WorldWideScience

Sample records for model polymer system

  1. Stochastic Models of Polymer Systems

    Science.gov (United States)

    2016-01-01

    field limit of a dynamical model for polymer systems, Science China Mathematics , (11 2012): 0. doi: TOTAL: 1 Number of Non Peer-Reviewed Conference...4.0 (4.0 max scale): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education , Research and Engineering...undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science

  2. Modeling of rheological properties for entangled polymer systems

    Science.gov (United States)

    Banerjee, Nilanjana

    The study of entangled polymer rheology both in the field of medicine and polymer processing has their major importance. Mechanical properties of biomolecules are studied in order to better understand cellular behavior. Similarly, industrial processing of polymers needs thorough understanding of rheology so as to improve process techniques. Work in this dissertation has been organized into three major sections. Firstly, numerical/analytical models are reviewed for describing rheological properties and mechanical behaviors of cytoskeleton. The cytoskeleton models are classified into categories according to the length scales of the phenomena of interest. The main principles and characteristics of each model are summarized and discussed by comparison with each other, thus providing a systematic understanding of biopolymer network modeling. Secondly, a new constitutive "toy" Mead-Banerjee-Park (MBP) model is developed for monodisperse entangled polymer systems, by introducing the idea of a configuration dependent friction coefficient (CDFC) and entanglement dynamics (ED) into the MLD "toy" model. The model is tested against experimental data in steady and transient extensional and shear flows. The model simultaneously captures the monotonic thinning of the extensional flow curve of polystyrene (PS) melts and the extension hardening found in PS solutions. Thirdly, the monodisperse MBP model is accordingly modified into polydisperse MBP "toy" constitutive model to predict the nonlinear viscoelastic material properties of model polydisperse systems. The polydisperse MBP toy model accurately predicts the material properties in the forward direction for transient uniaxial extension and transient shear flow.

  3. Molecular modeling in confined polymer and biomembrane systems

    Directory of Open Access Journals (Sweden)

    Jayeeta Ghosh

    2009-07-01

    Full Text Available The computational study of soft materials under confinement for bio- and nanotechnology still poses significantchallenges but has come a long way in the last decade. It is possible to realistically model and understand the fundamentalmechanisms which are at play if soft materials are confined to nanometer dimensions. Here, we present several recentexamples of such studies. Thin polymer films are abundantly used as friction modifiers or steric stabilizers. We show howsystematic modeling can shed light on the interplay between entropic and energetic interactions. Thin glassy films arecritical for the success of nanolithography. For that we have to understand the effect of confinement on the glass transitionbehavior in order to guarantee the stability and integrity of the lithographic masks. Simulations aim to understand the fundamental differences in the densities of states of glass formers in bulk and under confinement. With the advent of bionanotechnology the structure and phase behavior of lipid membranes as models for cellular membranes at the nano scale length is of importance due to implications in understanding the role of the lipids in biochemical membrane processes.

  4. Tunable Optical Polymer Systems

    Science.gov (United States)

    2007-11-02

    outperforms almost all other organic polymer systems reported thus far, the introduction of the first multiple color LBL electrochrome , and development...thin films outperform previously reported LBL assembled films and approach integration capability for a number of electrochromic , sensing and...Zacharia, N; Hammond, P. T. “ Electrochromism of LBL assembled thin polymer films containing metal oxide nanoparticles,” American Chemical Society

  5. Modeling and Simulation of Ballistic Penetration of Ceramic-Polymer-Metal Layered Systems

    Directory of Open Access Journals (Sweden)

    J. D. Clayton

    2015-01-01

    Full Text Available Numerical simulations and analysis of ballistic impact and penetration by tungsten alloy rods into composite targets consisting of layers of aluminum nitride ceramic tile(s, polymer laminae, and aluminum backing are conducted over a range of impact velocities on the order of 1.0 to 1.2 km/s. Computational results for ballistic efficiency are compared with experimental data from the literature. Simulations and experiments both demonstrate a trend of decreasing ballistic efficiency with increasing impact velocity. Predicted absolute residual penetration depths often exceed corresponding experimental values. The closest agreement between model and experiment is obtained when polymer interfaces are not explicitly represented in the numerical calculations, suggesting that the current model representation of such interfaces may be overly compliant. The present results emphasize the importance of proper resolution of geometry and constitutive properties of thin layers and interfaces between structural constituents for accurate numerical evaluation of performance of modern composite protection systems.

  6. Systematic Multiscale Modeling of Polymers

    Science.gov (United States)

    Faller, Roland; Huang, David; Bayramoglu, Beste; Moule, Adam

    2011-03-01

    The systematic coarse-graining of heterogeneous soft matter systems is an area of current research. We show how the Iterative Boltzmann Inversion systematically develops models for polymers in different environments. We present the scheme and a few applications. We study polystyrene in various environments and compare the different models from the melt, the solution and polymer brushes to validate accuracy and efficiency. We then apply the technique to a complex system needed as active layer in polymer-based solar cells. Nano-scale morphological information is difficult to obtain experimentally. On the other hand, atomistic computer simulations are only feasible to studying systems not much larger than an exciton diffusion length. Thus, we develop a coarse-grained (CG) simulation model, in which collections of atoms from an atomistic model are mapped onto a smaller number of ``superatoms.'' We study mixtures of poly(3-hexylthiophene) and C60 . By comparing the results of atomistic and CG simulations, we demonstrate that the model, parametrized at one temperature and two mixture compositions, accurately reproduces the system structure at other points of the phase diagram. We use the CG model to characterize the microstructure as a function of polymer:fullerene mole fraction and polymer chain length for systems approaching the scale of photovoltaic devices.

  7. Supramolecular polymers in inhomogeneous systems

    NARCIS (Netherlands)

    Zweistra, H.J.A.

    2007-01-01

    This thesis describes theoretical results of supramolecular polymers in inhomogeneous systems. Supramolecular polymers are linear assemblies of which the monomers are joined by reversible bonds. Many types of supramolecular polymers have been synthesized in recent years. Moreover, there are numerous

  8. Delocalization in polymer models

    CERN Document Server

    Jitomirskaya, S Yu; Stolz, G

    2003-01-01

    A polymer model is a one-dimensional Schroedinger operator composed of two finite building blocks. If the two associated transfer matrices commute, the corresponding energy is called critical. Such critical energies appear in physical models, an example being the widely studied random dimer model. Although the random models are known to have pure-point spectrum with exponentially localized eigenstates for almost every configuration of the polymers, the spreading of an initially localized wave packet is here proven to be at least diffusive for every configuration.

  9. Mutual diffusion coefficient models for polymer-solvent systems based on the Chapman-Enskog theory

    Directory of Open Access Journals (Sweden)

    R. A. Reis

    2004-12-01

    Full Text Available There are numerous examples of the importance of small molecule migration in polymeric materials, such as in drying polymeric packing, controlled drug delivery, formation of films, and membrane separation, etc. The Chapman-Enskog kinetic theory of hard-sphere fluids with the Weeks-Chandler-Andersen effective hard-sphere diameter (Enskog-WCA has been the most fruitful in diffusion studies of simple fluids and mixtures. In this work, the ability of the Enskog-WCA model to describe the temperature and concentration dependence of the mutual diffusion coefficient, D, for a polystyrene-toluene system was evaluated. Using experimental diffusion data, two polymer model approaches and three mixing rules for the effective hard-sphere diameter were tested. Some procedures tested resulted in models that are capable of correlating the experimental data with the refereed system well for a solvent mass fraction greater than 0.3.

  10. Modelling polymer draft gears

    Science.gov (United States)

    Wu, Qing; Yang, Xiangjian; Cole, Colin; Luo, Shihui

    2016-09-01

    This paper developed a new and simple approach to model polymer draft gears. Two types of polymer draft gears were modelled and compared with experimental data. Impact characteristics, in-train characteristics and frequency responses of these polymer draft gears were studied and compared with those of a friction draft gear. The impact simulations show that polymer draft gears can withstand higher impact speeds than the friction draft gear. Longitudinal train dynamics simulations show that polymer draft gears have significantly longer deflections than friction draft gears in normal train operations. The maximum draft gear working velocities are lower than 0.2 m/s, which are significantly lower than the impact velocities during shunting operations. Draft gears' in-train characteristics are similar to their static characteristics but are very different from their impact characteristics; this conclusion has also been reached from frequency response simulations. An analysis of gangway bridge plate failures was also conducted and it was found that they were caused by coupler angling behaviour and long draft gear deflections.

  11. A multi-objective optimisation model for a general polymer electrolyte membrane fuel cell system

    Science.gov (United States)

    Ang, Sheila Mae C.; Brett, Daniel J. L.; Fraga, Eric S.

    This paper presents an optimisation model for a general polymer electrolyte membrane (PEM) fuel cell system suitable for efficiency and size trade-offs investigation. Simulation of the model for a base case shows that for a given output power, a more efficient system is bigger and vice versa. Using the weighting method to perform a multi-objective optimisation, the Pareto sets were generated for different stack output powers. A Pareto set, presented as a plot of the optimal efficiency and area of the membrane electrode assembly (MEA), gives a quantitative description of the compromise between efficiency and size. Overall, our results indicate that, to make the most of the size-efficiency trade-off behaviour, the system must be operated at an efficiency of at least 40% but not more than 47%. Furthermore, the MEA area should be at least 3 cm 2 W -1 for the efficiency to be practically useful. Subject to the constraints imposed on the model, which are based on technical practicalities, a PEM fuel cell system such as the one presented in this work cannot operate at an efficiency above 54%. The results of this work, specifically the multi-objective model, will form a useful and practical basis for subsequent techno-economic studies for specific applications.

  12. Multiscale modeling of polymer nanocomposites

    Science.gov (United States)

    Sheidaei, Azadeh

    In recent years, polymer nano-composites (PNCs) have increasingly gained more attention due to their improved mechanical, barrier, thermal, optical, electrical and biodegradable properties in comparison with the conventional micro-composites or pristine polymer. With a modest addition of nanoparticles (usually less than 5wt. %), PNCs offer a wide range of improvements in moduli, strength, heat resistance, biodegradability, as well as decrease in gas permeability and flammability. Although PNCs offer enormous opportunities to design novel material systems, development of an effective numerical modeling approach to predict their properties based on their complex multi-phase and multiscale structure is still at an early stage. Developing a computational framework to predict the mechanical properties of PNC is the focus of this dissertation. A computational framework has been developed to predict mechanical properties of polymer nano-composites. In chapter 1, a microstructure inspired material model has been developed based on statistical technique and this technique has been used to reconstruct the microstructure of Halloysite nanotube (HNT) polypropylene composite. This technique also has been used to reconstruct exfoliated Graphene nanoplatelet (xGnP) polymer composite. The model was able to successfully predict the material behavior obtained from experiment. Chapter 2 is the summary of the experimental work to support the numerical work. First, different processing techniques to make the polymer nanocomposites have been reviewed. Among them, melt extrusion followed by injection molding was used to manufacture high density polyethylene (HDPE)---xGnP nanocomposties. Scanning electron microscopy (SEM) also was performed to determine particle size and distribution and to examine fracture surfaces. Particle size was measured from these images and has been used for calculating the probability density function for GNPs in chapter 1. A series of nanoindentation tests have

  13. Modeling the vapor-liquid equilibria of polymer-solvent mixtures: Systems with complex hydrogen bonding behavior

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    The vapor–liquid equilibria of binary polymer–solvent systems was modeled using the Non-Random Hydrogen Bonding (NRHB) model. Mixtures of poly(ethylene glycol), poly(propylene glycol), poly(vinyl alcohol) and poly(vinyl acetate) with various solvents were investigated, while emphasis was put...... on hydrogen bonding systems, in which functional groups of the polymer chain can self-associate or cross-associate with the solvent molecules. Effort has been made to explicitly account for all hydrogen bonding interactions. The results reveal that the NRHB model offers a flexible approach to account...... the complexity of the examined systems....

  14. Informed Materials Discovery: Designing New Engineering Polymer Systems Using High Throughput Modeling Techniques

    Science.gov (United States)

    2016-10-27

    for equations of state, in: Journal de Physique IV (Proceedings), Vol. 110, EDP sciences , 2003, pp. 809–814. [11] J. P. Foreman, D. Porter, S. Behzadi...The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates, Journal of Materials Science 8 (7...materials science , group interaction modeling, polymers, materials discovery 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18.  NUMBER OF

  15. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 1. Statical polymer method

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-02-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  16. Statistical thermodynamics of polymer quantum systems

    CERN Document Server

    Chacón-Acosta, Guillermo; Dagdug, Leonardo; Morales-Técotl, Hugo A

    2011-01-01

    Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermodynamics of two one dimensional {\\em polymer} quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal gas. We first study the spectra of these polymer systems. It turns out useful for the analysis to consider the length scale required by the quantization and which we shall refer to as polymer length. The dynamics of the polymer oscillator can be given the form of that for the standard quantum pendulum. Depending on the...

  17. A pinned polymer model of posture control

    CERN Document Server

    Chow, C C; Chow, Carson C; Collins, J J

    1995-01-01

    A phenomenological model of human posture control is posited. The dynamics are modelled as an elastically pinned polymer under the influence of noise. The model accurately reproduces the two-point correlation functions of experimental posture data and makes predictions for the response function of the postural control system. The physiological and clinical significance of the model is discussed.

  18. Modeling the polymer product maceration

    Science.gov (United States)

    Ahunov, D. N.; Karpova, M. N.

    2014-12-01

    The article contains a view of mass transmission simulation procedure conformably to control of manufacturing method's automation, and also is shown a simulator of polymer product maceration process, and results of developed for this simulator realization program system

  19. Three-dimensional dynamic modelling of Polymer-Electrolyte-Membrane-Fuel-Cell-Systems; Dreidimensionale dynamische Modellierung und Berechnung von Polymer-Elektrolyt-Membran-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas

    2008-12-15

    This thesis deals with dynamic and multi-dimensional modelling of Polymer- Electrolyte-Membrane-Fuel-Cells (PEMFC). The developed models include all the different layers of the fuel cell e.g. flow field, gas diffusion layer, catalyst layer and membrane with their particular physical, chemical and electrical characteristics. The simulation results have been verified by detailed measurements performed at the research centre for hydrogen and solar energy in Ulm (ZSW Ulm). The developed three dimensional model describes the time- and spatial-dependent charge and mass transport in a fuel cell. Additionally, this model allows the analysis of critical operating conditions. For example, the current density distribution for different membranes is shown during insufficient humidification which results in local overstraining and degradation. The model also allows to analyse extreme critical operating conditions, e.g. short time breakdown of the humidification. Furthermore, the model shows the available potential of improvement opportunities in power density and efficiency of PEMFC due to optimisation of the gas diffusion layer, the catalyst and membrane. In the second part of the work the application of PEMFC systems for combined heat and power units is described by one-dimensional models for an electrical power range between 1 kW and 5 kW. This model contains the necessary components, e.g. gas processing, humidification, gas supply, fuel cell stack, heat storage, pumps, auxiliary burner, power inverter und additional aggregates. As a main result, it is possible to distinctly reduce the energy demand and the carbon dioxide exhaust for different load profiles. Today the costs for fuel cell systems are considerably higher than that of the conventional electrical energy supply. (orig.)

  20. Principles of polymer processing modelling

    Directory of Open Access Journals (Sweden)

    Agassant Jean-François

    2016-01-01

    Full Text Available Polymer processing involves three thermo-mechanical stages: Plastication of solid polymer granules or powder to an homogeneous fluid which is shaped under pressure in moulds or dies and finally cooled and eventually drawn to obtain the final plastic part. Physical properties of polymers (high viscosity, non-linear rheology, low thermal diffusivity as well as the complex shape of most plastic parts make modelling a challenge. Several examples (film blowing extrusion dies, injection moulding, blow moulding are presented and discussed.

  1. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems.

    Science.gov (United States)

    Chen, Yuhang; Zhou, Shiwei; Li, Qing

    2011-03-01

    The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a fundamental stochastic process and an additional autocatalytic effect induced by the local carboxylic acid concentration in terms of the continuous diffusion equation. Illustrative examples of microparticles and tissue scaffolds demonstrate the applicability of the model. It is found that diffusive transport plays a critical role in determining the degradation pathway, whilst autocatalysis makes the degradation size dependent. The modeling results show good agreement with experimental data in the literature, in which the hydrolysis rate, polymer architecture and matrix size actually work together to determine the characteristics of the degradation and erosion processes of bulk-erosive polymer devices. The proposed degradation model exhibits great potential for the design optimization of drug carriers and tissue scaffolds.

  2. Toward a Mesoscale Model for the Dynamics of Polymer Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G H; Trebotich, D

    2006-10-02

    To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.

  3. The direct link model for polymer rings using topological field theory and the second topological moment in dense systems

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Matthias [Institut fuer Theoretische Physik, Universitaet Goettingen, Goettingen (Germany)

    2001-03-30

    Polymer rings in solution are either permanently entangled or are not. Permanent topological restrictions give rise to additional entropic interactions apart from the ones arising due to mere chain flexibility or excluded volume. Conversely, entangled polymer rings systems may be formed by closing randomly entangled flexible linear chains. The dependence of linking numbers between randomly entangled rings on the chain length, more specifically the second topological moment , i.e. the average squared linking number, may be determined. In this paper, an approach recently discussed in mathematical physics and called Abelian BF theory, is presented which allows one to express the linking constraint in its simplest form, the Gauss integral, in terms of two gauge fields. The model of Brereton and Shah for a single ring entangled with many other surrounding rings is rederived. The latter model is finally used to calculate the second topological moment, in agreement with a recent result by Ferrari, Kleinert, and Lazzizzera obtained using n-component {phi}{sup 4} theory for the limit n{yields}0. (author)

  4. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    Science.gov (United States)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  5. A new transient network model for associative polymer networks

    NARCIS (Netherlands)

    Wientjes, R.H.W.; Jongschaap, R.J.J.; Duits, M.H.G.; Mellema, J.

    1999-01-01

    A new model for the linear viscoelastic behavior of polymer networks is developed. In this model the polymer system is described as a network of spring segments connected via sticky points (as in the Lodge model). [Lodge, A. S., “A network theory of flow birefringence and stress in concentrated poly

  6. Physics in Cell Biology: Actin as a Model System for Polymer Physics

    Science.gov (United States)

    Frey, Erwin

    Living cells are soft bodies of a characteristic form, but endowed with a capacity for a steady turnover of their structures. Both of these material properties, i.e. recovery of the shape after an external stress has been imposed and dynamic structural reorganization, are essential for many cellular phenomena. The structural element responsible for the extraordinary mechanical and dynamical properties of eukaryotic cells is a three-dimensional assembly of protein fibers, the cytoskeleton. These fibers are semiflexible polymers with a stiffness intermediate between rigid rods and freely jointed chains. We discuss the statistical mechanics of individual semiflexible polymers and analyze the viscoelastic properties of solutions and cross linked networks of these biopolymers.

  7. Structure and selection in an autocatalytic binary polymer model

    DEFF Research Database (Denmark)

    Tanaka, Shinpei; Fellermann, Harold; Rasmussen, Steen

    2014-01-01

    An autocatalytic binary polymer system is studied as an abstract model for a chemical reaction network capable to evolve. Due to autocatalysis, long polymers appear spontaneously and their concentration is shown to be maintained at the same level as that of monomers. When the reaction starts from....... Stability, fluctuations, and dynamic selection mechanisms are investigated for the involved self-organizing processes. Copyright (C) EPLA, 2014......An autocatalytic binary polymer system is studied as an abstract model for a chemical reaction network capable to evolve. Due to autocatalysis, long polymers appear spontaneously and their concentration is shown to be maintained at the same level as that of monomers. When the reaction starts from...

  8. Polymer mixtures in confined geometries: Model systems to explore phase transitions

    Indian Academy of Sciences (India)

    K Binder; M Müller; A Cavallo; E V Albano

    2005-06-01

    While binary (A,B) symmetric polymer mixtures in = 3 dimensions have an unmixing critical point that belongs to the 3 Ising universality class and crosses over to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2 Ising class irrespective of chain length. The critical temperature always scales linearly with chain length, except for strictly two-dimensional chains confined to a plane, for which c 5/8 (this unusual exponent describes the fractal contact line between segregated chains in dense melts in two spatial dimensions, = 2). When the walls of the thin film are not neutral, but preferentially attract one species, complex phase diagrams occur due to the interplay between capillary condensation and wetting phenomena. For `competing walls' (one wall prefers A, the other prefers B) particularly interesting interface localization–delocalization transitions occur, while analogous phenomena in wedges are related to the `filling transition'.

  9. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  10. Polymer mixtures in confined geometries: Model systems to explore phase transitions

    Science.gov (United States)

    Binder, K.; Müller, M.; Cavallo, A.; Albano, E. V.

    2005-06-01

    While binary (A,B) symmetric polymer mixtures in d=3 dimensions have an unmixing critical point that belongs to the 3d Ising universality class and crosses over to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2d Ising class irrespective of chain length. The critical temperature always scales linearly with chain length, except for strictly two-dimensional chains confined to a plane, for which T_{c} propto N^{5/8} (this unusual exponent describes the fractal contact line between segregated chains in dense melts in two spatial dimensions, d=2). When the walls of the thin film are not neutral, but preferentially attract one species, complex phase diagrams occur due to the interplay between capillary condensation and wetting phenomena. For `competing walls' (one wall prefers A, the other prefers B) particularly interesting interface localization-delocalization transitions occur, while analogous phenomena in wedges are related to the `filling transition'.

  11. Numerical solution of the polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.

    1999-05-01

    The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.

  12. Modeling and Simulation of Ballistic Penetration of Ceramic-Polymer-Metal Layered Systems

    Science.gov (United States)

    2016-01-01

    Jaromir Horacek Copyright © 2015 J. D. Clayton.This is an open access article distributed under the Creative Commons Attribution License, which permits...faces between layers may strongly influence performance of such systems under ballistic impact. However, the impor- tance of interfacial...experimental study of penetration resistance of ceramic armour subjected to projectile impact,” International Journal of Impact Engineering, vol. 32

  13. Entanglement effects in model polymer networks

    Science.gov (United States)

    Everaers, R.; Kremer, K.

    The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic

  14. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  15. Modeling VLE and GLE of Systems Involving Polymers by Using SRK Equation of State%SRK状态方程用于聚合物体系的汽液和气液平衡

    Institute of Scientific and Technical Information of China (English)

    计伟荣

    2007-01-01

    A simple extension of cubic equations of state (EOS) to polymer systems has been proposed.The Soave-Redlich-Kwong (SRK) EOS was taken as a prototype to be used to describe the PVT behavior of polymer melts in a wide temperature and pressure range.Combined with a modified Huron-Vidal 8E-mixing rule it was applied for modeling vapor-liquid equilibria of polymer-solvent solutions and the solubility of supercritical gases in polymer melts.Satisfactory results are obtained.

  16. Development of controlled drug release systems based on thiolated polymers.

    Science.gov (United States)

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  17. Hygrothermal modeling and testing of polymers and polymer matrix composites

    Science.gov (United States)

    Xu, Weiqun

    2000-10-01

    The dissertation, consisting of four papers, presents the results of the research investigation on environmental effects on polymers and polymer matrix composites. Hygrothermal models were developed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data. Hygrothermal testing was also conducted to provide the necessary data for characterizing of model coefficients and model verification. In part 1, a methodology is proposed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for a polymer adhesive below its Tg. Subsequently, these diffusion coefficients are used for predicting moisture concentration profiles through the thickness of a polymer. In part 2, a modeling methodology based on irreversible thermodynamics applied within the framework of composite macro-mechanics is presented, that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for laminated composites with distributed uniaxial damage. Comparisons with test data for a 5-harness satin textile composite with uniaxial micro-cracks are provided for model verifications. In part 3, the same modeling methodology based on irreversible thermodynamics is extended to the case of a bi-axially damaged laminate. The model allows characterization of nonFickian diffusion coefficients as well as moisture saturation level from moisture weight gain data for laminates with pre-existing damage. Comparisons with test data for a bi-axially damaged Graphite/Epoxy woven composite are provided for model verifications. Finally, in part 4, hygrothermal tests conducted on AS4/PR500 5HS textile composite laminates are summarized. The objectives of the hygrothermal tests are to determine the diffusivity and maximum moisture content of the laminate.

  18. Restrictions in Model Reduction for Polymer Chain Models in Dissipative Particle Dynamics

    KAUST Repository

    Moreno Chaparro, Nicolas

    2014-06-06

    We model high molecular weight homopolymers in semidilute concentration via Dissipative Particle Dynamics (DPD). We show that in model reduction methodologies for polymers it is not enough to preserve system properties (i.e., density ρ, pressure p, temperature T, radial distribution function g(r)) but preserving also the characteristic shape and length scale of the polymer chain model is necessary. In this work we apply a DPD-model-reduction methodology for linear polymers recently proposed; and demonstrate why the applicability of this methodology is limited upto certain maximum polymer length, and not suitable for solvent coarse graining.

  19. Applications of self-consistent field theory in polymer systems

    Institute of Scientific and Technical Information of China (English)

    YANG; Yuliang; QIU; Feng; TANG; Ping; ZHANG; Hongdong

    2006-01-01

    The self-consistent field theory (SCFT) based upon coarse-grained model is especially suitable for investigating thermodynamic equilibrium morphology and the phase diagram of inhomogeneous polymer systems subjected to phase separation. The advantage of this model is that the details of the chain such as the architecture of the chain and the sequence of blocks can be considered. We present here an overview of SCFT approach and its applications in polymeric systems. In particular, we wish to focus on our group's achievements in applications of SCFT in such fields: simulation of microphase separation morphologies of multiblock copolymers with a complex molecular architecture, interactions between brush-coated sheets in a polymer matrix, mixtures of flexible polymers and small molecular liquid crystals at the interface, shapes of polymer-chain-anchored fluid vesicles, self-assembled morphologies of block copolymers in dilute solution, and so on. Finally, the further developments as well as the perspective applications of SCFT are discussed.

  20. Electrostatic model of semiconductor nanoparticles trapped in polymer electrolytes

    Indian Academy of Sciences (India)

    Divya Singh; Pramod K Singh; Nitin A Jadhav; Bhaskar Bhattacharya

    2013-11-01

    A simple electrostatic model is applied to study the solvation energy and localization energy to inorganic semiconductor nanocrystallites trapped in polymer and ion conducting polymer electrolytes. The effective mass approximation has been applied to the system. In the single charge configuration, the dielectric constant of the medium has been identified as the selection criteria for hosting the nanoparticles. Solvation energy has been shown to depend on the host medium and the size of the crystallite.

  1. Phase Diagrams for Systems Containing Hyperbranched Polymers

    Directory of Open Access Journals (Sweden)

    Tim Zeiner

    2012-01-01

    Full Text Available Hyperbranched polymers show an outstanding potential for applications ranging from chemistry over nanotechnology to pharmacy. In order to take advantage of this potential, the underlying phase behaviour must be known. From the thermodynamic point of view, the modelling of these phase diagrams is quite challenging, because the thermodynamic properties depend on the architecture of the hyperbranched polymer as well as on the number and kind of present functional end groups. The influence of architecture can be taken into account via the lattice cluster theory (LCT as an extension of the well-known Flory–Huggins theory. Whereas the Flory–Huggins theory is limited to linear polymer chains, the LCT can be applied to an arbitrary chain architecture. The number and the kind of functional groups can be handled via the Wertheim perturbation theory, applicable for directed forces between the functional groups and the surrounding solvent molecules. The combination of the LCT and the Wertheim theory can be established for the modelling or even prediction of the liquid-liquid equilibria (LLE of polymer solutions in a single solvent or in a solvent mixture or polymer blends, where the polymer can have an arbitrary structure. The applied theory predicts large demixing regions for mixtures of linear polymers and hyperbranched polymers, as well as for mixtures made from two hyperbranched polymers. The introduction of empty lattice sites permits the theoretical investigation of pressure effects on phase behaviour. The calculated phase diagrams were compared with own experimental data or to experimental data taken from literature.

  2. Polymer Energy Rechargeable System Battery Being Developed

    Science.gov (United States)

    Manzo, Michelle A.

    2003-01-01

    Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.

  3. Effect of attractive interactions between polymers on the effective force acting between colloids immersed in a polymer system: Analytic liquid-state theory.

    Science.gov (United States)

    Chervanyov, A I

    2016-12-28

    By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.

  4. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  5. Time-resolved EPR investigation of potential model systems for acrylate polymer main chain radicals based on esters of Kemp's tri-acid.

    Science.gov (United States)

    Lebedeva, Natalia V; Gorelik, Elena V; Magnus-Aryitey, Damaris; Hill, Terence E; Forbes, Malcolm D E

    2009-05-14

    Methyl esters of Kemp's tri-acid and cyclohexanetricarboxylic acid are structurally similar to acrylate polymers, having the same functionalities and stereoregularities as poly(methylmethacrylate) and poly(methylacrylate), respectively. The photochemistry and free radicals from these model systems have been studied using time-resolved electron paramagnetic resonance spectroscopy with laser flash photolysis at 248 nm. Chemically induced electron spin polarization from the triplet mechanism (net emission) is observed. Well-resolved spectra are obtained at all temperatures for the model system radicals, which are determined to be in the slow motion condition, that is, there is no interconversion of chair conformations. The temperature dependence of the spectra is minimal; some hyperfine lines shift as the temperature increases, but without much broadening. Density functional theory calculations are presented and discussed in support of the experimental data.

  6. Charge-transport model for conducting polymers

    Science.gov (United States)

    Dongmin Kang, Stephen; Jeffrey Snyder, G.

    2016-11-01

    The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.

  7. A molecular dynamics study of polymer/graphene interfacial systems

    Energy Technology Data Exchange (ETDEWEB)

    Rissanou, Anastassia N.; Harmandaris, Vagelis [Department of Mathematics and Applied Mathematics, University of Crete, GR-71409, Heraklion, Crete, Greece and Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110, Heraklion, Cret (Greece)

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  8. Polymer hybrid materials for planar optronic systems

    Science.gov (United States)

    Körner, Martin; Prucker, Oswald; Rühe, Jürgen

    2015-09-01

    Planar optronic systems made entirely from polymeric functional materials on polymeric foils are interesting architectures for monitoring and sensing applications. Key components in this regard are polymer hybrid materials with adjustable optical properties. These materials can then be processed into optical components such as waveguides for example by using embossing techniques. However, the resulting microstructures have often low mechanical or thermal stability which quickly leads to a degradation of the microstructures accompanied often by a complete loss of function. A simple and versatile way to increase the thermal and mechanical stability of polymers is to connect the individual chains to a polymer network by using thermally or photochemically reactive groups. Upon excitation, these groups form reactive intermediates such as radicals or nitrenes which then crosslink with adjacent C-H-groups through a C,H insertion reaction (CHic = C,H insertion based crosslinking). To generate waveguide structures a PDMS stamp is filled with the waveguide core material e.g. poly(methylmethacrylate) (PMMA), which is modified with a few mol% of the thermal crosslinker and hot embossed onto a foil substrate e.g. PMMA. In this one-step hot embossing process polymer ridge waveguides are formed and simultaneously the polymer becomes crosslinked. Due to the reaction across the boundary between waveguide and substrate it is also possible to combine initially incompatible polymers for the waveguide and the substrate foil. The thermomechanical properties of the obtained materials are studied.

  9. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  10. Miscibility of polymer blends with engineering models

    DEFF Research Database (Denmark)

    Vassilis, Harismiadis; van Bergen, A. R. D.; Goncalves, Ana Saraiva;

    1996-01-01

    The miscibility behavior of polymer blends that do not exhibit strong specific interactions is examined. Phase equilibrium calculations are presented with the van der Waals equation of state and three group-contribution models (UNIFAC, Entropic-FV, and GC-Flory). Performance of these models is al...

  11. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  12. DIFFUSION COEFFICIENTS IN POLYMER-SOLVENT SYSTEMS FOR HIGHLY CONCENTRATED POLYMER SOLUTIONS

    Directory of Open Access Journals (Sweden)

    R.A. Reis

    2001-12-01

    Full Text Available The Vrentas/Duda proposal for the diffusion of polymer-solvent systems, which is based on the free-volume theory, was employed in correlating and predicting mutual diffusion coefficients in highly concentrated polymer solutions. It has been observed that the predictive version of the model is capable of qualitatively representing the experimental data, while the use of an adjustable parameter greatly improves the performance of the model. The systems studied were poly(vinyl acetate-toluene and Neoprene-acetone, and a comparison between experimental data and calculated values from the Vrentas/Duda model is reported. A new experimental apparatus based on the sorption technique was built to provide reliable diffusivity data on the Neoprene-acetone system.

  13. Numerical Modeling of Micro Fluidics of Polymer Melts

    DEFF Research Database (Denmark)

    Marin, José Manuel Román; Rasmussen, Henrik K.

    2008-01-01

    film on a hard substrate. The numerical method is based on a Lagrangian kinematics description of the fluid, where the (Cartesian) coordinate system attached to the particles is discretized by ten-node quadratic tetrahedral elements. The time integral in the K-BKZ model is discretized by a quadratic......A new Galerkin finite element scheme for the numerical simulation of three-dimensional time-dependent flow of K-BKZ fluids has been developed. The scheme was used to model the polymer melt flow in nano imprint lithography (NIL). In NIL a sub micrometer pattern is hot pressed onto a thin polymer...

  14. Multi-scale First-Principles Modeling of Three-Phase System of Polymer Electrolyte Membrane Fuel Cel

    Energy Technology Data Exchange (ETDEWEB)

    Brunello, Giuseppe; Choi, Ji; Harvey, David; Jang, Seung

    2012-07-01

    The three-phase system consisting of Nafion, graphite and platinum in the presence of water is studied using molecule dynamics simulation. The force fields describing the molecular interaction between the components in the system are developed to reproduce the energies calculated from density functional theory modeling. The configuration of such complicated three-phase system is predicted through MD simulations. The nanophase-segregation and transport properties are investigated from the equilibrium state. The coverage of the electrolyte on the platinum surface and the dissolution of oxygen are analyzed.

  15. Miscibility of polymer blends with engineering models

    DEFF Research Database (Denmark)

    Vassilis, Harismiadis; van Bergen, A. R. D.; Goncalves, Ana Saraiva

    1996-01-01

    accuracy using the usual mixing and combining rules and a single temperature- and composition-independent binary interaction parameter. This interaction parameter can be predicted via a generalized expression that uses only the pure component equation-of-state parameters. Using this generalized expression......-FV models, in general, are able to predict qualitatively the phase behavior of polymer blends, but quantitative predictions of the critical solution temperatures es are not achieved The GC-Flory equation of state fails to predict the upper critical solution behavior in polymer blends....

  16. Phases of polymer systems in solution studied via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Joshua Allen [Iowa State Univ., Ames, IA (United States)

    2009-05-01

    Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

  17. Molecular recognition effects in atomistic models of imprinted polymers.

    Science.gov (United States)

    Dourado, Eduardo M A; Herdes, Carmelo; van Tassel, Paul R; Sarkisov, Lev

    2011-01-01

    In this article we present a model for molecularly imprinted polymers, which considers both complexation processes in the pre-polymerization mixture and adsorption in the imprinted structures within a single consistent framework. As a case study we investigate MAA/EGDMA polymers imprinted with pyrazine and pyrimidine. A polymer imprinted with pyrazine shows substantial selectivity towards pyrazine over pyrimidine, thus exhibiting molecular recognition, whereas the pyrimidine imprinted structure shows no preferential adsorption of the template. Binding sites responsible for the molecular recognition of pyrazine involve one MAA molecule and one EGDMA molecule, forming associations with the two functional groups of the pyrazine molecule. Presence of these specific sites in the pyrazine imprinted system and lack of the analogous sites in the pyrimidine imprinted system is directly linked to the complexation processes in the pre-polymerization solution. These processes are quite different for pyrazine and pyrimidine as a result of both enthalpic and entropic effects.

  18. Molecular Recognition Effects in Atomistic Models of Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Carmelo Herdes

    2011-07-01

    Full Text Available In this article we present a model for molecularly imprinted polymers, which considers both complexation processes in the pre-polymerization mixture and adsorption in the imprinted structures within a single consistent framework. As a case study we investigate MAA/EGDMA polymers imprinted with pyrazine and pyrimidine. A polymer imprinted with pyrazine shows substantial selectivity towards pyrazine over pyrimidine, thus exhibiting molecular recognition, whereas the pyrimidine imprinted structure shows no preferential adsorption of the template. Binding sites responsible for the molecular recognition of pyrazine involve one MAA molecule and one EGDMA molecule, forming associations with the two functional groups of the pyrazine molecule. Presence of these specific sites in the pyrazine imprinted system and lack of the analogous sites in the pyrimidine imprinted system is directly linked to the complexation processes in the pre-polymerization solution. These processes are quite different for pyrazine and pyrimidine as a result of both enthalpic and entropic effects.

  19. Modelling Polymer Deformation during 3D Printing

    Science.gov (United States)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  20. Thermal modeling of the lithium/polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Pals, Carolyn R. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1994-10-01

    Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.

  1. Scaling model for symmetric star polymers

    Science.gov (United States)

    Ramachandran, Ram; Rai, Durgesh K.; Beaucage, Gregory

    2010-03-01

    Neutron scattering data from symmetric star polymers with six poly (urethane-ether) arms, chemically bonded to a C-60 molecule are fitted using a new scaling model and scattering function. The new scaling function can describe both good solvent and theta solvent conditions as well as resolve deviations in chain conformation due to steric interactions between star arms. The scaling model quantifies the distinction between invariant topological features for this star polymer and chain tortuosity which changes with goodness of solvent and steric interaction. Beaucage G, Phys. Rev. E 70 031401 (2004).; Ramachandran R, et al. Macromolecules 41 9802-9806 (2008).; Ramachandran R, et al. Macromolecules, 42 4746-4750 (2009); Rai DK et al. Europhys. Lett., (Submitted 10/2009).

  2. Coarse grained model of entangled polymer melts

    Science.gov (United States)

    Rakshit, Abhik

    reptation behavior. Constraint release is additionally implemented by tracing the position of the ends of all chains in the system and performing a local relaxation of the chain backbones once end retraction is detected. This algorithm takes advantage of the multibody nature of the model and requires no heuristic input parameters that would control, for example, the frequency and the magnitude of these fluctuations. The model is used, without additional calibration, to study start-up and step strain shear flows and reproduces features observed experimentally such as the overshoot during start-up shear flow, the Lodge-Meissner law, the monotonicity of the steady state shear stress with the strain rate, and shear thinning at large ġ . Most of the simulations reported are performed in conditions in which using a fully refined model of the same system would have been extremely computationally demanding or simply impossible with the current methods. Chain diffusion is studied in mixtures of bi-disperse linear polymers of same chemical identity by means of the coarse grained model with no additional calibration. The two sub-populations are moderately to highly entangled, with the shorter chain length NS fulfilling NS/Ne ≥ 5. Its performance in reproducing chain dynamics in a polydisperse melt is tested by extensively comparing the results with those obtained from an equivalent fine scale representation of the same system. The coarse grained model is used further to investigate for the first time by means of simulations the scaling of the diffusion coefficient with the length of the two types of chains and its dependence on the respective fractions. The model reproduces many features observed experimentally. For example, the diffusion coefficient of one of the chain types decreases with increasing the length of the other type chains. It is shown that, in this model, this effect is not linked to constraint release. When the matrix chains become sufficiently long, their length

  3. DNA as a Model for Probing Polymer Entanglements: Circular Polymers and Non-Classical Dynamics

    Directory of Open Access Journals (Sweden)

    Kathryn Regan

    2016-09-01

    Full Text Available Double-stranded DNA offers a robust platform for investigating fundamental questions regarding the dynamics of entangled polymer solutions. The exceptional monodispersity and multiple naturally occurring topologies of DNA, as well as a wide range of tunable lengths and concentrations that encompass the entanglement regime, enable direct testing of molecular-level entanglement theories and corresponding scaling laws. DNA is also amenable to a wide range of techniques from passive to nonlinear measurements and from single-molecule to bulk macroscopic experiments. Over the past two decades, researchers have developed methods to directly visualize and manipulate single entangled DNA molecules in steady-state and stressed conditions using fluorescence microscopy, particle tracking and optical tweezers. Developments in microfluidics, microrheology and bulk rheology have also enabled characterization of the viscoelastic response of entangled DNA from molecular levels to macroscopic scales and over timescales that span from linear to nonlinear regimes. Experiments using DNA have uniquely elucidated the debated entanglement properties of circular polymers and blends of linear and circular polymers. Experiments have also revealed important lengthscale and timescale dependent entanglement dynamics not predicted by classical tube models, both validating and refuting new proposed extensions and alternatives to tube theory and motivating further theoretical work to describe the rich dynamics exhibited in entangled polymer systems.

  4. Light scattering from macromolecular systems: Molecular crystals and polymers

    Science.gov (United States)

    Bernstein, E. R.

    1981-11-01

    The research objectives were to: (1) characterize phase transitions theoretically and experimentally in molecular crystal systems; (2) use the above understanding gained by light scattering studies and theoretical interpretation to apply to the more complex system of lyotropic liquid crystals; and (3) then apply knowledge gained on the model systems of increasing complexity to polymer liquid crystals and solid polymers as observed by laser light scattering techniques. Systems experimentally and theoretically discussed are: trioxane, triazine, benzil, and chloranil. Studies of lyotropic liquid crystals (sodium decyl sulfate, sodium sulfate, decanol, water) have progressed. The major findings are: a number of phase transitions occur between 20 and 60 C; these transitions evidence strong critical behavior and long correlation times for fluctuations; and liquid crystals can be studied by light scattering. Spectra of solid powders, ribbons, and liquid crystals of PBT and solid PBO were obtained.

  5. Polymers for hydrogen infrastructure and vehicle fuel systems :

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  6. An Adaptive Neuro-Fuzzy Inference System Based Modeling for Corrosion-Damaged Reinforced HSC Beams Strengthened with External Glass Fibre Reinforced Polymer Laminates

    Directory of Open Access Journals (Sweden)

    P. N. Raghunath

    2012-01-01

    Full Text Available Problem statement: This study presents the results of ANFIS based model proposed for predicting the performance characteristics of reinforced HSC beams subjected to different levels of corrosion damage and strengthened with externally bonded glass fibre reinforced polymer laminates. Approach: A total of 21 beams specimens of size 150, 250×3000 mm were cast and tested. Results: Out of the 21 specimens, 7 specimens were tested without any corrosion damage (R-Series, 7 after inducing 10% corrosion damage (ASeries and another 7 after inducing 25% corrosion damage (B-Series. Out of the seven specimens in each series, one was tested without any laminate, three specimens were tested after applying 3 mm thick CSM, UDC and WR laminates and another three specimens after applying 5mm thick CSM, UDC and WR laminates. Conclusion/Recommendations: The test results show that the beams strengthened with externally bonded GFRP laminates exhibit increased strength, stiffness, ductility and composite action until failure. An Adaptive Neuro-Fuzzy Inference System (ANFIS model is developed for predicting the study parameters for input values lying within the range of this experimental study.

  7. Polymer models of chromosome (re)organization

    Science.gov (United States)

    Mirny, Leonid

    Chromosome Conformation Capture technique (Hi-C) provides comprehensive information about frequencies of spatial interactions between genomic loci. Inferring 3D organization of chromosomes from these data is a challenging biophysical problem. We develop a top-down approach to biophysical modeling of chromosomes. Starting with a minimal set of biologically motivated interactions we build ensembles of polymer conformations that can reproduce major features observed in Hi-C experiments. I will present our work on modeling organization of human metaphase and interphase chromosomes. Our works suggests that active processes of loop extrusion can be a universal mechanism responsible for formation of domains in interphase and chromosome compaction in metaphase.

  8. Mathematical modeling of polymer electrolyte fuel cells

    Science.gov (United States)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  9. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  10. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  11. Hydroplasticization of polymers: model predictions and application to emulsion polymers.

    Science.gov (United States)

    Tsavalas, John G; Sundberg, Donald C

    2010-05-18

    The plasticization of a polymer by solvent has a dramatic impact on both its thermal and mechanical behavior. With increasing demand for zero volatile organic compound materials and coatings, water is often the sole solvent used both in the polymer synthesis and in formulation and application; latex colloids derived from emulsion polymerization are a good example. The impact of water on the glass transition temperature of a polymer thus becomes a critical physical property to predict. It has been shown here that in order to do so, one simply needs the dry state glass transition temperature (T(g)) of the (co)polymer, the T(g) of water, and the saturated weight fraction of water for the sample in question. Facile calculation of the later can be achieved using water sorption data and the group additivity method. With these readily available data, we show that a form of the Flory-Fox equation can be used to predict the hydroplasticized state of copolymers in exceptional agreement with direct experimental measurement. Furthermore, extending the prediction to include the impact of the degree of ionization for pH responsive components, only with extra knowledge of the pK(a), was also validated by experiment.

  12. A model for reaction-assisted polymer dissolution in LIGA.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S.

    2004-05-01

    A new chemically-oriented mathematical model for the development step of the LIGA process is presented. The key assumption is that the developer can react with the polymeric resist material in order to increase the solubility of the latter, thereby partially overcoming the need to reduce the polymer size. The ease with which this reaction takes place is assumed to be determined by the number of side chain scissions that occur during the x-ray exposure phase of the process. The dynamics of the dissolution process are simulated by solving the reaction-diffusion equations for this three-component, two-phase system, the three species being the unreacted and reacted polymers and the solvent. The mass fluxes are described by the multicomponent diffusion (Stefan-Maxwell) equations, and the chemical potentials are assumed to be given by the Flory-Huggins theory. Sample calculations are used to determine the dependence of the dissolution rate on key system parameters such as the reaction rate constant, polymer size, solid-phase diffusivity, and Flory-Huggins interaction parameters. A simple photochemistry model is used to relate the reaction rate constant and the polymer size to the absorbed x-ray dose. The resulting formula for the dissolution rate as a function of dose and temperature is ?t to an extensive experimental data base in order to evaluate a set of unknown global parameters. The results suggest that reaction-assisted dissolution is very important at low doses and low temperatures, the solubility of the unreacted polymer being too small for it to be dissolved at an appreciable rate. However, at high doses or at higher temperatures, the solubility is such that the reaction is no longer needed, and dissolution can take place via the conventional route. These results provide an explanation for the observed dependences of both the dissolution rate and its activation energy on the absorbed dose.

  13. Porphyrin-Cored Polymer Nanoparticles: Macromolecular Models for Heme Iron Coordination.

    Science.gov (United States)

    Rodriguez, Kyle J; Hanlon, Ashley M; Lyon, Christopher K; Cole, Justin P; Tuten, Bryan T; Tooley, Christian A; Berda, Erik B; Pazicni, Samuel

    2016-10-03

    Porphyrin-cored polymer nanoparticles (PCPNs) were synthesized and characterized to investigate their utility as heme protein models. Created using collapsible heme-centered star polymers containing photodimerizable anthracene units, these systems afford model heme cofactors buried within hydrophobic, macromolecular environments. Spectroscopic interrogations demonstrate that PCPNs display redox and ligand-binding reactivity similar to that of native systems and thus are potential candidates for modeling biological heme iron coordination.

  14. Polymers and surfactants in solution and at interfaces : a model study on detergency

    NARCIS (Netherlands)

    Torn, L.H.

    2000-01-01

    This thesis deals with detergency-related adsorption phenomena of (mixtures of) polymers and surfactants. Both types of molecules play an important role in the removal and subsequent stabilization of soil from a substrate. Starting with a model detergency system consisting of polymers, surfactants,

  15. STATISTICAL MODELS FOR SEMI-RIGID NEMATIC POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WANG Xinjiu

    1995-01-01

    Semi-rigid liquid crystal polymer is a class of liquid crystal polymers different from long rigid rod liquid crystal polymer to which the well-known Onsager and Flory theories are applied. In this paper, three statistical models for the semi-rigid nematic polymer were addressed. They are the elastically jointed rod model, worm-like chain model, and non-homogeneous chain model.The nematic-isotropic transition temperature was examined. The pseudo-second transition temperature is expressed analytically. Comparisons with the experiments were made and the agreements were found.

  16. Improved model for mixtures of polymers and hard spheres

    Science.gov (United States)

    D'Adamo, Giuseppe; Pelissetto, Andrea

    2016-12-01

    Extensive Monte Carlo simulations are used to investigate how model systems of mixtures of polymers and hard spheres approach the scaling limit. We represent polymers as lattice random walks of length L with an energy penalty w for each intersection (Domb-Joyce model), interacting with hard spheres of radius R c via a hard-core pair potential of range {{R}\\text{mon}}+{{R}c} , where R mon is identified as the monomer radius. We show that the mixed polymer-colloid interaction gives rise to new confluent corrections. The leading ones scale as {{L}-ν} , where ν ≈ 0.588 is the usual Flory exponent. Finally, we determine optimal values of the model parameters w and R mon that guarantee the absence of the two leading confluent corrections. This improved model shows a significantly faster convergence to the asymptotic limit L\\to ∞ and is amenable for extensive and accurate numerical simulations at finite density, with only a limited computational effort.

  17. Modeling of ionic transport in solid polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cheang, P L; Teo, L L; Lim, T L, E-mail: plcheang@mmu.edu.my [Centre for Foundation Studies and Extension Education, Multimedia University, Jln Ayer Keroh Lama, 75450 Melaka (Malaysia)

    2010-05-15

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  18. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof...... of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...

  19. Solvent activities of the fluorinated solid polymer electrolyte/water system in fuel cells

    Science.gov (United States)

    Kim, Tae Hwan; Bae, Young Chan

    We modified the lattice fluid equation-of-state by the introducing Debye-Hückel equation. A thermodynamic model taking into account the specific interaction and ionic strength between the polymer and the solvent is proposed. The proposed model successfully predicts the vapor/liquid equilibria (VLE) of solvents and the solid polymer electrolyte (SPE). A generalized lattice fluid model is modified to describe the change of water activity in solid polymer electrolyte (SPE)/water systems. The calculated activity curves using the proposed model agree remarkably well with the experimental data.

  20. Procurement model for copper and polymer electrical products

    Directory of Open Access Journals (Sweden)

    S. Sremac

    2013-10-01

    Full Text Available Procurement model for copper and polymer electrical products. Electrical cable structure (wire, insulation, filling and mantle is in accordance with the technical specifications of individual cable components in terms of the incorporated materials. Materials used in cable manufacture are copper, aluminum, rubber and polyvinyl chloride. One of the key issues in managing the flow of goods pertains to the timing of procurement. The combination of the two concepts can take advantage of individual strengths of fuzzy logic and neural networks in hybrid systems of homogeneous structure. The model has high practical significance, as, with minor modifications, it can be applied in any enterprise responsible for managing the goods flows.

  1. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    We present a process for fabricating nanostructured surfaces with feature sizes down to at least 50 nm and aspect ratios of 1:1 by injection molding. We explored the effects of mold coatings and injection molding conditions on the final nanostructure quality. A plasma-polymerized fluorocarbon based...... antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...... channel chip parts resulted from a separate injection molding process. The microfluidic chip part and the nanostructured chip part were successfully bonded to form a sealed microfluidic system using air plasma assisted thermal bonding....

  2. A numerical model to simulate foams during devolatilization of polymers

    Science.gov (United States)

    Khan, Irfan; Dixit, Ravindra

    2014-11-01

    Customers often demand that the polymers sold in the market have low levels of volatile organic compounds (VOC). Some of the processes for making polymers involve the removal of volatiles to the levels of parts per million (devolatilization). During this step the volatiles are phase separated out of the polymer through a combination of heating and applying lower pressure, creating foam with the pure polymer in liquid phase and the volatiles in the gas phase. The efficiency of the devolatilization process depends on predicting the onset of solvent phase change in the polymer and volatiles mixture accurately based on the processing conditions. However due to the complex relationship between the polymer properties and the processing conditions this is not trivial. In this work, a bubble scale model is coupled with a bulk scale transport model to simulate the processing conditions of polymer devolatilization. The bubble scale model simulates the nucleation and bubble growth based on the classical nucleation theory and the popular ``influence volume approach.'' As such it provides the information of bubble size distribution and number density inside the polymer at any given time and position. This information is used to predict the bulk properties of the polymer and its behavior under the applied processing conditions. Initial results of this modeling approach will be presented.

  3. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  4. On a Pioneering Polymer Electrolyte Fuel Cell Model

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Adam Z.; Meyers, Jeremy P.

    2010-07-07

    "Polymer Electrolyte Fuel Cell Model" is a seminal work that continues to form the basis for modern modeling efforts, especially models concerning the membrane and its behavior at the continuum level. The paper is complete with experimental data, modeling equations, model validation, and optimization scenarios. While the treatment of the underlying phenomena is limited to isothermal, single-phase conditions, and one-dimensional flow, it represents the key interactions within the membrane at the center of the PEFC. It focuses on analyzing the water balance within the cell and clearly demonstrates the complex interactions of water diffusion and electro-osmotic flux. Cell-level and system-level water balance are key to the development of efficient PEFCs going forward, particularly as researchers address the need to simplify humidification and recycle configurations while increasing the operating temperature of the stack to minimize radiator requirements.

  5. AMEM-ADL Polymer Migration Estimation Model User's Guide

    Science.gov (United States)

    The user's guide of the Arthur D. Little Polymer Migration Estimation Model (AMEM) provides the information on how the model estimates the fraction of a chemical additive that diffuses through polymeric matrices.

  6. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Graph theoretical analysis of the energy landscape of model polymers.

    Science.gov (United States)

    Baiesi, Marco; Bongini, Lorenzo; Casetti, Lapo; Tattini, Lorenzo

    2009-07-01

    In systems characterized by a rough potential-energy landscape, local energetic minima and saddles define a network of metastable states whose topology strongly influences the dynamics. Changes in temperature, causing the merging and splitting of metastable states, have nontrivial effects on such networks and must be taken into account. We do this by means of a recently proposed renormalization procedure. This method is applied to analyze the topology of the network of metastable states for different polypeptidic sequences in a minimalistic polymer model. A smaller spectral dimension emerges as a hallmark of stability of the global energy minimum and highlights a nonobvious link between dynamic and thermodynamic properties.

  8. Successively refined models for crack tip plasticity in polymer blends

    NARCIS (Netherlands)

    Pijnenburg, KGW; Seelig, T; van der Giessen, E

    2005-01-01

    This paper is concerned with a comparative study of different, partly complementary micromechanical models for crack tip plasticity in polymer-rubber blends. It is experimentally well established that interspersion of micron-scale rubber particles into a polymer matrix can lead to a significantly en

  9. Rubber Bands as Model Polymers in Couette Flow

    Science.gov (United States)

    Dunstan, Dave E.

    2008-01-01

    We present a simple device for demonstrating the essential aspects of polymers in flow in the classroom. Rubber bands are used as a macroscopic model of polymers to allow direct visual observation of the flow-induced changes in orientation and conformation. A transparent Perspex Couette cell, constructed from two sections of a tube, is used to…

  10. From Gelation and Glass Transition of Colloidal Systems to Polymers

    Science.gov (United States)

    Han, Charles; Yuan, Guangcui; Cheng, He

    Charles C. Han, Guangcui Yuan and He Cheng Joint Laboratory of Polymer Science and Materials, ICCAS, Beijing, China and Institute for Advanced Study, Shenzhen University, Shenzhen, China Aggregation and gelation behavior of mixed suspensions of polystyrene microspheres and poly(N-isopropylacrylamide) microgels have been studied. In dilute microsphere suspensions, with increasing concentration of microgel (MG), microspheres (MS) first aggregated with each other through the bridging of the microgels, then dispersed individually when saturated adsorption was achieved, and finally depletion clusters formed at even higher concentrations of microgel. In concentrated microsphere suspensions, with saturated MG adsorption, a state transition from attractive glass to repulsive glass can be observed. This type of system can be viewed as a molecular model system which has a long range repulsive interaction potential and a short range attractive potential. A comparison between the glass transition of the colloidal systems and the glass transition of polymeric systems can be made.

  11. Short Polymer Modeling using Self-Consistent Integral Equation Method

    Science.gov (United States)

    Kim, Yeongyoon; Park, So Jung; Kim, Jaeup

    2014-03-01

    Self-consistent field theory (SCFT) is an excellent mean field theoretical tool for predicting the morphologies of polymer based materials. In the standard SCFT, the polymer is modeled as a Gaussian chain which is suitable for a polymer of high molecular weight, but not necessarily for a polymer of low molecular weight. In order to overcome this limitation, Matsen and coworkers have recently developed SCFT of discrete polymer chains in which one polymer is modeled as finite number of beads joined by freely jointed bonds of fixed length. In their model, the diffusion equation of the canonical SCFT is replaced by an iterative integral equation, and the full spectral method is used for the production of the phase diagram of short block copolymers. In this study, for the finite length chain problem, we apply pseudospectral method which is the most efficient numerical scheme to solve the iterative integral equation. We use this new numerical method to investigate two different types of polymer bonds: spring-beads model and freely-jointed chain model. By comparing these results with those of the Gaussian chain model, the influences on the morphologies of diblock copolymer melts due to the chain length and the type of bonds are examined. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (no. 2012R1A1A2043633).

  12. Kinetics approach to modeling of polymer additive degradation in lubricants

    Institute of Scientific and Technical Information of China (English)

    llyaI.KUDISH; RubenG.AIRAPETYAN; Michael; J.; COVITCH

    2001-01-01

    A kinetics problem for a degrading polymer additive dissolved in a base stock is studied.The polymer degradation may be caused by the combination of such lubricant flow parameters aspressure, elongational strain rate, and temperature as well as lubricant viscosity and the polymercharacteristics (dissociation energy, bead radius, bond length, etc.). A fundamental approach tothe problem of modeling mechanically induced polymer degradation is proposed. The polymerdegradation is modeled on the basis of a kinetic equation for the density of the statistical distribu-tion of polymer molecules as a function of their molecular weight. The integrodifferential kineticequation for polymer degradation is solved numerically. The effects of pressure, elongational strainrate, temperature, and lubricant viscosity on the process of lubricant degradation are considered.The increase of pressure promotes fast degradation while the increase of temperature delaysdegradation. A comparison of a numerically calculated molecular weight distribution with an ex-perimental one obtained in bench tests showed that they are in excellent agreement with eachother.

  13. Ferritin nanocontainers that self-direct in synthetic polymer systems

    Science.gov (United States)

    Sengonul, Merih C.

    Currently, there are many approaches to introduce functionality into synthetic polymers. Among these, for example, are copolymerization, grafting, and blending methods. However, modifications made by such methods also change the thermodynamics and rheological properties of the polymer system of interest, and each new modification often requires a costly reoptimization of polymer processing. Such a reoptimalization would not be necessary if new functionality could be introduced via a container whose external surface is chemically and physically tuned to interact with the parent polymer. The contents of the container could then be changed without changing other important properties of the parent polymer. In this context this thesis project explores an innovative nanocontainer platform which can be introduced into phase-separating homopolymer blends. Ferritin is a naturally existing nanocontainer that can be used synthetically to package and selectively transport functional moieties to a particular phase that is either in the bulk or on the surface of a homopolymer blend system. The principal focus of this work centers on modifying the surface of wild ferritin to: (1) render modified ferritin soluble in a non-aqueous solvent; and (2) impart it with self-directing properties when exposed to a homopolymer blend surface or incorporated into the bulk of a homopolymer blend. Wild ferritin is water soluble, and this research project successfully modified wild ferritin by grafting either amine-functional poly(ethylene glycol) (PEG) or short-chain alkanes to carbodiimide activated carboxylate groups on ferritin's surface. Such modified ferritin is soluble in dichloromethane (DCM). Modification was confirmed by ion-exchange chromatography, zeta-potential measurements, and electrospray mass spectroscopy. FT-IR was used to quantify the extent of PEGylation of the reaction products through area ratios of the -C-O-C asymmetric stretching vibration of the grafted PEG chains to the

  14. Molecular model for solubility of gases in flexible polymers

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole; Szabo, Peter

    1999-01-01

    We propose a model for a priori prediction of the solubility of gases in flexible polymers. The model is based on the concept of ideal solubility of gases in liquids. According to this concept, the mole fraction of gases in liquids is given by Raoult's law with the total pressure and the vapor...... pressure of the gas, where the latter may have to be extrapolated. However, instead of considering each polymer molecule as a rigid structure, we estimate the effective number of degrees of freedom from an equivalent freely jointed bead-rod model for the flexible polymer. In this model, we associate...... the length of the rods with the molecular weight corresponding to a Kuhn step. The model provides a tool for crude estimation of the gas solubility on the basis of only the monomer unit of the polymer and properties of the gas. A comparison with the solubility data for several gases in poly...

  15. Toward a New Universal Model for Polymer Rheology Based on Group Interactions

    Science.gov (United States)

    Halley, Peter J.; Nicholson, Timothy M.; Altmann, Nara

    2008-07-01

    Recent work [1-2] has developed a a dynamic monte carlo percolation grid simulation which can successfully predict the linear viscoelastic response of thermosets materials during the whole isothermal cure, including the power-law relaxation at gelation. The model is based on extension of the group interaction model [3] to incorporate connectivity and branching effects. This paper will discuss the usefulness of this viscoelastic model in describing thermoset polymer viscoelasticity and gelation behaviour and include new interpretations for network development from gelation through to vitrification for thermoset systems. Additionally the extension of this model to predictions of the viscoelasticity of branched thermoplastic polymer systems (hyperbranched polymers, long chain branched polymers and polydisperse polymers) will then be discussed with surprising results [including the successful prediction of viscosity dependence on molecular weight shifting from a power of 1.0 to 3.4, as seen experimentally for many thermoplastic systems]. In this way we hope to describe the potential of this energetic approach for developing a new universal model for polymer viscoelasticity.

  16. Accurate Force Field Development for Modeling Conjugated Polymers.

    Science.gov (United States)

    DuBay, Kateri H; Hall, Michelle Lynn; Hughes, Thomas F; Wu, Chuanjie; Reichman, David R; Friesner, Richard A

    2012-11-13

    The modeling of the conformational properties of conjugated polymers entails a unique challenge for classical force fields. Conjugation imposes strong constraints upon bond rotation. Planar configurations are favored, but the concomitantly shortened bond lengths result in moieties being brought into closer proximity than usual. The ensuing steric repulsions are particularly severe in the presence of side chains, straining angles, and stretching bonds to a degree infrequently found in nonconjugated systems. We herein demonstrate the resulting inaccuracies by comparing the LMP2-calculated inter-ring torsion potentials for a series of substituted stilbenes and bithiophenes to those calculated using standard classical force fields. We then implement adjustments to the OPLS-2005 force field in order to improve its ability to model such systems. Finally, we show the impact of these changes on the dihedral angle distributions, persistence lengths, and conjugation length distributions observed during molecular dynamics simulations of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) and poly 3-hexylthiophene (P3HT), two of the most widely used conjugated polymers.

  17. A coarse-grained model based on core-softened potentials for anomalous polymers

    Indian Academy of Sciences (India)

    RONALDO J C BATISTA; EVY A SALCEDO TORRES; ALAN BARROS DE OLIVEIRA; MARCIA C B BARBOSA

    2017-07-01

    Starting from an anomalous monomeric system, where particles interact via a two-scale cores oftened potential, we investigate how the system properties evolve inasmuch as particles are put together to form polymers whose chain size varies from 4 up to 32 monomers. We observed that the density and diffusionanomaly regions in the pressure versus temperature phase diagram of the monomeric system is smaller in the monomeric system when compared with the polymers. We also found that the polymers do not fold into themselves to form solid spheres instead they tend to maximize the chain-fluid contact.Also, Rouse and Reptation models can be employed to describe the polymers diffusive behaviour. But, in contrast to results of simulations where mere interacts via Lennard-Jones potentials, our results shown a much shorter entanglement length of at most 8 monomers.

  18. Cavity approach for modeling and fitting polymer stretching

    CERN Document Server

    Massucci, Francesco Alessandro; Vicente, Conrad J Pérez

    2014-01-01

    The mechanical properties of molecules are today captured by single molecule manipulation experiments, so that polymer features are tested at a nanometric scale. Yet devising mathematical models to get further insight beyond the commonly studied force--elongation relation is typically hard. Here we draw from techniques developed in the context of disordered systems to solve models for single and double--stranded DNA stretching in the limit of a long polymeric chain. Since we directly derive the marginals for the molecule local orientation, our approach allows us to readily calculate the experimental elongation as well as other observables at wish. As an example, we evaluate the correlation length as a function of the stretching force. Furthermore, we are able to fit successfully our solution to real experimental data. Although the model is admittedly phenomenological, our findings are very sound. For single--stranded DNA our solution yields the correct (monomer) scale and, yet more importantly, the right pers...

  19. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    Science.gov (United States)

    Meng, Linghui

    for wound healing and skin regeneration. Polyelectrolyte fibrous tubes of highly-crosslinked poly (acrylic acid) were fabricated by means of electrospinning as polymer models for functional biological systems, with special attention to the axon cortical layer and its cation-exchange properties. The processing parameters of fiber formation and the reversible phase transitions of PAA tubes according to monovalent-divalent ion exchange in solution were systematically investigated. The results showed that the neutralized PAA tubes were responsive to calcium ions, exhibiting significant shrinkage that could be reversed with a chelator such as citrate. Study of such phase transitions may help to better understand the electrophysiological processes known as nerve excitation and conduction in the nervous system, and the resulting PAA tubes might be used as polymer models of artificial axons for potential tissue engineering and nerve repair applications.

  20. Overwinding in a stochastic model of an extended polymer

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C. [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines)], E-mail: cbernido@mozcom.com; Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines)

    2007-09-10

    We evaluate explicit expressions of length-dependent winding configuration probabilities for a biopolymer. The stochastic model incorporates several experimentally observed features. In particular, it exhibits overwinding under stretching forces until a critical length of the polymer is reached.

  1. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  2. Modelization of flow electrification in a polymer melt

    CERN Document Server

    Flores, F; Allal, A; Guerret-Piécourt, C

    2007-01-01

    Flow electrification of polymer melts is an important side effect of polymer processing. The studies dealing with this phenomenon are seldom and most of the scientific work has been focused on flow electrification of aqueous and insulating Newtonian liquids. From that prior art it is well established that the flow electrification in Newtonian liquids is a consequence of the formation of an ionic double layer. Convection of this layer induces the electrification of the liquid at the outlet of the pipe. In those models, the key parameters governing the flow electrification are thus the intrinsic electrical properties of the polymer and the flow characteristics. In this work, we reconsider the assumptions made previously and we propose a new approach to modelise the flow electrification in the particular case of non-Newtonian polymer materials in laminar flow conditions. We establish that, a key parameter for the electrification quantification in the polymer melt is the shape of the velocity profile. Additionall...

  3. Molecular Thermodynamic Model for Associated Polymers

    Institute of Scientific and Technical Information of China (English)

    PENG,Chang-Jun(彭昌军); LIU,Hong-Lai(刘洪来); HU,Ying(胡英)

    2001-01-01

    A molecular thermedynmnic model for homopolyrner and copolymer systems with association segments was establishedby adopting the molecular thermodynamic model for hard-sphere-chain fluid as a reference,a perturbation term contributed by the square-well potential and a contribution of as sociation terms.The latter considers the multi-associated-seg-ments in a chain-like molecule based on the shield-sticky model of chemical association.The model can be used to correlate the pVT of melten homopolymer and copolymer.Good agree-ments with experimental data have been obtained.

  4. Applications of polymers in intraocular drug delivery systems

    Science.gov (United States)

    Alhalafi, Ali Mohammed

    2017-01-01

    We are entering a new era of ophthalmic pharmacology where new drugs are rapidly being developed for the treatment of anterior and posterior segment of the eye disease. The pharmacokinetics of drug delivery to the eye remains a very active area of ophthalmic research. Intraocular drug delivery systems allow the release of the drug, bypassing the blood-ocular barrier. The main advantage of these preparations is that they can release the drug over a long time with one single administration. These pharmaceutical systems are of great important in the treatment of the posterior segment diseases, and they can be prepared from biodegradable or nonbiodegradable polymers. Biodegradable polymers have the advantage of disappearing from the site of action after releasing the drug. The majority of intraocular devices are prepared from nonbiodegradable polymers, and they can release controlled amounts of drugs for months. Nonbiodegradable polymers include silicone, polyvinyl alcohol, and ethylene-vinyl acetate. The polymers usually employed to prepare nanoparticles for the topical ophthalmic route are poly (acrylic acid) derivatives (polyalquilcyanocrylates), albumin, poly-ε-caprolactone, and chitosan. Dendrimers are a recent class of polymeric materials with unique nanostructure which has been studied to discover their role in the delivery of therapeutics and imaging agents. Hydrogels are polymers that can swell in aqueous solvent system, and they hold the solvents in a swollen cross-linked gel for delivery. This review exhibits the current literature regarding applications of polymers in ophthalmic drug delivery systems including pharmacokinetics, advantages, disadvantages, and indications aimed to obtain successful eye therapy. Method of Literature Search: A systematic literature review was performed using PubMed databases into two steps. The first step was oriented to classification of intraocular polymers implants focusing on their advantages and disadvantages. The second

  5. Applications of polymers in intraocular drug delivery systems

    Directory of Open Access Journals (Sweden)

    Ali Mohammed Alhalafi

    2017-01-01

    Full Text Available We are entering a new era of ophthalmic pharmacology where new drugs are rapidly being developed for the treatment of anterior and posterior segment of the eye disease. The pharmacokinetics of drug delivery to the eye remains a very active area of ophthalmic research. Intraocular drug delivery systems allow the release of the drug, bypassing the blood–ocular barrier. The main advantage of these preparations is that they can release the drug over a long time with one single administration. These pharmaceutical systems are of great important in the treatment of the posterior segment diseases, and they can be prepared from biodegradable or nonbiodegradable polymers. Biodegradable polymers have the advantage of disappearing from the site of action after releasing the drug. The majority of intraocular devices are prepared from nonbiodegradable polymers, and they can release controlled amounts of drugs for months. Nonbiodegradable polymers include silicone, polyvinyl alcohol, and ethylene-vinyl acetate. The polymers usually employed to prepare nanoparticles for the topical ophthalmic route are poly (acrylic acid derivatives (polyalquilcyanocrylates, albumin, poly-μ-caprolactone, and chitosan. Dendrimers are a recent class of polymeric materials with unique nanostructure which has been studied to discover their role in the delivery of therapeutics and imaging agents. Hydrogels are polymers that can swell in aqueous solvent system, and they hold the solvents in a swollen cross-linked gel for delivery. This review exhibits the current literature regarding applications of polymers in ophthalmic drug delivery systems including pharmacokinetics, advantages, disadvantages, and indications aimed to obtain successful eye therapy. Method of Literature Search: A systematic literature review was performed using PubMed databases into two steps. The first step was oriented to classification of intraocular polymers implants focusing on their advantages and

  6. On the Long-Range Directed Polymer Model

    Science.gov (United States)

    Wei, Ran

    2016-10-01

    We study the long-range directed polymer model on Z in a random environment, where the underlying random walk lies in the domain of attraction of an α -stable process for some α in (0,2]. Similar to the more classic nearest-neighbor directed polymer model, as the inverse temperature β increases, the model undergoes a transition from a weak disorder regime to a strong disorder regime. We extend most of the important results known for the nearest-neighbor directed polymer model on Z^d to the long-range model on Z. More precisely, we show that in the entire weak disorder regime, the polymer satisfies an analogue of invariance principle, while in the so-called very strong disorder regime, the polymer end point distribution contains macroscopic atoms and under some mild conditions, the polymer has a super-α -stable motion. Furthermore, for α in (1,2], we show that the model is in the very strong disorder regime whenever β >0, and we give explicit bounds on the free energy.

  7. Dynamic response of a polymer and polymer composite systems: Experimental studies

    NARCIS (Netherlands)

    Fan, J.

    2015-01-01

    Recently, research on the impact resistance of transparent hybrid glass-polymer systems (layered and particle-matrix systems) has been conducted at the Netherlands Organisation for Applied Scientific Research (TNO), showing the potential of these materials for the application in protection concepts.

  8. Dynamic response of a polymer and polymer composite systems: Experimental studies

    NARCIS (Netherlands)

    Fan, J.

    2015-01-01

    Recently, research on the impact resistance of transparent hybrid glass-polymer systems (layered and particle-matrix systems) has been conducted at the Netherlands Organisation for Applied Scientific Research (TNO), showing the potential of these materials for the application in protection concepts.

  9. Polymer Matrix Composites for Propulsion Systems

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    The Access-to-Space study identified the requirement for lightweight structures to achieve orbit with a single-stage vehicle. Thus a task was undertaken to examine the use of polymer matrix composites for propulsion components. It was determined that the effort of this task would be to extend previous efforts with polymer matrix composite feedlines and demonstrate the feasibility of manufacturing large diameter feedlines with a complex shape and integral flanges, (i.e. all one piece with a 90 deg bend), and assess their performance under a cryogenic atmosphere.

  10. Strain Rate Dependent Modeling of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.

  11. Nanoparticles as strengthening agents in polymer systems

    Science.gov (United States)

    Shahid, Naureen

    2005-11-01

    Carboxylate-substituted alumina nanoparticles are produced solvent free using mechanical shear. The general nature of this method has been demonstrated for L-lysine-, stearate, and p-hydroxybenzoate-derived materials. The reaction rate and particle size is controlled by a combination of temperature and shear rate. The nanoparticles are spectroscopically equivalent to those reported from aqueous syntheses, however, the average particle size can be decreased and the particle size distribution narrowed depending on the reaction conditions. Lysine and p-hydroxybenzoato alumoxanes have been introduced in carbon fiber reinforced epoxide resin composites. Different preparation conditions have been studied to obtain composite with enhanced performances that are ideal for the motor sports and aerospace industries. A new composite material has been fabricated utilizing surface-modified carboxylate alumoxane nanoparticles and the biodegradable polymer poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA). For this study, composites were prepared using various functional groups including: a surfactant alumoxane to enhance nanoparticle dispersion into the polymer; an activated-alumoxane to enhance nanoparticle interaction with the polymer matrix; a mixed alumoxane containing both activated and surfactant groups. Nanocomposites prepared with all types of alumoxane, as well as blank polymer resin and unmodified boehmite, underwent mechanical testing and were characterized by SEM and microprobe analysis. A nanocomposite composed of mixed alumoxane nanoparticles dispersed in PPF/PPF-DA exhibited increased flexural modulus compared to polymer resin alone, and a significant enhancement over both the activated and surfacted alumoxanes. Boric acid is used as the cross-linking agent in oil well drilling industry even though the efficacy of the borate ion, [B(OH)4]- , as a cross-linking agent is poor. The reaction product of boric acid and the polysaccharide guaran

  12. Molecular Modeling of Interfacial Proton Transport in Polymer Electrolyte Membranes

    OpenAIRE

    2014-01-01

    The proton conductivity of polymer electrolyte membranes (PEMs) plays a crucial role for the performance of polymer electrolyte fuel cells (PEFCs). High hydration of Nafion-like membranes is crucial to high proton conduction across the PEM, which limits the operation temperature of PEFCs to <100o C. At elevated temperatures (>100o C) and minimal hydration, interfacial proton transport becomes vital for membrane operation. Along with fuel cell systems, interfacial proton conduction is of...

  13. Computer aided polymer design using multi-scale modelling

    Directory of Open Access Journals (Sweden)

    K. C. Satyanarayana

    2010-09-01

    Full Text Available The ability to predict the key physical and chemical properties of polymeric materials from their repeat-unit structure and chain-length architecture prior to synthesis is of great value for the design of polymer-based chemical products, with new functionalities and improved performance. Computer aided molecular design (CAMD methods can expedite the design process by establishing input-output relations between the type and number of functional groups in a polymer repeat unit and the desired macroscopic properties. A multi-scale model-based approach that combines a CAMD technique based on group contribution plus models for predicting polymer repeat unit properties with atomistic simulations for providing first-principles arrangements of the repeat units and for predictions of physical properties of the chosen candidate polymer structures, has been developed and tested for design of polymers with desired properties. A case study is used to highlight the main features of this multi-scale model-based approach for the design of a polymer-based product.

  14. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling

    Science.gov (United States)

    Moore, Carleton J.

    1988-01-01

    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  15. Efimov-Like Behaviour in Low-Dimensional Polymer Models

    Science.gov (United States)

    Mura, Federica; Bhattacharjee, Somendra M.; Maji, Jaya; Masetto, Mario; Seno, Flavio; Trovato, Antonio

    2016-10-01

    In the quantum Efimov effect, identical bosons form infinitely many bound trimer states at the bound dimer dissociation threshold, with their energy spectrum obeying a universal geometrical scaling law. Inspired by the formal correspondence between the possible trajectories of a quantum particle and the possible conformations of a polymer chain, the existence of a triple-stranded DNA bound state when a double-stranded DNA is not stable was recently predicted by modelling three directed polymer chains in low-dimensional lattices, both fractal (ddouble-stranded DNA requires in d≤ 2 the introduction of a weighting factor penalizing the formation of denaturation bubbles, that is non-base paired portions of DNA. The details of how bubble weighting is defined for a three-chain system were shown to crucially affect the presence of Efimov-like behaviour on a fractal lattice. Here we assess the same dependence on the euclidean 1+1 lattice, by setting up the transfer matrix method for three infinitely long chains confined in a finite size geometry. This allows us to discriminate unambiguously between the absence of Efimov-like behaviour and its presence in a very narrow temperature range, in close correspondence with what was already found on the fractal lattice. When present, however, no evidence is found for triple-stranded bound states other than the ground state at the two-chain melting temperature.

  16. Polarons in semiconducting polymers: Study within an extended Holstein model

    Science.gov (United States)

    Meisel, K. D.; Vocks, H.; Bobbert, P. A.

    2005-05-01

    We present a study of electron- (hole-) phonon interaction and polaron formation in semiconducting polymers within an extended Holstein model. A minimization of the lowest electronic state of this Hamiltonian with respect to lattice degrees of freedom yields the polaronic ground state. Input parameters of this Hamiltonian are obtained from ab initio calculations based on the density-functional theory. We calculate optical phonon modes and the coupling constants of these modes to the highest occupied and lowest unoccupied molecular orbital bands, respectively. For the studied polymers [polythiophene, poly(phenylenevinylene), poly(para-phenylene)] the polaron binding energy, its size, and the lattice deformation as a function of conjugation length have been determined. Self-trapped polarons are found for long conjugation lengths. Energies of prominent PPV modes involved in polaron formation agree with infrared spectra. The polaron binding energies we find are much smaller than the width of the energy disorder in polymeric systems of practical importance, thus self-trapping effects can be ignored in practice.

  17. Classical and recent free-volume models for polymer solutions: A comparative evaluation

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Kontogeorgis, Georgios; Ghotbi, C.

    2007-01-01

    to improve the performance of a recent model, the so-called Freed-FV First, we propose a modification of the Freed-FV model accounting for the anomalous free-volume behavior of aqueous systems (unlike the other solvents, water has a lower free-volume percentage than polymers). The results predicted...

  18. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2016-10-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  19. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  20. Multiscale Modeling and Computation of Liquid Crystal Polymers, Polymer Blends, and Polymer Nanocomposites: Investigation of Rheology and Material Properties

    Science.gov (United States)

    2008-04-15

    Multiscale kinetic theories for flows of biaxial liquid crystal polymers Given the rising interests in the modeling of nanofluids of biaxial constituents...Newtonian Fluid Mechanics, 2006, 128(1): 44-61. 4. M. G. Forest, R. Zhou, and Q. Wang, Nano-rod suspension flows: a 2D Smoluchowski-Navier-Stokes...dynamics for rigid rod & platelet suspensions in strongly coupled coplanar linear flow and magnetic fields II: Kinetic theory, Physics of Fluids, 2006, 18

  1. Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-06-30

    We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e., ≥200≥200 beads per chain) with a significant reduction in the number of particles required (i.e., ≥20≥20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.

  2. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  3. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  4. Ionic conductivities of solid polymer electrolyte/salt systems: Group-contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jae Ho; Bae, Young Chan [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133791 (Korea, Republic of)

    2006-06-19

    We establish a new group-contribution model based on the Nernst-Einstein equation in which the diffusion coefficient is derived from the modified double-lattice (MDL) model and the Debye-Huckel (DH) theory. The model includes the combinatorial energy contribution that is responsible for the revised Flory-Huggins entropy of mixing, the van der Waals energy contribution from dispersion, and the polar force and the specific energy contribution from hydrogen bonding. The Nernst-Einstein equation takes into account the mobility of the salt and the motion of the polymer host. To describe the segmental motion of the polymer chain, which is the well known conduction mechanism for solid polymer electrolyte (SPE) systems, the effective co-ordinated unit parameter is introduced. Our results show that good agreement is obtained upon comparison with experimental data of various PEO and salt systems in the interested ranges. (author)

  5. STUDY ON ION-POLYMER INTERACTION AND MORPHOLOGIC STRUCTURE OF POLYURETHANE/SALT SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    朱卫华; 杨兵; 王新灵; 唐小真

    2001-01-01

    A poly(ethylene oxide) urethane and a model-compound of hard segment(HD) were prepared in this study. Solid polymer electrolytes were got from the blends of polyurethane, HD and NaClO4. The samples were characterized by mean of FT-IR and AFM. Effects of salt concentration on ion-polymer interaction and further on morphologic structure of the composites were investigated and some interesting results were obtained. The results show that HD and concentration of NaClO4 have an important effect on ion-polymer interaction and morphologic structure of the complex. It is also found that in AFM pictures of the samples there is a transition point and ion-polymer interaction of the polyurethane/salt systems play an extremely important role on morphologic structure.

  6. Aerosol assisted depositions of polymers using an atomiser delivery system.

    Science.gov (United States)

    Crick, Colin R; Clausen-Thue, Victoria; Parkin, Ivan P

    2011-09-01

    The hydrophobicity, robustness and anti-microbial properties of Sylgard 184 polymer films deposited via AACVD were optimised by using aerosol droplets from an atomiser delivery system, polymer coating substrates and the swell encapsulation of methylene blue. By using an atomiser deposition system (average droplet size 0.35 microm) rather than a misting aerosol system (45 microm) lead to a surface with smaller surface features, which improved hydrophobicity (water contact angle 165 degrees) in addition to increasing the films transparency from ca 10 to 65%. Pre-treating the substrates with the same Sylgard 184 elastomer lead to a highly consistent surface hydrophobicity and an increase in average water contact angle measured (169 degrees). This paper shows the first example of dye incorporation in a CVD derived polymer film-these films have potential as antimicrobial surfaces.

  7. Development of a continuous flow model system for studies of biofilm formation on polymers and its application on PVC-C and PVC-P

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    could be harvested from three different combinations of flow velocity and residence time. Biofilm formation was followed by ATP analysis on test material (chlorinated polyvinylchloride, PVC-C), negative control (stainless steel) and positive control (plasticized polyvinylchloride, PVC-P) incubated...... in separate flow model systems. Results show a good agreement between biofilm densities on test pieces from the developed flow model system and batch-incubated test pieces during 16 weeks of incubation; average values during 8 to 16 weeks of operation were 40 pg ATP/cm2 for steel, 60 pg ATP/cm2 for PVC-C......, while most of the very deviating values for PVC-P were between 2-13,000 pg ATP/cm2. During 43 weeks of operation of the continuous flow model systems the biofilm formation increased on all three materials, with biofilm formation on PVC-C at the same level as on the negative steel control (values of 75...

  8. Characterization of ionic, dipolar and molecular mobility in polymer systems

    Science.gov (United States)

    Guo, Zhenrong

    Changes in the ionic and dipolar molecular mobility in a polymer system are the basis for the changes in the dielectric mechanical properties of polymer materials. Frequency Dependent Dielectric Measurements (FDEMS) and Ion Time-of-Flight (ITOF) are two important techniques to investigate ionic and dipolar molecular mobility in polymer systems. The results can be related to the macro- and molecular dielectric, electrical and dynamic properties of polymeric materials. The combination of these two methods provides a full view of electric, dielectric and dynamic behavior for the systems as they undergo chemical and/or physical changes during polymerization crystallization, vitrification, and/or phase separation. The research on microscopic mass mobility in polymer systems was done on three aspects: (1) ion mobility in an epoxy-amine reaction system; (2) dipolar mobility and relaxation during dimethacrylate resin cure and (3) dye molecule migration and diffusion in polymer films. In the ion mobility study, we separately monitor the changes in the ion mobility and the number of charge carriers during the epoxy-amine polymerization with FDEMS and ITOF measurements. The isolation of the number of carriers and their mobility allows significant improvement in monitoring changes in the state and structure of a material as it cures. For the dipolar mobility and relaxation study, FDEMS measurements were used to detect structural evolution and spatial heterogeneity formation during the polymerization process of dimethacrylate resins. The dielectric spectra, glass transition (Tg) profiles and dynamic mechanical measurements were used to investigate the existence of two cooperative regions of sufficient size to create two alpha-relaxation processes representing oligomer rich and polymer microgel regions during the polymerization. For the dye migration research, we tried to develop a visually color changing paper (VCP) due to dye molecule migration in polymer films. The mobility

  9. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  10. Cure Reaction Kinetics of Low Pressure Sheet Molding Compound System Thickened by Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    QIN Yan; LIU Haihua; HUANG Zhixiong; MEI Qilin

    2007-01-01

    Several kinetic models for unsaturated polyester cure reaction and some existing parameter estimation techniques of these models were introduced. Correlated kinetic parameters and kinetic equations of the autocatalytic empirical kinetic model of LPSMC system were determined by using isothermal DSC to scan the system which was thickened by crystalline polymer (PEG-MAH). Through using a serial curing degree of the system to validate the model, the experimental results were basically identical with the predictions of the autocatalytic empirical kinetic model. This model could provide a theoretical reference to the determination of molding techniques of low pressure SMC.

  11. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    Science.gov (United States)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  12. MODELING THE CHAIN CONFORMATION OF POLYMER MELTS IN CONTRACTION FLOW

    Institute of Scientific and Technical Information of China (English)

    Qing Shen; Jian-feng Hu; Qing-feng Gu

    2003-01-01

    A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction flow.The numerical results from finite element analysis are consistent with experimental data for stress patterns and velocity profiles in the flow field. The chain conformations of polymer melts are then investigated in such a planar contraction by using the phenomenological model with internal parameters proposed by the author. That is, the shape and orientation of polymer chain coils are predicted and discussed in different flow regions of the contraction flow field that possess simple shear flow, extensional flow, vortical flow, and mixed flow respectively.

  13. Validation and application of modeling algorithms for the design of molecularly imprinted polymers.

    Science.gov (United States)

    Liu, Bing; Ou, Lulu; Zhang, Fuyuan; Zhang, Zhijun; Li, Hongying; Zhu, Mengyu; Wang, Shuo

    2014-12-01

    In the study, four different semiempirical algorithms, modified neglect of diatomic overlap, a reparameterization of Austin Model 1, complete neglect of differential overlap and typed neglect of differential overlap, have been applied for the energy optimization of template, monomer, and template-monomer complexes of imprinted polymers. For phosmet-, estrone-, and metolcarb-imprinted polymers, the binding energies of template-monomer complexes were calculated and the docking configures were assessed in different molar ratio of template/monomer. It was found that two algorithms were not suitable for calculating the binding energy in template-monomers complex system. For the other algorithms, the obtained optimum molar ratio of template and monomers were consistent with the experimental results. Therefore, two algorithms have been selected and applied for the preparation of enrofloxacin-imprinted polymers. Meanwhile using a different molar ratio of template and monomer, we prepared imprinted polymers and nonimprinted polymers, and evaluated the adsorption to template. It was verified that the experimental results were in good agreement with the modeling results. As a result, the semiempirical algorithm had certain feasibility in designing the preparation of imprinted polymers.

  14. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1994--September 24, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1996-05-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems -- KUSP1 systems which contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethylphthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system. The KUSP1 polymer-ester system and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to super-critical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  15. Coarse-graining polymer solutions: A critical appraisal of single- and multi-site models

    Science.gov (United States)

    D'Adamo, G.; Menichetti, R.; Pelissetto, A.; Pierleoni, C.

    2015-09-01

    We critically discuss and review the general ideas behind single- and multi-site coarse-grained (CG) models as applied to macromolecular solutions in the dilute and semi-dilute regime. We first consider single-site models with zero-density and density-dependent pair potentials. We highlight advantages and limitations of each option in reproducing the thermodynamic behavior and the large-scale structure of the underlying reference model. As a case study we consider solutions of linear homopolymers in a solvent of variable quality. Secondly, we extend the discussion to multi-component systems presenting, as a test case, results for mixtures of colloids and polymers. Specifically, we found the CG model with zero-density potentials to be unable to predict fluid-fluid demixing in a reasonable range of densities for mixtures of colloids and polymers of equal size. For larger colloids, the polymer volume fractions at which phase separation occurs are largely overestimated. CG models with density-dependent potentials are somewhat less accurate than models with zero-density potentials in reproducing the thermodynamics of the system and, although they present a phase separation, they significantly underestimate the polymer volume fractions along the binodal. Finally, we discuss a general multi-site strategy, which is thermodynamically consistent and fully transferable with the number of sites, and that allows us to overcome most of the limitations discussed for single-site models.

  16. Modelling compression sensing in ionic polymer metal composites

    Science.gov (United States)

    Volpini, Valentina; Bardella, Lorenzo; Rodella, Andrea; Cha, Youngsu; Porfiri, Maurizio

    2017-03-01

    Ionic polymer metal composites (IPMCs) consist of an ionomeric membrane, including mobile counterions, sandwiched between two thin noble metal electrodes. IPMCs find application as sensors and actuators, where an imposed mechanical loading generates a voltage across the electrodes, and, vice versa, an imposed electric field causes deformation. Here, we present a predictive modelling approach to elucidate the dynamic sensing response of IPMCs subject to a time-varying through-the-thickness compression (‘compression sensing’). The model relies on the continuum theory recently developed by Porfiri and co-workers, which couples finite deformations to the modified Poisson–Nernst–Planck (PNP) system governing the IPMC electrochemistry. For the ‘compression sensing’ problem we establish a perturbative closed-form solution along with a finite element (FE) solution. The systematic comparison between these two solutions is a central contribution of this study, offering insight on accuracy and mathematical complexity. The method of matched asymptotic expansions is employed to find the analytical solution. To this end, we uncouple the force balance from the modified PNP system and separately linearise the PNP equations in the ionomer bulk and in the boundary layers at the ionomer–electrode interfaces. Comparison with FE results for the fully coupled nonlinear system demonstrates the accuracy of the analytical solution to describe IPMC sensing for moderate deformation levels. We finally demonstrate the potential of the modelling scheme to accurately reproduce experimental results from the literature. The proposed model is expected to aid in the design of IPMC sensors, contribute to an improved understanding of IPMC electrochemomechanical response, and offer insight into the role of nonlinear phenomena across mechanics and electrochemistry.

  17. Effects of anchored flexible polymers on mechanical properties of model biomembranes

    CERN Document Server

    Wu, Hao; 10.1063/1.4794653

    2013-01-01

    We have studied biomembranes with grafted polymer chains using a coarse-grained membrane simulation, where a meshless membrane model is combined with polymer chains. We focus on the polymer-induced entropic effects on mechanical properties of membranes. The spontaneous curvature and bending rigidity of the membranes increase with increasing polymer density. Our simulation results agree with the previous theoretical predictions.

  18. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    Science.gov (United States)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  19. Synthesis of a naphthalene-hydroxynaphthalene polymer model compound

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-02

    The objective of this project was the synthesis of one pound of a new naphthalene-hydroxynaphthalene polymer model compound for use in coal combustion studies. Since this compound was an unreported compound, this effort also required the development of a synthetic route to this compound (including routes to the unique and unreported intermediates leading to its synthesis).

  20. Modelling the permeability of polymers: a neural network approach

    NARCIS (Netherlands)

    Wessling, M.; Mulder, M.H.V.; Bos, A.; Linden, van der M.K.T.; Bos, M.; Linden, van der W.E.

    1994-01-01

    In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a p

  1. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, communication, sensing, medicine, security, imaging, energy, lighting etc.

  2. Modeling Interfacial Adsorption of Polymer-Grafted Nanoparticles

    Science.gov (United States)

    Yong, Xin

    2014-11-01

    Numerous natural and industrial processes demand advances in our fundamental understanding of colloidal adsorption at liquid interfaces. Using dissipative particle dynamics (DPD), we model the interfacial adsorption of core-shell nanoparticles at the water-oil interface. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with polymer chains. The nanoparticles bind to the interface from either phase to minimize total surface energy. With a single nanoparticle, we demonstrate detailed kinetics of different stages in the adsorption process. Prominent effect of grafted polymer chains is characterized by varying molecular weight and polydispersity of the chains. We also preload nanoparticles straddling the interface to reveal the influence of nanoparticle surface density on further adsorption. Importantly, these studies show how surface-grafted polymer chains can alter the interfacial behavior of colloidal particles and provide guidelines for designing on-demand Pickering emulsion.

  3. Mathematical Existence Results for the Doi-Edwards Polymer Model

    Science.gov (United States)

    Chupin, Laurent

    2017-01-01

    In this paper, we present some mathematical results on the Doi-Edwards model describing the dynamics of flexible polymers in melts and concentrated solutions. This model, developed in the late 1970s, has been used and extensively tested in modeling and simulation of polymer flows. From a mathematical point of view, the Doi-Edwards model consists in a strong coupling between the Navier-Stokes equations and a highly nonlinear constitutive law. The aim of this article is to provide a rigorous proof of the well-posedness of the Doi-Edwards model, namely that it has a unique regular solution. We also prove, which is generally much more difficult for flows of viscoelastic type, that the solution is global in time in the two dimensional case, without any restriction on the smallness of the data.

  4. Polymer as a function of monomer: Analytical quantum modeling

    CERN Document Server

    Nakhaee, Mohammad

    2016-01-01

    To identify an analytical relation between the properties of polymers and their's monomer a Metal-Molecule-Metal (MMM) junction has been presented as an interesting and widely used object of research in which the molecule is a polymer which is able to conduct charge. The method used in this study is based on the Green's function approach in the tight-binding approximation using basic properties of matrices. For a polymer base MMM system, transmission, density of states (DOS) and local density of states (LDOS) have been calculated as a function of the hamiltonian of the monomer. After that, we have obtained a frequency for LDOS variations in pass from a subunit to the next one which is a function of energy.

  5. Low-density, polymer foams as structural models for phase-separation in polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, G. [Univ. of Cincinnati, OH (United States); Lagasse, R.R.; Aubert, J.H. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1995-12-31

    Low density polymer foams are produced through nano-scale phase separation of 5 to 15% solutions yielding gels. The gels are solvent exchanged and dried by supercritical extraction. We have found that the morphology of the phase separated gel, the intermediate solvent exchanged gels and the final foams are essentially identical over a wide range of size. Through the combination of several scattering techniques covering many decades of size we can distinguish structural levels in these low-density foams. The combined scattering data spans sizes ranging from 10{mu}m to 1{Angstrom}. A recently developed global fitting approach can describe the multiple levels of structure observed in these complex materials. Several morphological classes of foams are observed. A perplexing feature in the scattering patterns from all of the foams is a 3-dimensional structure with a radius of gyration from 40 to 100{Angstrom}. By variation of the polymer molecular-weight, scattering data supports a model describing this nano-scale structure as partially isolated, collapsed polymer coils. This model indicates that collapsed base structural unit in these morphologies.

  6. Effects of carbon nanoparticles on properties of thermoset polymer systems

    Science.gov (United States)

    Movva, Siva Subramanyam

    Polymer nanocomposites are novel materials in which at least one of the dimensions of the reinforcing material is on the order of 100 nm or less. While thermoplastic nanocomposites have been studied very widely, there are fewer studies concerning the effect of nanoparticles on thermoset systems. Low temperature cure thermoset systems are very important for many important applications. In this study, the processing, mechanical and thermal properties and reaction kinetics of carbon nanofiber (CNF) and/or carbon nanotubes (CNT) reinforced low temperature vinyl ester and epoxy nanocomposites were studied. In the first part, the processing challenge of incorporating CNFs into conventional fiber reinforced composites made by Vacuum infusion resin transfer molding (VARTM) was addressed by a new technique. The CNFs are pre-bound on the long fiber mats, instead of mixing them in the polymer resin, thereby eliminating several processing drawbacks. The resulting hybrid nanocomposites showed significant improvements in tensile, flexural and thermal properties. The effect of CNFs on the mold filling in VARTM was also studied and shown to follow the Darcy's law. In the second part, the effect of CNFs on the low temperature cure kinetics of vinyl ester and epoxy resins is studied using a thermal analysis technique, namely Differential scanning calorimetry (DSC). The effect of CNFs on the free radical polymerization of vinyl esters was found to be very complex as the CNFs interact with the various curing ingredients in the formulation. Specifically, the interaction effects of CNFs and the inhibitor were studied and a reaction mechanism was proposed to explain the observed phenomenon. The effect of surface modification of the carbon nanoparticles on the cure kinetics of wind-blade epoxy was studied. The surface functionalization reduced the activation energy of the epoxy reaction and was found to have an acceleration effect on the cure kinetics of epoxy resin at room temperature

  7. Predictive Model of Graphene Based Polymer Nanocomposites: Electrical Performance

    Science.gov (United States)

    Manta, Asimina; Gresil, Matthieu; Soutis, Constantinos

    2017-04-01

    In this computational work, a new simulation tool on the graphene/polymer nanocomposites electrical response is developed based on the finite element method (FEM). This approach is built on the multi-scale multi-physics format, consisting of a unit cell and a representative volume element (RVE). The FE methodology is proven to be a reliable and flexible tool on the simulation of the electrical response without inducing the complexity of raw programming codes, while it is able to model any geometry, thus the response of any component. This characteristic is supported by its ability in preliminary stage to predict accurately the percolation threshold of experimental material structures and its sensitivity on the effect of different manufacturing methodologies. Especially, the percolation threshold of two material structures of the same constituents (PVDF/Graphene) prepared with different methods was predicted highlighting the effect of the material preparation on the filler distribution, percolation probability and percolation threshold. The assumption of the random filler distribution was proven to be efficient on modelling material structures obtained by solution methods, while the through-the -thickness normal particle distribution was more appropriate for nanocomposites constructed by film hot-pressing. Moreover, the parametrical analysis examine the effect of each parameter on the variables of the percolation law. These graphs could be used as a preliminary design tool for more effective material system manufacturing.

  8. Elastic turbulence in a shell model of polymer solution

    CERN Document Server

    Ray, Samriddhi Sankar

    2016-01-01

    We show that, at low inertia and large elasticity, shell models of viscoelastic fluids develop a chaotic behaviour with properties similar to those of elastic turbulence. The low dimensionality of shell models allows us to explore a wide range both in polymer concentration and in Weissenberg number. Our results demonstrate that the physical mechanisms at the origin of elastic turbulence do not rely on the boundary conditions or on the geometry of the mean flow.

  9. Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-07-14

    The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems.

  10. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    Science.gov (United States)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  11. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  12. Peridynamic modeling and simulation of polymer-nanotube composites

    Science.gov (United States)

    Henke, Steven F.

    In this document, we develop and demonstrate a framework for simulating the mechanics of polymer materials that are reinforced by carbon nanotubes. Our model utilizes peridynamic theory to describe the mechanical response of the polymer and polymer-nanotube interfaces. We benefit from the continuum formulation used in peridynamics because (1) it allows the polymer material to be coarse-grained to the scale of the reinforcing nanofibers, and (2) failure via nanotube pull-out and matrix tearing are possible based on energetic considerations alone (i.e. without special treatment). To reduce the degrees of freedom that must be simulated, the reinforcement effect of the nanotubes is represented by a mesoscale bead-spring model. This approach permits the arbitrary placement of reinforcement ``strands'' in the problem domain and motivates the need for irregular quadrature point distributions, which have not yet been explored in the peridynamic setting. We address this matter in detail and report on aspects of mesh sensitivity that we uncovered in peridynamic simulations. Using a manufactured solution, we study the effects of quadrature point placement on the accuracy of the solution scheme in one and two dimensions. We demonstrate that square grids and the generator points of a centroidal Voronoi tessellation (CVT) support solutions of similar accuracy, but CVT grids have desirable characteristics that may justify the additional computational cost required for their construction. Impact simulations provide evidence that CVT grids support fracture patterns that resemble those obtained on higher resolution cubic Cartesian grids with a reduced computational burden. With the efficacy of irregular meshing schemes established, we exercise our model by dynamically stretching a cylindrical specimen composed of the polymer-nanotube composite. We vary the number of reinforcements, alignment of the filler, and the properties of the polymer-nanotube interface. Our results suggest

  13. Conductive polymers for controlled release and treatment of central nervous system injury

    Science.gov (United States)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly

  14. Micromechanical Failure Analyses for Finite Element Polymer Modeling

    Energy Technology Data Exchange (ETDEWEB)

    CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.

    2000-11-01

    Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and

  15. Polymer waveguide systems for nonlinear and electro-optic applications

    Science.gov (United States)

    Pantelis, Philip; Hill, Julian R.; Kashyap, Raman

    1991-12-01

    Waveguides with photochromic or electro-optic properties have been fabricated by a new technique using spin coating of polymers, or guest/host-polymer systems, on to grooves etched in an indium phosphide wafer. Monomoded waveguides at 633 nm, and at 1320 and 1550 nm (wavelengths of telecommunications interest) have been fabricated. These guides have good quality cleaved ends which allow efficient coupling of light from monomoded standard lensed silica fibers. An example of an electro-optic application is given in the form of a phase modulator. This device uses a side-chain polymer as the waveguide core that develops linear electro-optic properties following an electric field alignment process. It was found to have a switching voltage of 30 V, for a (pi) phase change, and had a total insertion loss of 9.4 dB. Waveguides with photochromic properties have also been produced using Aberchrome 670 (a commercially available fulgide) as a guest in a poly(methyl methacrylate) polymer host. Refractive index, optical loss, photochromic activity, and film forming properties of differing concentrations of guest (up to 20% concentration by weight) have been measured and are reported.

  16. Oral pulsatile delivery systems based on swellable hydrophilic polymers.

    Science.gov (United States)

    Gazzaniga, Andrea; Palugan, Luca; Foppoli, Anastasia; Sangalli, Maria Edvige

    2008-01-01

    Upon contact with aqueous fluids, swellable hydrophilic polymers undergo typical chain relaxation phenomena that coincide with a glassy-rubbery transition. In the rubbery phase, these polymers may be subject to swelling, dissolution and erosion processes or, alternatively, form an enduring gel barrier when cross-linked networks (hydrogels) are dealt with. Because of the peculiar hydration and biocompatibility properties, such materials are widely exploited in the pharmaceutical field, particularly as far as hydrophilic cellulose derivatives are concerned. In oral delivery, they have for long been employed in the manufacturing of prolonged release matrices and, more recently, for pulsatile (delayed) release devices as well. Pulsatile delivery, which is meant as the liberation of drugs following programmed lag phases, has drawn increasing interest especially in view of emerging chronotherapeutic approaches. In pursuit of pulsatile release, various design strategies have been proposed, chiefly including reservoir, capsular and osmotic formulations. In most cases, water-swellable polymers play a key role in the overall delivery mechanism after being activated by physiological media. Based on these premises, the aim of the present review is to survey the main oral pulsatile delivery systems, for which swelling, dissolution and/or erosion of hydrophilic polymers are primarily involved in the control of release.

  17. Multifunctional non-viral delivery systems based on conjugated polymers.

    Science.gov (United States)

    Yang, Gaomai; Lv, Fengting; Wang, Bing; Liu, Libing; Yang, Qiong; Wang, Shu

    2012-12-01

    Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP-based multifunctional non-viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP-based delivery systems are also discussed.

  18. Biomimetic polymers of plant cutin: an approach from molecular modeling.

    Science.gov (United States)

    San-Miguel, Miguel A; Oviedo, Jaime; Heredia-Guerrero, Jose Alejandro; Heredia, Antonio; Benitez, Jose Jesus

    2014-07-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of cutin in plants is not well understood yet, but a direct chemical route involving the self-assembly of either molecules or molecular aggregates has been proposed. In this work, we present a combined study using experimental and simulation techniques on self-assembled layers of monomers selectively functionalized with hydroxyl groups. Our results demonstrate that the number and position of the hydroxyl groups are critical for the interaction between single molecules and the further rearrangement. Also, the presence of lateral hydroxyl groups reinforces lateral interactions and favors the bi-dimensional growth (2D), while terminal hydroxyl groups facilitate the formation of a second layer caused by head-tail interactions. The balance of 2D/3D growth is fundamental for the plant to create a protecting layer both large enough in 2D and thick enough in 3D.

  19. Predicting chromatin architecture from models of polymer physics.

    Science.gov (United States)

    Bianco, Simona; Chiariello, Andrea M; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario

    2017-01-09

    We review the picture of chromatin large-scale 3D organization emerging from the analysis of Hi-C data and polymer modeling. In higher mammals, Hi-C contact maps reveal a complex higher-order organization, extending from the sub-Mb to chromosomal scales, hierarchically folded in a structure of domains-within-domains (metaTADs). The domain folding hierarchy is partially conserved throughout differentiation, and deeply correlated to epigenomic features. Rearrangements in the metaTAD topology relate to gene expression modifications: in particular, in neuronal differentiation models, topologically associated domains (TADs) tend to have coherent expression changes within architecturally conserved metaTAD niches. To identify the nature of architectural domains and their molecular determinants within a principled approach, we discuss models based on polymer physics. We show that basic concepts of interacting polymer physics explain chromatin spatial organization across chromosomal scales and cell types. The 3D structure of genomic loci can be derived with high accuracy and its molecular determinants identified by crossing information with epigenomic databases. In particular, we illustrate the case of the Sox9 locus, linked to human congenital disorders. The model in-silico predictions on the effects of genomic rearrangements are confirmed by available 5C data. That can help establishing new diagnostic tools for diseases linked to chromatin mis-folding, such as congenital disorders and cancer.

  20. Modeling the Rheology of Polymer Melts and Solutions

    Science.gov (United States)

    Larson, R. G.; Desai, Priyanka S.

    2015-01-01

    We review constitutive modeling of solutions and melts of linear polymers, focusing on changes in rheological behavior in shear and extensional flow as the concentration increases from unentangled dilute, to entangled, to dense melt. The rheological changes are captured by constitutive equations, prototypes of which are the FENE-P model for unentangled solutions and the DEMG model for entangled solutions and melts. From these equations, and supporting experimental data, for dilute solutions, the extensional viscosity increases with the strain rate from the low-strain rate to the high-strain rate asymptote, but in the densely entangled state, the high-strain rate viscosity is lower than the low-shear rate value, especially when orientation-dependent friction is accounted for. In shearing flow, shear thinning increases dramatically as the entanglement density increases, which can eventually lead to a shear-banding inhomogeneity. Recent improvements in constitutive modeling are paving the way for robust and accurate numerical simulations of polymer fluid mechanics and industrial processing of polymers.

  1. Modeling thin-film piezoelectric polymer ultrasonic sensors

    Science.gov (United States)

    González, M. G.; Sorichetti, P. A.; Santiago, G. D.

    2014-11-01

    This paper presents a model suitable to design and characterize broadband thin film sensors based on piezoelectric polymers. The aim is to describe adequately the sensor behavior, with a reasonable number of parameters and based on well-known physical equations. The mechanical variables are described by an acoustic transmission line. The electrical behavior is described by the quasi-static approximation, given the large difference between the velocities of propagation of the electrical and mechanical disturbances. The line parameters include the effects of the elastic and electrical properties of the material. The model was validated with measurements of a poly(vinylidene flouride) sensor designed for short-pulse detection. The model variables were calculated from the properties of the polymer at frequencies between 100 Hz and 30 MHz and at temperatures between 283 K and 313 K, a relevant range for applications in biology and medicine. The simulations agree very well with the experimental data, predicting satisfactorily the influence of temperature and the dielectric properties of the polymer on the behavior of the sensor. Conversely, the model allowed the calculation of the material dielectric properties from the measured response of the sensor, with good agreement with the published values.

  2. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Larsen, Niels Bent

    2013-01-01

    The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes ...... systems, including polystyrene (PS), cyclic olefin copolymer (COC), liquid crystalline polymer (LCP), and polyimide (PI)....

  3. Improved Approximations for Some Polymer Extension Models

    CERN Document Server

    Petrosyan, Rafayel

    2016-01-01

    We propose approximations for force-extension dependencies for the freely jointed chain (FJC) and worm-like chain (WLC) models as well as for extension-force dependence for the WLC model. Proposed expressions show less than 1% relative error in the useful range of the corresponding variables. These results can be applied for fitting force-extension curves obtained in molecular force spectroscopy experiments. Particularly they can be useful for cases where one has geometries of springs in series and/or in parallel where particular combination of expressions should be used for fitting the data. All approximations have been obtained following the same procedure of determining the asymptotes and then reducing the relative error of that expression by adding an appropriate term obtained from fitting its absolute error.

  4. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    Science.gov (United States)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  5. Time dependent mechanical modeling for polymers based on network theory

    Science.gov (United States)

    Billon, Noëlle

    2016-05-01

    Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physicl meaning.

  6. Binding of vinyl polymers to anionic model membranes.

    Science.gov (United States)

    Torrens, F; Campos, A; Abad, C

    2003-09-01

    The association of poly2-vinylpyridine (P2VPy) and poly4-vinylpyridine (P4VPy) to dimyristoylphosphatidic acid (DMPA) small unilamellar vesicles (SUVs) was studied as a function of pH, ionic strength (I), polymer concentration and temperature using spectrofluorimetry. Poly(vinylpyridine) (PVPy) data were transformed into association isotherms and analyzed in terms of binding and partition models. In the case of polyions, the inclusion of the activity coefficient in both models was essential. Moreover, a relating equation was proposed to compare parameters based on both theoretical approaches. On the basis of the results obtained, a model was developed to analyze polymer adsorption at the surface level, in which the length of the hydrophobic chain and the position of the N atom in the pyridinium ring play an important role. Transition temperature (Tc) for DMPA (ca. 55 degrees C) is decreased between 15 degrees C-19 degrees C in the presence of PVPy. Van't Hoff isochore showed that the binding constant (KA) accounted for average PVPy-DMPA two-dimensional solid and liquid interactions. KA decreased with I in the presence of both polymers, but was more sensitive to I in the case of P2VPy. Likewise, the number of phospholipid heads (N) involved in the binding process decreased with I in the presence of PVPy. The influence of I was more significant on N than on KA.

  7. Time dependent mechanical modeling for polymers based on network theory

    Energy Technology Data Exchange (ETDEWEB)

    Billon, Noëlle [MINES ParisTech, PSL-Research University, CEMEF – Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse 06904 Sophia Antipolis Cedex (France)

    2016-05-18

    Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physical meaning.

  8. Improving reservoir conformance using gelled polymer systems. Final report, September 25, 1992--July 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1997-06-01

    The objectives of the research program were to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems--KUSP1 systems that contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethyl phthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to supercritical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  9. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    Science.gov (United States)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  10. Polymers for Pharmaceutical Packaging and Delivery Systems

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel

    -bromoisobutyrate initiating sites. Each modification step of PEEK as well as grafting of poly(ethylene glycol) methacrylate (PEGMA) was followed and confirmed by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, water contact angle (WCA) measurements, and Thermal Gravimetric Analysis....... X-ray Photoelectron Spectroscopy also confirmed the presence of the poly(PEGMA) grafts on the PEEK surface by comparing the C/O ratio and the chemical composition after each modification step. The surface topography was evaluated by Atomic Force Microscopy. Polypropylene (PP) is one of the polymeric...... materials of interest for pharmaceutical packaging and delivery systems. Confocal fluorescence microscopy studies and stability studies with insulin aspart (AspB28 insulin) were conducted to evaluate the impact of modified PP compared to unmodified PP. In contrast to PEEK, PP did not contain any functional...

  11. Polymer compatibility in two dimensions. Modeling of phase behavior of mixed polymethacrylate Langmuir films.

    Science.gov (United States)

    Bernardini, C; Stuart, M A Cohen; Stoyanov, S D; Arnaudov, L N; Leermakers, F A M

    2012-04-03

    We analyze the possibility of polymer blends undergoing phase separation in two dimensions. To this end, we investigate a model system consisting of water-supported Langmuir monolayers, obtained from binary polyalkyl-methacrylate mixtures (PXMA, where X stands for any of the type of ester side groups used: M, methyl-; E, ethyl-; B, butyl-; H, hexyl-; O, octyl-; L, lauryl-methacrylate), by means of self consistent field (SCF) calculations. In particular, we address the conditions which determine demixing and phase separation in the two-dimensional system, showing that a sufficient chain length mismatch in the ester side group moieties is able to drive the polymer demixing. When the difference in length of the alkyl chain of the ester moieties on the two types of polymers is progressively reduced, from 11 carbon atoms (PMMA/PLMA) to 4 carbons only (POMA/PLMA), the demixing tendency is also reduced. The polymer/subphase interactions affect more the distribution of the polymer coils in the POMA/PLMA blend monolayer. Mixing of the two polymers is observed, but also a partial layering along the vertical direction. We also add, to a PMMA/PLMA blended monolayer, a third component, namely, a symmetrical diblock copolymer of the type PLMA-b-PMMA. We observe adsorption of the diblock copolymer exclusively at the contact line between the two homopolymer domains, and a concomitant lowering of the line tension. The line tension varies with the chemical potential of the diblock copolymer according to Gibbs' law, which demonstrates that PLMA-b-PMMA can act as a "lineactant" (the equivalent of a surfactant in two-dimensional systems) in the binary demixed PMMA/PLMA Langmuir monolayer.

  12. Modeling, Simulation, and Characterization of Electro-Optic Polymer Waveguide Devices.

    Science.gov (United States)

    Ma, Jiong

    The primary objective of this thesis is to investigate the properties of optical polymer waveguides and switches, develop a phenomenological CAD tool, and to use this phenomenological tool to design optical polymer devices for high-speed interconnects in VLSI systems. In the investigations of optical polymer waveguides, a new phenomenological bleaching model that is able to predict optical index profiles for photobleached polymer films was developed. The theoretical model shows good agreement with measured results for the effective index and optical field distributions of waveguides, and the absorption of films. Based on this bleaching model, we can predict the index profile for polymer channel waveguides and formulate design rules for active optical switches and modulators. The model has been successfully applied to photobleached PMMA/DR1 and Ultem/DEDR1 waveguides. An experimental technique to determine the poling -induced optical birefringence and optical nonlinearity is also discussed. In this technique, absorption measurements are performed immediately after poling. The poling-induced index changes as a function of wavelength are obtained from the absorption changes using a Kramers-Kronig transformation. An alternative method for predicting the poling-induced index changes, requiring a combination of waveguide measurement techniques and order parameter calculations, exhibits good agreement. By combining the poling effects with the photobleaching index profile, a CAD tool has been developed to calculate the optical field distribution and loss which allows the design of active electro-optical modulators. Using the CAD tool together with an equivalent circuit model of electro-optic polymer switches, circuit level comparisons of a CMOS strip line interconnect with an external polymer modulator interconnect were performed in terms of power dissipation, bandwidth, and connection density. HSPICE was used as a circuit simulation tool. Based on this analysis, it is

  13. Application of molecular modeling to polymer grafted nanostructures

    Science.gov (United States)

    Adiga, Shashishekar P.

    Polymer chains undergo conformational transitions in response to a change in solvent quality of their environment, making them strong candidates to be used in smart nanometer-scale devices. In the present work molecular modeling is used to explore grafted polymer structures with various functionalities. The first part of this research focuses on two examples of selective transport through nanopores modified with polymer brush structures. The first is the investigation of solvent flow through nanopores grafted with linear chains. Molecular dynamics (MD) simulations are used to demonstrate how a stretch-collapse transition in grafted polymer chains can be used to control solvent flow rate through a nanopore in response to environmental stimuli. A continuum fluid dynamics method based on porous layer model for describing flow through the smart nanopore is described and its accuracy is analyzed by comparing with the results from MD simulations. The continuum method is then applied to determine regulation of water permeation in response to pH through a poly(L-glutamic acid) grafted nanoporous membrane. A second example is use of a rod-coil transition in "bottle brush" molecules that are grafted to the inside of a nanopore to size select macromolecules as they diffuse through the functionalized nanopores. These stimuli-responsive nanopores have a variety of potential applications including molecular sorting, smart drug delivery, and ultrafiltration, as well as controlled chemical release. Tethered polymers play an important role in biological structures as well. In the second part of the research, application of atomistic simulations to characterize the effect of phosphorylation on neurofilament structure is presented. Neurofilaments are intermediate filaments that regulate axonal diameter through their long, flexible side arms extending from the central core. Their functionality is imparted by polymer brush like structure that causes steric repulsion between the

  14. Processing of Polymer Nanofibers Through Electrospinning as Drug Delivery Systems

    Science.gov (United States)

    Kenawy, E.; Abdel-Hay, F. I.; El-Newehy, M. H.; Wnek, G. E.

    The use of electrospun fibers as drug carriers could be promising in the future for biomedical applications, especially postoperative local chemotherapy. In this research, electrospun fibers were developed as a new system for the delivery of ketoprofen as non-steroidal anti-inflammatory drug (NSAID). The fibers were made either from polycaprolactone (PCL) as a biodegradable polymer or polyurethane (PU) as a non-biodegradable polymer, or from the blends of the two. The release of the ketoprofen was followed by UV—VIS spectroscopy in phosphate buffer of pH 7.4 at 37°C and 20°C. The results showed that the release rates from the polycaprolactone, polyurethane and their blend were similar. However, the blend of the polycaprolactone with polyurethane improved its visual mechanical properties. Release profiles from the electrospun mats were compared to cast films of the various formulations.

  15. 5,6-Dihydroxyindole oxidation in phosphate buffer/polyvinyl alcohol: a new model system for studies of visible chromophore development in synthetic eumelanin polymers.

    Science.gov (United States)

    Pezzella, Alessandro; Ambrogi, Veronica; Arzillo, Marianna; Napolitano, Alessandra; Carfagna, Cosimo; d'Ischia, Marco

    2010-01-01

    The determinants of the broadband absorption spectrum of eumelanins are still largely unknown. Herein we report a novel approach to investigate eumelanin chromophore which is based on the biomimetic oxidation of the key monomer precursor, 5,6-dihydroxyindole (DHI, 1), with peroxidase/hydrogen peroxide in phosphate buffer, pH 7, containing 1-5% polyvinylalcohol (PVA, 27 000 Da). This approach relies on the discovery that as low as 1% PVA can prevent precipitation of the growing melanin polymer thus allowing investigation of the chromophoric phases accompanying oxidation of DHI without confounding scattering effects. Spectrophotometric monitoring showed the initial development of a band around 530 nm persisting for about 1 h before gradually changing into the typical broadband spectrum of eumelanin. Reductive treatment caused a significant absorbance decrease in the visible region without affecting an absorption band around 320 nm. Initial product analysis indicated an altered formation ratio of 2,4'-biindolyl (2) and 2,7'-biindolyl (3) relative to control experiments. Overall, these results demonstrate for the first time that the development in solution of visible chromophores since the early oligomer stages is independent of strong aggregation/precipitation phenomena.

  16. Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets

    Directory of Open Access Journals (Sweden)

    Loreto M. Valenzuela

    2016-01-01

    Full Text Available Prediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R2>0.78 for test set but very low accuracy on cross-validation sets (less than 19% of experimental points within experimental error. Instead, using consolidated parameters like equilibrium water uptake a good model is obtained (R2=0.78 for test set, with accurate predictions for 50% of tested polymers. The semiempirical model was applied to the 56-polymer library of L-tyrosine-derived polyarylates, identifying groups of polymers that are likely to satisfy design criteria for water uptake. This research demonstrates that a surrogate modeling effort can reduce the number of polymers that must be synthesized and characterized to identify an appropriate polymer that meets certain performance criteria.

  17. Viscosity solutions for a polymer crystal growth model

    CERN Document Server

    Cardaliaguet, Pierre; Monteillet, Aurélien

    2010-01-01

    We prove existence of a solution for a polymer crystal growth model describing the movement of a front $(\\Gamma(t))$ evolving with a nonlocal velocity. In this model the nonlocal velocity is linked to the solution of a heat equation with source $\\delta_\\Gamma$. The proof relies on new regularity results for the eikonal equation, in which the velocity is positive but merely measurable in time and with H\\"{o}lder bounds in space. From this result, we deduce \\textit{a priori} regularity for the front. On the other hand, under this regularity assumption, we prove bounds and regularity estimates for the solution of the heat equation.

  18. Viscosity solutions for a polymer crystal growth model

    OpenAIRE

    Cardaliaguet, Pierre; Ley, Olivier; Monteillet, Aurélien

    2011-01-01

    International audience; We prove existence of a solution for a polymer crystal growth model describing the movement of a front $(\\Gamma(t))$ evolving with a nonlocal velocity. In this model the nonlocal velocity is linked to the solution of a heat equation with source $\\delta_\\Gamma$. The proof relies on new regularity results for the eikonal equation, in which the velocity is positive but merely measurable in time and with H\\"{o}lder bounds in space. From this result, we deduce \\textit{a pri...

  19. Experimental and theoretical aspects of studying themodynamics and mass transport in polymer-solvent systems

    Science.gov (United States)

    Davis, Peter Kennedy

    Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a

  20. Design, modeling, and fabrication of piezoelectric polymer actuators

    Science.gov (United States)

    Fu, Yao; Harvey, Erol C.; Ghantasala, Muralidhar K.; Spinks, Geoff

    2004-04-01

    Piezoelectric polymers are a class of materials with great potential and promise for many applications. Because of their ideally suitable characteristics, they make good candidates for actuators. However, the difficulty of forming structures and shapes has limited the range of mechanical design. In this work, the design and fabrication of a unimorph piezoelectric cantilever actuator using piezoelectric polymer PVDF with an electroplated layer of nickel alloy has been described. The modeling and simulation of the composite cantilever with planar and microstructured surfaces has been performed by CoventorWare to optimize the design parameters in order to achieve large tip deflections. These simulation results indicated that a microstructured cantilever could produce 25 percent higher deflection compared to a simple planar cantilever surface. The tip deflection of the composite cantilever with a length of 6mm and a width of 1mm can reach up to 100μm. A PVDF polymer with a specifically designed shape was punched out along the elongation direction on the embossing machine at room temperature. The nickel alloy layer was electroplated on one side of the PVDF to form a composite cantilever. The tip deflection of the cantilever was observed and measured under an optical microscope. The experimental result is in agreement with the theoretical analysis.

  1. Molecular modeling studies of polymer electrolytes for power sources

    Energy Technology Data Exchange (ETDEWEB)

    Balbuena, Perla B. [Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: balbuena@tamu.edu; Lamas, Eduardo J. [Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Wang, Yixuan [Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2005-06-30

    Density functional theory and classical molecular dynamics simulations permit us to elucidate details of ionic and molecular transport useful for the design of polymer electrolyte membranes. We consider two systems of current interest: (a) ionic transport in polyethylene-oxide compared to that in a polyphosphazene membrane targeted to be a good ionic carrier but a bad water carrier and (b) transport of oxygen and protons through hydrated nafion in the vicinity of a catalyst phase. It is shown that in polyphosphazene membranes, nitrogen atoms interact more strongly with lithium ions than ether oxygens do. As a result of the different complexation of Li{sup +} with the polymer sites, Li{sup +} has a much higher diffusion coefficient in polyphosphazene than in polyethylene oxide electrolyte membranes, with the consequent relevance to lithium-water battery technology. For the hydrated membrane/catalyst interface, our simulations show that the Nafion membrane used in low-temperature fuel cells interacts strongly with the catalytic metal nanoparticles directing the side chain towards the catalyst surface. Results at various degrees of hydration of the membrane illustrate the formation of water clusters surrounding the polymer hydrophilic sites, and reveal how the connectivity of these clusters may determine the transport mechanism of protons and molecular species.

  2. Investigation of Theoretical Models for the Elastic Stiffness of Nanoparticle-Modified Polymer Composites

    Directory of Open Access Journals (Sweden)

    T. Thorvaldsen

    2015-01-01

    Full Text Available Mathematical models are investigated and suggested for the calculation of the elastic stiffness of polymer nanocomposites. Particular emphasis is placed on the effect on the elastic stiffness from agglomerates and the particle interphase properties. The multiphase Mori-Tanaka model and an interphase model are considered as two relevant models. These models only include and require the designation of a few system independent parameters with a clear physical meaning. Extensions of the models are also presented. The model calculations are compared to results from other models, as well as experimental data for different nanocomposites. For nanocomposites with spherical particles and with fiber-like particles, the suggested models are found to be the most flexible ones and are applicable to estimate the stiffness increase of nanocomposites for both low and high particle volume fractions. The suggested theoretical models can hence be considered as a general multiscale “model toolbox” for analysis of various nanocomposites.

  3. Development and modeling of novel extensional ionic polymer transducers

    Science.gov (United States)

    Akle, Barbar; Wallmersperger, Thomas; Leo, Donald

    2007-04-01

    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages. Bending actuators have limited engineering applications due to the low forcing capabilities and the need for complicated external devices to convert the bending action into rotating or linear motion desired in most devices. Recently Akle and Leo (2006) reported extensional actuation in ionic polymer transducers. Model prediction indicates that such actuators can produce strain up to 10% and a blocked stress up to 20MPa under a +/- 2V applied electric potential. Compared to other smart materials, IPT is a flexible membrane and it has a reliability of over one million cycles. In this work novel extensional IPT actuators are developed for the purpose of increasing the overall displacement of the actuator. The electromechanical coupling is measured and a correlation of the experimental data with the active areas model by Akle and Leo (2006) and the numerical electromechanical model by Wallmersperger and Leo (2004) are presented. The coupling between each test case with the model parameters enables further understanding of the physical actuation phenomena as the role of diffusion of ions and diluents and the electrostatic forces between the charged species. In this study the displacement of an extensional ionic polymer transducer is measured and compared to the bending of the same IPT actuator. The bending strain is measured to be approximately 2.5%, while the extensional strain for the same ionomer is in the order of 17.5%. Finally an interesting behavior, reported for the first time is the steady expansion of the IPT sample due to the application of a symmetrical sine wave. This indicates that charge accumulation is occurring at the electrode.

  4. Improving reservoir conformance using gelled polymer systems. Eleventh quarterly report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1995-07-24

    The general objectives are to (1) to identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) to determine the performance of these systems in bulk and in porous media, and (3) to develop methods to predict the capability of these systems to recover oil from petroleum reservoirs. This work focuses on three types of gel systems -- an aqueous polysaccharide (KUSP1) system that gels as a function of pH, the chromium(III)-polyacrylamide system and the aluminum citrate-polyacrylamide system. Laboratory research is directed at the fundamental understanding of the physics and chemistry of the gelation process in bulk form and in porous media. This knowledge will be used to develop conceptual and mathematical models of the gelation process. Mathematical models will then be extended to predict the performance of gelled polymer treatments in oil reservoirs. Technical progress is described for the following tasks: physical and chemical characterization of gel systems; mechanisms of in situ gelation; and mathematical modelling of the gel systems.

  5. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    Science.gov (United States)

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data.

  6. Molecular mobility with respect to accessible volume in Monte Carlo lattice model for polymers

    Science.gov (United States)

    Diani, J.; Gilormini, P.

    2017-02-01

    A three-dimensional cubic Monte Carlo lattice model is considered to test the impact of volume on the molecular mobility of amorphous polymers. Assuming classic polymer chain dynamics, the concept of locked volume limiting the accessible volume around the polymer chains is introduced. The polymer mobility is assessed by its ability to explore the entire lattice thanks to reptation motions. When recording the polymer mobility with respect to the lattice accessible volume, a sharp mobility transition is observed as witnessed during glass transition. The model ability to reproduce known actual trends in terms of glass transition with respect to material parameters, is also tested.

  7. Effects of polymer graft properties on protein adsorption and transport in ion exchange chromatography: a multiscale modeling study.

    Science.gov (United States)

    Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R

    2015-04-14

    Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.

  8. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    . The emphasis of this paper is on the signal-to-noise ratio of the detection and its relation to the sensitivity. Two absorbance cells with an optical path length of 100 μm and 1000 μm were characterized and compared in terms of sensitivity, limit of detection and effective path length for measurements......A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar...

  9. The model of stress distribution in polymer electrolyte membrane

    CERN Document Server

    Atrazhev, Vadim V; Dmitriev, Dmitry V; Erikhman, Nikolay S; Sultanov, Vadim I; Patterson, Timothy; Burlatsky, Sergei F

    2014-01-01

    An analytical model of mechanical stress in a polymer electrolyte membrane (PEM) of a hydrogen/air fuel cell with porous Water Transfer Plates (WTP) is developed in this work. The model considers a mechanical stress in the membrane is a result of the cell load cycling under constant oxygen utilization. The load cycling causes the cycling of the inlet gas flow rate, which results in the membrane hydration/dehydration close to the gas inlet. Hydration/dehydration of the membrane leads to membrane swelling/shrinking, which causes mechanical stress in the constrained membrane. Mechanical stress results in through-plane crack formation. Thereby, the mechanical stress in the membrane causes mechanical failure of the membrane, limiting fuel cell lifetime. The model predicts the stress in the membrane as a function of the cell geometry, membrane material properties and operation conditions. The model was applied for stress calculation in GORE-SELECT.

  10. A heat mathematical model of polymer composite cylinder during microwave treatment

    Directory of Open Access Journals (Sweden)

    S. V. Reznik

    2014-01-01

    Full Text Available Traditional technologies of producing epoxy based polymer composite materials (PCM require a long-term and energy consuming thermal processing. Microwave heating could be used as an alternative technology for heating work pieces made of PCM; this would allow to reduce treatment time and energy consumption significantly. A mathematical model of temperature distribution inside a cylindrical composite system during microwave treatment was investigated in this paper. The model includes a hollow PCM cylinder made of an epoxy binder and carbon fibers and a solid cylindrical mandrel. Theoretical and experimental results on the temperature state of the system were analyzed and discussed.

  11. Anisotropy in Thermo-Optic Coefficient of Different Polymer Systems by Attenuated Total Reflection Configuration

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; CAO Zhuang-Qi; SHEN Qi-Shun; MENG Qing-Hua; HUANG De-Ying; GUO Kun-Peng; QIU Ling; SHEN Yu-Quan

    2006-01-01

    @@ Thermo-optic coefficient dn/dT as well as volume expansion coefficients β of different polymer systems are measured for both TE and TM polarizations in an attenuated total reflection (ATR) configuration. Experimental results indicate that cross-linked polymer systems exhibit the thermal expansion coefficients smaller than those of the original side-chain systems. Moreover, the anisotropies in thermo-optic coefficients of the polymer systems with small birefringence exhibit linear relationship with the anisotropies in volume expansion coefficients, but the polymer systems with larger birefringence exhibit more complicated relationship.

  12. Resin polymer and corrosion casting of the porcine pelvi-calyceal system: a useful model for investigating new imaging and endoscopic techniques of the upper urinary tract.

    Science.gov (United States)

    John, Babbin; Ghani, Khurshid R; Patel, Uday; Anson, Ken

    2008-02-01

    We describe the use of polyester resin casting of the pelvi-calyceal (PC) system as a method of evaluating the accuracy of new three-dimensional imaging technology such as ultrasound and computerised tomography. Thirty-eight kidneys from large white pigs were used for the study. We describe the process of preparation of the kidney and polyester resin for injection into the PC systems. The setting process of the resin is an exothermic reaction with an associated change in consistency. The PC systems of the kidneys were injected with resin in a controlled manner and casts obtained by maceration of the kidneys. Some of these kidneys had been distended previously with 11% glycerol and three-dimensional ultrasound reconstructions of their PC systems were compared to resin casts to assess accuracy of the reconstructions. Thirty-eight casts were created out of which 13 were poor. The quality of the casts improved with practice and pelvi-calyceal morphology could be faithfully recreated. Controlled perfusion and watching for signs such as a "turgid feel" of the kidney help avoid pelvi-calyceal disruption. Anatomically accurate casts of the kidney PC system can be created using polyester resin with the technique described. These casts can be a useful research and training tool with urological and radiological applications.

  13. Swelling equilibrium of dentin adhesive polymers formed on the water-adhesive phase boundary: Experiments and micromechanical model

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette

    2013-01-01

    During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070

  14. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented...... bonded by ultrasonic welding. In the sub-projects of this PhD, improvements have been made to multiple aspects of fabricating and conducting droplet (or multiphase) microfluidics: • Design phase: Numerical prediction of the capillary burst pressure of a multiphase system. • Fabrication: Two new types...... here were fabricated exclusive using commercially relevant fabrication methods such as injection moulding and ultrasonic welding. Further, to reduce the complexity of the final system, I have worked towards an all-in-one device which includes sample loading, priming (removal of air), droplet formation...

  15. Discovery of antibiotics-derived polymers for gene delivery using combinatorial synthesis and cheminformatics modeling.

    Science.gov (United States)

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Ramos, James; Breneman, Curt M; Rege, Kaushal

    2014-02-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and 'building block' polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Challenges of the Modeling Methods for Investigating the Interaction between the CNT and the Surrounding Polymer

    Directory of Open Access Journals (Sweden)

    Roham Rafiee

    2013-01-01

    Full Text Available The interaction between the carbon nanotubes (CNT and the polymer is a key factor for determining the mechanical, thermal, and electrical properties of the CNT/polymer nanocomposite. However, it is difficult to measure experimentally the interfacial bonding properties between the CNT and the surrounding polymer. Therefore, computational modeling is used to predict the interaction properties. Different scale models, from atomistic to continuum, are critically reviewed addressing the advantages, the disadvantages, and the future challenges. Various methods of improvement for measuring the interaction properties are described. Finally, it is concluded that the semicontinuum modeling may be the best candidate for modeling the interaction between the CNT and the polymer.

  17. Smart branched polymer drug conjugates as nano-sized drug delivery systems.

    Science.gov (United States)

    Duro-Castano, A; Movellan, J; Vicent, M J

    2015-10-15

    Polymer-drug conjugates represent excellent nanopharmaceutical candidates, as they offer multiple advantages related to their intrinsic characteristics. Many of the said characteristics are provided by the covalent bonding between the drug and the polymer. However, their clinical development has been slow and only one polymer-drug conjugate has reached the market, thus there remains an urgent need for the development of new and smart polymeric systems. Desirable characteristics of these new systems include higher molecular weight and degree of homogeneity, predictable conformations in solution, multivalency, and increased drug loading capacity, amongst others. With these aims in mind, branched polymers are ideal candidates due to their unique rheological, mechanical, and biomedical properties derived from their structure, inaccessible for linear polymers. Within this review, the synthetic strategies developed and the main efforts towards branched polymer implementation as carriers for polymer-drug conjugates will be addressed.

  18. Potential drug delivery system: study of the association of a model nitroimidazole drug with aggregates of amphiphilic polymers on aqueous solution

    Directory of Open Access Journals (Sweden)

    Constain Hugo Salamanca Mejia

    2011-12-01

    Full Text Available This study evaluated the association of N-hexyl-2-methyl-4-nitroimidazol, a model drug, to aggregates formed by anionic polyelectrolytes on aqueous solution. The alternating copolymers of maleic anhydride and N-vinyl-2-pyrrolidone were synthesized and then modified by reaction of the anhydride groups with aliphatic amines and alcohols of varying length of the alkyl chain. The partition of the model drug between water and the hydrophobic microdomains provided by the copolymers was studied using the pseudo-phase model to determinate the distribution coefficient K S, and the standard free energy of transfer ∆µ°t. The results indicate that all copolymers assessed are potential pharmaceutical reservoirs of the model drug. Nevertheless, the solubility of N-hexyl-2-methyl-4-nitroimidazol on the polymeric solutions is independent from the length of the alkyl chain of the copolymer.Realizou-se estudo sobre a associação da N-hexil-2-metil-4-nitroimidazol, fármaco modelo, aos agregados formados por polieletrólitos aniônicos em solução aquosa. Os copolímeros alternados de anidrido maléico e N-vinil-2-pirrolidona foram sintetizados e, em seguida, modificados pela reação dos grupos de anidrido com aminas e álcoois alifáticos de duração variável da cadeia alquílica. A partição do fármaco modelo entre a água e os microdomínios hidrofóbicos fornecido pelos copolímeros foi estudada usando o modelo de pseudo-fase, a fim de determinar a distribuição do coeficiente K S e a energia livre padrão de transferência ∆µ°t. Os resultados indicam que todos os copolímeros avaliados são potenciais reservatórios farmacêuticos do fármaco. No entanto, a solubilidade do N-hexil-2-metil-4-nitroimidazol sobre as soluções poliméricas é independente do comprimento da cadeia alquílica do copolímero.

  19. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  20. Model Systems

    Directory of Open Access Journals (Sweden)

    Francisco Rodríguez-Trelles

    1998-12-01

    Full Text Available Current efforts to study the biological effects of global change have focused on ecological responses, particularly shifts in species ranges. Mostly ignored are microevolutionary changes. Genetic changes may be at least as important as ecological ones in determining species' responses. In addition, such changes may be a sensitive indicator of global changes that will provide different information than that provided by range shifts. We discuss potential candidate systems to use in such monitoring programs. Studies of Drosophila subobscura suggest that its chromosomal inversion polymorphisms are responding to global warming. Drosophila inversion polymorphisms can be useful indicators of the effects of climate change on populations and ecosystems. Other species also hold the potential to become important indicators of global change. Such studies might significantly influence ecosystem conservation policies and research priorities.

  1. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1992--September 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1994-08-01

    The general objectives of the research program are to (1) identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focuses on three types of gel systems-an aqueous polysaccharide (KUSPI) that gels as a function of pH, polyacrylamide or xanthan crosslinked by CR(III) and a polyacrylamide-aluminum citrate system. Work to date has focused primarily on development of a database, selection of systems, and work to characterize the gel/polymer physical properties and kinetics. The use of ester hydrolysis to control the rate of pH change of a gel system has been investigated and this approach to gel-time control shows promise. Extensive kinetic data were taken on the uptake of CR(III) oligomers by polyacrylamide. A model was developed which describes very well the monomer uptake rates. The model described the dimer uptake data less well and the trimer uptake data poorly. Studies of the flow and gelation in rock materials have been initiated. A mathematical model of rock-fluid interaction during flow of high pH solutions has been developed.

  2. 3D Viscoelastic Finite Element Modelling of Polymer Flow in the Fiber Drawing Process for Microstructured Polymer Optical Fiber Fabrication

    DEFF Research Database (Denmark)

    Fasano, Andrea; Rasmussen, Henrik K.; Marín, J. M. R.

    2015-01-01

    The process of drawing an optical fiber from a polymer preform is still not completely understood,although it represents one of the most critical steps in the process chain for the fabrication of microstructuredpolymer optical fibers (mPOFs). Here we present a new approach for the numerical...... the numerical modelling of mPOF drawing has mainly beenbased on principles, such as generalized Newtonian fluid dynamics, which are not able to cope with the elasticcomponent in polymer flow. In the present work, we employ the K-BKZ constitutive equation, a non-linearsingle-integral model that combines both...

  3. 75 FR 53277 - Notice of Workshop on Polymers for Photovoltaic Systems

    Science.gov (United States)

    2010-08-31

    ... National Institute of Standards and Technology Notice of Workshop on Polymers for Photovoltaic Systems... Photovoltaic Systems. DATES: The workshop will be held over two days, Thursday, September 23, 8:30 a.m. to 5 p... polymeric materials used in photovoltaic systems; testing, performance, and reliability of polymers...

  4. DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Rajeev Jain; Tuan Nguyen

    2003-11-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the first year of a three-year research program that is aimed at the understanding of the chemistry of gelation and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work has focused on a widely-applied system in field applications, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. The initial reaction between chromium acetate and one polymer is referred to as the uptake reaction. The uptake reaction was studied as functions of chromium and polymer concentrations and pH values. Experimental data were regressed to determine a rate equation that describes the uptake reaction of chromium by polyacrylamide. Pre-gel aggregates form and grow as the reactions between chromium acetate and polyacrylamide proceed. A statistical model that describes the growth of pre-gel aggregates was developed using the theory of branching processes. The model gives molecular weight averages that are expressed as functions of the conversion of the reactive sites on chromium acetate or on the polymer molecule. Results of the application of the model correlate well with experimental data of viscosity and weight-average molecular weight and gives insights into the gelation process. A third study addresses the flow of water and oil in rock material after a gel treatment. Previous works have shown that gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted to determine the effect of polymer and chromium concentrations on

  5. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

    Science.gov (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  6. Conducting polymer actuators: From basic concepts to proprioceptive systems

    Science.gov (United States)

    Martinez Gil, Jose Gabriel

    Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the

  7. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring.

    Science.gov (United States)

    Soto, Matias; Esteva, Milton; Martínez-Romero, Oscar; Baez, Jesús; Elías-Zúñiga, Alex

    2015-09-30

    A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss-Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  8. TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K.C.Tsui

    2013-01-01

    Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca.100 nm.It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk.In this paper,we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining,bulk-like layer in the film.Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide,where divergent thickness dependences are observed.

  9. Modeling Percolation in Polymer Nanocomposites by Stochastic Microstructuring

    Directory of Open Access Journals (Sweden)

    Matias Soto

    2015-09-01

    Full Text Available A methodology was developed for the prediction of the electrical properties of carbon nanotube-polymer nanocomposites via Monte Carlo computational simulations. A two-dimensional microstructure that takes into account waviness, fiber length and diameter distributions is used as a representative volume element. Fiber interactions in the microstructure are identified and then modeled as an equivalent electrical circuit, assuming one-third metallic and two-thirds semiconductor nanotubes. Tunneling paths in the microstructure are also modeled as electrical resistors, and crossing fibers are accounted for by assuming a contact resistance associated with them. The equivalent resistor network is then converted into a set of linear equations using nodal voltage analysis, which is then solved by means of the Gauss–Jordan elimination method. Nodal voltages are obtained for the microstructure, from which the percolation probability, equivalent resistance and conductivity are calculated. Percolation probability curves and electrical conductivity values are compared to those found in the literature.

  10. Electronic structure and carrier transfer in B-DNA monomer polymers and dimer polymers: Stationary and time-dependent aspects of wire model vs. extended ladder model

    CERN Document Server

    Lambropoulos, K; Morphis, A; Kaklamanis, K; Lopp, R; Theodorakou, M; Tassi, M; Simserides, C

    2016-01-01

    We employ two Tight-Binding (TB) approaches to study the electronic structure and hole or electron transfer in B-DNA monomer polymers and dimer polymers made up of $N$ monomers (base pairs): (I) at the base-pair level, using the on-site energies of base pairs and the hopping integrals between successive base pairs, i.e., a wire model and (II) at the single-base level, using the on-site energies of the bases and the hopping integrals between neighboring bases, i.e., an \\textit{extended} ladder model since we also include diagonal hoppings. We solve a system of $MD$ ("matrix dimension") coupled equations [(I) $MD$ = $N$, (II) $MD$ = $2N$] for the time-independent problem, and a system of $MD$ coupled $1^\\text{st}$ order differential equations for the time-dependent problem. We study the HOMO and the LUMO eigenspectra, the occupation probabilities, the Density of States (DOS) and the HOMO-LUMO gap as well as the mean over time probabilities to find the carrier at each site [(I) base pair or (II) base)], the Four...

  11. Computer-aided polymer design using group contribution plus property models

    DEFF Research Database (Denmark)

    Satyanarayana, Kavitha Chelakara; Abildskov, Jens; Gani, Rafiqul

    2009-01-01

    . Polymer repeat unit property prediction models are required to calculate the properties of the generated repeat units. A systematic framework incorporating recently developed group contribution plus (GC(+)) models and an extended CAMD technique to include design of polymer repeat units is highlighted...... in this paper. The advantage of a GC(+) model in CAMD applications is that a very large number of polymer structures can be considered even though some of the group parameters may not be available. A number of case studies involving different polymer design problems have been solved through the developed...

  12. Non-monotonic course of protein solubility in aqueous polymer-salt solutions can be modeled using the sol-mxDLVO model.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-02-01

    Protein purification is often performed using cost-intensive chromatographic steps. To discover economic alternatives (e.g., crystallization), knowledge on protein solubility as a function of temperature, pH, and additives in solution as well as their concentration is required. State-of-the-art models for predicting protein solubility almost exclusively consider aqueous salt systems, whereas "salting-in" and "salting-out" effects induced by the presence of an additional polymer are not considered. Thus, we developed the sol-mxDLVO model. Using this newly developed model, protein solubility in the presence of one salt and one polymer, especially the non-monotonic course of protein solubility, could be predicted. Systems considered included salts (NaCl, Na-p-Ts, (NH(4))(2) SO(4)) and the polymer polyethylene glycol (MW: 2000 g/mol, 12000 g/mol) and proteins lysozyme from chicken egg white (pH 4 to 5.5) and D-xylose ketol-isomerase (pH 7) at 298.15 K. The results show that by using the sol-mxDLVO model, protein solubility in polymer-salt solutions can be modeled in good agreement with the experimental data for both proteins considered. The sol-mxDLVO model can describe the non-monotonic course of protein solubility as a function of polymer concentration and salt concentration, previously not covered by state-of-the-art models.

  13. Multi-physical model of cation and water transport in ionic polymer-metal composite sensors

    Science.gov (United States)

    Zhu, Zicai; Chang, Longfei; Horiuchi, Tetsuya; Takagi, Kentaro; Aabloo, Alvo; Asaka, Kinji

    2016-03-01

    Ion-migration based electrical potential widely exists not only in natural systems but also in ionic polymer materials. We presented a multi-physical model and investigated the transport process of cation and water of ionic polymer-metal composites based on our thorough understanding on the ionic sensing mechanisms in this paper. The whole transport process was depicted by transport equations concerning convection flux under the total pressure gradient, electrical migration by the built-in electrical field, and the inter-coupling effect between cation and water. With numerical analysis, the influence of critical material parameters, the elastic modulus Ewet, the hydraulic permeability coefficient K, the diffusion coefficient of cation dII and water dWW, and the drag coefficient of water ndW, on the distribution of cation and water was investigated. It was obtained how these parameters correlate to the voltage characteristics (both magnitude and response speed) under a step bending. Additionally, it was found that the effective relative dielectric constant ɛr has little influence on the voltage but is positively correlated to the current. With a series of optimized parameters, the predicted voltage agreed with the experimental results well, which validated our model. Based on our physical model, it was suggested that an ionic polymer sensor can benefit from a higher modulus Ewet, a higher coefficient K and a lower coefficient dII, and a higher constant ɛr.

  14. High-stability polymer optical fiber with Rhodamine-doped cladding for fiber light systems

    Science.gov (United States)

    Jaramillo-Ochoa, L.; Narro-García, R.; Ocampo, M. A.; Quintero-Torres, R.

    2016-09-01

    In this work, the photodegradation of a polymer optical fiber with Rhodamine doped cladding as a function of illumination time and excitation intensity is presented. To show the effect of photodegradation on different bulk geometries and environments, the photodegradation from a dye doped preform and a PMMA thick film is also evaluated. The reversible and the irreversible degradation of the florescent material were quantified under an established excitation scheme. To this purpose, a four-level system to model the photodegradation rates and its relation with the population of the states is presented and it is used to justify a possible underlying mechanism. The obtained results suggest an increase of one order of magnitude in the stability (lifetime) of the polymer optical fiber with respect to the preform or the thick film geometry stability.

  15. INVESTIGATION OF STRUCTURE AND PROPERTIES FOR POLYMER SYSTEMS BASED ON DYNAMIC RHEOLOGICAL APPROACHES

    Institute of Scientific and Technical Information of China (English)

    Qiang Zheng; Min Zuo

    2005-01-01

    The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems, due to its sensitive response to changes of structure for these heterogeneous polymers. In the present article, recent progresses in the studies on dynamic theology for heterogeneous polymer systems including polymeric composites filled with inorganic particles, thermo-oxidized polyolefins, phaseseparated polymeric blends and functional polymers with the scaling and percolation behavior are reviewed, mainly depending on the results by the authors' group. By means of rheological measurements, not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained, the corresponding results are also significant for the design and preparation of novel polymer-based composites and functional materials.

  16. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    D Richter; R Biehl; M Monkenbush; B Hoffmann; R Merkel

    2008-10-01

    Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement. In the second part we relate to some new developments concerning the measurement of large-scale internal dynamics of proteins by neutron spin echo.

  17. Interdigitated silver-polymer-based antibacterial surface system activated by oligodynamic iontophoresis - an empirical characterization study.

    Science.gov (United States)

    Shirwaiker, Rohan A; Wysk, Richard A; Kariyawasam, Subhashinie; Voigt, Robert C; Carrion, Hector; Nembhard, Harriet Black

    2014-02-01

    There is a pressing need to control the occurrences of nosocomial infections due to their detrimental effects on patient well-being and the rising treatment costs. To prevent the contact transmission of such infections via health-critical surfaces, a prophylactic surface system that consists of an interdigitated array of oppositely charged silver electrodes with polymer separations and utilizes oligodynamic iontophoresis has been recently developed. This paper presents a systematic study that empirically characterizes the effects of the surface system parameters on its antibacterial efficacy, and validates the system's effectiveness. In the first part of the study, a fractional factorial design of experiments (DOE) was conducted to identify the statistically significant system parameters. The data were used to develop a first-order response surface model to predict the system's antibacterial efficacy based on the input parameters. In the second part of the study, the effectiveness of the surface system was validated by evaluating it against four bacterial species responsible for several nosocomial infections - Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis - alongside non-antibacterial polymer (acrylic) control surfaces. The system demonstrated statistically significant efficacy against all four bacteria. The results indicate that given a constant total effective surface area, the system designed with micro-scale features (minimum feature width: 20 μm) and activated by 15 μA direct current will provide the most effective antibacterial prophylaxis.

  18. A comparative simulation study on three lattice systems for the phase separation of polymer-dispersed liquid crystals

    Indian Academy of Sciences (India)

    Y J Jeon; M Jamil; Hyo-Dong Lee; J T Rhee

    2008-09-01

    This article reports a comparative study of the phase separation process in a polymer-dispersed liquid crystal, based on a Metropolis Monte Carlo simulation study of three lattice systems. We propose a model for the different processes occurring in the formation of polymer-dispersed liquid crystals (PDLCs). The mechanism of PDLC is studied as a function of quench temperature, concentration and degree of polymerization of liquid crystals and polymers. The obtained resultant phase diagrams of the three systems are approximated and compared with the Flory–Huggins theory, and show a good agreement. It has been observed in the simulation results that among all the three systems, the 40 × 40 × 40 lattice showed the most accurate, reliable and stable results.

  19. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  20. Studies of efficiency in a perforated rotating disc contactor using a polymer-polymer aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    L. A. Sarubbo

    2005-09-01

    Full Text Available The mass transfer process in a perforated rotating disc contactor (PRDC using a polymer-polymer aqueous two-phase system was investigated. The results show that the efficiency did not show a regular trend with the increase of the dispersed phase velocity and increased with the rotation velocity. The separation efficiency was higher for three rotating discs than for four discs. The increase in tie-line length decreased the efficiency. The separation efficiency reached high values, about 96% under conditions studied in this work.

  1. Modelling of the isothermal replication of surface microstructures in polymer melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard

    2005-01-01

    The forming of micro surface structures on polymer materials is well established in polymer-processing operations. Numerical flow calculations were performed using the Lagrangian Integral Method where the fluid was described by a MSF constitutive model. The numerical modelling of the flow was per...

  2. METAL-POLYMER SOLAR COLLECTORS WITH MULTICHANNEL ABSORBER FOR MULTIFUNCTIONAL MULTIPURPOSE ENERGY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.

    2012-08-01

    Full Text Available New modification of liquid-metal-polymer solar collector for solar heating and for creation of multifunctional energy systems on its basis, particularly solar refrigeration systems was developed. A comparative study of several modifications of polymer collectors involving data of a set of foreign researchers was made and high efficiency of the new elaboration was proven.

  3. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  4. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    Science.gov (United States)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  5. Modelling anisotropic water transport in polymer composite reinforced with aligned triangular bars

    Indian Academy of Sciences (India)

    Bryan Pajarito; Masatoshi Kubouchi; Saiko Aoki

    2014-02-01

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were determined by least-square curve fitting to the experimental data. Diffusion parameters of epoxy and vinyl ester resin were used as input during development of finite element (FE) model of polymer composite. Through transient FE diffusion analysis, anisotropic water transport in thickness direction of the polymer composite was numerically predicted and validated against experimental results. The case of using impermeable triangular bars was also numerically simulated. The diffusivity of reinforced aligned triangular bars was confirmed to affect anisotropic water transport in the composite. The results of this work suggest possible use of polymer composite for barrier and fluid removal applications.

  6. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-06-01

    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  7. Modeling of Dilute Polymer Solutions in Confined Space

    DEFF Research Database (Denmark)

    Wang, Yanwei

    2009-01-01

    to macromolecules is critical to the design and application of those devices. Our primary interest is to provide an understanding of the separation principle of polymers in size exclusion chromatography (SEC), where under ideal conditions the polymer concentration is low, and detailed enthalpic interactions...... of polymers in SEC, one may reach a conclusion that SEC fractionates polymers based on the steric exclusion radius, Rs . The CABS method is further applied to determine the depletion profiles of dilute polymer solutions confined to a slit or near an inert wall. We show that the entire spatial density...... that (i) the depletion layer thickness, 6, is the same no matter which reference point is used to describe the depletion profile, and (ii) the value of 6 equals the steric exclusion radius, Rs , of the macromolecule in free solution. Both results hold not only for ideal polymers as has been noticed before...

  8. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  9. Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant

    Science.gov (United States)

    Gong, Hua; Xiang, Jian; Xu, Ligeng; Song, Xuejiao; Dong, Ziliang; Peng, Rui; Liu, Zhuang

    2015-11-01

    Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PEDOT:PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PEDOT:PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PEDOT:PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems.Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exhibits a high level of cytotoxicity

  10. Optimal system size for emergence of self-replicating polymer system

    CERN Document Server

    Matsubara, Yoshiya J

    2015-01-01

    A biological system consists of a variety of polymers that are synthesized from monomers, by catalysis that exists only for some long polymers. It is important to elucidate the emergence and sustenance of such autocatalytic polymerization. We analyze here the stochastic polymerization reaction dynamics, to investigate the transition time from a state with almost no catalysts to a state with sufficient catalysts. We found an optimal volume that minimizes this transition time, which agrees with the inverse of the catalyst concentration at the unstable fixed point that separates the two states, as is theoretically explained. Relevance to the origin of life is also discussed.

  11. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes

    Science.gov (United States)

    Kuo, An-Tsung; Okazaki, Susumu; Shinoda, Wataru

    2017-09-01

    Perfluorosulfonic acid (PFSA) polymer membranes are widely used as proton exchange membranes. Because the structure of the aqueous domain within the PFSA membrane is expected to directly influence proton conductance, many coarse-grained (CG) simulation studies have been performed to investigate the membrane morphology; these studies mostly used phenomenological models, such as dissipative particle dynamics. However, a chemically accurate CG model is required to investigate the morphology in realistic membranes and to provide a concrete molecular design. Here, we attempt to construct a predictive CG model for the structure and morphology of PFSA membranes that is compatible with the Sinoda-DeVane-Klein (SDK) CG water model [Shinoda et al., Mol. Simul. 33, 27 (2007)]. First, we extended the parameter set for the SDK CG force field to examine a hydrated PFSA membrane based on thermodynamic and structural data from experiments and all-atom (AA) molecular dynamics (MD) simulations. However, a noticeable degradation of the morphology motivated us to improve the structural properties by using the iterative Boltzmann inversion (IBI) approach. Thus, we explored a possible combination of the SDK and IBI approaches to describe the nonbonded interaction. The hybrid SDK/IBI model improved the structural issues of SDK, showing a better agreement with AA-MD in the radial distribution functions. The hybrid SDK/IBI model was determined to reasonably reproduce both the thermodynamic and structural properties of the PFSA membrane for all examined water contents. In addition, the model demonstrated good transferability and has considerable potential for application to realistic long-chained PFSA membranes.

  12. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    Science.gov (United States)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  13. Mixing and structural properties of model polymer solutions: Molecular theory and simulation

    Science.gov (United States)

    McDaniels, Brian S.

    1999-12-01

    Recent advances in new single-site catalysts continue to fuel an already growing polymer market. As the market increases, a better understanding of polymers becomes critical. The majority of this understanding has been acquired through experimentation. While important, experimentation may be expensive and time consuming. Thus, it is desirable to predict polymer properties from molecular level characteristics. While a large amount of work has been performed in the area of overall properties of pure and mixture fluids, little work has been done in the area of mixing properties. Our initial effort into this area includes investigating the ability of the compressible Flory, generalized Flory dimer, and interpolating equations of state to predict mixing properties of a model polymer system. In determining the accuracy of the equations, Monte Carlo simulations have been performed in the Gibbs ensemble. A problem in the simulation of these systems, limited access to sampling space, has occurred and an established remedy has been discussed. We have determined that the most effective solution to the problem is a combination of conventional moves and the established correction. Predictions of the overall pressure, osmotic pressure, activity coefficient and Flory Chi parameter have been compared with simulation results, good agreement occurs at high densities, long chain lengths, and high chain concentrations except for the compressible Flory equation of state which only provides qualitatively correct predictions for the mixing properties. The structure of the fluid also is discussed. An increase in the packing fraction results in chain contraction. The addition of a monomeric solvent causes solvation in low to medium packing fraction fluids. Because the addition of solvent increases the packing fraction, the chains also contract. The effect of increasing packing fraction is stronger than the addition of solvent. The monomeric solvent forms clusters over the range of

  14. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J., E-mail: dsirbuly@ucsd.edu [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States)

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  15. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles

    Science.gov (United States)

    Chacko, Salvio; Chung, Yongmann M.

    2012-09-01

    Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.

  16. Modelling of the inhomogeneous interior of polymer gels

    Science.gov (United States)

    Shew, Chwen-Yang; Iwaki, Takafumi

    2006-04-01

    A simple model has been investigated to elucidate the mean squared displacement (MSD) of probe molecules in cross-linked polymer gels. In the model, we assume that numerous cavities distribute in the inhomogeneous interior of a gel, and probe molecules are confined within these cavities. The individual probe molecules trapped in a gel are treated as Brownian particles confined to a spherical harmonic potential. The harmonic potential is chosen to model the effective potential experienced by the probe particle in the cavity of a gel. Each field strength is corresponding to the characteristic of one type of effective cavity. Since the statistical distribution of different effective cavity sizes is unknown, several distribution functions are examined. Meanwhile, the calculated averaged MSDs are compared to the experimental data by Nisato et al (2000 Phys. Rev. E 61 2879). We find that the theoretical results of the MSD are sensitive to the shape of the distribution function. For low cross-linked gels, the best fit is obtained when the interior cavities of a gel follow a bimodal distribution. Such a result may be attributed to the presence of at least two distinct classes of cavity in gels. For high cross-linked gels, the cavities in the gel can be depicted by a single-modal uniform distribution function, suggesting that the range of cavity sizes becomes smaller. These results manifest the voids inside a gel, and the shape of distribution functions may provide the insight into the inhomogeneous interior of a gel.

  17. Norbornylene-based polymer systems for dielectric applications

    Science.gov (United States)

    Dirk, Shawn M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2012-07-17

    A capacitor having at least one electrode pair being separated by a dielectric component, with the dielectric component being made of a polymer such as a norbornylene-containing polymer with a dielectric constant greater than 3 and a dissipation factor less than 0.1 where the capacitor has an operating temperature greater than 100.degree. C. and less than 170.degree. C.

  18. Polymer-drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine.

    Science.gov (United States)

    Liu, Jubo; Xiao, Yuehua; Allen, Christine

    2004-01-01

    To establish a method for predicting polymer-drug compatibility as a means to guide formulation development, we carried out physicochemical analyses of polymer-drug pairs and compared the difference in total and partial solubility parameters of polymer and drug. For these studies, we employed a range of biodegradable polymers and the anticancer agent Ellipticine as the model drug. The partial and total solubility parameters for the polymer and drug were calculated using the group contribution method. Drug-polymer pairs with different enthalpy of mixing values were analyzed by physicochemical techniques including X-ray diffraction and Fourier transform infrared. Polymers identified to be compatible [i.e., polycaprolactone (PCL) and poly-beta-benzyl-L-aspartate (PBLA)] and incompatible [i.e., poly (d,l-lactide (PLA)], by the above mentioned methods, were used to formulate Ellipticine. Specifically, Ellipticine was loaded into PBLA, PCL, and PLA films using a solvent casting method to produce a local drug formulation; while, polyethylene oxide (PEO)-b-polycaprolactone (PCL) and PEO-b-poly (d,l-lactide) (PLA) copolymer micelles were prepared by both dialysis and dry down methods resulting in a formulation for systemic administration. The drug release profiles for all formulations and the drug loading efficiency for the micelle formulations were also measured. In this way, we compared formulation characteristics with predictions from physicochemical analyses and comparison of total and partial solubility parameters. Overall, a good correlation was obtained between drug formulation characteristics and findings from our polymer-drug compatibility studies. Further optimization of the PEO-b-PCL micelle formulation for Ellipticine was also performed.

  19. Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus

    DEFF Research Database (Denmark)

    Peng, R.D.; Zhou, H.W.; Wang, H.W.;

    2012-01-01

    A computational numerical-analytical model of nano-reinforced polymer composites is developed taking into account the interface and particle clustering effects. The model was employed to analyze the interrelationships between microstructures and mechanical properties of nanocomposites. An improved...

  20. Theory of optical transitions in conjugated polymers. I. Ideal systems

    Energy Technology Data Exchange (ETDEWEB)

    Barford, William, E-mail: william.barford@chem.ox.ac.uk [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ (United Kingdom); Marcus, Max [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ (United Kingdom); Magdalen College, University of Oxford, Oxford OX1 4AU (United Kingdom)

    2014-10-28

    We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑{sub n}|Ψ{sub n}|{sup 4}){sup −1}, where Ψ{sub n} is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F{sub 0v}(N) = S(N){sup v}exp ( − S(N))/v! for the vth vibronic manifold. We show that the 0 − 0 and 0 − 1 optical intensities are proportional to F{sub 00}(N) and F{sub 01}(N), respectively, and thus the ratio of the 0 − 1 to 0 − 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the

  1. Polymer Nanocomposites for Wind Energy Applications: Perspectives and Computational Modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Zhou, H.W.; Peng, R.D.;

    2013-01-01

    Strength and reliability of wind blades produced from polymer composites are the important preconditions for the successful development of wind energy. One of the ways to increase the reliability and lifetime of polymer matrix composites is the nanoengineering of matrix or fiber/matrix interfaces...

  2. Modeling of Dilute Polymer Solutions in Confined Space

    DEFF Research Database (Denmark)

    Wang, Yanwei

    2009-01-01

    by simple mathematical analyses. When the CABS method is applied to compute the equilibrium distribution (the equilibrium partition coefficient, Ko) of polymers between a dilute macroscopic solution phase and a solution confined by inert impenetrable boundaries, a sphere-like universal partitioning feature...... of polymers in SEC, one may reach a conclusion that SEC fractionates polymers based on the steric exclusion radius, Rs . The CABS method is further applied to determine the depletion profiles of dilute polymer solutions confined to a slit or near an inert wall. We show that the entire spatial density...... that (i) the depletion layer thickness, 6, is the same no matter which reference point is used to describe the depletion profile, and (ii) the value of 6 equals the steric exclusion radius, Rs , of the macromolecule in free solution. Both results hold not only for ideal polymers as has been noticed before...

  3. Modeling of polymer networks for application to solid propellant formulating

    Science.gov (United States)

    Marsh, H. E.

    1979-01-01

    Methods for predicting the network structural characteristics formed by the curing of pourable elastomers were presented; as well as the logic which was applied in the development of mathematical models. A universal approach for modeling was developed and verified by comparison with other methods in application to a complex system. Several applications of network models to practical problems are described.

  4. Novel pH-sensitive biodegradable polymeric drug delivery systems based on ketal polymers.

    Science.gov (United States)

    Chen, Daquan; Wang, Hongbo

    2014-01-01

    This article reviews the recent developments on novel pH-sensitive ketal-based biodegradable polymeric drug delivery systems. Due to the degradation of ketal derivatives, neutral alcohols and ketones, ketal derivatives can be used to fabricate pH-degradable polymer with pH-degradable ketal linkages in new drug delivery systems by avoiding inflammatory problems. Due to the novelty of ketal polymers, there were few reports about ketal polymers. The review starts with a brief introduction to the pH-sensitive drug delivery system, followed by the structure, preparation and characterization techniques of ketal polymers. Thereafter, the promising applications in various diseases in relation to micro/nano drug carriers based on ketal polymers are summarized and discussed.

  5. A new experimental procedure for incorporation of model contaminants in polymer hosts

    NARCIS (Netherlands)

    Papaspyrides, C.D.; Voultzatis, Y.; Pavlidou, S.; Tsenoglou, C.; Dole, P.; Feigenbaum, A.; Paseiro, P.; Pastorelli, S.; Cruz Garcia, C. de la; Hankemeier, T.; Aucejo, S.

    2005-01-01

    A new experimental procedure for incorporation of model contaminants in polymers was developed as part of a general scheme for testing the efficiency of functional barriers in food packaging. The aim was to progressively pollute polymers in a controlled fashion up to a high level in the range of 100

  6. Mean-Field Models of Structure and Dispersion of Polymer-nanoparticle Mixtures

    Science.gov (United States)

    2010-07-29

    creative idea of modeling the grafted nanoparticle as a star polymer with a finite sized (soft) core to shed light on the self- assembly behavior one might...8, 29 [Links]. 3 E. P. Giannelis, R. Krishnamoorti and E. Manias , Adv. Polym. Sci., 1999, 138, 107–147 [Links]. 4 M. Alexandre and P. Dubois, Mater

  7. A new experimental procedure for incorporation of model contaminants in polymer hosts

    NARCIS (Netherlands)

    Papaspyrides, C.D.; Voultzatis, Y.; Pavlidou, S.; Tsenoglou, C.; Dole, P.; Feigenbaum, A.; Paseiro, P.; Pastorelli, S.; Cruz Garcia, C. de la; Hankemeier, T.; Aucejo, S.

    2005-01-01

    A new experimental procedure for incorporation of model contaminants in polymers was developed as part of a general scheme for testing the efficiency of functional barriers in food packaging. The aim was to progressively pollute polymers in a controlled fashion up to a high level in the range of 100

  8. Particle-in-a-Box Model of Exciton Absorption and Electroabsorption in Conjugated Polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2001-01-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces...

  9. Solubility of gases and solvents in silicon polymers: molecular simulation and equation of state modeling

    DEFF Research Database (Denmark)

    Economou, Ioannis; Makrodimitri, Zoi A.; Kontogeorgis, Georgios

    2007-01-01

    The solubility of n-alkanes, perfluoroalkanes, noble gases and light gases in four elastomer polymers containing silicon is examined based on molecular simulation and macroscopic equation of state modelling. Polymer melt samples generated from molecular dynamics ( MD) are used for the calculation...

  10. A macro-mechanical constitutive model for shape memory polymer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is of theoretical and engineering interest to establish a macro-mechanical constitutive model of the shape memory polymer (SMP), which includes the mechanical constitutive equation and the material parameter function, from the viewpoint of practical application. In this paper, a new three-dimensional macro-mechanical constitutive equation, which describes the mechanical behaviors associated with the shape memory effect of SMP, is developed based on solid mechanics and the viscoelasticity theorem. According to the results of the DMA test, a new material parameter function is established to express the relationship of the material parameters and temperature during the glass transition of SMP. The new macro-mechanical constitutive equation and material parameter function are used to numerically simulate the process producing the shape memory effect of SMP, which includes deforming at high temperature, stress freezing, unloading at low temperature and shape recovery. They are also used to investigate and analyze the influences of loading rate and temperature change rate on the thermo-mechanical behaviors of SMP. The numerical results and the comparisons with Zhou’s material parameter function and Tobushi’s mechanical constitutive equation illustrate that the proposed three-dimensional macro-mechanical constitutive model can effectively predict the thermo-mechanical behaviors of SMP under the state of complex stress.

  11. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  12. Experimental beam system studies of plasma-polymer interactions

    Science.gov (United States)

    Nest, Dustin George

    Since the invention of the integrated circuit, the semiconductor industry has relied on the shrinking of device dimensions to increase device performance and decrease manufacturing costs. However, the high degree of roughening observed during plasma etching of current generation photoresist (PR) polymers can result in poor pattern transfer and ultimately decreased device performance or failure. Plasma-surface interactions are inherently difficult to study due to the highly coupled nature of the plasma enviroment. To better understand these interactions, a beam system approach is employed where polymers are exposed to beams of ions and vacuum ultraviolet (VUV) photons. Through the use of the beam system approach, simultaneous VUV radiation, ion bombardment, and moderate substrate heating have been identified as key elements, acting synergistically, as being responsible for roughening of current generation 193 nm PR during plasma processing. Sequential exposure is not adequate for the development of surface roughness, as observed through AFM and SEM. Ion bombardment results in the formation of a graphitized near-surface region with a depth of a few nanometers, the expected ion penetration depth of 150 eV argon ions. In contrast, VUV radiation results in the loss of carbon-oxygen bonds in the bulk PR as observed through Transmission FTIR. Based on the differing penetration depth of either ions or photons, their resulting chemical modifications, and the temperature dependence of the observed roughening, a mechanism is proposed based on stress relaxation resulting in surface buckling. The surface roughness of poly(4-methyl styrene) (P4MS) and poly(alpha-methyl styrene) (PalphaMS) have also been investigated under exposure to ions and VUV photons. PaMS degrades during VUV radiation above its ceiling temperature of ˜60°C. Despite having the same chemical composition as PalphaMS, P4MS does not degrade during VUV exposure at 70°C due to its relatively high ceiling

  13. Continuous system modeling

    Science.gov (United States)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  14. Correlation between rheological behavior and structure of multi-component polymer systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rheological measurement has been an effective method to characterize the structure and properties for multiphase/multi-component polymers, owing to its sensitivity to the structure change of hetero geneous systems. In this article, recent progress in the studies on the morphology/structure and rheological properties of heterogeneous systems is summarized, mainly reporting the findings of the authors and their collaborators, involving the correlation between the morphology and viscoelastic relaxation of LCST-type polymer blends, the microstructure and linear/nonlinear viscoelastic behavior of block copolymers, time scaling of shear-induced crystallization and rheological response of polyolefins, and the relationship between the structure/properties and rheological behavior of filled polymer blends. It is suggested that a thorough understanding of the characteristic rheological response to the morphology/structure evolution of multiphase/multi-component polymers facilitates researchers' optimizing the morphology/structure and ultimate mechanical properties of polymer materials.

  15. Correlation between rheological behavior and structure of multi-component polymer systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rheological measurement has been an effective method to characterize the structure and properties for multiphase/multi-component polymers, owing to its sensitivity to the structure change of hetero- geneous systems. In this article, recent progress in the studies on the morphology/structure and rheological properties of heterogeneous systems is summarized, mainly reporting the findings of the authors and their collaborators, involving the correlation between the morphology and viscoelastic relaxation of LCST-type polymer blends, the microstructure and linear/nonlinear viscoelastic behavior of block copolymers, time scaling of shear-induced crystallization and rheological response of poly- olefins, and the relationship between the structure/properties and rheological behavior of filled polymer blends. It is suggested that a thorough understanding of the characteristic rheological response to the morphology/structure evolution of multiphase/multi-component polymers facilitates researchers’ op- timizing the morphology/structure and ultimate mechanical properties of polymer materials.

  16. Performance of a Polymer Flood with Shear-Thinning Fluid in Heterogeneous Layered Systems with Crossflow

    Directory of Open Access Journals (Sweden)

    Kun Sang Lee

    2011-08-01

    Full Text Available Assessment of the potential of a polymer flood for mobility control requires an accurate model on the viscosities of displacement fluids involved in the process. Because most polymers used in EOR exhibit shear-thinning behavior, the effective viscosity of a polymer solution is a highly nonlinear function of shear rate. A reservoir simulator including the model for the shear-rate dependence of viscosity was used to investigate shear-thinning effects of polymer solution on the performance of the layered reservoir in a five-spot pattern operating under polymer flood followed by waterflood. The model can be used as a quantitative tool to evaluate the comparative studies of different polymer flooding scenarios with respect to shear-rate dependence of fluids’ viscosities. Results of cumulative oil recovery and water-oil ratio are presented for parameters of shear-rate dependencies, permeability heterogeneity, and crossflow. The results of this work have proven the importance of taking non-Newtonian behavior of polymer solution into account for the successful evaluation of polymer flood processes. Horizontal and vertical permeabilities of each layer are shown to impact the predicted performance substantially. In reservoirs with a severe permeability contrast between horizontal layers, decrease in oil recovery and sudden increase in WOR are obtained by the low sweep efficiency and early water breakthrough through highly permeable layer, especially for shear-thinning fluids. An increase in the degree of crossflow resulting from sufficient vertical permeability is responsible for the enhanced sweep of the low permeability layers, which results in increased oil recovery. It was observed that a thinning fluid coefficient would increase injectivity significantly from simulations with various injection rates. A thorough understanding of polymer rheology in the reservoir and accurate numerical modeling are of fundamental importance for the exact estimation

  17. Polymer Electrolyte Membrane (PEM) Fuel Cells Modeling and Optimization

    Science.gov (United States)

    Zhang, Zhuqian; Wang, Xia; Shi, Zhongying; Zhang, Xinxin; Yu, Fan

    2006-11-01

    Performance of polymer electrolyte membrane (PEM) fuel cells is dependent on operating parameters and designing parameters. Operating parameters mainly include temperature, pressure, humidity and the flow rate of the inlet reactants. Designing parameters include reactants distributor patterns and dimensions, electrodes dimensions, and electrodes properties such as porosity, permeability and so on. This work aims to investigate the effects of various designing parameters on the performance of PEM fuel cells, and the optimum values will be determined under a given operating condition.A three-dimensional steady-state electrochemical mathematical model was established where the mass, fluid and thermal transport processes are considered as well as the electrochemical reaction. A Powell multivariable optimization algorithm will be applied to investigate the optimum values of designing parameters. The objective function is defined as the maximum potential of the electrolyte fluid phase at the membrane/cathode interface at a typical value of the cell voltage. The robustness of the optimum design of the fuel cell under different cell potentials will be investigated using a statistical sensitivity analysis. By comparing with the reference case, the results obtained here provide useful tools for a better design of fuel cells.

  18. Modeling of polymer photodegradation for solar cell modules

    Science.gov (United States)

    Somersall, A. C.; Guillet, J. E.

    1982-01-01

    It was shown that many of the experimental observations in the photooxidation of hydrocarbon polymers can be accounted for with a computer simulation using an elementary mechanistic model with corresponding rate constants for each reaction. For outdoor applications, however, such as in photovoltaics, the variation of temperature must have important effects on the useful lifetimes of such materials. The data bank necessary to replace the isothermal rate constant values with Arrhenius activation parameters: A (the pre-exponential factor) and E (the activation energy) was searched. The best collection of data assembled to data is summarized. Note, however, that the problem is now considerably enlarged since from a theoretical point of view, with 51 of the input variables replaced with 102 parameters. The sensitivity of the overall scheme is such that even after many computer simulations, a successful photooxidation simulation with the expanded variable set was not completed. Many of the species in the complex process undergo a number of competitive pathways, the relative importance of each being often sensitive to small changes in the calculated rate constant values.

  19. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    Science.gov (United States)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  20. Intramolecular Flexibility of Relatively Rigid Polymers, and Intermolecular Interactions in Ordered Polymer Systems. Part II.

    Science.gov (United States)

    1981-01-26

    rials, the ordering of the chains, and the mechanical strenth of the resulting films or fibers . The basic goals are thus a molecular understanding of...polymers, cis and trans polybenzoxazoles (PBO) and polybenzothiazoles (PBT), form such phases, and energy calculations were therefore carried out to...Phys., 18, 000 (1981). 2. Phenylene Group Rotations and Nonplanar Conformations in Some Cis and Trans Polybenzoxazoles and Polybenzothiazoles, W. J

  1. Modeling of an ionic polymer metal composite actuator based on an extended Kalman filter trained neural network

    Science.gov (United States)

    Quang Truong, Dinh; Ahn, Kyoung Kwan

    2014-07-01

    An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique.

  2. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  3. An oral oligonucleotide delivery system based on a thiolated polymer: Development and in vitro evaluation.

    Science.gov (United States)

    Martien, Ronny; Hoyer, Herbert; Perera, Glen; Schnürch, Andreas Bernkop

    2011-08-01

    The purpose of this study was to develop and evaluate an oral oligonucleotide delivery system based on a thiolated polymer/reduced glutathione (GSH) system providing a protective effect toward nucleases and permeation enhancement. A polycarbophil-cysteine conjugate (PCP-Cys) was synthesized. Enzymatic degradation of a model oligonucleotide by DNase I and within freshly collected intestinal fluid was investigated in the absence and presence of PCP-Cys. Permeation studies with PCP-Cys/GSH versus control were performed in vitro on Caco-2 cell monolayers and ex vivo on rat intestinal mucosa. PCP-Cys displayed 223 ± 13.8 μmol thiol groups per gram polymer. After 4h, 61% of the free oligonucleotides were degraded by DNase I and 80% within intestinal fluid. In contrast, less than 41% (DNase I) and 60% (intestinal fluid) were degraded in the presence of 0.02% (m/v) PCP-Cys. Permeation studies revealed an 8-fold (Caco-2) and 10-fold (intestinal mucosa) increase in apparent permeability compared to buffer control. Hence, this PCP-Cys/GSH system might be a promising tool for the oral administration of oligonucleotides as it allows a significant protection toward degrading enzymes and facilitates their transport across intestinal membranes.

  4. Finite element modeling of electromechanical behavior of a dielectric electroactive polymer actuator

    Science.gov (United States)

    Deodhar, Aseem; York, Alexander; Hodgins, Micah; Seelecke, Stefan

    2011-04-01

    Dielectric Electroactive Polymers (DEAP) will undergo large deformations when subject to an electric field making them an attractive material for use in novel actuator systems. There are many challenges with successful application and design of DEAP actuators resulting from their inherent electromechanical coupling and non-linear material behavior. FE modeling of the material behavior is a useful tool to better understand such systems and aid in the optimal design of prototypes. These modeling efforts must account for the electromechanical coupling in order to accurately predict their response to multiple loading conditions expected during real operating conditions. This paper presents a Finite Element model of a dielectric elastomer undergoing out-of-plane, axisymmetric deformation. The response of the elastomer was investigated while it was subjected to mechanical and electric fields and combined electro-mechanical actuation. The compliant electrodes have a large effect on the mechanical behavior of the EAP which needs to be taken into consideration while modeling the EAP as a system. The model is adapted to include the effect of electrode stiffness on the mechanical response of the actuator. The model was developed using the commercial Finite Element Modeling software, COMSOL. The results from the mechanical simulations are presented in the form of forcedisplacement curves and are validated with comparisons to experimental results. Electromechanical simulations are carried out and the stroke of the actuator for different electrode stiffness values is compared with experimental values when the EAP is biased with a constant force.

  5. Electronic structure and carrier transfer in B-DNA monomer polymers and dimer polymers: Stationary and time-dependent aspects of a wire model versus an extended ladder model

    Science.gov (United States)

    Lambropoulos, K.; Chatzieleftheriou, M.; Morphis, A.; Kaklamanis, K.; Lopp, R.; Theodorakou, M.; Tassi, M.; Simserides, C.

    2016-12-01

    We employ two tight-binding (TB) approaches to systematically study the electronic structure and hole or electron transfer in B-DNA monomer polymers and dimer polymers made up of N monomers (base pairs): (I) at the base-pair level, using the onsite energies of base pairs and the hopping integrals between successive base pairs, i.e., a wire model and (II) at the single-base level, using the onsite energies of the bases and the hopping integrals between neighboring bases, i.e., an extended ladder model since we also include diagonal hoppings. We solve a system of M (matrix dimension) coupled equations [(I) M =N , (II) M =2 N ] for the time-independent problem, and a system of M coupled first order differential equations for the time-dependent problem. We perform a comparative study of stationary and time-dependent aspects of the two TB variants, using realistic sets of parameters. The studied properties include HOMO and LUMO eigenspectra, occupation probabilities, density of states and HOMO-LUMO gaps as well as mean over time probabilities to find the carrier at each site [(I) base pair or (II) base], Fourier spectra, which reflect the frequency content of charge transfer, and pure mean transfer rates from a certain site to another. The two TB approaches give coherent, complementary aspects of electronic properties and charge transfer in B-DNA monomer polymers and dimer polymers.

  6. A Device Model for Polymer Light-Emitting Diodes with Mobile Ions

    NARCIS (Netherlands)

    Jong, M.J.M. de; Blom, P.W.M.

    1996-01-01

    A model is presented for the device operation of a polymer light-emitting diode (PLED) with mobile ions. It is calculated that the low efficiency of a PLED with a high injection barrier increases as the ions migrate.

  7. Modeling continuous-fiber reinforced polymer composites for exploration of damage tolerant concepts

    Science.gov (United States)

    Matthews, Peter J.

    This work aims to improve the predictive capability for fiber-reinforced polymer matrix composite laminates using the finite element method. A new tool for modeling composite damage was developed which considers important modes of failure. Well-known micromechanical models were implemented to predict material values for material systems of interest to aerospace applications. These generated material values served as input to intralaminar and interlaminar damage models. A three-dimensional in-plane damage material model was implemented and behavior verified. Deficiencies in current state-of-the-art interlaminar capabilities were explored using the virtual crack closure technique and the cohesive zone model. A user-defined cohesive element was implemented to discover the importance of traction-separation material constitutive behavior. A novel method for correlation of traction-separation parameters was created. This new damage modeling tool was used for evaluation of novel material systems to improve damage tolerance. Classical laminate plate theory was used in a full-factorial study of layerwise-hybrid laminates. Filament-wound laminated composite cylindrical shells were subjected to quasi-static loading to validate the finite element computational composite damage model. The new tool for modeling provides sufficient accuracy and generality for use on a wide-range of problems.

  8. Mathematical modeling of methoxyanabasine C11H16N2O polymer solution ultrafiltration

    Science.gov (United States)

    Satayev, Marat; Shakirov, Birzhan; Mutaliyeva, Botagoz; Satayeva, Lazzat; Altynbekov, Rustem; Baiysbay, Omirbek; Alibekov, Ravshanbek

    2012-06-01

    This work covers the mathematical modeling of ultrafiltration with immobile membranes for physiologically-active of methoxyanabasine C11H16N2O polymer solution. Methoxyanabasine is used as low toxic antineoplastic drug. On the basis of theoretical and experimental analysis of mass transfer and hydrodynamics, it is offered the mathematical model of permeability of membranes at an ultrafiltration of polymer solutions. Further the formulas for determination of factor of concentration polarization and ultrafiltration selectivity are calculated.

  9. Shear Modification of long-chain branched polymers : a theoretical approach using POM-POM model

    OpenAIRE

    Bourrigault, S.; Marin, Gérard; Poitou, Arnaud

    2003-01-01

    International audience; “Shear modification” is a strong modification of rheological properties which affects mainly long-chain branched polymers like LDPE. The aim of this work is to explain this effect using recent advances in molecular dynamics and especially the pom-pom model which was designed for branched polymers. The original model was slightly modified in order to take into account the change in molecular topology related to the branch point withdrawal mechanism without introducing a...

  10. EDITORIAL: Modelling and simulation in polymer and composites processing

    Science.gov (United States)

    Castro, Josè M.

    2004-05-01

    The general theme of this special section is modelling and simulation in polymer and composite processing. Composite processing in general involves reactive processing. During the last decade there have been numerous advances in modelling and simulation in both thermoplastic and reactive processing. This fact, coupled with the enormous advances in computing capability, has made Computer Aided Engineering (CAE) a reality. Industry nowadays depends on CAE to improve and/or develop new processes. There is no excuse not to take advantage of modelling and simulation. Another tendency is a clear move towards environmentally benign manufacturing; thus several papers in this issue discuss environmentally benign alternatives to traditional manufacturing for both composite and thermoplastics. The first two papers are a review of modelling and simulation; the first paper by Castro, Cabrera Rios and Mount-Campbell focuses on reactive processing, while the second by Kim and Turng discusses thermoplastics moulding. Another important issue is the need to use empirical modelling for cases where physics-based models are not available or are too cumbersome to use. For that reason the paper by Castro et al focuses on empirical modelling and the paper by Kim and Turng discusses exclusively physics-based modelling. The next three papers, two by Advani and collaborators and the third by Srinivasagupta and Kardos, refer to composite manufacturing. Advani's papers cover recent advances in Reactive Liquid Moulding, a process that has gained great acceptance as an environmentally benign alternative to open moulding. The paper by Srinivasagupta and Kardos covers the important issue of addressing simultaneously both environmental and economical design. In general the environmental optimum does not coincide with the economic optimum; this gives rise to the need to compromise. The Data Envelopment Analysis (DEA) technique, discussed in the first paper, can be used to identify the best set of

  11. Improving reservoir conformance using gelled polymer systems. Annual report, September 15, 1993--September 24, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1995-07-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focuses on three types of aqueous gel systems - a polysaccharide (KUSP1) that gels as a function of pH, a polyacrylamide-chromium(III) system and a polyacrylamide-aluminum citrate system. This report describes work conducted during the second year of a three-year program. Progress was made in the utilization of KUSP1 as a gelling agent. It was shown that gels can be formed in situ in porous media using CO{sub 2} or ester hydrolysis to lower pH. An ester was identified that could be used in field-scale operations. It was determined that KUSP1 will form strong gels when ortho boric acid is added to the system. It was also determined, in cooperation with Abbott Laboratories, that KUSP1 can be produced on a commercial scale. Rheological studies showed that shear rate significantly affects gelation time and gel strength. The effect of rock-fluid interactions at alkaline conditions was examined experimentally and through mathematical modeling. A model was developed that treats non-equilibrium conditions and this is an improvement over previously published models.

  12. A Bridging Cell Multiscale Methodology to Model the Structural Behaviour of Polymer Matrix Composites

    Science.gov (United States)

    Iacobellis, Vincent

    Composite and nanocomposite materials exhibit behaviour which is inherently multiscale, extending from the atomistic to continuum levels. In composites, damage growth tends to occur at the nano and microstructural scale by means of crack growth and fibre-matrix debonding. Concurrent multiscale modeling provides a means of efficiently solving such localized phenomena, however its use in this application has been limited due to a number of existing issues in the multiscale field. These include the seamless transfer of information between continuum and atomistic domains, the small timesteps required for dynamic simulation, and limited research into concurrent multiscale modeling of amorphous polymeric materials. The objective of this thesis is thus twofold: to formulate a generalized approach to solving a coupled atomistic-to-continuum system that addresses these issues and to extend the application space of concurrent multiscale modeling to damage modeling in composite microstructures. To achieve these objectives, a finite element based multiscale technique termed the Bridging Cell Method (BCM), has been formulated with a focus on crystalline material systems. Case studies are then presented that show the effectiveness of the developed technique with respect to full atomistic simulations. The BCM is also demonstrated for applications of stress around a nanovoid, nanoindentation, and crack growth due to monotonic and cyclic loading. Next, the BCM is extended to modeling amorphous polymeric material systems where an adaptive solver and a two-step iterative solution algorithm are introduced. Finally, the amorphous and crystalline BCM is applied to modeling a polymer-graphite interface. This interface model is used to obtain cohesive zone parameters which are used in a cohesive zone model of fibre-matrix interfacial cracking in a composite microstructure. This allows for an investigation of the temperature dependent damage mechanics from the nano to microscale within

  13. Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model.

    Science.gov (United States)

    Kim, Grace Y; Tyler, Betty M; Tupper, Malinda M; Karp, Jeffrey M; Langer, Robert S; Brem, Henry; Cima, Michael J

    2007-11-01

    Sustained local delivery of single agents and controlled delivery of multiple chemotherapeutic agents are sought for the treatment of brain cancer. A resorbable, multi-reservoir polymer microchip drug delivery system has been tested against a tumor model. The microchip reservoirs were loaded with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BCNU was more stable at 37 degrees C within the microchip compared to a uniformly impregnated polymeric wafer (70% intact drug vs. 38%, at 48 h). The half-life of the intact free drug in the microchip was 11 days, which is a marked enhancement compared to its half-life in normal saline and 10% ethanol (7 and 10 min, respectively) [P. Tepe, S.J. Hassenbusch, R. Benoit, J.H. Anderson, BCNU stability as a function of ethanol concentration and temperature, J. Neurooncol. 10 (1991) 121-127; P. Kari, W.R. McConnell, J.M. Finkel, D.L. Hill, Distribution of Bratton-Marshall-positive material in mice following intravenous injections of nitrosoureas, Cancer Chemother. Pharmacol. 4 (1980) 243-248]. A syngeneic Fischer 344 9L gliosarcoma rat model was used to study the tumoricidal efficacy of BCNU delivery from the microchip or homogeneous polymer wafer. A dose-dependent decrease in tumor size was found for 0.17, 0.67, and 1.24 mg BCNU-microchips. Tumors treated with 1.24 mg BCNU-microchips showed significant tumor reduction (p=0.001) compared to empty control microchips at two weeks. The treatment showed similar efficacy to a polymer wafer with the same dosage. The microchip reservoir array may enable delivery of multiple drugs with independent release kinetics and formulations.

  14. The effect of pressure on phase behaviors of solid polymer electrolyte/salt systems in lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Su; Bae, Young Chan [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2003-03-01

    A molecular thermodynamic model based on the theory of melting point depression and the modified double lattice model with the free-volume effect is developed to interpret phase behaviors of solid polymer electrolyte (SPE)/salt systems with various pressures. To account for the free-volume effects, we employ the hole-theory proposed by Kleintjens. Quantitative description according to the proposed model is in good agreement with the experimentally observed transition temperatures for given systems. Our results show that eutectic points move toward higher T{sub m} and lower weight fraction region of salt with increasing pressure.

  15. Antifouling activity of synthetic alkylpyridinium polymers using the barnacle model.

    Science.gov (United States)

    Piazza, Veronica; Dragić, Ivanka; Sepčić, Kristina; Faimali, Marco; Garaventa, Francesca; Turk, Tom; Berne, Sabina

    2014-04-02

    Polymeric alkylpyridinium salts (poly-APS) isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera) sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite) as a model (cyprids and II stage nauplii larvae) in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC₅₀) after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC₅₀: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L) than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC₅₀ of 4.83 and 1.86 mg/L.

  16. Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model

    Directory of Open Access Journals (Sweden)

    Veronica Piazza

    2014-04-01

    Full Text Available Polymeric alkylpyridinium salts (poly-APS isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite as a model (cyprids and II stage nauplii larvae in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC50 after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC50: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC50 of 4.83 and 1.86 mg/L.

  17. Modeling optical properties of polymer-solvent complexes: the chloroform influence on the P3HT and N2200 absorption spectra.

    Science.gov (United States)

    Dias Ledo, Rodrigo Maia; Leal, Luciano Almeida; de Brito Silva, Patrick Pascoal; da Cunha, Wiliam Ferreira; de Souza, Leonardo Evaristo; Almeida Fonseca, Antonio Luciano; Ceschin, Artemis Marti; da Silva Filho, Demétrio Antonio; Ribeiro Junior, Luiz Antonio

    2017-02-01

    The optical properties of polymer/solvent systems composed by the polymers P3HT and PolyeraActivInk N2200 under the present of chloroform as solvent are experimentally and theoretically investigated using UV-Vis spectroscopy, molecular dynamics (MD), and density functional theory (DFT) calculations. The study is focused on obtaining the theoretical methodologies that properly describes the experimentally obtained absorption spectra of polymer-solvent complexes. In order to investigate the solvent influence, two different approaches are taken into account: the solvation shell method (SSM) and the polarizable continuum model (PCM). Our findings shown that SSM simulations, which combine MD and DFT calculations, are in good agreement with the experimental data. Moreover, it is obtained that simulations in the framework of PCM do not provide a fair description of the real system. Importantly, these results may pave the way for better descriptions of some optoelectronic properties of interest in polymer/solvent systems. Graphical Abstract ᅟ.

  18. Percolation phenomena in diffusion-controlled polymer matrix systems

    Institute of Scientific and Technical Information of China (English)

    徐铜文; 何炳林

    1997-01-01

    The controlled release of two kinds of drugs,5-fluorouracil (5-FU) and hydrocortisonum (Hydro.) loaded in poly(ethylene-vinylalcohol) (EVAL) was dealt with,of which 5-FU/EVAL and Hydro /EVAL matrix systems are composed.The results were analyzed using the pseudo-steady-diffusion models coupled with the fundamental concepts of percolation theory.The percolation thresholds for the two systems were calculated,which could indicate the contributions of pore diffusion and matrix diffusion.

  19. Development of a polymer based fiberoptic magnetostrictive metal detector system.

    Science.gov (United States)

    Hua, Wei Shu; Hooks, Joshua Rosenberg; Wu, Wen Jong; Wang, Wei Chih

    2010-10-01

    This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.

  20. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  1. Polymer multilevel lab-on-chip systems for electrochemical sensing

    DEFF Research Database (Denmark)

    Matteucci, Marco; Larsen, Simon Tylsgaard; Garau, Alessandro

    2013-01-01

    with depths as small as tens of nanometers and as big as hundreds of microns on the same polymer chip. The authors also describe in detail the fabrication procedure of polymer substrates with embedded Au and pedot:tosylate electrodes for electrochemical applications. The electrode fabrication process...... is simple and fit for integration in a production scheme. The electrode–substrates are then bonded to injection molded counterparts to be used for electrochemical applications. A dimensional and functional characterization of the electrodes is also presented here....

  2. A RHEOLOGICAL MODEL FOR POLYMER MELTS WITH INTERNAL STRUCTURE IN FLOW FIELDS

    Institute of Scientific and Technical Information of China (English)

    Chi-Xing Zhou

    1999-01-01

    Conceptually, an imagined conformation ellipsoid is supposed to represent the shape of a polymer chain for polymer melts in flow fields and to be equivalent to the volume element in a mathematical sense in continuum mechanics. A power law dependence of shear modulus of polymer melts on detC, referred to as envelope volume, is proposed. Based on those assumptions and the non-linear relation of shear modulus, a phenomenological viscoelastic model is derived. The model is tested in simple shear flow, simple elongational flow, oscillatory shear flow, and relaxation process after flow suddenly stopped. The results show that the model works well to predict the change of internal structure and viscoelastic performance of polymer melts in flow fields.

  3. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    Science.gov (United States)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. A Modified Mixing Rule for PSRK Model and Application for the Prediction of Vapor-Liquid Equilibria of Polymer Solutions

    Institute of Scientific and Technical Information of China (English)

    李敏; 王利生; J.Gmehling

    2004-01-01

    To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑xiln(b/bi) in the PSRK mixing rule for the parameter a, and the combinatorial part in the original universal functional activity coefficient (UNIFAC) model are cancelled. To take into account the free volume contribution to the excess Gibbs energy in polymer solution, a quadratic mixing rule for the cross co-volume bij with an exponent equals to 1/2 is applied [bij1/2=1/2(bi1/2+bj1/2)]. The literature reported Soave-Redlich-Kwong equation of state (SRK EOS) parameters of i3 - 2- pure polymer are employed. The PSRK model with the modified mixing rule is used to predict the vapor-liquid equilibrium (VLE) of 37 solvent-polymer systems over a large range of temperature and pressure with satisfactory results.

  5. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability

  6. Modelling Coupled Electric Field and Motion of Beam of Ionic Polymer-Metal Composite

    Directory of Open Access Journals (Sweden)

    Dominik Ireneusz

    2014-03-01

    Full Text Available In this paper, a mathematical model of electromechanical transduction of Ionic Polymer-Metal Composites is presented. The aim of the research was to create a physics-based, geometrically scalable model to use in control systems. The relation between actuating voltage and the tip displacement was described with a transfer function. The model is derived from the basic physical properties of researched materials. To calculate the final transfer function, two impedance models are considered - with and without neglecting the resistance of the metal electrodes. In this paper, the model with non-zero electrode resistance is calculated. Later, the model is simplified (taking the physical properties into account and the numerical values based on the parameters of the samples are calculated. The simplifications allow the model to predict the response to low-frequency sine wave actuation. The frequency-domain characteristics of the samples were created experimentally and compared to the model. The results have proven the accuracy of the model.

  7. Bioresorbable polymer coated drug eluting stent: a model study.

    Science.gov (United States)

    Rossi, Filippo; Casalini, Tommaso; Raffa, Edoardo; Masi, Maurizio; Perale, Giuseppe

    2012-07-01

    In drug eluting stent technologies, an increased demand for better control, higher reliability, and enhanced performances of drug delivery systems emerged in the last years and thus offered the opportunity to introduce model-based approaches aimed to overcome the remarkable limits of trial-and-error methods. In this context a mathematical model was studied, based on detailed conservation equations and taking into account the main physical-chemical mechanisms involved in polymeric coating degradation, drug release, and restenosis inhibition. It allowed highlighting the interdependence between factors affecting each of these phenomena and, in particular, the influence of stent design parameters on drug antirestenotic efficacy. Therefore, the here-proposed model is aimed to simulate the diffusional release, for both in vitro and the in vivo conditions: results were verified against various literature data, confirming the reliability of the parameter estimation procedure. The hierarchical structure of this model also allows easily modifying the set of equations describing restenosis evolution to enhance model reliability and taking advantage of the deep understanding of physiological mechanisms governing the different stages of smooth muscle cell growth and proliferation. In addition, thanks to its simplicity and to the very low system requirements and central processing unit (CPU) time, our model allows obtaining immediate views of system behavior.

  8. Remarks on disorder and aperiodicity in a model for interacting polymers

    Science.gov (United States)

    Haddad, T. A. S.; Andrade, R. F. S.; Salinas, S. R.

    2004-12-01

    We present a comparative study of the effects of random and aperiodically distributed interactions on the critical behavior of a model for two interacting polymers on a diamond hierarchical lattice. The problem is formulated in terms of exact renormalization-group (RG) recursion relations. In the disordered case, it is possible to develop a perturbative treatment in order to obtain the fixed points of the moments associated with the random distribution of interactions. Fully uncorrelated disorder may become relevant, driving the system away from a homogeneous fixed point. Layered disorder may lead to a breakdown of the perturbative treatment. In the case of aperiodic interactions, we also show some examples of relevance and irrelevance of geometric fluctuations, and further investigate the models by resorting to an independent transfer-matrix (TM) analysis, which fully corroborates the scaling results.

  9. Linear finite-difference bond graph model of an ionic polymer actuator

    Science.gov (United States)

    Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.

    2017-09-01

    With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.

  10. Morphological and Thermal Studies of Plasticized Poly (methyl methacrylate) Polymer Electrolyte Systems

    Science.gov (United States)

    Osman, Z.; Chew, K. W.; Othman, L.; Isa, K. B. M.

    2010-03-01

    In the present study, six systems of poly(methylmethacrylate) (PMMA)-based polymer electrolyte films have been prepared using solution casting technique. They are; the pure PMMA system, the plasticized-PMMA systems (PMMA+EC and PMMA+PC), the salted-PMMA system (PMMA+LiBF4) and the plasticized-salted PMMA systems (PMMA+EC+LiBF4 and PMMA+PC+LiBF4). The effect of adding the plasticizers and the salt to the PMMA based polymer electrolyte films on the morphology and thermal properties will be investigated using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Differential Scanning Calorimetry (DSC). The phase structure and the complexation for each system that has the highest conductivity are characterized using the XRD. The FTIR results confirmed the complexation has taken place between the plasticizers and the polymer, the salt and the polymer, and the plasticizers and the salt. These results are supported by SEM analysis. The glass transition temperature, Tg of polymer electrolyte films will be determined by DSC analysis. The Tg value of the highest conducting film in the (PMMA+EC) system, the (PMMA+PC) system and the (PMMA+LiBF4) system is 117.2° C, 118.8° C and 122.1° C, respectively. The Tg value is decreased with the increased of the amorphous phase.

  11. Precision manufacturing of polymer micro-nano fluidic systems

    DEFF Research Database (Denmark)

    Garnæs, Jørgen; Calaon, Matteo; Tosello, Guido

    2015-01-01

    Lab-on-a-Chip (LoC) technologies require the possibility of fabricating devices which include micro down to sub-micrometre features with high production rate and low cost. In the present study precision injection moulding is performed using a COC Topas 5013 L10 polymer to produce LoC devices...

  12. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  13. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  14. Polydiacetylenes: An Ideal Color System for Teaching Polymer Science.

    Science.gov (United States)

    Patel, Gordhan N.; Yang, Nan-Loh

    1983-01-01

    Describes 14 experiments that illustrate, via color changes, a broad scope of fundamental phenomena in polymer science. The experiments, suitable for high school through graduate level, require only test tubes, filter paper, heat source (hot plate or hair drier), and ultra-violet light source. (JN)

  15. Simple Model for the Deformation-Induced Relaxation of Glassy Polymers

    Science.gov (United States)

    Fielding, S. M.; Larson, R. G.; Cates, M. E.

    2012-01-01

    Glassy polymers show “strain hardening”: at constant extensional load, their flow first accelerates, then arrests. Recent experiments have found this to be accompanied by a striking and unexplained dip in the segmental relaxation time. Here we explain such behavior by combining a minimal model of flow-induced liquefaction of a glass with a description of the stress carried by strained polymers, creating a nonfactorable interplay between aging and strain-induced rejuvenation. Under constant load, liquefaction of segmental motion permits strong flow that creates polymer-borne stress. This slows the deformation enough for the segmental modes to revitrify, causing strain hardening.

  16. Dynamics of Polaron at Polymer/Polymer Interface

    Institute of Scientific and Technical Information of China (English)

    DI Bing; MENG Yan; AN Zhong; LI You-Cheng

    2008-01-01

    The migration of a polaron at polymer/polymer interface is believed to be of fundamental importance for the transport and light-emitting properties of conjugated polymer-based light emitting diodes.Based on the onedimensional tight-binding Su-Schrieffer-Heeger(SSH)model,we have investigated polaron dynamics in a onedimensional polymer/polymer system by using a nonadiabatic evolution method.In particular,we focus on how a polaron migrates through the conjugated polymer/polymer interface in the presence of external electric field.The results show that the migration of polaron at the interface depends sensitively on the hopping integrals,the potential barrier induced by the energy mismatch,and the strength of applied electric field which increases the polaron kinetic energy.

  17. DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Don W. Green; Stan McCool; Min Cheng; Feiyan Chen

    2004-02-01

    The objectives of the research are to improve the effectiveness of polymer gels to increase volumetric sweep efficiency of fluid displacement processes and to reduce water production in production wells. The research is based on experimental data and conceptual and mathematical models developed from interpretation of experimental data. This report describes two types of mathematical models that were developed. One model type simulates the chemical reactions where polymer molecules are crosslinked to form a 3-dimensional network or gel. The model is based on statistical probabilities of reactions and yields molecular weights averages and distributions as functions of conversion. The second model type simulates the transport of chromium acetate, a common polymer crosslinker, through porous dolomite rock and includes the mechanisms of dolomite dissolution and chromium precipitation. The chromium transport model reasonably agreed with experimental data.

  18. Towards a portable microchip system with integrated thermal control and polymer waveguides for real-time PCR

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    performed with a dilution series of C. jejuni DNA template (2 to 200 pg/mu l) could be quantitatively detected and compared with a conventional post-PCR analysis (DNA gel electrophoresis). The presented approach provided reliable real-time quantitative information of the PCR amplification of the targeted......A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA...... binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR...

  19. Modeling the structure of a polydisperse polymer brush

    NARCIS (Netherlands)

    Vos, de W.M.; Leermakers, F.A.M.

    2009-01-01

    Numerical self-consistent field theory is used to study the structural characteristics of a polydisperse polymer brush. We consider the relevant case of a Schulz–Zimm distribution and find that even a small degree of polydispersity completely destroys the parabolic density profile. The first moment

  20. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.

    Science.gov (United States)

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton

    2015-11-01

    Atomic simulations were undertaken to analyse the effect of polymer chain scission on amorphous poly(lactide) during degradation. Many experimental studies have analysed mechanical properties degradation but relatively few computation studies have been conducted. Such studies are valuable for supporting the design of bioresorbable medical devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young's modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness polymer may exist around chain scissions. In the Effective Cavity Theory, each chain scission is considered to instantiate an effective cavity. Finite Element Analysis simulations were conducted to model the effect of the cavities on Young's modulus. Since polymer crystallinity affects mechanical properties, the effect of increases in crystallinity during degradation on Young's modulus is also considered. To demonstrate the ability of the Effective Cavity Theory, it was fitted to several sets of experimental data for Young's modulus in the literature.

  1. Numerical well testing interpretation model and applications in crossflow double-layer reservoirs by polymer flooding.

    Science.gov (United States)

    Yu, Haiyang; Guo, Hui; He, Youwei; Xu, Hainan; Li, Lei; Zhang, Tiantian; Xian, Bo; Du, Song; Cheng, Shiqing

    2014-01-01

    This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV), permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I) wellbore storage section, (II) intermediate flow section (transient section), (III) mid-radial flow section, (IV) crossflow section (from low permeability layer to high permeability layer), and (V) systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR).

  2. Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2014-01-01

    Full Text Available This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV, permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I wellbore storage section, (II intermediate flow section (transient section, (III mid-radial flow section, (IV crossflow section (from low permeability layer to high permeability layer, and (V systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR.

  3. MODELLING OF CHARGE CARRIER MOBILITY FOR TRANSPORT BETWEEN ELASTIC POLYACETYLENE-LIKE POLYMER NANORODS

    Directory of Open Access Journals (Sweden)

    M. Mensik

    2017-03-01

    Full Text Available A quantum model solving the charge carrier mobility between polyacetylene-like polymer nanorods is presented. The model assumes: a Quantum mechanical calculation of hole on-chain delocalization involving electron-phonon coupling leading to the Peierls instability, b Hybridization coupling between the polymer backbone and side-groups (or environmental states, which act as hole traps, and c Semiclassical description of the inter-chain hole transfer in an applied voltage based on Marcus theory. We have found that mobility resonantly depends on the hybridization coupling between polymer and linked groups. We observed also non-trivial mobility dependences on the difference of energies of the highest occupied molecular orbitals localized on the polymer backbone and side-groups, respectively, and hole concentration. Those findings are important for optimization of hybrid opto-electronic devices.

  4. PNIPAM Poly (N-isopropylacrylamide: A Thermoresponsive “Smart” Polymer in Novel Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Hardik R Mody

    2012-07-01

    Full Text Available Over the past years, extensive research has been carried out in designing and optimizing various drug delivery systems in order to maximize therapeutic effect and minimize unwanted effects of drugs. Many drug carrier systems have been developed on the basis of nanotechnology including systems based on polymeric nanoparticles. Polymeric drug delivery research has been extended to targeting of the drug at the specific site by utilizing various stimuli responsive systems which depend upon physiological conditions of the body such as pH of biological fluids and temperature of the human body. Thermoresponsive polymers with Lower Critical Solution Temperature (LCST have been investigated for various biomedical and pharmaceutical formulations. One such polymer of considerable focus is PNIPAM Poly (N-isopropylacrylamide. PNIPAM is a thermosensitive polymer which has been utilized in many drug delivery systems including for cancer therapeutics. The present article deals with the properties of PNIPAM and their applications in different drug delivery systems.

  5. Development of a multilayered association polymer system for sequential drug delivery

    Science.gov (United States)

    Chinnakavanam Sundararaj, Sharath kumar

    As all the physiological processes in our body are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the primary objective of this research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. This particular device was designed aimed at the treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of the world population. This condition is caused by bacterial biofilm on the teeth, resulting in a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The polymers used for the fabrication of this multilayered device consists of cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion property of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. After the initial characterization of the CAPP system, the device was specifically modified to achieve sequential release of drugs aimed at the treatment of periodontitis. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. To obtain different erosion

  6. Development of the computer-aided process planning (CAPP) system for polymer injection molds manufacturing

    OpenAIRE

    J. Tepić; V. Todić; Lukić, D.; Milošević, M.; Borojević, S.

    2011-01-01

    Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-...

  7. On modeling shape memory polymers as elastic two-phase composite materials

    OpenAIRE

    Gilormini, Pierre; Diani, Julie

    2012-01-01

    International audience; A model has been proposed recently, which describes the experimentally observed mechanical behavior of some shape memory polymers. It considers a purely thermoelastic behavior, without strain rate effects, and assumes essentially that the polymer can be considered as a two-phase composite, with glassy and rubbery phases having volume fractions that depend on temperature only. Since a uniform stress hypothesis was used in the original formulation, with an inconsistency ...

  8. From non-degenerate conducting polymers to dense matter in the massive Gross-Neveu model

    CERN Document Server

    Thies, M; Thies, Michael; Urlichs, Konrad

    2005-01-01

    Using results from the theory of non-degenerate conducting polymers like cis-polyacetylene, we generalize our previous work on baryonic matter in the massless Gross-Neveu model to finite bare fermion mass. In the large N limit, the exact ground state is constructed analytically, in close analogy to the bipolaron lattice in polymers. These findings are contrasted to the standard scenario with a first order phase transition as a function of density.

  9. Gel formation in systems composed of drug containing catanionic vesicles and oppositely charged hydrophobically modified polymer.

    Science.gov (United States)

    Dew, Noel; Edwards, Katarina; Edsman, Katarina

    2009-05-01

    The aim of this study was to explore if mixtures of drug containing catanionic vesicles and polymers give rise to gel formation, and if so, if drug release from these gels could be prolonged. Catanionic vesicles formed from the drug substances alprenolol or tetracaine, and the oppositely charged surfactant sodium dodecyl sulphate were mixed with polymers. Three polymers with different properties were employed: one bearing hydrophobic modifications, one positively charged and one positively charged polymer bearing hydrophobic modifications. The structure of the vesicles before and after addition of polymer was investigated by using cryo-TEM. Gel formation was confirmed by using rheological measurements. Drug release was studied using a modified USP paddle method. Gels were observed to form only in the case when catanionic vesicles, most likely with a net negative charge, were mixed with positively charged polymer bearing lipophilic modifications. The release of drug substance from these systems, where the vesicles are not trapped within the gel but constitute a founding part of it, could be significantly prolonged. The drug release rate was found to depend on vesicle concentration to a higher extent than on polymer concentration.

  10. Molecular engineering of dendritic polymers and their application as drug and gene delivery systems.

    Science.gov (United States)

    Paleos, Constantinos M; Tsiourvas, Dimitris; Sideratou, Zili

    2007-01-01

    This review discusses the development of functional and multifunctional dendrimeric and hyperbranched polymers, collectively called dendritic polymers, with the objective of being applied as drug and gene delivery systems. In particular, using as starting materials known and well-characterized basic dendritic polymers, the review deals with the type of structural modifications to which these dendritic polymers were subjected for the development of drug carriers with low toxicity, high encapsulating capacity, a specificity for certain biological cells, and the ability to be transported through their membranes. Proceeding from functional to multifunctional dendritic polymers, one is able to prepare products that fulfill one or more of these requirements, which an effective drug carrier should exhibit. A common feature of the dendritic polymers is the exhibition of polyvalent interactions, while for multifunctional derivatives, a number of targeting ligands determine specificity, another type of group secures stability in biological milieu and prolonged circulation, while others facilitate their transport through cell membranes. Furthermore, dendritic polymers employed for gene delivery should be or become cationic in the biological environment for the formation of complexes with the negatively charged genetic material.

  11. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  12. Dissecting Ubiquitin Folding Using the Self-Organized Polymer Model.

    Science.gov (United States)

    Reddy, Govardhan; Thirumalai, D

    2015-08-27

    Folding of Ubiquitin (Ub), a functionally important protein found in eukaryotic organisms, is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained self-organized-polymer model with side chains (SOP-SC). The melting temperatures (Tm's), identified with the peaks in the heat capacity curves, decrease as pH decreases, in qualitative agreement with experiments. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At Tm, Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at Tm, with multiple transitions between the folded and unfolded states, shows a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long-range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of microseconds, then Ub folding follows the diffusion-collision mechanism with intermediates, many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a Pfold analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings for

  13. Glassy dynamics of model colloidal polymers: The effect of "monomer" size

    Science.gov (United States)

    Li, Jian; Zhang, Bo-kai; Li, Hui-shu; Chen, Kang; Tian, Wen-de; Tong, Pei-qing

    2016-05-01

    In recent years, attempts have been made to assemble colloidal particles into chains, which are termed "colloidal polymers." An apparent difference between molecular and colloidal polymers is the "monomer" size. Here, we propose a model to represent the variation from molecular polymer to colloidal polymer and study the quantitative differences in their glassy dynamics. For chains, two incompatible local length scales, i.e., monomer size and bond length, are manifested in the radial distribution function and intramolecular correlation function. The mean square displacement of monomers exhibits Rouse-like sub-diffusion at intermediate time/length scale and the corresponding exponent depends on the volume fraction and the monomer size. We find that the threshold volume fraction at which the caging regime emerges can be used as a rescaling unit so that the data of localization length versus volume fraction for different monomer sizes can gather close to an exponential curve. The increase of monomer size effectively increases the hardness of monomers and thus makes the colloidal polymers vitrify at lower volume fraction. Static and dynamic equivalences between colloidal polymers of different monomer sizes have been discussed. In the case of having the same peak time of the non-Gaussian parameter, the motion of monomers of larger size is much less non-Gaussian. The mode-coupling critical exponents for colloidal polymers are in agreement with that of flexible bead-spring chains.

  14. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold

    DEFF Research Database (Denmark)

    Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.;

    2006-01-01

    Blends and other multicomponent systems are used in various polymer applications to meet multiple requirements that cannot be fulfilled by a single material1, 2, 3. In polymer optoelectronic devices it is often desirable to combine the semiconducting properties of the conjugated species with the ......Blends and other multicomponent systems are used in various polymer applications to meet multiple requirements that cannot be fulfilled by a single material1, 2, 3. In polymer optoelectronic devices it is often desirable to combine the semiconducting properties of the conjugated species...... of the two components, during which the semiconductor is predominantly expelled to the surfaces of cast films, we can obtain vertically stratified structures in a one-step process. Incorporating these as active layers in polymer field-effect transistors, we find that the concentration of the semiconductor......–crystalline/semiconducting–insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer...

  15. Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach. Degree awarded by Cincinnati Univ.

    Science.gov (United States)

    Goldberg, Robert K.

    1999-01-01

    Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results

  16. Modeling lower critical solution temperature behavior of associating polymer brushes with classical density functional theory.

    Science.gov (United States)

    Gong, Kai; Marshall, Bennett D; Chapman, Walter G

    2013-09-07

    We study the lower critical solution temperature (LCST) behavior of associating polymer brushes (i.e., poly(N-isopropylacrylamide)) using classical density functional theory. Without using any empirical or temperature-dependent parameters, we find the phase transition of polymer brushes from extended to collapsed structure with increasing temperature, indicating the LCST behavior of polymer brushes. The LCST behavior of associating polymer brushes is attributed to the interplay of hydrogen bonding interactions and Lennard-Jones attractions in the system. The effect of grafting density and molecular weight on the phase behavior of associating polymer brushes has been also investigated. We find no LCST behavior at low grafting density or molecular weight. Moreover, increasing grafting density decreases the LCST and swelling ratio of polymer brushes. Similarly, increasing molecular weight decreases the LCST but increases the swelling ratio. At very high grafting density, a partial collapsed structure appears near the LCST. Qualitatively consistent with experiments, our results provide insight into the molecular mechanism of LCST behavior of associating polymer brushes.

  17. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Science.gov (United States)

    Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  18. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  19. Quantitative Modeling of Entangled Polymer Rheology: Experiments, Tube Models and Slip-Link Simulations

    Science.gov (United States)

    Desai, Priyanka Subhash

    Rheology properties are sensitive indicators of molecular structure and dynamics. The relationship between rheology and polymer dynamics is captured in the constitutive model, which, if accurate and robust, would greatly aid molecular design and polymer processing. This dissertation is thus focused on building accurate and quantitative constitutive models that can help predict linear and non-linear viscoelasticity. In this work, we have used a multi-pronged approach based on the tube theory, coarse-grained slip-link simulations, and advanced polymeric synthetic and characterization techniques, to confront some of the outstanding problems in entangled polymer rheology. First, we modified simple tube based constitutive equations in extensional rheology and developed functional forms to test the effect of Kuhn segment alignment on a) tube diameter enlargement and b) monomeric friction reduction between subchains. We, then, used these functional forms to model extensional viscosity data for polystyrene (PS) melts and solutions. We demonstrated that the idea of reduction in segmental friction due to Kuhn alignment is successful in explaining the qualitative difference between melts and solutions in extension as revealed by recent experiments on PS. Second, we compiled literature data and used it to develop a universal tube model parameter set and prescribed their values and uncertainties for 1,4-PBd by comparing linear viscoelastic G' and G" mastercurves for 1,4-PBds of various branching architectures. The high frequency transition region of the mastercurves superposed very well for all the 1,4-PBds irrespective of their molecular weight and architecture, indicating universality in high frequency behavior. Therefore, all three parameters of the tube model were extracted from this high frequency transition region alone. Third, we compared predictions of two versions of the tube model, Hierarchical model and BoB model against linear viscoelastic data of blends of 1,4-PBd

  20. Mathematical modeling of chemical composition modification and etching of polymers under the atomic oxygen influence

    Science.gov (United States)

    Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina

    2016-07-01

    Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.

  1. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  2. Conductive polymer foams with carbon nanofillers – Modeling percolation behavior

    Directory of Open Access Journals (Sweden)

    O. Maxian

    2017-05-01

    Full Text Available A new numerical model considering nanofiller random distribution in a porous polymeric matrix was developed to predict electrical percolation behavior in systems incorporating 1D-carbon nanotubes (CNTs and/or 2D-graphene nanoplatelets (GNPs. The numerical model applies to porous systems with closed-cell morphology. The percolation threshold was found to decrease with increasing porosity due to filler repositioning as a result of foaming. CNTs were more efficient in forming a percolative network than GNPs. High-aspect ratio (AR and randomly oriented fillers were more prone to form a network. Reduced percolation values were determined for misaligned fillers as they connect better in a network compared to aligned ones. Hybrid CNT-GNP fillers show synergistic effects in forming electrically conductive networks by comparison with single fillers.

  3. Modeling diffusion of adsorbed polymer with explicit solvent.

    Science.gov (United States)

    Desai, Tapan G; Keblinski, Pawel; Kumar, Sanat K; Granick, Steve

    2007-05-25

    Computer simulations of a polymer chain of length N strongly adsorbed at the solid-liquid interface in the presence of explicit solvent are used to delineate the factors affecting the N dependence of the polymer lateral diffusion coefficient, D(||). We find that surface roughness has a large influence, and D(||) scales as D(||) approximately N(-x), with x approximately 3/4 and x approximately 1 for ideal smooth and corrugated surfaces, respectively. The first result is consistent with the hydrodynamics of a "particle" of radius of gyration R(G) approximately N(nu) (nu=0.75) translating parallel to a planar interface, while the second implies that the friction of the adsorbed chains dominates. These results are discussed in the context of recent measurements.

  4. Single chain stochastic polymer modeling at high strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Harstad, E. N. (Eric N.); Harlow, Francis Harvey,; Schreyer, H. L.

    2001-01-01

    Our goal is to develop constitutive relations for the behavior of a solid polymer during high-strain-rate deformations. In contrast to the classic thermodynamic techniques for deriving stress-strain response in static (equilibrium) circumstances, we employ a statistical-mechanics approach, in which we evolve a probability distribution function (PDF) for the velocity fluctuations of the repeating units of the chain. We use a Langevin description for the dynamics of a single repeating unit and a Lioville equation to describe the variations of the PDF. Moments of the PDF give the conservation equations for a single polymer chain embedded in other similar chains. To extract single-chain analytical constitutive relations these equations have been solved for representative loading paths. By this process we discover that a measure of nonuniform chain link displacement serves this purpose very well. We then derive an evolution equation for the descriptor function, with the result being a history-dependent constitutive relation.

  5. Numerical study of viscoelastic polymer flow in simplified pore structures using stabilised finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, M.; Wegner, J.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Polymer flooding, as an EOR method, has become one of the most important driving forces after water flooding. The conventional believe is that polymer flooding can only improve sweep efficiency, but it has no contribution to residual oil saturation reduction. However, experimental studies indicated that polymer solution can also improve displacement efficiency and decrease residual oil saturation. To get a better understanding of the mechanism to increase the microscopic sweep efficiency and the displacement efficiency, theoretical studies are required. In this paper, we studied the viscoelasticity effect of polymer by using a numerical simulator, which is based on Finite Element Analysis. Since it is showed experimentally that the first normal stress difference of viscoelastic polymer solution is higher than the second stress difference, the Oldroyd-B model was selected as the constitutive equation in the simulation. Numerical modelling of Oldroyd-B viscoelastic fluids is notoriously difficult. Standard Galerkin finite element methods are prone to numerical oscillations, and there is no convergence as the elasticity of fluid increases. Therefore, we use a stabilised finite element model. In order to verify our model, we first built up a model with the same geometry and fluid properties as presented in literature and compared the results. Then, with the tested model we simulated the effect of viscoelastic polymer fluid on dead pores in three simplified pore structures, which are contraction structure, expansion structure and expansion-contraction structure. Correspondingly, the streamlines and velocity contours of polymer solution, with different Reynolds numbers (Re) and Weissenberg numbers (We), flowing in these three structures are showed. The simulation results indicate that the viscoelasticity of polymer solution is the main contribution to increase the micro-scale sweep efficiency. With higher elasticity, the velocity of polymer solution is getting bigger at

  6. A complete study of electroactive polymers for energy scavenging: modelling and experiments

    CERN Document Server

    Jean-Mistral, C; Chaillout, J J; Bonvilain, A

    2008-01-01

    Recent progresses in ultra low power microelectronics propelled the development of several microsensors and particularly the self powered microsystems (SPMS). One of their limitations is their size and their autonomy due to short lifetime of the batteries available on the market. To ensure their ecological energetic autonomy, a promising alternative is to scavenge the ambient energy such as the mechanical one. Nowadays, few microgenerators operate at low frequency. They are often rigid structures that can perturb the application or the environment; none of them are perfectly flexible. Thus, our objective is to create a flexible, non-intrusive scavenger using electroactive polymers. The goal of this work is to design a generator which can provide typically 100 ?W to supply a low consumption system. We report in this paper an analytical model which predicts the energy produced by a simple electroactive membrane, and some promising experimental results.

  7. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  8. Modelling Railway Interlocking Systems

    DEFF Research Database (Denmark)

    Lindegaard, Morten Peter; Viuf, P.; Haxthausen, Anne Elisabeth

    2000-01-01

    In this report we present a model of interlocking systems, and describe how the model may be validated by simulation. Station topologies are modelled by graphs in which the nodes denote track segments, and the edges denote connectivity for train traÆc. Points and signals are modelled by annotatio...

  9. Particle-in-a-bos model of one-dimensional excitons in conjugated polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Johansen, P.M.; Pedersen, H.C.

    2000-01-01

    A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as an electron-hole pair interacting via Coulomb forces and confined to the polymer...... of these cases an approximate solution for the general case is obtained. As an application of the model the influence of a static electric field on the electron-hole overlap integral and exciton energy is considered....

  10. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  11. Manufacturing routes for disposable polymer blood diagnostic microfluidic systems

    DEFF Research Database (Denmark)

    Tosello, Guido; Griffiths, Christian; Azcarate, Sabino

    2008-01-01

    -cost and disposable µTBC devices, the micro injection moulding process was selected and therefore a micro tool was required. To overcome the limitations of current existing micro tooling capabilities, a new generation of micro hybrid tooling technologies for micro replication was developed. A metrological approach...... was applied to standardize the different tooling methods employed. The micro tools were then tested with different polymers on different injection moulding machines. The paper provides a comparison of these technologies with a particular focus on the obtainable feature sizes, surface finish, and aspect ratios...

  12. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    Science.gov (United States)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  13. Terminology of Polymers and Polymerization Processes in Dispersed Systems (IUPAC Recommendations 2011

    Directory of Open Access Journals (Sweden)

    Rogošić, M.

    2012-07-01

    Full Text Available A large group of industrially important polymerization processes is carried out in dispersed systems. These processes differ with respect to their physical nature, mechanism of particle formation, particle morphology, size, charge, types of interparticle interactions, and many other aspects. Polymer dispersions, and polymers derived from polymerization in dispersed systems,are used in diverse areas such as paints, adhesives, microelectronics, medicine, cosmetics, biotechnology, and others. Frequently, the same names are used for different processes and products or different names are used for the same processes and products. The document contains a list of recommended terms and definitions necessary for the unambiguous description of processes, products, parameters, and characteristic features relevant to polymers in dispersed systems.

  14. Mechanism and Durability of Repair Systems in Polymer-Modified Cement Mortars

    Directory of Open Access Journals (Sweden)

    Ru Wang

    2015-01-01

    Full Text Available This paper investigated the mechanism and durability of repair systems made of ordinary cement-based repair mortar and three kinds of polymer-modified repair mortars with old concrete, SBR dispersion, SAE dispersion, and SAE powder. By comparing the bonding properties of mortars before and after erosion, it was found that polymers could effectively improve the durability of the repair system and SAE powder had the best improvement. Micromorphology study of the repair mortar and the interface of repair mortar with old concrete through SEM showed that the polymer film formed from SAE powder whatever in the mortar or at the interface was dense and tough, the film formed from SAE dispersion was loose and weak, while the film formed from SBR dispersion was in between them, which explained the difference in the tensile bond strength and the durability of the repair systems.

  15. Extending the EGP constitutive model for polymer glasses to multiple relaxation times

    Science.gov (United States)

    van Breemen, L. C. A.; Klompen, E. T. J.; Govaert, L. E.; Meijer, H. E. H.

    2011-10-01

    The one-mode EGP (Eindhoven glassy polymer) model captures the plastic flow at yield and post-yield quantitatively, but behaves poor in the non-linear viscoelastic pre-yield region. Since a proper description here is important in cases of complex loading and unloading situations, such as e.g. in indentation and scratching, an extension to non-linear modeling is required using a spectrum of relaxation times. It is shown that such a reference spectrum can be obtained from simple tensile tests. It shifts to shorter times under the influence of stress and is independent of the two important time-dependent processes in polymers: the strain rate applied during testing and the aging time during storage and use. The multi-mode model is critically tested and proves quantitative in describing the intrinsic polymer response and, based thereupon, in predicting the correct response in tensile testing, including necking, in flat tip indentation and in notched loading.

  16. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices

    Science.gov (United States)

    Barker, J. A.; Ramsdale, C. M.; Greenham, N. C.

    2003-02-01

    We have developed a numerical model to predict the current-voltage curves of bilayer conjugated polymer photovoltaic devices. The model accounts for charge photogeneration, injection, drift, diffusion, and recombination, and includes the effect of space charge on the electric field within the device. Charge separation at the polymer-polymer interface leads to the formation of bound polaron pairs which may either recombine monomolecularly or be dissociated into free charges, and we develop expressions for the field dependence of the dissociation rate. We find that the short-circuit quantum efficiency is determined by the competition between polaron pair dissociation and recombination. The model shows a logarithmic dependence of the open-circuit voltage on the incident intensity, as seen experimentally. This additional intensity-dependent voltage arises from the field required to produce a drift current that balances the current due to diffusion of carriers away from the interface.

  17. Surface imprinted thin polymer film systems with selective recognition for bovine serum albumin.

    Science.gov (United States)

    Kryscio, David R; Peppas, Nicholas A

    2012-03-09

    Molecularly imprinted polymers are synthetic antibody mimics formed by the crosslinking of organic or inorganic polymers in the presence of an analyte which yields recognitive polymer networks with specific binding pockets for that biomolecule. Surface imprinted polymers were synthesized via a novel technique for the specific recognition of bovine serum albumin (BSA). Thin films of recognitive networks based on 2-(dimethylamino)ethyl methacrylate (DMAEMA) as the functional monomer and varying amounts of either N,N'-methylenebisacrylamide (MBA) or poly(ethylene glycol) (400) dimethacrylate (PEG400DMA) as the crosslinking agent were synthesized via UV free-radical polymerization and characterized. A clear and reproducible increase in recognition of the template BSA was demonstrated for these systems at 1.6-2.5 times more BSA recognized by the MIP sample relative to the control polymers. Additionally, these polymers exhibited selective recognition of the template relative to competing proteins with up to 2.9 times more BSA adsorbed than either glucose oxidase or bovine hemoglobin. These synthetic antibody mimics hold significant promise as the next generation of robust recognition elements in a wide range of bioassay and biosensor applications.

  18. A review study of (bio)sensor systems based on conducting polymers.

    Science.gov (United States)

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005.

  19. Recent progress of the characterization of oppositely charged polymer/surfactant complex in dilution deposition system.

    Science.gov (United States)

    Miyake, M

    2017-01-01

    A mixture of oppositely charged polymer and surfactants changes the solubilized state, having a complex precipitation region at the composition of electric neutralization. This complex behavior has been applied to surface modification in the fields of health care and cosmetic products such as conditioning shampoos, as a dilution-deposition system in which the polymer/surfactant mixture at the higher surfactant concentration precipitates the insoluble complex by dilution. A large number of studies over many years have revealed the basic coacervation behavior and physicochemical properties of complexes. However, the mechanism by which a precipitated complex performs surface modification is not well understood. The precipitation region and the morphology of precipitated complex that are changed by molecular structure and additives affect the performance. Hydrophilic groups such as the EO unit in polymers and surfactants, the mixing of nonionic or amphoteric surfactant and nonionic polymer, and the addition of low polar solvent influence the complex precipitation region. Furthermore, the morphology of precipitated complex is formed by crosslinking and aggregating among polymers in the dilution process, and characterizes the performance of products. The polymer chain density in precipitated complex is determined by the charges of both the polymer and surfactant micelle and the conformation of polymer. As a result, the morphology of precipitated complexes is changed from a closely packed film to looser meshes, and/or to small particles, and it is possible for the morphology to control the rheological properties and the amount of adsorbed silicone. In the future, further investigation of the relationships between the morphology and performance is needed.

  20. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  1. Inhomogeneous model colloid-polymer mixtures: adsorption at a hard wall.

    Science.gov (United States)

    Brader, J M; Dijkstra, M; Evans, R

    2001-04-01

    We study the equilibrium properties of inhomogeneous model colloid-polymer mixtures. By integrating out the degrees of freedom of the ideal polymer coils, we derive a formal expression for the effective one-component Hamiltonian of the (hard sphere) colloids that is valid for arbitrary external potentials acting on both the colloids and the polymers. We show how one can recover information about the distribution of polymer in the mixture given knowledge of the colloid correlation functions calculated using the effective one-component Hamiltonian. This result is then used to furnish the connection between the free-volume and perturbation theory approaches to determining the bulk phase equilibria. For the special case of a planar hard wall the effective Hamiltonian takes an explicit form, consisting of zero-, one-, and two-body, but no higher-body, contributions provided the size ratio q=sigma(p)/sigma(c)sigma(c) and sigma(p) denote the diameters of colloid and polymer respectively. We employ a simple density functional theory to calculate colloid density profiles from this effective Hamiltonian for q=0.1. The resulting profiles are found to agree well with those from Monte Carlo simulations for the same Hamiltonian. Adding very small amounts of polymer gives rise to strong depletion effects at the hard wall which lead to pronounced enhancement of the colloid density profile (close to the wall) over what is found for hard spheres at a hard wall.

  2. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    Science.gov (United States)

    Xu, Wen-Sheng; Freed, Karl F.

    2015-07-01

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  3. Phase Behavior of Polymer Blends for Organic Photovoltaic Applications

    Science.gov (United States)

    Emerson, Jillian; Furst, Eric; Epps, Thomas, III

    2014-03-01

    Polymer blends offer a promising and economically-viable route to creating organic photovoltaic (OPV) devices, as blends can form bicontinuous domains via spinodal decomposition. Understanding the phase behavior of conjugated polymer blends commonly used in OPVs is vital to producing more efficient devices. In this work, we determined the Flory-Huggins solvent-polymer and polymer-polymer interaction parameters for a model system of poly(3-hexylthiophene) (P3HT) and polystyrene (PS) through solvent vapor swelling of thin polymer films. From these interaction parameters, we constructed a polymer/polymer/solvent phase diagram. The phase diagram was validated experimentally with solution-based transmission measurements of PS/P3HT. This work highlights a method to determine the phase behavior in polymer/polymer/solvent blends that can be extended to other combinations of macromolecules relevant to organic photovoltaics, composites, and other materials systems.

  4. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  5. A Simple Model for Yielding and Strain Hardening in Glassy Polymers

    Science.gov (United States)

    Larson, Ron

    2013-03-01

    Strain hardening has long been an observed feature of polymer glasses in extension; explanations to date have often been phenomenological. Ediger and coworkers (Lee et al. Science 323, 231, 2009) have shown in experiments on PMMA glasses that, in addition to strain hardening, polymeric glasses show a remarkable non-monotonicity in the segmental relaxation time both in loading and unloading of stress. Here, we develop a simple constitutive equation that combines recent theories for yielding in simple glasses (Brader et al. PNAS, 106, 15186, 2009) to represent local segmental modes in the polymer, with a dumbbell model for the slow polymer relaxation modes. For a polymer glass under uniaxial loading, the model predicts that the liquefaction of the segmental modes permits strain hardening of the polymer modes to emerge, and once this emerges, it slows the deformation of the material under constant load enough to partially re-vitrify the segmental modes even though the sample remains under stress. In this way, the observed non-monotonicity in the segmental relaxation modes is produced. We show the extension of the work to simple shearing flows, and make (as yet) untested predictions about segmental relaxation rates in shear flows. We also show how to extend the model to include Rouse chain dynamics in place of the over-simplified dumbbell.

  6. Statistical mechanics of directed models of polymers in the square lattice

    CERN Document Server

    Rensburg, J V

    2003-01-01

    Directed square lattice models of polymers and vesicles have received considerable attention in the recent mathematical and physical sciences literature. These are idealized geometric directed lattice models introduced to study phase behaviour in polymers, and include Dyck paths, partially directed paths, directed trees and directed vesicles models. Directed models are closely related to models studied in the combinatorics literature (and are often exactly solvable). They are also simplified versions of a number of statistical mechanics models, including the self-avoiding walk, lattice animals and lattice vesicles. The exchange of approaches and ideas between statistical mechanics and combinatorics have considerably advanced the description and understanding of directed lattice models, and this will be explored in this review. The combinatorial nature of directed lattice path models makes a study using generating function approaches most natural. In contrast, the statistical mechanics approach would introduce...

  7. Rheological techniques for determining degradation of polylactic acid in bioresorbable medical polymer systems

    Science.gov (United States)

    Choong, Gabriel Y. H.; Parsons, Andrew J.; Grant, David M.; De Focatiis, Davide S. A.

    2015-05-01

    A method developed in the 1980s for the conversion of linear rheological data to molar mass distribution is revisited in the context of degradable polymers. The method is first applied using linear rheology for a linear polystyrene, for which all conversion parameters are known. A proof of principle is then carried out on four polycarbonate grades. Finally, preliminary results are shown on degradable polylactides. The application of this method to degrading polymer systems, and to systems containing nanofillers, is also discussed. This work forms part of a wider study of bioresorbable nanocomposites using polylactides, novel hydroxyapatite nanoparticles and tailored dispersants for medical applications.

  8. Hybrid Materials Prepared from Polymers and Self-assembled Systems by Physical Processes

    Institute of Scientific and Technical Information of China (English)

    Jean-Michel; Guenet

    2007-01-01

    1 Results A new type of hybrid materails prepared from ternary systems polymer/bicopper organic complex/solvent is presented.Each binary system displays differing types of behaviour: The polymer solutions produce thermoreversible gels while the bicopper organic complex (designated as CuS8) forms randomly-dispersed,self-assembling threads in organic solvents (See Fig.1(a),(b)).Fig.1 The CuS8 and ips thermoreversible gels Thermoreversible gels possess a fibrillar morphology with a typical mesh size ra...

  9. Modal analysis of additive manufactured carbon fiber reinforced polymer composite framework: Experiment and modeling

    Science.gov (United States)

    Dryginin, N. V.; Krasnoveikin, V. A.; Filippov, A. V.; Tarasov, S. Yu.; Rubtsov, V. E.

    2016-11-01

    Additive manufacturing by 3D printing is the most advanced and promising trend for making the multicomponent composites. Polymer-based carbon fiber reinforced composites demonstrate high mechanical properties combined with low weight characteristics of the component. This paper shows the results of 3D modeling and experimental modal analysis on a polymer composite framework obtained using additive manufacturing. By the example of three oscillation modes it was shown the agreement between the results of modeling and experimental modal analysis with the use of laser Doppler vibrometry.

  10. AN UNSTEADY SEEPAGE FLOW MODEL OF VISCO-ELASTIC POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-jun; FU Chun-quan; LV Yan-ping

    2004-01-01

    With the consideration of the visco-elasticity,the adsorption effect and the variation of rheological parameters, a seepage flow model of visco-elastic polymer solutions was established. The model was numerically treated with the finite difference method. Then curves of Bottom Hole Pressure (BHP) and formation pressure were drawn. The influences of the relaxation time, the injection rate, the permeability reduction co efficient, the consistency coefficient and the power-law exponent of the injected fluid on pressure performance were analyzed. This study shows that it is necessary to consider the visco-elasticity of non-Newtonian fluid in analyzing of pressure performance in the polymer flooding.

  11. Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy.

    Science.gov (United States)

    Pergamenshchik, V M; Vozniak, A B

    2017-01-01

    Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N+1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b/T. The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b/T, the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b/T→∞: While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T/(N+1). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.

  12. Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy

    Science.gov (United States)

    Pergamenshchik, V. M.; Vozniak, A. B.

    2017-01-01

    Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.

  13. Effect of acrylic polymers on physical parameters of spheronized pellets using an aqueous coating system

    Directory of Open Access Journals (Sweden)

    Akhter Afsana

    2009-01-01

    Full Text Available The aim of this study was to develop ambroxol hydrochloride sustained release pellets by an extrusion-spheronization technique and subsequent coating with acrylic polymers. Acrylic polymers like Eudragit RL 30 D, Eudragit RS 30 D and Eudragit NE 30 D were used as release retarding coating polymers. The release retarding capability of these polymers was also investigated. In each case, 10% polymer on dry basis was loaded. The flow property, surface roughness as well as the drug release behavior of the pellets was found to be the subject of types of polymers. About 35% drug was released at the first hour in 0.1N HCl media (pH 1.2 from Eudragit RL 30 D-coated pellets but from Eudragit RS 30 D and Eudragit NE 30 D-coated pellets, only 13.75 and 2.43% drug was released, respectively. In buffer media (pH 6.8, about 54% drug was released at the first hour from Eudragit RL 30 D-coated pellets but only 64% drug was released at 10 h. From Eudragit RL 30 D- and Eudragit NE 30 D-coated pellets only 7.28 and 1.14% drug was released at 1 h, respectively, but about 5.14 and 5.86 h was required for 50% drug release from these two polymers and about 80% drug was released at 10 h. The functional groups present in the polymeric films played a significant role on in vitro release kinetics of the drug from the coated pellets. Different kinetic models like zero order, first order and Higuchi were used for fitting the drug release pattern. The Higuchi model was the best fitted for ambroxol release from the coated pellets. The drug release mechanism was derived with Korsmeyer equation.

  14. A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Hernández, Abelardo, E-mail: abelardo@anl.gov; Pablo, Juan J. de, E-mail: depablo@uchicago.edu [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637 (United States); Peters, Brandon L.; Andreev, Marat; Schieber, Jay D., E-mail: schieber@iit.edu [Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-12-28

    A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance is established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. The results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials.

  15. Artificial Neural Network and Response Surface Methodology Modeling in Ionic Conductivity Predictions of Phthaloylchitosan-Based Gel Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    Ahmad Danial Azzahari

    2016-01-01

    Full Text Available A gel polymer electrolyte system based on phthaloylchitosan was prepared. The effects of process variables, such as lithium iodide, caesium iodide, and 1-butyl-3-methylimidazolium iodide were investigated using a distance-based ternary mixture experimental design. A comparative approach was made between response surface methodology (RSM and artificial neural network (ANN to predict the ionic conductivity. The predictive capabilities of the two methodologies were compared in terms of coefficient of determination R2 based on the validation data set. It was shown that the developed ANN model had better predictive outcome as compared to the RSM model.

  16. Thermodynamics of Paint Related Systems with Engineering Models

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2001-01-01

    Paints are complex materials composed of polymers (binders) dissolved in one or more solvents, pigments, and other additives. The thermodynamics of such systems is essential, for example, for selecting improved solvents and understanding a number of phenomena related especially! to adhesion...... to solid surfaces and drying. Many engineering models have been applied over the last decades for solutions with commoditity polymers. In this work the performance of some of these models is investigated for paint-related systems, focusing on those drying by the so-called " lacquer mechanism " (evaporation...

  17. Novel colon targeted drug delivery system using natural polymers

    Directory of Open Access Journals (Sweden)

    Ravi V

    2008-01-01

    Full Text Available A novel colon targeted tablet formulation was developed using pectin as carrier and diltiazem HCl and indomethacin as model drugs. The tablets were coated with inulin followed by shellac and were evaluated for average weight, hardness and coat thickness. In vitro release studies for prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid. The drug release from the coated systems was monitored using UV/Vis spectroscopy. In vitro studies revealed that the tablets coated with inulin and shellac have limited the drug release in stomach and small intestinal environment and released maximum amount of drug in the colonic environment. The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of both water soluble and insoluble drugs.

  18. Soft Polymers for Building up Small and Smallest Blood Supplying Systems by Stereolithography.

    Science.gov (United States)

    Meyer, Wolfdietrich; Engelhardt, Sascha; Novosel, Esther; Elling, Burkhard; Wegener, Michael; Krüger, Hartmut

    2012-03-29

    Synthesis of a homologous series of photo-polymerizable α,w-polytetrahydrofuranether-diacrylate (PTHF-DA) resins is described with characterization by NMR, GPC, DSC, soaking and rheometrical measurements. The curing speeds of the resins are determined under UV light exposure. Young's modulus and tensile strength of fully cured resins show flexible to soft material attributes dependent on the molar mass of the used linear PTHF-diacrylates. Structuring the materials by stereo lithography (SL) and multiphoton polymerization (MPP) leads to tubes and bifurcated tube systems with a diameter smaller than 2 mm aimed at small to smallest supplying systems with capillary dimensions. WST-1 biocompatibility tests ofm polymer extracts show nontoxic characteristics of the adapted polymers after a washing process. Some polymers show shape memory effect (SME).

  19. Soft Polymers for Building up Small and Smallest Blood Supplying Systems by Stereolithography

    Directory of Open Access Journals (Sweden)

    Michael Wegener

    2012-03-01

    Full Text Available Synthesis of a homologous series of photo-polymerizable α,w-polytetrahydrofuranether-diacrylate (PTHF-DA resins is described with characterization by NMR, GPC, DSC, soaking and rheometrical measurements. The curing speeds of the resins are determined under UV light exposure. Young’s modulus and tensile strength of fully cured resins show flexible to soft material attributes dependent on the molar mass of the used linear PTHF-diacrylates. Structuring the materials by stereo lithography (SL and multiphoton polymerization (MPP leads to tubes and bifurcated tube systems with a diameter smaller than 2 mm aimed at small to smallest supplying systems with capillary dimensions. WST-1 biocompatibility tests ofm polymer extracts show nontoxic characteristics of the adapted polymers after a washing process. Some polymers show shape memory effect (SME.

  20. Origin of organic matter in the early solar system. VII - The organic polymer in carbonaceous chondrites

    Science.gov (United States)

    Hayatsu, R.; Matsuoka, S.; Anders, E.; Scott, R. G.; Studier, M. H.

    1977-01-01

    Degradation techniques, including pyrolysis, depolymerization, and oxidation, were used to study the insoluble polymer from the Murchison C2 chondrite. Oxidation with Cr2O7(2-) or O2/UV led to the identification of 15 aromatic ring systems. Of 11 aliphatic acids identified, three dicarboxylic acids presumably came from hydroaromatic portions of the polymer, whereas eight monocarboxylic acids probably derive from bridging groups or ring substituents. Depolymerization with CF3COO4 yielded some of the same ring systems, as well as alkanes (C1 through C8) and alkenes (C2 through C8), alkyl (C1 through C5) benzenes and naphthalenes, and methyl- or dimethyl -indene, -indane, -phenol, -pyrrole, and -pyridine. All these compounds were detected below 200 C, and are therefore probably indigenous constituents. The properties of the meteoritic polymer were compared with the properties of a synthetic polymer produced by the Fischer-Tropsch reaction. It is suggested that the meteoritic polymer was also produced by surface catalysis.

  1. Quantum chemistry investigation of fluorinated polymer systems of industrial interest.

    Science.gov (United States)

    Mavroudakis, Evangelos; Cuccato, Danilo; Dossi, Marco; Comino, Giovanni; Moscatelli, Davide

    2014-01-09

    In this work, the free-radical polymerization (FRP) of widely used fluorinated monomers was investigated. Computational studies were conducted to assess the FRP kinetics of each binary copolymerization between vinylidene fluoride (VDF), hexafluoropropylene (HFP), and tetrafluoroethylene (TFE). More specifically, all calculations were performed using density functional theory (DFT), and the B3LYP level of theory was used to optimize structures and determine absolute minimum energy geometries, whereas the electronic energies were estimated using B3LYP/6-31G(d,p) as well as a higher level of theory, MPWB1K/6-31G(d,p). Transition state theory was employed to determine kinetic parameters according to the terminal model of copolymerization. The homopolymerization of VDF and all of its corresponding copolymerizations were investigated by taking into account every possible propagation reaction (head to head, head to tail, tail to tail, head to monomer, tail to monomer, etc.) to estimate the Arrhenius parameters for each system. This study provides the estimation of a large set of rate coefficients, which gives detailed pictures of the specific copolymerization systems examined and is highly valuable to generate a comprehensive overview of the polymerization kinetics of relevant fluorinated monomers.

  2. Modeling the relaxation of polymer glasses under shear and elongational loads

    Science.gov (United States)

    Fielding, S. M.; Moorcroft, R. L.; Larson, R. G.; Cates, M. E.

    2013-03-01

    Glassy polymers show "strain hardening": at constant extensional load, their flow first accelerates, then arrests. Recent experiments under such loading have found this to be accompanied by a striking dip in the segmental relaxation time. This can be explained by a minimal nonfactorable model combining flow-induced melting of a glass with the buildup of stress carried by strained polymers. Within this model, liquefaction of segmental motion permits strong flow that creates polymer-borne stress, slowing the deformation enough for the segmental (or solvent) modes then to re-vitrify. Here, we present new results for the corresponding behavior under step-stress shear loading, to which very similar physics applies. To explain the unloading behavior in the extensional case requires introduction of a "crinkle factor" describing a rapid loss of segmental ordering. We discuss in more detail here the physics of this, which we argue involves non-entropic contributions to the polymer stress, and which might lead to some important differences between shear and elongation. We also discuss some fundamental and possibly testable issues concerning the physical meaning of entropic elasticity in vitrified polymers. Finally, we present new results for the startup of steady shear flow, addressing the possible role of transient shear banding.

  3. Caractérisation rhéologique et modélisation structurelle des systèmes argile-polymère. Application aux fluides de forage Rheometry and Structural Modelling of Clay-Polymer Systems. Application to Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Cartalos U.

    2006-12-01

    Full Text Available Le comportement rhéologique des systèmes argile-polymère couramment utilisés dans les formulations des fluides de forage est examiné dans cet article. Un protocole d'essai adapté à leur nature thixotrope qui permet d'effectuer des mesures reproductibles est mis au point. Les propriétés intrinsèques du matériau sont ainsi déterminées sur toute la gamme de sollicitations : du comportement solide aux faibles déformations au comportement fluide aux taux de déformations intenses. Il est montré que ces systèmes sont caractérisés par des temps de restructuration longs, par des rhéogrammes en régime permanent présentant un minimum de contrainte et par des dépassements importants de la contrainte lors des essais transitoires. Ces effets peuvent être complètement masqués par des procédures d'essai préconisés par les normes en vigueur dans le forage. Une loi de comportement structurelle récente qui relie les propriétés thixotropes et viscoélastiques du matériau aux mécanismes de création et de rupture des flocs peut reproduire l'ensemble des phénomènes observés. Sa capacité de décrire le changement de structure au sein du fluide sous écoulement ou au repos et les variations associées de la contrainte permet d'envisager une meilleure modélisation de l'hydraulique du forage. The rheological behaviour of clay-polymer systems that are currently used in the formulation of drilling fluids was studied. A specific experimental procedure was used to account for thixotropic effects and obtain, thus, reproducible results. In this way it was possible to determine intrinsic properties in the whole range, from solid behaviour below the yield stress to liquid behaviour at very high shear. These systems are shown to be characterised by very long time scales of structure recovery, by the existence of a minimum shear stress in the steady state flow curve and by important stress overshoots in transient flows. These effects can be

  4. Selected System Models

    Science.gov (United States)

    Schmidt-Eisenlohr, F.; Puñal, O.; Klagges, K.; Kirsche, M.

    Apart from the general issue of modeling the channel, the PHY and the MAC of wireless networks, there are specific modeling assumptions that are considered for different systems. In this chapter we consider three specific wireless standards and highlight modeling options for them. These are IEEE 802.11 (as example for wireless local area networks), IEEE 802.16 (as example for wireless metropolitan networks) and IEEE 802.15 (as example for body area networks). Each section on these three systems discusses also at the end a set of model implementations that are available today.

  5. Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pryamitsyn, Victor [Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Ganesan, Venkat, E-mail: venkat@che.utexas.edu [Department of Chemical Engineering and Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-10-28

    We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle’s dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.

  6. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents.

    Science.gov (United States)

    Hovakeemian, Sara G; Liu, Runhui; Gellman, Samuel H; Heerklotz, Heiko

    2015-09-14

    Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to nylon-3 polymers we examined act via similar mechanisms; it is surprising that their mechanisms are so distinct. Some, but not all mechanisms of vesicle permeabilization allow for antimicrobial activity.

  7. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking

    Science.gov (United States)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  8. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  9. Models for twistable elastic polymers in Brownian dynamics, and their implementation for LAMMPS

    CERN Document Server

    Brackley, C A; Marenduzzo, D

    2014-01-01

    An elastic rod model for semi-flexible polymers is presented. Theory for a continuum rod is reviewed, and it is shown that a popular discretised model used in numerical simulations gives the correct continuum limit. Correlation functions relating to both bending and twisting of the rod are derived for both continuous and discrete cases, and results are compared with numerical simulations. Finally, two possible implementations of the discretised model in the multi-purpose molecular dynamics software package LAMMPS are described.

  10. Temperature- and Time-Dependent Dielectric Measurements and Modelling on Curing of Polymer Composites

    OpenAIRE

    Prastiyanto, Dhidik

    2016-01-01

    In this work a test set for dielectric measurements at 2.45 GHz during curing of polymer composites is developed. Fast reconstruction of dielectric properties is solved using a neural network algorithm. Modelling of the curing process at 2.45 GHz using both dielectric constant and dielectric loss factor results in a more accurate model compared to low frequency modeling that only uses the loss factor. Effects of various harderners and different amount of filler are investigated.

  11. Integrated lasers for biophotonic Lab-on-a-Chip systems in polymer

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grossmann, Tobias

    2011-01-01

    Lab-on-a-Chip (LoC) systems enable biomedical or chemical testing for point-of-care analysis at the patient's bedside or in the field. Our work is focused on developing optical LoCs based on polymers by integrating microfluidic channels, optical waveguides, and miniaturized lasers on different pl...

  12. Compressive response of a glass-polymer system at various strain rates

    NARCIS (Netherlands)

    Fan, J.T.; Weerheijm, J.; Sluys, L.J.

    2016-01-01

    A glass-polymer system of a polyurethane elastomeric matrix with a single 3 mm-diameter glass particle was investigated using a split Hopkinson pressure bar (SHPB) setup for revealing the dynamic compressive mechanical response. This study produced the characteristics of the dynamic stress-strain re

  13. Novel routes to liquid-based self-healing polymer systems

    NARCIS (Netherlands)

    Mookhoek, S.D.

    2010-01-01

    Inspired by the current state-of-the-art and the progressing advancements in the field of self-healing materials, this thesis addresses several novel routes to advance the concept of liquid-based self-healing polymer systems. This thesis presents the concept and characterisation of a one-component s

  14. Order-disorder transitions in comb-like polymer-surfactant systems involving hydrogen bonds

    NARCIS (Netherlands)

    ten Brinke, G.; Huh, J; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Ikkala, O.

    Conditions to obtain micro-phase separated morphologies in polymer-surfactant systems involving hydrogen bonds have been investigated using poly(4-vinyl pyridine) (P4VP) and surfactants capable of forming hydrogen bonds of different strength with the basic nitrogen of P4VP. Depending on the tail

  15. Novel routes to liquid-based self-healing polymer systems

    NARCIS (Netherlands)

    Mookhoek, S.D.

    2010-01-01

    Inspired by the current state-of-the-art and the progressing advancements in the field of self-healing materials, this thesis addresses several novel routes to advance the concept of liquid-based self-healing polymer systems. This thesis presents the concept and characterisation of a one-component

  16. Integrated lasers for biophotonic Lab-on-a-Chip systems in polymer

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grossmann, Tobias

    2011-01-01

    Lab-on-a-Chip (LoC) systems enable biomedical or chemical testing for point-of-care analysis at the patient's bedside or in the field. Our work is focused on developing optical LoCs based on polymers by integrating microfluidic channels, optical waveguides, and miniaturized lasers on different pl...

  17. High temperature polymer fuel cells and their Interplay with fuel processing systems

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, R.

    2003-01-01

    This paper reports recent results from our group on polymer electrolyte membrane fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all....... The high working temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  18. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  19. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  20. Multiscale Cloud System Modeling

    Science.gov (United States)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  1. Polymer property modeling using grid technology for design of structured products

    DEFF Research Database (Denmark)

    Chelakara Satyanarayana, Kavitha; Gani, Rafiqul; Abildskov, Jens

    2007-01-01

    Property prediction for a given polymer structure using group contribution models require that the structure can be fully represented by groups with well-defined contributions for that particular property. Frequently this cannot be accomplished. To overcome this limitation a group contribution(+)...

  2. Rotational diffusion model of orientational enhancement in AC field biased photorefractive polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Jespersen, K.G.; Johansen, P.M.

    2001-01-01

    The response of photorefractive (PR) polymers subject to AC field biasing is analyzed within the space-charge field formalism. The frequency dependence of orientational enhancement is taken into account using a rotational diffusion model for the angular distribution of chromophores. The possibility...

  3. Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers

    Science.gov (United States)

    Xiao, Rui; Ghazaryan, Gagik; Tervoort, Theo A.; Nguyen, Thao D.

    2017-06-01

    The enthalpic response of amorphous polymers depends strongly on their thermal and deformation history. Annealing just below the glass transition temperature (Tg) causes a large endothermic overshoot of the isobaric heat capacity at Tg as measured by differential scanning calorimetry, while plastic deformation (cold work) can erase this overshoot and create an exothermic undershoot. This indicates that a strong coupling exists between the polymer structure, thermal response, and mechanical deformation. In this work, we apply a recently developed thermomechanical model for glassy polymers that couples structural evolution and viscoplastic deformation to investigate the effect of annealing and plastic deformation on the accumulation of stored energy during cold work and calorimetry measurements of heat flow. The thermomechanical model introduces the effective temperature as an additional state variable in a nonequilibrium thermodynamics setting to describe the structural evolution of the material. The results show that the model accurately describes the stress and enthalpy response of quenched and annealed polymers with different plastic predeformations. The model also shows that at 30% strain in uniaxial compression, 45% of the applied work is converted into stored energy, which is consistent with experimental data from literature.

  4. MEASUREMENT METHOD AND PHYSICAL MODEL OF VSC CONDUCTIVITY AND ITS APPLICATIONS IN CONDUCTING POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WAN Meixiang

    1989-01-01

    Method of VSC (Voltage Shorted Compaction ) can be used to determine the intrinsic temperature dependence of conductivity of polycrystalline compaction .The experimental conditions and technical key for preparation of VSC device and its physical model as well as its applications in conducting polymers are discussed in detail.

  5. A two-substrate Michaelis-Menten model for the growth of self-replicating polymers.

    Science.gov (United States)

    Ferreira, R

    1987-10-07

    A two-substrate Michaelis-Menten model is proposed for the growth of autocatalytic self-replicating polymers. Selective growth depends on the existence of two complementary pairs of monomers. Discrimination among sequences results from different products of binding constants, KCGnKAUm. The results support an earlier renormalization group treatment (Ferreira & Tsallis, 1985).

  6. Device model for the operation of polymer/fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Koster, LJA; Smits, ECP; Mihailetchi, VD; Blom, PWM

    2005-01-01

    We have developed a numerical device model that consistently describes the current-voltage characteristics of polymer:fullerene bulk heterojunction solar cells. Bimolecular recombination and a temperature- and field-dependent generation mechanism of free charges are incorporated. It is demonstrated

  7. An Electromechanical Model for a Dielectric ElectroActive Polymer Generator

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Trintis, Ionut; Munk-Nielsen, Stig;

    2013-01-01

    Smart electroactive materials have attracted much of the scientific interest over the past few years, as they reflect a quite promising alternative to conservative approaches used nowadays in various transducer applications. Especially Dielectric ElectroActive Polymers (DEAPs), which are constantly...... gaining momentum due to their superior low-speed performance, light-weighted nature and higher energy density when compared with competing technologies. In this paper an electromechanical model for a DEAP generator is presented, accounting for both the visco-hyperelastic characteristics of the polymer...

  8. Determinantal Structures in the O'Connell-Yor Directed Random Polymer Model

    Science.gov (United States)

    Imamura, Takashi; Sasamoto, Tomohiro

    2016-05-01

    We study the semi-discrete directed random polymer model introduced by O'Connell and Yor. We obtain a representation for the moment generating function of the polymer partition function in terms of a determinantal measure. This measure is an extension of the probability measure of the eigenvalues for the Gaussian unitary ensemble in random matrix theory. To establish the relation, we introduce another determinantal measure on larger degrees of freedom and consider its few properties, from which the representation above follows immediately.

  9. DEVELOPMENT OF FAMOTIDINE FLOATING DRUG DELIVERY SYSTEM USING NATURAL POLYMERS

    Directory of Open Access Journals (Sweden)

    Mohammed Muqtader et al.

    2012-03-01

    Full Text Available In the present study,FDDS of Famotidine, a copmpetative inhibitor of histamine H2 receptors were prepared by using natural gums viz. xanthan gum and guar gum at different drug to gum ratio using sodium bicarbonate and citric acid as gas generating agents and lactose as diluent.FDDS tablets were prepared by wet granulation technique using PVP K30 as granulating agent. The prepared FDDS tablets were evaluated for its pre compression characteristics like bulk density, angle of repose, true density and compresibility index and post compression parameters such as hardness, friability, uniformity of drug content, in vitro floating studies, in vitro dissolution studies. The physical evaluation of all the formulations showed values within the prescribed limits for tests like hardness, friability and weight variation which indicate that the prepared tablets are of standard quality. The floating lag time of all the formulations was less than 10 minutes,All the formulations showed good matrix integrity and retarded the release of drug for 10 hours. Formulation X3 containg drug: xantahne gum ratio of 1:3 showed zero order kinetics, the IR spectroscopic studies indicated that the drug was compatible with the polymer and co-excipients and therefore can be a promising alternative to the existing dosage form.

  10. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours. A hydrocarbon reformer and a catalytic burner...... are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized and optimized. Different...... routes to functionalize the polymers will be explored to increate proton conductivity. By the development of advanced materials, demonstration of the high temperature PEMFC stack and integration of such a system, FURIM is expected to sufficiently promote the commercialisation of the fuel cell technology...

  11. Formulation of gastroretentive floating drug delivery system using hydrophilic polymers and its in vitro characterization

    Directory of Open Access Journals (Sweden)

    Venkata Srikanth Meka

    2014-04-01

    Full Text Available The aim of the present research is to formulate and evaluate the gastroretentive floating drug delivery system of antihypertensive drug, propranolol HCl. Gastroretentive floating tablets (GRFT were prepared by using a synthetic hydrophilic polymer polyethylene oxide of different grades such as PEO WSR N-12 K and PEO 18 NF as release retarding polymers and calcium carbonate as gas generating agent. The GRFT were compressed by direct compression strategy and the tablets were evaluated for physico-chemical properties, in vitro buoyancy, swelling studies, in vitro dissolution studies and release mechanism studies. From the dissolution and buoyancy studies, F 9 was selected as an optimized formulation. The optimized formulation followed zero order rate kinetics with non-Fickian diffusion mechanism. The optimized formulation was characterised with FTIR studies and observed no interaction between the drug and the polymers.

  12. Synthesis of End Functional Polymers via Atom Transfer Radical Polymerization in Immobilized Catalytic System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cross-linked polystyrene with azo-crown ether functional side chain (PSt-1, 10-dicarbonyl-3,6,9-trizaocylcodecane) was prepared under microwave irradiation and the structure was characterized through FT-IR and element analysis. The functionalized cross-linked polystyrene (cross-link degree, 3.5%) combining with immobilized catalyst system (CuBr and ethyl α-bromo-isobutyrate) can catalyze atom transfer radical polymerization of Styrene. Neat polymer products can be obtained then. Complex of La and the polymer end group (EBiB) was synthesized. The third order nonlinear optical property of the polymer-La complex was investigated and the structure was also characterized by FT-IR and XPS.

  13. Dynamic Systems Modeling

    Directory of Open Access Journals (Sweden)

    Sorin Dan ŞANDOR

    2003-01-01

    Full Text Available System Dynamics was introduced by Jay W. Forrester in the 1960s. Since then the methodology was adopted in many areas of natural or social sciences. This article tries to present briefly how this methodology works, both as Systems Thinking and as Modelling with Vensim computer software.

  14. Numerical modelling of porous cement-based materials by superabsorbent polymers

    DEFF Research Database (Denmark)

    Viejo, Ismael; Esteves, Luis Pedro; Laspalas, Manuel;

    2016-01-01

    The development of new cementitious materials raises new challenges with regard to structural design. One of the potential applications of superabsorbent polymers (SAP) is to deliver well-defined porosity to cement systems. This is particularly interesting for the development of porous cement...

  15. Coil fraction-dependent phase behaviour of a model globular protein–polymer diblock copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Carla S. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Olsen, Bradley D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-01-01

    The self-assembly of the model globular protein–polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) is explored across a range of polymer coil fractions from 0.21 to 0.82 to produce a phase diagram for these materials as a function of molecular composition. Overall, four types of morphologies were observed: hexagonally packed cylinders, perforated lamellae, lamellae, and disordered nanostructures. Across all coil fractions and morphologies, a lyotropic re-entrant order–disorder transition in water was observed, with disordered structures below 30 wt% and above 70 wt% and well-ordered morphologies at intermediate concentrations. Solid state samples prepared by solvent evaporation show moderately ordered structures similar to those observed in 60 wt% solutions, suggesting that bulk structures result from kinetic trapping of morphologies which appear at lower concentrations. While highly ordered cylindrical nanostructures are observed around a bioconjugate polymer volume fraction of 0.3 and well-ordered lamellae are seen near a volume fraction of 0.6, materials at lower or higher coil fractions become increasingly disordered. Notable differences between the phase behaviour of globular protein–polymer block copolymers and coil–coil diblock copolymers include the lack of spherical nanostructures at either high or low polymer coil fractions as well as shifted phase boundaries between morphologies which result in an asymmetric phase diagram.

  16. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nguyen, Thao D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, Rui [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  17. Solid state drug-polymer miscibility studies using the model drug ABT-102.

    Science.gov (United States)

    Jog, Rajan; Gokhale, Rajeev; Burgess, Diane J

    2016-07-25

    Amorphous solid dispersions typically suffer storage stability issues due to: their amorphous nature, high drug loading, uneven drug:stabilizer ratio and plasticization effects as a result of hygroscopic excipients. An extensive solid state miscibility study was conducted to aid in understanding the mechanisms involved in drug/stabilizer interactions. ABT-102 (model drug) and nine different polymers with different molecular weights and viscosities were selected to investigate drug/polymer miscibility. Three different polymer:drug ratios (1:3, 1:1 and 3:1, w/w) were analyzed using: DSC, FTIR and PXRD. Three different techniques were used to prepare the amorphous solid dispersions: serial dilution, solvent evaporation and spray drying. Spray drying was the best method to obtain amorphous solid dispersions. However, under certain conditions amorphous formulations could be obtained using solvent evaporation. Melting point depression was used to calculate interaction parameters and free energy of mixing for the various drug polymer mixtures. The spray dried solid dispersions yielded a negative free energy of mixing which indicated strong drug-polymer miscibility compared to the solvent evaporation and serial dilution method. Soluplus was the best stabilizer compared to PVP and HPMC, which is probably a consequence of strong hydrogen bonding between the two CO moieties of soluplus and the drug NH moieities. Copyright © 2016. Published by Elsevier B.V.

  18. Modeling the effect of nano-sized polymer particles on the properties of lipid membranes

    Science.gov (United States)

    Rossi, Giulia; Monticelli, Luca

    2014-12-01

    The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.

  19. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  20. Modeling the effect of probe force on length measurements on polymer parts

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Sonne, Mads Rostgaard; Dalla Costa, Giuseppe

    2016-01-01

    Measurement uncertainty at micrometer level is in the future going to be very common in dimensional measurements on polymer parts. Accurate dimensional measurement of polymer parts is becoming a key and common practice in the industry, especially when micrometer tolerances are required. When...... conducting measurements with a contact probe there is always a force applied to the part. This force (0.3N – 3.3N) leads to deformations that an influence the final result. The unknown deformation of the part under the measurement conditions can produce significant errors in the measurement. In the present...... work, Hertzian contact theory was applied to find the deformation analytically, where the measuring force was imposed to the part. Material properties of the polymer and radius of the probe tip were known parameters. The finite element software ABAQUS was then used to model the contact problem...

  1. Cellular Automata Modelling of Photo-Induced Oxidation Processes in Molecularly Doped Polymers

    Directory of Open Access Journals (Sweden)

    David M. Goldie

    2016-11-01

    Full Text Available The possibility of employing cellular automata (CA to model photo-induced oxidation processes in molecularly doped polymers is explored. It is demonstrated that the oxidation dynamics generated using CA models exhibit stretched-exponential behavior. This dynamical characteristic is in general agreement with an alternative analysis conducted using standard rate equations provided the molecular doping levels are sufficiently low to prohibit the presence of safe-sites which are impenetrable to dissolved oxygen. The CA models therefore offer the advantage of exploring the effect of dopant agglomeration which is difficult to assess from standard rate equation solutions. The influence of UV-induced bleaching or darkening upon the resulting oxidation dynamics may also be easily incorporated into the CA models and these optical effects are investigated for various photo-oxidation product scenarios. Output from the CA models is evaluated for experimental photo-oxidation data obtained from a series of hydrazone-doped polymers.

  2. Development of expert system for biobased polymer material selection: food packaging application.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  3. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling.

    Science.gov (United States)

    Bucci, Vanni; Majed, Nehreen; Hellweger, Ferdi L; Gu, April Z

    2012-03-20

    A number of agent-based models (ABMs) for biological wastewater treatment processes have been developed, but their skill in predicting heterogeneity of intracellular storage states has not been tested against observations due to the lack of analytical methods for measuring single-cell intracellular properties. Further, several mechanisms can produce and maintain heterogeneity (e.g., different histories, uneven division) and their relative importance has not been explored. This article presents an ABM for the enhanced biological phosphorus removal (EBPR) treatment process that resolves heterogeneity in three intracellular polymer storage compounds (i.e., polyphosphate, polyhydroxybutyrate, and glycogen) in three functional microbial populations (i.e., polyphosphate-accumulating, glycogen-accumulating, and ordinary heterotrophic organisms). Model predicted distributions were compared to those based on single-cell estimates obtained using a Raman microscopy method for a laboratory-scale sequencing batch reactor (SBR) system. The model can reproduce many features of the observed heterogeneity. Two methods for introducing heterogeneity were evaluated. First, biological variability in individual cell behavior was simulated by randomizing model parameters (e.g., maximum acetate uptake rate) at division. This method produced the best fit to the data. An optimization algorithm was used to determine the best variability (i.e., coefficient of variance) for each parameter, which suggests large variability in acetate uptake. Second, biological variability in individual cell states was simulated by randomizing state variables (e.g., internal nutrient) at division, which was not able to maintain heterogeneity because the memory in the internal states is too short. These results demonstrate the ability of ABM to predict heterogeneity and provide insights into the factors that contribute to it. Comparison of the ABM with an equivalent population-level model illustrates the effect

  4. Polymer flooding effect of seepage characteristics of the second tertiary combined model of L oilfield block B

    Directory of Open Access Journals (Sweden)

    Huan ZHAO

    2015-06-01

    Full Text Available The second tertiary combined model is applied to develop the second and third type reservoirs which have more oil layer quantity and strong anisotropism, compared to the regular main reservoir with polymer injection, whose seepage characteristics of polymer-injection-after-water-drive shows a remarkable difference, in addition. This development appears to have a larger effect on the remaining oil development and production. Simulating the second tertiary combined model by reservoir numerical simulation under different polymer molecular weight, polymer concentration, polymer injection rate on the polymer injection period, conclusions of the influenced seepage characteristics of original and added perforated interval pressure and water saturation are drawn. The conclusion shows that the polymer molecular weight could influence water saturation of added perforated interval; polymer concentration makes a significant impact on reservoir pressure; polymer injection rate has a great influence on the separate rate of original and added perforated interval. This research provides firm science evidence to the theory of the second tertiary combined model to develop and enhance oil injection-production rate.

  5. Modeling Sustainable Food Systems

    Science.gov (United States)

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  6. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui...

  7. Characterization and dynamic charge dependent modeling of conducting polymer trilayer bending

    Science.gov (United States)

    Farajollahi, Meisam; Sassani, Farrokh; Naserifar, Naser; Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Madden, John D. W.

    2016-11-01

    Trilayer bending actuators are charge driven devices that have the ability to function in air and provide large mechanical amplification. The electronic and mechanical properties of these actuators are known to be functions of their charge state making prediction of their responses more difficult when they operate over their full range of deformation. In this work, a combination of state space representation and a two-dimensional RC transmission line model are used to implement a nonlinear time variant model for conducting polymer-based trilayer actuators. Electrical conductivity and Young’s modulus of electromechanically active PEDOT conducting polymer containing films as a function of applied voltage were measured and incorporated into the model. A 16% drop in Young’s modulus and 24 times increase in conductivity are observed by oxidizing the PEDOT. A closed form formulation for radius of curvature of trilayer actuators considering asymmetric and location dependent Young’s modulus and conductivity in the conducting polymer layers is derived and implemented in the model. The nonlinear model shows the capability to predict the radius of curvature as a function of time and position with reasonable consistency (within 4%). The formulation is useful for general trilayer configurations to calculate the radius of curvature as a function of time. The proposed electrochemical modeling approach may also be useful for modeling energy storage devices.

  8. CHEMICAL STRUCTURE AND PYROLYSIS RESPONSE OF BETA-O-4 LIGNIN MODEL POLYMER

    Directory of Open Access Journals (Sweden)

    Jiang-Yan Liu

    2011-04-01

    Full Text Available Hydroxyphenyl (H-type and guaiacyl (G-type lignin model polymers composed of the β–O–4 structure without gamma–hydroxymethyl groups were synthesized. The chemical structures of the H- and G-type lignin models were characterized by 1H- and 13C-NMR, as well as MALDI-TOF/MS. The pyrolysis response was analyzed by means of TG-DTG, Py-GC/MS, and a tube furnace technique. 1H-, 13C-NMR, and MALDI-TOF/MS showed that the lignin models were linear polymers. The polymers included the β–O–4 linkage, as in natural lignin. Pyrolytic products from H-type lignin model only possessed p-hydroxyphenyl structure without methoxyl groups, and the pyrolytic products from G-type lignin model only possessed guaiacyl structure with methoxyl groups. Pyrolysis products from H- and G- type lignin models were classified into char, gas, and liquid (bio-oil, and the gaseous products of two model compounds mainly consisted of H2, CO, CH4, CO2, and C2H4.

  9. In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

    1998-09-01

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

  10. In situ permeability modification using gelled polymer systems. Topical report, June 10, 1996--April 10, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.

    1997-10-01

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program is focused on five areas: gel treatment in fractured systems; gel treatment in carbonate rocks; in-depth placement of gels; gel systems for application in carbon dioxide flooding; and gel treatment in production wells. The research program is primarily an experimental program directed at improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the first 10 months of a 28 month program is described in the following sections.

  11. Modeling of polymer brush grafted nanoparticles for algal harvesting

    Science.gov (United States)

    Goins, Jason

    Microalgae derived biofuel shows great potential as a replacement to petroleum based fuels. However, industrial scale and economical production of fuel from microalgae suffer from an expensive dewatering step brought on by the organism's specific cell properties. A retrievable, paramagnetic nanoparticle polyelectrolyte brush (NPPB) has been designed as a flocculation agent to provide a low cost method in collecting algal biomass in biofuel production. In conjunction with experiment, subsequent theoretical investigations have been conducted in order to understand experimental observations and inform future design. A strategy has been implemented to provide informative descriptions for the relationship between flocculation agent parameters and dewatering efficiency. We studied the effect altering the degree of polymerization and monomer charge fraction had on the harvesting efficiency by considering flocculation as the criteria for harvesting. As the number of charges on the polymer backbone of the NPPB is increased, less NPPB concentrations are required to achieve equal harvesting efficiencies. This is a result of needing less NPPB to completely screen the effective charge on the algae surface. However, the Debye length limits the amount of charge on the algae surface one NPPB can screen. Using the free energy calculations for the complete set of pair interactions between the NPPB and the algae, we determined how many adsorbed NPPB were required in order for the force between coated algae to become attractive at some algae surface separation. This corresponded to the NPPB bridging two algae surfaces. NPPB with higher monomer charge fractions and degree of polymerizations led to a stronger bridging bond and larger bridging gap that could outweigh the algae pair repulsion. Optimized structures maximize these effects.

  12. A study of the distribution of polymer/surfactant coacervate between solution and foam in archetypal shampoo systems.

    Science.gov (United States)

    Wilgus, Leigh Ann; Davis, Kathleen; Labeaud, Lauren; Gandolfi, Lisa; Lochhead, Robert Y

    2011-01-01

    The research reported here attempted to answer the question, "is the foam important in delivering coacervates from shampoos." In order to answer this question, we have measured the amount of polymer in the foam and in the liquid phases of several cationic polymer/anionic surfactant systems by gravimetry and by FTIR techniques. In all cases studied, we discovered that the concentration of solids and, especially the polymer, in the liquid phase and in the foam phase were essentially the same. We conclude that the foam is unlikely to be an important factor in the topical delivery of polymer/surfactant coacervates.

  13. Stochastic model for photoinduced surface relief grating formation through molecular transport in polymer films.

    Energy Technology Data Exchange (ETDEWEB)

    Juan, M.; Plain, J.; Bachelot, R.; Royer, P.; Gray, S. K.; Wiederrecht, G. P.; Univ. de Technologie de Troyes

    2008-09-01

    We use a stochastic model to study photoinduced surface relief grating (SRG) formation due to molecular transport in azobenzene polymer films. The model is shown to reproduce the essential experimental features of SRG formation. In particular, it predicts SRG formation under both p and s polarizations, and the double peaked topographies that can occur at early times of the process. The evolving molecular positions and orientations during exposure are also followed, providing a useful mechanistic picture of SRG dynamics.

  14. Stiffness and Strength of Fiber Reinforced Polymer Composite Bridge Deck Systems

    OpenAIRE

    2002-01-01

    This research investigates two principal characteristics that are of primary importance in Fiber Reinforced Polymer (FRP) bridge deck applications: STIFFNESS and STRENGTH. The research was undertaken by investigating the stiffness and strength characteristics of the multi-cellular FRP bridge deck systems consisting of pultruded FRP shapes. A systematic analysis procedure was developed for the stiffness analysis of multi-cellular FRP deck systems. This procedure uses the Method of Elasti...

  15. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  16. Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells

    Science.gov (United States)

    Ulusoy, Sehribani

    In this thesis a comprehensive review of fuel cell modeling has been given and based on the review, a general mathematical fuel cell model has been developed in order to understand the physical phenomena governing the fuel cell behavior and in order to contribute to the efforts investigating the optimum performance at different operating conditions as well as with different physical parameters. The steady state, isothermal model presented here accounts for the combined effects of mass and species transfer, momentum conservation, electrical current distribution through the gas channels, the electrodes and the membrane, and the electrochemical kinetics of the reactions in the anode and cathode catalyst layers. One of the important features of the model is that it proposes a simpler modified pseudo-homogeneous/agglomerate catalyst layer model which takes the advantage of the simplicity of pseudo-homogenous modeling while taking into account the effects of the agglomerates in the catalyst layer by using experimental geometric parameters published. The computation of the general mathematical model can be accomplished in 3D, 2D and 1D with the proper assumptions. Mainly, there are two computational domains considered in this thesis. The first modeling domain is a 2D Membrane Electrode Assembly (MEA) model including the modified agglomerate/pseudo-homogeneous catalyst layer modeling with consistent treatment of water transport in the MEA while the second domain presents a 3D model with different flow filed designs: straight, stepped and tapered. COMSOL Multiphysics along with Batteries and Fuel Cell Module have been used for 2D & 3D model computations while ANSYS FLUENT PEMFC Module has been used for only 3D two-phase computation. Both models have been validated with experimental data. With 2D MEA model, the effects of temperature and water content of the membrane as well as the equivalent weight of the membrane on the performance have been addressed. 3D COMSOL simulation

  17. Finite element modelling and experimental characterization of an electro-thermally actuated silicon-polymer micro gripper

    Science.gov (United States)

    Krecinic, F.; Duc, T. Chu; Lau, G. K.; Sarro, P. M.

    2008-06-01

    This paper presents simulation and experimental characterization of an electro-thermally actuated micro gripper. This micro actuator can conceptually be seen as a bi-morph structure of SU-8 and silicon, actuated by thermal expansion of the polymer. The polymer micro gripper with an embedded comb-like silicon skeleton is designed to reduce unwanted out-of-plane bending of the actuator, while offering a large gripper stroke. The temperature and displacement field of the micro gripper structure is determined using a two-dimensional finite element analysis. This analysis is compared to experimental data from steady-state and transient measurements of the integrated heater resistance, which depends on the average temperature of the actuator. The stability of the polymer actuator is evaluated by recording the transient behaviour of the actual jaw displacements. The maximum single jaw displacement of this micro gripper design is 34 µm at a driving voltage of 4 V and an average actuator temperature of 170 °C. The transient thermal response is modelled by a first-order system with a characteristic time constant of 11.1 ms. The simulated force capability of the device is 0.57 mN per µm jaw displacement.

  18. COST-EFFECTIVE WIRE-HARNESS MODEL BY USING POLYMER OPTICAL FIBER

    Directory of Open Access Journals (Sweden)

    Mohammad Syuhaimi Ab-Rahman

    2013-01-01

    Full Text Available In the past decade automotive industries faced the exponential increase of in-vehicle electronic devices. The hydraulic systems are replacing with sophisticate electronic systems. Market demands for exploiting new in-vehicle technologies such as multimedia systems, internet access, GPS, Mobile communication, internal private network; engine, body and power train intelligent control and monitoring systems are increasing daily. These new needs make the wire-harness as physical pathway for power and data more complex. The amount of different data types’ transmission in vehicle networking requires higher bandwidth and subsequently applying expensive and advanced equipment. Also more functions and facilities lead to raise the number of Electronic Control Units (ECU. The high cost of manufacturing and implementing all mentioned equipment and systems only can be justified to luxury vehicle’s high prices. This study presents a conceptual model of in-vehicle networking which would lead to apply considerable portion of these advanced systems in non-luxury vehicles. In this context, Polymer Optical Fibers (POF exploited to achieve high speed bandwidth and cost-effective solution to transfer huge amount of data and one ECU to control and manage body/cabin electronic devices. Regarding to technical specification of POFs and using visible light as data carrier, they can meet all new needs of implementing modern expected technologies for non-luxury cars at inexpensive solution. In addition, POFs are easy-to-use, reliable and flexible in compare with silica base optical fibers. This study suggests three red, blue and green lights for transferring video/audio, communication data network such as internet/vehicle internal network and body/cabin command lines respectively. Moreover, this concept model claims for reducing wire-harness with integration of command lines into multiplexed POF line. By command lines integration also it is possible to merge

  19. Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives.

    Science.gov (United States)

    Celebioglu, Asli; Uyar, Tamer

    2012-01-21

    High molecular weight polymers and high polymer concentrations are desirable for the electrospinning of nanofibers since polymer chain entanglements and overlapping are important for uniform fiber formation. Hence, the electrospinning of nanofibers from non-polymeric systems such as cyclodextrins (CDs) is quite a challenge since CDs are cyclic oligosaccharides. Nevertheless, in this study, we have successfully achieved the electrospinning of nanofibers from chemically modified CDs without using a carrier polymer matrix. Polymer-free nanofibers were electrospun from three different CD derivatives, hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD) in three different solvent systems, water, dimethylformamide (DMF) and dimethylacetamide (DMAc). We observed that the electrospinning of these CDs is quite similar to polymeric systems in which the solvent type, the solution concentration and the solution conductivity are some of the key factors for obtaining uniform nanofibers. Dynamic light scattering (DLS) measurements indicated that the presence of considerable CD aggregates and the very high solution viscosity were playing a key role for attaining nanofibers from CD derivatives without the use of any polymeric carrier. The electrospinning of CD solutions containing urea yielded no fibers but only beads or splashes since urea caused a notable destruction of the self-associated CD aggregates in their concentrated solutions. The structural, thermal and mechanical characteristics of the CD nanofibers were also investigated. Although the CD derivatives are amorphous small molecules, interestingly, we observed that these electrospun CD nanofibers/nanowebs have shown some mechanical integrity by which they can be easily handled and folded as a free standing material.

  20. Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives

    Science.gov (United States)

    Celebioglu, Asli; Uyar, Tamer

    2012-01-01

    High molecular weight polymers and high polymer concentrations are desirable for the electrospinning of nanofibers since polymer chain entanglements and overlapping are important for uniform fiber formation. Hence, the electrospinning of nanofibers from non-polymeric systems such as cyclodextrins (CDs) is quite a challenge since CDs are cyclic oligosaccharides. Nevertheless, in this study, we have successfully achieved the electrospinning of nanofibers from chemically modified CDs without using a carrier polymer matrix. Polymer-free nanofibers were electrospun from three different CD derivatives, hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD) in three different solvent systems, water, dimethylformamide (DMF) and dimethylacetamide (DMAc). We observed that the electrospinning of these CDs is quite similar to polymeric systems in which the solvent type, the solution concentration and the solution conductivity are some of the key factors for obtaining uniform nanofibers. Dynamic light scattering (DLS) measurements indicated that the presence of considerable CD aggregates and the very high solution viscosity were playing a key role for attaining nanofibers from CD derivatives without the use of any polymeric carrier. The electrospinning of CD solutions containing urea yielded no fibers but only beads or splashes since urea caused a notable destruction of the self-associated CD aggregates in their concentrated solutions. The structural, thermal and mechanical characteristics of the CD nanofibers were also investigated. Although the CD derivatives are amorphous small molecules, interestingly, we observed that these electrospun CD nanofibers/nanowebs have shown some mechanical integrity by which they can be easily handled and folded as a free standing material.

  1. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  2. Distributed generation systems model

    Energy Technology Data Exchange (ETDEWEB)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  3. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  4. Self-healing polymer systems: Properties, synthesis and applications

    NARCIS (Netherlands)

    Garcia, S.J.; Fischer, H.R.

    2014-01-01

    After millions of years of evolution, nature has developed materials and systems based on the concept of damage management (healing) in order to extend survival possibilities. In the last 20 years, the dream of implementing this concept to engineering systems to extend service lifetime has become a

  5. Performance of SuSi: a method for generating atomistic models of amorphous polymers based on a random search of energy minima.

    Science.gov (United States)

    Curcó, David; Alemán, Carlos

    2004-04-30

    The performance of a recently developed method to generate representative atomistic models of amorphous polymers has been investigated. This method, which is denoted SuSi, can be defined as a random generator of energy minima. The effects produced by different parameters used to define the size of the system and the characteristics of the generation algorithm have been examined. Calculations have been performed on poly(L,D-lactic) acid (rho = 1.25 g/cm3) and nylon 6 (rho = 1.084 g/cm(3)), which are important commercial polymers.

  6. A novel view of modelling interactions between synthetic and biological polymers via docking

    Science.gov (United States)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2012-12-01

    Multipoint interactions between synthetic and natural polymers provide a promising platform for many topical applications, including therapeutic blockage of virus-specific targets. Docking may become a useful tool for modelling of such interactions. However, the rigid docking cannot be correctly applied to synthetic polymers with flexible chains. The application of flexible docking to these polymers as whole macromolecule ligands is also limited by too many possible conformations. We propose to solve this problem via stepwise flexible docking. Step 1 is docking of separate polymer components: (1) backbone units ( BU), multi-repeated along the chain, and (2) side groups ( SG) consisting of functionally active elements ( SG F ) and bridges ( SG B ) linking SG F with BU. At this step, probable binding sites locations and binding energies for the components are scored. Step 2 is docking of component-integrating models: [ BU] m , SG = SG F -SG B , BU-SG, BU-BU( SG) -BU, BU( SG) -[ BU] m -BU( SG), and [ BU var ( SG var )] m . Every modelling level yields new information, including how the linkage of various components influences on the ligand—target contacts positioning, orientation, and binding energy in step-by-step approximation to polymeric ligand motifs. Step 3 extrapolates the docking results to real-scale macromolecules. This approach has been demonstrated by studying the interactions between hetero-SG modified anionic polymers and the N-heptad repeat region tri-helix core of the human immunodeficiency virus type 1 ( HIV-1) envelope glycoprotein gp41, the key mediator of HIV-1 fusion during virus entry. The docking results are compared to real polymeric compounds, acting as HIV-1 entry inhibitors in vitro. This study clarifies the optimal macromolecular design for the viral fusion inhibition and drug resistance prevention.

  7. A novel view of modelling interactions between synthetic and biological polymers via docking.

    Science.gov (United States)

    Tsvetkov, Vladimir B; Serbin, Alexander V

    2012-12-01

    Multipoint interactions between synthetic and natural polymers provide a promising platform for many topical applications, including therapeutic blockage of virus-specific targets. Docking may become a useful tool for modelling of such interactions. However, the rigid docking cannot be correctly applied to synthetic polymers with flexible chains. The application of flexible docking to these polymers as whole macromolecule ligands is also limited by too many possible conformations. We propose to solve this problem via stepwise flexible docking. Step 1 is docking of separate polymer components: (1) backbone units (BU), multi-repeated along the chain, and (2) side groups (SG) consisting of functionally active elements (SG(F)) and bridges (SG(B)) linking SG(F) with BU. At this step, probable binding sites locations and binding energies for the components are scored. Step 2 is docking of component-integrating models: [BU](m), SG = SG(F)-SG(B), BU-SG, BU-BU(SG)-BU, BU(SG)-[BU](m)-BU(SG), and [BU(var)(SG(var))](m). Every modelling level yields new information, including how the linkage of various components influences on the ligand-target contacts positioning, orientation, and binding energy in step-by-step approximation to polymeric ligand motifs. Step 3 extrapolates the docking results to real-scale macromolecules. This approach has been demonstrated by studying the interactions between hetero-SG modified anionic polymers and the N-heptad repeat region tri-helix core of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, the key mediator of HIV-1 fusion during virus entry. The docking results are compared to real polymeric compounds, acting as HIV-1 entry inhibitors in vitro. This study clarifies the optimal macromolecular design for the viral fusion inhibition and drug resistance prevention.

  8. Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis.

    Science.gov (United States)

    Zhang, Jingli; Zhang, Mingxi; Tang, Kangjian; Verpoort, Francis; Sun, Taolei

    2014-01-15

    The introduction of stimuli-responsive polymers into the study of organic catalysis leads to the generation of a new kind of polymer-based stimuli-responsive recyclable catalytic system. Owing to their reversible switching properties in response to external stimuli, these systems are capable of improving the mass transports of reactants/products in aqueous solution, modulating the chemical reaction rates, and switching the catalytic process on and off. Furthermore, their stimuli-responsive properties facilitate the separation and recovery of the active catalysts from the reaction mixtures. As a fascinating approach of the controllable catalysis, these stimuli-responsive catalytic systems including thermoresponsive, pH-responsive, chemo-mechano-chemical, ionic strength-responsive, and dual-responsive, are reviewed in terms of their nanoreactors and mechanisms.

  9. Emergent horizon, Hawking radiation and chaos in the collapsed polymer model of a black hole

    CERN Document Server

    Brustein, Ram

    2016-01-01

    We have proposed that the interior of a macroscopic Schwarzschild black hole (BH) consists of highly excited, long, closed, interacting strings and, as such, can be modeled as a collapsed polymer. It was previously shown that the scaling relations of the collapsed-polymer model agree with those of the BH. The current paper further substantiates this proposal with an investigation into some of its dynamical consequences. In particular, we show that the model predicts, without relying on gravitational effects, an emergent horizon. We further show that the horizon fluctuates quantum mechanically as it should and that the strength of the fluctuations is inversely proportional to the BH entropy. It is then demonstrated that the emission of Hawking radiation is realized microscopically by the quantum-induced escape of small pieces of string, with the rate of escape and the energy per emitted piece both parametrically matching the Hawking temperature. We also show, using standard methods from statistical mechanics a...

  10. Characterization of a clinical polymer-drug conjugate using multiscale modeling.

    Science.gov (United States)

    Peng, Lili X; Ivetac, Anthony; Chaudhari, Akshay S; Van, Sang; Zhao, Gang; Yu, Lei; Howell, Stephen B; McCammon, J Andrew; Gough, David A

    2010-11-01

    The molecular conformation of certain therapeutic agents has been shown to affect the ability to gain access to target cells, suggesting potential value in defining conformation of candidate molecules. This study explores how the shape and size of poly-γ-glutamyl-glutamate paclitaxel (PGG-PTX), an amphiphilic polymer-drug with potential chemotherapeutic applications, can be systematically controlled by varying hydrophobic and hydrophilic entities. Eighteen different formulations of PGG-PTX varying in three PTX loading fractions (f(PTX)) of 0.18, 0.24, and 0.37 and six spatial arrangements of PTX ('clusters', 'ends', 'even', 'middle', 'random', and 'side') were explored. Molecular dynamics (MD) simulations of all-atom (AA) models of PGG-PTX were run until a statistical equilibrium was reached at 100 ns and then continued as coarse-grained (CG) models until a statistical equilibrium was reached at an effective time of 800 ns. Circular dichroism spectroscopy was used to suggest initial modeling configurations. Results show that a PGG-PTX molecule has a strong tendency to form coil shapes, regardless of the PTX loading fraction and spatial PTX arrangement, although globular shapes exist at f(PTX) = 0.24. Also, less uniform PTX arrangements such as 'ends', 'middle', and 'side' produce coil geometries with more curvature. The prominence of coil shapes over globules suggests that PGG-PTX may confer a long circulation half-life and high propensity for accumulation to tumor endothelia. This multiscale modeling approach may be advantageous for the design of cancer therapeutic delivery systems. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 936-951, 2010.

  11. A polymer visualization system with accurate heating and cooling control and high-speed imaging.

    Science.gov (United States)

    Wong, Anson; Guo, Yanting; Park, Chul B; Zhou, Nan Q

    2015-04-23

    A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system's capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals' boundaries due to CO₂ exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals.

  12. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    Science.gov (United States)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  13. Polymer Matrix Composites using Fused Deposition Modeling Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...

  14. Molecular Design of Doped Polymers for Thermoelectric Systems-Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Chabinyc, Michael L. [University of California, Santa Barbara; Hawker, Craig J. [University of California, Santa Barbara

    2013-10-09

    The self-assembly of organic semiconducting molecules and polymers is critical for their electrical properties. This project addressed the design of organic semiconductors with novel synthetic building blocks for proton-dopable conducting materials and the molecular order and microstructure of high performance semiconducting polymers blended with charge transfer dopants. Novel azulene donor-acceptor materials were designed and synthesized with unique electronic effects upon protonation to generate charged species in solution. The microstructure and optical properties of these derivatives were examined to develop structure-property relationships. Studies of the microstructure of blends of charge transfer doped semiconducting polymers revealed highly ordered conductive phases in blends. The molecular packing of one blend was studied in detail using a combination of solid-state NMR and x-ray scattering revealing that dopant incorporation is unlikely to be random as assumed in transport models. Studies of the electrical properties of these highly ordered blends revealed a universal trend between the thermopower and electrical conductivity of semiconducting polymers that is independent of the doping mechanism.

  15. Polymer damage mitigation---predictive lifetime models of polymer insulation degradation and biorenewable thermosets through cationic polymerization for self-healing applications

    Science.gov (United States)

    Hondred, Peter Raymond

    Over the past 50 years, the industrial development and applications for polymers and polymer composites has become expansive. However, as with any young technology, the techniques for predicting material damage and resolving material failure are in need of continued development and refinement. This thesis work takes two approaches to polymer damage mitigation---material lifetime prediction and spontaneous damage repair through self-healing while incorporating bio-renewable feedstock. First, material lifetime prediction offers the benefit of identifying and isolating material failures before the effects of damage results in catastrophic failure. Second, self-healing provides a systematic approach to repairing damaged polymer composites, specifically in applications where a hands-on approach or removing the part from service are not feasible. With regard to lifetime prediction, we investigated three specific polymeric materials---polytetrafluoroethylene (PTFE), poly(ethylene-alt-tetrafluoroethylene) (ETFE), and Kapton. All three have been utilized extensively in the aerospace field as a wire insulation coating. Because of the vast amount of electrical wiring used in aerospace constructions and the potential for electrical and thermal failure, this work develops mathematical models for both the thermal degradation kinetics as well as a lifetime prediction model for electrothermal breakdown. Isoconversional kinetic methods, which plot activation energy as a function of the extent of degradation, present insight into the development each kinetic model. The models for PTFE, ETFE, and Kapton are one step, consecutive three-step, and competitive and consecutive five-step respectively. Statistical analysis shows that an nth order autocatalytic reaction best defined the reaction kinetics for each polymer's degradation. Self-healing polymers arrest crack propagation through the use of an imbedded adhesive that reacts when cracks form. This form of damage mitigation focuses on

  16. Dynamic heat capacity of the east model and of a bead-spring polymer model.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, John Dwane (New Mexico Institute of Mining and Technology, Socorro, NM); Brown, Jonathan R. (New Mexico Institute of Mining and Technology, Socorro, NM); Adolf, Douglas Brian

    2011-10-01

    In this report we have presented a brief review of the glass transition and one means of characterizing glassy materials: linear and nonlinear thermodynamic oscillatory experiments to extract the dynamic heat capacity. We have applied these methods to the east model (a variation of the Ising model for glass forming systems) and a simple polymeric system via molecular dynamics simulation, and our results match what is seen in experiment. For the east model, since the dynamics are so simple, a mathematical model is developed that matches the simulated dynamics. For the polymeric system, since the system is a simulation, we can instantaneously 'quench' the system - removing all vibrational energy - to separate the vibrational dynamics from dynamics associated with particle rearrangements. This shows that the long-time glassy dynamics are due entirely to the particle rearrangements, i.e. basin jumping on the potential energy landscape. Finally, we present an extension of linear dynamic heat capacity to the nonlinear regime.

  17. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  18. Novel smart yolk/shell polymer microspheres as a multiply responsive cargo delivery system.

    Science.gov (United States)

    Du, Pengcheng; Liu, Peng

    2014-03-25

    An effective strategy was developed to fabricate the novel dually thermo- and pH-responsive yolk/shell polymer microspheres as a drug delivery system (DDS) for the controlled release of anticancer drugs via two-stage distillation precipitation polymerization and seed precipitation polymerization. Their pH-induced thermally responsive polymer shells act as a smart "valve" to adjust the diffusion of the loaded drugs in/out of the polymer containers according to the body environments, while the movable P(MAA-co-EGDMA) cores enhance the drug loading capacity for the anticancer drug doxorubicin hydrochloride (DOX). The yolk/shell polymer microspheres show a low leakage at high pH values but significantly enhanced release at lower pH values equivalent to the tumor body fluid environments at human body temperature, exhibiting the apparent tumor-environment-responsive controlled "on-off" drug release characteristics. Meanwhile, the yolk/shell microspheres expressed very low in vitro cytotoxicity on HepG2 cells. Consequently, their precise tumor-environment-responsive drug delivery performance and high drug loading capacity offer promise for tumor therapy.

  19. A multiple unit floating drug delivery system of piroxicam using eudragit polymer

    Directory of Open Access Journals (Sweden)

    Kale R

    2007-01-01

    Full Text Available A floating drug delivery system of piroxicam in the form of microspheres was prepared using an enteric polymer and emulsification solvent-evaporation method. The microspheres remained buoyant continuously over the surface of acidic media containing surfactant for a period of 8-12 h in vitro . Differential scanning calorimetry and X-ray diffraction studies showed that drug incorporated in the outer shell of the polymer was completely amorphous. Scanning electron micrographs indicated that the microsphere is perfect sphere with an internal hollow cavity enclosed by a rigid shell of polymer. The micromeritic properties of microspheres were found to be much improved compared with original drug crystals. The in vitro drug release behavior of the floating microspheres was characterized as an enteric property. Polymer being soluble above pH 7.0, the drug release rates from microspheres changed dramatically above and below pH 7.0. At intestinal pH the drug release was faster and continuous as compared to the amount released at gastric pH.

  20. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Science.gov (United States)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  1. Solution and Diffusion Behavior of Pure Gases and Gas Mixtures in Glassy Polymer Membranes

    Institute of Scientific and Technical Information of China (English)

    庄震万; 卫伟; 时钧

    1994-01-01

    A general model for the solution and diffusion behavior in pure gas-polymer membrane systems and gas mixture-polymer membrane systems has been developed. Proved by experiments on different glassy and rubbery polymer membranes at various temperatures and pressures, this model can achieve the prediction of permeation behavior of pure gases and gas mixtures in polymer membranes only using the model parameters obtained from experiments on pure gases. The calculated results are in good agreement with experimental.

  2. Polymer dynamics in semidilute solution during electrospinning: A simple model and experimental observations

    Science.gov (United States)

    Greenfeld, Israel; Arinstein, Arkadii; Fezzaa, Kamel; Rafailovich, Miriam H.; Zussman, Eyal

    2011-10-01

    Electrospun polymer nanofibers demonstrate outstanding mechanical and thermodynamic properties as compared to macroscopic-scale structures. Our previous work has demonstrated that these features are attributed to nanofiber microstructure [Nat. Nanotechnol.1748-338710.1038/nnano.2006.172 2, 59 (2007)]. It is clear that this microstructure is formed during the electrospinning process, characterized by a high stretching rate and rapid evaporation. Thus, when studying microstructure formation, its fast evolution must be taken into account. This study focuses on the dynamics of a highly entangled semidilute polymer solution under extreme longitudinal acceleration. The theoretical modeling predicts substantial longitudinal stretching and transversal contraction of the polymer network caused by the jet hydrodynamic forces, transforming the network to an almost fully stretched state. This prediction was verified by x-ray phase-contrast imaging of electrospinning jets of poly(ethylene oxide) and poly(methyl methacrylate) semidilute solutions, which revealed a noticeable increase in polymer concentration at the jet center, within less than 1 mm from the jet start. Thus, the proposed mechanism is applicable to the initial stage of the microstructure formation.

  3. High-density cell systems incorporating polymer microspheres as microenvironmental regulators in engineered cartilage tissues.

    Science.gov (United States)

    Solorio, Loran D; Vieregge, Eran L; Dhami, Chirag D; Alsberg, Eben

    2013-06-01

    To address the significant clinical need for tissue-engineered therapies for the repair and regeneration of articular cartilage, many systems have recently been developed using bioactive polymer microspheres as regulators of the chondrogenic microenvironment within high-density cell cultures. In this review, we highlight various densely cellular systems utilizing polymer microspheres as three-dimensional (3D) structural elements within developing engineered cartilage tissue, carriers for cell expansion and delivery, vehicles for spatiotemporally controlled growth factor delivery, and directors of cell behavior via regulation of cell-biomaterial interactions. The diverse systems described herein represent a shift from the more traditional tissue engineering approach of combining cells and growth factors within a biomaterial scaffold, to the design of modular systems that rely on the assembly of cells and bioactive polymer microspheres as building blocks to guide the creation of articular cartilage. Cell-based assembly of 3D microsphere-incorporated structures represents a promising avenue for the future of tissue engineering.

  4. Classification of stimuli-responsive polymers as anticancer drug delivery systems.

    Science.gov (United States)

    Taghizadeh, Bita; Taranejoo, Shahrouz; Monemian, Seyed Ali; Salehi Moghaddam, Zoha; Daliri, Karim; Derakhshankhah, Hossein; Derakhshani, Zaynab

    2015-02-01

    Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.

  5. A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging

    Directory of Open Access Journals (Sweden)

    Anson Wong

    2015-04-01

    Full Text Available A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC. With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system’s capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals’ boundaries due to CO2 exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals.

  6. Manufacturing routes for disposable polymer blood diagnostic microfluidic systems

    DEFF Research Database (Denmark)

    Tosello, Guido; Griffiths, Christian; Azcarate, Sabino

    2008-01-01

    The future vision of multi - analysis point of care testing (POCT) shows a hand-held device that patients can use with an ease similar to current blood sugar test systems. Additionally the mobile instrument would require transfer of the measured test results wirelessly to the doctor’s office, thus...

  7. Effective Charge on Polymer Colloids Obtained Using a Renormalization Model.

    Science.gov (United States)

    Quesada-Pérez; Callejas-Fernández; Hidalgo-Álvarez

    1998-10-01

    Static light scattering has been used to study the electrostatic interaction between colloidal particles. Experiments were carried out using a latex with a very small diameter, allowing structure determination at high particle concentration. The obtained effective charge characterizing this interaction is found to be smaller than the bare charge determined from titration. A renormalization model connecting both values has been used. The agreement between the renormalized charge and that obtained from scattering data seems to point out that this model operates well. Copyright 1998 Academic Press.

  8. Probing effect of solvent concentration on glass transition and sub-Tg structural relaxation in polymer solvent mixtures: The case of polystyrene-toluene system

    Science.gov (United States)

    Pierleoni, Davide; Scherillo, Giuseppe; Minelli, Matteo; Mensitieri, Giuseppe; Doghieri, Ferruccio

    2016-05-01

    A novel experimental method for the analysis of volume relaxation induced by solvents in glassy polymers is presented. A gravimetric technique is used to evaluate the isothermal solvent mass uptake at controlled increasing/decreasing solvent pressure at constant rate. Fundamental properties of the solvent/polymer system can be obtained directly, and models can be applied, combining both nonequilibrium thermodynamics and mechanics of volume relaxation contribution. The fundamental case of polystyrene and toluene mixtures are thus accounted for, and various experimental conditions have been explored, varying the temperature, and spanning over different pressure increase/decrease rates. The results obtained allowed to evaluate the isothermal second order transition induced by solvent sorption, as well as the determination of the effect of the pressure rate. Therefore, this work proposes a new standard for the characterization and the understanding of the relaxational behavior of glassy polymers.

  9. Probing effect of solvent concentration on glass transition and sub-T{sub g} structural relaxation in polymer solvent mixtures: The case of polystyrene-toluene system

    Energy Technology Data Exchange (ETDEWEB)

    Pierleoni, Davide; Minelli, Matteo; Doghieri, Ferruccio [Department of Civil, Chemical, Environmental and Materials Engineering (DICAM) - Alma Mater Studiorum - University of Bologna - via Terracini 28 - 40132 Bologna (Italy); Scherillo, Giuseppe; Mensitieri, Giuseppe [Department of Chemical and Materials Engineering and Industrial Production DICMaPI, University of Naples Federico II –Piazzale Tecchio 80 – 80125 Napoli (Italy)

    2016-05-18

    A novel experimental method for the analysis of volume relaxation induced by solvents in glassy polymers is presented. A gravimetric technique is used to evaluate the isothermal solvent mass uptake at controlled increasing/decreasing solvent pressure at constant rate. Fundamental properties of the solvent/polymer system can be obtained directly, and models can be applied, combining both nonequilibrium thermodynamics and mechanics of volume relaxation contribution. The fundamental case of polystyrene and toluene mixtures are thus accounted for, and various experimental conditions have been explored, varying the temperature, and spanning over different pressure increase/decrease rates. The results obtained allowed to evaluate the isothermal second order transition induced by solvent sorption, as well as the determination of the effect of the pressure rate. Therefore, this work proposes a new standard for the characterization and the understanding of the relaxational behavior of glassy polymers.

  10. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development

    OpenAIRE

    2015-01-01

    A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A ButlereVolmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of elect...

  11. Microscopic modelling of the flow properties of polymers

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    1990-01-01

    The understanding of the flow behaviour of polymeric liquids is of great interest from a practical as well as a theoretical point of view. An important part of the research in this field consists of the development of suitable models, describing the rheological properties of the materials. Depending

  12. Modeling sequence-specific polymers using anisotropic coarse-grained sites allows quantitative comparison with experiment

    CERN Document Server

    Haxton, Thomas K; Zuckermann, Ronald N; Whitelam, Stephen

    2014-01-01

    Certain sequences of peptoid polymers (synthetic analogs of peptides) assemble into bilayer nanosheets via a nonequilibrium assembly pathway of adsorption, compression, and collapse at an air-water interface. As with other large-scale dynamic processes in biology and materials science, understanding the details of this supramolecular assembly process requires a modeling approach that captures behavior on a wide range of length and time scales, from those on which individual sidechains fluctuate to those on which assemblies of polymers evolve. Here we demonstrate that a new coarse-grained modeling approach is accurate and computationally efficient enough to do so. Our approach uses only a minimal number of coarse-grained sites, but retains independently fluctuating orientational degrees of freedom for each site. These orientational degrees of freedom allow us to accurately parameterize both bonded and nonbonded interactions, and to generate all-atom configurations with sufficient accuracy to perform atomic sca...

  13. Polymer models of the hierarchical folding of the Hox-B chromosomal locus

    Science.gov (United States)

    Annunziatella, Carlo; Chiariello, Andrea M.; Bianco, Simona; Nicodemi, Mario

    2016-10-01

    As revealed by novel technologies, chromosomes in the nucleus of mammalian cells have a complex spatial organization that serves vital functional purposes. Here we use models from polymer physics to identify the mechanisms that control their three-dimensional spatial organization. In particular, we investigate a model of the Hox-B locus, an important genomic region involved in embryo development, to expose the principles regulating chromatin folding and its complex behaviors in mouse embryonic stem cells. We reconstruct with high accuracy the pairwise contact matrix of the Hox-B locus as derived by Hi-C experiments and investigate its hierarchical folding dynamics. We trace back the observed behaviors to general scaling properties of polymer physics.

  14. Diffusion in Evaporating Polymer Solutions: A Model in the Dissipative Formalism of Nonequilibrium Thermodynamics

    CERN Document Server

    Es-haghi, Siamak Shams

    2012-01-01

    In this paper, diffusion in polymer solutions undergoing evaporation of solvent is modeled as a coupled heat and mass transfer problem with moving boundary condition within the framework of nonequilibrium thermodynamics. The proposed governing equations derived from the fundamental equation of classical thermodynamics using the local equilibrium hypothesis display more complex connection between heat and non-convective mass fluxes than what has been presented in the previous research works. Numerical computations, performed using an explicit finite difference scheme, indicate that the model is able to capture the effect of thermal diffusion in polymer solutions. This effect manifests itself as an increase in local concentration of solvent near warm substrates during solution casting process.

  15. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2009-01-01

    This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...

  16. Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2017-02-01

    Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

  17. Dissipated work in driven harmonic diffusive systems: General solution and application to stretching Rouse polymers

    Science.gov (United States)

    Speck, T.; Seifert, U.

    2005-02-01

    We study n-dimensional diffusive motion in an externally driven harmonic potential. For these systems the probability distribution of the applied work is a Gaussian. We give explicit expressions for its mean and variance, which are determined by a non-local integral kernel relating the time-derivatives of the applied forces. As illustrations, we specialize our results to dragging a colloidal particle through a viscous fluid and to stretching a Rouse polymer with different protocols.

  18. Co-rotational Oldroyd Fluid B Model for Spinning Flow of Liquid Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    付强

    2003-01-01

    The relationship between the extensional viscosity and material parameters was studied through the analytical formulas of stress and extensional viscosity. The differential equations were solved to obtain the relationship between extensional viscosity and strain rates. The results obtained qualitatively agree with the experimental results. The study makes it practicable to simulate the rheologic behaviors of spinning flow of liquid crystalline polymer using co-rotational Oldroyd fluid B model.

  19. Solute induced relaxation in glassy polymers: Experimental measurements and nonequilibrium thermodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Minelli, Matteo; Doghieri, Ferruccio [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Centro Interdipartimentale per la Ricerca Industriale - Meccanica Avanzata e Materiali (CIRI-MAM), Alma Mater Studiorum - Università di Bologna, via Terracini 28 - (Italy)

    2014-05-15

    Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps.

  20. KINETIC MODEL FOR DIFFUSION-CONTROLLED INTERMOLECULAR REACTION OF HOMOGENOUS POLYMER UNDER STEADY SHEAR

    Institute of Scientific and Technical Information of China (English)

    Meng-ge Liu; Wei Yu; Chi-xing Zhou

    2006-01-01

    The kinetic model for diffusion-controlled intermolecular reaction of homogenous polymer under steady shear was theoretically studied. The classic formalism and the concept of conformation ellipsoids were integrated to get a new equation, which directly correlates the rate constant with shear rate. It was found that the rate constant is not monotonic with shear rate. The scale of rate constant is N-1.5 (N is the length of chains), which is in consistent with de Gennes's result.

  1. Computational fluid dynamics modelling of a polymer electrolyte membrane fuel cell under transient automotive operations

    OpenAIRE

    Choopanya, Pattarapong

    2016-01-01

    A polymer electrolyte membrane (PEM) fuel cell is probably the most promising technology that will replace conventional internal combustion engines in the near future. As a primary power source for an automobile, the transient performance of a PEM fuel cell is of prime importance. In this thesis, a comprehensive, three-dimensional, two-phase, multi-species computational fuel cell dynamics model is developed in order to investigate the effect of flow-field design on the magnitude of current ov...

  2. Molecular Modeling of Rigid-Rod Polymers Structures Dominated by Electrostatic Interactions

    Science.gov (United States)

    2005-11-01

    the structure in solutions of PBO in strong acids . The role of the dielectric properties of the medium ( dielectric constant) and counterions. 1...morphology which the polymer adopts. We propose to undertake a molecular modeling study of the effect of strong acids on the structure and properties of PBO...methane sulphonic and chlorine sulphonic acids [5], (protons are connected with oxygen atoms as well). Besides we have considered also patially protonated

  3. NEP systems model

    Science.gov (United States)

    George, Jeffrey A.

    A new nuclear electric propulsion (NEP) systems analysis code is discussed. The new code is modular and consists of a driver code and various subsystem models. The code models five different subsystems: (1) reactor/shield; (2) power conversion; (3) heat rejection; (4) power management and distribution (PMAD); and (5) thrusters. The code optimizes for the following design criteria: minimum mass; minimum radiator area; and low mass/low area. The code also optimizes the following parameters: separation distance; temperature ratio; pressure ratio; and transmission frequency. The discussion is presented in vugraph form.

  4. Relaxation of polymers modeled by generalized Husimi cacti

    Science.gov (United States)

    Galiceanu, M.

    2010-07-01

    We focus on the generalized Husimi cacti, which are dual structures to the dendrimers but, distinct from the latter, contain loops. We determine their complete spectra by making use of the normal mode analysis. These spectra have been used in computing some physical quantities, such as the averaged monomer displacement and the mechanical relaxation moduli with its two components: the storage and the loss modulus. We also study the dynamics of Husimi cacti in solutions, introducing the hydrodynamic interactions in a preaveraged Oseen fashion, the so-called Zimm model. We observe that the relaxation quantities mentioned above do not scale, in the presence or in the absence of the hydrodynamic interactions. Our results show that all the relaxation forms depend on the number of monomers in the networks in the absence of the hydrodynamic interactions (Rouse model), while by taking into account the hydrodynamic interactions the results do not vary too much.

  5. Relaxation of polymers modeled by generalized Husimi cacti

    Energy Technology Data Exchange (ETDEWEB)

    Galiceanu, M, E-mail: mircea@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba (Brazil)

    2010-07-30

    We focus on the generalized Husimi cacti, which are dual structures to the dendrimers but, distinct from the latter, contain loops. We determine their complete spectra by making use of the normal mode analysis. These spectra have been used in computing some physical quantities, such as the averaged monomer displacement and the mechanical relaxation moduli with its two components: the storage and the loss modulus. We also study the dynamics of Husimi cacti in solutions, introducing the hydrodynamic interactions in a preaveraged Oseen fashion, the so-called Zimm model. We observe that the relaxation quantities mentioned above do not scale, in the presence or in the absence of the hydrodynamic interactions. Our results show that all the relaxation forms depend on the number of monomers in the networks in the absence of the hydrodynamic interactions (Rouse model), while by taking into account the hydrodynamic interactions the results do not vary too much.

  6. The Storm and Nelson's model for polymer stretching revisited

    CERN Document Server

    Massucci, Francesco A; Vicente, Conrad Pérez

    2010-01-01

    The quite recent technological rise in molecular biology allowed single molecule manipulation experiments, where molecule stretching plays a primary role. In order to understand the experimental data, it is felt the urge of some physical and mathematical models to quantitatively express the mechanical properties of the observed molecules. In this paper we reconsider a simple phenomenological model which reproduces the behaviour of a molecule of double stranded DNA (dsDNA) under tension. The problem is easily solved via the cavity method both in the small forces range and in presence of overstretching transition, so that some properties such as bending stiffness and elasticity of dsDNA emerge in a very clear manner. Our theoretical findings are successfully fitted to real measurements and compared to Monte Carlo simulations, confirming the quality of the approach.

  7. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.

    Science.gov (United States)

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-01-01

    The downstream processing of therapeutic proteins is a challenging task. Key information needed to estimate applicable workup strategies (e.g. crystallization) are the interactions of the proteins with other components in solution. This information can be deduced from the second osmotic virial coefficient B22 , measurable by static light scattering. Thermodynamic models are very valuable for predicting B22 data for different process conditions and thus decrease the experimental effort. Available B22 models consider aqueous salt solutions but fail for the prediction of B22 if an additional polymer is present in solution. This is due to the fact that depending on the polymer concentration protein-protein interactions are not rectified as assumed within these models. In this work, we developed an extension of the xDLVO model to predict B22 data of proteins in aqueous polymer-salt solutions. To show the broad applicability of the model, lysozyme, γ-globulin and D-xylose ketol isomerase in aqueous salt solution containing polyethylene glycol were considered. For all proteins considered, the modified xDLVO model was able to predict the experimentally observed non-monotonical course in B22 data with high accuracy. When used in an early stage in process development, the model will contribute to an efficient and cost effective downstream processing development.

  8. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Carl Esben; Østergaard, Peter Friis

    2014-01-01

    from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test...... to numerically robust results with limited computational demands and a low number of iterations. Numerical and simplified analytical results are validated against the experimental results. We find that injection moulding and ultrasonic welding are effective for chip production and that the experimental burst...

  9. A model for the origin of life through rearrangements among prebiotic phosphodiester polymers.

    Science.gov (United States)

    Yakhnin, Alexander V

    2013-02-01

    This model proposes that the origin of life on Earth occurred as a result of a process of alteration of the chemical composition of prebiotic macromolecules. The stability of organic compounds assembled into polymers generally exceeded the stability of the same compounds as free monomers. This difference in stability stimulated accumulation of prebiotic macromolecules. The prebiotic circulation of matter included constant formation and decomposition of polymers. Spontaneous chemical reactions between macromolecules with phosphodiester backbones resulted in a non-Darwinian selection for chemical stability, while formation of strong structures provided an advantage in the struggle for stability. Intermolecular structures between nucleotide-containing polymers were further stabilized by occasional acquisition of complementary nucleotides. Less stable macromolecules provided the source of nucleotides. This process resulted first in the enrichment of nucleotide content in prebiotic polymers, and subsequently in the accumulation of complementary oligonucleotides. Finally, the role of complementary copy molecules changed from the stabilization of the original templates to the de novo production of template-like molecules. I associate this stage with the origin of life in the form of cell-free molecular colonies. Original life acquired ready-to-use substrates from constantly forming prebiotic polymers. Metabolism started to develop when life began to consume more substrates than the prebiotic cycling produced. The developing utilization of non-polymeric compounds stimulated the formation of the first membrane-enveloped cells that held small soluble molecules. Cells "digested" the nucleotide-containing prebiotic macromolecules to nucleotide monomers and switched the mode of replication to the polymerization of nucleotide triphosphates.

  10. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by the independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report was performed by Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures, the work done on recovery experiments on core rocks, and computer simulations. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results

  11. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  12. Modeling and experimentation on an electrostrictive polymer composite for energy harvesting.

    Science.gov (United States)

    Cottinet, Pierre-Jean; Guyomar, Daniel; Guiffard, Benoit; Putson, Chatchai; Lebrun, Laurent

    2010-04-01

    The harvesting of energy from ambient environments is an emerging technology with potential for numerous applications, including portable electronic devices for renewable energy. Most of the current research activities refer to classical piezoelectric ceramic materials, but more recently the development of electrostrictive polymers has generated novel opportunities for high-strain actuators. At present, the investigation of using electrostrictive polymers for energy harvesting (a conversion of mechanical to electrical energy) is beginning to show potential for this application. This paper discusses the development of a model that is able to predict the energy harvesting capabilities of an electrostrictive polymer composite (EPC). An equivalent electrical scheme has been developed by using the model of current that was recently developed by our group. After the validation of the model on a macroscopic level, an empirical relationship was established to predict the value of power from the electrostriction coefficient, the dielectric permittivity, and the compliance of the material. Finally, results indicated that the dielectric permittivity was the crucial parameter for energy harvesting.

  13. Modeling and analysis rheology of polymers for application in technologies “self-crimping” and its adaptation to the practices of Polymer Materials Engineering

    Directory of Open Access Journals (Sweden)

    N. Montanes

    2017-01-01

    Full Text Available Polymers are manufactured in molted state, so the rheological properties are mandatory in order to analyse and evaluate its processability. The prediction of the viscoelastic response of a material and the simulation of the behavior of the same when it is processed is achieved with the application of the rheological models. In  the  preparation  by  extrusion  of  bicomponent  polymer fibers  with  self-crimping  effect  it  is  essential that  the  two  components  have  the  same  viscosity  at  the  nozzle  outlet.  In  order  to  obtain  such  viscosity each  component must  be  extruded  at a  different  temperature maintaining  all  other  processing  conditions unchanged. Using Cross-WLF rheological modelization is it feasible to determine the temperatures for two polymeric materials in order to obtain the same melt viscosity. In the current work a practical session has been proposed for students of Materials Engineering. Using a capillary rheometer, the students should be able to determine the rheological behavior of two thermoplastic polymers. After adjusting the behavior of the polymers to Cross-WLF model and using the proposed model the students should be able to determine the temperatures in which both polymers have the same viscosity.

  14. National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.W. (Energy Information Administration, Washington, DC (United States))

    1993-01-01

    The Energy Information Administration is developing a new National Energy Modeling System to provide annual forecasts of energy supply, demand, and prices on a regional basis in the United States and, to a limited extent, in the rest of the world. The design for the system was based on a requirements analysis, a comparison of requirements with existing modeling capabilities, and a series of widely circulated issue papers defining the choices and tradeoffs for 13 key design decisions. An initial prototpye of the new NEMS was implemented in late 1992, with a more complete, operational version in 1993. NEMS is expected to provide EIA and other users with a greatly enhanced ability to illustrate quickly and effectively the effects of a wide range of energy policy proposals.

  15. Integrated Modeling of Polymer Composites Under High Energy Laser Irradiation

    Science.gov (United States)

    2015-10-30

    Nano- Copper Particles and the Multi-Walled Carbon Nanotubes. Composites, Part A 2014, 57, 1−7. (11) Gharagozloo-Hubmann, K.; Boden, A.; Czempiel, G. J...2013, 85, 1295−1326. (55) Varshney, V.; Patnaik, S. S.; Roy, A. K.; Froudakis, G.; Farmer, B. L. Modeling of Thermal Transport in Pillared -Graphene...8.5 × 37.5 × 2.2 mm and heated it at one end with a hot stage while cooling at the opposite end with a copper coldfinger immersed in water. We

  16. Soft Confinement for Polymer Solutions

    CERN Document Server

    Oya, Yutaka

    2014-01-01

    As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa, et al.

  17. The formation of dissipative structures in polymers as a model of synergy

    Directory of Open Access Journals (Sweden)

    Khanchich Oleg A.

    2016-01-01

    Full Text Available Synergetic is an interdisciplinary area and describes the emergence of various kinds of structures, using the representation of the natural sciences. In this paper we studied the conditions for the appearance of thermodynamically stable amorphous-crystalline supramolecular structures on the basis of practical importance for the production of heat-resistant high-strength polymer fibers semi-rigid systems. It is found that in the process of structure formation in the coagulation of the polymer from solutions having supramolecular structures area a definite geometric shape and dimensions. Pattern formation in such systems can simulate the processes studied synergy. This is occurring in the process of self-organization of dissipative structures, transitions from one structure to another. This most discussed matter of self-organization on the “optical” scale level, are observed spherulites have a “correct” form and certain geometric dimensions comparable to the wavelength of visible light. Previously, this polymer does not crystallize at all considered. It is shown that for the study of supramolecular structures are the most convenient and informative experimental approaches are polarization-optical methods, which are directly “tuned” to the optical anisotropy of the structure and morphology. The great advantage of these methods is also possible to study the kinetics of structure formation processes without interfering the system under study.

  18. Modeling and Simulation of Fiber Orientation in Injection Molding of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Jang Min Park

    2011-01-01

    Full Text Available We review the fundamental modeling and numerical simulation for a prediction of fiber orientation during injection molding process of polymer composite. In general, the simulation of fiber orientation involves coupled analysis of flow, temperature, moving free surface, and fiber kinematics. For the governing equation of the flow, Hele-Shaw flow model along with the generalized Newtonian constitutive model has been widely used. The kinematics of a group of fibers is described in terms of the second-order fiber orientation tensor. Folgar-Tucker model and recent fiber kinematics models such as a slow orientation model are discussed. Also various closure approximations are reviewed. Therefore, the coupled numerical methods are needed due to the above complex problems. We review several well-established methods such as a finite-element/finite-different hybrid scheme for Hele-Shaw flow model and a finite element method for a general three-dimensional flow model.

  19. Modeling Novo Nordisk Production Systems

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1997-01-01

    This report describes attributes of models and systems, and how models can be used for description of production systems. There are special attention on the 'Theory of Domains'.......This report describes attributes of models and systems, and how models can be used for description of production systems. There are special attention on the 'Theory of Domains'....

  20. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  1. Wetting and dispersion in ceramic/polymer melt injection molding systems: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, M.D.; Williams, J.W.; Batich, C.D.

    1986-11-01

    Research progress is reported in the areas of rheological characterization, mixing/deagglomeration, ceramic/polymer interface modification, polymer matrix chemistry, and microstructure characterization. (DLC)

  2. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface...... characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role...... of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers....

  3. Sustainable design and manufacturing of multifunctional polymer nanocomposite coatings: A multiscale systems approach

    Science.gov (United States)

    Xiao, Jie

    Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and

  4. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    Science.gov (United States)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  5. Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems.

    Science.gov (United States)

    Everberg, Henrik; Gustavasson, Niklas; Tjerned, Folke

    2008-01-01

    Methods that combine efficient solubilization with enrichment of proteins and intact protein complexes are of central interest in current membrane proteomics. We have developed methods based on nondenaturing detergent extraction of yeast mitochondrial membrane proteins followed by enrichment of hydrophobic proteins in aqueous two-phase system. Combining the zwitterionic detergent Zwittergent 3-10 and the nonionic detergent Triton X-114 results in a complementary solubilization of proteins, which is similar to that of the anionic detergent sodium dodecyl sulfate (SDS) but with the important advantage of being nondenaturing. Detergent/polymer two-phase system partitioning offers removal of soluble proteins that can be further improved by manipulation of the driving forces governing protein distribution between the phases. Integral and peripheral membrane protein subunits from intact membrane protein complexes partition to the detergent phase while soluble proteins are found in the polymer phase. An optimized solubilization protocol is presented in combination with detergent/polymer two-phase partitioning as a mild and efficient method for initial enrichment of membrane proteins and membrane protein complexes in proteomic studies.

  6. Analytical model of carrier mobility in a Polymer Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Milošević Milan M.

    2007-01-01

    Full Text Available In this paper, the carrier mobility analytical model in a POFET (Polymer Field Effect Transistor channel is proposed. The model was developed on the basis of existing models and experimental results. The proposed model is universal because it encompasses the carrier mobility dependence on temperature, electric field and trap density in the POFET channel. The model is comparatively simple, easy for application and gives valuable results. According to the presented model, simulations of mobility as a function of the parameters of interest were performed. The obtained results are shown graphically. In comparison to accessible experimental results excellent correspondence was found. This model enables the calculation of simple POFET current-voltage I (V characteristics.

  7. Prediction of intracellular storage polymers using quantitative image analysis in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Mesquita, Daniela P; Leal, Cristiano; Cunha, Jorge R; Oehmen, Adrian; Amaral, A Luís; Reis, Maria A M; Ferreira, Eugénio C

    2013-04-03

    The present study focuses on predicting the concentration of intracellular storage polymers in enhanced biological phosphorus removal (EBPR) systems. For that purpose, quantitative image analysis techniques were developed for determining the intracellular concentrations of PHA (PHB and PHV) with Nile blue and glycogen with aniline blue staining. Partial least squares (PLS) were used to predict the standard analytical values of these polymers by the proposed methodology. Identification of the aerobic and anaerobic stages proved to be crucial for improving the assessment of PHA, PHB and PHV intracellular concentrations. Current Nile blue based methodology can be seen as a feasible starting point for further enhancement. Glycogen detection based on the developed aniline blue staining methodology combined with the image analysis data proved to be a promising technique, toward the elimination of the need for analytical off-line measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Mechanics of Sister Chromatids studied with a Polymer Model English

    Science.gov (United States)

    Zhang, Yang; Isbaner, Sebastian; Heermann, Dieter

    2013-10-01

    Sister chromatid cohesion denotes the phenomenon that sister chromatids are initially attached to each other in mitosis to guarantee the error-free distribution into the daughter cells. Cohesion is mediated by binding proteins and only resolved after mitotic chromosome condensation is completed. However, the amount of attachement points required to maintain sister chromatid cohesion while still allowing proper chromosome condensation is not known yet. Additionally the impact of cohesion on the mechanical properties of chromosomes also poses an interesting problem. In this work we study the conformational and mechanical properties of sister chromatids by means of computer simulations. We model both protein-mediated cohesion between sister chromatids and chromosome condensation with a dynamic binding mechanisms. We show in a phase diagram that only specific link concentrations lead to connected and fully condensed chromatids that do not intermingle with each other nor separate due to entropic forces. Furthermore we show that dynamic bonding between chromatids decrease the Young's modulus compared to non-bonded chromatids.

  9. Mechanics of Sister Chromatids studied with a Polymer Model

    Directory of Open Access Journals (Sweden)

    Yang eZhang

    2013-10-01

    Full Text Available Sister chromatid cohesion denotes the phenomenon that sister chromatids are initially attached to each other in mitosis to guarantee the error-free distribution into the daughter cells. Cohesion is mediated by binding proteins and only resolved after mitotic chromosome condensation is completed. However, the amount of attachement points required to maintain sister chromatid cohesion while still allowing proper chromosome condensation is not known yet. Additionally the impact of cohesion on the mechanical properties of chromosomes also poses an interesting problem. In this work we study the conformational and mechanical properties of sister chromatids by means of computer simulations. We model both protein-mediated cohesion between sister chromatids and chromosome condensation with a dynamic binding mechanisms. We show in a phase diagram that only specific link concentrations lead to connected and fully condensed chromatids that do not intermingle with each other nor separate due to entropic forces. Furthermore we show that dynamic bonding between chromatids decrease the Young's modulus compared to non-bonded chromatids.

  10. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  11. Modeling of dynamic mechanical properties of polymer composites reinforced by one dimensional nanofillers

    Science.gov (United States)

    Yu, Y.; Lu, M.; Chen, M. H.; Wang, L. S.; Bu, Z. X.; Song, G.; Sun, L.

    2016-11-01

    Owing to their high aspect ratio, large specific surface area, high axial Young's modulus/strength, and low density, one dimensional carbon nanomaterials can introduce significant change to the mechanical properties of polymer matrices, both static and dynamic. Thus, one of the most important potential applications of carbon nanotubes or nanofibers is to utilize the enhanced dynamic damping properties of polymer nanocomposites for improved vibration, acoustic, and fatigue performances. This study focuses on calculating the nanocomposite energy dissipation under dynamic mechanical loading. A micromechanical model based on quasi-static stick-slip analysis has been developed to quantify the dynamic mechanical properties of the nanocomposites as a function of external strain in the elastic region. Storage and loss moduli are used to characterize such dynamic mechanical behaviors. Influences of nanotube bundling and nanotube alignment on the damping property of composites have been quantified. Simulation results are in good agreement with the reported experimental measurements.

  12. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored...... by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....

  13. Structural models of vanadate-dependent haloperoxidases, their reactivity, immobilization on polymer support and catalytic activities

    Indian Academy of Sciences (India)

    Mannar R Maurya

    2011-03-01

    The design of structural and functional models of enzymes vanadate-dependent haloperoxidases (VHPO) and the isolation and/or generation of species having {VO(H2O)}, {VO2}, {VO(OH)} and {VO(O2)} cores, proposed as intermediate(s) during catalytic action, in solution have been studied. Catalytic potential of these complexes have been tested for oxo-transfer as well as oxidative bromination and sulfide oxidation reactions. Some of the oxidovanadium(IV) and dioxidovanadium(V) complexes have been immobilized on polymer support in order to improve their recycle ability during catalytic activities and turn over number. The formulations of the polymer-anchored complexes are based on the respective neat complexes and conclusions drawn from the various characterization studies. These catalysts have successfully been used for all catalytic reactions mentioned above. These catalysts are stable and recyclable.

  14. Modeling controlled nutrient release from a population of polymer coated fertilizers: statistically based model for diffusion release.

    Science.gov (United States)

    Shaviv, Avi; Raban, Smadar; Zaidel, Elina

    2003-05-15

    A statistically based model for describing the release from a population of polymer coated controlled release fertilizer (CRF) granules by the diffusion mechanism was constructed. The model is based on a mathematical-mechanistic description of the release from a single granule of a coated CRF accounting for its complex and nonlinear nature. The large variation within populations of coated CRFs poses the need for a statistically based approach to integrate over the release from the individual granules within a given population for which the distribution and range of granule radii and coating thickness are known. The model was constructed and verified using experimentally determined parameters and release curves of polymer-coated CRFs. A sensitivity analysis indicated the importance of water permeability in controlling the lag period and that of solute permeability in governing the rate of linear release and the total duration of the release. Increasing the mean values of normally distributed granule radii or coating thickness, increases the lag period and the period of linear release. The variation of radii and coating thickness, within realistic ranges, affects the release only when the standard deviation is very large or when water permeability is reduced without affecting solute permeability. The model provides an effective tool for designing and improving agronomic and environmental effectiveness of polymer-coated CRFs.

  15. Modeling and simulation of surfactant-polymer flooding using a new hybrid method

    Science.gov (United States)

    Daripa, Prabir; Dutta, Sourav

    2017-04-01

    Chemical enhanced oil recovery by surfactant-polymer (SP) flooding has been studied in two space dimensions. A new global pressure for incompressible, immiscible, multicomponent two-phase porous media flow has been derived in the context of SP flooding. This has been used to formulate a system of flow equations that incorporates the effect of capillary pressure and also the effect of polymer and surfactant on viscosity, interfacial tension and relative permeabilities of the two phases. The coupled system of equations for pressure, water saturation, polymer concentration and surfactant concentration has been solved using a new hybrid method in which the elliptic global pressure equation is solved using a discontinuous finite element method and the transport equations for water saturation and concentrations of the components are solved by a Modified Method Of Characteristics (MMOC) in the multicomponent setting. Numerical simulations have been performed to validate the method, both qualitatively and quantitatively, and to evaluate the relative performance of the various flooding schemes for several different heterogeneous reservoirs.

  16. System of systems modeling and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E. (Intera, Inc., Austin, TX); Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  17. Radiation damage of polymers in ultrasonic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anbalagan, Poornnima

    2008-07-01

    Radiation damage has always been a topic of great interest in various fields of sciences. In this work, an attempt is made to probe into the effect of subthreshold ultrasonic waves on the radiation damage created by irradiation of deuterons in polymer samples wherein the polymer samples act as model systems. Two equal volumes of radiation damage were produced in a single polymer sample wherein a standing wave of ultrasound was introduced into one. Three polymers namely, Polycarbonate, Polymethylmethacrylate and Polyvinyl chloride were used in this work. Four independent techniques were used to analyze the irradiated samples and visualize the radiation damage. Interferometric measurements give a measure of the refractive index modulation in the irradiated sample. Polymers, being transparent, do not absorb in the visible region of the electromagnetic spectrum. UV-Vis absorption spectroscopy shows absorption peaks in the visible region in irradiated polymer samples. Ion irradiation causes coloration of polymers. The light microscope is used to measure the absorption of white light by the irradiated polymers. Positron annihilation spectroscopy is used to obtain a measure of the open volume created by irradiation in polymers. A comparison between the irradiated region and the region exposed to ultrasonic waves simultaneously with irradiation in a polymer sample shows the polymer specific influence of the ultrasonic standing wave. (orig.)

  18. Electrical conductivity modeling of multiple carbon fillers in liquid crystal polymer composites for fuel cell bipolar plate applications

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.L.; Keith, J.M.; King, J.A. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering

    2008-08-15

    This study modelled the electrical conductivity of a single filler composite system using a general effective media (GEM) equation. The aim of the study was to investigate the use of synthetic graphite and carbon fiber in liquid crystal polymers for fuel cell bipolar plate applications. The polymer consisted of 73 mole per cent hydroxybenzoic acid and 27 mole per cent hydroxynaphthoic acid. Composites of various concentrations of single and multiple filler combinations were tested. A volumetric in-plane electrical conductivity test was conducted on all samples in order to measure voltage drop. A through-plane conductivity test was conducted to measure resistivity. The GEM equation was then used to model the conductivity data obtained during the tests. Results of the study showed that at 45 vol per cent, the electrical conductivity of the multiple filler composite was comparable to data obtained from single filler electrical conductivities. The electrical conductivity of the multiple filler composite at 60 per cent graphite and 10 per cent carbon fiber was comparable to the single filler carbon fiber composite, but lower than the single filler synthetic graphite composite. Results also showed that the GEM equation provided excellent agreement with results obtained during the experiments. It was concluded that the percolation threshold of the multiple filler composite was almost identical to the single carbon fiber filler, but lower than the single synthetic graphite composite. 35 refs., 3 tabs., 2 figs.

  19. A Mathematical Model of Repeated Impregnation of Porous Bodies with Solutions of Polymers

    Directory of Open Access Journals (Sweden)

    I. V. Glebov

    2015-01-01

    Full Text Available The paper describes basic methods of impregnating porous bodies with solutions of polymers and their use to manufacture prepregs. It also describes the existing methods of manufacturing multilayer prepregs to produce aerospace coating of the spacecraft "Soyuz". It is shown that these prepregs have to meet high requirements for the content of the polymer, as compared with other composite materials, about 35 - 40% of the mass. Methods used for their manufacturing are long-term and non-controllable. The assumption is made that using the vacuum impregnation technology of a woven material will allow to accelerate the manufacturing process of these prepregs and improve their quality.In reviewing the technical literature have been found works on modeling the processes of impregnation, but they are aimed only at studying the speed of the woven material impregnation by various fluids and determining the time of impregnation. There were no models found to define prepreg parameters during the process of multiple impregnations. The aim of this work is to develop the simple mathematical model, which enables us to predict the polymer content of volatile products in the prepreg after each cycle of multiple impregnation of woven material with a solution of the polymer.To consider the vacuum impregnation method are used the prepregs based on silica and silica-nylon stitch-bonding fabric and bakelite varnish LBS-4 containing 50 - 60% of phenol resin and the solvent with minor impurities of pure phenol and water, as an example. To describe the process of vacuum impregnation of the porous work-piece is developed a mathematical description of the process of filling the porous space of the material with a varnish. It is assumed that the varnish components fill the porous space of the material in the same proportion as they are contained in the varnish.It is shown that a single impregnation cannot ensure the content of phenol resin in the prepreg over 32%, which does

  20. Temporal switching of homo-FRET pathways in single-chromophore dimer models of π-conjugated polymers.

    Science.gov (United States)

    Stangl, Thomas; Bange, Sebastian; Schmitz, Daniela; Würsch, Dominik; Höger, Sigurd; Vogelsang, Jan; Lupton, John M

    2013-01-01

    A set of π-conjugated oligomer dimers templated in molecular scaffolds is presented as a model system for studying the interactions between chromophores in conjugated polymers (CPs). Single-molecule spectroscopy was used to reveal energy transfer dynamics between two oligomers in either a parallel or oblique-angle geometry. In particular, the conformation of single molecules embedded in a host matrix was investigated via polarized excitation and emission fluorescence microscopy in combination with fluorescence correlation spectroscopy. While the intramolecular interchromophore conformation was found to have no impact on the fluorescence quantum yield, lifetime, or photon statistics (antibunching), the long-term nonequilibrium dynamics of energy transfer within these bichromophoric systems was accessible by studying the linear dichroism in emission at the single-molecule level, which revealed reversible switching of the emission between the two oligomers. In bulk polymer films, interchromophore coupling promotes the migration of excitation energy to quenching sites. Realizing the presence and dynamics of such interactions is crucial for understanding limitations on the quantum efficiency of larger CP materials.