure phenol and water, as an example. To describe the process of vacuum impregnation of the porous work-piece is developed a mathematical description of the process of filling the porous space of the material with a varnish. It is assumed that the varnish components fill the porous space of the material in the same proportion as they are contained in the varnish.It is shown that a single impregnation cannot ensure the content of phenol resin in the prepreg over 32%, which does

  4. A model and simulation of fast space charge pulses in polymers

    Science.gov (United States)

    Lv, Zepeng; Rowland, Simon M.; Wu, Kai

    2017-11-01

    The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.

  5. Use of QSPR Modeling to Characterize In Vitro Binding of Drugs to a Gut-Restricted Polymer.

    Science.gov (United States)

    Brew, Christine Taylor; Blake, James F; Mistry, Anita; Liu, Fengling; Carreno, Diana; Madsen, Deidre; Mu, YongQi; Mayo, Martha; Stahl, Wilhelm; Matthews, David; Maclean, Derek; Harrison, Steve

    2018-03-08

    Polymeric drugs, including patiromer (Veltassa®), bind target molecules or ions in the gut, allowing fecal elimination. Non-absorbed insoluble polymers, like patiromer, avoid common systemic drug-drug interactions (DDIs). However, the potential for DDI via polymer binding to orally administered drugs during transit of the gastrointestinal tract remains. Here we elucidate the properties correlated with drug-patiromer binding using quantitative structure-property relationship (QSPR) models. We selected 28 drugs to evaluate for binding to patiromer in vitro over a range of pH and ionic conditions intended to mimic the gut environment. Using this in vitro data, we developed QSPR models using step-wise linear regression and analyzed over 100 physiochemical drug descriptors. Four descriptors emerged that account for ~70% of patiromer-drug binding in vitro: the computed surface area of hydrogen bond accepting atoms, ionization potential, electron affinity, and lipophilicity (R 2  = 0.7, Q 2  = 0.6). Further, certain molecular properties are shared by nonbinding, weak, or strong binding compounds. These findings offer insight into drivers of in vitro binding to patiromer and describe a useful approach for assessing potential drug-binding risk of investigational polymeric drugs.

  6. Structure of polymer-stabilized magnetic fluids: small-angle neutron scattering and mean-field lattice modeling.

    Science.gov (United States)

    Moeser, Geoffrey D; Green, William H; Laibinis, Paul E; Linse, Per; Hatton, T Alan

    2004-06-22

    Small-angle neutron scattering and mean-field lattice modeling were used to characterize a class of water-based magnetic fluids tailored specifically to extract soluble organic compounds from water. The fluids consist of a suspension of approximately 7 nm magnetite (Fe3O4) nanoparticles coated with a bifunctional polymer layer comprised of an outer hydrophilic poly(ethylene oxide) (PEO) region for colloidal stability and an inner hydrophobic poly(propylene oxide) (PPO) region for solubilization of organic compounds. The inner region of the polymer shell is increasingly depleted of water as the fraction of PPO side chains increases. The incorporation of PPO side chains also leads to a small increase in interparticle attraction. The lattice model predicted a shell structure similar to that of a PEO-PPO-PEO triblock copolymer (Pluronic) micelle, with equivalent levels of hydration but with more PEO present in the PPO-rich regions, as the side chains grafted to the surface are less able to segregate than when in free micellar systems.

  7. Thermodynamics of Paint Related Systems with Engineering Models

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2001-01-01

    to solid surfaces and drying. Many engineering models have been applied over the last decades for solutions with commoditity polymers. In this work the performance of some of these models is investigated for paint-related systems, focusing on those drying by the so-called " lacquer mechanism " (evaporation......Paints are complex materials composed of polymers (binders) dissolved in one or more solvents, pigments, and other additives. The thermodynamics of such systems is essential, for example, for selecting improved solvents and understanding a number of phenomena related especially! to adhesion...... that, despite the uncertainties involved, several models yield reasonably accurate activity coefficients, even at infinite dilution. Thus, engineering models may be useful for solvent selection via semiempirical rules of thumb, which are based on thermodynamic considerations....

  8. Phase Equilibria for Complex Polymer Solutions

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Hestkjær, L. L.; Hansen, A. F.

    2002-01-01

    the content of organic solvents. This work presents an investigation of the three polymer models Entropic-FV (EFV). UNIFAC-FV (UFV) and GC-Flory (GCF) for their capability of predicting solvent activity coefficients in binary systems containing complex polymers. It is possible to obtain good predictions...

  9. Radiation damage of polymers in ultrasonic fields

    International Nuclear Information System (INIS)

    Anbalagan, Poornnima

    2008-01-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  10. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  11. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  12. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  13. Novel and Efficient Methods for Calculating Pressure in Polymer Lattice Models

    Science.gov (United States)

    Zhang, Pengfei; Wang, Qiang

    2014-03-01

    Pressure calculation in polymer lattice models is an important but nontrivial subject. The three existing methods - thermodynamic integration, repulsive wall, and sedimentation equilibrium methods - all have their limitations and cannot be used to accurately calculate the pressure at all polymer volume fractions φ. Here we propose two novel methods. In the first method, we combine Monte Carlo simulation in an expanded grand-canonical ensemble with the Wang-Landau - Optimized Ensemble (WL-OE) simulation to calculate the pressure as a function of polymer volume fraction, which is very efficient at low to intermediate φ and exhibits negligible finite-size effects. In the second method, we introduce a repulsive plane with bridging bonds, which is similar to the repulsive wall method but eliminates its confinement effects, and estimate the two-dimensional density of states (in terms of the number of bridging bonds and the contact number) using the 1/ t version of Wang-Landau algorithm. This works well at all φ, especially at high φ where all the methods involving chain insertion trial moves fail.

  14. Emergent horizon, Hawking radiation and chaos in the collapsed polymer model of a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Brustein, Ram [Department of Physics, Ben-Gurion University, Beer-Sheva (Israel); Medved, A.J.M. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa); National Institute for Theoretical Physics (NITheP), Western Cape (South Africa)

    2017-02-15

    We have proposed that the interior of a macroscopic Schwarzschild black hole (BH) consists of highly excited, long, closed, interacting strings and, as such, can be modeled as a collapsed polymer. It was previously shown that the scaling relations of the collapsed-polymer model agree with those of the BH. The current paper further substantiates this proposal with an investigation into some of its dynamical consequences. In particular, we show that the model predicts, without relying on gravitational effects, an emergent horizon. We further show that the horizon fluctuates quantum mechanically as it should and that the strength of the fluctuations is inversely proportional to the BH entropy. It is then demonstrated that the emission of Hawking radiation is realized microscopically by the quantum-induced escape of small pieces of string, with the rate of escape and the energy per emitted piece both parametrically matching the Hawking temperature. We also show, using standard methods from statistical mechanics and chaos theory, how our model accounts for some other known properties of BHs. These include the accepted results for the scrambling time and the viscosity-to-entropy ratio, which in our model apply not only at the horizon but throughout the BH interior. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers

    Science.gov (United States)

    Nateghi, A.; Dal, H.; Keip, M.-A.; Miehe, C.

    2018-01-01

    Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress-strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.

  16. Emergent horizon, Hawking radiation and chaos in the collapsed polymer model of a black hole

    International Nuclear Information System (INIS)

    Brustein, Ram; Medved, A.J.M.

    2017-01-01

    We have proposed that the interior of a macroscopic Schwarzschild black hole (BH) consists of highly excited, long, closed, interacting strings and, as such, can be modeled as a collapsed polymer. It was previously shown that the scaling relations of the collapsed-polymer model agree with those of the BH. The current paper further substantiates this proposal with an investigation into some of its dynamical consequences. In particular, we show that the model predicts, without relying on gravitational effects, an emergent horizon. We further show that the horizon fluctuates quantum mechanically as it should and that the strength of the fluctuations is inversely proportional to the BH entropy. It is then demonstrated that the emission of Hawking radiation is realized microscopically by the quantum-induced escape of small pieces of string, with the rate of escape and the energy per emitted piece both parametrically matching the Hawking temperature. We also show, using standard methods from statistical mechanics and chaos theory, how our model accounts for some other known properties of BHs. These include the accepted results for the scrambling time and the viscosity-to-entropy ratio, which in our model apply not only at the horizon but throughout the BH interior. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Implant-associated local drug delivery systems based on biodegradable polymers: customized designs for different medical applications.

    Science.gov (United States)

    Sternberg, Katrin; Petersen, Svea; Grabow, Niels; Senz, Volkmar; Meyer zu Schwabedissen, Henriette; Kroemer, Heyo K; Schmitz, Klaus-Peter

    2013-10-01

    Implants providing controlled, local release of active substances are of interest in different medical applications. Therefore, the focus of the present article is the development of implant-associated diffusion- or chemically controlled local drug delivery (LDD) systems based on biodegradable polymeric drug carriers. In this context, we provide new data and review our own recently published data concerning the drug release behavior of diffusion-controlled LDD systems in relation to the kind of polymer, drug content, coating mass/thickness, and layer composition. We demonstrate that polymers allow a wide range of control over the drug release characteristics. In this regard, we show that the glass transition temperature of a polymer has an impact on its drug release. Additionally, the blending of hydrophobic, semicrystalline polymers with amorphous polymers leads to an increase in the rate of drug release compared with the pure semicrystalline polymer. Moreover, the percentage loading of the embedded drug has a considerable effect on the rate and duration of drug release. Furthermore, we discuss chemically controlled LDD systems designed for the release of biomolecules, such as growth factors, as well as nanoparticle-mediated LDD systems. With our own published data on drug-eluting stents, microstents, and cochlear implants, we highlight exemplary implant-associated LDD systems designed to improve implant performance through the reduction of undesirable effects such as in-stent restenosis and fibrosis.

  18. Damping mathematical modelling and dynamic responses for FRP laminated composite plates with polymer matrix

    Directory of Open Access Journals (Sweden)

    Liu Qimao

    2018-02-01

    Full Text Available This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.

  19. Application of stochastic system identification to the study of the compliance of electroactive polymers.

    Science.gov (United States)

    Pillai, Priam V; Hunter, Ian W; Hernandez, Emanuel

    2011-02-01

    Electroactive polymers have shown promising applications as transducers that can mimic biological muscle. The modulus or the compliance of many of these devices can change significantly as they are actuated making these materials attractive for applications that require tunable stiffness. We have developed a dynamic mechanical analyzer that is capable of making in situ measurements of the dynamic compliance transfer function of conducting polymers as a function of an electrochemical stimulus. We do this by simultaneously applying a stochastic stress waveform over a potential waveform and calculating the compliance as it changes over the course of electrochemical excitation. Using these signals we can calculate the compliance transfer function between 0.1 and 100 Hz and the impulse response function with up to 3% variation in its parameters. These functions are then computed as charge is injected into the polymer and it is shown that the low frequency gain of the transfer function can change by 30%-40% in the electrochemical system tested.

  20. Synthesis and characterization of biocompatible multicomponent polymer systems as supports for cell cultures

    International Nuclear Information System (INIS)

    Porjazoska, Aleksandra; Cvetkovska, Maja; Yylmaz, Oksan Karal; Baysal, Kemal; Apohan, Nilhan Kayaman; Baysal, Bahattin M.

    2004-01-01

    Engineering living tissue for reconstructive surgery requires an appropriate cell source and optimal culture conditions, but also a suitable biodegradable scaffold as the basic elements. On the basis of the well known facts that scaffold chemistry and architecture can influence the fate and function of engrafted cells, a large number of polymers, as cell cultures supports, have been proposed. In this study, we report a synthesis, characterization and cell interactions with the following polymer systems: I. Poly[L- lactic acid / glycolic acid / poly(dimethylsiloxane)], copolymers; II. Poly(DL - lactic acid) / triblock PCL - PDMS - PCL copolymers; III. Blends of poly(DL - lactic - co - glycolic acid) and triblock PCL - PDMS - PCL copolymers. For the cell seeding experiments, Swiss 3T3 and/or L929 mouse fibroblasts were grown in RPMI 1640 and/or DMEM / F12 medium, and placed onto the bio polymer non porous or porous films, prepared using a particulate leaching technique. The amount of cells present on the surfaces of the scaffolds was quantified using a neutral red uptake assay. (Author)

  1. Characterizing and modeling the pressure- and rate-dependent elastic-plastic-damage behaviors of polypropylene-based polymers

    KAUST Repository

    Pulungan, Ditho Ardiansyah

    2018-02-24

    Polymers in general exhibit pressure- and rate-dependent behavior. Modeling such behavior requires extensive, costly and time-consuming experimental work. Common simplifications may lead to severe inaccuracy when using the model for predicting the failure of structures. Here, we propose a viscoelastic viscoplastic damage model for polypropylene-based polymers. Such a set of constitutive equations can be used to describe the response of polypropylene under various strain-rates and stress-triaxiality conditions. Our model can also be applied to a broad range of thermoplastic polymers. We detail the experimental campaign that is needed to identify every parameter of the model at best. We validated the proposed model by performing 3-point bending tests at different loading speeds, where the load-displacement response of polypropylene beam up to failure was accurately predicted.

  2. Catalyst System for Hydrogenation Catalysis Based on Multiarm Hyperbranched Polymer Templated Metal (Au, Pt, Pd, Cu Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yunfeng Shi

    2017-09-01

    Full Text Available With a hyperbranched poly(amidoamine core and many water-soluble poly(ethylene glycol monomethyl ether arms connected by pH-sensitive acylhydrazone bonds, multiarm hyperbranched polymer was used as nanoreactor and reductant to prepare metal nanoparticles endowed with intelligence and biocompatibility. The multiarm hyperbranched polymer encapsulated nanoparticles (NPs showed excellent catalytic activity for hydrogenation, thus an excellent catalyst system for hydrogenation was established. The rate constants could reach as high as 3.48 L·s−1·m−2, which can be attributed to the lack of surface passivation afforded by the multiarm hyperbranched polymer.

  3. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    Science.gov (United States)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  4. Stratification in Drying Polymer-Polymer and Colloid-Polymer Mixtures.

    Science.gov (United States)

    Howard, Michael P; Nikoubashman, Arash; Panagiotopoulos, Athanassios Z

    2017-10-24

    Drying polymer-polymer and colloid-polymer mixtures were studied using Langevin dynamics computer simulations. Polymer-polymer mixtures vertically stratified into layers, with the shorter polymers enriched near the drying interface and the longer polymers pushed down toward the substrate. Colloid-polymer mixtures stratified into a polymer-on-top structure when the polymer radius of gyration was comparable to or smaller than the colloid diameter, and a colloid-on-top structure otherwise. We also developed a theoretical model for the drying mixtures based on dynamical density functional theory, which gave excellent quantitative agreement with the simulations for the polymer-polymer mixtures and qualitatively predicted the observed polymer-on-top or colloid-on-top structures for the colloid-polymer mixtures.

  5. Passive tumor targeting of polymer therapeutics: in vivo imaging of both the polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2016-01-01

    Roč. 16, č. 11 (2016), s. 1577-1582 ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer drug carriers * tumor targeting * enzymatic release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.238, year: 2016

  6. Modelling the dynamic dose response of an nMAG polymer gel dosimeter

    International Nuclear Information System (INIS)

    Ceberg, Sofie; Ceberg, Crister; Lepage, Martin; Bäck, Sven Å J; Gustafsson, Helen

    2012-01-01

    Gel dosimetry measures the absorbed radiation dose with high spatial resolution in 3D. However, recently published data show that the response of metacrylic-based polymer gels depends on the segmented delivery pattern, which could potentially be a considerable disadvantage for measurements of modern dynamic radiotherapy techniques. The aim of this study is to design a dynamic compartment model for the response of a gel dosimeter, exposed to an arbitrary irradiation pattern (segmented delivery and intensity modulation), in order to evaluate the associated effects on absorbed dose measurements. The model is based on the separation of the protons affecting the magnetic resonance signal (i.e. the R2 value) into six compartments, described by a set of differential equations. The model is used to calculate R2 values for a number of different segmented delivery patterns between 0–4 Gy over 1–33 fractions. Very good agreement is found between calculated and measured R2 values, with an average difference of 0.3 ± 1.1% (1 SD). The model is also used to predict the behaviour of a gel dosimeter exposed to irradiation according to typical IMRT, VMAT and respiratory gating scenarios. The calculated R2 values are approximately independent of the segmented delivery, given that the same total dose is delivered during the same total time. It is concluded that this study helps to improve the theoretical understanding of the dependence of metacrylic-based polymer gel response to segmented radiation delivery. (paper)

  7. Chapter 3. Biological properties of ethynyl-piperidol polymers. 3.1. Activating effect of quaternized linear and graft-polymers of ethynyl-piperidol on blood coagulation system

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    This article is devoted to activating effect of quaternized linear and graft-polymers of ethynyl-piperidol on blood coagulation system. The indexes of blood clotting at intraperitoneal injection of polymers were considered. The anti heparin activity of methiodide of poly-isopropenyl trimethyl ethynyl piperidol was considered as well. The influence of molecular weight on styptic activity and toxicity of methiodide of poly-isopropenyl trimethyl ethynyl piperidol was studied. The styptic activity of grafted polymers of ethynyl piperidol was defined.

  8. Mesoscale Simulation of Polymer Reaction Equilibrium: Combining Dissipative Particle Dynamics with Reaction Ensemble Monte Carlo. I. Polydispersed Polymer Systems

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2006-01-01

    Roč. 125, č. 16 (2006), s. 16490501-16490515 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR 1ET400720409; GA AV ČR 1ET400720507 Institutional research plan: CEZ:AV0Z40720504 Keywords : simulation * polymer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  9. Automated sorting of polymer flakes: fluorescence labeling and development of a measurement system prototype.

    Science.gov (United States)

    Brunner, S; Fomin, P; Kargel, Ch

    2015-04-01

    The extensive demand and use of plastics in modern life is associated with a significant economical impact and a serious ecological footprint. The production of plastics involves a high energy consumption and CO2 emission as well as the large need for (limited) fossil resources. Due to the high durability of plastics, large amounts of plastic garbage is mounting in overflowing landfills (plus 9.6 million tons in Europe in the year 2012) and plastic debris is floating in the world oceans or waste-to-energy combustion releases even more CO2 plus toxic substances (dioxins, heavy metals) to the atmosphere. The recycling of plastic products after their life cycle can obviously contribute a great deal to the reduction of the environmental and economical impacts. In order to produce high-quality recycling products, mono-fractional compositions of waste polymers are required. However, existing measurement technologies such as near infrared spectroscopy show limitations in the sorting of complex mixtures and different grades of polymers, especially when black plastics are involved. More recently invented technologies based on mid-infrared, Raman spectroscopy or laser-aided spectroscopy are still under development and expected to be rather expensive. A promising approach to put high sorting purities into practice is to label plastic resins with unique combinations of fluorescence markers (tracers). These are incorporated into virgin resins during the manufacturing process at the ppm (or sub ppm) concentration level, just large enough that the fluorescence emissions can be detected with sensitive instrumentation but neither affect the visual appearance nor the mechanical properties of the polymers. In this paper we present the prototype of a measurement and classification system that identifies polymer flakes (mill material of a few millimeters size) located on a conveyor belt in real time based on the emitted fluorescence of incorporated markers. Classification performance

  10. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    Science.gov (United States)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results

  11. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies

    Science.gov (United States)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-06-01

    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  12. A Generic Model for Prediction of Separation Performance of Olefin/Paraffin Mixture by Glassy Polymer Membranes

    Directory of Open Access Journals (Sweden)

    A.A. Ghoreyshi

    2008-02-01

    Full Text Available The separation of olefin/paraffin mixtures is an important process in petrochemical industries, which is traditionally performed by low temperature distillation with a high-energy consumption, or complex extractive distillationand adsorption techniques. Membrane separation process is emerging as an alternative for traditional separation processes with respect to low energy and simple operation. Investigations made by various researchers on polymeric membranes it is found that special glassy polymers render them as suitable materials for olefin/paraffin mixture separation. In this regard, having some knowledge on the possible transport mechanism of these processes would play a significant role in their design and applications. In this study, separation behavior of olefin/paraffin mixtures through glassy polymers was modeled by three different approaches: the so-called dual transport model, the basic adsorption-diffusion theory and the general Maxwell-Stefan formulation. The systems chosen to validate the developed transport models are separation of ethane-ethylene mixture by 6FDA-6FpDA polyimide membrane and propane-propylene mixture by 6FDA-TrMPD polyimide membrane for which the individual sorption and permeation data are available in the literature. Acritical examination of dual transport model shows that this model fails clearly to predict even the proper trend for selectivities. The adjustment of pemeabilities by accounting for the contribution of non-selective bulk flow in the transport model introduced no improvement in the predictability of the model. The modeling results based on the basic adsorption-diffusion theory revealed that in this approach only using mixed permeability data, an acceptable result is attainable which fades out the advantages of predictibility of multicomponent separation performance from pure component data. Finally, the results obtained from the model developed based on Maxwell-Stefan formulation approach show a

  13. The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems

    KAUST Repository

    Dou, Fei

    2015-01-01

    In this work, we investigate the effect of phase morphology on the nature of charges in poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2,-b]thiophene) (pBTTT-C16) and phenyl-C61-butyric acid methyl ester (PC61BM) blends over timescales greater than hundreds of microseconds by quasi-steady-state photoinduced absorption spectroscopy. Specifically, we compare an essentially fully intermixed, one-phase system based on a 1 : 1 (by weight) pBTTT-C16 : PC61BM blend, known to form a co-crystal structure, with a two-phase morphology composed of relatively material-pure domains of the neat polymer and neat fullerene. The co-crystal occurs at a composition of up to 50 wt% PC61BM, because pBTTT-C16 is capable of hosting fullerene derivatives such as PC61BM in the cavities between its side chains. In contrast, the predominantly two-phase system can be obtained by manipulating a 1 : 1 polymer : fullerene blend with the assistance of a fatty acid methyl ester (dodecanoic acid methyl ester, Me12) as additive, which hinders co-crystal formation. We find that triplet excitons and polarons are generated in both phase morphologies. However, polarons are generated in the predominantly two-phase system at higher photon energy than for the structure based on the co-crystal phase. By means of a quasi-steady-state solution of a mesoscopic rate model, we demonstrate that the steady-state polaron generation efficiency and recombination rates are higher in the finely intermixed, one-phase system compared to the predominantly phase-pure, two-phase morphology. We suggest that the polarons generated in highly intermixed structures, such as the co-crystal investigated here, are localised polarons while those generated in the phase-separated polymer and fullerene systems are delocalised polarons. We expect this picture to apply generally to other organic-based heterojunctions of complex phase morphologies including donor:acceptor systems that form, for instance, molecularly mixed amorphous solid

  14. Extensive EIS characterization of commercially available lithium polymer battery cell for performance modelling

    DEFF Research Database (Denmark)

    Stanciu, Tiberiu; Stroe, Daniel Loan; Teodorescu, Remus

    2015-01-01

    Electrochemical Impedance Spectroscopy (EIS) has become a popular analytical technique for research and development of battery cells' chemistries, due to the established, high precision computer controlled equipment, that are capable of direct, on-line monitoring of performance parameters...... on the performance of a commercially available 53 Ah Lithium polymer battery cell, manufactured by Kokam Co. Ltd., is investigated in laboratory experiments, at its beginning of life, by means of EIS. A data fitting algorithm was used to obtain the parameter values for the proposed equivalent electrical circuit......, which was further selected for the development of an accurate EIS based performance model for the chosen Li-ion battery cell....

  15. Studies on a Foam System of Ultralow Interfacial Tension Applied in Daqing Oilfield after Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Hong-sheng Liu

    2013-01-01

    Full Text Available In order to study the effects of oil displacement by a foam system of ultralow interfacial tension, the interfacial activities and foam properties of a nonionic gemini surfactant (DWS were investigated under Daqing Oilfield reservoir conditions. Injection methods and alternate cycle of the foam system were discussed here on the basis of results from core flow experiments. It was obtained that the surface tension of DWS was approximately 25 mN/m, and ultralow interfacial tension was reached between oil and DWS with a surfactant concentration between 0.05wt% and 0.4wt%. The binary system showed splendid foam performances, and the preferential surfactant concentration was 0.3wt% with a polymer concentration of 0.2wt%. When gas and liquid were injected simultaneously, flow control capability of the foam reached its peak at the gas-liquid ratio of 3 : 1. Enhanced oil recovery factor of the binary foam system exceeded 10% in a parallel natural cores displacement after polymer flooding.

  16. Gamma irradiated micro system for long-term parenteral contraception: An alternative to synthetic polymers.

    Science.gov (United States)

    Puthli, S; Vavia, P

    2008-11-15

    An injectable system of levonorgestrel (LNG) was developed using biodegradable polymer of natural origin. The parenteral system was optimized for particle size and higher drug loading. The microparticulate system was characterised by scanning electron microscopy, encapsulation efficiency, moisture content, IR, DSC, XRD, residual solvent content, sterility testing, test of abnormal toxicity and test for pyrogens. The microparticles were sterilised by gamma irradiation (2.5Mrad). The system was injected intramuscularly in rabbits and the blood levels of LNG were determined using radioimmunoassay technique. An optimized drug to polymer ratio of 0.3-1.0 (w/w ratio) gave improved drug loading of about 52%. In vivo studies in rabbits showed that the drug was released in a sustained manner for a period of 1 month. The AUC(0-t) was found to be 9363.6+/-2340pg/mLday(-1) with MRT calculated to be about 16 days and Kel of 0.01day(-1). LNG levels were maintained between 200 and 400pg/mL. In vivo release exhibited an initial burst effect which was not observed in the in vitro dissolution. This promising "Progestin-only" long-term contraceptive with improved user compliance is an alternative to the synthetic expensive polymeric carriers.

  17. Molecular weight (hydrodynamic volume) dictates the systemic pharmacokinetics and tumour disposition of PolyPEG star polymers.

    Science.gov (United States)

    Khor, Song Yang; Hu, Jinming; McLeod, Victoria M; Quinn, John F; Williamson, Mark; Porter, Christopher J H; Whittaker, Michael R; Kaminskas, Lisa M; Davis, Thomas P

    2015-11-01

    Herein we report for the first time the biological fate of poly[(oligoethylene glycol) acrylate] (POEGA) star polymers synthesised via a versatile arm-first reversible addition-fragmentation chain transfer (RAFT) polymerisation approach. The biopharmaceutical behaviour of three different molecular weight (49, 64 and 94kDa) POEGA stars was evaluated in rats and nude mice bearing human MDA MB-231 tumours after intravenous administration. The 94kDa star polymer exhibited a longer plasma exposure time than the 49kDa or 64kDa star polymer; an observation attributable to differences in the rates of both polymer biodegradation and urinary excretion. Tumour biodistribution also correlated with molecular weight and was greatest for the longest circulating 94kDa star. Different patterns of liver and spleen biodistribution were observed between mice and rats for the different sized polymers. The polymers were also well-tolerated in vivo and in vitro at therapeutic concentrations. Advances in nanotechnology has enabled scientists to produce nanoparticle as drug carriers in cancer therapeutics. In this article, the authors studied the biological fate of poly[(oligoethylene glycol) acrylate] (POEGA) star polymers of different size, after intravenous injections. This would allow the subsequent comparison to other drug delivery systems for better drug delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Novel colloidal system: Magnetite-polymer particles/lyotropic liquid crystal under magnetic field

    Science.gov (United States)

    Mănăilă-Maximean, D.; Cîrtoaje, C.; Dănilă, O.; Donescu, D.

    2017-09-01

    We obtained a new highly ordered colloidal composite using specially manufactured magnetite-polymer nanoparticles and lyotropic liquid crystal. A good compatibility between the components was ensured by the functionalization of the particles during their synthesis. We studied the laser light transmission for the mixtures filled in sandwich-glass cells with homeotropic and planar treatment of the surfaces under external magnetic field. The Fréedericksz transition critical field was estimated, and its' behavior was compared to our new theoretical model based on the Brochard-de Gennes one.

  19. Predictive Model for the Design of Zwitterionic Polymer Brushes: A Statistical Design of Experiments Approach.

    Science.gov (United States)

    Kumar, Ramya; Lahann, Joerg

    2016-07-06

    The performance of polymer interfaces in biology is governed by a wide spectrum of interfacial properties. With the ultimate goal of identifying design parameters for stem cell culture coatings, we developed a statistical model that describes the dependence of brush properties on surface-initiated polymerization (SIP) parameters. Employing a design of experiments (DOE) approach, we identified operating boundaries within which four gel architecture regimes can be realized, including a new regime of associated brushes in thin films. Our statistical model can accurately predict the brush thickness and the degree of intermolecular association of poly[{2-(methacryloyloxy) ethyl} dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), a previously reported synthetic substrate for feeder-free and xeno-free culture of human embryonic stem cells. DOE-based multifunctional predictions offer a powerful quantitative framework for designing polymer interfaces. For example, model predictions can be used to decrease the critical thickness at which the wettability transition occurs by simply increasing the catalyst quantity from 1 to 3 mol %.

  20. Constraints effects in swollen particulate composites with hyperelastic polymer matrix of finite extensibility modeled by FEM

    Science.gov (United States)

    Šomvársky, Ján; Dušek, Karel; Dušková-Smrčková, Miroslava

    2014-03-01

    The class of particulate composites with cross-linked hyperelastic polymer matrix and non-deformable filler particles represents many important biopolymer and engineering materials. At application conditions, the matrix is either in the swollen state, or the swollen state is utilized for matrix characterization. In this contribution, a numerical model for simulation of equilibrium stress-strain and swelling behavior of this composite material was developed based on finite element method using COMSOL Multiphysics® software. In the constitutive equations (Gibbs energy), the elastic contribution is based on statistical-mechanical model of a network composed of freely jointed chains of finite extensibility and polymer-solvent mixing term is derived from the Flory-Huggins lattice model. A perfect adhesion of matrix-to-particle is assumed. The adhesion of matrix to stiff surface generates stress and degree-of-swelling fields in the composite. The existence of these fields determines the mechanical and swelling properties of the composite. Spatial distribution of filler particles in the composite plays an important role.

  1. Mechanical response and buckling of a polymer simulation model of the cell nucleus

    Science.gov (United States)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.

  2. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  3. A versatile polymer micelle drug delivery system for encapsulation and in vivo stabilization of hydrophobic anticancer drugs.

    Science.gov (United States)

    Rios-Doria, Jonathan; Carie, Adam; Costich, Tara; Burke, Brian; Skaff, Habib; Panicucci, Riccardo; Sill, Kevin

    2012-01-01

    Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30-80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.

  4. A Versatile Polymer Micelle Drug Delivery System for Encapsulation and In Vivo Stabilization of Hydrophobic Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Jonathan Rios-Doria

    2012-01-01

    Full Text Available Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30–80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.

  5. Porous polymer adsorbent media constructed by molecular dynamics modeling and simulations: the immobilization of charged ligands and their effect on pore structure and local nonelectroneutrality.

    Science.gov (United States)

    Riccardi, E; Wang, J-C; Liapis, A I

    2009-02-26

    A molecular dynamics modeling and simulation approach is presented and employed to construct porous dextran polymer ion-exchange adsorbent media. Both the activation step of the surface of the pores of the dextran polymer layer grafted on an agarose surface and the immobilization of charged ligands on the activated surface of the porous dextran polymer layer are considered. For the systems studied in this work, the activation step modifies slightly the pore structure of the base, nonactivated porous dextran polymer, while the immobilization of the ligands on the activated pore surface of the dextran layer changes significantly the pore structure of the activated dextran layer. The density distributions of the counterions and immobilized charged ligands along the direction of net transport in the adsorbent media constructed in this study are found to be nonuniform. The variables that affect the shape and magnitude of the density distributions of the counterions and immobilized charged ligands as well as the total number of charged ligands that can be immobilized on the activated porous dextran layer are identified and presented in this work. Furthermore, the data clearly show that there is local nonelectroneutrality in the porous dextran polymer ion-exchange adsorbent media, and this result has very important practical implications for the operation and performance of separation systems involving ion-exchange adsorbent media (e.g., ion-exchange chromatography systems). Also, the results of this work suggest approaches for (1) controlling the immobilization process of charged ligands and (2) constructing and studying the behavior of chromatographic polymeric monoliths and packed bed columns having a gradient of density of functionalities along the axis of the chromatographic polymeric monolith or packed bed column.

  6. Understanding looping kinetics of a long polymer molecule in solution. Exact solution for delta function sink model

    Science.gov (United States)

    Ganguly, Moumita; Chakraborty, Aniruddha

    2017-10-01

    A diffusion theory for intramolecular reactions of polymer chain in dilute solution is formulated. We give a detailed analytical expression for calculation of rate of polymer looping in solution. The physical problem of looping can be modeled mathematically with the use of a Smoluchowski-like equation with a Dirac delta function sink of finite strength. The solution of this equation is expressed in terms of Laplace Transform of the Green's function for end-to-end motion of the polymer in absence of the sink. We have defined two different rate constants, the long term rate constant and the average rate constant. The average rate constant and long term rate constant varies with several parameters such as length of the polymer (N), bond length (b) and the relaxation time τR. The long term rate constant is independent of the initial probability distribution.

  7. Experimental characterization and computational modeling of unimorph shape memory polymer actuators incorporating transverse curvature in the substrate

    Science.gov (United States)

    Cantrell, Jason T.

    This document outlines in detail the research performed by applying shape memory polymers in a generic unimorph actuator configuration. A set of experiments designed to investigate the influence of transverse curvature, the relative widths of shape memory polymer and composite substrates, and shape memory polymer thickness on actuator recoverability after multiple thermo-mechanical cycles is presented in detail. A theoretical model of the moment required to maintain shape fixity with minimal shape retention loss was developed and experimentally validated for unimorph composite actuators of varying cross-sectional areas. Theoretical models were also developed and evaluated to determine the relationship between the materials neutral axes and thermal stability during a thermo-mechanical cycle. Research was conducted on the incorporation of shape memory polymers on micro air vehicle wings to maximize shape fixity and shape recoverability while minimizing the volume of shape memory polymer on the wing surface. Applications based research also included experimentally evaluating the feasibility of shape memory polymers on deployable satellite antenna ribs both with and without resistance heaters which could be utilized to assist in antenna deployment.

  8. Full Scale RC Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Science.gov (United States)

    De Vita, Alessandro; Napoli, Annalisa; Realfonzo, Roberto

    2017-07-01

    This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy) in order to investigate the seismic performance of RC beam-column joints strengthened with Steel Reinforced Polymer (SRP) systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by Carbon Fiber Reinforced Polymer (CFRP) systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems), the performances and the failure modes experienced in the several cases studied are provided.

  9. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics; the second one is based on hybrid local/non-local continuum mechanics. The key computational issues, including the peculiar homogenization technique and treatment of periodical boundary conditions in the non-local continuum model, are clarified. Both models are implemented through a three-dimensional geometric representation of the carbon nanotubes network, which has been detailed in Part I. Numerical results are shown and compared for both models in order to test convergence and sensitivity toward input parameters. It is found that both approaches provide similar results in terms of homogenized quantities but locally can lead to very different microscopic fields. © 2013 Elsevier B.V. All rights reserved.

  10. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models

    Science.gov (United States)

    Cheng, Ryan R.; Hawk, Alexander T.; Makarov, Dmitrii E.

    2013-02-01

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  11. A mathematical model of the solid-polymer-electrolyte fuel cell

    International Nuclear Information System (INIS)

    Bernardi, D.M.; Verbrugge, M.W.

    1992-01-01

    This paper presents a mathematical model of the solid-polymer-electrolyte fuel cell and apply it to (i) investigate factors that limit cell performance and (ii) elucidate the mechanism of species transport in the complex network of gas, liquid, and solid phases of the cell. Calculations of cell polarization behavior compare favorably with existing experimental data. For most practical electrode thicknesses, model results indicate that the volume fraction of the cathode available for gas transport must exceed 20% in order to avoid unacceptably low cell-limiting current densities. It is shown that membrane dehydration can also pose limitations on operating current density; circumvention of this problem by appropriate membrane and electrode design and efficient water-management schemes is discussed. The authors' model results indicate that for a broad range of practical current densities there are no external water requirements because the water produced at the cathode is enough to satisfy the water requirement of the membrane

  12. Modeling the dynamics of polymer chains in water solution. Application to sensor design

    Science.gov (United States)

    Starovoitov, V. N.; Starovoitova, B. N.

    2017-10-01

    This paper is devoted to a mathematical model of a chaotic dynamics of a polymer chain in water. The model consists of a parabolic equation that is derived according to the self-consistent field approach. This model is employed for the numerical simulation of a biological sensor that detects the presence of a specific protein in the fluid. The sensor is absolutely simple and seems to be new. Besides that, the suggested equation is interesting from the mathematical point of view. It includes a non-local operator of integration not only over the past time interval as in the problems with memory but also over the future time interval. It is unusual for parabolic problems.

  13. Biocompatible 3D printed polymers via fused deposition modelling direct C2C12cellular phenotype in vitro.

    Science.gov (United States)

    Rimington, Rowan P; Capel, Andrew J; Christie, Steven D R; Lewis, Mark P

    2017-08-22

    The capability to 3D print bespoke biologically receptive parts within short time periods has driven the growing prevalence of additive manufacture (AM) technology within biological settings, however limited research concerning cellular interaction with 3D printed polymers has been undertaken. In this work, we used skeletal muscle C 2 C 12 cell line in order to ascertain critical evidence of cellular behaviour in response to multiple bio-receptive candidate polymers; polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate (PET) and polycarbonate (PC) 3D printed via fused deposition modelling (FDM). The extrusion based nature of FDM elicited polymer specific topographies, within which C 2 C 12 cells exhibited reduced metabolic activity when compared to optimised surfaces of tissue culture plastic, however assay viability readings remained high across polymers outlining viable phenotypes. C 2 C 12 cells exhibited consistently high levels of morphological alignment across polymers, however differential myotube widths and levels of transcriptional myogenin expression appeared to demonstrate response specific thresholds at which varying polymer selection potentiates cellular differentiation, elicits pre-mature early myotube formation and directs subsequent morphological phenotype. Here we observed biocompatible AM polymers manufactured via FDM, which also appear to hold the potential to simultaneously manipulate the desired biological phenotype and enhance the biomimicry of skeletal muscle cells in vitro via AM polymer choice and careful selection of machine processing parameters. When considered in combination with the associated design freedom of AM, this may provide the opportunity to not only enhance the efficiency of creating biomimetic models, but also to precisely control the biological output within such scaffolds.

  14. Radiation-induced free radical reactions in polymer/drug systems for controlled release: an EPR investigation

    Energy Technology Data Exchange (ETDEWEB)

    Faucitano, A. E-mail: chemrad@unipv.it; Buttafava, A.; Montanari, L.; Cilurzo, F.; Conti, B.; Genta, I.; Valvo, L

    2003-05-01

    The primary and secondary free radical intermediates in the gamma radiolysis of poly(D,L-lactide-co-glycolide) (PLGA) and clonazepam loaded PLGA microspheres were investigated by matrix EPR spectroscopy in the temperature range 77-298 K. Drug-polymer interactions were found to be important leading to significant deviations of the G(radicals) from the additivity law. In particular, in the mixed system a stabilization of the polymer matrix with respect to the radiation damage was detected, witnessed by a decrease of the overall polymer radicals yield which is accompanied by an increase of the drug radicals yield. These effects have been attributed to the scavenging properties of the nitro group with respect to electrons and polymer radicals. It is conceivable that such conclusions be of general application for all pharmaceutical formulations containing drugs bearing nitro groups in their chemical structure.

  15. Study on the Glass Transition Process of Polymer System Using Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Peng, Yong-Jin; Liu, Yu-Ling; Wu, Qiang; Sun, Ping-Chuan

    2017-01-01

    The change in the infrared spectrum of polymer samples with temperature and their differential scanning calorimetry (DSC) experimental results are analyzed. According to the van't Hoff equation at constant pressure, the changes in the absorbance ratio corresponding to high and low vibrational states are calculated, and the apparent enthalpy differences of the vibration energy states transformation of the characteristic group can be obtained. From the experimental results, we can find that characteristic vibration modes of a chemical group in a polymer are under the influence of the glass transition process of the polymer with a different extent. The characteristic vibration modes of the same chemical group behave differently due to the influence of the polymer system at which the chemical moiety is situated.

  16. Hybrid approach combining dissipative particle dynamics and finite-difference diffusion model: simulation of reactive polymer coupling and interfacial polymerization.

    Science.gov (United States)

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2013-10-21

    A novel hybrid approach combining dissipative particle dynamics (DPD) and finite difference (FD) solution of partial differential equations is proposed to simulate complex reaction-diffusion phenomena in heterogeneous systems. DPD is used for the detailed molecular modeling of mass transfer, chemical reactions, and phase separation near the liquid∕liquid interface, while FD approach is applied to describe the large-scale diffusion of reactants outside the reaction zone. A smooth, self-consistent procedure of matching the solute concentration is performed in the buffer region between the DPD and FD domains. The new model is tested on a simple model system admitting an analytical solution for the diffusion controlled regime and then applied to simulate practically important heterogeneous processes of (i) reactive coupling between immiscible end-functionalized polymers and (ii) interfacial polymerization of two monomers dissolved in immiscible solvents. The results obtained due to extending the space and time scales accessible to modeling provide new insights into the kinetics and mechanism of those processes and demonstrate high robustness and accuracy of the novel technique.

  17. Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Juteau Jean-Marc

    2009-12-01

    Full Text Available Abstract Background Phosphorothioated oligonucleotides (PS-ONs have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9 inhibited both murine CMV (MCMV and guinea pig CMV (GPCMV with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated

  18. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    Science.gov (United States)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  19. A 3-D microstructural level model for analyzing the response of polymer bonded explosives

    Science.gov (United States)

    Hardin, David; Zhou, Min

    2011-06-01

    A three-dimensional finite element model is developed to study the microstructural level response of polymer-bonded explosives (PBX) under impact loading. The study focuses on the effect of the morphology and packing of energetic grains on the overall thermomechanical response of the composites. A cohesive finite element method (CFEM) is utilized to account for failure in the form of debonding between the HMX grains and the polymer matrix. Frictional heating along crack faces is tracked through a contact algorithm. Microstructures with cubic and multifaceted three-dimensional polygonal granules with packing densities between 0.42 and 0.74 are generated and used. Both 2D and 3D calculations are carried to analyze the differences between the models. To ensure consistency, the 2D microstructures are sections of the 3D microstructures. In this presentation, we will discuss differences in results from the 2D and 3D calculations, with a particular focus on the progression of damage and heating under impact loading.

  20. IT-141, a Polymer Micelle Encapsulating SN-38, Induces Tumor Regression in Multiple Colorectal Cancer Models.

    Science.gov (United States)

    Carie, Adam; Rios-Doria, Jonathan; Costich, Tara; Burke, Brian; Slama, Richard; Skaff, Habib; Sill, Kevin

    2011-01-01

    Polymer micelles are promising drug delivery vehicles for the delivery of anticancer agents to tumors. Often, anticancer drugs display potent cytotoxic effects towards cancer cells but are too hydrophobic to be administered in the clinic as a free drug. To address this problem, a polymer micelle was designed using a triblock copolymer (ITP-101) that enables hydrophobic drugs to be encapsulated. An SN-38 encapsulated micelle, IT-141, was prepared that exhibited potent in vitro cytotoxicity against a wide array of cancer cell lines. In a mouse model, pharmacokinetic analysis revealed that IT-141 had a much longer circulation time, plasma exposure, and tumor exposure compared to irinotecan. IT-141 was also superior to irinotecan in terms of antitumor activity, exhibiting greater tumor inhibition in HT-29 and HCT116 colorectal cancer xenograft models at half the dose of irinotecan. The antitumor effect of IT-141 was dose-dependent and caused complete growth inhibition and tumor regression at well-tolerated doses. Varying the specific concentration of SN-38 within the IT-141 micelle had no detectible effect on this antitumor activity, indicating no differences in activity between different IT-141 formulations. In summary, IT-141 is a potent micelle-based chemotherapy that holds promise for the treatment of colorectal cancer.

  1. IT-141, a Polymer Micelle Encapsulating SN-38, Induces Tumor Regression in Multiple Colorectal Cancer Models

    Directory of Open Access Journals (Sweden)

    Adam Carie

    2011-01-01

    Full Text Available Polymer micelles are promising drug delivery vehicles for the delivery of anticancer agents to tumors. Often, anticancer drugs display potent cytotoxic effects towards cancer cells but are too hydrophobic to be administered in the clinic as a free drug. To address this problem, a polymer micelle was designed using a triblock copolymer (ITP-101 that enables hydrophobic drugs to be encapsulated. An SN-38 encapsulated micelle, IT-141, was prepared that exhibited potent in vitro cytotoxicity against a wide array of cancer cell lines. In a mouse model, pharmacokinetic analysis revealed that IT-141 had a much longer circulation time, plasma exposure, and tumor exposure compared to irinotecan. IT-141 was also superior to irinotecan in terms of antitumor activity, exhibiting greater tumor inhibition in HT-29 and HCT116 colorectal cancer xenograft models at half the dose of irinotecan. The antitumor effect of IT-141 was dose-dependent and caused complete growth inhibition and tumor regression at well-tolerated doses. Varying the specific concentration of SN-38 within the IT-141 micelle had no detectible effect on this antitumor activity, indicating no differences in activity between different IT-141 formulations. In summary, IT-141 is a potent micelle-based chemotherapy that holds promise for the treatment of colorectal cancer.

  2. A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled with Polymer Degradation and Erosion

    Science.gov (United States)

    Zhu, Xiaoxiang; Braatz, Richard D.

    2015-01-01

    Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization (or molecular weight) is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  3. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.

    Science.gov (United States)

    Grate, J W; Patrash, S J; Kaganovet, S N; Abraham, M H; Wise, B M; Gallagher, N B

    2001-11-01

    In previous work, it was shown that, in principle, vapor descriptors could be derived from the responses of an array of polymer-coated acoustic wave devices. This new chemometric classification approach was based on polymer/vapor interactions following the well-established linear solvation energy relationships (LSERs) and the surface acoustic wave (SAW) transducers being mass sensitive. Mathematical derivations were included and were supported by simulations. In this work, an experimental data set of polymer-coated SAW vapor sensors is investigated. The data set includes 20 diverse polymers tested against 18 diverse organic vapors. It is shown that interfacial adsorption can influence the response behavior of sensors with nonpolar polymers in response to hydrogen-bonding vapors; however, in general, most sensor responses are related to vapor interactions with the polymers. It is also shown that polymer-coated SAW sensor responses can be empirically modeled with LSERs, deriving an LSER for each individual sensor based on its responses to the 18 vapors. Inverse least-squares methods are used to develop models that correlate and predict vapor descriptors from sensor array responses. Successful correlations can be developed by multiple linear regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. MLR yields the best fits to the training data, however cross-validation shows that prediction of vapor descriptors for vapors not in the training set is significantly more successful using PCR or PLS. In addition, the optimal dimension of the PCR and PLS models supports the dimensionality of the LSER formulation and SAW response models.

  4. Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling

    KAUST Repository

    Van Ruymbeke, Evelyne

    2014-01-01

    polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism. © 2014 the Partner Organisations.

  5. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2017-03-01

    Full Text Available Bacterial infection and tissue inflammation are the major causes of early failure of titanium-based orthopedic implants; thus, surgical implants with tunable drug releasing properties represent an appealing way to address some of these problems of bacterial infection and tissue inflammation in early age of orthopedic implants. In this work, a hybrid surface system composed of biodegradable poly(lactic-co-glycolic acid (PLGA and titania nanotubes (TNTs has been successfully constructed on Ti implants with the aim of preventing bacterial infection via long-term drug release. By varying the size of the TNTs and the thickness of the polymer film, the drug release profile can be tuned to achieve the optimal therapeutic action throughout the treatment time. The size of TNTs plays a dominant role in the drug loading dose of TNTs/PLGA hybrid coatings. In this work, TNTs with an average size of 80 nm can achieve the largest loading dose. Depending on the polymer thickness, significant improvement in the drug release characteristics is attained, for instance, reduced burst release (from 84% to 27% and overall release time extended from 5 to over 40 days. In addition, the PLGA layers may favor the proliferation and osteogenesis of MC3T3-E1 mouse cells at an earlier stage. Therefore, this TNT/PLGA hybrid surface system can be employed as an effective bioplatform for improving both self-antibacterial performance and biocompatibility of Ti-based biomaterials.

  6. Water transport in the gas diffusion layer of a polymer electrolyte fuel cell : Dynamic Pore-Network Modeling

    NARCIS (Netherlands)

    Qin, C.

    2015-01-01

    The pore-scale modeling is a powerful tool for increasing our understanding of water transport in the fibrous gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC). In this work, a new dynamic pore-network model for air-water flow in the GDL is developed. It incorporates water vapor

  7. Modelling of solid polymer and direct methanol fuel cells: Phenomenological equations and analytical solutions

    Science.gov (United States)

    Kauranen, P. S.

    1993-04-01

    In the solid state concept of a direct methanol fuel cell (DMFC), methanol is directly oxidized at the anode of a solid polymer electrolyte fuel cell (SPEFC). Mathematical modelling of the transport and reaction phenomena within the electrodes and the electrolyte membrane is needed in order to get a closer insight into the operation of the fuel cell. In the work, macro-homogenous porous electrode and dilute solution theories are used to derive the phenomenological equations describing the transport and reaction mechanisms in a SPEFC single cell. The equations are first derived for a conventional H2/air SPEFC, and then extended for a DMFC. The basic model is derived in a one dimensional form in which it is assumed that species transport take place only in the direction crossing the cell sandwich. In addition, two dimensional descriptions of the catalyst layer are reviewed.

  8. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  9. A temperature-dependent coarse-grained model for the thermoresponsive polymer poly(N-isopropylacrylamide)

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Lauren J.; Stevens, Mark J., E-mail: msteve@sandia.gov [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-12-28

    A coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil–globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomistic simulations.

  10. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow.

    Science.gov (United States)

    Fedosov, Dmitry A; Karniadakis, George Em; Caswell, Bruce

    2010-04-14

    Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees-Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method.

  11. Molecular modeling of polymer composite interactions with analytes in electronic nose sensors for environmental monitoring in International Space Station

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K.

    2002-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL Electronic Nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings (with no hydrogens). The Dreiding 2.21 force field is used for the polymer and solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4- vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic (ammonia) and organic (methanol, toluene, hydrazine) compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites.

  12. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    Directory of Open Access Journals (Sweden)

    Treutenaere S.

    2015-01-01

    Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  13. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot......-controlled microdrilling was applied to drill through an insulating polymer, covering a conductive layer of PEDOT. The sudden drop in electrical resistance between the metal drill and the PEDOT layer upon physical contact was employed as stop criterion for the drilling process. Arrays of 3x 3 microelectrodes of diameter...... electrode configurations showed that the conducting polymer electrodes approach the steady state currents predicted from modeling, but at a much slower rate than expected. This wasshown to be caused by the use of electro active PEDOT electrodes. Subtraction of the latter contribution gave an approach...

  14. Relaxation of entangled model H-shaped polymers: a SANS investigation

    International Nuclear Information System (INIS)

    Heinrich, M.; Pyckhout-Hintzen, W.; Richter, D.; Straube, E.; Wiedenmann, A.

    2002-01-01

    This study is related to the understanding of rheology of long-chain branched polymers. A model compound for long-chain branching (H-shaped architecture) was investigated in elongational flow as a function of time after a step strain to λ=2. The experiments were performed in a strain rig with temperature and strain-rate control. The structure factor was measured after specific relaxation times intimately connected to the microscopic hierarchy of the polymer structure. The correlation hole effect and the quenched disorder in the scattering were described in a random phase approximation approach. This approach, already used for permanent rubber-elastic networks, has been modified to permit the observation of strain locally along the faster-relaxing arms. The data roughly follow the time scale of linear-shear rheology from which shift factors were derived. They confirm that bridge and arm relaxations can be treated in a decoupled, hierarchical way in time, although details of the analysis remain unsolved. (orig.)

  15. The Soft-Confined Method for Creating Molecular Models of Amorphous Polymer Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-02-09

    The goal of this work was to use molecular dynamics (MD) simulations to build amorphous surface layers of polypropylene (PP) and cellulose and to inspect their physical and interfacial properties. A new method to produce molecular models for these surfaces was developed, which involved the use of a "soft" confining layer comprised of a xenon crystal. This method compacts the polymers into a density distribution and a degree of molecular surface roughness that corresponds well to experimental values. In addition, calculated properties such as density, cohesive energy density, coefficient of thermal expansion, and the surface energy agree with experimental values and thus validate the use of soft confining layers. The method can be applied to polymers with a linear backbone such as PP as well as those whose backbones contain rings, such as cellulose. The developed PP and cellulose surfaces were characterized by their interactions with water. It was found that a water nanodroplet spreads on the amorphous cellulose surfaces, but there was no significant change in the dimension of the droplet on the PP surface; the resulting MD water contact angles on PP and amorphous cellulose surfaces were determined to be 106 and 33°, respectively. © 2012 American Chemical Society.

  16. Molecular dynamics of model compounds of polymers with chlorocyclohexyl groups in their structure

    Science.gov (United States)

    Saiz, Enrique; Riande, Evaristo

    1995-09-01

    The conformational mobility of 2-chlorocyclohexyl isobutyrate (CCHI), a model compound for the repeating unit of vinyl polymers containing chlorocyclohexane residues as side groups, is analyzed employing molecular dynamics (MD) procedures. Close to room temperature (ca. 300 K), the interconversion between axial (i.e., both chlorine atom and ester group in axial positions) and equatorial (both substituents in equatorial orientations) is not observed within the total time of 5 ns allowed to the MD trajectories. The analysis was then performed at temperatures in the range 1000 to 1500 K and the results extrapolated to lower temperatures. These extrapolations give energetic barriers of 5.72 and 8.15 kcal/mol, respectively for axial→equatorial and equatorial→axial transformations, with life times of τax≊9.6 and τeq≊46.3 ns for these two conformations at 300 K. The same procedure applied to unsubstituted cyclohexane gives an energetic barrier of 10.6 kcal/mol for the chair to chair interconversion, in excellent agreement with literature values. Further extrapolation to the temperatures at which the β subglass relaxation processes take place indicate that this interconversion is practically forbidden and therefore could not be invoked to explain the absorptions exhibited by this kind of polymers. The dipole moment of CCHI is also measured and calculated. Concordance between experimental (2.9±0.1 D) and calculated (2.7 D) values is very good.

  17. Relaxation of entangled model H-shaped polymers a SANS investigation

    CERN Document Server

    Heinrich, M; Richter, D; Straube, E; Wiedenmann, A

    2002-01-01

    This study is related to the understanding of rheology of long-chain branched polymers. A model compound for long-chain branching (H-shaped architecture) was investigated in elongational flow as a function of time after a step strain to lambda=2. The experiments were performed in a strain rig with temperature and strain-rate control. The structure factor was measured after specific relaxation times intimately connected to the microscopic hierarchy of the polymer structure. The correlation hole effect and the quenched disorder in the scattering were described in a random phase approximation approach. This approach, already used for permanent rubber-elastic networks, has been modified to permit the observation of strain locally along the faster-relaxing arms. The data roughly follow the time scale of linear-shear rheology from which shift factors were derived. They confirm that bridge and arm relaxations can be treated in a decoupled, hierarchical way in time, although details of the analysis remain unsolved. (...

  18. Polymer mixtures in confined geometries: Model systems to explore ...

    Indian Academy of Sciences (India)

    to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2d Ising class irrespective of chain length. The critical temperature always scales .... tive monomer blocks all the eight sites of an elementary cube, and these monomers are connected by bond vectors b ...

  19. Modeling and estimating system availability

    International Nuclear Information System (INIS)

    Gaver, D.P.; Chu, B.B.

    1976-11-01

    Mathematical models to infer the availability of various types of more or less complicated systems are described. The analyses presented are probabilistic in nature and consist of three parts: a presentation of various analytic models for availability; a means of deriving approximate probability limits on system availability; and a means of statistical inference of system availability from sparse data, using a jackknife procedure. Various low-order redundant systems are used as examples, but extension to more complex systems is not difficult

  20. Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using aspen polymers and two phase models

    Directory of Open Access Journals (Sweden)

    Shamiria Ahmad

    2013-01-01

    Full Text Available A comparative study describing gas-phase propylene polymerization in fluidized-bed reactors using Ziegler-Natta catalyst is presented. The reactor behavior was explained using a two-phase model (which is based on principles of fluidization as well as simulation using the Aspen Polymers process simulator. The two-phase reactor model accounts for the emulsion and bubble phases which contain different portions of catalysts with the polymerization occurring in both phases. Both models predict production rate, molecular weight, polydispersity index (PDI and melt flow index (MFI of the polymer. We used both models to investigate the effect of important polymerization parameters, namely catalyst feed rate and hydrogen concentration, on the product polypropylene properties, such as production rate, molecular weight, PDI and MFI. Both the two-phase model and Aspen Polymers simulator showed good agreement in terms of production rate. However, the models differed in their predictions for weight-average molecular weight, PDI and MFI. Based on these results, we propose incorporating the missing hydrodynamic effects into Aspen Polymers to provide a more realistic understanding of the phenomena encountered in fluidized bed reactors for polyolefin production.

  1. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    Science.gov (United States)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.

    2017-05-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.

  2. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  3. Characterisation and modelling of the thermorheological properties of pharmaceutical polymers and their blends using capillary rheometry: Implications for hot melt processing of dosage forms.

    Science.gov (United States)

    Jones, David S; Margetson, Daniel N; McAllister, Mark S; Andrews, Gavin P

    2015-09-30

    Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200-300 s(-1)) and injection moulding (approximately 900 s(-1)). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in

  4. Conducting Polymers

    Indian Academy of Sciences (India)

    ized the plastics industry by providing a route to polypropylene. (Zeigler and Natta jointly won the. Nobel Prize in Chemistry in 1963 for their discovery.) ... transport of charge in these systems can be understood in a simple fashion, by causing the imine and amine nitrogens to exchange places along the polymer backbone (in ...

  5. Conducting Polymers

    Indian Academy of Sciences (India)

    the plastics industry by providing a route to polypropylene. (Zeigler and Natta jointly won the Nobel Prize in chemistry in 1963 for their discovery.) ... these systems can be understood in a simple fashion, by causing the imine and amine nitrogens to exchange places along the polymer backbone (in protonated emeraldinel.

  6. Practical calibration correction method for the maintenance of an on-line near-infrared monitoring system for molten polymers.

    Science.gov (United States)

    Watari, Masahiro; Ozaki, Yukihiro

    2006-05-01

    The present study has investigated a practical calibration correction method for an on-line monitoring system for molten polymers using a near-infrared (NIR) spectrometer. A partial least squares (PLS) calibration model for the ethylene (C2) content in melt polypropylene (PP) was developed for the investigation of changes in the performance of the on-line system before and after maintenance necessitated by the relocation. The predicted values for the C2 content from the spectra measured after maintenance by using the calibration model developed from the spectra collected before maintenance showed that there were some differences between the spectra obtained by the NIR spectrometer system before and after maintenance. The loadings from factor analysis suggested that the main cause for the differences in the system performance before and after maintenance was wavenumber shifts in the NIR spectra of PP in the melt state. Six popular standardization or calibration transfer methods (direct standardization (DS), piecewise direct standardization (PDS), additive correction (AD), multiplicative correction (MP), slope and bias (SB), and difference spectrum with interpolation (DSI)) were evaluated for the calibration correction of the on-line NIR monitoring system. However, the results of the evaluation showed that these standardization methods need more than two samples to obtain the high accuracy for the nonlinearity contained in the spectra set. From the standpoint of practical calibration in a real plant, the acceptable number of samples for the calibration is one or two. Moreover, recalibration using transferred spectra is not preferable because of the traceability for a calibration model. As a practical solution for a calibration correction in a real plant, a method considering wavenumber shift and path-length correction has been proposed in this study. The predicted results for the C2 content in the melt-state PP from the spectra measured after maintenance by using the

  7. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts

    Science.gov (United States)

    Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em

    2017-01-01

    Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.

  8. Injectable and biodegradable temperature-responsive mixed polymer systems providing variable gel-forming pH regions.

    Science.gov (United States)

    Yoshida, Yasuyuki; Kawahara, Keisuke; Mitsumune, Shintaro; Kuzuya, Akinori; Ohya, Yuichi

    Aqueous solutions of biodegradable polymers exhibiting sol-to-gel transitions in response to external stimuli such as temperature and pH are expected to be used as injectable polymers (IPs) for biomedical applications. In this study, we prepared novel biodegradable temperature-responsive IP systems providing variable gel-forming pH regions. We synthesized PCGA-b-PEG-b-PCGA (tri-PCG) and attached carboxylic acid or primary amine groups on both termini, tri-PCG-COOH and tri-PCG-NH 2 , and investigated the temperature-responsive sol-to-gel transition behavior of the mixtures of these two copolymers at various pHs. We found that the gel-forming pH region of the mixed system could be easily controlled by simply changing the mixing ratios of these polymers.

  9. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].

    Science.gov (United States)

    Kuznetsova, E G; Kuryleva, O M; Salomatina, L A; Sevast'ianov, V I

    2008-01-01

    The goal of this work was to develop and test transdermal therapeutic systems for caffeine delivery. In vitro experiments showed that the rate of caffeine diffusion through untreated rabbit skin from a transdermal therapeutic systems based on polymer compound containing 50 mg medicine was 67.2 (9.1 microg/cm2h; for a system based on emulsion compound it was 173 (19 microg/cm2h. Methods for studying the caffeine release rate and quantitative measurement of caffeine content in the emulsion-based transdermal therapeutic system were developed. These methods are required to obtain data for standard drug documentation. The results of in vivo experiments in rabbits showed the absence of irritating effect of the emulsion-based transdermal therapeutic system. The obtained data on the specific efficiency of the transdermal therapeutic systems for caffeine delivery (50 mg) in healthy volunteers showed that this medicine could be used as a nonnarcotic psychoactivator for improving mental and physical activities and attention concentration.

  10. Modelling of reverberation enhancement systems

    OpenAIRE

    ROUCH , Jeremy; Schmich , Isabelle; Galland , Marie-Annick

    2012-01-01

    International audience; Electroacoustic enhancement systems are increasingly specified by acoustic consultants to address the requests for a multi-purpose use of performance halls. However, there is still a lack of simple models to predict the effect induced by these systems on the acoustic field. Two models are introduced to establish the impulse responses of a room equipped with a reverberation enhancement system. These models are based on passive impulse responses according to the modified...

  11. MODELLING OF MATERIAL FLOW SYSTEMS

    OpenAIRE

    PÉTER TELEK

    2012-01-01

    Material flow systems are in generally very complex processes. During design, building and operation of complex systems there are many different problems. If these complex processes can be described in a simple model, the tasks will be clearer, better adaptable and easier solvable. As the material flow systems are very different, so using models is a very important aid to create uniform methods and solutions. This paper shows the details of the application possibilities of modelling in the ma...

  12. Dynamic Modeling of ALS Systems

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  13. Modeling soft interface dominated systems

    NARCIS (Netherlands)

    Lamorgese, A.; Mauri, R.; Sagis, L.M.C.

    2017-01-01

    The two main continuum frameworks used for modeling the dynamics of soft multiphase systems are the Gibbs dividing surface model, and the diffuse interface model. In the former the interface is modeled as a two dimensional surface, and excess properties such as a surface density, or surface energy

  14. Validation of systems biology models

    NARCIS (Netherlands)

    Hasdemir, D.

    2015-01-01

    The paradigm shift from qualitative to quantitative analysis of biological systems brought a substantial number of modeling approaches to the stage of molecular biology research. These include but certainly are not limited to nonlinear kinetic models, static network models and models obtained by the

  15. Electro-thermal modelling of polymer lithium batteries for starting period and pulse power

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, P. [Electricite de France DER, Site des Renardieres, Moret-sur-Loing (France); Neri, M. [Electricite de France DER, Site des Renardieres, Moret-sur-Loing (France); Gueguen, M. [Bollore Technologies, Odet, 29 Quimper (France); Lonchampt, G. [CEA/CEREM, CENG-85X, 38 Grenoble (France)

    1995-04-01

    Since power capabilities of solid polymer lithium batteries can only be delivered above 60 C, the thermal management in electric-vehicle applications has to be carefully considered. Electro-thermal modelling of a thermally insulated 200 kg battery was performed, and electrochemical data were obtained from laboratory cell impedance measurements at 20 and 80 C. Starting at 20 C as initial working temperature, the battery reaches 40 C after 150 s of discharge in a 0.5 {Omega} resistance. At 40 C, the useful peak power is 20 kW. The energy expense for heating the battery from 20 to 40 C is 1.4 kWh, corresponding to 6% of the energy available in the battery. After a stand-by period of 24 h, the temperature decreases from 80 to 50 C, allowing efficient starting conditions. (orig.)

  16. Physical characterization and in silico modeling of inulin polymer conformation during vaccine adjuvant particle formation.

    Science.gov (United States)

    Barclay, Thomas G; Rajapaksha, Harinda; Thilagam, Alagu; Qian, Gujie; Ginic-Markovic, Milena; Cooper, Peter D; Gerson, Andrea; Petrovsky, Nikolai

    2016-06-05

    This study combined physical data from synchrotron SAXS, FTIR and microscopy with in-silico molecular structure predictions and mathematical modeling to examine inulin adjuvant particle formation and structure. The results show that inulin polymer chains adopt swollen random coil in solution. As precipitation occurs from solution, interactions between the glucose end group of one chain and a fructose group of an adjacent chain help drive organized assembly, initially forming inulin ribbons with helical organization of the chains orthogonal to the long-axis of the ribbon. Subsequent aggregation of the ribbons results in the layered semicrystalline particles previously shown to act as potent vaccine adjuvants. γ-Inulin adjuvant particles consist of crystalline layers 8.5 nm thick comprising helically organized inulin chains orthogonal to the plane of the layer. These crystalline layers alternate with amorphous layers 2.4 nm thick, to give overall particle crystallinity of 78%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The deformation behavior of solid polymers and modeling with the viscoplasticity theory based on overstress

    Science.gov (United States)

    Khan, Fazeel Jilani

    The inelastic deformation of six engineering polymers has been investigated with the desideratum being a thorough mapping of the mechanical response characteristics and the subsequent application of a state-variable based constitutive material model to the data. Materials included in the investigation were polycarbonate (PC), Nylon 66, high-density polyethylene (HDPE), polyethylene-terephthalate (PET), polyethersulfone (PES) and polyphenylene oxide (PPO). Cylindrical specimens were machined from as-received rod stock. The use of a servo-hydraulic test frame with control mode switching capability has permitted data collection under strain and load controlled test configurations. In the region of homogeneous deformation with strain typically less than 10%, during loading all materials have been found to exhibit, (i) positive non-linear rate sensitivity in loading, (ii) the magnitude of the response in creep, relaxation and recovery tests varies non-linearly with changes in the prior loading rate, and (iii) in the inelastic flow region the stress drop in relaxation has been found to be independent of the test strain value. In addition to these findings, perhaps the most singular deformation response has been in the instance of relaxation (creep) during unloading when the rate of change of stress (strain) may undergo a change in sign. This phenomenon has been labeled 'rate reversal' and has surfaced in tensile and compression load conditions. The preponderance of data, therefore, suggests that the amorphous versus crystalline distinction does not largely manifest itself in the qualitative nature of the deformation behavior. This finding endorses the competence of macro-based models to undertake the task of polymer deformation modeling. Common response characteristics such as positive strain rate sensitivity, monotonic decreases in the stress magnitude in a relaxation test (strain hold), and response during creep have been modeled well with the existing viscoplasticity

  18. From Numeric Models to Granular System Modeling

    Directory of Open Access Journals (Sweden)

    Witold Pedrycz

    2015-03-01

    To make this study self-contained, we briefly recall the key concepts of granular computing and demonstrate how this conceptual framework and its algorithmic fundamentals give rise to granular models. We discuss several representative formal setups used in describing and processing information granules including fuzzy sets, rough sets, and interval calculus. Key architectures of models dwell upon relationships among information granules. We demonstrate how information granularity and its optimization can be regarded as an important design asset to be exploited in system modeling and giving rise to granular models. With this regard, an important category of rule-based models along with their granular enrichments is studied in detail.

  19. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  20. Structure and interaction in the polymer-dependent reentrant phase behavior of a charged nanoparticle solution

    Science.gov (United States)

    Kumar, Sugam; Ray, D.; Aswal, V. K.; Kohlbrecher, J.

    2014-10-01

    Small-angle neutron scattering (SANS) studies have been carried out to examine the evolution of interaction and structure in a nanoparticle (silica)-polymer (polyethylene glycol) system. The nanoparticle-polymer solution interestingly shows a reentrant phase behavior where the one-phase charged stabilized nanoparticles go through a two-phase system (nanoparticle aggregation) and back to one-phase as a function of polymer concentration. Such phase behavior arises because of the nonadsorption of polymer on nanoparticles and is governed by the interplay of polymer-induced attractive depletion with repulsive nanoparticle-nanoparticle electrostatic and polymer-polymer interactions in different polymer concentration regimes. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. However, the increase in polymer concentration enhances the depletion attraction to give rise to the nanoparticle aggregation in the two-phase system. Further, the polymer-polymer repulsion at high polymer concentrations is believed to be responsible for the reentrance to one-phase behavior. The SANS data in polymer contrast-matched conditions have been modeled by a two-Yukawa potential accounting for both repulsive and attractive parts of total interaction potential between nanoparticles. Both of these interactions (repulsive and attractive) are found to be long range. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the depletion interaction leading to reentrant phase behavior. The nanoparticle clusters in the two-phase system are characterized by the surface fractal with simple cubic packing of nanoparticles within the clusters. The effect of varying ionic strength and polymer size in tuning the interaction has also been examined.

  1. Coastal Modeling System Advanced Topics

    Science.gov (United States)

    2012-06-18

    22 June 2012 - Day 5  Debugging and Problem solving  Model Calibration  Post-processing Coastal and Hydraulics Laboratory Focus of...Efficiently: • The setup process is fast and without wasted time or effort 3 Coastal and Hydraulics Laboratory 4 Coastal Modeling System (CMS) What...is the CMS? Integrated wave, current, and morphology change model in the Surface- water Modeling System (SMS). Why CMS? Operational at 10

  2. Static and dynamic filtrations of different clay, electrolytes, polymer systems; Filtrations statiques et dynamiques de differents systemes argile, electrolytes, polymere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.

    1996-04-16

    Filtration properties of model drilling fluids composed of water, clays, electrolytes and water soluble polymers have been studied in static and dynamic conditions on paper filters and rock slices. Filtration experiments combined with cake observations by cryo-S.E.M. and T.E.M., show the influence of the size shape of clay particles as well as their associating mode in suspension, on the texture of the cake, its permeability, and relaxation properties. These parameters depend on the nature of the electrolyte. The polymer reduces the cake permeability by enhancing the dispersion of the clay within the suspension, but mainly by plugging the porous network due its auto aggregation properties. The cake construction in dynamic conditions, is related to the state of aggregation of the initial suspension, its poly-dispersity, its sensitivity to shear rates, and also, to the permeability of the cake built at the beginning of the filtration. In all cases, the rate of thickening of the cake is slower and larger filtrate volumes are obtained compared to the static conditions. Shear rate has two effects: first, to dissociate the weak aggregates in suspension, second, to impose a size selection of the particles in the case of a poly-dispersed suspension. At high shear rates, a cake of constant thin thickness is quickly obtained. The thickness of this limiting cake depends on the fraction of small particles present in suspension, or that can be formed by dissociation of weak aggregates under shear rate. The permeability of this limiting cake formed in dynamic conditions is, as in static conditions, controlled by the size and the shape of the particles that form the cake or by the presence of a build loss reducer water soluble polymer. Filtrations carried out on Fontainebleau sandstones allow to visualize the internal cake and to precise the risks of formation damage by the drilling fluid. (author) 127 refs.

  3. Safeguards system effectiveness modeling

    International Nuclear Information System (INIS)

    Bennett, H.A.; Boozer, D.D.; Chapman, L.D.; Daniel, S.L.; Engi, D.; Hulme, B.L.; Varnado, G.B.

    1976-01-01

    A general methodology for the comparative evaluation of physical protection system effectiveness at nuclear facilities is presently under development. The approach is applicable to problems of sabotage or theft at fuel cycle facilities. The overall methodology and the primary analytic techniques used to assess system effectiveness are briefly outlined

  4. Safeguards system effectiveness modeling

    International Nuclear Information System (INIS)

    Bennett, H.A.; Boozer, D.D.; Chapman, L.D.; Daniel, S.L.; Engi, D.; Hulme, B.L.; Varnado, G.B.

    1976-01-01

    A general methodology for the comparative evaluation of physical protection system effectiveness at nuclear facilities is presently under development. The approach is applicable to problems of sabotage or theft at fuel cycle facilities. In this paper, the overall methodology and the primary analytic techniques used to assess system effectiveness are briefly outlined

  5. Dynamics of competitive polymer adsorption onto planar surfaces in good solvent.

    Science.gov (United States)

    Källrot, Niklas; Linse, Per

    2010-03-25

    Adsorption of mixed polymer solutions in good solvent containing polymers of different chain length has been studied by applying simulation techniques on a coarse-grained bead-spring polymer model. Fully flexible polymers at varying bead-surface interaction strength and different combinations of flexible, semiflexible, and stiff polymers at a single bead-surface interaction strength have been examined. Monte Carlo simulation techniques have been employed to investigate static equilibrium properties and Brownian dynamic simulations to follow the dynamics of the adsorption process. The properties examined comprise the adsorbed number of polymers, adsorbed number of beads, bead density profiles, components of the polymer radius of gyration, tail, loop, and train configurations, and nematic bond order of adsorbed beads. The adsorption involves an initially independent adsorption of the two polymer types followed by competitive adsorption. The competitive adsorption is characterized by a maximum of the adsorbed amount and a desorption of the polymer with the smallest surface affinity and a continued, but reduced, growth of the adsorbed amount of the polymer with the largest surface affinity. The surface affinity difference between the two polymer types of different length increased with increasing bead-surface interaction. Furthermore, the surface affinity of a polymer initially decreased but then largely increased at increasing stiffness. As a consequence, a stiff short polymer was found to displace a 4-fold longer flexible polymer. The spatial extension of adsorbed polymers as characterized by the radius of gyration parallel and perpendicular to the surface of a polymer of a given flexibility was independent of the flexibility of the other polymer type. The fraction of beads in tails was increased and in trains reduced as the surface affinity of the dissimilar polymer type was raised. Finally, the adsorption layer of a stiff polymer possesses a nematic bond order. In

  6. Polymer substrates for flexible photovoltaic cells application in personal electronic system

    Science.gov (United States)

    Znajdek, K.; Sibiński, M.; Strąkowska, A.; Lisik, Z.

    2016-01-01

    The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For the most promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.

  7. Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems.

    Science.gov (United States)

    Wen, Liping; Tian, Ye; Ma, Jie; Zhai, Jin; Jiang, Lei

    2012-03-28

    Learning from nature has inspired the creation of intelligent devices to meet the increasing needs of the advanced community and also to better understand how to imitate biology. As one of biomimetic nanodevices, nanochannels or nanopores aroused particular interest because of their potential applications in nanofluidic devices, biosensing, filtration, and energy conversions. In this review we have summarized some recent results mainly focused on the design, construction and application in energy conversion systems. Like biological nanochannels, the prepared smart artificial nanochannels fabricated by ion track-etched polymer membranes and smart molecules show a great potential in the field of bioengineering and biotechnology. And these applications can not only help people to know and understand the living processes in nature, but can also inspire scientists to study and develop novel nanodevices with better performance for the mankind.

  8. Integrated lasers for biophotonic Lab-on-a-Chip systems in polymer

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grossmann, Tobias

    2011-01-01

    Lab-on-a-Chip (LoC) systems enable biomedical or chemical testing for point-of-care analysis at the patient's bedside or in the field. Our work is focused on developing optical LoCs based on polymers by integrating microfluidic channels, optical waveguides, and miniaturized lasers on different...... platforms. The chips introduced in our work are using optical and fluidic interconnects only. While some of our photonic structures require features with lateral dimensions in the range of 100 nm, the microfluidic channels are more than one order of magnitude above this regime. In order to allow for mass...... production, the processes for multiscale replication of the chips are optimized for a minimal number of parallel production steps....

  9. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix

    NARCIS (Netherlands)

    Kochetov, R.; Korobko, A.V.; Andritsch, T.; Morshuis, P.H.F.; Picken, S.J.; Smit, J.J.

    2011-01-01

    In this paper the thermal conductivity of epoxy-based composite materials is analysed. Two and three-phase Lewis–Nielsen models are proposed for fitting the experimental values of the thermal conductivity of epoxy-based polymer composites. Various inorganic nano- and microparticles were used, namely

  10. Molecular modeling in design of polyaniline for polymer-based carbon dioxide sensor

    OpenAIRE

    Chen, X.P.

    2013-01-01

    Conducting polymers are attractive chemical sensing materials due to their outstanding characteristics including low cost, room-temperature operations, easy device fabrication, high sensitivity and short response time. The new nanowires architecture, with high surface-to-volume ratio, makes possible the conducting polymers an ultra fast detection of chemical at low concentrations. Polymer-coated nanowires are thus the potential cost effective solution for the new generation gas sensors. As a ...

  11. A Comprehensive Physical Impedance Model of Polymer Electrolyte Fuel Cell Cathodes in Oxygen-free Atmosphere.

    Science.gov (United States)

    Obermaier, Michael; Bandarenka, Aliaksandr S; Lohri-Tymozhynsky, Cyrill

    2018-03-21

    Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC's impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie's analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H 2 crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.

  12. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5–4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data

  13. C1-inhibitor polymers activate the FXII-dependent kallikrein-kinin system

    DEFF Research Database (Denmark)

    Elenius Madsen, Daniel; Sidelmann, Johannes Jakobsen; Biltoft, Daniel

    2015-01-01

    attacks. HAE is caused by mutations in the C1-inh encoding gene, and we recently demonstrated that some mutations give rise to the presence of polymerized C1-inh in the plasma of HAE patients. METHODS: C1-inh polymers corresponding to the size of polymers observed in vivo were produced using heat...... denaturation and gel filtration. The ability of these polymers to facilitate FXII activation was assessed in vitro in an FXII activation bandshift assay. After spiking of plasma with C1-inh polymers, kallikrein generation was analyzed in a global kallikrein generation method. Prekallikrein consumption...... in the entire Danish HAE cohort was analyzed using an ELISA method. RESULTS: C1-inh polymers mediated FXII activation, and a dose dependent kallikrein generation in plasma spiked with C1-inh polymers. An increased (pre)kallikrein consumption was observed in plasma samples from HAE patients presenting with C1...

  14. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    International Nuclear Information System (INIS)

    Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)

  15. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    . A hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers...... will be first synthesized and optimized. Different routes to functionalize the polymers will be explored to increate proton conductivity....

  16. Advanced Polymer PV System; PVMaT 4A1 Final Report; September 1995 - December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hanoka, J. I.

    1999-06-17

    This document reports on work performed by Evergreen Solar, Inc. under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. The purpose of this subcontract was to produce lower module and systems costs through the innovative use of polymeric materials. The impetus behind this approach was the burgeoning use of polymers in such major industries as packaging and automobiles. The market demand in these industries has resulted in whole new areas of high-performance, but low-cost, plastics. These developments created fresh opportunities for photovoltaics. Using this approach, a new backskin material instead of Tedlar{trademark} (Tedlar is a Dupont trademark) or Tedlar{trademark} laminate was developed and tested. This new backskin material allowed us to make a frameless module and novel mounting methods. The latter is referred to as an Innovative Mounting System (IMS). This IMS system, in conjunction with the frameless module, substantially reduces the cost of installed PV systems by reducing labor and materials costs, both in the factory and in field installation. The IMS incorporates several advances in polymers, processing methods, and product design. The advanced backskin material permits elimination of the conventional aluminum perimeter frame, serves to protect and seal the module edge, and allows for direct bonding of multi-functional mounting bars. Electrical interconnection is easier and more reliable with a new junction box that Evergreen has designed after soliciting user feedback. A new transparent encapsulant material, to replace ethylene vinyl acetate (EVA), was developed and tested as part of this subcontract. Early results indicate it will have a number of advantages over EVA, not least of which is better resistance to degradation under light exposure. This new encapsulant can be laminated in air and has also allowed for the development of a continuous, non-vacuum lamination process. The program culminated in the fielding of prototype products

  17. Modeling & processing of ceramic and polymer precursor ceramic matrix composite materials

    Science.gov (United States)

    Wang, Xiaolin

    of filler particle reaction, microstructure evolution, at the microscale as well as transient fluid flow, heat transfer, and species transport at the macroscale. The model comprises of (i) a microscale model and (ii) a macroscale transport model, and aims to provide optimal conditions for the fabrication process of the ceramics. The porous media macroscale model for SiC-based metal-ceramic materials processing will be developed to understand the thermal polymer pyrolysis, chemical reaction of active fillers and transport phenomena in the porous media. The macroscale model will include heat and mass transfer, curing, pyrolysis, chemical reaction and crystallization in a mixture of preceramic polymers and submicron/nano-sized metal particles of uranium, zirconium, niobium, or hafnium. The effects of heating rate, sample size, size and volume ratio of the metal particles on the reaction rate and product uniformity will be studied. The microscale model will be developed for modeling the synthesis of SiC matrix and metal particles. The macroscale model provides thermal boundary conditions to the microscale model. The microscale model applies to repetitive units in the porous structure and describes mass transport, composition changes and motion of metal particles. The unit-cell is the representation unit of the source material, and it consists of several metal particles, SiC matrix and other components produced from the synthesis process. The reactions between different components, the microstructure evolution of the product will be considered. The effects of heating rate and metal particle size on species uniformity and microstructure are investigated.

  18. Advanced Polymer Systems for Defence Applications: Power Generation, Protection and Sensing

    Science.gov (United States)

    2014-05-01

    J. A.; Thoney, K. A. “Literature Review on Superhydrophobic Self-Cleaning Surfaces Produced by Electrospinning ,” J. Polym. Sci. Part B: Polym...coated ZnO nanorod arrays and P3HT polymer, forming close and intimate contacts with both TiO2 through carboxylic acid binding and P3HT polymer...presumably by way of π–π interaction [3]. As a result, the infiltration of P3HT into the space among nanorod arrays and the formation of top P3HT

  19. Restoring the Breast Mound Using a Preadipoctye-Seeded Growth Factor-Loaded Polymer Hydrogel System

    National Research Council Canada - National Science Library

    Patrick, Charles W., Jr

    2004-01-01

    .... This multidisciplinary application employs principles of bioengineering, synthetic polymer chemistry, and preadipocyte cell biology to develop an innovative biodegradable scaffold material capable...

  20. Polymer-grafted superparamagnetic iron oxide nanoparticles as a potential stable system for magnetic resonance imaging and doxorubicin delivery

    NARCIS (Netherlands)

    Asadi, H.; Khoee, S.; Deckers, R.

    2016-01-01

    Currently, there is high interest in developing multifunctional theranostic platforms with both imaging and therapeutic functions. Herein, we report a facile approach to develop polymer-grafted superparamagnetic iron oxide nanoparticles (SPIONs) as a promising system for imaging and drug delivery. A